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Abstract
This thesis aims to study of various kinds of some identification problems by the

use of the sentinel method which is introduced by Jacques Louis Lions. We apply
this method for the first time in order to identify parameters and coefficients in some
identification problems. Actually, We identify the potential coefficient in the wave equa-
tion with incomplete data, the bulk modulus coefficient in the acoustic equation with
incomplete data, the potential coefficient in the Schrodinger equation with an incom-
plete initial condition, and the identification of the diffusion coefficient in the diffusion
equation with incomplete data. This method is based on three considerations, a state
equation, a state observation, and a functional stationary to certain parameters. The
existence of this functional is related to solving an optimal control problem. The deter-
mination of these coefficients is crucial for understanding and predicting the behavior
of many physical and biological systems.

Keywords: Sentinel method, Identification problems, Potential coefficient iden-

tification, Bulk modulus coefficient identification, Diffusion coefficient identification,

Controllability, HUM, Penalization method.



Résumé
Cette thèse vise à étudier divers types de problèmes d’identification à l’aide de

la méthode sentinelles, introduite par Jacques Louis Lions. Nous appliquons cette

méthode pour la première fois afin d’identifier des paramètres et des coefficients dans

certains problèmes d’identification. En particulier, nous identifions le coefficient de po-

tentiel dans l’équation des ondes avec des données incomplètes, le coefficient de module

de compression dans l’équation acoustique avec des données incomplètes, le coefficient

de potentiel dans l’équation de Schrödinger avec une condition initiale incomplète, et

l’identification du coefficient de diffusion dans l’équation de diffusion avec des données

incomplètes. Cette méthode repose sur trois considérations : une équation d’état,

une observation d’état, et une fonctionnelle stationnaire pour certains paramètres.

L’existence de cette fonctionnelle est liée à la résolution d’un problème de contrôle

optimal. La détermination de ces coefficients est cruciale pour comprendre et prédire

le comportement de nombreux systèmes physiques et biologiques.

Mots-clés: Méthode sentinelles; Problèmes d’identification; Identification de coef-

ficient de potentiel; Identification de coefficient de module de compression, Identifica-

tion de coefficient de diffusion; Contrôlabilité; HUM; Méthode de pénalisation.
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General Introduction

Introduction

The use of PDEs to represent physical systems has been a long-standing practice in

applied mathematics. To build a complete model, one needs to have certain state inputs

in the form of initial or boundary data, along with structure inputs such as coefficients

or source terms that reflect the physical characteristics of the system. Solving the direct

problem involves obtaining a unique solution to a well-posed problem, which allows

for the computation of various physical outputs of interest. However, if some of the

necessary inputs are missing, we can attempt to deduce them from measured outputs

through an inverse problem. When one or more unknown coefficients in a partial

differential equation are the missing inputs, we refer to the problem as a coefficient

identification problem. A classic examples of such a problems are the identification of

a diffusion coefficient in a semilinear diffusion equation, the identification of the bulk

modulus coefficient in acoustic equation and the potential coefficient in a wave equation

and a schrödinger equation that have been dealt with in different ways.

Figure 1: Direct and inverse problem.

To solve an identification problem, a widely used technique is the least squares

method, she was introduced in 1795 by Gauss and Legendre for solving inverse prob-

lems. As early as 1805, Legendre presented his article "nouvelles méthodes pour la

détermination des orbites des comètes" [35]. Since then, this method has remained the

most popular parameter identification technique for both ordinary differential equa-

tions (ODEs) and partial differential equations (PDEs). The least squares technique
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General Introduction

consists of minimizing the squared distance between observed values and calculated

values. In the least squares method, all unknown parameters play the same role. One

does not make a difference between the parameters (with the source terms and with

the initial terms). There are therefore risks of not being able to clearly separate the

roles of each. Moreover, the available data may be insufficient in relation to the num-

ber of parameters sought, which leads to an infinity of possible solutions. We have,

in this case, a problem of uniqueness of the solution, also for a set of data taken from

the same domain, the resolution can lead to a strong disturbance of the solution, it is

about a problem of stability . Faced with all these eventualities, it is generally said that

the problem of least squares is badly posed, it is necessary, in this case, to introduce

regularizing or stabilizing terms which reduce additional approximation errors.

Instead of using output least squares to identify coefficients, another approach is the

equation error method which is a mathematical technique used in system identification

to estimate the parameters of a mathematical model of a system. the equation error

method has been described in literature [21], [22], [25] and [41]. In this method, the

measured over-specification is used as input to the differential equation in the direct

problem, which is then transformed into an equation for the unknown coefficient. This

equation establishes a direct relationship between the unknown coefficient values and

the measured data values. However, since the relationship is often complex, it may be

difficult to determine the properties of the input-to-output mapping. The effectiveness

of the equation error method varies depending on the problem at hand.

While not neglecting the fundamental "least squares" method, which remains by

far the most important for such problems, it can be useful to attempt what is called the

"Sentinels Method". A sentinel is a linear form acting on observations that must satisfy

sensitivity conditions to certain parameters of the system and insensitivity conditions

to others. Thus, the idea of sentinels seems a bit different. The idea is that with a

suitable set of sentinels, one can identify the interesting unknowns and free oneself from

the others. For example, suppose that the equation of the system describes the kinetics

of a pollutant in a river or lake and that the source is potential polluters. What is

interesting in this case is obviously to know what the polluters have dumped into the

river and not the state of the lake at the initial time.

The method of sentinels allows us to reconstruct a parameter or an approximation

2



General Introduction

of it independently of other data that we do not want to identify, so sentinels are a "pa-

rameter identification method." Identification problems have many motivations related

to important physical problems, and the application field of parameter identification

methods is extremely vast, with abundant literature on the subject.

Sentinels were introduced by J. L. Lions in notes to the CRAS [34]. He later pub-

lished a book on this topic [33], where he studied the existence of sentinels insensitive

to disturbances without constraints of sensitivity to relevant data. The study of their

existence leads to the resolution of the optimal problem of distributed systems.

There are numerous theoretical and numerical results as well as many applications

to real physical problems motivated by researchers and industry. For example, the

works of G. Chavent [13], who is also the author of a paper on sentinels, specifically

dealing with the relationship between sentinels and least squares, and the works of O.

Nakoulima [43] and [44]. One can also refer to the works of J.P. Kernevez’s team [1], [2]

and [15], for the numerical treatment of pollution identification problems in distributed

systems, pollution detection in an aquifer [? ] , determination of missing parameters

in a lake, and pollution search in a river [5]. Since then, several authors have focused

on application this method for various problem, see for instance [3], [12], [37], [38], [50].

This thesis focuses on the study of coefficient inverse problems, which consist of

identifying coefficients in hyperbolic and parabolic equations. In practice, this type of

equation can cover a wide range of applications ranging from biology to environmental

studies, chemistry, medicine, and so on. Furthermore, a motivation for this thesis

is an application of the sentinel method for the first time to identify the potential

coefficient in an inverse problem of wave equation see [17], and to identify the bulk

modulus coefficient in an inverse problem of acoustic equation see [18] and to identify

the potential coefficient in an inverse problem of Schrödinger equation see [19].

Content of the thesis

This thesis is organized as follows:

In the first chapter, we have two section. In the first section, we provide some

definitions and properties of the controllability and the observability and the optimal

control. In the second section, we introduce the basis of sentinel theory. We introduce

the concepts of the sentinel and we giving an exemple of the application of this method.

In the second chapter, we have two sections, the first of which is devoted to the ap-
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plication of the sentinel method to a wave equation with incomplete data to identifying

the potential coefficient, and the second of which is devoted to the application of the

sentinel method to an acoustic equation to identifying the bulk modulus coefficient.

The third chapter is devoted to two section. In the first, we applied the sentinel

method to a schrödinger equation with incomplete data for the determination of the

potential coefficient. In the second, we applied the sentinel method for the identification

of the diffusion coefficient in a diffusion equation with incomplete data.

Finally, we end the thesis with a conclusion and perspectives describing the main

obtained results and perspectives for further research projects on the topic.
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Chapter 1

Preliminaries and basics tools

In this first chapter, we recall some basic tools and we present some preliminary re-

sults essential for this work. We give in particular some fundamental results on the

controllability of distributed systems, and the sentinel method.

Sentinel was introduced by J. L .Lions. Many types of systems are discussed and the

author studies the existence of sentinels insensitive to disturbances without constraints

of sensitivity to interesting data. The study of their existence leads to the resolution

of the problem of controllability of distributed systems.

1.1 Controllability and Observability

1.1.1 Description of the systems

Let H,U be a functional space (Hilbert space); H is the state space, U is the control

space. (A,D(A)) the infinitesimal generator of a semi-group (S(t))t≥0 in H. And let

B ∈ L (U,H). For all u ∈ L2 (0, T, U) (control function), the Cauchy problem: yt = Ay +Bu in (0, T ),

y(0) = y0 ,
(1.1)

admits for all y0 ∈ H a unique solution y ∈ L2 ((0, T );H). In addition y ∈ C (0, T,H)

and is given by:

y(t;u) = S(t)y0 +

∫ t

0

S(t− s)Bu(s)ds. (1.2)

5



Preliminaries and basics tools

We then assume that the system (1.1) is augmented by the output:

z(t) = Cy(t), (1.3)

where C is an operator of L(H,Z) such that Z is the observation space.

1.1.2 Controllability: definitions

The standard problem of controllability for the equation (1.1) may be formulated

roughly as follows:

Given a time T > 0, and a initial state y0, the goal is to determine whether

there exists a control driving the given initial data to the given final ones

yd in time T , where yd is a desired state chosen a priori.

Figure 1.1: Notion of controllability

Now, let us introduce some notions of the typical controllability problems, associ-

ated to an infinite dimensional control system.

Exact controllability

Definition 1 The system (1.1) is said to be exactly controllable in time T > 0 iff,

for all initial state y0 ∈ H and desired state yd ∈ H, there exists a control function

u ∈ L2 (0, T, U) such that,

y (T ) = yd. (1.4)

The definition (1) is equivalent to the following characterization properties

6



Preliminaries and basics tools

Proposition 1 The system (1.1) is said to be exactly controllable in time T > 0 iff,

∃γ > 0, such that ‖y∗‖H∗ ≤ γ ‖B∗S∗ (.) y∗‖L2(0,T ;U) , for all y∗ ∈ H. (1.5)

The adjoint A∗ of A generates the semigroup (S∗(t))t≥0 adjoint (S(t))t≥0 of which is

also strongly continuous on the dual H∗ of H, the operator B∗ is the adjoint of B.

Proof. See [9]

Remark 1

Let Ft the linear operator defined by Ft =
∫ t

0
S (t− s)Bu (s) ds. Then, the definition

(1) is equivalent to

Im (Ft) = H. (1.6)

Null controllability

Definition 2 The system (1.1) is said to be zero-controllable in time T > 0 iff, for all

initial state y0 ∈ H, there exists a control function u ∈ L2 (0, T, U) such that

y (T ) = 0. (1.7)

Approximate controllability

Definition 3 The system (1.1) is said to be approximately controllable in time T > 0

if and only if, for all initial state y0 ∈ H and desired state yd ∈ H, there exists a control

function u ∈ L2 (0, T, U) such that,

‖y (T )− yd‖H ≤ ε for all ε > 0. (1.8)

Remark 2

• The definition (3) is equivalent to

Im (Ft) = H. (1.9)

7
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Figure 1.2: Different notions of controllability

1.1.3 Regional Controllability

In applications, few dynamic systems are controllable on the whole domain, hence the

need to study this concept only on a part of the domain. For this, the concept of

regional controllability is defined.

Let yd is a given desired state, the problem of regional controllability is whether

one can find a control u ∈ L2 (0, T, U) to bring the system state (1.1) from y0 to yd on

the region ω of the domaine Ω.

Definition 4 The system (1.1) is exactly regionally controllable on ω iff, for all yd ∈

L2(ω), there exists a control function u ∈ L2 (0, T, U) such that

χωy(T ) = yd. (1.10)

Definition 5 The system (1.1) is approximately regionally controllable on ω if and

only if, for all yd ∈ L2(ω) and ε ≥ 0, there exists a control function u ∈ L2 (0, T, U)

such that

‖y(T )|ω − yd‖L2(ω) ≤ ε. (1.11)

Remark 3

− The system (1.1) will also be said ω−exactly (resp. ω−weakly) controllable, where

χω indicates the restriction of y to ω.

8
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Here is some charachterizations of regional controllability:

Proposition 2

− The system (1.1) is ω−exactly regionally controllable iff

ImχωFt = H.

− The system (1.1) is ω−weakly regionally controllable if and only if

ImχωSt = H(ω) =⇒ kerS∗t χω = {0}.

Remark 4

− A system that is exactly (resp. weakly) controllable is exactly (resp. weakly) region-

ally controllable.

− A system that is exactly (resp. weakly) regionally controllable on ω1 is exactly (resp.

weakly) regionally controllable on ω2 for all ω2 ⊂ ω1

Let’s give two examples of the situation (classical). These are two types of influential

control that are often considered in the literature: in one case, control acts as a localized

source term in the equation, while in the second, control works on part of the boundary

conditions. Examples below relate to heat and wave equations with Dirichlet boundary

conditions.

9
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Example 1 Boundary control

Let Ω ⊂ C2, and Γ0 ⊂ ∂Ω we consider the heat/wave equation with non-homogeneous

Dirichlet boundary control

heat equation wave equation
yt −∆y = 0 in Ω× (0, T ),

y(x, 0) = y0 in Ω,

y = uχω on ∂Ω,



ytt −∆y = 0 in Ω× (0, T ),

y(x, 0) = y0 in Ω,

yt(x, 0) = y1 in Ω,

y = uχω on ∂Ω.

