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Abstract

Artificial Inteligence (AI) techniques like Machine Learning (ML) and Deep Learning

(DL) have the potential to revolutionize healthcare by helping doctors and healthcare

professionals to analyze and diagnose patient data and images more accurately and

efficiently. The integration of methods and techniques that support more effective clin-

ical diagnosis based on images obtained from various imaging modalities, which have

become increasingly widely and successfully used to detect illnesses, is necessary for a

correct diagnosis, which necessitates the precise identification of each disease. Texture

analysis involves the use of computer algorithms to analyze the spatial distribution of

gray levels in an image of a bone sample. This analysis can provide information about

the size, shape, and orientation of the bone’s microstructure, which can be used to es-

timate the degree of osteoporosis. Despite the substantial correlation between sick and

healthy bones, the limited results of the majority of this context’s research result from

the use of handcrafted methods to directly extract bone image features. To bring perfor-

mance closer to clinical diagnosis, novel learning, optimization, and inference methods

for processing biomedical and healthcare data must be investigated. In this work, a set

of descriptors derived from a thorough study of bone texture images will be applied to

a handcrafted feature extraction method (such as HOG and/or LPQ) using Gabor’s

filter bank. In addition, the classifier uses bat-inspired algorithm-based optimization to

automatically adjust the Gabor filter settings in order to achieve deep analysis behavior

and optimal performance. With a good performance of 89.66 % for Osteoporosis diag-

nosis, our experimental results using a standard osteoporosis database demonstrate a

significant improvement over current Deep/Handcrafted methods. Deep Feature Anal-

ysis enables the model to automate the extraction of relevant features and complete

the necessary classification. By automating the feature extraction process, deep feature

analysis can significantly improve the accuracy and efficiency of classification tasks.
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Chapter 1

General Introduction

Healthcare systems play a vital role in maintaining the well-being of individuals and

communities by providing care for their physical and mental health. These systems

have been in place since the time people started prioritizing their health and seek-

ing medical attention for illnesses. However, the healthcare landscape is evolving as

people’s lifestyles and technological advancements are changing rapidly. Although life

expectancy has increased in recent decades, it is projected to change significantly due

to the aging population. The number of people aged 65 or older is expected to double

by 2050, and the majority of illnesses are predicted to be linked to chronic comorbid

conditions by 2025. As the population ages, healthcare costs are also expected to rise.

Therefore, healthcare procedures must be modified to meet the growing demand for

care, as suggested by Bohr & Memarzadeh (2020). In addition, primary care services

must ensure equitable access to curative, rehabilitative, and palliative care services.

To strengthen healthcare systems, the health emergency protection domain aims to

provide adequate and timely services to prevent and manage disease outbreaks, while

the universal health coverage domain focuses on preventing and treating communicable

and noncommunicable diseases and addressing the health impacts of climate change.

In recent years, public health has emerged as a critical global concern, highlighting

the need to establish rigorous technical standards to measure and ensure the quality

of public health practices. While public health is undoubtedly vital, the increasing

number of patients and the use of conventional diagnostic methods for various diseases

can burden healthcare providers and compromise the efficiency of diagnosis and care

delivery. Nonetheless, recent technological advancements, particularly in automation,

1



Chapter 1 General Introduction

have the potential to significantly enhance the efficiency and effectiveness of healthcare

delivery, while simultaneously reducing the time and costs associated with patient care.

These technological innovations have the potential to revolutionize healthcare systems,

eliminating the need for extensive and expensive infrastructure projects. Although

technological advancements in the field have been made, misdiagnosis and missed di-

agnoses persist, particularly in the emergency department, which creates challenges for

healthcare administrators. Scientists, legislators, and successful businesspeople assert

that Artificial Intelligence (AI) will be an essential component of the solution to address

the deteriorating outcomes of healthcare systems. Thus, as the population continues

to grow, the demand for healthcare services is expected to increase. Consequently,

the healthcare industry is actively pursuing innovative methods to enhance efficiency

and effectiveness while minimizing costs. One approach to achieving this goal is by

leveraging rapid technological advancements, particularly in the field of AI.

The use of AI in clinical applications has been gaining attention due to its potential

to replicate human perception, reasoning, learning, and problem-solving methods [1].

One notable application of AI is in classical statistical approaches, where it can ex-

tract data that improves research and decision-making across various clinical research

sectors and technology domains [2]. A press survey reported that 63% of respondents

believe that AI and machine learning (AI/ML) is already delivering significant ben-

efits to specialist fields such as radiology, general medicine, and pathology [3]. In

fact, AI is gradually replacing traditional public health as it aids in risk prediction

through improved diagnostics and screening. With the use of an AI-powered screening

model, potential dangers and vulnerabilities of diseases and disorders can be iden-

tified. The most promising application of AI in healthcare is its ability to enhance

intelligence. Data-driven treatment recommendations that physicians and nurses can

quickly accept, modify, or reject based on their experience and expertise can improve

their performance. By combining augmented intelligence with human intelligence, gaps

can be addressed, and human errors can be reduced. On the other hand, the future

of healthcare is closely intertwined with that of machine learning and artificial intel-

ligence. Medical professionals and researchers input data into computers, which are

then utilized to analyze, comprehend, and resolve issues. The potential uses of artificial

intelligence in the medical field are vast and diverse [4].
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In 2012, the term "radionics" was first introduced by Dutch researcher Lambin P

[5]. His definition of "radionics" is "the extraction of a large number of image fea-

tures from radiographs using high-throughput technology." As more medical images

are generated and artificial intelligence becomes increasingly prevalent, radionics is ex-

periencing rapid growth. In fact, radiological data such as intensity, shape, texture, and

wavelength can be extracted from medical images [1] and used in diagnostic procedures

or in combination with them. One of the most promising applications of artificial in-

telligence is image processing and analysis, which leads us to radiology. Even the most

complex issues can be resolved when machine learning systems are fully utilized. Some

early examples include computer-assisted breast cancer diagnosis on mammograms,

automatic bone age calculation on plain X-ray images of the hand, and identification

and definition of lung nodules on CT scans.

During the past decade, the volume of medical imaging data has significantly increased,

making it difficult for doctors to effectively process and understand images. However,

this issue has also presented opportunities for artificial intelligence to flourish in med-

ical imaging-related research. Researchers in radiology have successfully used AI to

analyze images and determine results that may not be visible to the naked eye. For

example, in radiation therapy for tumors, AI can be successfully used to automatically

determine the segments of tumors and organs and monitor the tumor during adaptive

therapy [3] [6]. This makes it easier to predict treatment response, distinguish between

benign and malignant elements, and evaluate patient outcomes using machine learning.

Medical imaging is an important diagnostic tool for various diseases. X-rays were

the first diagnostic imaging tool after Roentgen’s discovery that they could be detected

in the human body without invasive procedures in 1895 [7]. Since then, more advanced

imaging procedures and several imaging techniques, such as computed tomography, ul-

trasonography, magnetic resonance imaging, and positron emission tomography, have

been developed. Imaging information is critical for decision-making at various stages of

patient care, including detection, characterization, staging, treatment response evalua-

tion, disease recurrence monitoring, and guidance for radiological treatments, surgery,

and radiation. The number of images has significantly increased from a few two-

dimensional (2D) images to hundreds of three-dimensional and thousands of dynamic

four-dimensional images in a single patient case. Multimodal imaging further increases
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the amount of image data that must be interpreted. As workloads increase, radiologists

and clinicians face a challenge of utilizing all available visual information to improve

accuracy and patient care while maintaining efficient workflows. Recent advancements

in machine learning and computational methods have identified the development of

efficient and dependable computerized methods as a crucial area of medical imaging

research to assist radiologists and physicians in image analysis at various stages of

disease diagnosis and management during the patient care process [8].

1.1 Motivation and Goal

Osteoporosis is a condition that affects the skeleton and is characterized by changes

in bone microarchitecture and reduced bone density, which can lead to increased bone

fragility and a higher risk of fractures. Considerable research has been conducted on

osteoporosis, including the clinical implications of bone fractures. In fact, it’s estimated

that osteoporotic fractures will affect around 50% of women and 20% of men over their

lifetime [2]. Recently, advances in machine learning (ML) have enabled significant

progress in analyzing complex data sets with high-dimensional connections that are

difficult for humans to detect. Despite the technical and clinical challenges associated

with applying machine learning techniques in the field of osteoporosis, it holds great

promise as a way to improve diagnosis and treatment of the disease.

To diagnose osteoporosis, the standard approach is to assess Bone Mineral Den-

sity (BMD) using Dual-energy X-ray Absorptiometry (DXA) at the proximal thigh

and lumbar spine. The American Working Group on Preventive Services recommends

screening for osteoporosis in women over the age of 65 to prevent osteoporotic frac-

tures [9]. Since early treatment can be more effective in preventing fractures, early

diagnosis of osteoporosis is essential [10]. One limitation of DXA is that it can be

affected by measurement errors caused by surrounding soft tissue [11]. Moreover, the

high cost and radiation exposure associated with DXA are additional drawbacks [12].

Identifying patients at risk of bone fractures is a challenging task in osteoporosis [13].

To address this issue, researchers are exploring the use of machine learning classifiers

that can predict osteoporotic bone fractures based on imaging features and anatomical

regions that have the greatest impact on prediction accuracy [14]. Identifying patients
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at risk for fractures is a significant challenge in the field of osteoporosis, and finding

machine learning classifiers that highlight imaging features and anatomical regions that

have the greatest impact on data-driven predictions is crucial. Machine learning (ML)

can play a significant role in diagnosing opportunistic osteoporosis or detecting frac-

tures by analyzing images. However, the challenge lies in the fact that osteoporotic

and healthy images share many similarities, making it difficult for human radiologists

to distinguish between them. Future research aims to create machine-learning models

that can better predict fractures and identify new risk factors. Radiologists use the

output of computerized schemes for automated image analysis to aid in their diag-

noses. The performance of computers need not be superior to that of doctors; rather,

it should complement their abilities and serve as a second opinion. Computer-Aided

Diagnosis (CAD) has been introduced to assist experts and other clinicians in detecting

osteoporosis disease and improving diagnosis accuracy.

1.2 Contribution

Feature extraction is a crucial step in image-based medical diagnostic systems to

ensure reliable and useful recognition results. However, traditional machine learning

techniques like Support Vector Machine (SVM) rely on handcrafted features that are

limited by human developers’ inability to translate complex illness patterns into a small

number of descriptors. Consequently, existing machine learning techniques are limited

even when observing a large patient population. Moreover, the variations in normal

and abnormal patterns within a population make it challenging to tolerate Handcrafted

features. We have developed a method for feature extraction that aims to increase class

interaction while minimizing class interdependence. Our innovative techniques allow

for multi-scale image analysis to extract features that improve the precision of feature

vectors, ultimately increasing the accuracy of pattern recognition systems. While we

faced challenges, particularly when using the datasets mentioned in Appendix A, our

data is so similar between classes that it is difficult for a human to differentiate between

healthy and osteoporosis images without aid. Our main contributions in this context

are outlined below:

• To start the process, the raw image will be subjected to a thorough analysis

5



Chapter 1 General Introduction

using a designated group of Gabor filters before the direct application of the

handcrafted feature extraction method. The Gabor filters extract multiple line

orientations and merge them into a single descriptor.

• Once the raw image has been analyzed using the Gabor filters, the resulting

descriptor will be subjected to two unique feature extraction methods: Histogram

of Oriented Gradient (HOG) and Local Phase Quantization (LPQ).

• In order to optimize its performance and achieve deep analysis behavior, the

classifier uses a technique inspired by bats to adjust the Gabor filter settings. This

optimization method enhances the classifier’s ability to process data efficiently.

• The proposed method can implement the multimodality principle in two ways.

Firstly, it can combine data from HOG and LPQ. Secondly, it can employ a

texture analysis that is based on multiple filter sizes.

According to the experimental results, the deep texture analysis method for bone im-

ages is considerably more precise than previous studies.

1.3 Structure of the Thesis

This thesis describes a supervised learning algorithm for building various models to

test the efficiency of feature extraction methods based on osteoporosis image texture

analysis. We utilized state-of-the-art feature extraction techniques to further demon-

strate the efficiency of our method. The support vector machine (SVM) was highly

effective in distinguishing features, resulting in improved accuracy in osteoporosis de-

tection. Our results demonstrate the effectiveness of the proposed method, which

compares favorably to existing literature.

The thesis is divided into five chapters. In Chapter 2, modern computer-aided diag-

nostics are discussed. Chapter 3 provides a general overview of the skeletal and bone

systems before focusing on bone diseases specific to osteoporosis. Chapter 4 outlines

the concept behind the suggested method. Chapter 5 evaluates the proposed method,

presents the results, and compares them to recent approaches in the literature using a
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public database. Finally, the thesis concludes with a general conclusion that includes

the perspectives to be considered.
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Chapter 2

Computer Aided Diagnosis

2.1 Introduction

Computer-Aided Diagnosis (CAD) systems have been developed to improve the ac-

curacy of medical examinations, promote consistency in image interpretation, aid in

prognostic assessment, and assist in therapeutic decision-making [16]. Although these

systems have significant potential, their use in routine clinical practice remains limited.

However, with the emergence of Artificial Intelligence and big data, efforts are being

made to overcome these limitations, expand the use of CAD tools, and bring radiology

closer to the concepts of a multidisciplinary approach and precision medicine [18].

According to Carlos Caldas, Professor of Cancer Medicine and Director of the Breast

Cancer Research Unit at the University of Cambridge, the study greatly enhances our

understanding of the biological mechanisms underlying the response to chemother-

apy in breast cancer patients [19]. By incorporating this knowledge into a Machine

Learning framework that uses predictive methods, the study was able to predict the

response to treatment before it was administered, based on analysis of the primary

tumor and the tumor microenvironment (i.e., surrounding blood vessels, immune cells,

and fibroblasts).
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2.2 Clinical Diagnosis of the disease

Medical diagnosis is the process of identifying a disease or condition that explains a

person’s signs and symptoms. In the case of cancer, Doctors may use one or more

approaches for diagnosis:

2.2.1 Physical Examination

A Medical Examination, also known as a Physical Examination, is a routine medical

examination once a year that aims to check a person’s physical health and note any

changes or signs indicating possible health problems. A person does not have to be sick

to have a thorough medical and physical examination, this is also an opportunity to

speak with a doctor about any pain or symptoms they are having, which is especially

important for people over the age of 50. The physical exam is typically performed by

a medical professional in a doctor’s office or private hospital [20], and it may begin

with areas of the patient’s body that have lumps that could indicate cancer. During

the physical exam, the expert can look for any abnormalities, such as a change in skin

color or enlargement of an organ, that could indicate cancer.

Benefits of a Physical Examination [21] [22]:

• Early detection of any disease symptoms and confirmation of possible diseases,

aid in the initiation of treatment.

• Increase the chances of complete recovery and avoid any serious complications.

• Determine whether the patient has any problems or risk factors that could lead

to disease in the future.

• Determine if the patient needs additional tests and investigations.

• Updating the patient’s vaccinations as needed.

• Ensure that the patient maintains a healthy lifestyle.

• Develop a relationship between the patient and the caregivers.
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2.2.2 Laboratory Tests

Laboratory tests, such as urine and blood tests, can help in the detection of abnormal

changes that may be caused by cancer, it is used for:

• Confirmation of the diagnosis of the disease: some of these tests are confirmatory,

and others are indicative of the disease, such as:

– Bone marrow examination for the type of leukemia.

– Hemoglobin for the diagnosis of anemia

– Thyroid function tests to diagnose hypo or hyperthyroidism.

– Widal’s test for the diagnosis of enteric fever.

• Aid in Differential Diagnosis: Laboratory tests help diagnose diseases such as:

– TLC for acute appendicitis or other cause.

– LFT to determine the type of jaundice.

• To know the prognosis: Laboratory tests help to know the progress of the disease,

such as:

– ESR in case of tuberculosis.

– Tumor markers in the treatment of cancers.

• To determine the prognosis: Laboratory tests such as those listed below can help

determine the progression of the disease.

– Chemotherapy for ovarian cancer.

– Kidney function tests in nephrology.

– INR in anticoagulant therapy.

• Screening tests: Laboratory tests are carried out in the form of panels to diagnose

the disease in the community, such as:

– Examination in the donor blood bank.
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Figure 2.1: Range of Frequencies of Initial Symptoms and Signs of Lung Cancer [23]

2.2.3 Imaging Examination

Imaging examinations allow the examination of bones and internal organs in a non-

invasive way. CT scans, bone scans, magnetic resonance imaging, positron emission

tomography, ultrasound, x-rays, and other imaging tests can be used to diagnose dis-

ease. This element will be discussed in more detail in the next Chapter.

2.2.4 Biopsy

A biopsy is a procedure in which a sample of tissue from the body is removed for

examination. Biopsy specimens can be obtained in a variety of ways. Needle biopsy is

used when a lesion or tumor can be felt or identified in imaging studies [24]. During

the procedure, a thin, hollow needle is inserted into the lesion and guided through

an X-ray or ultrasound machine. A small amount of tissue is taken for examination.

Doctors use a microscope to examine cell samples:

• Normal Cells: appear uniform and similar in size and organization.

• Cancer Cells: appear less organized and appear in different sizes and without

a clear arrangement.

The appropriate biopsy procedure is determined by the type and location of cancer, in

most cases, a biopsy is the only way to confirm a diagnosis of cancer.
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Figure 2.2: Schematic drawing of a biopsy procedure illustrates how a forward viewing
probe captures images of the prostate and nearby organs bladder and urethra [25].

2.3 Artificial Intelligence and Diagnosis: Interest, im-

pact, and trend

In 1956, John McCarthy introduced the concept of Artificial Inteligence (AI). His

definition of AI is "the science and engineering of creating intelligent machines". Arti-

ficial intelligence is the development of computer systems capable of performing tasks

that require human intelligence, such as decision-making, object detection, complex

problem-solving, and so on [26].

Figure 2.3: Relationship between Artificial Intelligence, Machine Learning, and Deep
Learning
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2.3.1 Types of Artificial Intelligence

There are four primary AI types, according to the current classification system: Reac-

tive, Limited Memory, Theory of Mind, and Self-award. These four types are not all

the same: Some are far more advanced than others [27]. Some of these AI systems are

not even scientifically feasible right now.

1. Reactive systems

The reactive system is the oldest and most basic type of artificial intelligence. These

systems have a single function, no memory, and no comprehension of the world outside

of their function, even though they approximate the human mind in how they react to

specific stimuli.

Such Artificial intelligence has machines that only operate based on the data that is

now available and only take into consideration the current circumstances. Reactive AI

devices are unable to conclude the data to evaluate their potential course of action.

They can only carry out a small number of predetermined duties.

The well-known IBM chess software that defeated Garry Kasparov as the world cham-

pion is an illustration of reactive AI. It understands the pieces on the board and predicts

possible next moves, it selects what it considers to be the best profitable outcome based

on a limited set of rules. but without learning from the past. It only reacts after seeing

what is in front of it.

Reactive machine learning is an extension of the reactive systems approach that ad-

dresses the specific challenges of building machine learning systems.

2. Limited Memory

Is a Reactive Learning System, a category that encompasses practically all of today’s

working AI tools. By observing actions or data, Limited Memory AI learns from the

past and accumulates experiential knowledge. This type of AI makes predictions and

performs complex classification tasks by combining historical observational data with

pre-programmed information.
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3. Theory of Mind

Machines will acquire true decision-making abilities similar to humans with this type

of AI. Machines equipped with the theory of mind AI will be able to understand and

remember emotions, and then adjust their behavior in response to those emotions as

they interact with humans [29].

