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Abstract

The issue addressed in this thesis concerns the averaged controllability of some distributed systems

with missing data or depending on a parameter. First, we studied the averaged null controllability

problem by the Hilbert Uniqueness Method for some parameter dependent hyperbolic systems.

Where we proved some uniqueness theorems which extend those Lions [43] to the case of parameter

dependent wave equation and those Zuazua [70] to the case of parameter dependent vibrating

plate equation, these results may often be got by using the multiplier method. Then, we gave the

averaged null controllability results. The used main tool is the notion of averaged control which

has been introduced recently by Zuazua [69]. Afterward, we discussed an extension of an averaged

controllability problem of parameter dependent hyperbolic systems to the case where the target

de�ned only in a part of the system domain. We presented a de�nition and some properties of the

regional averaged controllability notion and after that, we characterized the control which achieving

the regional averaged controllability with minimum energy. Second, we studied general and abstract

control systems with missing data. By using both the averaged control notion and the no-regret

method introduced for the optimal control of systems with missing data, we introduced the notions

of averaged no-regret control and its approximation to get a full characterization for the optimal

control. As an example, we apply the described theory on a parameter dependent electromagnetic

wave equation with missing initial conditions.

Key Words:

Averaged control, distributed systems, regional averaged controllability, averaged no-regret control,

missing data, unknown parameters.
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Résumé

La problématique abordée dans cette thèse concerne la contrôlabilité moyenne de certains systèmes

distribués avec des données manquantes ou dépendant d�un paramètre. Tout d�abord, nous avons

étudié le problème de la contrôlabilité nulle moyenne par la méthode d�unicité de Hilbert de cer-

tains systèmes hyperboliques dépendant d�un paramètre. Où nous avons prouvé certains théorèmes

d�unicité qui étendent ceux [43] au cas de l�équation d�onde dépendant d�un paramètre et ceux

Zuazua [70] au cas de l�équation de la plaque vibrante dépendant d�un paramètre, ces résultats peu-

vent souvent être obtenus en utilisant la méthode du multiplicateur. Ensuite, nous avons donné les

résultats de contrôlabilité nulle moyenne. L�outil principal utilisé est la notion de contrôle moyenné

qui a été introduite récemment par Zuazua [69]. Puis, nous avons discuté une extension d�un prob-

lème de contrôlabilité moyenne des systèmes hyperboliques dépendants de paramètres au cas où

la cible est dé�nie seulement dans une partie du domaine du système. Nous avons présenté une

dé�nition et quelques propriétés de la notion de contrôlabilité moyenne régionale et après cela, nous

avons caractérisé le contrôle qui permet d�atteindre la contrôlabilité moyenne régionale avec une

énergie minimale. Deuxièmement, nous avons étudié des systèmes de contrôle généraux et abstraits

avec des données manquantes. En utilisant à la fois la notion de contrôle moyen et la méthode sans

regret introduite pour le contrôle optimal des systèmes avec des données manquantes, nous avons

introduit les notions de contrôle moyen sans regret et son approximation pour obtenir une carac-

térisation complète pour le contrôle optimal. Comme exemple, nous appliquons la théorie décrite

sur une équation d�onde électromagnétique dépendant d�un paramètre avec des conditions initiales

manquantes.

Mots clés:

Control moyen, systèmes distribués, contrôlabilité moyenne régionale, control sans regret, données
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Introduction

Control theory is an interdisciplinary branch of applied mathematics that deals with the behavior

of evolution systems modeled by partial or ordinary di¤erential equations (PDE/ODE). It starts to

emerge in 1960 but, it is di¢ cult to tell where the �rst mathematical formulation of the problem

literally originates, one can say that it was introduced by Kalman and Lions [28], [41], [38]. Control

theory has obviously great potential in the sense of various applications in di¤erent �elds: physics,

biology, mechanical engineering, astronomy, social science, medicine [24], [58]. Hence, it is very well

known.

The general problem of control theory amounts to choosing a certain control that would lead a

system from the given initial state to the prescribed �nal state. This type of problem is known as

the controllability problem which played an important role through the history of control theory.

Many fundamental problems of control theory (stability and stabilization, optimal control) can

only be solved under the assumption that the system is controllable. For this reason, it has been

studied by several authors for �nite dimensional systems, modeled by ODEs [62], [47] and for in�nite

dimensional systems, modeled by PDEs (distributed parameter systems) [41], [43].