• The equations are the same in the previous, here the control in a part Γ0 of

the boundary ∂Ω, for instance u ∈ C∞0 (Γ0 × (0, T )) for the first equation, and

u ∈ L2 (Γ0 × (0, T )) for the second equation.

1.1.4 Observability

Determining the state of a distributed parameter system from measurements is of great

importance when one seeks to apply closed-loop control to such a system. The obtained

measurements are expressed by the output function.

z(t) = CS(t)y0 + CStu.

This output is the sum of a free response with y0 to be determined and a controlled

response with zero initial state. Since the system is linear, we can study the observation

of y0 by assuming u = 0. The objective is therefore to determine y0, the solution of

the equation.

z(t) = CS(t)y0 = Ky0 t ∈ (0, T ).

K is a bounded linear operator, the adjoint operator is given by

K∗z =

∫ T

0

S∗(t)C∗z(t)dt.

Definition 6 The system (1.1) augmented by the output (1.3) is said to be exactly

observable on (0, T ) if H∗ ⊂ ImK∗.

Definition 7 The system (1.1) augmented by the output (1.3) is said to be weakly

10
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observable on (0, T ) if kerK = {0}.

Definition 8 The system (1.1) augmented by the output (1.3) is said to be ω−weakly

observable on (0, T ) if kerKχ∗ω = {0}.

1.1.5 Control optimal

In this sebsection, we will determine the optimal control to achieve a given target. In

the case where the system (1.1) is controllable, there will generally be an infinity of

controls which answer the question.

• Among these controls is there one, which is of minimum standard?

• Can we explicitly determine this control according to the various parameters of

the problem?

Optimization is used to find the control that gives controllability with a minimum cost

given by a function

J(u) =

∫ T

0

‖u‖2 dt,

defined on the control space U .

Let yd ∈ H1(Ω) be a desired state. We pose the problem of transferring, at a lower

cost, the system (1.1) from y0 to yd at time T . Thus the question becomes:

Is there a minimum energy control u ∈ L2(0, T, U) such that y(T ) = yd?

The optimal control problem can be formulated as follows minu∈Uad J(u) = minu∈Uad
∫ T

0
‖u‖2 dt,

Uad = {u ∈ U/y(T ) = yd}.
(1.12)

The objectives of this theory are:

1) Study the existence of u ∈ Uad which realizes the minimum in (1.12), we then

say that u is the optimal control.

2) Description, giving the necessary and sufficient conditions for u to be optimal

control.

3) Obtain the properties of the optimal control(s) from (2).

11
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We impose

G = {g ∈ H1(Ω), such that g = 0 in ω},

G = {g ∈ H1(Ω), such that g = 0 in Ω\ω}.

We consider the system
∂y
∂t

(x, t) = Ay(x, t) +Bu(t) in Q,

y(x, 0) = y0 in Ω,

y = 0 on Σ.

(1.13)

The construction method is based on the following three steps:

• Step 01

For Φ0 ∈ G, we consider the system:
∂Φ
∂t

(x, t) = −A∗Φ(x, t) in Q,

Φ(x, 0) = Φ0 in Ω,

Φ = 0 on Σ,

(1.14)

which admits a unique solution Φ ∈ L2(0, T,H1(Ω)) ∩ C0(0, T, L2(Ω)).

• Step 02

Consider the system
∂Ψ
∂t

(x, t) = AΨ(x, t) +BB∗Φ in Q,

Ψ(x, 0) = Ψ0 in Ω,

Ψ = 0 on Σ,

(1.15)

For Φ0 ∈ G, the equation (1.14) gives Φ, then the equation (1.15) gives Ψ(x, T ).

Then, we define the operator M by

MΦ0 = P (Ψ(T )) , where P = χ∗ωχω

M is an affine operator which decomposes as: MΦ0 = P (Ψ1(T ) + Ψ2(T )).

12
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where Ψ1(T ) and Ψ2(T ) are solutions of the following systems
∂Ψ1

∂t
(x, t) = AΨ1(x, t) +BB∗Φ in Q,

Ψ1(x, 0) = Ψ0 in Ω,

Ψ1 = 0 on Σ,

(1.16)

and 
∂Ψ2

∂t
(x, t) = AΨ2(x, t) +BB∗Φ in Q,

Ψ2(x, 0) = 0 in Ω,

Ψ2 = 0 on Σ,

(1.17)

respectively.

• Step 03

We define the linear, bounded and symmetric operator Λ : G→ G
∗ by:

∀Φ0 ∈ G,ΛΦ0 = PΨ2(T ),

with these notations, the problem of regional controllability leads to the resolution of

the equation

ΛΦ0 = P (yd −Ψ1(T )) . (1.18)

Multiplying equation (1.18) by Φ0, we get

〈ΛΦ0,Φ0〉 =

∫ T

0

‖B∗Φ(t)‖2 dt. (1.19)

To ensure the existence of the solution of equation (1.18), we introduce the application

Φ0 ∈ G→
∫ T

0

‖B∗Φ(t)‖2 dt, (1.20)

which defines a semi-norm on G. We then have the result:

Proposition 3 If the system (1.13) is ω-weakly controllable. Then, the equation (1.18)

admits a unique solution Φ0 ∈ G, and the control that transfers (1.13) in G at time T

is given by:

u∗(t) = B∗Φ(x, t). (1.21)

13
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Proof. see [9].

1.1.6 Regional controllability and penalization

We assume that Uad is the non-empty set, therefore the system (1.13) is exactly re-

gionally controllable on Uad. We want to solve the following optimization problem

(OC)

 minu∈Uad J(u) = minu∈Uad
∫ T

0
‖u(t)‖2 dt,

with Uad = {u ∈ U, y(T )− yd ∈ G}.
(1.22)

For all ε > 0, consider the Penalty problem

(OC)

 minu∈C Jε(u, y),

with Jε(u, y) =
(∫ T

0
‖u(t)‖2 dt+ 1

2ε

∫ T
0
‖y′(t)− Ay(t)−Bu(t)‖2 dt

)
,

(1.23)

where C is the set of pairs (u, y) satisfying
∂y
∂t

(x, t)− Ay(x, t)−Bu(t) ∈ L2(0, T ;H),

y(x, 0) = y0, u ∈ U,

y(T )− yd ∈ G.

(1.24)

So, we have the following result

Proposition 4 For all ε > 0, the problem (1.24) admits a unique solution that we

denote by (uε, yε). The sequence (uε, yε)ε converges weakly to (u∗, y∗) when ε tends to

zero. Moreover u∗ is the solution of problem (1.22) given by

u∗(t) = B∗p(t),

where p(t) and y(t) are solutions of the following optimality system

∂y
∂t

(x, t) = Ay(x, t)−Bu(t) in (0, T ),

y(x, 0) = y0, u ∈ U,
∂p
∂t

(x, t) + A∗p(x, t) in (0, T ),

p(t) ∈ G.

(1.25)

14
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Proof. see [9]

1.1.7 The Hilbert Uniqueness method

The Hilbert Uniqueness Method is a mathematical technique introduced by Jacques-

Louis Lions in 1988 [32]. It has been of great interest to scientists working on con-

trollability in the fields of partial differential equations and general dynamic systems.

The method is based on uniqueness results and Hilbert spaces constructed in infinitely

many ways. It has been applied to both parabolic and hyperbolic systems.

The HUM provides a powerful, constructive means for solving a wide variety of

exact controllability problems for partial differential equations.

A model of wave equation with boundary control action

Let Ω ⊂ Rn, with Γ = ∂Ω and Γ0 ⊂ Γ, we consider the following wave equation where

the control acts on a parts of the boundary

∂2
t y −∆y = 0 in Ω× (0, T ),

y (x, 0) = y0(x) in Ω,

∂ty (x, 0) = y1(x) in Ω,

y (x, t) = vχΓ0 on Γ× (0, T ).

(1.26)

The problem of exact controllability of our system is to find u such that

y(x, T ) = ∂ty(x, T ) = 0 in Ω.

In the following steps, the HUM method is described

• Step 01: Forward equation

We consider Φ solution of the following equation with (Φ0,Φ1) ∈ D(Ω)×D(Ω)

∂2
t Φ−∆Φ = 0 in Ω× (0, T ),

Φ (x, 0) = Φ0 in Ω,

∂tΦ (x, 0) = Φ1 in Ω,

Φ (x, t) = 0 on Γ× (0, T ),

(1.27)
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• Step 02: backward equation

Let’s define z to be solution to the following adjoint equation

∂2
t z −∆z = 0 in Ω× (0, T ),

z (x, T ) = 0 in Ω,

∂tz (x, T ) = 0 in Ω,

z (x, t) = ∂Φ
∂ν

on Γ× (0, T ).

(1.28)

where ∂Φ
∂ν

= ∇Φ.ν is the normal derivative.

• Step 03: The operator Λ

We define the operator Λ which associates with (Φ0,Φ1) as follow:

Λ (Φ0,Φ1) = (∂tz(0),−z(0)) . (1.29)

By multiplying the equation of (1.28) by Φ(x, t) solution of (1.27) and by integrating

on Ω× (0, T ), we get

〈Λ (Φ0,Φ1) , (Φ0,Φ1)〉 =

∫ T

0

∫
Γ0

∣∣∣∣∂Φ

∂ν

∣∣∣∣2 dΓ. (1.30)

Introducing the basic idea: the uniqueness property

∂Φ

∂ν
= 0 on Γ0 =⇒ (Φ0,Φ1) = 0 in Ω, (1.31)

when the uniqueness property holds, we can introduce the Hilbert space

F is the completion of D (Ω)×D (Ω) with the norm

‖(Φ0,Φ1)‖F =

∫ T

0

∫
Γ0

∣∣∣∣∂Φ

∂ν

∣∣∣∣2 dΓ.

By construction, Λ is an isomorphism from F to F ′ (where F ′ is the dual space of

F ).

So, if (y1,−y0) ∈ F ′, then the equation Λ (Φ0,Φ1) = (y1,−y0) has a unique solution

in F . We deduce that the control is given by u = ∂Φ
∂ν
.
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1.1.8 Unique continuation property

The unique continuation property (UCP) is a fundamental concept that plays an im-

portant role in the theory of partial differential equations (PDEs) and uniqueness of

solutions for PDEs. The UCP states that if a solution to a PDE vanishes on a subset

of the domain with non-empty interior, then the solution must be identically zero on

the entire domain.

In other words, the UCP establishes the uniqueness of solutions to PDEs by showing

that if two solutions coincide on a subset of the domain with non-empty interior, then

the solutions must be identical on the entire domain.

The UCP has a long history dating back to the classical results of Holmgren theorem

and Carleman inequality at the beginning of the twentieth century. It has been used

to study a wide range of PDEs, including elliptic, hyperbolic, and parabolic equations.

The UCP is a powerful tool in the study uniqueness of PDEs, as it allows one to

establish the uniqueness of solutions without having to solve the PDE explicitly.

Holmgren’s uniqueness theorem

Holmgren’s uniqueness theorem is a result in the theory of partial differential equa-

tions. It provides a uniqueness result in the class of analytic solutions to a large class

of Cauchy problems for partial differential equations. The theorem gives uniqueness

under less restrictive assumptions on the data and the solution. In simpler terms, the

theorem states that if a solution to a partial differential equation is real-analytic in a

neighborhood, then it is real-analytic everywhere [16].

Consider the following hyperbolic equation:

∂2
t y −∆y = 0 in Ω× (0, T ),

y (x, 0) = y0(x) in Ω,

∂ty (x, 0) = y1(x) in Ω,

y (x, t) = 0 on Γ× (0, T ),

(1.32)

we have the following result
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Theorem 5 If y = y(x, t) satisfy (1.32) for (y0, y1) ∈ D(Ω)×D(Ω) and we have

∂y

∂ν
= 0 on Γ0 × (0, T ).

Then

y = 0 in Ω× (0, T ).

Proof. [31]

Carleman inequalities

Carleman estimates are used to study inverse problems. They provide a way to esti-

mate the stability of solutions to inverse problems and can be used to determine the

uniqueness and stability of the solution to an inverse problem.

The Carleman inequalities are a set of inequalities that play an important role in

the study of inverse problems and partial differential equations (PDEs). They are

named after the Swedish mathematician Torsten Carleman, who introduced them in

the 1920s.

The main idea behind the Carleman inequalities is to use a weighting function

to provide control over the solution of a PDE. By constructing a suitable weighting

function, one can re-write the PDE in a new form in which the solution can be estimated

more easily.

For a clearer view of its many applications to inverse problems see [5].

1.2 An overview about the sentinel method

1.2.1 Notion of the sentinel

The notion of sentinels introduced by J. L. LIONS (1992) is based on three considera-

tions:

• The state of a system governed by a boundary value problem with incomplete

data;

• A system for observing the evolution of the system;
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• A functional, called sentinel, is intended to detect missing data.

The following general introduction is devoted to a formal presentation of these three

points. Their development is the subject of this thesis.

− Boundary value problem with incomplete data

To introduce the definition of sentinel, let’s consider the following situation. We sup-

pose that y is the solution of the following equation, where A is elliptic of the 2nd

order given by
∂y

∂t
+N = ξ + λξ̂ in Ω× (0, T ), (1.33)

where ξ is given in a suitable space, denotes by Y and λξ̂ is not knownand with λ

small.