4. Self-award

The final stage of AI development involves creating systems that can form representa-

tions of themselves. In some ways, this is an extension of the "theory of mind" that

Type III artificial intelligence have. Consciousness is also known as "self-awareness"

for a reason. Conscious beings are aware of themselves, their internal states, and their

ability to predict the feelings of others.

2.3.2 Branches of Artificial Intelligent

The fields of application and potential uses of Artificial Intelligence are increasingly di-

verse: Natural language Processing [17], visual recognition, Robotics, Expert systems,

Machine Learning, Deep Learning, and Fuzzy logic. In this section, we will focus on

the Machine and Deep Learning detail.

Machine Learning

Machine Learning (ML) is the technique that enables computers to learn without be-

ing programmed [15], and it is in use daily, it is the study of using computers to read,

analyze, and process data to solve real-world problems [30].

Figure 2.4: General workflow diagram of machine learning algorithms

Machine Learning is divided into three categories: Supervised Learning, Unsupervised
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Learning, Semi-supervised learning, and Reinforcement Learning.

1. Supervised Learning

In this type of learning, data experts feed labeled training data to algorithms and de-

fine variables for algorithms to access and find correlations. The algorithm has defined

input and output [31]. Supervised learning is commonly used in the context of Classi-

fication and Regression.

Figure 2.5: Classification vs. Regression

2. Unsupervised Learning

Unsupervised learning is the use of artificial intelligence algorithms to identify patterns

in data sets that contain no classified or labeled data points. As a result, the algo-

rithms can classify, label, and/or group the data points contained within the data sets

without any external guidance [32].

Figure 2.6: Traditional Machine Learning. Examples of Supervised Learning (Linear
Regression) and Unsupervised Learning (Clustering).

3. Semi-Supervised

Semi-supervised learning can be defined as a hybrid of the above supervised and un-

supervised methods as it works with both labeled and unlabeled data [33]. So it falls
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between "unsupervised" learning and "supervised" learning. In the real world, la-

beled data can be sparse in multiple contexts, and unlabeled data is plentiful where

semi-supervised learning is useful [34]. The ultimate goal of a semi-supervised learning

model is to provide a better prediction result than one obtained from the model using

only labeled data.

4. Reinforcement Learning

Used to train a computer program to complete a multi-step procedure with well-defined

rules. An algorithm is created by programmers to carry out a task, and it is given a

positive and negative signal to act when the algorithm executes to carry out the work

[35]. In other cases, the algorithm even chooses for itself what to do next.

Figure 2.7: Reinforcement Learning Model.

Deep Learning

Deep Learning (DL) is a subset of (ML) that can solve more complex problems. It is

the learning process in which the machine processes and analyzes the input data using

a variety of approaches until it finds the single desired output. It is sometimes referred

to as machine self-learning [36].

Figure 2.8: General workflow diagram of Deep learning algorithms.
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2.3.3 Computer Aided Diagnosis (CAD)

Several factors including fatigue, lack of experience in medical imaging and the num-

ber of images to be analyzed each day make radiologists’ diagnoses tedious and, as a

result, prone to errors with potentially fatal consequences for the patients. Computer-

Aided Diagnosis (CAD) for disease detection has been introduced to improve and assist

experts and other clinicians in cancer prevention, this diagnosis is performed by a ra-

diologist using the output of a computerized scheme for automated image analysis as

a diagnostic aid [37], the performance of computers does not have to be comparable

or superior to that of doctors but must be complementary to that of doctors, it is

considered as a synergy and a second opinion.

The construction of a CAD (see Figure 2.10) is mainly based on four essential steps:

image preprocessing, segmentation, Feature extraction, and classification.

Figure 2.9: Computer-aided Diagnosis for disease detection diagram.

• The patient visits the doctor with a complaint.

• If necessary, the doctor refers the patient to specific imaging to diagnose the

problem.

• The acquired images are analyzed by experts to establish a diagnosis.

• The diagnostic report is used by the doctor to plan treatment.
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Figure 2.10: Computer-Aided Diagnosis System Architecture.

Computer Aided Diagnosis (CADx) (usually focused on classifying detected structures

or regions) and Computer Aided Detection (CADe) (usually confined to marking sus-

picious structures and sections) are medical decision support systems used in the pro-

cess of medical diagnosis, it provides access to medical Database information and can

suggest differential diagnoses based on pre-populated data after clinical examination,

prognostic estimates, or flag missing information to determine the correct diagnosis.

Computer-Aided Diagnostic (CAD) systems use artificial intelligence to analyze lesion

data and diagnose skin cancer. When used in the primary care setting, they can as-

sist doctors or other physicians in better triaging high-risk lesions and referring them

to secondary care. For example, when combined in conjunction with a suspicion of

malignancy on clinical and dermoscopic examination, they can reduce the number of

unnecessary excisions without leaving melanomas undetected [38].

A Computer-Aided automatic Diagnostic (CAD) system designed on a model that takes

into account the relevant pathology descriptors will always be robust, which could help

radiologists reduce the number of unnecessary biopsies and avoid unnecessary patient

stress, especially in cases of a cancer diagnosis. The CAD system used in a screening

or diagnostic context will therefore serve as a second opinion for the radiologist and is

not intended to replace the latter. Studies show that screening tests for certain types

of cancer can save lives by detecting cancer early. Screening tests for other types of

cancer are only advised for those who are at high risk.

Many medical organizations and patient advocacy groups issue cancer screening recom-

mendations and guidelines. The various guidelines can be discussed with the doctor,

and the best one can be chosen based on the patient’s cancer risk factors. Even if

the lesion appears to be suspicious on a medical image or ultrasound, preoperative
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diagnosis is now required for two reasons:

• If it is not cancer, it can prevent many unnecessary surgeries.

• When it comes to surgery it assists doctors in optimizing it from the start.

2.4 CAD Design

In general, the operation of the CAD system consists of several equally important

steps. When the system receives an input image, the following steps must be taken

in this Section to design the diagnostic support system during the Machine and Deep

Learning phases (see Figure 2.11):

Figure 2.11: Computer-Aided Diagnosis System Design.

2.4.1 Model Building (Train Phase)

During the learning phase, the classifier is built by learning from the labeled dataset.

When training a model, engineers choose and collect a large and representative sample

of data.

A corpus of text, a collection of images, sensor data, and data collected from specific

service users are just a few examples of the data that can be included in the training

set.

Data Preprocessing

Whether they are used for medicinal purposes or not, the images that are taken are

frequently corrupted by sensors and light noise. Each image analysis is required to
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Figure 2.12: Train Phase Model.

include a pretreatment step that entails all of the processing operations intended to

enhance the quality of the acquired image. The CAD system removes obvious noise or

specks and improves image contrast to achieve the best image quality through denois-

ing, edge enhancement, and other features.

The purpose of the preprocessing step is to facilitate the segmentation by reinforcing

the similarity between the pixels belonging to the same region or by highlighting the

dissimilarity between pixels belonging to different regions [39].

The purpose of applying image enhancement technology is to: eliminate image defects

(errors in images), reduce image noise (image noise - random color differences scattered

in an image), flatten (format) image quality to remove different ground states of the

image such as different exposure variables, Distinguish between different structures of

the image, such as the heart, lungs, rib cage, and annular flares, Correspondence to

anatomical data.

1. Contrast

Contrast indicates how black can be distinguished from white at a given resolution.

For the image to appear well-defined, black parts must appear black and white parts

white (see Figure 2.13) [40]. The more black and white information is oriented towards

the intermediate grays, the lower the contrast at this frequency.

The greater the difference in intensity between the light and dark lines, the greater the

contrast. While this may seem obvious, it is of the utmost importance. The contrast

at a given frequency can be calculated from equation (2.1), where: Imax is the maxi-

mum intensity (usually in pixel grayscale values, if a camera is used), and Imin is the

minimum intensity.

Contrast =
Imax − Imin

Imax + Imin

(2.1)
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In medical diagnostics, MRI is performed with a contrast agent for better resolution

of the examination, rather than with additional procedures to clarify problems in the

case of non-contrast imaging (see Figure 2.14).

Figure 2.13: The transition from black to white corresponds to high contrast, while
intermediate grays indicate lower contrast.

Figure 2.14: MRI of the brain with and without Contrast. Both images suggest an
arachnoid cyst: The left image (without Contrast) showed a left frontal hypointense
extra-axial lesion. The image on the right (with contrast) showed a left frontal hyper-
intense extra-axial lesion

2. Histogram Equalization

To improve the characteristics of the image (to enhance contrasts), a common approach

is to use a function that assigns a new value to each intensity value of the image, this

function modifies the histogram of the image. Its principle is to subject each pixel and

its context region to a Histogram Equalization. This region actually represents the

neighboring pixels surrounding the pixel being processed (see Figure 2.16) [41]

The probability of occurrence of the intensity level rj is [42]:

Pn(rj) =
ni

n
0 ≤ i < L (2.2)

where:
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ni denote the number of pixels with intensity rj n denotes the total number of pixels

in the image.

L the total number of gray levels in the image (typically 256).

The transformation function used here is :

sk = T (rk) = (L− 1)
k∑

j=0

Prrj (2.3)

Figure 2.15: Histograms of an image before and after equalization.

Figure 2.16: Histogram Equalization for a brain tumor [43].

3. Normalization

Normalization is a data preprocessing technique that reduces the complexity of models.

It is also a requirement for implementing certain algorithms. This technique re-scales

features with a distribution value between 0 and 1. For each feature, the minimum
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value of that feature gets transformed into 0, and the maximum value gets transformed

into 1 (see Figure 2.17).

Normalization standardizes the mean and the standard deviation of any type of data

distribution and allows the learning problem to be simplified by avoiding these two

parameters.

Figure 2.17: Applying the image Normalization process for an MRI brain [44].

The general equation is shown below:

xnorm =
x−min(x)

max(x)−min(x)
(2.4)

4. Standardization

The result of standardization (or Z-score normalization) is that the features are rescaled

to ensure the mean and the standard deviation are 0 and 1, respectively. The equation

is shown below:

xstand =
x−mean(x)

standarddeviation
(2.5)

This method of rescaling feature values with a distribution value between 0 and 1 is

useful for optimization algorithms, such as gradient descent, which is used in machine

learning algorithms that weigh inputs (e.g., regression and neural networks).

5. Region Of Interest Detection

Segmentation means the division of an image into homogeneous regions according to

a determined criterion: color, texture, gray level, etc. In this step, the image is par-

titioned to select the Region of Interest (ROI), and each region is analyzed separately
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Figure 2.18: The concept of standardization.

to reveal certain distinguishing features: compactness, shape, size, and location of the

region, an indication of nearby structures (region of interest), the average value of the

analysis of the gray levels in the ROI, the ratio of the gray levels to the boundaries of

the structure in the ROI.

Figure 2.19: Position of MRS region of interest. A region of interest (ROI) with a size
of 30 × 30 × 30 mm 3 was created over the anterior cingulate cortex according to a
high-resolution anatomic 3D T1WI MRI scan. The ROI is shown in (a) sagittal, (b)
coronal, and (c) transversal orientations [45].

Feature Extraction

Feature extraction is a component of image processing that often involves classification.

Indeed, in general, setting a classification rule (supervised or not), relies on a set of

numerical criteria for an observed object or phenomenon. In practice, we aim to extract

relevant information that characterizes each category, depending on the context. If

anomalies are detected anomaly, several mathematical attributes are extracted which

to help better describe the nature of the lesion, two types of features can be extracted:

• Generic descriptors that do not necessarily have a physical or biological inter-

pretation: (SIFT, SURF, oriented gradient histograms, shape context, word of
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bags).

• Descriptors have a physical meaning. In the biomedical field, it is usually the

morphological features (cell size, blood vessel thickness, etc.) that describe what

is being observed.

Training

The training test remains the most characteristic phase of the machine. Given the

data, the model is trained over time to gradually improve its ability to react to a given

situation, solve a complex problem, or perform a task. For this learning phase, the

training data (also known as the “training set”) should be used. All the information

collected often becomes too heavy and resource-intensive:

• Then just select part of the data set (sampling) to train the model more efficiently

and improve its predictions.

• A representative sample of data should be selected without the risk of bias.

• Request data transformation instructions.

• Training setting to control the learning algorithm. content...

2.4.2 Classification Phase

The extracted descriptors are classified according to algorithms adapted to this task,

segmented objects are assigned to specific classes to determine the type of mass, and

class identification is based on selected features. After structural analysis, an area-by-

area assessment (recording) is performed to determine the likelihood of a true positive.

A. Most tasks of Classification

1. Binary Classification: It is a type of classification with two outcomes, true or

false.

2. Multi-Class Classification: The classification with more than two classes, in

multi-class classification each sample is assigned to one and only one label or target.
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Figure 2.20: Classification Phase Model.

Figure 2.21: Binary Classification task [46].

3. Multi-Label Classification: This is a type of classification where each sample is

assigned to a set of labels or targets.

Figure 2.22: Binary vs Multiclass classification [47].

4. Imbalanced Classification: This is a classification dataset with skewed class

ratios. Classes that occupy a large part of the data set are called majority classes.

Those who represent a smaller percentage are the minority classes.
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Figure 2.23: Class imbalance distribution [48].

B. Classification Algorithms

The study of classification in statistics is broad and there are different types of classi-

fication algorithms that you can use depending on the data set. Below are some of the

most popular classification algorithms.

• k-Nearest Neighbors

• Logistic Regression

• Decision tree

• Random forest

• Support Vector Machine

• Naive Bayes

• Stochastic Gradient Descent

• Artificial Neural Networks

2.5 Field of application

A primary use of CAD systems is to find abnormalities in the human body. Among

these, tumor detection is a typical application as listed below.
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1. Breast Cancer

Breast cancer is a malignant tumor that develops in the breast. As in all cancers, the

initially local tumor can then spread to neighboring tissues(see Figure 2.24).

Figure 2.24: Mamogram example, On the Right Normal Mammogram and the left
Abnormal Mammogram [49].

2. Lung Cancer

Lung cancer starts in the cells of the lung. A cancerous (malignant) tumor is a group

of cancerous cells that can invade nearby tissues and destroy them. The tumor can

also spread (metastasize) to other parts of the body(see Figure 2.25).

Figure 2.25: MRI Scan of chest showing cancer in (b), and a normal chest in the left.

3. Colon Cancer

Colorectal cancers start in the mucous membrane that lines the inside of the colon or

rectum. In the majority of cases, it is an adenocarcinoma resulting from the malignant

transformation of an intestinal polyp(see Figure 2.26).
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Figure 2.26: local recurrence of sigmoid colon cancer in the pelvis. (a) This MRI scan
shows a local recurrence of sigmoid colon cancer in the pelvis before treatment. The
tumor was 80 mm in size. (b) After 1 course of treatment, the tumor decreased in size
to 53 mm [50].

4. Diabetic retinopathy

Diabetic retinopathy (eye damage: eye and retina) is a serious complication of diabetes

that affects 50% of type 2 diabetic patients. The eyes are particularly sensitive to

damage to small vessels(see Figure 2.27).

Figure 2.27: Example of Diabetic Retinopathy normal patient on the left, and patient
sick on the right.

5. Alzheimer’s disease

Is a neurodegenerative disease (i.e. progressive brain damage leading to neuronal death)

characterized by progressive loss of memory and certain intellectual functions leading

to repercussions in the activities of daily living(see Figure 2.28).

5. Liver Cancer

Liver cancer starts in liver cells. A cancerous (malignant) tumor is a group of cancerous

cells that can invade nearby tissues and destroy them. The tumor can also spread to

other parts of the body (metastasize)(see Figure 2.29)
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Figure 2.28: Brain MRI. Axial T2 images show cerebral atrophy in a patient with
Alzheimer’s disease (A) and a normal brain in a control patient of the same age (B)
[51].

Figure 2.29: Computed tomography (CT) images of liver tumors in (b), and normal
liver in (a).

6. Fracture

Bones are part of the musculoskeletal system, which also includes muscles and the

tissues that attach them (ligaments, tendons, and other connective tissues, so-called

soft tissues).

Figure 2.30: Radiograph of the same patient of a 26-year-old male who has fractured
both bone legs.

These structures give the body its shape, stabilize it and allow it to move. We speak

of a fracture when a bone is cracked or broken.
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2.6 Conclusion

The term "Computer-Aided Diagnosis" (CAD) refers to a vast field of computerized

methods that support radiologists in their clinical Decision-Making processes by inte-

grating image processing, Machine Learning/Deep Learning, Computer Vision, Math-

ematics, Physics, and Statistics. These methods include cancer risk assessment, physi-

ologic evaluation, volumetric analysis, Classification of Lesions, quantification of illness

and anatomic structures (including disease progression and temporal response to ther-

apy), and detection of disease and interesting anatomic structures. The creation of

such methods necessitates expertise in the physics of picture acquisition, characteris-

tic descriptor mathematics, software development, and rigorous statistical validation

techniques.
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Chapter 3

Bone Strength and Diagnosis of

Osteoporosis

3.1 Introduction

Osteoporosis is a systemic skeletal disease characterized by reduced bone mass and ar-

chitectural deterioration of bone tissue leading to increased bone fragility and increased

risk of fracture. Its management is one of the priority public health missions. Indeed,

this disease is responsible for many accidents and deaths. In addition, it generates

significant health costs, because it is known that more than 30% of women reaching

the age of 50 will present at least one osteoporotic fracture during their life [52]. These

fractures usually occur in the hip, vertebrae or wrist and occur most often in men and

women aged 65 and over. Although osteoporosis cannot yet be cured, there are treat-

ments that can help reverse bone loss or prevent its progression. Thus, early diagnosis

can help reduce the number of these osteoporotic fractures [53].

Initially, this chapter focuses on the structure of the bone, Osteoporosis and its chal-

lenges. In a second step, we expose the main techniques allowing the diagnosis of

osteoporosis.
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3.2 Bone Architecture

Bone is the main component of our skeletal system (see Figure 3.1), giving us size

and shape, and performs several important functions including support, protection,

movement, mineral storage, and, indirectly, the formation of blood cells in the red

marrow.

Figure 3.1: Gross structure of the human skeleton [54].

3.2.1 Bone and the skeletal system

Many bones made at birth fuse together as they grow, to form the skeleton of 206

bones in adulthood, these bones are distributed as follows (Table 3.1) [55].

3.2.2 Type of Bone

Five types of bones, taken from a human skeleton have varying shapes and sizes de-

pending on their function and location in the body.

33



Chapter 3 Bone Strength and Diagnosis of Osteoporosis

Table 3.1: Distribution of skeletal bone in the adult body

206
80 bones

Head axis (Fig 3.2)
14 the Face

8 the Skull

Neck axis (Fig 3.3) 24
Movable vertebrae

(Cervical/thoracic/ lumbar)

Trunk axis (Fig 3.4)

9
Fused vertebrae

(sacrum/coccyx)

24 ribs

1 Sternum

126 bones For members

Figure 3.2: Schematic diagram illustrating the subunits of the facial skeleton on the
left and the skull on the right [56].

1. Long bones: Support weight and promote movement, they are characterized by

a shape much longer than wide such as the radius, the humerus, and the femur. Are

composed of the body, or diaphysis, and the extremities, or epiphyses, where the tra-

becular (spongy) bone is found. Most of the limb bones are long despite varying sizes.

2. Short bones: Cubic in shape, such as the carpal bones, the tarsal bones, the

phalanges of the hand and foot, and the calcaneus, which are smaller and have many

articular surfaces.

3. Flat bones: Protect internal organs, such as the scapula, sternum, and skull

bones, thin.
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Figure 3.3: Diagram of Vertebral column showing different parts and regions of the
spine [57].