In the last three decades, the regional controllability concept is commonly applied in practical

applications, particularly the possibility of steering the initial state to a prescribed state de�ned

only in a given subregion ! 2 
. For example, in an industrial furnace, it may be that the control
is only required to maintain the temperature at a certain level in a prescribed subregion of the

furnace. This problem has been introduced and developed by El Jai et all. in [13], [12], [13], [68].

A new direction in distributed systems has been whether a system not controllable on the global

domain 
 can be controllable on a region ! of that domain 
.

Due to the uncertainties and complexities of the modeling of physical processes, dynamic population

xv



and many other specialties, it is di¢ cult to perfectly model it, thus it becomes natural to model them

using parameter dependent system which is a system whose dynamics are governed by parameter

dependent operators [63]. In such a situation, we cannot require exact controllability of the system

by a single control (using a control independent of the parameter). To avoid this paradox, Zuazua

introduced the notion of averaged controllability in [69]. There, the problem was introduced and

solved in the setting of �nite-dimensional systems, and afterwards generalized to PDE setting in

[35], [48], [49]. Its goal is to control the averaged of system components instead of the state with

respect to the unknown parameter.

Moreover, modeling those problems may also lead to mathematical systems with missing data

(missing initial conditions, missing second member, and possibly missing boundary conditions).

For example, we never know the initial data in almost all problems of meteorology, oceanography or

the problems of pollution in a river. We have a wide range of options when it comes to the option of

the initial moment. Hence, we never know the initial data. Furthermore, in biomedical, boundary

conditions may also be unknown, which may, for instance, be unavailable for measurements. Gen-

erally speaking, in order to control such systems, we use the notion of no-regret control. This notion

was introduced many years later in statistics by Savage [61]. Then, Lions has applied this notion

and another called low-regret control to problems with incomplete data in several works [40], [17],

[44], [42] for di¤erent applications. Since then, several scholars have used the idea of these concepts

to control systems with missing data or with incomplete data. This concept was applied later by

Nakoulima et al. [57] to control distributed linear systems with missing data. Thereafter, they

developed their studies to control some nonlinear distributed systems with incomplete data [54]. In

[56], Omrane et al. applied the notion of low-regret control of an ill-posed backward heat equation.

Jacob and Omrane [25] generalized the notion of no-regret control to a linear age-structured pop-

ulation dynamics of incomplete initial data. The authors in all those works proved the uniqueness

of the low-regret control and converge to the no-regret control for which they obtained a singular

optimality system.

In recent years, an interesting notion has been introduced to control a parameter dependent sys-

tem with missing boundary conditions which is averaged no-regret control. In [20], Hafdallah and

Ayadi was introduced this concept by combining the notion of averaged control and the no-regret

control notion to control an electromagnetic wave displacement depending on unknown velocity of

propagation and with missing Dirichlet boundary condition. Subsequently, Mophou [52] also used

this new concept to control the general heat governed by an operator depending on an unknown

parameter and with missing boundary conditions. Then, Hafdallah [21] generalized the notion of

averaged no-regret control to an abstract control system with incomplete data.

xvi



An Overview of the Thesis

In this thesis, we focus on the control problem of distributed systems (particularly distributed

hyperbolic systems) depending on an unknown parameter or with missing data using the notions of

averaged control and no- regret control. There are a total three chapters, the chapter wise description

is given below

First chapter [1], mainly contains some useful ingredients related to control theory that will be

used to obtain our main results. More precisely, we started with a short overview on exact, weak and

regional controllability with some necessary theorems. Then, we brie�y discuss the classical theory

of optimal control for distributed systems (which has been introduced �rst by Lions in [45]). Next,

we introduce the notion of averaged control by giving di¤erent notions of averaged controllability

(exact, weak, null) with their required characterizations. At the end, we present a short description

of no-regrets control, low-regret control for stationary problems.

Second chapter [2], this chapter is divided into three parts. The �rst part is devoted to studying

the problem of averaged controllability for parameter dependent wave equation. This study is

an extension of Lions approach [43] to the case of parameter dependent system. We prove some

uniqueness theorems and we give the null averaged controllability results. In the second part, we use

the same steps used in the previous section to treat the problem of vibrating plate equation i.e. we

demonstrate an averaged inverse and direct inequalities giving some coercivity and continuity results

for the main introduced operator in Hilbert uniqueness method and moreover, we describe the main

steps of the Hilbert uniqueness method for the averaged null controllability problem. The third part

is dedicated to the regional averaged controllability of parameter dependent hyperbolic systems of

internal zone actuator and internal pointwise actuator. The focus is on the characterization of the

control achieving the regional averaged controllability with minimum energy. The approach is based

on the Hilbert Uniqueness Method.