We also assume (for the moment) that the boundary conditions are known, for

example

y = 0 on Γ× (0, T ). (1.34)

We suppose that the coefficients of A and that the open set Ω are known, but

that the initial data are incomplete. If we designate by y(x, 0) the initial condition is

expressed in the form

y(x, 0) = y0 + τ ŷ0 in Ω, (1.35)

where y0 is given, and ŷ0 remains in the unit ball of a suitable Hilbert or Banach space

and with τ small.

We aim to give a method allowing to obtain information on λξ̂ which is not affected

by the variations of the initial data. We also establish a distinction between the term

λξ̂ which is called pollution term "important term" and the term τ ŷ0 which is called

incomplete data "unimportant term" and which we do not seek to identify.

Naturally, to hope to be able to obtain some information, it is necessary to get

additional information on the state y; "observe y".
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− State observation

The problem of estimating missing data consists of observing the state y of a system

on a partially accessible domain and having experimental measurements. It is assumed

that all observations are made in a time interval (0, T ) and in a domain (arbitrarily

small) called the observatory O. We define O and y(x, t, λ, τ) = yobs on O. Several

types of observations can be distinguished depending on the types of observatories.

• distributed

O ⊂ Ω. (1.36)

• Boundary

O ⊂ Γ = ∂Ω. (1.37)

• We can also consider observatories dependent on time

O = O(t), t ∈ (0, T ). (1.38)

• ponctual observations refer to the situation where measurements of the system’s

state are taken at specific points in the observatory domain O. In this case,

the available data consists of a set of discrete values of yobs at specific spatial

locations within O, and at specific times. The goal of estimating missing data in

this scenario is to infer the unobserved values of y outside of the measured points,

using the available data and any available knowledge about the underlying physics

or dynamics of the system.

To fix ideas, consider the case of distributed observation (1.36), we assume the observed

state on O × (0, T ), and we therefore have

y(x, t;λ, τ) = m0(x, t) on O × (0, T ), (1.39)

where m0 is given.

− The sentinel functional

Now, our inverse problem is formulated as follows
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Can we obtain information from the data of m0 about the important

term λξ̂ that is independent of the unimportant term τ ŷ0?

A standard idea is to take an average value. Let h0 be a function given on O×(0, T )

such that

h0 ≥ 0,

∫ T

0

∫
O
h0(x, t)dxdt = 1. (1.40)

We then consider

N (λ, τ) =

∫ T

0

∫
O
h0(x, t)y(λ, τ)dxdt. (1.41)

We seek to determine the important term λξ̂ independently of the unimportant

term τ ŷ0, but there is in general no reason for A to be independent at the first order

of N (λ, τ) should be independent of τ . In other words, there is no reason to get

∂N
∂τ

(λ, τ) = 0. (1.42)

The idea of Jacque Louis Lions was to add another term in (1.41) and we set

S(λ, τ) =

∫ T

0

∫
O

(h0 + u)y(λ, τ)dxdt, (1.43)

where u = u(x, t) is a function to be determined such that:

∂S

∂τ
(λ, τ)

∣∣∣∣
λ=0,τ=0

= 0, (1.44)

and

‖u‖L2(O×(0,T )) = minimum. (1.45)

The functional defined by (1.43)− (1.45) is called the sentinel.

Remark 5

− Condition (1.44), expresses the insensitivity of the functional S with respect to τ (to

the first order), and condition (1.45) expresses that we move away from the mean "as

little as possible".

− The choice u = −h0 gives rise to (1.44). Therefore, under very general assumptions,

the problem (1.44)− (1.45) admits a unique solution. But it will be necessary to ensure
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that under suitable conditions u 6= −h0, the functional S(λ, τ) not being likely to bring

us much information.

1.2.2 Description of the sentinel method

The sentinel method, proposed by Jacques-Louis Lions, is a powerful tool for solving

certain types of inverse problems. The method is based on the existence of a sentinel

functional, which is closely related to the solution of an optimal control problem.

The idea is to first using the adjoint problems to obtain the equivalence between

the existence of a sentinel functional and an optimal control problem. Then, solve the

optimal control problem, which allows us to define the control function by using vari-

ous method (The Hilbert Uniqueness method in the hyperbolic case, the penalization

method in the parabolic case, ...). Once we have the control function, it becomes easier

to obtain some information about the important term in the equation which we are

going to identify. This important term is often a source term or a boundary/initial

condition or a coefficient in the main operator that is not explicitly known.

Exemple: The sentinel method to a parabolic equation with incomplete

data

Let Ω ⊂ Rn, n ≥ 1 be a bounded open subset, with ∂Ω = Γ of class C∞. For a fixed

time T > 0, let’s consider Q = Ω × ]0, T [ the space-time cylinder, and the lateral

surface Σ = Γ× ]0, T [.

Let y = y (x, t) be the solution of the following equation with incopmlete data:
∂y(x,t)
∂t

+ Ay + f(y) = ξ + λξ̂ in Q,

y(x, 0) = y0 (x) + τ ŷ0 (x) in Ω,

y = 0 on Σ.

(1.46)

where:

• The source term is not known, but we know its structure of the form ξ+λξ̂, with

ξ is known in L2 (Q) and λξ̂ is unknown in L2 (Q) .
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• The initial condition is not known, but we know its structure of the form y0 (x)+

τ ŷ0 (x), with

y0 is known in L2 (Ω) and τ ŷ0 is unknown in L2 (Ω) .

• The reals λ and τ are arbitrarily small.

The inverse problem: Can we get information about the λξ̂ (the important term)

without any traying to calculate τ ŷ0 (The unimportant term) from the knowledge of y

in O × (0, T )?

Remark 6

−We can commute the situation by assuming
∂y(x,t)
∂t

+ Ay + f(y) = ξ + τ ξ̂ in Q,

y(x, 0) = y0 (x) + λŷ0 (x) in Ω,

y = 0 on Σ

we are looking for information on λŷ0 (important term) independent of τ ξ̂(unimportant

term).

Define the sentinel functional

Let h0 ∈ O × (0, T ) we define S as follow

S(λ, τ) =

∫ T

0

∫
O

(h0 + u)y(x, t;λ, τ)dxdt (1.47)

where u ∈ O × (0, T ) is the control function.

Definition 9 We say that S is a sentinel of Lions defined by h0, if there exists a

control u such that the pair (u, S) verifies:

− The condition of insensitivity with respect to missing terms, i.e.

∂S

∂τ
(0, 0) = 0,∀ŷ0 ∈ L2(Ω). (1.48)
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− u with minimal norm, i.e.

‖u‖2
L2(O×(0,T )) = min. (1.49)

Equivalence to an optimal control problem

The condition of "insensitivity" of the sentinel with respect to the missing terms is

equivalent to ∫ T

0

∫
O

(h0 + u)yτ (x, t;λ, τ)dxdt = 0, (1.50)

where yτ = ∂y
∂τ

is solution of the equation


∂yτ (x,t)

∂t
+ Ayτ + f ′(y) = 0 in Q,

yτ (x, 0) = ŷ0 (x) in Ω,

yτ = 0 on Σ.

Let q = q(x, t) be the adjoint state which is the solution of the following backward

problem 
∂q(x,t)
∂t

+ Aq + f ′(y)q = (h0 + u)χO in Q,

q(x, T ) = 0 in Ω,

q = 0 on Σ.

(1.51)

Proposition 6 The existence of the sentinel (1.47) is equivalent to solving the optimal

control problem (1.51) with (1.49) which satisfies

q(x, 0) = 0. (1.52)

Proof. It’s easy to see, by multiplying the first equation of the system (1.51) by yτ

and then integrating by parts with some calculations

Study the optimal control problem

The problem of finding a sentinel S such that (1.51) holds is equivalent to the

following optimal control problem:

{find u with minimal norm in L2(O× (0, T )) such that we have (1.51) and (1.52)}.

A classical method to solving this problem is the penalization method see [9].

Information given by the sentinel

If we assume that the state y(λ, τ) depends differently on λ and τ , we can write
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formally

S(λ, τ) ' S(0, 0) +
∂S

∂λ
(0, 0),

(since by definition of the sentinel ∂S
∂τ

(0, 0) = 0). Using (1.39), we can therefore write

λ
∂S

∂λ
(0, 0) '

∫ T

0

∫
O

(h0 + u)(m0 − y0)dxdt.

where y0 is the solution of (1.46) with λ = τ = 0.
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Chapter 2

Sentinel method for some hyperbolic

identification problems

In this second chapter, our objective is to study the hyperbolic system with missing

data in the sense that we don’t know the initial data and some coefficients in the main

operator. We will apply the sentinel method to obtain information on the important

terms that are not affected by the variations of the unimportant term around the

initial data. We have divided this chapter into two sections, in the first section, we

applied the sentinel method to get some information about the potential coefficient

independently of the initial conditions in the wave equation [17]. In the second, we

applied the sentinel method for an acoustic wave equation with incomplete data to

identify the bulk modulus coefficient from boundary observation [18].

2.1 Identifying the potential coefficient in a wave equa-

tion with incomplete data

The aim of this section is to apply the sentinel method for a wave equation with incom-

plete data, where we do not know the potential coefficient and the initial conditions.

Actually, we want to obtain some information on the potential coefficient indepen-

dently of the initial conditions from an observation of the data in the boundary. gives

us through the adjoint system that the existence of the sentinel is equivalent to an

optimal control problem. We solve this optimal control problem by using the Hilbert
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uniqueness method (HUM) [17].

2.1.1 Position of the problem

The direct problem

Let Ω ⊂ Rn, be a bounded open domain, its boundary ∂Ω = Γ be of class C2. For

fixed time T > 0, we take Q = Ω× [0, T ], and Σ = Γ× [0, T ] , we consider the following

initial-boundary value problem for the wave equation

∂2
t y −∆y + p (x) y = 0 in Q,

y(x, 0) = f (x) in Ω,

∂ty(x, 0) = g (x) in Ω,

y (x, t) = 0 on Σ,

(2.1)

where p ∈ L∞ (Ω) is the potential coefficient only dependent on x, and (f, g) ∈ H1
0 (Ω)×

L2 (Ω) . Under these assumptions, there exists a unique solution y to (2.1) such that

y ∈ C ([0, T ] ;H1
0 (Ω)) ∩ C1 ([0, T ] ;L2 (Ω)). This is the direct problem for the wave

equation [5], [52].

Physically, the equation (2.1) describes the interaction of the medium with the

disturbance if y (x, t) is a measure of the magnitude of the disturbance at the point

x and time t, p (x) is a spatial coefficient representing some physical property of the

medium. Here the function f and g indicates that the medium is initially disturbed

[49].

The inverse problem

We assume that the obtained model contains a potential coefficient p (x) that isn’t

completely known, we can write it in the form

p (x) = p0 (x) + λp̂0 (x) ,

where p0 ∈ L∞ (Ω) is given (known), and the term λp̂0 so-called important term is

unknown.
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As well as the initial conditions, have the form

f (x) = y0 (x) + τ0ŷ0 (x) ,

and

g (x) = y1 (x) + τ1ŷ1 (x) ,

where the function (y0, y1) ∈ H1
0 (Ω) × L2 (Ω) both are known, and where τ0ŷ0, τ1ŷ1

so-called unimportant term, both are unknown and we assume that ‖ŷ0‖H1
0 (Ω) ≤ 1,

‖ŷ1‖L2(Ω) ≤ 1 .

The parameters λ, τ0 and τ1 are real numbers sufficiently small.

We formulate our inverse problem as follows

Can we obtain information on the unknown important term λp̂0 (x) without any

attempt at computing the two unimportant terms τ0ŷ0 (x) and τ1ŷ1 (x) of the initial

data in the following equation

∂2
t y −∆y + (p0 + λp̂0) y = 0 in Q,

y(x, 0) = y0 (x) + τ0ŷ0 (x) in Ω,

∂ty(x, 0) = y1 (x) + τ1ŷ1 (x) in Ω,

y (x, t) = 0 on Σ,

(2.2)

from the knowledge of solution measured on a non-empty part of the boundary O ⊂ Γ

yobs =
∂y

∂ν
(x, t) for all (x, t) ∈ O × [0, T ] , (2.3)

where ∂y
∂ν

(x, t) =
n∑
i=1

νi (x) ∂y
∂xi

(x, t) is the normal derivative, and ν (x) is the unit out-

ward normal vector to Γ at x.

The driving force behind this issue is the aim to obtain physical characteristics,

such as the density of an inhomogeneous medium, without taking into account the

medium’s interaction with the initial perturbation. This can be achieved by observing

the medium with perturbations created at its boundary.
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2.1.2 Definition of the sentinel

Let h0 is a given function on O × (0, T ), we define the functional S as follow:

S (λ, τ0, τ1) =

∫ T

0

∫
O

h0
∂y

∂ν
(x, t, λ, τ0, τ1) dΓdt

+

∫ T

0

∫
Γ

u
∂y

∂ν
(x, t, λ, τ0, τ1) dΓdt,

where u ∈ L2 (Γ× [0, T ]) a control function is to be found.

The functional S (λ, τ0, τ1) can be written in a compact form as follows

S (u;λ, τ0, τ1) =

∫ T

0

∫
Γ

(h0χO + u)
∂y

∂ν
dΓdt, (2.4)

where χ
O
denote now and in the sequel characteristic function for the open subset O.