Figure 3.4: Human thoracic cage.

4. Irregular bones: Complex shapes, such as the vertebrae, cannot be classified

into the preceding groups.

5. Sesamoid Bones: Strengthen Tendons, such as bones of the hand or the patella,

small bones located in the thickness of the tendons.
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Figure 3.5: Classification of Bone by shape [58].

3.2.3 Bone Anatomy

1. Macroscopic Bone Structure

The diaphysis of a long bone is essentially made up of compact (cortical) bones (Figure

3.6). The center of this diaphysis is hollow and forms the medullary canal. In which

the bone marrow is located. It is essentially a lipid tissue (Figure 3.7.(a)).

Figure 3.6: Diagram of the ‘compression’ and ‘tension’ trabecular columns in the
femoral neck [59].

The outer surface of this diaphysis is covered with per bone which is anchored to the

bone by collagen fibers also called skeletal fibers. The diaphysis is perforated by nu-

merous canals, which are called: Volkman’s perforating canals; they allow vessels and

nerve extensions to cross the diaphysis. These canals are lined with endosteum (pro-
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tective membrane). The epiphyses of a long bone are composed at the periphery of a

thin layer of compact bone and the center of the trabecular (spongy) bone.

On the surface, the peri bone covers the bone and gives rise to the articular cartilage,

this cartilage will cover the articular surfaces (Figure 3.7.(b)), such as the diaphysis

where there are perforating canals. The flat, irregular, and short bones have a simple

structure, with a thin layer of compact bone on the periphery covered with the perios-

teum, and in the center, there is trabecular bone, the perforating canals covered with

endosteum and the articular surfaces, hyaline cartilage.

Figure 3.7: Long bone. The external structure of a long bone (femur) is formed by
a central shaft or diaphysis, and two extremities, or epiphyses, covered with articular
cartilage. The metaphyses constitute the intermediate parts between epiphysis and
diaphysis (a), Cross-sectional view of a bone showing the different types of tissue that
make it up (b), (1) periosteum, (2) cortical bone, (3) cancellous or trabecular bone, (4)
cartilage articular or hyaline, (5) bone marrow or red marrow and (6) yellow marrow
[60].

2. Microscopic Bone Structure

At the microscopic level, the bone contains different types of tissue:

• Bone Cortical: Cortical bone is the strong and compact type of bone found on

the outer layer of the long bones and makes up about 80% of the skeleton.

• Bone Trabecular: The spongy-looking porous interior part of the bones (mainly

vertebra and at the end of long bones) is called trabecular or cancellous bone.
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It has a greater surface area than cortical bone and is more actively remodeled.

The effects of therapeutic agents are seen earlier in trabecular bone than in the

cortical bone.

Figure 3.8: Microscopic structure of Cortical and Trabecular bone [60].

Figure 3.9: Example of a photomicrograph that shows the porosity of human trabecular
bone.

The femoral neck is made up of both cortical and trabecular bone. The vertebrae are

largely composed of trabecular bone as is the lower end of the radius and ulna (bones

in the forearm fractured with Colle’s fractures)[61].

Periosteum and Endosteum: Periosteum and Endosteum are two membranes that

cover the lining of bones, both are made up of connective tissue. Also, both contain cells

including fibroblasts, osteoblasts, and osteoprogenitor cells. Besides, both structures

play a key role in bone remodeling.
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3. Chemical Composition of Bone

Bone is made up of two phases, Organic and Mineral. The Organic matrix which

accounts for about 35% of the total dry weight of bone, which includes specific Proteins,

Osteoclasts, Osteoblasts and Osteoids . The inorganic (Mineral) components, which

account for about 45% of the total dry weight of bone, consist mainly of Mineral Salts,

or Hydroxyapatites which are essentially Calcium Phosphate. Remaining 20% being

essentially water(Table 3.2) [62].

Figure 3.10: The effect of aging and osteoporosis on bone loss. On the left side,
the trabecular and cortical bone images of a young adult, and on the right side, the
corresponding images of an old adult are indicated. Porosity increases with advancing
age and this process is further accelerated in osteoporosis. This effect is compounded
with a loss in mechanical competence [60].

Table 3.2: Chemical Composition of Bone

Organic 35%

Protein

Mineral 65%
mineral salts

Hydroxyapatite

Osteoblasts/Osteoclasts Calcium Carbonate

Osteoid

Proteoglycans Magnesium Hydroxide

Glycoproteins Fluoride/Sulfate.

Collagen Fibers Water
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3.2.4 Bone Remodeling

1. Bone remodeling (fracture healing)

Life long process where old bone is removed (bone resorption) and new bone is added

(bone formation). This occurs in fracture healing as well over a shorter time.

2. Bone Resorption

Begins when Osteoclasts remove a portion of the bone to be replaced later by the action

of Osteoblasts. This is a vital step for signaling bone formation.

3. Bone Formation

Osteoblasts lay down collagen and mineral deposits over the area previously remodeled

by Ostoclastes. Osteoclast activity is vital for maintaining bone mineral density and

bone strength.

Figure 3.11: Bone renewal via the cycle of bone remodeling.

3.3 Osteoporosis

Osteoporosis and osteoporotic fractures constitute, at present, a considerable public

health problem both in terms of disabilities and repercussions on the patients quality

life and the resulting mortality. Osteoporosis is defined as a diffuse skeletal disease char-

acterized by low bone mass and micro-architectural alterations of bone tissue, leading

to increased bone fragility and risk of fracture [63]. This definition was modified in 2001
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by the World Health Organization (WHO), which defines osteoporosis as a generalized

disease of the skeleton characterized by a decrease in bone strength predisposing the

individual to an increased risk of fractures [64]. Bone strength is determined on the one

hand by the quantity of bone material, measured by Bone Mineral Density (BMD), and

on other hand by the quality of the bone tissue, which depends on the microarchitec-

ture, remodeling, accumulation of fatigue damage (such as microfractures) and degree

of mineralization [64]. These definitions remove the ambiguity of the diagnosis of this

disease long defined by its complication: the fracture, and underline the importance of

taking into account bone resistance.

Osteoporosis is usually painless until a fracture occurs. An osteoporotic fracture also

called a fragility fracture, is defined as a fracture caused by minor trauma (insufficient

to fracture normal bone) such as a fall from a standing or sitting position, or occurring

spontaneously [65]. These fractures usually occur in the hip, vertebrae, or wrist and

occur most often in men and women over the age of 65 [65]. According to the WHO,

in Europe, the United States, and Japan it can be assumed that 75 million people

suffer from osteoporosis. This disease can now be treated effectively thanks to new

therapeutic approaches provided it is detected early.

Osteoporosis has become a major public health problem due to the morbidity and

mortality associated with osteoporotic fractures, particularly in the hip and vertebrae.

In a British study, mortality at 12 months after a hip fracture was 33% [66]. From the

age of 50, the risk of having an osteoporotic fracture of the hip, forearm, or spine is

estimated at 30% - 40% for a white woman. In comparison, the percentages of breast

cancer or cardiovascular disease are 9% - 12% and 30% - 40% respectively. These fig-

ures show the interest in preventing these fractures by favoring an early diagnosis of

the disease to prescribe a treatment.

According to WHO experts, osteoporosis can be defined from a densitometric result,

the T-score (see Table 3.3) [67]

T-Score:Difference in standard deviations, between the measured Bone Density and

the theoretical Bone Density of young adults of the same sex, at the same bony site,

and of the same ethnic origin.
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Table 3.3: Criteria defined by the WHO for the classification of patients by Bone
Mineral Density (BMD) measured by Biphoton X-ray Absorptiometry.

Classification T-Score

Normal Bone Density T-Score> -1

Low Bone Density (Osteopenia) -1 > T-Score> -2.5

Osteoporosis T-Score ≤ -2.5

Severe Osteoporosis T-Score ≤ -2.5+1 or more fractures

3.4 Methods Dedicated to the evaluation of bone

strenght

Bone mineral content is commonly assessed in clinical routine in a precise and repro-

ducible way by a densitometry examination and, thus, makes it possible to assess the

risk of osteoporosis. Several methods make it possible to measure bone mineral density

(BMD) in many sites such as the radius, calcaneus, vertebra, hip, and even the whole

body without risk and with precision. The measurement of the quantity of bone in

vivo is the technique that is currently the clinical reference for the evaluation of the

risk of fracture and the assessment of risk factors.

The main methods studied or used to investigate bone density are Dual-Energy X-ray

Absorptiometry (DEXA) , Quantitative Computed Tomography (QCT), ultrasound,

and nuclear magnetic resonance relaxometry [68].

Studies show that x-ray images, Computed Tomography (CT) images, and Magnetic

Resonance Image (MRI) contain textural information that relates to trabecular density

and network connectivity, Trabecular Bone. In this part, we will present the different

methods for assessing bone microarchitecture as well as the advantages and limitations

of each of them.

3.4.1 Dual photon X-ray absorptiometry (DEXA)

The measurement of Bone Mineral Density (BMD) by two-photon X-ray absorptiom-

etry is currently the reference technique for measuring bone density. This technique is

the most accurate way to obtain a surface mass commonly called bone mineral density

(BMD) in (g/cm²), needed in the screening or diagnosis of Osteopenia or Osteoporosis

(Figure 3.12).
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DEXA is also used to predict a person’s fracture risk and may also be useful in mon-

itoring response to treatment. This test is quick and painless and involves minimal

radiation. During DEXA examination, X-Rays are used to examine Bone Density in

the lower spine, hip, wrist, or entire body. Bone Density measurements are very accu-

rate at these sites.

Absorptiometric techniques are based on the quantification of the attenuation of an

X-ray beam passing through bone sites resulting from their interactions with matter.

During its crossing, the X-ray beam interacts with the bone tissue, the bone marrow as

well as the peri-osseous tissues, often called soft tissues. Each of its tissues has different

physical characteristics. This attenuation is governed by the Beer-Lambert law given

by the following equation [69]:

I = I0e
(µ
ρ
)m (3.1)

I0: Intensity of the incident beam.

I: Intensity of the transmitted beam.

m: Mass of the medium traversed by an X beam with a section of 1 cm².

µ: Mass attenuation coefficient

ρ: density of the medium

Figure 3.12: Bone densitometry Scan (dual X-ray absorptiometry). Schematic repre-
sentation of X-rays source and detector system in dual X-ray absorptiometry device,
in the left. And a Dual Energy X-ray Absorptiometry example, in the right.

The projection image obtained corresponds to an integration over the entire thickness

of the zone to be analyzed (Figure 3.13). The contrast in the image is given by the
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attenuation of the beam which is much more sensitive in bone tissue than in soft tis-

sue: the more the material attenuates X-rays, the more the corresponding pixel will be

characterized by a strong signal. Bone tissue, therefore, appears white in the image.

This technique makes it possible to determine the surface BMD, expressed in g/ cm².

Figure 3.13: Principle of X-ray absorptiometry.

An example of an image obtained from the two images acquired at two different ener-

gies is shown in (Figure 3.14).

Generally, the measurement of the BMD is carried out at the level of the hip and the

spine (vertebrae L2 to L4, see Figure 3.14), one can also operate at the level of the

forearm at the proximal site (cortical component) or distal (trabecular component).

Depending on the devices and the site analyzed, BMD measurement is more or less

rapid (5 to 15 minutes) and reproducible (from 1 to 2%), this precision is represented by

the standard deviation calculated from a certain number of successive measurements

carried out with the same device. In terms of irradiation, DEXA ranks among the

least irradiating methods, it varies from one device to another and according to the

measurement site. The effective dose is between 0.5 and 4 millisieverts (mSv).

Large population studies have established normality curves for bone mineral content

and bone mineral density. Each device manufacturer must establish "normal" reference

values corresponding to the site analyzed (femoral neck, vertebrae, etc.), the age, sex,

and ethnic characteristics of the subject.

The diagnosis is based on the Z-Score and especially the T-Score tool:

Z-Score: is the measure of the difference between the measurement of bone mineral

density (BMD) corresponding to the patient mp and the mean value mR reported to
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Figure 3.14: (Right): Spine Bone Density, initial DXA for pretreatment assessment of
a 72-year-old woman, The scan includes the inferior portion of T12 and the superior
portion of L5. The DXA image shows the scanned regions from which the BMD
measurement has been obtained. (Left): DXA of the hip. The hip is in internal rotation
to obtain a more en-face projection of the femoral neck. With internal rotation, the
lesser trochanter is small or invisible (white arrowhead). The markup of the ROI
varies with the manufacturer. In this image, the total hip is indicated by the (yellow
outline) of the bone margins, the superior margin of the femoral neck ROI, and the
subtrochanteric (horizontal line). The (arrows) indicate the femoral neck ROI. The
femoral neck ROI varies with the manufacturer but should not include the ilium or
ischium (Color figure online) [70].

the standard deviation σ of the distribution of the reference population of the same

age and same sex [71]:

Z − score =
mp −mR

σ
(3.2)

The Z-Score is useful for assessing the risk of fracture in osteoporotic patients. A de-

crease of one unit would mean that the risk of fracture would be doubled.

The T-Score differs from the Z-Score by the definition of the reference population. This

is made up of young adults (20-30 years), of the same sex and the same ethnicity, with

maximum bone mass. This index, therefore, assesses the decrease in bone mass.

• pDEXA (Peripheral DEXA)

Small portable scanners are applied to peripheral sites, usually the radius and calca-

neus.

Advantage: being portable and gives measurements of bone mineral density (BMD)

comparable to measurements obtained by central densitometers.

Bone Mineral Density testing by DEXA is the only clinically accepted technique for

diagnosing osteoporosis. BMD alone is not sufficient to predict individual fracture risk
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only provides a projection of the distribution of average global bone mineral density

and does not allow the separation of cortical bone from spongy bone [72].

Main Parameters Characterizing the trabecular microarchitecture : The

reference method for evaluating the microarchitecture of trabecular bone is histomor-

phometry. It consists of performing a biopsy of bone tissue in the iliac wing, cutting

samples approximately 8 µm thick, and observing these cuts under high magnification

microscopy.

The parameters most often calculated are:

Bone Volume (BV/TV): for Bone volume / Tissue Volume (in %)

Number of Spans (Tb. N): for Trabecular Number (in mm−1)

Span Thickness (Tb. Th): for Trabecular Thickness (in µm)

Span Spacing (Tb. Sp): for Trabecular Separation (in µm)

The connectivity indices of the trabecular bone network: The Number of

Nodes, Terminals, Free ends, Ends connected, and, Free segments.

This examination involves risks inherent in its invasive nature and cannot be performed

in clinical routine.

3.4.2 Quantitative Computed Tomography (QCT)

Is based on the same physical principles as absorptiometry, where an X-ray source is

used to describe a rotation around the patient (scanner-type tomograph see Figure

3.15). For each position of the beam, the attenuation of the radiation is measured

according to BeerLambert’s law [73].

Figure 3.15: Block diagram of acquisition of tomographic by CT-scan.
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This technique is the only one that can directly obtain a 3D measurement of Bone

Mineral Density (BMD) expressed in g/cm3. The technique consists in assigning to

each of the pixels of the 2D sections acquired by the X-ray scanner, a value on a

grayscale, values of the linear attenuation coefficients µi (each pixel (i, j) corresponds

to a value of µi,j). Each µ is expressed in Hounsfield units, on a scale from -1000

to +1000 (2000 different values of µ). These attenuation coefficients are expressed in

Hounsfield units (HU) from the water attenuation coefficient and are given by [65]:

CHU =
µ− µwater

µwater

× 1000 (3.3)

CHU : the CT-scan number.

µ: linear attenuation coefficient

µwater: water attenuation coefficient which depends on the intensity of the incident

X-ray.

The CT-scan numbers characterize the linear attenuation coefficients of the tissue in

each volume element compared to that of water (bone > 1000 HU , fat < -80 HU , air

= -1000 HU).

The preferred site for this technique is the lumbar spine, and the measurement is

mainly done on trabecular bone volumes of the vertebral body. However, one of the

strengths of this technique lies in its ability to differentiate during the measurement,

between the trabecular bone and the cortical bone. In addition, it provides information

such as bone size and bone density distribution. Several clinical studies have shown

the ability of QCT measurements to estimate vertebral fracture risk, with QCT even

being considered the "gold standard" for this assessment. Nevertheless, this technique

is not used in clinical routine due to a high radiation dose (7 to 10 mSv) and poorer

reproducibility (5 to 15%) than that obtained by dual-photon absorptiometry [65].

• pQCT (peripheral QCT)

Intended for the evaluation of bone mass at peripheral sites such as the radius, tibia,

and wrist. This technique has the advantage of having very good reproducibility.

In addition, it makes it possible to have a real measurement of the trabecular volu-

metric density and thus to be able to differentiate the cortical bone component from

that of spongy bone with a device much cheaper than a conventional CT scanner
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[74].Nevertheless, the clinical impact of pQCT in the diagnosis of osteoporosis is rather

small compared to DEXA or vertebral QCT, it offers fewer possibilities of measurement

sites than the technique of densitometry (CT) and by dual-photon absorptiometry for

an equivalent price.

3.4.3 Quantitative Ultrasound (QUS)

The majority of ultrasound imaging systems exploit the dual capacity of probes to emit

and receive to work from information resulting from the reflection of the waves emitted.

However, contrary to acquisition modes based on wave reflection at interfaces (used

in echography and echocardiography), the mode used to characterize bone tissue is

based on the transmission modifications that the signal (ultrasound wave) undergoes

in passing through the bone structure. The reception of the signal is done at the

other end of the structure studied by appropriate transducers (Figure 3.16). These

modifications are a function of the density and certain mechanical properties of the

material (elasticity, microarchitecture, the density of the material, etc.).

Figure 3.16: Block Diagram of an Ultrasound device used in vivo on a calcaneus [75].

In (Figure 3.16) the foot and the transducers are immersed in a water bath. Water is

used to ensure proper coupling of the acoustic wave into the skin. Two parameters are

mainly evaluated during the examination:

• BUA (Broadband Ultrasound Attenuation)

Consists in estimating the slope of the curve representing the attenuation in the medium

as a function of the emission frequency and is expressed in [dB/MHz]. The value of
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the BUA is all the less strong as the density of the medium is low (therefore in the

cortical tissue) [65].

• SOS (Speed Of Sound) or UBV (Ultrasound Bone Velocity) )

The ratio between the distance traveled by the ultrasounds and the propagation time

of the latter expressed in [m/s], is higher in the cortical tissue than in the trabecular.

The images obtained are maps of these parameters measured point by point by moving

the transducers transmitting and receiving ultrasonic waves. So these are projection

images. Some manufacturers combine these two parameters to obtain the QUI (Quan-

titative Ultrasound Index)

The technique of ultrasound measurement has considerable advantages (non-invasive,

non-irradiating nature, low cost), but it seems to be increasingly abandoned by clini-

cians since it seems less effective than DEXA and QCT when monitoring patients. and

their treatment [65].

3.4.4 Magnetic Resonance Imaging (MRI)

In recent years, several studies have been performed that applied magnetic resonance

imaging (MRI) for the study of trabecular bone and bone quality.