Third chapter [3], we study general and abstract control systems depending on a parameter and

with missing data. By combining the low-regret technique and the averaged control notion. As

an example,we study the optimal control problem for an electromagnetic wave equation with a

potential term depending on a real parameter and with missing initial conditions.

Finally, we conclude the work carried out in this thesis and indicate interesting directions for future

work. At the end of the thesis, we include several classical results that are used throughout the

thesis in the Appendix.
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Background and preliminaries

In this chapter, we brie�y describe the mathematics background of the control theory by considering

the linear case of distributed parameter system which are widely used in the formulations and proofs

of the major results. An overview of the concepts used in this thesis was given such as controllability,

regional controllability optimal control, averaged control, Pareto control, no-regret control, and low-

regret control.

1.1 Controllability of distributed systems

Distributed parameter systems are systems in which the variables depend on time and space. They

are de�ned by operators (A;B;C) where A de�nes the dynamics of the system, B is the control op-

erator describing the inputs and C is the observation operator in terms of outputs. They are usually

described by partial di¤erential equations that can be linear or nonlinear, discrete or continuous,

deterministic or stochastic.

Controllability plays an important role. Roughly speaking, controllability in general means that it

is possible to steer a dynamic system from an initial state to an desired state using a set of admisible

controls.

In this section, we give some classical results about controllability and regional controllability of

distributed parameter systems in in�nite-dimensional spaces.

1



Chapter 1. Background and preliminaries

1.1.1 Problem statement

Consider the system described by the state equation8<:
dy

dt
(t) = Ay (t) +Bu (t) ; 8t 2 ]0; T [ ;

y (0) = y0;
(1.1)

where the state space is V, A 2 L(V ;V 0); U is the control space, B 2 L(U;V) is the control operator;
u 2 L2([0; T ]; U) is the control function:
We suppose that the operatorA generates a strongly continuous semi-group fS(t)gt�0 (See Appendix):
The semi-group plays a prominent role in the determination of the solution of an abstract di¤erential

equation. Particularly the solution of the system (1.1) is given by

y(t) = S(t)y0 +

Z t

0

S(t� �)Bu (�) d� ; t 2 [0; T ]: (1.2)

1.1.2 Exact & weak controllability

We denote by yu the solution of the system (1.1) excited by the control u and then take the variable

space 
 is a domain of Rn with a regular boundary �;V = L2(
) and U = Rp:
The formulation of the controllability problem of the system (1.1) is as follows:

Given a time T > 0 and an initial suitable condition y0, is there a control u such that the solution

y = yu(t) satis�es the condition y(T ) = yd? where yd 2 V is a desired state priori chosen.
In other words: Study the existence of a control u which steer the system to the desired state yd at

time T > 0.

Now, we introduce some notions of exact and weak controllability.

De�nition 1.1 [4] The system (1.1) is said to be exactly controllable on [0; T ] if for every �nal

target yd in V, there exists a control u 2 L2([0; T ]; U) such that

y(T ) = yd: (1.3)

This notion is illustrated on Figure 1.

Figure 1: Exact controllability.
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De�nition 1.2 [4] The system (1.1) is said to be weakly controllable on [0; T ] if for every �nal

target yd in V and for all " > 0, there exists a control u 2 L2([0; T ]; U) such that

ky(T )� ydkV � ": (1.4)

This notion is illustrated on Figure 2.

Figure2: Weak controllability.

1.1.3 The controllability operator

Let H be the operator de�ned in L2([0; T ] ;U) with its values taken in V

H : L2([0; T ];U)! V ;

u 7! Hu =
Z T

0

S(T � �)Bu (�) d� : (1.5)

Proposition 1.1 [15] The system (1.1) is said to be exactly controllable on [0; T ] i¤

8y� 2 V 0;9 > 0 : kB�S� (:) y�kL2([0;T ];U) �  ky�kV 0: (1.6)

We introduce the following matrix

G = HH� =

Z T

0

S (T � t; �)B (�)S� (T � t; �)B� (�) dt; (1.7)

which is the controllability Gramian where S�; B� are the adjoint of S;B repectivly.