The notion of sentinel introduced by J. L. Lions in [33] is as follows

Definition 10 S (u;λ, τ0, τ1) is said a sentinel defined by h0 if these conditions are

satisfied:

1) S is stationary to the first order with respect to unimportant term τ0ŷ0, τ1ŷ1

∂S

∂τ0

(0, 0, 0) = 0, and
∂S

∂τ1

(0, 0, 0) = 0. (2.5)

2) The control u is of minimal norm in L2 (Γ× (0, T )) among ”the admissible controls,”

i.e.

‖u‖2
L2(Γ×(0,T )) = min

ũ∈Uad
‖ũ‖2

L2(Γ×(0,T )) , (2.6)

where

Uad =
{
ũ ∈ L2 (Γ× [0, T ]) , such that (ũ, S (ũ)) satisfies (2.5)

}
.

2.1.3 Equivalence to an optimal control problem

In this subsection, we can show that having such control function u satisfying (2.5)

and (2.6), is equivalent to an optimal control problem.

Denote by

yτ0 =
∂y

∂τ0

(λ, τ0, τ1)

∣∣∣∣
λ=0,τ0=0,τ1=0

,
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and

yτ1 =
∂y

∂τ1

(λ, τ0, τ1)

∣∣∣∣
λ=0,τ0=0,τ1=0

,

the solution of the systems

∂2
t yτ0 −∆yτ0 + p0 (x) yτ0 = 0 in Q,

yτ0(x, 0) = ŷ0 (x) in Ω,

∂tyτ0(x, 0) = 0 in Ω,

yτ0 (x, t) = 0 on Σ,

(2.7)

and



∂2
t yτ1 −∆yτ1 + p0 (x) yτ1 = 0 in Q,

yτ1(x, 0) = 0 in Ω,

∂tyτ1(x, 0) = ŷ1 (x) in Ω,

yτ1 (x, t) = 0 on Σ,

(2.8)

respectively.

It is immediately deduced that the insensibility condition (2.5) can be rewritten in

a different form as follows

∫ T

0

∫
Γ

(h0χO + u)
∂yτ0
∂ν

dΓdt = 0, (2.9)

and ∫ T

0

∫
Γ

(h0χO + u)
∂yτ1
∂ν

dΓdt = 0. (2.10)

Now, let’s introduce the adjoint state q given by



∂2
t q −∆q + p0 (x) q = 0 in Q,

q (x, T ) = 0 in Ω,

∂tq (x, T ) = 0 in Ω,

q (x, t) = h0χO + u on Σ.

(2.11)

Then, we have the following proposition

Proposition 7 Let q be the solution of (2.11). Then, having a sentinel defined in (2.4)

of the equation (2.2), is equivalent to finding a control u that makes the adjoint state q
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verifies the following null controllability property

∂tq (x, 0) = q (x, 0) = 0 in Ω. (2.12)

Proof. By multiplying both sides of the first equation in (2.11) by yτ0 solution of (2.9)

and by integrating by parts and applying Green’s formula, we get the following

0 =

∫ T

0

∫
Ω

(
∂2
t q −∆q + p0q

)
yτ0dxdt

=

∫
Ω

[yτ0∂tq]
T
0 dx−

∫
Ω

[q∂tyτ0 ]T0 dx

+

∫ T

0

∫
Ω

(
∂2
t yτ0 −∆yτ0 + p0yτ0

)
qdxdt

+

∫ T

0

∫
Γ

q
∂yτ0
∂ν

dΓdt+

∫ T

0

∫
Γ

yτ0
∂q

∂ν
dΓdt.

Considering that yτ0 is solution of (2.7), therefore

〈∂tq (x, 0) , ŷ0 (x)〉H−1(Ω),H1
0 (Ω) = −

∫ T

0

∫
Γ

(h0χO + u)
∂yτ0
∂ν

dΓdt,

where 〈., .〉H−1(Ω),H1
0 (Ω) denotes the duality product between H−1(Ω) and H1

0 (Ω).

It follows from (2.9), that

〈∂tq (x, 0) , ŷ0 (x)〉H−1(Ω),H1
0 (Ω) = 0 for all ‖ŷ0‖H1

0 (Ω) ≤ 1.

Hence, we find that

∂tq (x, 0) = 0, in H−1(Ω).

Consequently

∂tq (x, 0) = 0, a.e in Ω.

In the same way as before, by multiplying both sides of the first equation in (2.11) by
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yτ1 solution of (2.8) and by integrating by parts and applying Green’s formula, we find

∫
Ω

q (x, 0) ŷ1 (x) dx =

∫ T

0

∫
Γ

(h0χO + u)
∂yτ1
∂ν

dΓdt.

And from (2.10), we obtain

∫
Ω

q (x, 0) ŷ1 (x) dx = 0 for all ‖ŷ1‖L2(Ω) ≤ 1.

So

q (x, 0) = 0, in L2(Ω).

Therefore

q (x, 0) = 0, a.e in Ω.

Remark 7 The problem (2.11)− (2.12) with (2.6) is an optimal control problem, this

problem has been studied by many authors, see for instance [14] and [58].

2.1.4 Study of the optimal control problem

From the above, we conclude that having the sentinel functional is equivalent to solving

an optimal control problem, which is equivalent to the existence of a unique pair (u, q)

such that we have (15), (16) with (12) .

Our main result is stated as follows

Theorem 8 Given h0 ∈ L2 (O × [0, T ]) and p0 (x) ∈ L∞ (Ω). Then, there exists a

control function u of minimal norm in L2 (ω × [0, T ]) such that the solution q to problem

(2.11) satisfies (2.12) .
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Before proving this theorem, we introduce q0 and z as solutions of

∂2
t q0 −∆q0 + p0 (x) q0 = 0 in Q,

q0 (x, T ) = 0 in Ω,

∂tq0 (x, T ) = 0 in Ω,

q0 (x, t) = h0χO on Σ,

(2.13)

and 

∂2
t z −∆z + p0 (x) z = 0 in Q,

z (x, T ) = 0 in Ω,

∂tz (x, T ) = 0 in Ω,

z (x, t) = u on Σ,

(2.14)

respectively.

It’s clear that

q (u) = q0 + z (u) .

We obtain that (2.12) is equivalent to z (u) (x, 0) = −q0 (x, 0) ,

∂tz (u) (x, 0) = −∂tq0 (x, 0) in Ω.
(2.15)

Thus the optimal control problem has a new form

Find a control function u of minimal norm in L2 (Γ× (0, T )) such that the

solution z of the system (2.14) satisfies (2.51).

To prove Theorem 1, we consider Φ solution of

∂2
t Φ−∆Φ + p0 (x) Φ = 0 in Q,

Φ (x, 0) = Φ0(x) in Ω,

∂tΦ (x, 0) = Φ1(x) in Ω,

Φ (x, t) = 0 on Σ,

(2.16)

with p0 ∈ L∞ (Ω) .

For all (Φ0,Φ1) ∈ H1
0 (Ω)× L2 (Ω) there exists a unique solution Φ = Φ (Φ0,Φ1) ∈

C ([0, T ] ;H1
0 (Ω)) ∩ C1 ([0, T ] ;L2 (Ω)) . Moreover, there exists a constant C > 0 inde-
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pendent of Φ0 and Φ1, such that∥∥∥∥∂Φ

∂ν

∥∥∥∥
L2(Γ×[0,T ])

≤ C
(∥∥Φ0

∥∥
H1

0 (Ω)
+
∥∥Φ1

∥∥
L2(Ω)

)
(2.17)

holds [52].

Let us introduce for Φ solution of (2.16) this inequality called the observability

inequality, which plays an important role to prove the controllability.

Proposition 9 Let p0 ∈ L∞ (Ω) and

T > 2ρ with ρ = max
x∈Ω
|x| . (2.18)

Then there exists a constant C = C (Ω, T, a0) > 0 such that

∥∥Φ0
∥∥
H1

0 (Ω)
+
∥∥Φ1

∥∥
L2(Ω)

≤ C

∥∥∥∥∂Φ

∂ν

∥∥∥∥
L2(Γ×[0,T ])

, (2.19)

for all Φ0 ∈ H1
0 (Ω) and Φ1 ∈ L2 (Ω) .

Proof. See [29], [30] and [52].

Remark 8 The condition (2.18) is necessary for estimating two functions Φ0 and Φ1,

and too much for determining either of Φ0 and Φ1.

We introduce z solution of

∂2
t z −∆z + p0 (x) z = 0 in Q,

z (x, T ) = 0 in Ω,

∂tz (x, T ) = 0 in Ω,

z (x, t) = ∂Φ
∂ν

on Σ.

(2.20)

Now, we go back to prove the previous Theorem, we divide the proof into three

steps.

Proof.

Step one: We define a linear operator Λ by

Λ : H1
0 (Ω)× L2 (Ω) −→ H−1 (Ω)× L2 (Ω) ,
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Λ
{

Φ0,Φ1
}

= {−∂tz (0) , z (0)} , (2.21)

where H−1 (Ω) is the dual space of H1
0 (Ω) .

Step two: By multiplying both side of the first equation of (2.20) by Φ solution of

(2.16), and by integrating by parts and applying Green’s formula, we obtain

〈
Λ
{

Φ0,Φ1
}
,
{

Φ0,Φ1
}〉

=

∫ T

0

∫
Γ

∣∣∣∣∂Φ

∂ν

∣∣∣∣2 dΓdt,

where 〈., .〉 is the duality product between H1
0 (Ω) × L2 (Ω) and H−1 (Ω) × L2 (Ω) .

Furthermore, Λ is clearly a positive and self-adjoint operator.

This leads to the introduction of the following semi norm

∣∣{Φ0,Φ1
}∣∣
H1

0 (Ω)×L2(Ω)
=

(∫ T

0

∫
Γ

∣∣∣∣∂Φ

∂ν

∣∣∣∣2 dΓdt

) 1
2

. (2.22)

We want to show that the previous semi-norm (3.20) is a norm on the space set of

initial data {Φ0,Φ1}.

We must only prove:

∫ T

0

∫
Γ

∣∣∣∣∂Φ

∂ν

∣∣∣∣2 dΓdt = 0 =⇒ Φ = 0 in Q.

From the above proposition using the observability inequality (2.19) , we can show

that the previous semi-norm (3.20) is a norm, denoted by

∥∥{Φ0,Φ1
}∥∥

H1
0 (Ω)×L2(Ω)

=

(∫ T

0

∫
Γ

∣∣∣∣∂Φ

∂ν

∣∣∣∣2 dΓdt

) 1
2

. (2.23)

Furthermore, it is clear from (2.17) and (2.19) , that the norm (3.21) is equivalent

to the usual norm of H1
0 (Ω)× L2 (Ω) .

Step three: Wemust show that the operator Λ is an isomorphism fromH1
0 (Ω)×L2 (Ω)

toH−1 (Ω)×L2 (Ω). The norm (2.23) define by this scalar product
〈

Λ
{›Φ0,›Φ1

}
, {Φ0,Φ1}

〉
and define a Hilbert space on the set of initial data, which is equivalent to (the Hilbert

space) H1
0 (Ω)× L2 (Ω).

So by Riesz Representation Theorem we conclude that Λ is an isomorphism from
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H1
0 (Ω)× L2 (Ω) to H−1 (Ω)× L2 (Ω) . So (2.21) has a unique solution given by

{
Φ0,Φ1

}
= Λ−1 {∂tq0 (0) ,−q0 (0)} . (2.24)

Subsequently, the control is given by

u =
∂Φ

∂ν
on Σ, (2.25)

where Φ is the solution of (2.16) .

Finally, we have the existence of the sentinel (2.4) given in the following form

S (λ, τ0, τ1) =

∫ T

0

∫
Γ

(
h0χO +

∂Φ

∂ν

)
∂y

∂ν
dΓdt. (2.26)

2.1.5 Information given about the important term

Here, we are interested in estimating the important term, for this, we consider m0 the

measured state of the system on the observatory O during the interval (0, T ), then the

sentinel observer associated with the state m0 is given by

Sobs (λ, τ0, τ1) =

∫ T

0

∫
Γ

(
h0χO +

∂Φ

∂ν

)
m0 (x, t) dΓdt. (2.27)

Theorem 10 The information obtained about the important term is given as follows

−
∫ T

0

∫
Ω

λp̂0 (x) y0qdxdt = Sobs (λ, τ0, τ1)− S(0, 0, 0), (2.28)

where

S (0, 0, 0) = S(λ, τ0, τ1)|λ=0,τ0=0,τ1=0 , and y0 = y(λ, τ0, τ1)|λ=0,τ0=0,τ1=0 .

Proof. According to Taylor’s formula, we have

S (λ, τ0, τ1) ' S (0, 0, 0)+τ0
∂S

∂τ0

(0, 0, 0)+τ1
∂S

∂τ1

(0, 0, 0)+λ
∂S

∂λ
(0, 0, 0) , for λ, τ0 and τ1 small.

(2.29)

Because
∂S

∂τ0

(λ, τ0, τ1)

∣∣∣∣
λ=0,τ0=0,τ1=0

=
∂S

∂τ1

(λ, τ0, τ1)

∣∣∣∣
λ=0,τ0=0,τ1=0

= 0 and S (λ, τ0, τ1)
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is observed, then we have:

λ
∂S

∂λ
(λ, τ0, τ1)

∣∣∣∣
λ=0,τ0=0,τ1=0

' Sobs (λ, τ0, τ1)− S (0, 0, 0) , (2.30)

where
∂S

∂λ
(λ, τ0, τ1)

∣∣∣∣
λ=0,τ0=0,τ1=0

=

∫ T

0

∫
Γ

(h0χO +
∂Φ

∂ν
)
∂y

λ

∂ν
dΓdt, (2.31)

with y
λ
defined by y

λ
= ∂y

∂λ
(0, 0, 0), which is the unique solution of



∂2
t yλ −∆y

λ
+ p0yλ = −p̂0 (x) y0 in Q,

y
λ

(x, 0) = 0 in Ω,

∂tyλ (x, 0) = 0 in Ω,

y
λ

(x, t) = 0 on Σ.