MRI is an extremely complex imaging technique, that obeys elaborate physical princi-

ples. Everything is based on the exploitation of a magnetic field, approximately 4000

to 60000 times the Earth’s magnetic field. This field (in Tesla) is created by a magnet

which can take different forms, most often a tunnel or 2 discs representing the two poles

of the magnet. MRI is based on the magnetic properties of certain atoms with an odd

number of protons in their nucleus (1H,13C,17O,19 F,31 P,23Na,39K). These protons

have the particularity of rotating on themselves (spin) thus creating a bipolar magnetic

field [65]. They then become comparable to small magnets defined by their magnetic

moment. However, knowing that hydrogen has the largest magnetic moment and that

the human body is 70% water (H2O), Magnetic Resonance Imaging is often referred to

as proton imaging, H+. Obtaining an MRI image is essentially based on the variations

of signals emitted by these small magnets. Spatial resolutions were obtained in vivo

on bone specimens and in vivo at the phalanges, distal radius, and calcaneus. MRI

is especially useful for studying muscles, ligaments, and tendons. MRI may be used if
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the cause of the pain is considered to be a serious soft tissue problem (for example, a

rupture of a major ligament or tendon or damage to major structures within the body

‘knee joint’).

Figure 3.17: Example image of a calcaneus in the left foot obtained from an MRI
acquisition sequence.

3.4.5 Radiography (X-Ray)

X-rays do not show soft tissues, such as muscles, bursae, ligaments, tendons, or nerves.

Faced with the difficulties observed in performing a real 3D analysis of the trabecu-

lar microarchitecture, techniques for analyzing bone radiographs have been developed.

Compared to the techniques previously described, radiography has the advantage of

being simple to implement and the examination time is very short. This technique

requires an X-ray source and a receiver to record and view the resulting image (CCD

sensor). X-rays, created by the collision of electrons on atoms of matter, are electro-

magnetic waves of very short wavelength, between 10E-7 and 10E-11 meters, and carry

great energy (electromagnetic energy). These wavelengths of the order of Angström

(10E-10 m), are close to interatomic distances, which allows the passage of radiation

through matter [76], while radiation of longer wavelength is reflected by the surface of

the studied material. A textured grayscale image of the projected trabecular meshwork

is obtained as shown in (Figure 3.18).

Three elements are essential to the formation of a radiological image: the radiogenic

focus (F), the almost punctual, source of the X-ray beam, the radiographed object (O),
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Figure 3.18: Example of an X-ray image of a foot allowing visualization of the calcaneus.

of which we want to form an image, usually the anatomical region and the receiver (R),

most often film, but gradually replaced by electronic processes (digital sensors), which

supports the useful image. During the formation of the image, a certain number of

parameters will influence the quality of the image obtained (Figure 3.19).

The radiographic image is formed by the conical projection of the rays from the focus

The two main modes of acquisition of radiographic images are the silver film and the

digital sensor.

Generally, X-Rays are more appropriate for detecting bone abnormalities and are done

to examine painful, deformed, or suspected abnormal areas of bone, they can often

help diagnose fractures, tumors, lesions, infections, and deformities.

Also, X-Rays can sometimes show changes that confirm a person has a certain type of

arthritis (for example, Rheumatoid Arthritis or Osteoarthritis).

Figure 3.19: Geometric blur. Reference drawing (a). Effect of decreasing focus size (b).
Effect of increasing focus-receiver distance (c). Decrease in receiver object distance (d).

Synthesis

CT scan is useful in cases where MRI is not recommended or not available. CT is more

suitable for the study of bone. However, MRI is more effective than CT in revealing

certain bone abnormalities, such as small hip and pelvic fractures.
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CT and MRI scans provide much more accurate detail than traditional X-rays and are

used to determine the exact extent and location of the lesion. These tests can also

be used to detect fractures that are not visible on X-rays.However, ultrasound is in-

creasingly being used because it is less expensive and, unlike CT, does not involve any

radiation exposure. For osteoporosis screening, doctors prefer to take measurements

below the spine and hip. To help differentiate osteoporosis from other bone diseases,

doctors may need to consider symptoms, conditions, medications being taken, and

certain results from blood or bone tests. The person’s urine, as well as the results of

DEXA. Therefore, The X-ray is considered the best for diagnosing osteoporosis disease.

3.5 Conclusion

The review of the bibliography of the different medical imaging modalities, used to

explore the properties of human bone in vivo, as well as the different estimated param-

eters characterizing the bone microarchitecture, showed that there is a wide spectrum

of imaging techniques, which make it possible to situate the place of each system in

current clinical use.

The reduced availability and the high investment cost of MRI are major drawbacks in

view of an important clinical use. Ultrasound imaging has advantages such as its cost,

its small size and its non-irradiating nature, but the prospective studies carried out

demonstrate the limits of this technique for detecting variations in Osteoporosis.

The systems, DEXA and QCT are currently the world references for evaluating the risk

of fracture linked to Osteoporosis. These two instruments make it possible to perform

a quantitative measurement (the BMD), but not a qualitative one (the modifications

of the bone microarchitecture).

2D imaging and more particularly X-Ray radiography seems to be a good alternative,

due to its many advantages: availability, low irradiation, low cost, non-invasive, etc.

Our objective is therefore to contribute to the analysis of X-Ray textures to assess

changes in bone microarchitecture related to Osteoporosis.
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Chapter 4

Characterization of Textures in

Medical Imaging

4.1 Introduction

Texture image analysis is an old subject, found in several application areas such as

scene analysis, video, medical imaging, etc.

Texture analysis refers to the discipline of image analysis that deals with the descrip-

tion of image characteristics by textural features. However, there is no universally

accepted definition of what is an image texture; in general, different researchers use

different definitions depending on their areas of interest [77].

In this chapter, the texture is considered as the spatial variation of pixel intensities,

which is a definition that is widely used and accepted in the field of medical imaging.

The objective of this chapter is to present a bibliographic review of existing texture

analysis methods, with an interest in the techniques used in medical imaging. We will

start by defining texture before presenting texture perception properties and classifi-

cations. We will highlight the types of textures. Emphasis will be placed on some

features of the latter, and we ended with the application domains and the methods of

exploitation of the texture characteristics.
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4.2 Texture

The texture is also defined as being a region of an image for which it is possible

to define a window of minimum size, such that observation through it results in an

identical visual perception (impression) for all translation possibilities of this window

inside the considered space ‘Region’.

The texture is used to translate a homogeneous aspect of objects in an image, so it

can be considered as visual information that can be associated with adjectives such as

smooth, curly, fine, and coarse [78].

Researchers in visual perception or artificial vision has been trying to characterize it

for several years. We recognize texture when we see it, but it is very difficult to define.

Shape and color are two other very important characteristics. To discriminate, for

example, between an orange and a cherry, the shape and color information are certainly

more significant than the texture information. But the texture information becomes

essential when we want to discriminate between two areas of an image or two images

of the same color or the same level of gray.

4.3 Visual Perception of Texture

Two properties are essential in the way of perceiving a texture:

4.3.1 Regionality

Indeed, the notion of textures appears when a region is composed of a pixel/voxel and

a non-zero neighborhood associated with it.

The computation that can be obtained on a texture, therefore, depends very strongly

on the size of the neighborhood considered [79]. It is therefore difficult to correctly

characterize a texture if the regionality is not chosen appropriately.

4.3.2 Resolution

In the sense that a texture can appear different depending on the level of precision,

we characterize what constitutes the basic primitiveness of a texture (sand, stones,

etc.), at low resolution, the texture can appear as a neighborhood of the coarser basic
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Figure 4.1: Several Regionalities of the same texture, the yellow square: a regionality
of 1, we cannot yet speak of textures since the region is described by a single pixel. the
red square: a regionality equal to 32, contains only part of the patterns present in the
texture, and the green square: a regionality equal to 92.

patterns, depending on the scale of observation.

The following figure represents the phenomenon of moving away the information con-

cerning the texture at high resolutions lost in favor of low-resolution texture informa-

tion.

Figure 4.2: Image with different resolution.

4.4 Type of Texture

In practice, we distinguish two main types of textures, which correspond to two levels

of perceptions

4.4.1 Macro-Texture

Present a regular aspect, in the form of repetitive patterns spatially placed according

to a precise rule, therefore a deterministic structural approach [80].
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Figure 4.3: Difference between macrotexture and microtexture [81].

4.4.2 Micro-Texture

Present randomly distributed "microscopic" primitives, hence a probabilistic approach

seeking to characterize the anarchic and homogeneous aspect.

4.5 Texture Classification

There are three main Classes of textures: Structural, Random, and Directional Texture

[82].

4.5.1 Structural Texture

Also called macro-textures, they consist of the more or less regular spatial repetition

of a basic pattern, in different directions, (Figure 4.4). shows an example of two

Structural Texture images. Several methods of analysis are called structural. These

methods are therefore based on the fact that textures are made up of basic structuring

elements (textons).

Nevertheless, it is not always possible to characterize the texture by primitives, because

there are not always isolatable patterns or dominant spatial repetition frequency. This

is the case of random and directional textures (Figure 4.5) and (Figure 4.6).

4.5.2 Random Texture

In these textures, no particular pattern is localizable or detectable. They have an an-

archic and disorganized aspect while remaining homogeneous and do not comply with

any particular rules of arrangement.
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Figure 4.4: Example of two Structural Texture images. Indeed, we see that the image
on the left, represents a brick wall, it is composed of a set of basic elements (structuring
element, the bricks) arranged regularly in a vertical manner. The image on the right is
also composed of basic honeycomb patterns arranged in a particular way next to each
other.

For this kind of analysis, the image is considered to be associated with a two-dimensional

random process.

Figure 4.5: Example of the random texture.

4.5.3 Directional Texture

Not random and does not have basic structuring elements. They are essentially char-

acterized by certain orientations. These different categories of texture show that it is

difficult to give a precise definition of texture. On the one hand, we have structural

and constructive information, and on the other hand, information that is messy and

more difficult to describe even visually.

It is, in particular, this type of texture that we will attempt to characterize in our

approach to early diagnosis of osteoporosis (Figure 4.6).

4.6 Texture Analysis for Bone X-rays

The analysis of trabecular bone texture from an X-ray image consists in associating

a texture with mathematical parameters. In this case, the parameters observed are a
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combination of the orientation of the spans on the one hand and the connectivity of

the network on the other.

Our study aims to develop texture attributes that can quantify bone microarchitectural

alterations caused by osteoporosis on X-ray [65].

As a result, four known classes of texture attributes can be distinguished for Bone

Analysis: Statistical Features, and Frequency Features.

Figure 4.6: Example of Directional texture. The texture on the left shows vertical
lines, while the one on the right has curved lines in preferred directions that represent
the bone spans.

4.6.1 Statistical Features

Statistical Features are features extracted from textures using mathematical calcu-

lations. These features allow the characterization of any type of texture, even fine

textures with no apparent regularity. For this type of feature, the texture is defined

in terms of variation of the gray level intensity and it is also the relations between the

pixels and their neighbors that are studied.

Many statistical descriptors have been used within the framework of the classification

or evaluation of the Trabecular Texture. These descriptors can be classified into several

categories according to their order, the order of the descriptor depends essentially on

the type of spatial interaction between the pixels considered.

1. First-order Statistical Features

The analysis by the first-order Features is done in levels of the individual pixels of a

region of the image, the parameters are calculated from the histogram of the intensities,
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which we find in this case: Image Statistics and Image Histograms.

A. Image Statistics

Many statistics can be directly extracted from an image to characterize the texture it

contains. The most commonly used statistics (the Average, the Variance, Skewness,

Kurtosis). These statistics only take into account the gray-level information of the

pixels and ignore the spatial relationships between them. The characterization of the

Trabecular Texture from these features seems inefficient.

B. Image Histograms

They describe the distribution of gray levels in the image to be analyzed. If the pixel

intensities are coded on 8 bits, the histogram of the image will then contain 256 cells,

each of these cells contains the number of pixels of the image characterized by the level

of intensity considered.

However, these histograms are very little used directly for the classification or analysis

of bone textures.

Features are usually extracted from these histograms to distinguish between different

classes ( the Median, the Mode, the Interquartile Range)

As with image statistics, the major drawback of histograms is that they only take

into account the gray-level information of pixels and ignore the spatial relationships

between them.It is therefore essential to consider higher-order statistical features for a

more adequate texture characterization.

• Histogram of Oriented Gradients (HOG)

Histogram of Oriented Gradient (HOG) descriptors [83] can be considered as a map

of contours containing information about both gradient magnitude and the location of

the contours at the cell level. The coarseness of the location and the normalization

of HOG features are essential as they provide a certain level of invariance to minor

geometric and photometric modifications [113]. To create an HOG function, we begin

with an input window I of a grayscale image with dimensions H ×W , or even the

entire image, and follow these steps:

Calculating Gradients: Determine the components of the gradient, i.e., horizontal
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and vertical derivatives, for each pixel in the image (Ix, Iy) by:

Ix(i, j) = I(i, j + 1)− I(i, j − 1)

Iy(i, j) = I(i− 1, j)− I(i+ 1, j)

i = 1..H, j = 1..W (4.1)

The gradient is converted into polar coordinates, with the angle constrained to a range

of 0o to 180o degrees, to detect opposing gradients.

µ =
√
I2x + I2y

θ = 180
π
(tan−1(Ix, Iy)modπ)

(4.2)

Here, the inverse tangent function (denoted by tan−1) is used to calculate the angle

(between −π and π) and the magnitude (represented by µ) of the gradient for each

pixel, with θ indicating The gradient’s direction.

Histograms of Cell Orientation: The window is divided into adjacent, non-

overlapping cells of size c × c− (with c set to 8), and For every individual cell, a

histogram of gradient directions is generated using B bins (where B is equal to 9).

This results in bins Assigned a numerical value ranging from 0 to B − 1, All having

the same width of w = 180
π

.

It should be emphasized that the limited number of bins used in the HOG descriptors

can result in the misclassification of A pixel positioned on a boundary between two bins

if the image undergoes significant changes. To address this issue, the HOG algorithm

employs a technique called voting by bilinear interpolation, this approach enables every

pixel within a cell to contribute to both adjacent bins [114]. In this approach, the

gradient magnitude of each pixel is apportioned between two bins by taking into account

the proximity of the gradient orientation to the midpoint of each bin, This process

allows for approximating the distribution of gradient magnitude over the two bins

[113]:

Fvote = (µi, θi, Bi, Bi+1) =

k1µ→ Bi

k2µ→ Bi+1

/k1 + k2 = 1 (4.3)

As the gradient magnitude is always positive, the resultant histogram for each cell is a

vector of length B−.
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Normalization Using Block Technique: This phase involves the grouping of cells

into blocks of 2c×2c pixels, where the blocks overlap by c pixels in both horizontal and

vertical directions. To obtain a feature descriptor for each block, the histograms of the

four cells within the block are combined or concatenated into a single vector, resulting

in a block feature descriptor. The resulting block features are The concatenated block

feature is then subject to Euclidean normalization, ensuring that the descriptor is in-

variant to changes in illumination and contrast [114]:

bk = [h(i,j), h(i,j+1), h(i+1,j), h(i+1,j+1)] (4.4)

In the above equation, bk represents the feature vector of block k, while h(i,j) represents

the histogram of the cell (i, j). Normalization of the block feature vector is achieved

using the following formula:

b̃k =
bk√

∥bk∥2 + ε
(4.5)

In the normalization step, ε is added to the denominator to prevent division by zero

in blocks with a zero gradient.

HOG Feature: The normalized feature vectors for all blocks, denoted as b̃k, are

concatenated to create a single HOG feature vector (H) that represents the entire

window feature, as illustrated below:

H = [b̃1, b̃2, ..., b̃k, ..., b̃ρ] (4.6)

Here, ρ represents the total number of blocks within the window. Lastly, The HOG

function obtained after the normalization of block feature vectors is further normalized

using (Equation 4.5). [114].

2. Second-order Statistical Features

In the first order, there is no information on pixel location, therefore, it is necessary to

use the second-order features.

• Co-occurrence Matrix

Used to determine the frequency of appearance of pairs of pixel values located at a

certain distance in the image. It is based on the calculation of the probability, which
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represents the number of times a pixel of the gray level appears at a relative distance

from a pixel of the gray level and according to the orientation of the straight line con-

necting these two pixels concerning the horizontal (θ). We generally take the value 1

for the relative distance and θ = 0◦, 45◦, 90◦ and 135◦.

The neighborhood relations between pixels concerning the orientation, necessary for

the calculation of the co-occurrence matrices, are illustrated in (Figure 4.7).

From the co-occurrence matrices, we have created a whole series of new descriptors (a

limited number this time) making it possible to highlight the most important parame-

ters of these co-occurrence matrices. the 6 parameters considered to be the most used

and the most relevant:

Energy (ENE), Contrast (CST), Entropy (ENT), Variance (VAR), Correlation (COR),

and Inverse Difference Moment (IDM).

Recently, many studies have been conducted to characterize and classify bone textures

using these parameters [81].

Figure 4.7: Eight nearest neighbor pixels are used to calculate the co-occurrence matrix.
the nearest neighbors of x along the direction θ = 0◦ are pixels 1 and 5, for θ = 45◦

pixels 4 and 8, for θ = 90◦ pixels 3 and 7 and finally for θ = 135◦ pixels 2 and 6.

3. Higher-order Statistical Features

• Run-length Matrix

Based on the analysis of Higher-order Statistical data. A range is a connected and

linear set of pixels having the same gray level. This method, therefore, consists, firstly,

in determining all the ranges present in the image and, secondly, of extracting statistics

on their length. We thus define several matrices, each corresponding to an orientation

θ of the ranges in the image.
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It is therefore a question of finding the maximum number of adjacent pixels having the

same level of gray in one direction.

Figure 4.8: Simple example showing the formation of a Run-length Matrix. On the left,
a 4×4 pixel image with only 4 levels of gray. On the right is the resulting Run-length
Matrix at θ = 0◦. The gray table represents the Run-length Matrix.

Galloway proposed five parameters calculated from these matrices and considered as

texture features, five numbers of features such as Short Run Emphasis (SRE), Long

Run Emphasis (LRE), Gray Level Non-uniformity (GLN), Run Length Non-uniformity

(RLN), and Run Percentage (RP) [85].

Similar to co-occurrence matrices, this method has been adopted by several researchers

as an aiding tool for classification, osteoporosis assessment, and trabecular texture

analysis.

4.6.2 Spatio-Frequency Features

The Spatio-Frequency Features are divided into three categories: the features which are

calculated in the Spatial Domain, the features calculated in the Frequency Domain,

and the features extracted from the Spatio-Frequency Domain, as shown in (Figure

4.9).

1. Spatial Domain

In this spatial domain, the calculation of texture features consists of characterizing the

texture by the number of transitions per unit area.
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Figure 4.9: Spatio-Frequency Features categories

2. Frequency Domain

Computing texture features in the frequency domain consist of performing a transfor-

mation from the spatial domain to the frequency domain.

A. Texture Analysis by the Fourier transform

This approach consists in extracting the frequency characteristics of the texture. The

two-dimensional discrete Fourier transform is most often used to classify textures. The

gray level of a pixel is expressed here by the weighted sum of complex exponential

functions corresponding to different spatial frequencies. The low-frequency terms rep-

resent the smooth variations of gray levels in the image, while the high-frequency terms

represent the rapid variations.

• Local Phase Quantization (LPQ)

Local Phase Quantization (LPQ) [84] is a technique that captures local phase infor-

mation from an image that has been blurred, Utilizing the ability of the Fourier phase

response to remain invariant to blurring.

Local Frequency Analysis: In order to use the LPQ operator on a pixel in an image,

the Short-Term Fourier Transform (STFT) is utilized within a window of size (M×M),

denoted as Wn. For an image with dimensions (H×W ), The local image patches inside

Wn are specified for every pixel location x = x1, x2, ..., xHW in the following manner:

fx(y) = f(x− y), ∀y ∈ Wn (4.7)
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By applying STFT, we obtain the local representation of the image in the frequency

domain:

Fx(u) =
∑

yi∈Wn

fx(yi)e
−j2πuT yi (4.8)

Here, i ranges from 1 to M2, and the variable u is composed of l frequency variables,

denoted as (u1, u2, ..., ul), which serve as local descriptors that are insensitive to blur.