1.1.4 Controllability and actuators

De�nition 1.3 [15] An actuator is de�ned by a couple (D; f), where D is the support of the actu-

ator and f is the spatial distribution of the action on the support D.

Remark 1.1 In the case of pointwise actuator (internal or boundary), D is reduced to the location

b 2 
 and f = �(:� b) where � is the dirac mass.

1.1. Controllability of distributed systems 3
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We assume that the system (1.1) is excited by p actuators (Di; fi)1�i�p such that Di \ Dj = ; if
i 6= j:

Figure 3: Some types of actuator supports.

Proposition 1.2 [15] A sequence of actuators (Di; fi)1�i�p are said to be strategic, if the system

excited by these actuators is weakly controllable.

Remark 1.2 In applications, dynamic systems that are controllable over all the domain are rare,

hence the necessity to study this concept only on part of the domain. For this, we de�ne the notion

of regional controllability.

1.1.5 Regional controllability

For regional controllability, we want the state of the system at time T verify the desired property

on part of the domain. Let a subdomain (a region) ! of 
 suppose not empty. We consider the

restriction function

�! : L2 (
)! L2 (!) ;

y 7! �! (y) = yj!:

Whose the adjoint ��! : L
2 (!)! L2 (
) is

(��!y) (x) =

(
y (x)

0

si x 2 !;
si x 2 
n!:

De�nition 1.4 [4] The system (1.1) is said to be exactly regionally controllable on ! if, for every

�nal target yd 2 L2(!), there exists a control u 2 L2([0; T ]; U) such that

yu (T ) j! = yd: (1.8)

1.1. Controllability of distributed systems 4
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De�nition 1.5 [4] The system (1.1) is said to be weakly regionally controllable on ! if, for every

�nal target yd 2 L2(!), there exists a control u 2 L2([0; T ]; U) such that

kyu (T ) j! � ydkL2(!) � ": (1.9)

Proposition 1.3 [15]

i) The system (1.1) is said to be exactly regionally controllable on ! i¤

Im�!H = L2 (!) : (1.10)

ii) The system (1.1) is said to be weakly regionally controllable on ! i¤

Im�!H = L2 (!) : (1.11)

Remark 1.3

i) A system that is exactly (respectively weakly) controllable is exactly (respectively weakly) re-

gionally controllable on any region ! from 
:

ii) If !1 and !2 are two regions such that !2 � !1, then a system that is exactly (respectively

weakly) regionally controllable on !1 is exactly (respectively weakly) controllable on !2.

Proposition 1.4 [15] The system (1.1) is said to be exactly regionally controllable on [0; T ] i¤

8y� 2 L2 (!) ;9 > 0 : kB�S� (:) y�kL2([0;T ];U) �  ky�kL2(!) : (1.12)

Proposition 1.5 [66]

i) The system (1.1) is exactly regionally controllable on ! i¤

ker�! + ImH = L2 (
) : (1.13)

ii) The system (1.1) is said to be weakly regionally controllable on ! i¤

ker�! + ImH = L2 (
) : (1.14)

In the case where A generates a strongly continuous analytic semi-group fS(t)gt�0 (See Appendix),
then we have the following result

Proposition 1.6 [66] The system (1.1) is weakly regionally controllable on ! i¤

[
n�0

Im (�!A
nS(t)B) = L2 (!) ; 8t 2 [0; T ] : (1.15)

1.1. Controllability of distributed systems 5
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1.1.6 Determination of control achieving regional controllability

The purpose of this section is to look for a control that achieves regional transfer with minimum

energy. Obviously, we can use available results on the controllability of the distributed systems,

but the di¢ culty appears is the desired state is given only on the region. Moreover, we have shown

that the regional transfer cost is minimal.

The problem is to transfer, with minimal cost, the system (1.1) from y0 to yd at time T . For this,

consider the following set

G = fg 2 V s.t. g = 0 on !g : (1.16)

Thus, the question of the regional transfer becomes

Is there a minimal energy control u 2 U such as

yu (T )� yd 2 G?

To solve this problem, consider the following

Uad = fu 2 U : yu (T )� yd 2 Gg :

The problem of regional controllability with minimal energy can be formulated as follows

inf
u2Uad

kuk2 : (1.17)

To solve this problem we propose the following approach.

