Please use this identifier to cite or link to this item: http//localhost:8080/jspui/handle/123456789/11566
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLoucif, Sami-
dc.date.accessioned2024-07-11T12:49:45Z-
dc.date.available2024-07-11T12:49:45Z-
dc.date.issued2024-06-13-
dc.identifier.urihttp//localhost:8080/jspui/handle/123456789/11566-
dc.description.abstractIn this thesis, we will study some evolution problems that represent some physical phenomena (Piezoelectric beam, Kirchhoff beam) with some types of delay (for example, distributed delay, neutral delay) acting on linear or nonlinear internal feedbacks. We will prove the well-posedness (existence and uniqueness) of solutions to these systems by semigroup theory or by Faedo--Galerkin method. With regard to the asymptotic behavior of the solutions, we will get the exponential decay of solutions, which represents the rapid decrease of energy, by constructing a Lyapunov functional using the multiplication method. Or we get the blow-up of solutions by using Georgiev and Todorova's methoden_US
dc.language.isoenen_US
dc.publisherUniversité Echahid Cheikh Larbi-Tebessi -Tébessaen_US
dc.subjectPoutre piézoélectrique; Poutre de Kirchhoff; Théorie des semi-groupes; Méthode de Faedo-Galerkin; Temps de retard; Fonctionnelle de Lyapunov; Décroissance exponentielle des solutions; Explosion des solutionsen_US
dc.titleWell-posedness and asymptotic behavior of some evolution problems with delayen_US
dc.typeThesisen_US
Appears in Collections:3.Faculté des Science Exactes et des Sciences de la Nature et de la Vie

Files in This Item:
File Description SizeFormat 
Sami Loucif.pdf1,88 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.