(Equation 4.8) can be rephrased as follows:

Fx(u) = ψT
u fx, ψT

u (y) = e−j2πuT y (4.9)

where:

ψT
u = [ψu(y1), ψu(y2), ..., ψu(yM2)] (4.10)

and:

fx = [fx(y1), fx(y2), ..., fx(yM2)] (4.11)

Decorrelation is performed by applying a linear transformation that converts the origi-

nal samples into a new set of independent samples. In the case of LPQ, decorrelation is

achieved by computing the local phase of each pixel relative to its surrounding neigh-

borhood. The phase is then quantized into L equally spaced bins, and each pixel is

assigned a label according to which bin its phase falls into. The resulting sequence of

labels forms the LPQ codeword.

Phase Quantization: The technique of blur-insensitive representation involves uti-

lizing a set of frequencies l, which generates a feature vector of the same length l for

every pixel. In practical applications, the quantization of the phase into four quadrants

is achieved through the use of the following quantizer:

Q(Fx(u)) = (Re{Fx(u)} > 0) + 2(Im{Fx(u)} > 0) (4.12)

For each pixel, the quantization process described above requires 2 bits to represent

each frequency component, resulting in a total of 2l bits. These bits are concatenated

to form a single codeword. Since the low-frequency components of an image typically

contain the bulk of its energy, only these components are utilized in generating a

blur-insensitive representation. In practical applications, the local coefficients Fx are
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computed at four low frequencies, with l = 4, for each pixel.

[u1, u2, u3, u4] =

a 0 a a

0 a a −a

 (4.13)

The value of scalar a corresponds to the highest positive frequency in the Point Spread

Function (PSF) and is typically calculated using M , that is, a = 1
M

.

Subsequently, an 8-bit codeword, denoted as ([q7, q6, q5, ..., q0]), It is possible to acquire

a description of the local texture encompassing each pixel in Wn by utilizing reference

[84]. A straightforward binary decoding process can readily convert this codeword into

a decimal number between 0 and 255:

LPQi =
8∑

j=1

qi2
j−1 (4.14)

Decorrelation: If the coefficients that require quantization are interdependent, vec-

tor quantization tends to be more efficient. In order to eliminate correlation between

frequency coefficients, the first step is to split Fx(u) into its real and imaginary com-

ponents, and then combine them by concatenation using the following approach:

Fx(u) = [Fx(u1), Fx(u2), ..., Fx(ul)] (4.15)

Fx = [Re{Fx(u)} Im{Fx(u)}] = [FR
x F l

x] (4.16)

The STFT transformation shown in (Equation 4.9) indicates that Fx and fx are linearly

dependent, allowing us to express this relationship as follows:

Fx = ψ.fx (4.17)

where:

ψ = [ψR ψl]
T (4.18)

and:

ψR = Re{ψu1 , ψu2 , ..., ψul
} (4.19)
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and:

ψl = Im{ψu1 , ψu2 , ..., ψul
} (4.20)

Ojansivu et al. [86] proposed a transform to decorrelate Fx, which is given by the

following expression:

Gx = V T .Fx (4.21)

The orthogonal matrix V used to perform the decorrelation of Fx is obtained from the

matrix D, which is defined as follows:

D = U
∑

V T (4.22)

The matrix D, which is the covariance matrix of Fx, can be computed using the fol-

lowing expression:

D = ψ C ψT (4.23)

Where C is the M×M covariance matrix of samples in Wn. Following the decorrelation

process, a scalar quantizer quantizes the jth coefficient (gj) of Gx [113]:

qj =

1, if gj ≥ 0

0, otherwise

(4.24)

The LPQ operator computes a codeword for each pixel in the image, and these code-

words are transformed into a decimal number between 0 and 255 to create an LPQ

image that contains the information about the texture of the input image at a local

level. To generate an LPQ feature vector for the whole input image, the LPQ image is

divided into non-overlapping sub-regions of size r×c, and histograms are computed for

each sub-region. Finally, the histograms are merged together to form the LPQ feature

vector.

H = [h1, h2, ..., hrc] (4.25)

To retain specific details about the spatial distribution of patterns, it is necessary to

partition the LPQ image into disjointed sub-regions. When histograms are computed

for each sub-region, this information is not lost as it would be if histograms were com-
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puted for the whole image [84].

B. Texture Analysis by the Autocorrelation Function

An important property of some textures is the repetitive nature of texture-structuring

elements in the image. The Autocorrelation Function (ACF) of an image can be used

to assess the rate of regularity such as the fineness or coarseness of the texture present

in the image (Figure 4.10).

Figure 4.10: First column, Two bone x-rays of the calcaneus. The upper image is
for a healthy subject, the Lower image is for an osteoporotic patient. The second
column presents their Energy Distribution in the power spectrum for the two trabecular
textures (The Fourier transform) and the third column presents their Autocorrelation
Function performed on the two bone x-rays.

3. Spatio-Frequency Domain

This type of texture features associates both spatial and frequency domains. Some of

them are presented in this section.

A. Gabor transformation

• Gabor Filter Bank

A Gabor filter’s [87] impulse responseA function that exhibits a sine or cosine wave-like

pattern can be referred to as a sinusoidal function The given function has undergone
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multiplication by a Gaussian function. According to the source cited as reference 84,

a 2 − D complex Gabor filter with dimensions of Nx by Ny in discrete space can be

expressed as:

G(θ,f0,γ,η,ϕ)(x, y) =
γ.η

π
e−((αxγ)2+(βxγ)2)ej2πf0(xccosθ+ycsinθ+ϕ) (4.26)

with:

α =
f0
γ

, β =
f0
η

(4.27)

The phase of sinusoidal rotation, digital frequency, and carrier phase are the parameters

associated with the sinusoidal wave represented by θ, f0, and ϕ, respectively, in a Gabor

filter. Additionally, According to reference [113], the normalized scale factors for the

along-wave envelope and the wave-orthogonal Gaussian envelope are represented by γ

and η, respectively.
(xc, yc) = (x− x0, y − y0), (x0, y0) = (Nx

2
, Ny

2
)

xr = xccos(θ) + ycsin(θ)

yr = −xccos(θ) + ycsin(θ)

(4.28)

The Gabor filter exhibits several fascinating properties such as invariance to illumi-

nation, rotation, scale, and translation. It is also localized both in the spatial and

frequency domains, which makes it an ideal candidate for wavelet analysis. In practi-

cal applications, filter banks [88] consist of numerous Gabor filters that form a Gabor

space. The principles governing the functioning of the human visual cortex are also

utilized in the operations of this space and can rapidly detect intricate visual patterns.

Referring to Equation (4.26), The definition of the collection of K-component Gabor

filters, represented by W , is given below:

Wn,m(x, y) = G(θm,f0n,γ,η)(x, y) /ϕ = 0 (4.29)

The number of Gabor filters in a given setup is denoted by K and is equal to the

product of the number of scales, represented by Ks, and the number of orientations,

represented by Ko.
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f0n = f0
(
√
2)n−1 n = 1, ..., Ks

θm = (m− 1) π
Ko

m = 1, ..., Ko

(4.30)

To calculate the values of α and β for each component or scale, the following procedure

is typically used:

(αn, βn) = (
f0n
γ
,
f0n
η

) (4.31)

The Gabor filter set, denoted by W , consists of various components, Each element in

the collection represents a sine angle (θm),specific square Gabor filter size and (f0n)

digital frequency. These parameters are usually selected empirically to achieve a better

description of bone line details.

B. Wavelet Transform

Gabor’s representation is based on an observation window of fixed length, which can be

a drawback because some textures can be characterized according to different scales.

To remedy this limitation, the wavelet transform is based on multi-scale analysis of the

texture, in the sense that analysis windows of different sizes are used [89]. Many sta-

tistical or co-occurrence attributes (Wavelet Statistical Features (WSF) and Wavelet

Co-occurrence Features (WCF)) can be extracted from the wavelet transforms of an

image. The energies calculated for the different filters are also used to characterize the

textures with a view to classification. The advantage of this transformation is that it

allows a multi-scale characterization of the texture by considering both the global and

local information contained in the image.

4.7 Deep Feature and Proposed Method

The distinction easily made by the human eye between several textures is a difficult

task to achieve in computer vision, insofar as there are an infinite number of textures

and each one has its characteristics. There are no methods capable of classifying all

textures as well as a human observer would, however, a certain number of properties

defining the visual impressions can be extracted and therefore make it possible to best

reproduce the classification of texture carried out by this method. human observer.
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Features can be defined as numeric type data describing the content of an image.

Osteoporosis can lead to significant changes in bone structure and porosity, especially

as the disease advances. As a result, bone images can exhibit instability and alterations

in line and pore density. In healthy bones, line density increases while pore density

decreases, but the opposite is observed in diseased bones. Consequently, these features

can provide valuable information and aid in the accurate diagnosis of osteoporosis

progression. Due to the significant overlap in bone structure between healthy and

diseased bones, it’s crucial to focus exclusively on these features for effective diagnosis.

Unfortunately, previous studies have often been limited by the inefficient use of bone

line and pore imaging data for osteoporosis diagnosis.

Without taking into consideration these features, a texture analysis-only approach

can lead to feature vectors that exhibit increased rates of interclass correlation. Our

proposed method is designed to produce distinctive features by following this principle:

1. The process involves extracting lines and/or pores in multiple orientations or

directions.

2. The system automatically adjusts its parameters to handle diverse scenarios, such

as lines with different thicknesses.

3. Multi-level analysis capability.

4. Ability to conduct multiple bone image analyses, after the integration of results

allows for the system to make a well-informed decision.

We have suggested a Deep Analysis method based on Convolution to describe the tex-

ture of the X-Ray image of bones. In order to improve the contrast of the bone images,

each image received initial preprocessing. We will go into more information about the

techniques implemented in the suggested approach below. The aim is to identify fea-

ture vectors that exhibit strong similarities within a class and significant differences

between classes, Considering the strong similarity between bone images of healthy and

diseased samples. For our Deep Analysis method, we utilized a dataset obtained from

the IEEE-ISBI Challenge: Characterization of Bone Tissue (explained in Appendix

A). In 3D pictures, the osteoporosis-related bone tissue can be shown to frequently

decrease in depth. Unfortunately, our dataset only contains 2D images, making it
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difficult for specialists to diagnose the condition with their naked eyes, Handcrafted

feature extraction methods have proven to be ineffective in generating distinct vectors

for automated diagnosis [113].

Taking inspiration from the benefits of Deep Analysis and Gabor’s descriptor, we

present a new method for extracting features to detect Osteoporosis in this section.

(Figure 4.11) illustrates the complete feature extraction process, which includes Gabor

filtering, data reduction, and feature vector extraction.

The objective is to detect various image features such as wrinkles, lines, singular points,

ridges and texture, we will utilize a Gabor filter bank with specific orientations. The

Gabor transform-based feature space enables This enables us to extract features spe-

cific to bone tissue, particularly the lines, from their surrounding areas in the processed

image. Through the identification of gradual variations in the dimensions, configura-

tion, and intensity of lines in a bone image, osteoporosis can be diagnosed. Next, Our

approach involves combining all the filtered images into a unified descriptor to mini-

mize the data size. To generate a feature vector, we will use HOG/LPQ to process the

descriptor in the last stage. The parameters of the Gabor Filter Bank will be optimized

during training utilize Bat Algorithm Optimization to obtain precise feature vectors.

For the purpose of discussing the system’s architecture, we will make the assumption

that This method assumes that the input images have dimensions of H×W and utilizes

a patch size, which refers to the size of the 2D convolutional filter, for the convolution

layer:

W(n,θi) = k1 × k2 i ∈ [1..N ] (4.32)

In our work, the scale number n ranges from 1 to 8. We employ 16 orientations of

Gabor filters θ, with values ranging from 0 to π and a step size of π /16. The quantity

of filters utilized is denoted as N . It is important to note that the system must be

supplied with the scale number and filter count, which can be less than eight filters. In

the following section, we will describe our approach for selecting The angular positions

of the filters.
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Figure 4.11: Example of One-Scale Feature Extraction Structure with Convolution
Filters of Different Orientations

4.7.1 Orientations of Gabor filters.

By filtering an image, the intention is to highlight its crucial features. For this reason,

the orientation of the Gabor filter chosen is of paramount importance and should be

dependent on the features that require highlighting. In the bone image displayed in

(Figure 4.12), the most prominent feature is the lines, which are typically vertically

inclined.

(Figure 4.12) shows line orientations in images. Top to bottom is the prevailing direc-

tion of the lines and are typically within an angle range of 90◦ ± 30◦. (Figure 4.12(a))

Represents an image with a particular orientation of around 75◦, while (Figure 4.12(c))

Indicates an image with an orientation of roughly 105◦. In contrast, the lines in the

image shown in (Figure 4.12(b)) point in the direction of 90◦. Generally, the orienta-

tions of the lines are determined by The quantity of filters employed, with a preference

for vertical directions., as illustrated in Figure 4.12(d) [113].

Mathematically, the orientation of each Gabor filter can be expressed as follows if N

is the total number of filters:
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Figure 4.12: Choosing the orientations of Gabor filters involves considering: (a) lines
predominantly located in the first quadrant, (b) a tendency towards vertical lines, (c)
lines mostly situated in the fourth quadrant, and (d) the preferred orientation.

if N odd: N = 2p+ 1 ⇒

Sθ = {θj}j=0..p, θj =
π

2
± j

π

16
, p =

N − 1

2
(4.33)

if N even: N = 2p ⇒

Sθ = {θj}j=0..(p−1) ∪
{
π

2
+
N

2
.
π

16

}
, θj =

π

2
± j

π

16
, p =

N − 1

2
(4.34)

To improve the accuracy of the system, we chose to increase the step size to π
16

when

selecting the orientations of the filters. However, it is possible to adjust this step size

to further improve accuracy if needed. With the scale number and filter orientations

determined, we can now explain The performance of our feature extraction technique

can be described in terms of its functional behavior.

4.7.2 Functional Architecture

In the following section, we’ll explore how the feature extraction function operates to

produce a precise feature vector that optimizes performance.

1. Convolution Layer

The primary goal of a convolutional layer is to emphasize the essential features present

in the input image. Besides the filter size, the filter orientation or variance is also

crucial, this is because the size of the surrounding pixels used in calculating the coeffi-

cient for each pixel is determined by this specification. The layer generates its outputs
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by convolving all the images in the training database (ψtrain) with the filters W(n, θi)

through a 2D convolution process [113]:

Îji = Ij ∗W(n,θi), i ∈ [1..N ], θi ∈ Sθ, j ∈ [1..Ntrain] (4.35)

The notation Ntrain represents the total number of images within the set ψtrain. The

2D convolution process is denoted by the symbol *, which results in filtered output

images are denoted as Îji.

2. Pooling Layer

The application of N filters to images results in the generation of N supplementary

images, which increases the data significantly. To reduce the data while retaining

image features, we use a pooling layer.High and positive values represent the significant

features, making it possible to locate them using quantization. To accomplish this, we

employed the following linear threshold function in our research:

Ibji(x, y) =

0 if Îji(x, y) < τb

1 if Îji(x, y) ≥ τb

, i ∈ [1..N ] (4.36)

where τb is the threshold for binarization. In our study, we established a threshold of 0

for the coefficients of the filtered image (Îi(x, y),∀x, y) as they had an equal likelihood

of being negative or positive. Subsequently, the N -binarized images (Ibji | i = 1..N)

are transformed into an image with integer values. Afterwards, the codeword consisting

of N binary digits around each pixel is subjected to the following formula [110]:

Iji(x, y) =
N∑
i=1

Ibji(x, y) · 2(i−1) (4.37)

Consequently, we will obtain a singular image that will undergo A feature extraction

algorithm that is performed manually is used to isolate its features.
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3. Feature Vector Layer

At this stage, an expert-designed feature extraction technique such as HOG and/or

LPQ is employed to process the analyzed image. (Ij) and generate a feature vector

(VI).

VMTD
j = FMTD(Ijd), MTD ≡ {HOG,LPQ} (4.38)

Both the HOG and LPQ methods have multiple parameters that can be apdated to reg-

ulate the size and accuracy of the feature vector. The precision of the vector influences

the detection system’s effectiveness; thus, we quantized and selected its coefficients

during the training phase using the following formula:

Ṽj = FQNTZ(vj(x)) =

vj(x) if vj(x) ≥ λ0 · ρv

0 Otherwise

, Ṽj ∈ R1×L, w ∈ [1..L]

(4.39)

and:

vj = FSLCT (ṼMTD
j ) (4.40)

Here, vj signifies the feature vector that is rearranged based on the coordinates ob-

tained through Fisher’s selection method [90]. This method generates a vector with

a predetermined number of coordinates (L) sorted in descending order of significance.

Additionally, ρv denotes the average value of vj, while λ0 represents a predetermined

value.

4.7.3 Optimization

In general, an optimization algorithm is a computational mathematical process for find-

ing the minimum or maximum of an objective function (optimization problem). Meta-

heuristic algorithms treat optimization problems like a black box. These algorithms

have shown their performance in various areas of optimization, they could lead to the

resolution of optimization problems whether they are constrained or unconstrained,

complex, multimodal, or discontinuous, without having any particular knowledge of

the objective function or its differential information.

Three parameters (f0, γ, and η) are required to construct a Gabor filter bank. In
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our study, during the training phase, we utilized the Bat Algorithm Optimization to

determine the optimal settings that enhance the system’s performance (f best
0 , γbest, and

ηbest) [87].

[f best
0 , γbest, ηbest] = FOPT (Saccuracy) (4.41)

where Saccuracy,The objective function in our study, which is represented by the system’s

accuracy, is the metric used to evaluate performance.

• Bats Algorithm

A metaheuristic optimization method, proposed by Xin-She Yang in 2010, is an op-

timization method based on the echolocation behavior of micro-bats in the hunting

process. The micro-bats produce a sonar vibration which locates the position of prey

in the search space, the micro-bats could locate a target thanks to an echo received

this phenomenon is called echolocation.

Each microbat is characterized by five variables, the frequency fi , the velocity vi, the

position xi, the loudness Ai , the pulse rate ri.These variables are calculated using the

following equations:

Frequency: fi = fmin + (fmax − fmin)β (4.42)

With, fmin and fmax Depending on the nature of the problem, β is a random number

between 0 and 1.

Velocity:

vi(t+ 1) = vi(t) + (Xi(t)−Xbest)fi (4.43)

vi(t + 1) is the new velocity of bat i, and Xi(t) is its current position, Xbest is the

current best position.

Position:

Xi(t+ 1) = X(t) + vi(t+ 1) (4.44)

Loudness and Pulse rate: Initially, it is calculated using the following equation:

Ai = rand× (Amax − Amin) + Amin (4.45)
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Figure 4.13: The organization chart of the BAT algorithm.

ri = rand× (rmax − rmin) + rmin (4.46)

If the generated random number is smaller than Ai and f(Xi) is less than f(Xbest),

Thereafter decreases Ai and ri in each iteration according to the following equation

with, f denote the objective function:

Ai = αAt
i with 0 < α < 1 ri = rti [1− e−γt

] with 0 < γ (4.47)

The organization chart of the BAT Algorithm is shown as follows in (Figure 4.13)
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4.8 Conclusion

In this chapter, we have presented the main approaches used for the characterization

of textured images and in particular images of bone radiographs. Texture analysis is

a difficult problem. This difficulty is essential because there is no precise and rigorous

definition allowing the notion of texture to be completely defined.