(2.32)

Multiplying both sides of the first equation in (2.32) by q = q (x, t) solution of

(2.11) ∫ T

0

∫
Ω

(
∂2
t yλ −∆y

λ
+ p0yλ

)
qdxdt = −

∫ T

0

∫
Ω

p̂0 (x) y0qdxdt.

By integrating by parts and applying Green’s formula, we get

∫ T

0

∫
Γ

(h0χO +
∂Φ

∂ν
)
∂y

λ

∂ν
dΓdt = −

∫ T

0

∫
Ω

p̂0 (x) y0qdxdt, (2.33)

combining (2.33) and (2.30) , we obtain the information about the important term

given in the previous theorem.
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2.2 Identifying the bulk modulus coefficient in the

acoustic equation with incomplete data

In this section, we examine how to get some information about the bulk modulus

coefficient in an acoustic equation when there is incomplete data, specifically when

only partial information about the bulk modulus coefficient and initial conditions is

available. The objective is to obtain information about the bulk modulus coefficient,

disregarding the missing initial conditions, by using the solution measured on a part

of the boundary. To accomplish this, we employ the sentinel method, which involves

finding a sentinel functional that is equivalent to an optimal control problem. We

use the HUM method to solve this problem, allowing us to determine the control of

the minimal norm. Our study offers a physical perspective on determining the bulk

modulus coefficient in an acoustic equation using boundary observations, emphasizing

the significance of controlling the system’s behavior to acquire precise information

about material properties.

2.2.1 Position of the problem

The direct problem

Let Ω ⊂ Rn, an open bounded domain, its boundary Γ be of class C2. For fixed time

T > 0 , we take Q = Ω× [0, T ], and Σ = Γ× [0, T ] . We consider the following acoustic

wave equation, which describes the behavior of sound waves in a medium



∂2
t y −

∑n
i,j=1

∂
∂xi

(
aij(x) ∂y

∂xj

)
= 0 in Ω× (0, T ) ,

y (0) = B(x) in Ω,

∂ty (0) = C(x) in Ω,

y = 0 on Γ× (0, T ) ,

(2.34)

where ∂2
t y = ∂2y

∂t2
, and aij(x) = aij(x) for all i, j = 1, ..., n are C∞ function on Rn, which

satisfies the following uniform ellipticity condition

n∑
i,j=1

aij(x)ξiξj ≥ α

n∑
i,j=1

ξ2
i , x ∈ Ω, for some α > 0. (2.35)
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Given B ∈ H1
0 (Ω) and C ∈ L2(Ω), the problem (2.34) a admits unique solution

y ∈ C([0, T ];H1
0 (Ω)× L2(Ω)) [53].

We assume that for all i, j = 1, ..., n we have aij(x) = a(x)δij, where δij is the

Kroniker index, so our equation becomes written in the following divergence form

∂2
t y − div (a (x)∇y) = 0 in Ω× (0, T ) ,

y (0) = B(x) in Ω,

∂ty (0) = C(x) in Ω,

y = 0 on Γ× (0, T ) ,

(2.36)

where a ∈ C1(Ω), we assume that a(x) > 0 for all x ∈ Ω.

For equation (2.36), if the coefficient a, and the functions B and C are known, then

we can prove that the problem has a unique solution, this is a direct problem.

The inverse problem

We’re dealing with the identification of the coefficient a, where we assume that it’s

partially known, and has the form

a(x) = a0 (x) + λâ0 (x) ,

where a0 is given known, and the term λâ0 is unknown and it’s the important term.

Additionally, we assume that the initial conditions are partially known and that

their forms are

B (x) = y0 (x) + τ0ŷ0 (x) ,

and

C (x) = y1 (x) + τ1ŷ1 (x) ,

where the functions (y0, y1) ∈ H1
0 (Ω)×L2 (Ω) are known, and where τ0ŷ0, τ1ŷ1 both are

unknown, It’s the unimportant terms, with ‖ŷ0 (x)‖H1
0 (Ω) ≤ 1 and ‖ŷ1 (x)‖L2(Ω) ≤ 1.

The parameters λ, τ0 and τ1 are real numbers sufficiently small.

We are interested in the following inverse problem

Can we get information on the important term λâ0 regardless of calculating the unim-

portant term τ0ŷ0 and τ1ŷ1 in the following equation
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

∂2
t y − div ((a0 (x) + λâ0 (x))∇y) = 0 in Ω× (0, T ) ,

y (0) = y0 + τ0ŷ0 in Ω,

∂ty (0) = y1 + τ1ŷ1 in Ω,

y = 0 on Γ× (0, T ) ,

(2.37)

from the knowledge of the conormal derivative

∂y

∂νa

∣∣∣∣
O×(0,T )

, (2.38)

where O is a non-empty open subset of Γ (the observatory), and ∂y
∂νa

= a(x)∇y.ν(x) is

the conormal derivative, and ν (x) is the unit outward normal vector to Γ at x.

When we measure the conormal derivative on the boundary of a region, we are

effectively measuring the rate of change of the acoustic pressure across that bound-

ary. This rate of change is directly related to the normal acoustic velocity, which in

turn depends on the bulk modulus coefficient. Therefore, by measuring the conormal

derivative on the boundary of a medium, We can achieve our goal of obtaining some

information [4], [10].

Physically, this inverse problem consists of the determination of the bulk modulus

in the acoustic equation (2.37) which is considered in a nonhomogeneous medium. The

bulk modulus is a fundamental physical parameter that describes the compressibility of

a medium, or the resistance of a material to compression. In the context of the acoustic

wave equation, the bulk modulus coefficient plays a crucial role in the behavior of sound

waves as they propagate through that medium [54].

Determining the bulk modulus coefficient is important for a wide range of applica-

tions, including geophysics, medical imaging, and non-destructive testing. For example,

in geophysics, the bulk modulus coefficient is used to map the subsurface of the earth,

which is important for locating natural resources such as oil and gas. In medical imag-

ing, the bulk modulus coefficient is used to determine the acoustic properties of tissue,

which is important for imaging and diagnosing various diseases. In non-destructive

testing, the bulk modulus coefficient is used to detect and identify flaws or defects in

materials without damaging them, see [4], [10]. Also, we refer to [36] and [57].
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2.2.2 Definition of sentinel

For h0 ∈ L2 (O × [0, T ]), we have

S(λ, τ0, τ1) =

∫ T

0

∫
Γ

(h0χO + uχω)
∂y

∂νa
dΓdt, (2.39)

where u is a control function to be determined as follows

1) For all τ0ŷ0 and τ1ŷ1

∂S
∂τ0

(λ, τ0, τ1)
∣∣∣
λ=0,τ0=0,τ1=0

= ∂S
∂τ1

(λ, τ0, τ1)
∣∣∣
λ=0,τ0=0,τ1=0

= 0. (2.40)

2) The control u is of minimal norm in L2 (ω × (0;T )) among ”the admissible con-

trols”, i.e.

‖u‖2
L2(ω×(0,T )) = min

ũ∈Uad
‖ũ‖2

L2(ω×(0;T )) , (2.41)

where

Uad =
{
ũ ∈ L2 (ω × (0, T )) , such that (ũ, S (ũ)) satisfies (2.40)

}
.

2.2.3 Equivalence to an optimal control problem

We denote by yτ0 = ∂y
∂τ0

(λ, τ0, τ1)
∣∣∣
λ=0,τ0=0,τ1=0

the solution of



∂2
t yτ0 − div (a0 (x)∇yτ0) = 0 in Ω× (0, T ) ,

yτ0 (x, 0) = ŷ0(x) in Ω,

∂tyτ0 (x, 0) = 0 in Ω,

yτ0 = 0 on Γ× (0, T ) ,

(2.42)

and by yτ1 = ∂y
∂τ1

(λ, τ0, τ1)
∣∣∣
λ=0,τ0=0,τ1=0

the solution of



∂2
t yτ1 − div (a0 (x)∇yτ1) = 0 in Ω× (0, T ) ,

yτ1 (x, 0) = 0 in Ω,

∂tyτ1 (x, 0) = ŷ1(x) in Ω,

yτ1 = 0 on Γ× (0, T ) .

(2.43)
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Remark 9 The condition 1 (the insensitivity condition) could be written in the fol-

lowing form ∫
Γ×(0,T )

(h0χO + uχw)
∂yτ0
∂νa

dΓdt = 0, (2.44)

and

∫
Γ×(0,T )

(h0χO + uχw)
∂yτ1
∂νa

dΓdt = 0. (2.45)

In this subsection, we will show that having the sentinel for (2.37) is related to

solving an optimal control problem.

Here is our first main result

Proposition 11 The existence of the sentinel defined in (2.39) for the problem (2.37)

is related to solving the following null- controllability problem

∂2
t q − div (a0 (x)∇q) = 0 in Ω× (0, T ) ,

q (x, T ) = 0 in Ω,

∂tq (x, T ) = 0 in Ω,

q = h0χO + uχw on Γ× (0, T ) ,

(2.46)

which satisfies the following property (null controllability property) q(x, 0) = 0

∂tq(x, 0) = 0
, (2.47)

in Ω.

Proof. By multiplying both sides of the first equation in (2.46) by yτ0 solution of

(2.42) and by integrating by parts and by an application of Green’s formula, we find

0 =

∫ T

0

∫
Ω

(
∂2
t q − div (a0 (x)∇q)

)
yτ0dxdt

=

∫
Ω

[yτ0∂tq]
T
0 dx−

∫
Ω

[q∂tyτ0 ]T0 dx

+

∫ T

0

∫
Ω

(
∂2
t yτ0 − div (a0 (x)∇yτ0)

)
qdxdt

+

∫ T

0

∫
Γ

q
∂yτ0
∂νa

dΓdt+

∫ T

0

∫
Γ

yτ0
∂q

∂νa
dΓdt.
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Considering that yτ0 is solution of (2.42), therefore

〈∂tq (x, 0) , ŷ0 (x)〉H−1(Ω),H1
0 (Ω) = −

∫ T

0

∫
Γ

(h0χO + uχω)
∂yτ0
∂ν

dΓdt,

where 〈., .〉H−1(Ω),H1
0 (Ω) denotes the duality product between H−1(Ω) and H1

0 (Ω).

It follows from (2.44), that

〈∂tq (x, 0) , ŷ0 (x)〉H−1(Ω),H1
0 (Ω) = 0 for all ‖ŷ0‖H1

0 (Ω) ≤ 1.

Hence, we find

∂tq (0) = 0, a.e. in Ω.

In the same way as before, multiplying both sides of the first equation in (2.46) by yτ1
solution of (2.43) and by integrating by parts and by an application of Green’s formula,

we find ∫
Ω

q (0) ŷ1 (x) dx =

∫ T

0

∫
Γ

(h0χO + uχω)
∂yτ1
∂νa

dΓdt.

And from (2.45), we obtain

∫
Ω

q (0) ŷ1 (x) dx = 0, for all ‖ŷ1 (x)‖L2(Ω) ≤ 1.

So

q (x, 0) = 0, in L2(Ω).

Therefore

q (x, 0) = 0, a.e in Ω.
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2.2.4 Study of the optimal control problem

In the previous subsection, we demonstrated that the existence of a sentinel functional

was related to the solution of the optimal control problem. For this reason, we are

interested in solving this optimal control problem and will state our main result as

follows

Theorem 12 Given h0 ∈ L2 (O × [0, T ]). Then, there exists a control function u of

minimal norm in L2 (ω × [0, T ]) such that the solution q of the problem (2.46) satisfies

(3.8) and ω verifies the following geometrical condition

ω = {x ∈ Γ, H(x).v(x) > 0},

where ν (x) is the unit outward normal vector to Γ at x, and H(x) is defined in [53].

The problem (2.46) - (3.8) is an optimal control problem, we use the method of

HUM introduced by J. L. Lions [31] to establish this control with the minimal norm

in L2 (ω × [0, T ]), It’s a constructive method, based on uniqueness results and on the

construction of an isomorphism operator.

Note that we can write q(u) = q0 + z(u), where q0 and z are solution of the systems

∂2
t q0 − div (a0 (x)∇q0) = 0 in Ω× (0, T ) ,

q0 (x, T ) = 0 in Ω,

∂tq0 (x, T ) = 0 in Ω,

q0 = h0χO on Γ× (0, T ) ,

(2.48)

and 

∂2
t z − div (a0 (x)∇z) = 0 in Ω× (0, T ) ,

z (x, T ) = 0 in Ω,

∂tz (x, T ) = 0 in Ω,

z = uχw on Γ× (0, T ) ,

(2.49)

respectively.
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Obviously, (3.8) could be written q (x, 0) = z (u) (x, 0) + q0 (x, 0)

∂q (x, 0) = ∂tz (u) (x, 0) + ∂tq0 (x, 0)
in Ω. (2.50)

Take into consideration that z = z (u) solution of (2.49) is the state which satisfies the

following  z (u) (x, 0) = −q0 (x, 0)

∂tz (u) (x, 0) = −∂tq0 (x, 0)
in Ω. (2.51)

Introduce Φ solution of the following system

∂2
t Φ− div (a0 (x)∇Φ) = 0 in Ω× (0, T ) ,

Φ (x, 0) = Φ0(x) in Ω,

∂tΦ (x, 0) = Φ1(x) in Ω,

Φ = 0 on Γ× (0, T ) ,

(2.52)

where (Φ0,Φ1) ∈ H1
0 (Ω) × L2 (Ω). The system (2.52) admits unique solution Φ ∈

C ([0, T ]; (H1
0 (Ω)× L2 (Ω))). More precisely the following inequality, for all T > 0 and

a constant C > 0

∫
Γ0×(0,T )

∣∣∣∣ ∂Φ

∂νa

∣∣∣∣2 dΓdt ≤ CT
(
||Φ0||2H1

0 (Ω) + ||Φ1||2L2(Ω)

)
, (2.53)

holds [53].

