Please use this identifier to cite or link to this item: http//localhost:8080/jspui/handle/123456789/2044
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHichem, Laib-
dc.date.accessioned2022-03-14T13:13:57Z-
dc.date.available2022-03-14T13:13:57Z-
dc.date.issued2020-
dc.identifier.urihttp//localhost:8080/jspui/handle/123456789/2044-
dc.description.abstractIn this work, we first study the limit cycles which can bifurcate from the periodic orbits of the quadratic isochronous centers 𝒙̇ = βˆ’π’š + 𝒙 𝟐 , π’šΜ‡ = 𝒙 + π’™π’š, and 𝒙̇ = βˆ’π’š + 𝒙 𝟐 βˆ’ π’š 𝟐 , π’šΜ‡ = 𝒙 + πŸπ’™π’š, when they are perturbed inside the class of all discontinuous quadratic polynomial differential systems with the straight line of discontinuity y ο€½ 0 . In the second part of this work, we use the averaging method to study the maximum number of limit cycles of the differential system 𝒙̇ = βˆ’π’š + π’™π’š + βˆ‘πœΊ π’Œ βˆ‘ π’‚π’Š,𝒋 (π’Œ) 𝒙 π’Šπ’š 𝒋 π’Š+𝒋=𝟐 𝟐 π’Œ=𝟏 , π’šΜ‡ = 𝒙 + π’š 𝟐 + βˆ‘πœΊ π’Œ βˆ‘ π’ƒπ’Š,𝒋 (π’Œ) 𝒙 π’Šπ’š 𝒋 π’Š+𝒋=𝟐 𝟐 π’Œ=𝟏 , where ο₯ is a sufficiently small parameter. Keywords: Limit cycle, quadratic isochrone center, differential system, averaging methoden_US
dc.description.sponsorshipZouhair Diaben_US
dc.language.isofren_US
dc.publisherUniversite laarbi tebessi tebessaen_US
dc.subjectLimit cycle, quadratic isochrone center, differential system, averaging methoden_US
dc.subjectCycle limite, centre isochrone quadratique, système différentiel, méthode de la moyennisation.en_US
dc.titleLe nombre de cycles limites des centres quadratiques perturbΓ©sen_US
dc.typeThesisen_US
Appears in Collections:2- رياآياΨͺ

Files in This Item:
File Description SizeFormat 
Thesis 2020.rar2,33 MBUnknownView/Open
Hichem Laib's thesis.pdf1,31 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Admin Tools