The choice of texture features in general is a delicate point since it depends on several

factors. The features should therefore be chosen with care because not only do they

depend on the application considered, but they also influence the quality of the discrim-

ination. Our objective is to propose an approach that allows extracting from images

of bone radiographs, information characteristic of the texture. We then described the

approach that we propose for the extraction of the different features of bone textures

and which will be used in the classification phase. The concepts of classification as well

as the methods commonly used for the classification of textures have been presented

synthetically.
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Experimental Results:

Implementation and Results

5.1 Introduction

Supervised Machine Learning techniques can effectively differentiate between images

of healthy and diseased bones by analyzing their texture characteristics. The texture

analysis provides a rich set of data that can be used to successfully classify the images.

Specifically, The size and density of texture lines are crucial factors in determining the

probability of osteoporosis and the extent of bone loss.

The proposed approach in this study involves applying a specific set of Gabor filters to

the raw image, which enables extraction of various orientations of lines. The resulting

features are merged or combined into a single descriptor, which is then subjected to

various handcrafted feature extraction algorithms. A classifier is used to optimize the

Gabor filter settings by utilizing a bat-inspired algorithm to attain optimal performance

and enable deep analysis behavior. Furthermore, the proposed method is capable of

functioning based on the multimodality principle, which combines information from

HOG and LPQ or texture analysis utilizing various filter sizes. The experimental

results indicate that this deep texture analysis approach is highly effective in accurately

analyzing bone images, outperforming previous studies [113].

To evaluate the effectiveness of the proposed osteoporosis diagnosis system, a three-

part experiment was conducted in this chapter. Firstly, a comprehensive evaluation of
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the proposed method was carried out. Secondly, the optimal settings for the feature

extraction method were determined. Lastly, the impact of data fusion on the system’s

performance was examined.

5.2 Evaluation Protocol

For all subjects, radiography of the calcaneus was obtained with a high-resolution Xray

device with direct digitization (BMATM, D3A Medical Systems, Orleans, France) with

a focal distance set at 1.15m and X-ray parameters set at 55kV and 20mA. The heel is

scanned by the device using anatomical landmarks positioned by the operator on the

image in order to correctly extract the Region of Interest (ROI) (400 × 400) pixels (1.6

× 1.6 cm2) (Figure 5.1).

Figure 5.1: Region Of Interest (ROI).

The dataset used in this study consisted of 174 samples that were divided into three

galleries, as shown in (Figure 5.2). The classifier was trained using the first and second

galleries, The third gallery was utilized for blind classification evaluation purposes.

A 10-fold cross-validation was performed to train the classifier using the 116-sample

dataset, where the datasetwas randomly divided into 10 subsets, and we performed 10

rounds of training and testing. The best model was then selected once the classifier

was trained and the ideal parameters for the proposed feature extraction method were

identified, which was then used to classify the remaining 58 blind samples [113]. It was

challenging to classify the images due to the high similarity between the classes, and

it was difficult for a human observer to differentiate between healthy and osteoporotic

images with the naked eye, as demonstrated in (Figure 5.2).
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Figure 5.2: Osteoporosis comparison image between the healthy people from the first
row, and the osteoporosis patients from the second row.

5.3 Impact of Filtring CLAHE image on model Per-

formance

This section will provide a thorough evaluation of the proposed method, covering all

steps from normalization to fusion, as well as the selection of The best settings for the

Gabor filters were determined (optimal parameters)

5.3.1 Evaluation of the Proposed Methods

1. CLAHE-based Analysis markedly Improves Performance

Prior to performing feature extraction, the region of interest in the bone images un-

dergoes a contrast enhancement step using the Contrast Limited Adaptive Histogram

Equalization (CLAHE) method.

The tile sub-region (shown in Figure 5.3) is a crucial parameter in this method, and

we will investigate three different tile sizes to determine which one results in the most

enhanced image. We will incorporate the enhanced images into an osteoporosis diag-

nosis model that uses handcrafted feature extraction techniques (Filtering-free model)

to accomplish this.

Our evaluation dataset consists of (400 × 400) pixel images, so we will explore tiles

with medium-sized (20 × 20, 40 × 40 and 80 × 80) [113]. (Figure 5.4) depicts the

results for the three examined sizes using the six handcrafted feature extraction tech-

niques (HOG, Pyramid of Histogram of Oriented Gradients (PHOG), Local Binary

Pattern (LBP), LPQ, Gradient Directional Pattern (GDP), Improved Weber Binary
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Figure 5.3: Osteoporosis comparison CLAHE image with different tile sizes between
the healthy people from the first row, and the osteoporosis patients from the second
row.

Figure 5.4: Performance comparison under the six Handcrafted Features with 20 × 20
CLAHE tile size.

Coding (IWBC)) in the case of 20 × 20 tile size.

In the (20 × 20) tiles size, (Figure 5.4) shows the performance of the LBP-based model

in terms of the ACC and the AUC) reaches 67.24% and 63.02% at the decision thresh-

old TLBP
d equal to 1.0275, and a confusion matrix MLBP

conf (FP, TP, TN, FN) = (7, 17,

22, 12) with a 5 features Number NLBP
f and a λLBP

0 = 0.35.

Similarly, the other handcrafted-based model works with an (ACC, AUC) equal to

{(58.62%, 54.22%), (60.34%, 54.70%), (65.52%, 56.12%), (63.79%, 54.34%), (63.79%,

62.54%)} at the Td equal to (-0.2854, -0.0047, -1.1210, -0.6814, 1.0928), and a confusion

matrix of Mconf (FP, TP, TN, FN) = {(6, 11, 23, 18), ( 10, 16, 19, 13), ( 5, 14, 24, 15

), ( 5, 13, 24, 16), ( 16, 24, 13, 5 )} with (Nf , λ0) = {(6, 0.65), (5, 0.45), (6, 0.50), (35,

83



Chapter 5 Experimental Results: Implementation and Results

0.80), (5, 0.90)} for the (HOG, PHOG, LPQ, GDP, and IWBC), respectively.

Figure 5.5: Performance comparison under the six Handcrafted Features with 40 × 40
CLAHE tile size.

The accuracy and AUC achieved by this model were 70.96% and 58.15%, respectively,

at a decision threshold of TLPQ
d equal to -0.3578. The corresponding confusion matrix

was MLPQ
conf = (10, 22, 19, 7), where FP, TP, TN, and FN denote true positive, false

positive, true negative, and false negative, respectively. The LPQ-based model used 16

features (NLPQ
f ) and a regularization parameter of λLPQ

0 equal to 1.00.

Similarly, the other handcrafted-based model works with an (ACC, AUC) of {(63.79%,

56.48%), (62.07%, 59.10%), (70.69%, 69.68%), (62.07%, 57.07%), (65.52%, 59.45%)}

at the Td equal to (-0.1358, 0.0003, 0.9627, -0.6772, -1.0945), and a confusion matrix

of Mconf (FP, TP, TN, FN) = {(9, 17, 20, 12), ( 10, 17, 19, 12), ( 12, 24, 17, 5) , (

11, 18, 18, 11) , ( 15, 24, 14, 5)} with (Nf , λ0) = {(51, 0.90), (5, 0.65), (5, 0.25), (80,

0.85), (70, 0.75)} for the (HOG, PHOG, LBP, GDP, and IWBC), respectively.

(Figure 5.6) Shows the case of (80 × 80) tiles size, the performance of the LPQ-based

model in terms of (ACC, AUC) is still the best one and reaches ( 68.97%, 64.68%) at

-0.6025 of the decision threshold (TLPQ
d ), and a confusion matrix of MLPQ

conf (FP, TP,

TN, FN) = (9, 20, 20, 9) with a ( NLPQ
f =86 features and a λLPQ

0 = 0.60).

Also, the other handcrafted-based model works with an (ACC, AUC) of {(60.34%,

48.99%), (60.34%, 55.29%), (65.52%, 61.59%), (62.07%, 65.99%), (68.97%, 62.07%)}

at the Td equal to (0.1340, -0.0413, -1.5100, 1.0429, -0.9061), and a confusion matrix

of Mconf (FP, TP, TN, FN) = {(18, 24, 11, 5), ( 7, 13, 22, 16), ( 9, 18, 20, 11), ( 12,

19, 17, 10), ( 9, 20, 20, 9)} with (Nf , λ0) = {(11, 0.80), (25, 0.90), (30, 0.35), (5, 0.95),
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Figure 5.6: Performance comparison under the six Handcrafted Features with 80 × 80
CLAHE tile size.

(5, 0.20)} for the (HOG, PHOG, LBP, GDP, and IWBC), respectively.

Additionally, all six methods for feature extraction were utilized on the entire image.

The accuracy (ACC) and area under the curve (AUC) of the system were graphed to

demonstrate the results. Based on the various graphs presented, two key conclusions

can be drawn:

• The LPQ technique proved to be more effective than the other methods in terms

of ACC and AUC, irrespective of the tile size employed.

• In overall, the tile size of 40 × 40 displayed the greatest effectiveness, as depicted

in (Figure 5.7).

Figure 5.7: Performance comparison under numerous CLAHE tile sizes with the LPQ
descriptor.

(Figure 5.7) shows that LPQ achieves a higher AUC with 80x80 tiles size compared to
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40x40 tiles size. However, (Table 5.1) demonstrates that 40x40 tiles size have higher

values for (SPE), (SEN), and F1-score, which further highlights their superiority over

larger tiles.

Table 5.1: Evaluation Results for Various Tile Sizes Using CLAHE Preprocessing

(20×20) (40×40) (80×80)

(%) SPE SEN F1score SPE SEN F1score SPE SEN F1score

HOG 37.93 79.31 65.71 58.62 68.97 65.57 82.76 37.93 48.89

PHOG 65.52 55.17 58.18 65.52 58.62 60.71 75.86 44.83 53.06

LBP 75.86 58.62 64.15 58.62 82.76 73.85 68.97 62.07 64.29

LPQ 48.28 82.77 70.59 75.86 65.52 69.09 68.97 68.97 68.97

GDP 82.76 44.83 55.32 62.07 62.07 62.07 58.62 65.52 63.33

IWBC 44.83 82.76 69.57 48.28 82.76 70.59 68.97 68.97 68.97

Based on the results presented in the table, it can be concluded that the LPQ model

performs better with 40 × 40 sized tiles than with 80 × 80 sized tiles in terms of SPE

and F1-score. Hence, for image normalization, we will use tiles of size 40 × 40 in the

subsequent experiments.

2. Block-based Analysis markedly Improves Performance

Over the last ten years, block-based image analysis has emerged as a dominant pro-

cessing approach in numerous visual systems. This approach has found widespread

application in image processing, particularly for tasks such as data compression and

pattern recognition.

Block-based analysis involves partitioning an image into smaller sub-images or blocks.

This approach is preferred in image processing due to the significant computational

time and memory space required for processing the entire image. Instead, it is more

practical to process multiple sets of reduced data obtained by dividing the image into

smaller blocks.

In this section of the experiment, we aimed to evaluate the effectiveness of block-based

image analysis in the osteoporosis diagnosis system. To achieve this, we followed a

specific approach:

We divided the original images into blocks of different sizes (SBLK = { 100 × 100, 200

× 200, 300 × 300}) and applied four different Overlap (OLP) rates (SOLP = {0%, 25%,
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50%, 75%}) to each block size. This allowed us to investigate the impact of block size

and (OLP) rate on the performance of the system.

To determine the accuracy (ACC), the six handcrafted feature extraction methods were

applied to the blocks. Each feature extraction method was tested 12 times, and the pa-

rameters that resulted in the highest ACC values were selected. System performance,

as measured by ACC and area under the curve (AUC), was plotted for the six feature

extraction methods as a function of block size and overlap.

Figure 5.8: HOG-based Osteoporosis diagnostic system. Comparison of performance
using a variety of analysis block sizes based on ACC (a), and AUC (b).

By observing and analyzing (Figure 5.8) Compared to the analysis of the entire image,

the adoption of a block-based analysis in HOG led to a substantial improvement in

system performance, with a 13.50% increase observed.

Table 5.2: Evaluating System Performance with Different Analysis Block Sizes.

Analysis HOG

Block type THOG
d SPE SEN ACC AUC F1score Nfeat λ0 O

100 × 100 -0.1390 51.72 93.10 72.41 62.19 77.14 11 1 0

200 × 200 -0.2484 58.62 86.21 72.41 64.80 75.76 16 0.55 0

300 × 300 0.0538 72.41 72.41 72.41 68.61 72.41 61 1 0

400 × 400 -0.1358 58.62 68.97 63.79 56.48 65.57 51 0.90 /

Under optimal conditions (100 × 100 and 0% overlap), the system can operate with

(AUC, ACC) values of (62.19% , 72.41%) at THOG
d = - 0.1390 and a confusion matrix

of MHOG
conf = (2, 15 , 27, 14) with (λHOG

0 , NHOG
f ) values of ( 1.00 , 11). (Table 5.2)

presents further outcomes of the block-based image analysis.
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Figure 5.9: Analyzing the Performance of LPQ-Based Osteoporosis Diagnostic Systems
Using Different Analysis Block Sizes: Comparison Based on ACC (a) and AUC (b)

As a result, the proposed system was able to achieve (ACC, AUC) values of (75.86%,

71.34%) by using a block size of (100 x 100) and a 75% overlap in LPQ analysis, re-

sulting in an improvement in ACC of approximately 7.32%, at TLPQ
d = 0.4441 and a

confusion matrix of MLPQ
conf = (9, 24, 20, 5) with (NLPQ

f , λLPQ
0 ) values of (41, 0.75). (Ta-

ble 5.3) presents further outcomes of block-based image analysis. The results presented

in Figure 5.9 demonstrate that using a block size of 100 × 100 with a 75% overlap still

produces the best performance, even with the LPQ feature extraction technique. This

configuration leads to an improvement in ACC of approximately 7.32%. With this set-

ting, the system can achieve an ACC and AUC of 75.86% and 71.34%, respectively, at

the decision threshold TLPQ
d of 0.4441. The corresponding confusion matrix is MLPQ

conf =

(9 , 24, 20, 5), and the values of NLPQ
f and λLPQ

0 are 41 and 0.75, respectively. (Table

5.3) presents additional results of block-based image analysis.

Table 5.3: Comparison of performance using different block sizes for image analysis.

Analysis LPQ

Block type THOG
d SPE SEN ACC AUC F1score Nfeat λ0 O

100 × 100 0.4441 82.76 68.97 75.86 71.34 74.07 41 0.75 75

200 × 200 -0.2897 72.41 65.52 68.97 63.02 67.86 66 0.20 25

300 × 300 -0.7760 79.31 65.52 72.41 77.05 70.37 41 0.80 0

400 × 400 -0.3578 75.86 65.52 70.69 58.15 69.09 16 1 /

In contrast to the HOG and LPQ methods, the remaining handcrafted feature extrac-

tion methods did not yield satisfactory results or provide a significant improvement.

(Table 5.4) displays the best-case outcomes for the PHOG, LBP, GDP, and IWBC

descriptors.
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Table 5.4: Performance for different analysis block sizes.

Block 100 × 100 200 × 200 300 × 300

Methods SPE SEN ACC SPE SEN ACC SPE SEN ACC

PHOG 41.38 82.76 62.07 55.17 68.97 62.07 44.83 79.31 62.07

LBP 72.41 58.62 65.52 62.07 75.86 68.97 62.07 68.97 65.52

GDP 75.86 58.62 67.24 55.17 75.86 65.52 51.72 79.31 65.52

IWBC 48.28 75.86 62.07 75.86 55.17 65.52 65.52 65.52 65.52

By observing and analyzing (Table 5.4), we find the best-case scenario in the case of

LBP (200 × 200 and 50% overlap), we can see that the block-based analysis increased

system performance just with 1.73% improvement, compared to the whole image anal-

ysis. As for the PHOG and the IWBC, we found that it was not affected in terms of

Accuracy by this analysis. In the case of the GDP (100 × 100 and 75% overlap), the

block-based analysis improves the system by 5.17%. However, these improvements are

very small compared to what we have obtained in (Table 5.2) and (Table 5.3).

The system can operate with (AUC, ACC) values of (67.90% , 68.97%), ( 61.24% ,

67.24%), (61.71% , 65.52%), (57.19% , 62.07%) in the case of LBP, GDP, IWBC, and

PHOG. The results presented in (Table 5.4) emphasize the importance of using the

HOG and LPQ methods in block-based image analysis due to their effectiveness and

potential for enhancing research outcomes. As a result of this analysis, it is recom-

mended to use a block size of 100 × 100 for future experiments.

Initial tests were performed without the filter layer, referred to as "Filtering-free", us-

ing CLAHE tiles of size 40 × 40 and analysis blocks of size 100 × 100. The subsequent

experiments aimed to evaluate the impact of the filtering layer on system performance.

5.3.2 Enhancing Performance Through Input Image Filtering

Following normalization of the image with a pre-determined CLAHE tile, each block

measuring 100 × 100 is filtered using a set of Gabor filters to generate multiple descrip-

tors. These descriptors are then combined and passed through a HOG/LPQ algorithm.

The resulting vectors are concatenated to form a feature vector, with the HOG method

operating on 3 × 3 cells and producing a 9-bin histogram, while the LPQ algorithm

employs a window size of 15 × 15. The blocks were analyzed using N Gabor filters,
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where N ranges from 2 to 8, and three different filter sizes (k1 × k2)≡ {(3 × 3),(5

× 5),(7 × 7)}. It is worth mentioning that the initial values of f0, γ, and η for the

Gabor (GBR) filters were chosen randomly. Moreover, to reduce the number of tests,

only the first scale of the Gabor filter bank was utilized.

1. Diagnosis System for Osteoporosis Using GBR-HOG Technology

In the Gabor-HOG (GBR-HOG)-based system, the parameters f0, γ, and η were as-

signed random values of 0.637, 0.921, and 0.834, respectively. Varying the number/size

of the Gabor filter (N and k1 × k2) produces different feature representations, so we

can experimentally select a combination of (N , k1 × k2) that improves the system’s

accuracy. (Figure 5.10) illustrates the effect of the number of filters (N) on the ACC

results for all filter sizes (k1 × k2). This investigation was carried out to analyze the

impact of these parameters, as the initial values of f0, γ, and η for the GBR filters

were chosen randomly, and only the first scale of the Gabor filter bank was employed

to limit the number of tests.

The results shown in (Figure 5.10) indicate that smaller filter sizes yield better perfor-

mance when the number of filters is high, while larger filter sizes perform better when

the number of filters is low. (Table 5.5) provides a summary of the improvements

observed.

The Gabor-HOG (GBR-HOG) based system achieved the highest ACC with either

N = 2 and (W = 7 × 7) sized filters with orientations of θ = 90◦ ± 101.25◦ or with

N = 7 and (W = 3×3) sized filters with orientations of θ = 90◦ ± 101.25◦j |j=0..3, 135
◦.

Among these configurations, the optimal one in terms of processing time is using two

(7× 7) sized filters, which produced a confusion matrix of MGBR−HOG
conf = (6, 22, 23, 7)

and (NGBR−HOG
f , λGBR−HOG

0 ) values of (15, 0.25). It is worth noting that the filter-

ing layer significantly improved the system’s performance by 7.15% compared to the

filtering-free configuration. To understand the effect of these parameters, (Figure 5.10)

illustrates the ACC outcomes in terms of the number of filters (N) used for each filter

size (k1 × k2).
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Figure 5.10: Evaluating the Performance of HOG-Based Systems with Different Gabor
Filter Numbers and Sizes Based on ACC.

Table 5.5: Improvement of HOG-based system ACC with different Gabor filter sizes
and numbers.