Moreover, there exist a constants c > 0 such that

∫
Γ0×(0,T )

∣∣∣∣ ∂Φ

∂νa

∣∣∣∣2 dΓdt ≥ c
(
||Φ0||2H1

0 (Ω) + ||Φ1||2L2(Ω)

)
, (2.54)

[53].

In addition, let Ψ be the solution to the following problem



∂2
t Ψ− div (a0 (x)∇Ψ) = 0 in Ω× (0, T ) ,

Ψ (x, T ) = 0 in Ω,

∂tΨ (x, T ) = 0 in Ω,

Ψ = ∂Φ
∂νa
χw on Γ× (0, T ) .

(2.55)
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Now, we go back to prove the previous theorem

Proof. We define a linear operator Λ by

Λ : H1
0 (Ω)× L2 (Ω) −→ H−1 (Ω)× L2 (Ω) ,

Λ
{

Φ0,Φ1
}

= {−∂tz (x, 0) , z (x, 0)} , (2.56)

where H−1 (Ω) is the dual space of H1
0 (Ω) .

Multiplying the both side of the first equation of (2.55) by Φ solution of (2.52), and

by integrating by parts and by an application of Green’s formula, we obtain

〈Λ
{

Φ0,Φ1
}
,
{

Φ0,Φ1
}
〉 =

T∫
0

∫
ω

∣∣∣∣ ∂Φ

∂νa

∣∣∣∣2 dΓdt,

where 〈., .〉 denotes the duality product between H1
0 (Ω)×L2 (Ω) and H−1 (Ω)×L2 (Ω) .

Moreover, it’s clear that Λ is a positive and self-adjoint operator.

This leads to the introduction of the following semi norm

∣∣{Φ0,Φ1
}∣∣
H1

0 (Ω)×L2(Ω)
=

 T∫
0

∫
ω

∣∣∣∣ ∂Φ

∂νa

∣∣∣∣2 dΓdt


1
2

. (2.57)

To prove that Λ is an isomorphism, we have to show that the previous semi-norm

(3.20) is a norm on the set of initial data {Φ0,Φ1}, we have to prove that

T∫
0

∫
ω

∣∣∣∣ ∂Φ

∂νa

∣∣∣∣2 dΓdt = 0 =⇒ Φ = 0 in Q.

Take ω = Γ0, from the inequality (2.54) (observability inequality), it is easy to show
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that the previous semi-norm is a norm, denoted by

∥∥{Φ0,Φ1
}∥∥

H1
0 (Ω)×L2(Ω)

=

 T∫
0

∫
ω

∣∣∣∣ ∂Φ

∂νa

∣∣∣∣2 dΓdt


1
2

. (2.58)

Furthermore, it is clear from (2.53) and (2.54) that the norm is equivalent to the

usual norm of H1
0 (Ω)× L2 (Ω) .

We must show that the operator Λ is an isomorphism from H1
0 (Ω) × L2 (Ω) to

H−1 (Ω)×L2 (Ω) .The norm (3.21) define by this scalar product 〈Λ
{›Φ0,›Φ1

}
, {Φ0,Φ1}〉

and define a Hilbert space on the set of initial data, which is equivalent to (the Hilbert

space) H1
0 (Ω)× L2 (Ω).

From Riesz Representation Theorem we conclude that is Λ an isomorphism from

H1
0 (Ω)× L2 (Ω) to H−1 (Ω)× L2 (Ω) [46].

So (2.56) has a unique solution given by

{
Φ0,Φ1

}
= Λ−1 {∂tq0 (x, 0) ,−q0 (x, 0)} . (2.59)

Thus, the control is given by the restriction

u =
∂Φ

∂νa
χω , (2.60)

where Φ is the solution of (2.52).

So, the sentinel (2.39) is given by

S(λ, τ0, τ1) =

∫ T

0

∫
Γ

(h0χO +
∂Φ

∂νa
χω)

∂y

∂νa
dΓdt. (2.61)

2.2.5 Information given about the imporant term

In this section, we will present the main result of this paper that allows giving infor-

mation on the important term.
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Let be yλ = ∂y
∂λ

a unique solution of the following system



∂2
t yλ − div (a0 (x)∇yλ)− div (â0 (x)∇y0) = 0 in Ω× (0, T ) ,

yλ (x, 0) = 0 in Ω,

∂tyλ (x, 0) = 0 in Ω,

yλ = 0 on Γ× (0, T ) ,

(2.62)

where y0 is the solution of (2.37) when λ = τ0 = τ1 = 0.

On the other hand, we consider the sentinel associated to the measure m0 given by

Sobs (λ, τ) =

∫ T

0

∫
Γ

(h0χO + uχω)m0 (x, t, λ, τ) dxdt, (2.63)

where m0 is the measured state of the system on the observatory O through the time

interval [0, T ].

Theorem 13 The information given by the sentinel about the important term λâ0 (x)

is as follows

∫ T

0

∫
Ω

div (λâ0 (x)∇y0) qdxdt '
∫ T

0

∫
Γ

(h0χO + uχω)

(
m0 −

∂y0

∂νa

)
dΓdt. (2.64)

Proof. According to Taylor’s formula, we have

S (λ, τ0, τ1) ' S (0, 0, 0) + τ0
∂S

∂τ0

(0, 0, 0) + τ1
∂S

∂τ1

(0, 0, 0) + λ
∂S

∂λ
(0, 0, 0) , (2.65)

for λ, τ0 and τ1 small.

Due to (2.40), and by considering that S (λ, τ0, τ1) is observed. Then, we have

λ
∂S

∂λ
(λ, τ0, τ1)

∣∣∣∣
λ=0,τ0=0,τ1=0

' Sobs (λ, τ0, τ1)− S (0, 0, 0) , (2.66)

where
∂S

∂λ
=

∫ T

0

∫
Γ

(h0χO + uχω)
∂yλ
∂νa

dΓdt,

with yλ is the unique solution of (2.62).

Multiplying both sides of the first equation in (2.62) by q = q (x, t) solution of
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(2.46), then we have

∫ T

0

∫
Ω

{
∂2
t yλ − div (a0 (x)∇yλ)− div (â0 (x)∇y0)

}
q = 0.

Integrating by parts and by an application of Green’s formula, we obtain

∫ T

0

∫
Ω

div (â0 (x)∇y0) qdxdt =

∫ T

0

∫
Γ

(h0χO + uχω)
∂y

λ

∂νa
dΓdt, (2.67)

combining (2.67) and (2.66) , we obtain the information about the important term

given in (2.64).
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Chapter 3

Sentinel method for identification

problems of schrödinger and diffusion

equations

In this third chapter, we use the sentinel method to get some information about the

the potential coefficient in the Schrödinger equation with incomplete initial condition

and the diffusion coefficient in diffusion equation with icomplete data.

3.1 Identifying the potential coefficient in the Schrödinger

equation with incomplete initial condition
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applications.

3.1.1 Position of the problem

Let Ω ⊂ Rn, an open bounded domain, its boundary Γ be of class C2. We denote by

Q = Ω× (0, T ), and by Σ = Γ× [0, T ] , for a fixed time T > 0.

Consider the following Schrödinger equation with incomplete data
i∂y
∂t

+ ∆y + (p0(x) + λp̂0(x))y = 0 in Q,

y (x, 0) = y0(x) + τ ŷ0(x) in Ω,

y (x, t) = 0 on Σ,

(3.1)

where i =
√
−1, and we assume that

This means that we are interested in determining the potential energy of the par-

ticle, from the knowledge of the flux on a part of the boundary, regardless of its initial

state. [6].
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3.1.2 Definition of the sentinel

The basic idea of the sentinel method is to build a functional S that achieves certain

conditions, this functional links between the solutions of the state equation with the

observation and a control function, defined as follow

Let h0 be a well-known function in L2(Γ0× (0, T )), we define the sentinel functional

S, which is depending to parameters λ and τ , as follows:

S (λ, τ) =

∫ T

0

∫
Γ0

(h0 + v)
∂ȳ

∂ν
dΓ0dt, (3.2)

where v is a control function defined on L2(Γ0 × (0, T )) to be determined as follows

• S is insensitive at the first order with respect to the missed term τ ŷ0, i.e.

∂S

∂τ
(0, 0) = 0, ∀v ∈ L2(Γ0 × (0, T )), (3.3)

• v has a minimal norm in L2(Γ0 × (0, T )), i.e.

‖v‖L2(Γ0×(0,T )) = min . (3.4)

We use here and in the sequel the notations (̄.) to indicate the conjugate of the

complexe number.

3.1.3 Equivalence to an optimal control problem

We denote by yτ = ∂y
∂τ
, the solution of the system


i∂yτ
∂t

+ ∆yτ + p0(x)yτ = 0 in Ω× (0, T ) ,

yτ (x, 0) = ŷ0(x) in Ω,

yτ (x, t) = 0 on Γ× (0, T ) .

(3.5)

In this section, we shall transform sentinel existence problem (3.2) which satisfies

(3.3)-(3.4) to an optimal control problem for the adjoint state.

We start by the insensibility condition (3.3), as from the definition of the sentinel
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(3.2) and the condition (3.3), we have

∫ T

0

∫
Γ0

(h0 + v)
∂ȳτ
∂ν

dΓ0dt = 0, (3.6)

where ȳτ denotes the complex conjugate of yτ solution of (3.5).

We define the following system (adjoint system) by

i∂q
∂t

+ ∆q + p0(x)q = 0 in Ω× (0, T ) ,

q (x, T ) = 0 in Ω,

q (x, t) =

 h0 + v

0

on

on

Γ0 × (0, T )

Γ�Γ0 × (0, T ) .

(3.7)

Our first main result is the following

Proposition 14 The existence of the sentinel defined in (3.2) for the system (3.1)

is equivalent to solving the eqution (3.38) which satisfies the following property (nul

controllability property)

q(x, 0) = 0 in Ω. (3.8)

Proof.

Multiplying the both sides of the first equation in (3.38) by ȳτ , then∫ T

0

∫
Ω

(
i
∂q

∂t
+ ∆q + p0(x)q

)
ȳτdxdt = 0. (3.9)

After using the integration by part with Green’s formula over Ω× (0, T ), we obtain

0 =

∫ T

0

∫
Ω

(
i
∂q

∂t
+ ∆q + p0(x)q

)
ȳτdxdt

=

∫
Ω

iȳτ (x, T ) q (x, T ) dx−
∫

Ω

iȳτ (x, 0) q (x, 0) dx

+

∫ T

0

∫
Ω

(
i
∂yτ
∂t

+ ∆yτ + p0yτ

)
qdxdt

+

∫ T

0

∫
Γ

ȳτ
∂q

∂ν
dΓdt−

∫ T

0

∫
Γ

q
∂ȳτ
∂ν

dΓdt.
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Considering that yτ is solution of (3.5), therefore

i
〈
q (x, 0) , ¯̂y0 (x)

〉
H−1(Ω),H1

0 (Ω)
=

∫ T

0

∫
Γ0

(h0 + u)
∂ȳτ
∂ν

dΓ0dt,

where 〈., .〉H−1(Ω),H1
0 (Ω) denotes the duality product between H−1(Ω) and H1

0 (Ω).

From (3.6), we get

i
〈
q (x, 0) , ¯̂y0 (x)

〉
H−1(Ω),H1

0 (Ω)
= 0 for all

∥∥ ̂̄y0

∥∥
H1

0 (Ω)
≤ 1.

Hence, we find that

q (x, 0) = 0, in H−1(Ω).

Consequently

q (x, 0) = 0, a.e in Ω.

3.1.4 Study of the optimal control problem

We make the decomposition q = q0 + z, where q0 and z are solution of the following
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systems 

i∂q0
∂t

+ ∆q0 + p0(x)q0 = 0 in Ω× (0, T ) ,

q0 (x, T ) = 0 in Ω,

q0 (x, t) =

 h0

0

on

on

Γ0 × (0, T ) ,

Γ�Γ0 × (0, T ) ,

(3.10)

and 

i∂z
∂t

+ ∆z + p0(x)z = 0 in Ω× (0, T ) ,

z (x, T ) = 0 in Ω,

z (x, t) =

 v

0

on

on

Γ0 × (0, T ) ,

Γ�Γ0 × (0, T ) ,

(3.11)

respectively.

It’s clear from (3.8) that

z (v) (x, 0) = −q0 (x, 0) in Ω. (3.12)

The optimal control problem we will address, has a new form as follows

Find a control function v of minimal norm in L2 (Γ0 × (0, T )) such that the

solution z of the system (3.11) satisfies (3.12).

There are several ways to deal with this problem.

As is customary, we introduce Φ solution of the following system
i∂Φ
∂t

+ ∆Φ + p0(x)Φ = 0 in Ω× (0, T ) ,

Φ (x, 0) = Φ0(x) in Ω,

Φ (x, t) = 0 on Γ× (0, T ) .

(3.13)

Proposition 15 For all T > 0 and under some geometrical conditions upon Γ0, there

exist two constants C1 > 0, and C2 > 0, such that

∫ T

0

∫
Γ0

∣∣∣∣∂Φ

∂ν

∣∣∣∣2 dσdt ≤ C1

∥∥Φ0
∥∥
H1

0 (Ω)
, (3.14)

and ∥∥Φ0
∥∥
H1

0 (Ω)
≤ C2

∫ T

0

∫
Γ0

∣∣∣∣∂Φ

∂ν

∣∣∣∣2 dσdt, (3.15)
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hold for every Φ solution of the problem (3.13).

Also, we need this lemma

Lemma 1 Let q ∈ C2(Q̄,Rn), for all solution of (3.13), with Φ0 ∈ H1
0 (Ω) the following

identity holds

1

2

∫ T

0

∫
Γ

(q.ν)

∣∣∣∣∂Φ

∂ν

∣∣∣∣2 dσdt =
1

2
Im

∫
Ω

(
Φq.∇Φ̄

)
dxdt

∣∣∣∣T
0

+ Im

∫ T

0

∫
Ω

(
qt.∇ΦΦ̄

)
dxdt

+
1

2
Re

∫ T

0

∫
Ω

(
Φ∇(divxq).∇Φ̄

)
dxdt+Re

∫ T

0

∫
Ω

∑
j,k

(
∂qk
∂xj

∂Φ̄

∂xk

∂Φ

∂xj

)
dxdt

Re

∫ T

0

∫
Ω

p0Φq.∇Φ̄dxdt+
1

2
Re

∫ T

0

∫
Ω

p0 |Φ|2 (divxq)dxdt, (3.16)

where divxq =
∑n

j=1
∂qj
∂xj

, and we denote by Re and Im the real and the imaginary part

of the complexe number.

Proof. It’s easy to prove the lemma by multiplying (3.13) by q.∇Φ̄+ 1
2
Φ̄(divxq), taking

the real part and integrating it by parts and by an application of Green’s formula, we

get the identity (3.16).

We go back to prove the proposition (4).

Proof. We demonstrate each inequality in a step

Step 1 Proof of the inequality (3.1.4).

In (3.16), we choose q = q(x) ∈ C2(Q̄,Rn) such that q.ν = 1 in Γ, it’s easy to obtain

1

2

∫ T

0

∫
Γ

∣∣∣∣∂Φ

∂ν

∣∣∣∣2 dσdt ≤ c1 ‖q‖L∞(Ω)

(
‖Φ(T )‖2

L2(Ω) + ‖∇Φ(T )‖2
L2(Ω) + ‖Φ(0)‖2

L2(Ω)

+ ‖∇Φ(0)‖2
L2(Ω)

)
+ c2 ‖q‖W 2,∞(Ω)

∫ T

0

‖Φ(t)‖L2(Ω) ‖∇Φ(t)‖L2(Ω) dt

+ c3 ‖q‖W 1,∞(Ω)

∫ T

0

‖∇Φ(t)‖2
L2(Ω) dt

+ c4 ‖q‖L∞(Ω) ‖p0‖L∞(Ω)

∫ T

0

‖Φ(t)‖L2(Ω) ‖∇Φ(t)‖L2(Ω) dt

+ c5 ‖q‖W 1,∞(Ω) ‖p0‖L∞(Ω)

∫ T

0

‖Φ(t)‖2
L2(Ω) dt,

by the conservation of energy, we can easily conclude that, there exists a constant C1,
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such that ∫ T

0

∫
Γ0

∣∣∣∣∂Φ

∂ν

∣∣∣∣2 dσdt ≤ C1

∥∥Φ0
∥∥
H1

0 (Ω)
.

Step 2 Proof of the inequality (3.15).

We refer to

We go back to prove our main result of Theorem

Proof. Let’s consider z solution of the following problem

i∂z
∂t

+ ∆z + p0(x)z = 0 in Ω× (0, T ) ,

z (x, T ) = 0 in Ω,

z (x, t) =

 ∂Φ
∂ν

0

on

on

Γ0 × (0, T ) ,

Γ�Γ0 × (0, T ) .

(3.17)

We start by defining the linear continuous operator Λ by

Λ : H1
0 (Ω) −→ H−1 (Ω) ,

ΛΦ0 = −iz (0) , (3.18)

where H−1(Ω) is the dual space of H1
0 (Ω).

Multiplying the both side of the first equation of (3.17) by Φ̄, taking the real part,

integrating it by parts and by an application of Green’s formula, we get

〈ΛΦ0,Φ0〉 =

∫ T

0

∫
Γ0

∣∣∣∣∂Φ

∂ν

∣∣∣∣2 dσdt, (3.19)

where 〈., .〉 denotes the duality product between H1
0 (Ω) and H−1 (Ω) . Moreover, it’s

clear that Λ is a positive and self-adjoint operator.

This leads to the introduction of the following semi norm

∣∣Φ0
∣∣
H1

0 (Ω)
=

 T∫
0

∫
Γ0

∣∣∣∣∂Φ

∂ν

∣∣∣∣2 dσdt


1
2

. (3.20)
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We want to show that the previous semi-norm (3.20) is a norm, we must prove only

that:
T∫

0

∫
Γ0

∣∣∣∣∂Φ

∂ν

∣∣∣∣2 dΓdt = 0 then Φ0 = 0 in Q.

From the inequality (3.15) (observability inequality), it is easy to show that the

previous semi-norm is a norm, denoted by

∥∥Φ0
∥∥
H1

0 (Ω)
=

 T∫
0

∫
Γ0

∣∣∣∣ ∂Φ

∂νa

∣∣∣∣2 dΓdt


1
2

. (3.21)

Furthermore, it is clear from (3.1.4) and (3.15) that the norm is equivalent to the

usual norm of H1
0 (Ω).

It remains to show that the operator Λ is an isomorphism from H1
0 (Ω) to H−1 (Ω) .

The norm (3.21) define by the scalar product 〈Λ›Φ0,Φ0〉 and define a Hilbert space on

the set of initial data, which is equivalent to the norm of H1
0 (Ω).

From Riesz representation theorem we conclude that is Λ an isomorphism from

H1
0 (Ω) to H−1 (Ω) [46].

So, (3.18) has a unique solution given by

Φ0 = iΛ−1q0 (x, 0) . (3.22)

Thus, the control is given by the restriction on Γ0

u =
∂Φ

∂ν
χ

Γ0
, (3.23)

where Φ is the solution of (3.13).
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3.1.5 Information given about the important term

Let be yλ = ∂y
∂λ

the unique solution of the following system


i∂yλ
∂t

+ ∆yλ + p0(x)yλ + p̂0(x)y0 = 0 in Ω× (0, T ) ,

yλ (x, 0) = 0 in Ω,

yλ (x, t) = 0 on Γ× (0, T ) ,

(3.24)

where y0 is the solution of (3.1) when λ = τ = 0.

In other hand, let’s consider the sentinel Sobs defined by

Sobs (λ, τ) =

∫ T

0

∫
Γ0

(h0 + u)m0 (x, t, λ, τ) dΓ0dt, (3.25)

wherem0 is the measured state of the system on the observatory O through the interval

[0, T ].

In this section, we will present a result that allows giving information on the im-

portant term.

Theorem 16 The information obtained using the sentinel method about the important

term λp̂0 (x) is

∫ T

0

∫
Ω

λp̂0 (x) y0q̄dxdt '
∫ T

0

∫
Γ0

(h0 + u)

(
m0 −

∂ȳ0

∂ν

)
dΓ0dt. (3.26)

Proof. Acording to Taylor’s formula, we have

S (λ, τ) ' S (0, 0) + τ
∂S

∂τ
(0, 0) + λ

∂S

∂λ
(0, 0) , (3.27)

for λ and τ small.

Due to (3.3), and considering that S (λ, τ) is observed. Then, we have

λ
∂S

∂λ
(λ, τ)

∣∣∣∣
λ=0,τ=0

' Sobs (λ, τ)− S (0, 0) , (3.28)

where
∂S

∂λ
=

∫ T

0

∫
Γ0

(h0 + u)
∂ȳλ
∂ν

dΓ0dt,
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with yλ is the unique solution of (3.24).

Multiplying the both sides of the first equation in (3.24) by q̄ = q̄ (x, t), then we

have ∫ T

0

∫
Ω

{
i
∂yλ
∂t

+ ∆yλ + p0(x)yλ + p̂0(x)y0

}
q̄dxdt = 0.

After using the integration it by part and by an application of Green’s formula, we

obtain

∫ T

0

∫
Ω

p̂0(x)y0q̄dxdt =

∫ T

0

∫
Γ0

(h0 + u)
∂ȳ

λ

∂ν
dΓ0dt, (3.29)

combining (3.29) and (3.63) , we obtain the information about the important term

given in the previous theorem.
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3.2 Identifying the diffusion coefficient in a diffusion

equation with incomplete data

3.2.1 Position of the problem

The direct problem


∂y(x,t)
∂t
− div(a0 (x)∇y (x, t)) + f(y) = 0 in Q,

y(x, 0) = g (x) in Ω,

y = 0 on Σ

(3.30)

where a0 (x) is the diffusion coefficient.

In the above equation, we assume that

a0 ∈ L∞ (Ω) ,

for α0, α1 > 0, α0 ≤ a0 (x) ≤ α1 almost everywhere in Ω,

f : R −→ R is nonlinear function in C2,
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and

g ∈ L2 (Ω) .

Under the previous assumptions, the problem (3.30) has an unique solution y, such

that

y ∈ H1
(
0, T ;L2(Ω)

)
∩ L2

(
0, T ;H2(Ω)

)
.

The diffusion equation (3.30) is a mathematical model that describes the behavior

of a wide range of physical and biological systems where a substance or a property

is transported from regions of high concentration to regions of low concentration due

to random molecular motion. The equation has broad applications in various fields

of science and engineering, including physics, chemistry, biology, and environmental

science. It can be used to model the diffusion of gases, the spread of pollutants in

the atmosphere, the transport of nutrients in biological tissues, and the flow of heat in

materials.

Actually, the diffusion coefficient a0 is a key parameter in the diffusion equation

that describes the rate of diffusion of a substance in a given medium. It is a measure

of how easily a substance can move through a particular medium, and it depends on

various factors such as the size and shape of the molecule, the temperature and pressure

of the system, and the interactions between the substance and the medium.

The inverse problem

The diffusion coefficient is often unknown in many physical and biological systems,

making it challenging to accurately model and predict the behavior of these systems.

The determination of the diffusion coefficient is crucial for understanding and pre-

dicting the behavior of many physical and biological systems. Various methods have

been developed to estimate or measure the diffusion coefficient, including experimental

techniques, theoretical models, and numerical simulations. However, in many cases,

the diffusion coefficient is partially known or unknown, which presents a significant

challenge for modeling and prediction.

In this section, we are interested in the diffusion equation with diffusion coefficient

that are not completely known a0 (x) = a (x) + λâ (x), where
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• The function a (x) is a given function in L∞ (Ω), but the term λâ (x) (so-called

important term) is unknown.

As well as the initial condition g (x) = y0 (x) + τ ŷ0 (x) , where

• The function y0 (x) is a given function in L2 (Ω), but the term τ ŷ0 (x) (so-called

unimportant term) is unknown, and we have ‖ŷ0 (x)‖L2(Ω) ≤ 1.

• The parameters λ and τ are reals numbers choosen sufficiently small.

Inverse problem

Can we obtain information about the important term λâ independently of the

unimportant term τ ŷ0, in the following equation
∂y(x,t)
∂t
− div((a (x) + λâ (x))∇y (x, t)) + f(y) = 0 in Q,

y(x, 0) = y0 (x) + τ ŷ0 (x) in Ω,

y = 0 on Σ,

(3.31)

from the knowledge of some available data yobs?

3.2.2 Definition of the sentinel

Now, we introduce the notion of sentinel, before that, starting from observations. Let

y(λ, τ) = y(x, t, λ, τ) be the unique solution of the problem (1). We set O ⊂ Γ (The

observatory).

Suppose we have the following boundary observation

yobs =
∂y

∂νa
, for all (x, t) ∈ O × (0, T ) , (3.32)

which is a measure taken on a non empty open subset O at the interval time (0, T ),

and where ∂y
∂νa

= a(x)∇y.ν, with ν is the unit exterior normal to Γ.

Now, let h be a given function on O × (0, T ) such that

h ≥ 0,
∫ T

0

∫
O

h = 1.
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On the other hand, let ω be an open non empty subset of Γ, for u a control function

in L2 (ω × (0, T )) , we consider the functional S(λ, τ) as follows

S (λ, τ) =

∫ T

0

∫
O

h
∂y (x, t, λ, τ)

∂νa
dΓdt+

∫ T

0

∫
ω

u
∂y (x, t, λ, τ)

∂νa
dΓdt.

The functional can be written in a compact form as follows

S (λ, τ) =

∫ T

0

∫
Γ

(hχ
O

+ uχω)
∂y

∂νa
dΓdt, (3.33)

where χ
O

and χω denotes the characteristic functions for the open subsets O and ω,

respectively.

Definition 11 S is said a sentinel defined by h if the following conditions are satisfied:

1) S is stationary to the first order with respect to missing term τ ŷ0, i.e.