Analysis GBR-HOG

Filter Size THOG
d SPE[%] SEN[%] ACC[%] AUC[%] F1score Nfeat λ0 N

3 × 3 0.0493 75.86 79.31 77.59 71.22 77.97 15 0.25 7

5 × 5 0.0195 65.52 82.76 74.14 69.08 76.19 43 0.10 5

7 × 7 -0.1131 79.31 75.86 77.59 73.48 77.19 37 0.55 2

without flt -0.1390 51.72 93.10 72.41 62.19 77.14 11 1.00 /

2. Diagnosis System for Osteoporosis Using GBR-LPQ Technology

Likewise, for the Gabor-LPQ (GBR-LPQ)-based system, the parameters f0, η , and γ

were randomly assigned values of 0.898, 0.334 and 0.700, respectively. The impact of

varying the number of filters (N) and their sizes (k1 × k2) on the system’s accuracy

was analyzed, and the results are presented in (Figure 5.11).

This figure demonstrates that the system’s performance significantly improved (by over

75%) when a Gabor filter of size (W = 3×3) was used. Moreover, the best case results

are summarized in (Table 5.6).

It is clear from the results that using N=8 filters improved the system performance by

2.28% in terms of ACC. With this configuration, the system achieved an ACC of 77.59%

and an AUC of 74.67%. The resulting confusion matrix is MGBR−LPQ
conf = (7, 23, 22, 6),

while the values of (λGBR−LPQ
0 ,NGBR−LPQ

f ) are (0.70 , 11).

The results presented in this section are specific to certain values of the Gabor filter’s
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Figure 5.11: Comparison of Gabor filter number and size on ACC performance for
LPG-based system.

parameters (f0, γ, and η), indicating that modifying these parameter values could po-

tentially lead to improved results. (Table 5.7) provides a summary of the overall results

for the best case achieved.

Table 5.6: Comparison of ACC improvement in LPQ-based system using different
Gabor filter numbers and sizes.

Analysis GBR-LPQ

Filter Size THOG
d SPE[%] SEN[%] ACC[%] AUC[%] F1score Nfeat λ0 N

3 × 3 -1.0054 79.31 75.86 77.59 74.67 77.19 11 0.70 8

5 × 5 0.5814 75.86 68.97 72.41 74.32 71.43 45 0.65 6

7 × 7 -0.5829 68.97 82.76 75.86 72.53 77.42 11 0.70 7

without flt 0.4441 82.76 68.97 75.86 71.34 74.07 41 0.75 /

Table 5.7: Performance comparison of GBR-HOG and GBR-LPQ systems using an
effective configuration with a Gabor filter size of w = (3× 3)

Methods THOG
d SPE SEN ACC AUC F1score Nfeat λ0 N

GBR-HOG 0.0493 75.86 79.31 77.59 71.22 77.97 15 0.25 7

GBR-LPQ -1.0054 79.31 75.86 77.59 74.67 77.19 11 0.70 8

To illustrate the significance of incorporating the filtering layer, (Figure 5.12) compares

the best results obtained with and without the filtering layer (filtering-free).
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Figure 5.12: Comparing the Performance of Osteoporosis Diagnosis Systems with and
without Filtering: HOG and GBR-HOG on the Left, LPQ and GBR-LPQ on the Right.

The addition of the filtering layer resulted in a significant improvement in system per-

formance, and the ACC exceeded 77%, as shown in Figure 5.12. This demonstrates

the importance of incorporating the filtering layer in the system. The HOG and LPQ

techniques have several parameters that can be fine-tuned to further improve the per-

formance of the Osteoporosis diagnosis system. For example, the number of bins in

the HOG histogram or the size of the LPQ window can be adjusted to optimize the

feature extraction process. Additionally, other image processing techniques, such as

wavelet transforms or deep learning, can also be explored to improve the accuracy of

the system.

5.4 The Effect of Optimizers on Model Performance

In earlier trials, the HOG and LPQ feature extraction techniques randomly chose the

Gabor parameters, which consist of the digital frequency (f0) and the two normalized

scales (γ, η). In this section, we aim to determine the ideal values for these parameters

that produce the best results. Unlike previous optimization efforts that were limited

to the best settings identified earlier, we will consider all available configurations, in-

cluding values from 2 to 8 for n and the three filter sizes used previously. The search

range for these parameters is limited to a value between 0 and 1. The outcomes of

the optimization algorithm are presented in (Table 5.8), which displays the optimal

results.

Table 5.8 indicates that the optimization process has enhanced the system’s perfor-

93



Chapter 5 Experimental Results: Implementation and Results

Table 5.8: Evaluating System Performance with Optimal Gabor Filter Settings (w =
(3× 3))

Methods THOG
d SPE SEN ACC AUC F1score Nfeat λ0 N

GBR-HOG 0.1565 86.21 75.86 81.03 80.86 80.00 61 0.30 2

GBR-LPQ 0.3775 93.10 65.52 79.31 75.86 76.00 46 0.10 2

mance by 4.45% and 2.22% for GBR-HOG and GBR-LPQ, respectively, compared to

the previous results. It is evident that the most favorable outcomes were obtained when

using two Gabor filters with a size of W = 3 × 3 for both methods. For the optimal

parameters of the Gabor filter (0.730, 0.801, 0.619), in the case of GBR-HOG, the sys-

tem works with values (AUC, ACC) of (80.86%, 81.03%) at TGBR−HOG
d = 0.1565 and a

confusion matrix of MGBR−HOG
conf = (7, 25, 22, 4), with (λGBR−HOG

0 , NGBR−HOG
f ) values

of (0.30, 61). The GBR-LPQ feature extraction method achieved optimal parameters

for the Gabor filter of (0.880, 0.701, 0.719), resulting in a system that can operate with

(AUC, ACC) values of (75.86%, 79.31%). at TGBR−LPQ
d = −0.3775 and a confusion

matrix of MGBR−LPQ
conf = (10, 27, 19, 2), with (λGBR−LPQ

0 , NGBR−LPQ
f ) values of (0.10,

46),To underscore the significance of the optimization procedure, (Figure 5.13) presents

a comparison between the optimal outcomes and those attained without optimization.

Figure 5.13: Comparison of performance between optimized and non-optimized systems
for Osteoporosis diagnosis using HOG and GBR-HOG-based systems on the left and
LPQ and GBR-LPQ-based systems on the right.

These two figures displays the influence of the optimization procedure on the system’s

performance. It’s important to note that other optimization algorithms like Genetic

Algorithm (GA) or Particle Swarm Optimization (PSO) can be implemented to search
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a broader range and enhance the Gabor filter parameters.

5.5 Data Fusion’s Influence on Model Performance

A diagnostic system that relies on a single source of information cannot guarantee

accurate diagnosis, as the associated error rates are significant, rendering the system’s

decisions unreliable. To address this limitation, multi-source diagnostic systems that

integrate information from various sources in the input image can be developed. In this

section, we aim to investigate whether combining several pieces of information derived

from the bone sub-image can enhance the system’s performance.

Pattern recognition systems have the potential to improve their efficiency by integrating

multiple sources of information. The data fusion principle is a technique that enables

the processing of information from several sources by combining the data to obtain a

more accurate decision than that obtained from each source individually. Typically,

data fusion involves integrating multiple data to extract new information that is more

representative of all the data.

Our study utilized a multi-algorithm approach, where the bone image was analyzed

independently using both HOG and LPQ algorithms. The resulting information from

both algorithms was fused together to improve system performance. In this approach,

the fusion process can be integrated at three different levels, namely Feature Level,

Matching Score Level, or Decision Level.

By utilizing all the available configurations, multiple single-source subsystems can be

developed. However, in our experiment, we will restrict our focusTo select the optimal

configuration for the GBR-HOG and GBR-LPQ-based feature extraction methods, the

optimal parameters obtained for all filter sizes can be used. To determine which fusion

technique produces the highest ACC, we conducted an experiment using three fusion

levels.

5.5.1 Feature Level

At the feature-level fusion, multiple feature vectors (observations) derived from the

feature extraction step are combined. Several techniques have been described in the
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literature for implementing feature-level fusion. In our study, we employed four differ-

ent techniques for feature-level fusion, namely Average (AVR), Concatenation (CAT),

Canonical Correlation Analysis (CCA), and Discriminant Correlation Analysis (DCA)

[110].

1. Average (AVR)

VFUS =
1

2
(VHOG + VLPQ) (5.1)

2. Concatenation (CAT)

VFUS = (VHOG,VLPQ) (5.2)

In the two previous cases it is necessary that VHOG and VLPQ must be the same length.

3. Canonical Correlation Analysis (CCA)

CCA is a technique for feature-level fusion where the transformed feature vectors are

combined either by concatenation or by summation:

VFUS = WT
HOG · VHOG +WT

LPQ · VLPQ (5.3)

or:

VFUS = WT
HOG · VHOG,WT

LPQ · VLPQ (5.4)

Where WT
HOG and WT

LPQ denote the transformation matrices (see Appendix D for more

details).

4. Discriminant Correlation Analysis (DCA)

Similar to the Canonical Correlation Analysis (CCA) methodology, the details of the

CCA and DCA methods are in the appendix D.

Based on the results shown in (Table 5.9), we can observe that the fusion at the

feature level method is insufficient, as all the techniques used do not yield satisfactory

classification rates and lead to a degradation of performance compared to classification

without data fusion. Therefore, it is necessary to eliminate this method in our work.
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Table 5.9: Fusion at Feature Level Osteoporosis diagnosis system performance.

3 × 3 5 × 5 7 ×7 Rule SPE[%] SEN ACC AUC F1score

HOGFUS

√ √
CCA 75.86 72.41 74.14 66.83 73.68

√ √
CAT 72.41 72.41 72.41 73.01 72.41

√ √
AVR 72.14 72.41 72.41 69.80 72.41

GBR-HOG
√

/ 86.21 75.86 81.03 80.86 80.00

LPQFUS
√ √

CAT 75.86 65.52 70.69 68.85 69.09
√ √

AVR 68.97 72.41 70.69 70.63 71.19
√ √

DCA 79.31 58.62 68.97 63.50 65.38

GBR-LPQ
√

/ 93.10 65.52 79.31 75.86 76.00

FUSHOG
LPQ

√
CCA 79.31 65.52 72.41 65.99 70.37

√
DCA 79.31 60.07 75.00 65.87 67.92

√
DCA 55.17 86.21 70.69 58.86 74.63

5.5.2 Matching Score Level

At the final stage, the individual scores are integrated to form a single score, which is

used to make the ultimate decision. The most widely used method of fusion is score-

level fusion, which employs simple and effective techniques and can be applied to all

types of systems. Various fusion rules, including the Sum of the Scores (SUM), the

Minimum of the Scores (MIN), the Maximum of the scores (MAX), and the Product

of the Scores (MUL) rules [113], are available for combining scores [09].

Assuming that the classification subsystems are denoted as SHOG and SLPQ and their

matching scores are represented as dHOG and dLPQ, the fused score (dFUS) is obtained

through the following computation:

1. Sum of the Score (SUM)

dFUS = dHOG + dLPQ (5.5)

2. Minimum of the Score (MIN)

dFUS = min(dHOG, dLPQ) (5.6)

3. Maximum of the Score (MAX)

dFUS = max(dHOG, dLPQ) (5.7)
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4. Product of the Score (MUL)

dFUS = dHOG · dLPQ (5.8)

It is crucial to highlight that the fusion rules can be employed only when the scores

from all subsystems have the same characteristics. Hence, it is necessary to perform

an initial step of score normalization before applying the combination rules.

Table 5.10: Fusion at Matching Score Level Osteoporosis diagnosis system performance.

3 × 3 5 × 5 7 ×7 Rule SPE SEN ACC AUC F1score

HOGFUS

√ √
MIN 82.76 72.41 77.59 78.48 76.36

√ √
SUM 79.31 79.31 79.31 78.24 79.31

√ √
SUM 72.41 82.76 77.59 78.69 78.69

GBR-HOG
√

/ 86.21 75.86 81.03 80.86 80.00

LPQFUS
√ √

MIN 86.21 68.97 77.59 77.29 75.47
√ √

MAX 68.97 82.76 75.86 73.01 77.42
√ √

SUM 75.86 75.86 75.86 75.03 75.86

GBR-LPQ
√

/ 93.10 65.52 79.31 75.86 76.00

FUSHOG
LPQ

√
SUM 72.41 82.76 77.59 74.91 78.69

√
SUM 82.76 72.41 77.59 75.98 76.36

√
MAX 75.86 75.86 75.86 79.79 75.86

As observed from (Table 5.10), our results show that the Fusion at Feature Level

method has a lower performance compared to our proposed approach. However, it is

worth mentioning that the Precision of the classifier without data fusion is still superior.

Therefore, the Fusion at Matching Score Level approach was also excluded as it did

not contribute to the enhancement of the classifier’s performance.

5.5.3 Deciding at the System Level

At this stage, the decisions made by the subsystems are integrated into a single deci-

sion. Each subsystem produces a binary decision in the form of "true" or "false", and

the decision fusion process involves arriving at a final decision based on these outcomes.

The most straightforward approaches for combining these decisions are based on AND,

OR, and majority voting (VOTE) principles [113].
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Suppose that SHOG
i | i = 1N is a set of N HOG-based classification subsystems that

utilize N distinct filter sizes, and let diHOG denote the decision provided by each clas-

sification subsystem. The fused decision dHOG
FUS is obtained using the following compu-

tation:

1. AND Rule

dHOG
FUS = &N

i=1 d
HOG
i = dHOG

1 & dHOG
2 & ...& dHOG

N (5.9)

2. OR Rule

dHOG
FUS =∥Ni=1 d

HOG
i = dHOG

1 ∥ dHOG
2 ∥ ... ∥ dHOG

N (5.10)

3. VOTE Rule

dHOG
FUS =

1 if Ntrue ≥ [N
2
]

0 otherwise

(5.11)

Here, Ntrue represents the number of classification subsystems that have made a de-

cision of 1 ("true"), and the symbol [α] denotes the smallest integer greater than or

equal to α (refer to Table 5.11).

Table 5.11: Fusion at Decision Level Osteoporosis diagnosis system performance.

3 × 3 5 × 5 7 ×7 Rule SPE[%] SEN[%] ACC[%] F1score

HOGFUS
√ √ √

VOTE 88.46 81.25 84.48 85.25

GBR-HOG
√

/ 86.21 75.86 81.03 80.00

LPQFUS
√ √ √

VOTE 92.59 87.10 89.66 90.00

GBR-LPQ
√

/ 93.10 65.52 79.31 76.00

FUSHOG
LPQ

√
OR 95.00 73.68 81.04 83.58

√
AND 68.42 85.00 74.18 69.39

√
OR 100.00 69.05 77.59 81.69

The results presented in the table demonstrate that the diagnostic system for osteoporo-

sis only showed a significant improvement in performance with decision-level fusion.

Specifically, utilizing the VOTE rule to fuse the information acquired by examining
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the image using all filter sizes in accordance with LPQ resulted in a substantial in-

crease in system performance. The system achieved an accuracy of 89.66%, which

is a substantial improvement of 26.85% compared to the original system. By using

the same decision thresholds (TGBR−LPQ
d ) and the same number of selected features

(NGBR−LPQ
f ), the three fused subsystems produced a confusion matrix MFUS

conf with val-

ues (2, 25, 27, 4). However, at the score-fusion level, the osteoporosis diagnostic system

can either maintain its performance level or experience degradation compared to the

uni-source system.

5.6 Discussion

This section intends to present and discuss the significant results obtained from the

study and provide recommendations based on the findings. Additionally, a compara-

tive analysis will be presented with previous research in the field.

The purpose of this work is to examine how texture analysis can be used to distin-

guish between healthy and osteoporotic bones. The findings suggest that the direct

application of handcrafted feature extraction methods on bone images fails to produce

satisfactory outcomes compared to utilizing these techniques on descriptors obtained

through deep image analysis. The contrast between the two approaches is demon-

strated in (Figure 5.14).

The depicted figure allows us to infer that:

• The analysis indicates that bone deterioration might be concentrated in a specific

area of the examined region. As a result, Performing a block-by-block analysis

of bone images is recommended to minimize the inter-correlation ratio between

healthy and diseased bone images. This approach can decrease the interdepen-

dence among a significant portion of the vector coefficients.

• The filtering process aims to remove any extraneous characteristics, leaving only

the essential traits in the image. To extract the features of the bone image

effectively, it is crucial to apply filters that enhance the contrast of the image

lines, which are the most important traits.

• The integration of the feature extraction method with the classifier is critical
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since the classifier functions as an expert that can optimize the performance of

the feature extraction method by selecting its parameters, which is commonly

referred to as deep behavior.

• Due to the high correlation between healthy and diseased bone images, combin-

ing multiple analysis techniques and integrating their results can enhance the

system’s performance. This is because each analysis process provides additional

data that can contribute to a more comprehensive understanding of the image.

Figure 5.14: Progress in Enhancing System Performance: Achieving the Most Note-
worthy Results.

It is important to note that there is still considerable room for improvement in the

performance of this system. One approach to achieve this is through the adoption of

techniques such as feature-level fusion and pyramid analysis. These methods can en-

hance the system’s ability to extract and analyze image features, leading to improved

performance.

When developing pattern recognition systems, it is crucial to compare the results with

those obtained in prior research. To ensure a fair comparison, only studies that used the
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same dataset and evaluation protocol should be considered. In this study, we demon-

strate the effectiveness of our proposed method in comparison to existing approaches

(including handcrafted and deep learning-based methods) by conducting a comparative

analysis using the dataset provided by IEEE-ISBI Challenge. (Table 5.12) summarizes

the key findings from previous research.

The findings presented in (Table 5.12) highlight the effectiveness of our proposed os-

teoporosis diagnostic system. Whether based on a single source or multi-sources, our

system consistently outperforms all other methods listed in terms of accuracy (up to

89.66%) and area under the curve (AUC) (up to 80.86%). These results demonstrate

the potential of our system for use in Computer-Aided Diagnosis (CAD) of osteoporosis.

Table 5.12: Comparative Performance Analysis with State-of-the-Art Works

Authors Methods Classifier ACC SEN SPE AUC F1score

Yang et al [105] SIFT-IFV SVM 68.00 72.00 66.00 68.00 63.90

LBP-IFV 68.50 70.00 64.00 64.00 68.40

Florian Yger [106] Haar SVM 64.00 62.00 66.00 - 63.90

Su et al [107] AlexNet+ECD SVM 77.50 74.70 83.30 82.10 76.40

Su et al [108] FS SVM 71.20 73.30 69.00 - 71.00

Palanivel et al [109] LH SVM 59.00 59.00 59.00 - -

Proposed Gabor-HOG SVM 81.03 75.86 86.21 80.86 80.00

Gabor-LPQ 79.31 65.52 93.10 75.86 76.00

HOG-FUS 84.48 81.25 88.46 - 85.25

LPQ-FUS 89.66 87.10 92.59 - 90.00

5.7 Conclusion

Osteoporosis diagnosis is a critical medical imaging application, and this chapter presents

an AI-based technique for automating the detection of this condition using X-ray im-

ages of bone tissue. One of the key aspects of our proposed model for diagnosing osteo-

porosis is the use of handcrafted features. These features are derived from descriptors

obtained through an extensive analysis of the bone image using a set of Gabor filters

with varying orientations. To extract these features, we utilized several well-established
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handcrafted methods. To achieve high-performance levels, we utilized the BAT Algo-

rithm optimization method to determine the optimal parameters for the Gabor filters.