∂S

∂τ
(λ, τ)

∣∣∣∣
λ=0,τ=0

= 0. (3.34)

2) The control u is of minimal norm in L2 (ω × (0;T )) among ”all the admissible con-

trols”, i.e.

‖u‖2
L2(ω×(0;T )) = min

ũ∈Uad
‖ũ‖2

L2(ω×(0,T )) , (3.35)

where Uad is the set of admissible controls defined as follows

Uad =
{
ũ ∈ L2 (ω × (0;T )) , such that (ũ, S (ũ)) satisfies (3.34)

}
.

3.2.3 Equivalence to an optimal control problem

In the previous section, we gave some basic definitions that related to the sentinel

functional. We see that, the existence of the sentinel is linked to the existence of the

control function u, for this, we will look for a function u that assuring conditions (3.34)

and (3.35).

In this section, we will show that the existence of such control function u satisfying

(3.34) and (3.35) is equivalent to an optimal control problem.
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Denote by yτ = ∂y
∂τ

(λ, τ)
∣∣
λ=0,τ=0

the solution of the system


∂yτ
∂t
− div (a (x)∇yτ ) + f ′ (y0) yτ = 0 in Q,

yτ (x, 0) = ŷ0 in Ω,

yτ = 0 on Σ,

(3.36)

where y0 = y (x, t; 0, 0), and f ′(y0) denotes the derivative of f at point y0.

It’s clear that the insensibilty condition (3.34) is equivalent to

∫ T

0

∫
Γ

(hχ
O

+ uχω)
∂yτ
∂νa

dΓdt = 0. (3.37)

Let’s introduce the adjoint state q by
−∂q
∂t
− div(a (x)∇q) + f ′(y0)q = 0 in Q,

q(x, T ) = 0 in Ω,

q = hχ
O

+ uχω on Σ.

(3.38)

Since hχ
O

+ uχω ∈ L2(Σ), The problem (3.38) has an unique solution q such that

q ∈ L2(Q) ∩ C(0, T ;H−1(Ω)).

Then, we have the following result.

Proposition 17 Let q be the solution of the adjoint state (3.38). Then, the existence

of the sentinel defined by (3.33) for the equation (3.31) is equivalent to find a control u

with minimal norm in L2(ω×(0, T )) that makes the adjoint state q verifies the following

null-controllability property

q(x, 0) = 0 in Ω. (3.39)

Proof 1 Let u ∈ L2 (ω × (0;T )), and q = q (x; t;u) is the solution of the problem

(3.38).

We multiply the both side of first equation of (3.38) by yτ solution of (3.36), and

integrating by parts in Ω× (0, T )

∫ T

0

∫
Ω

(
−∂q
∂t
− div(a (x)∇q) + f ′(y0)q

)
yτdxdt = 0.
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We get

0 =

∫ T

0

∫
Ω

(
∂yτ
∂t
− div (a (x)∇yτ ) + f ′ (y0) yτ

)
qdxdt

+

∫
Ω

q(x, 0)yτ (x, 0)dx−
∫

Ω

q(x, T )yτ (x, T )dx

+

∫ T

0

∫
Γ

∂yτ
∂νa

q −
∫ T

0

∫
Γ

∂q

∂νa
yτ ,

yτ is the solution of (3.36), therefore

∫ T

0

∫
Γ

(hχ
O

+ uχω)
∂yτ
∂νa

dΓdt = −
∫

Ω

q(x, 0)ŷ0dx.

From (3.37), we obtain

∫
Ω

q(x, 0)ŷ0dx = 0 for all ‖ŷ0‖L2(Ω) ≤ 1.

i.e. q(x, 0) is orthogonal to unit ball of L2(Ω) which means that q(x, 0) is orthogonal

to the whol space.

Consequently

q (x, 0) = 0 in Ω.

3.2.4 Study of the optimal control problem

From the above, we conclude that the existence of the sentinel insensitive to the unim-

portant terme is related to solving an optimal control problem which is equivalent to

the existence of a unique pair (u, q) such that we have (3.38), (3.39) with (3.35).

So, in this section we are interested in the following optimal control problem

(OC)

 min(u,q)∈M ‖u‖2
L2(ω×(0;T )) ,

with M = {u ∈ L2 (ω × (0;T )) , such that (u, q) satisfies (3.38) , (3.39)} .
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We introduce q0 and z as the solutions of
−∂q0

∂t
− div(a (x)∇q0) + f ′(y0)q0 = 0 in Q,

q0(x, T ) = 0 in Ω,

q0 = hχ
O

on Σ,

(3.40)

and


−∂z

∂t
− div(a (x)∇z) + f ′(y0)z = 0 in Q,

z(x, T ) = 0 in Ω,

z = uχω on Σ,

(3.41)

respectively.

Then, we have

q (u) = q0 + z (u) . (3.42)

We want to find a control function u such that

z (u) (x, 0) = −q0 (x, 0) . (3.43)

We think of u as a control function, and we think of z = z (u) as given by (3.41) as

the state.

Now, we are dealing with the new following problem.

Find u; in which ‖u‖2
L2(ω×(0;T )) = min, such that the system with

state equation (3.41) is moves from z (x, T ) = 0 to z (x, 0) = −q0 (x, 0)

in Ω.

This is the problem we should solve now by used the penalization method which is

a technique for analyzing and solving analytically or numerically constrained optimiza-

tion problems. It consists in transforming the problem with constraints into a problem

or problems of optimization without constraint; the precise meaning of this phrase will

appear later.

Penalization
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We consider the penalized problem

inf
(u,z)∈M

Jε (u, z) , (3.44)

where

Jε (u, z) =
1

2

∫ T

0

∫
ω

u2dΓdt+
1

2ε

∥∥∥∥−∂z∂t − div (a (x)∇z) + f ′ (y0) z

∥∥∥∥2

, (3.45)

where ‖.‖ denotes the L2 (Ω× (0, T )) norm, and ε > 0.

In (3.45), z is smooth enough and it satisfies z (T ) = 0, z (0) = −q0 (0) in Ω,

z = uχω on Σ.
(3.46)

Let uε, zε be the solution of (3.44) where (3.46) holds true.

Then, we have

ρε =
1

ε

(
−∂zε
∂t
− div (a (x)∇zε) + f ′ (y0) zε

)
, (3.47)

where zε be the solution of (3.41) associated to the control uε.

So, we have

∫ T

0

∫
ω

uεûdΓdt+

∫ T

0

∫
Ω

ρε

(
−∂ẑ
∂t
− div (a (x)∇ẑ) + f ′ (y0) ẑ

)
dxdt = 0, (3.48)

for all ẑ such that
−∂ẑ

∂t
− div (a (x)∇ẑ) + f ′ (y0) ẑ = 0 in Q,

ẑ (x, T ) = ẑ (x, 0) = 0 in Ω,

ẑ = ûχω on Σ.

(3.49)

It follows from (3.48) that
∂ρε
∂t
− div (a (x)∇ρε) + f ′ (y0) ρε = 0 in Q,

ρε = 0 on Σ,
(3.50)
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with
∂ρε
∂νa

+ uε = 0 on ω × (0, T ) , (3.51)

where

∂ρε
∂νa

= a (x)
∂ρε
∂ν

with
∂ρε
∂ν

is the derivative of y with respect to the normal ν.

Optimality system

Assuming that, in some topology, ρε −→ ρ, we define ρ solution of
∂ρ
∂t
− div (a (x)∇ρ) + f ′ (y0) ρ = 0 in Q,

ρ (x, 0) = ρ◦ in Ω,

ρ = 0 on Σ.

(3.52)

where ρ◦ is to be found.

We introduce now z solution of (the formel limite of zε)

−∂z
∂t
− div(a (x)∇z) + f ′(y0)z = 0 in Q,

z(x, T ) = 0 in Ω,

z = − ∂ρ
∂νa

on ω × (0, T ) ,

z = 0 on Γ�ω × (0, T ) .

(3.53)

The question is then to find ρ◦ in such a way that

z (x, 0) = −q0 (x, 0) in Ω. (3.54)

We define a linear operator Λ by

Λ : F −→ F ′,

Λ (ρ◦) = z (x, 0) , (3.55)

where F and F ′ will be defined later. We multiply the both side of first equation of
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(3.53) by ρ solution of (3.52), and integrating by parts in Q, we obtain

∫
Ω

z (0) ρ◦dx =

∫ T

0

∫
ω

∣∣∣∣ ∂ρ∂νa
∣∣∣∣2 dΓdt.

Therefore

〈Λ (ρ◦) , ρ◦〉 =

∫ T

0

∫
ω

∣∣∣∣ ∂ρ∂νa
∣∣∣∣2 dΓdt,

where 〈., .〉 denotes the duality product between F and F ′.

This leads to the introduction of the following semi norm on F

|ρ◦|F =

(∫ T

0

∫
ω

∣∣∣∣ ∂ρ∂νa
∣∣∣∣2 dΓdt

) 1
2

. (3.56)

Lemma 2 The expression (3.56) is norm.

Proof. To show that the semi norm (3.56) is norm, we must prove only that

∫ T

0

∫
ω

∣∣∣∣ ∂ρ∂νa
∣∣∣∣2 dΓdt = 0 then ρ = 0 in Q.

It’s easy to see that by using the uniqueness continuation property for parabolic

equation [? ].

By dint of the introduction of F , we now have

Λ is an isomorphism from F to F ′, And Λ∗ = Λ

where the Hilbert space F is the completion of smooth functions for the norm (3.56)

and we denote by F ′ its dual.

Equation (3.55) is equivalent to

Λ (ρ◦) = −q0 (x, 0) . (3.57)

Then

ρ◦ = −Λ−1q0 (x, 0) . (3.58)
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When we multiply (3.40) by ρ solution of (3.52), we find

〈q0 (x, 0) , ρ◦〉 = −
∫ T

0

∫
O

h0
∂ρ

∂νa
dΓdt (3.59)

So that

q0 (x, 0) ∈ F ′ (3.60)

And (3.55) admits a unique solution.

Hence, the sentinel (3.33) will take the form

S (λ, τ) =

∫ T

0

∫
Γ

(
hχ

O
− ∂ρ

∂νa
χω

)
∂y

∂νa
dΓdt. (3.61)

3.2.5 Information given about the important term

To show how the sentinel defined above permits to estimate the pollutin term, we

consider m0 = yobs be the measured state of the system on the observatory O during

the interval [0, T ], then the measured sentinel associate to m0 is given by

Sobs (λ, τ) =

∫ T

0

∫
Ω

(
hχ

O
− ∂ρ

∂νa
χω

)
m0 (x, t, λ, τ) dxdt. (3.62)

Theorem 18 The information given by the sentinel about the important term is as

follows

∫ T

0

∫
Ω

div (λâ (x)∇y0) qdxdt ' Sobs (λ, τ)− S (0, 0)

=

∫ T

0

∫
Ω

(hχ
O
− ∂ρ

∂νa
χω)

(
m0 −

∂y0

∂νa

)
dΓdt,

where, S (0, 0) = S(λ, τ)|λ=0,τ=0, and y0 = y(λ, τ)|λ=0,τ=0

Proof. We have according to The Taylor’s formula

S (λ, τ) ' S (0, 0) + τ
∂S

∂τ
(0, 0) + λ

∂S

∂λ
(0, 0) , for λ, τ small.
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Because
∂S

∂τ
(λ, τ)

∣∣∣∣
λ=0,τ=0

= 0. And S (λ, τ) is observed then we have:

λ
∂S

∂λ
(λ, τ)

∣∣∣∣
λ=0,τ=0

' Sobs (λ, τ)− S (0, 0) . (3.63)

And,
∂S

∂λ
(λ, τ)

∣∣∣∣
λ=0,τ=0

=

∫ T

0

∫
Ω

(hχ
O
− ∂ρ

∂νa
χω)

∂y
λ

∂νa
dΓdt,

where y
λ
defined by y

λ
= ∂y

∂λ
(0, 0), which is the unique solution of


∂yλ
∂t
− div (a (x) .∇yλ) + f ′(y0)yλ = div (â (x)∇y0) in Q,

yλ(0) = 0 in Ω,

yλ = 0 on Σ.

(3.64)

Multiply (3.64) by q = q (x, t) solution of (3.38) , and integrate by part, we obtain

∫ T

0

∫
Ω

(hχ
O
− ∂ρ

∂νa
χω)

∂y
λ

∂νa
dΓdt =

∫ T

0

∫
Ω

div (â (x)∇y0) qdxdt (3.65)

Combining (3.65) and (3.63), we obtain the information about the pollution term

given in the previous theorem.
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Conclusion and perspectives

This thesis is devoted to identification problems, where we have dealt with the identifi-

cation of the important term which is independent of the variations of the unimportant

term. In the first chapter, we presented the sentinel method, which is the most popular

strategy and consists in obtaining information on the missing terms from a weighted

average of the observation. In the second chapter, we carried out a study of the identi-

fication of the bulk modulus and potential coefficient in a wave and acoustic equations

with incomplete data respectively, where we used the sentinel method of J. L. Lions

to answer the question. This showed that we can estimate the important term in-

dependently of other data that we do not want to identify. This method consists in

transposing a problem of identification or estimation of incomplete data into an optimal

control problem. In the third chapter, we use the same method to identify the diffusion

and potential coefficient in a diffusion and schrodinger equations with incomplete data

respectively. In solving these problems, it is necessary to have the measured data of

the state.

These results open up numerical perspectives of this method. The digital simulation

tools available can still be improved to respond to the many current environmental

problems. Today, we hope that the development of new techniques will allow a better

estimation of unknown parameters and coefficients in other identification problems.
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