Furthermore, we combined information from three distinct levels: Feature, Score, and

Decision levels. Our study covers all aspects of system development, Several deci-

sions and choices were made in the development of the proposed osteoporosis diagnosis

model, including selecting the optimal normalization approach, determining whether

to analyze the entire bone image or divide it into blocks, selecting the best Gabor filter

parameters, and integrating information from multiple subsystems to enhance system

performance. Through rigorous testing, our proposed system achieved excellent perfor-

mance (with accuracy up to 89.66%), surpassing several previously published studies.
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General Conclusion

The growing demand for radiologists can be attributed to the rapid advancements

in Medical Imaging technology. This has resulted in an increased workload for radiolo-

gists, which unfortunately can lead to diagnostic errors. To address this issue, Artificial

Intelligence (AI) approaches have been applied to medical imaging to improve diag-

nostic Accuracy and bridge the gap between inexperienced and experienced clinicians

or generalists and specialists [6]. One essential diagnostic practice requiring medical

imaging is the diagnosis of Osteoporosis. This thesis introduces an AI-based technique

that utilizes X-ray images of bone tissue for the automatic detection of osteoporosis

[13].

The present study involves the creation of a diagnostic model for osteoporosis using

handcrafted features extracted from bone images. To obtain these features, we ana-

lyzed the images using a set of Gabor filters with different orientations and used two

well-known methods, HOG and LPQ, to extract descriptor features. We optimized

the Gabor filter parameters using a bat-based optimization method to achieve high

performance. Additionally, we fused information at both the score level and decision

level. Our study covered all aspects of system development, including selecting the

optimal normalization approach, analyzing the full image or blocks, selecting Gabor

filter parameters, and combining information from various subsystems. Our model

demonstrated exceptional performance (89.66% Accuracy), surpassing several previ-

ously published studies. In our future research, we intend to integrate these features

with clinical data to create a multimodal model, as well as generate additional predic-
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tive handcrafted features to enhance diagnostic accuracy [113].

The surge in demand for radiologists can be attributed to the rapid growth of med-

ical imaging resulting from advancements in imaging technology. Unfortunately, this

increase in demand has also led to a heavier workload for radiologists, which may have

contributed to diagnostic errors. The application of AI techniques in clinical medical

imaging has significantly enhanced diagnostic accuracy and efficacy. These strate-

gies not only improve diagnosis accuracy, but also bridge the gap between medical

professionals with different levels of experience, including generalists and specialists.

Osteoporosis detection is one of the most crucial diagnostic procedures that require

medical imaging. To address this, we present an AI-based approach for automatically

detecting osteoporosis by analyzing X-rays [14].

The present study involves the development of a diagnostic model for osteoporosis

through the creation of handcrafted features, which were extracted from descriptors

generated by performing a comprehensive analysis of bone images using a set of Gabor

filters featuring varying orientations. The raw image was examined using this specific

set of Gabor filters before applying the feature extraction method.

In this study, we utilized the Histogram of Oriented Gradient (HOG) and Local Phase

Quantification (LPQ) to extract features from the resulting descriptor. To achieve

optimal performance, we utilized a bat-based optimization strategy to select the best

Gabor filter settings. Additionally, our proposed method can make use of the multi-

modality principle by combining HOG and LPQ data or conducting texture analysis

with various filter sizes.

Furthermore, in this study, we combined data at two distinct levels: the decision level

and the score level. We aimed to cover all aspects of system development and our

tests yielded positive results, outperforming several previously published studies with

an accuracy of 89.66%. In future work, we plan to develop a multimodality model

by combining these features with clinical data. Additionally, utilizing more predictive

handcrafted features can further enhance the accuracy of the diagnosis.

Improving follow-up care and identifying personnel with a higher risk of fracture

can lead to prompt treatment and cost-effective management of osteoporosis, which

can ultimately reduce downstream costs. However, despite its advantages, DXA is not

widely accessible or cost-effective, and it is not a comprehensive solution. Therefore,
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it is essential to develop a diagnostic system that is reliable, easily available, cost-

effective, and clinically acceptable. In this review study, a computer-aided diagnosis

(CAD) system using machine learning techniques was explored for the automatic de-

tection and diagnosis of osteoporosis, incorporating various imaging modalities such as

X-rays, DXA scans, MRIs, and CT scans of the vertebrae. The process of detecting

osteoporosis involves acquiring images, preprocessing, segmenting the region of inter-

est, extracting features, and using classifiers based on machine learning techniques. It

was also observed that texture analysis of trabecular microarchitecture using machine

learning techniques can improve the sensitivity, specificity, F1-score, and accuracy.

The advantage of using machine learning is its self-learning ability, which eliminates

the need for further preprocessing. However, the standardization of the dataset is nec-

essary to ensure a universal paradigm. Future research directions could focus on the

development of low-cost, widely accessible x-ray diagnostic tools, and the use of deep

learning models, which require a large amount of data and automatically learn features

from the input data.
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Region Of Interest

A.1 Extraction of the Region Of Interest (ROI)

The X-ray images of the calcaneus (heel bone) that we used in this study were acquired

according to a standardized protocol, the X-rays of the calcaneus were obtained with a

high-resolution direct-scan X-ray machine (BMATM, D3A Medical Systems, Orléans,

France) with a focal length set at 1.15 m and X-ray parameters set at 55 kV and 20

mA. The heel is scanned by the device using anatomical landmarks positioned by the

operator on the image to correctly extract the Region of Interest (ROI) 400 × 400

pixels. The ROI of the region of interest was defined by a physician by marking easily

identifiable anatomical landmarks on the image of the calcaneus [91].

Figure A.1: Extracting the ROI. An x-ray of the calcaneus and its region of interest
to be extracted (white square).

This ensures that the ROI (Figure A.1) is acquired in the same region as well as in the

same orientation for each bone X-ray, as the effect of orientation on the scan is within
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the scope of our study. This ROI was located in a part of the calcaneus which contains

only the trabecular bone. The role of this phase is to configure and modify the image

in order to prepare it, to extract the features.

A.2 Data Acquisition

Bone structure can be easily assessed on traditional radiographs using 2D texture

analysis [92][93]. Additionally, numerous research has demonstrated that 2D texture

analysis can be used to evaluate 3D microarchitecture indirectly [91][92][93][94][95].

Pattern recognition and medical applications face a significant barrier when assessing

osteoporotic illness from bone radiograph images. The degree of resemblance between

the textured images of osteoporotic and healthy bone microarchitecture increases the

difficulty of distinguishing such textures. This dataset uses texture analysis to separate

osteoporotic cases from healthy controls on 2D bone radiograph images. It consists

of 87 patients with osteoporotic fractures and 87 control participants in two groups

(Figure A.2). The distribution of the fractures is as follows: 21 other fractures, 22

wrist fractures, 22 neck fractures, and 22 spinal compressions.

This dataset of bone X-ray images (encoded 16-bit, TIFF format, 400×400 pixels-

size) from Challenge IEEE-ISBI: Bone Texture Characterization, contained 116 images

divided into 58 from osteoporotic patients (with fractures) and 58 from healthy people,

used for testing and training in creating the model. After this, 58 new images for

BLIND classification were used as external validation.

Figure A.2: Control image (a), and Osteoporosis image (b).
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Support Vector Machine

A classifier that represents the training data as points in space separated into categories

as large a distance as possible. New points are then added to the space by predicting

which category they fall into and which space they will belong to. It is highly effective

in high-dimensional spaces and requires a small subset of training points in the decision

function, making it memory efficient. SVM can be applied not only to nonlinear

distribution and regression problems but also to unsupervised problems. As shown

in (Figure B.1) The goal is to find the plane with the highest edge, i.e. the maximum

distance between points of a given class.

The Support Vector Machines (SVM) classifier is designed to identify a hyperplane

(Equation B.1) that can accurately separate two classes while maximizing the margin

between them [96].

g(x) = wTx+ b (B.1)

The process of learning an SVM involves solving a constrained optimization problem

that aims to minimize the following objective function:

j(w, b, ε) =
1

2
∥ w ∥2 +c

N∑
i=1

εi (B.2)
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Figure B.1: Components of Support Vector Machine.

The optimization problem for learning an SVM is subject to certain constraints, which

must be satisfied during the process of optimization:yi[xiwi + b] ≥ 1− εi

εi ≥ 0

i = 1, 2, ..., N (B.3)

The margin size control parameter is denoted by C, and it plays a crucial role in the

optimization problem for learning an SVM. To construct the Lagrangian function for

SVM, a weighted sum of the constraints is added to the objective function:

L =
1

2
∥ w ∥2 +c

N∑
i=1

εi −
N∑
i=1

αi[yi[xiwi + b]− 1 + εi]−
N∑
i=1

µiεi (B.4)

Once the relevant processes have been executed, the optimal hyperplane orientation is

determined by the values obtained for w and b.

w =
N∑
i=1

αiyixi (B.5)

and

b =
1

Ns

∑
s∈S

(ys −
∑
m∈S

αmymxm.xs) (B.6)

In the equation used to classify each new point xnew, S refers to the set of indices of

the Support Vectors, which are defined by i/αi > 0, while xs denotes the data point

that satisfies the condition
∑N

i=1 αiyi = 0. The classification of xnew is performed by
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computing the following formula:

ynew = sgn(wi.xnew + b) (B.7)
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Performance Evaluation

The performance of a laboratory test is usually assessed by its sensitivity, specificity,

and positive and negative predictive values. However, these indices only imperfectly

reflect the ability of a test to distinguish the disease from non-disease and cannot

classify it concerning pre-existing tests. The use of the Receiver Operating Character-

istic (ROC) curve seems to be a necessary tool to overcome these limits.

C.1 Receiver Operating Characteristics

Originally developed in the 1950s for military purposes (using Radar data), its interest

in the medical field was emphasized by Lee Lusted in 1960. Since then, this statistical

tool has been used especially in the pharmaceutical field, radiology, and biology.

The ROC curve is a graphical representation of the relationship between test sensitivity

and specificity, calculated for all possible cut-off values [100]. It is a useful technique

for organizing classifiers and visualizing their performance, it facilitates our classifier

concept and is, therefore, useful for classification data and learning.

C.2 Test Characteristic

For a given osteoporosis condition, the best possible test can be selected based on the

calculated Accuracy (ACC), Specificity (SPE), Sensitivity (SEN), and F-score which

are widely used statistics to describe the osteoporosis test. In particular, they are

used to determine the quality and reliability of the test. These features are described
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in terms of True Positive (TP), True Negative (TN), False Positive (FP), and False

Negative (FN).

ACC =
TP + TN

TP + TN + FP + FN
(C.1)

SEN =
TP

TP + FN
(C.2)

SPE =
TN

TN + FP
(C.3)

F − score =
2TP

2TP + FN + FP
(C.4)

Accuracy and F-score are often used in classification quality assessment. Accuracy

is the probability that the test correctly classifies subjects. F-score is a measure of

the accuracy of a test. It considers both the Accuracy and Sensitivity of the test

to calculate the Score, it can be interpreted as a weighted average of Accuracy and

Sensitivity, where an F-score ∈[0,1], a perfect classifier has an F -score = 1, on the

other hand, a bad one, has an F-score = 0.

The Area Under the Curve (AUC) is also calculated, to measure the ability of a classifier

to distinguish between classes, this is because the higher the AUC, the better the

performance of the model in distinguishing positive and negative classes.

We summarize the classifier results of the test data for each class in a matrix called

the confusion matrix, as shown in (Figure C.1)

Figure C.1: Confusion Matrix Model [98].

The ordinate represents the SEN and the abscissa corresponds to the quantity (1 -
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SPE) (Figure C.2). Its construction requires an adequate computer program. The

test results are ranked in descending order and for each threshold value, a Confusion

Matrix identical to (Figure C.1) is produced. The calculation of the numbers TP, FP,

TN, and FN makes it possible to deduce the Sensitivity and Specificity of the test for

each value obtained. The couples 1 – Specificity, Sensitivity are then placed on the

curve. Joining them with straight lines leads to a stepped path connecting the lower

left corner of the graph (SEN = 0 and SPE = 1) to the upper right corner (SEN = 1

and SPE = 0).

To obtain a quantitative Evaluation of the Classification Performance, from the ROC

curve, we use the Area Under this Curve, generally noted as AUC [103]. Since the

AUC is a portion of the area of a unit square, its value is always between 0 and 1. The

closer the AUC value is to 1, the better the classification result. In the ideal case, the

area under the ROC curve is equal to 1, while in the case of a failed system, the area

is equal to 0.5 (Figure C.2). The bleu curve has the value of the AUC which is closer

to 1 than to 0.5, this curve, therefore, represents good classification results.

Figure C.2: Interpretation of the ROC Curve. Perfect Diagnostic Test (red line)
AUC=1, a very informative Diagnostic Test (blue line) AUC between 0.5 and 1, and
a zero contribution Diagnostic test that does not discriminate between individuals
(dashed line) AUC=0.5 [99].

Although most of the authors use the AUC as a single criterion for evaluating the

performance of the classification method, other statistical criteria derived from the

analysis of the ROC curves can be used in (Equation C.1).
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Data Fusion

Feature Level Fusion
Data fusion is a technique used to process information from multiple sources [104]. It

consists of combining data from several sources to obtain a better decision. Data fusion

was originally developed in a military context for purposes such as locating enemy tar-

gets and the fusion of radar images. The systems used to use various techniques from

various fields such as Signal Processing, Artificial Intelligence, Pattern Recognition,

Classification, etc.

In general, data fusion is an operation of integrating several data to extract new infor-

mation that is more representative of all the data. Currently, data fusion is becoming

increasingly important in many areas. It makes it possible to effectively help scientists

to extract increasingly relevant and precise information. Data fusion initially aimed

to improve the quality of responses to problems posed by the military, but today it

greatly affects areas such as [107]: remote sensing, weather forecasting, multimodal

biometrics, application medicine, and robotics.

Numerous techniques have been described in the literature for implementing feature-

level fusion. Among these, Canonical Correlation Analysis (CCA) and Discriminant

Correlation Analysis (DCA) are commonly used.

D.1 Canonical Correlation Analysis (CCA)

The useful multi-data processing technique of CCA has been used frequently to examine

the interrelationships between two sets of variables.
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Assume that X ∈ Rp×n and Y ∈ Rq×n are two matrices that each contain n training

feature vectors from two distinct modalities. That is, for each sample, two feature

vectors with p and q dimensions are extracted from the first and second modalities,

respectively.

Let Sxx ∈ Rp×p and Syy ∈ Rq×q denote the within-sets covariance matrices of X and

Y and Sxy ∈ Rp×q denote the between-set covariance matrix (note that Syx = ST
xy ).

The overall (p + q) × (p + q) covariance matrix, S, consists of all the information on

associations between pairs of features:

S =

 cov(x) cov(x, y)

cov(y, x) cov(y)

 =

Sxx Sxy

Syx Syy

 (D.1)

Understanding the links between these two sets of feature vectors from this matrix

is challenging, as the correlation between these two sets of feature vectors might not

follow a regular pattern [104].

CCA aims to find the linear combinations, Ẋ = W T
x X and Ẏ = W T

y Y that maximize

the pair-wise correlations across the two feature sets:

corr(Ẋ, Ẏ ) =
cov(Ẋ, Ẏ )

var(Ẋ).var(Ẏ )
(D.2)

where cov(Ẋ, Ẏ ) = W T
x SxyWy, var(Ẋ) = W T

x SxxWx and var(Ẋ) = W T
x SxxWx Max-

imization is performed using Lagrange multipliers by maximizing the covariance be-

tween Ẋ and Ẏ subject to the constraints var(Ẋ) = var(Ẏ ) = 1. The transformation

matrices, Wx and Wy, are then found by solving the eigenvalue (Equation D.3) [105]:

S
−1
xx SxyS

−1
yy SyxŴx = R2Ŵx

S−1
yy SyxS

−1
xx SxyŴy = R2Ŵy

(D.3)

where Ŵx and Ŵy are the eigenvectors and R2 is the diagonal matrix of eigenvalues

or squares of the canonical correlations. The number of non-zero eigenvalues in each

equation is d = rank(Sxy) ≤ min(n; p; q), which will be sorted in decreasing order,

r1 ≥ r2 ≥:::≥ rd. The transformation matrices, Wx and Wy, consist of the sorted

eigenvectors corresponding to the non-zero eigenvalues. Ẋ,Ẏ ∈ Rd×n are known as
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canonical variates.

Feature-level fusion, as described in [104], is performed either by concatenation or

summation of the transformed feature vectors:

Z1 =

Ẋ
Ẏ

 =

W T
x X

W T
y Y

 (D.4)

or

Z2 = Ẋ + Ẏ = W T
x X +W T

y Y (D.5)

D.2 Discriminant Correlation Analysis (DCA)

Assume that there are c distinct classes from which the samples in the data matrix are

collected. Accordingly, the n columns of the data matrix are divided into c separate

groups, where ni columns belong to the ith class (n =
∑c

i=1 ni). Let xij ∈ X denotes

the feature vector corresponding to the jth sample in the ith class. x̄i and x̄ denote the

means of the xij vectors in the ith class and the whole feature set, respectively. That

is, x̄i = 1
ni

∑ni

j=1 xij and x̄ = 1
n

∑c
i=1

∑ni

j=1 xij =
1
n

∑c
i=1 nix̄i

The between-class scatter matrix is defined as [107]:

Sbx(p×p) =
c∑

i=1

ni(x̄i − x̄)(x̄i − x̄)T = ϕbxϕbx
T (D.6)

ϕbx(p×c) = [
√
n1(x̄1 − x̄),

√
n2(x̄2 − x̄), ...,

√
nc(x̄c − x̄)] (D.7)

If the classes were well-separated, ϕTϕ would be a diagonal matrix. Since ϕTϕ is

symmetric positive semi-definite, we can find transformations that diagonalize it:

P T (ϕT
bxϕbx)P = Λ̂ (D.8)

where P is the matrix of orthogonal eigenvectors. Let Q(c×r) consist of the first r

eigenvectors, which correspond to the r largest nonzero eigenvalues, from matrix P .

We have:

QT (ϕT
bxϕbx)Q = Λ(r×r) (D.9)
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The r most significant eigenvectors of Sbx can be obtained with the mapping Q −→

ϕbxQ:

(ϕbxQ)TSbx(ϕbxQ) = Λ(r×r) (D.10)

if Wbx = ϕbxQΛ−1/2, we have:

W T
bxSbxWbx = I (D.11)

X́(r×n) = W T
bx(r×p)X(p×n) (D.12)

X́ is the projection of X in a space, where the between-class scatter matrix is I and

the classes are separated. Similarly:

W T
bySbyWby = I (D.13)

Ý(r×n) = W T
by(r×p)

Y(p×n) (D.14)

Although Śbx = Śby = I, the matrices ϕ́T
bxϕ́bx and ϕ́T

byϕ́by are strict diagonally dominant

matrices. This makes the centroids of the classes have minimal correlation with each

other, and thus, the classes are separated.

Now that the between-class scatter matrices are unitized, we need to make the features

in one set have nonzero correlation only with their corresponding features in the other

set. Therefore, we diagonalize the between-set covariance matrix Śxy = X́Ý
T
.

Śxy(r×r)
= U

∑
V T =⇒ UT ŚxyV =

∑
(U

∑−1/2︸ ︷︷ ︸
Wcx

)T Śxy(V
∑−1/2︸ ︷︷ ︸
Wcy

) = I (D.15)

Transformation:

Ẋ = W T
cxẊ = W T

cxW
T
bx︸ ︷︷ ︸X = WxX (D.16)

Ẏ = W T
cyẎ = W T

cyW
T
by︸ ︷︷ ︸Y = WyY (D.17)

Feature fusion:

Z1 =

Ẋ
Ẏ

 =

W T
x X

W T
y Y

 (D.18)
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or:

Z2 = Ẋ + Ẏ = W T
x X +W T

y Y (D.19)
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