General approuche

Let�s consider the system (1.1) and consider the following

Ĝ = fg 2 V 0 s.t. g = 0 on 
n!g : (1.18)

For '0 2 Ĝ; consider the following system in V 08<:
@'

@t
(t) = A�' (t) t 2 ]0; T [ ;

' (T ) = '0;
(1.19)

and the application

k'0k
2
Ĝ =

Z T

0

kB�' (t)k2 dt: (1.20)

1.1. Controllability of distributed systems 6
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Consider again the system 8<:
@ 

@t
(t) = A (t) +BB�' (t) t 2 ]0; T [ ;

 (0) = y0:
(1.21)

We de�ne the operatorM as

M'0 = P ( (T )) ; (1.22)

where P = ��!�. TheM operator is an a¢ ne operator that can be decomposed as follows

M'0 = P ( 0 (T ) +  1 (T )) ;

where  0 and  1sont system solutions (1.23) and (1.24) respectively with8<:
@ 0
@t

(t) = A 0 (t) t 2 ]0; T [ ;

 0 (0) = y0;
(1.23)

and 8<:
@ 1
@t

(t) = A 1 (t) +BB�' (t) ; t 2 ]0; T [ ;

 1 (0) = 0:
(1.24)

With these various systems, we will consider the operator that leads us from '0to  1 (T ) through

the following steps

'0 ! by resolution of (1.19) '! by resolution of (1.24)  1 !  1 (T ) :

Then, consider

�'0 = P ( 1 (T )) : (1.25)

The operator � is bounded and symetric. Then for all '0; '̂0 2 Ĝ; we have

h�'0; '̂0i = h 1 (T ) ; '̂0i =
Z T

0

B�' (t)B�'̂dt:

So the problem of regional controllability returns to the solution of the equation

�'0 = ��!yd � P ( 0 (T )) : (1.26)

Then we have the following result

Proposition 1.7 [15] Let ! be a given non-empty region of 
. If the system (1.1) is weakly

regionally controllable on ! then equation (1.26) has a single solution '0 2 Ĝ. The control

u� = B�' (t) : (1.27)
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transfer the system (1.1) in G at time T , i.e.

yu� (T ) j! � yd 2 G;

moreover, this control is the solution to the problem (1.17), i.e. it minimizes the cost of regional

transfer.

J (u) =
Z T

0

ku (t)k2 dt: (1.28)

Proof.

*First we prove that if the system (1.1) is weakly regionally controllable on ! then (1.20) de�nes a

norm. For '0 2 Ĝ; we have

k'0k = 0)
Z T

0

kB�' (t)k2 dt = 0, B�' (t) = 0, B�S� (T � t)'0 = 0:

The system (1.1) is weakly regionally controllable, then we have

Im�!H = L2 (!), kerH���! = f0g :

Therefore, the weak regional controllability implies that if B�S� (T � t)'0 = 0 then '0 = 0:

*Consider the operator �; we get

h�'0; '0iĜ�;Ĝ = hP ( 1 (T )) ; '0i = h 1 (T ) ; '0i ;

and we have

 1 (T ) =

Z T

0

S (T � s)BB�' (s) ds;

hence

h�'0; '0iĜ�Ĝ =

�Z T

0

S (T � s)BB�' (s) ds; '0

�
=

Z T

0

hB�' (s) ds;B�S� (T � s)'0i

=

Z T

0

kB�' (s)k2 ds = k'0k
2
Ĝ :

Therefore, � : Ĝ ! Ĝ� is a bijection. Then, the equation (1.26) has a single solution '0. We put

u� (t) = B�' (t) in G. We have yu(T )j! = yd:

*For the optimality of u; consider u and v dans Uad; then, y(T; u) � yd, y(T; v) � yd 2 G; hence

(y(T; v)� y(T; u)) j! = 0:
Then

h'0; (y(T; v)� y(T; u))i = 0;

1.1. Controllability of distributed systems 8



Chapter 1. Background and preliminaries

which is equivalent to �Z T

0

S (T � s)B (v (s)� u (s)) ds; '0

�
= 0:

Consider Z T

0

hv (s)� u (s) ; B�S� (T � s)'0i ds = 0;

which gives �nally Z T

0

hB�' (s) ; v (s)� u (s)i ds = 0;

then

J 0 (u�) (v � u) = 2

Z T

0

hu� (t) ; v (t)� u (t)i dt

= 2

Z T

0

hB�' (t) ; v (t)� u (t)i dt

= 0;

because

J (u� + t (u� v)) =

Z T

0

ku� (t) + t (u (t)� v (t))k2 dt

=

Z T

0

ku� (t)k2 + t2 k(u (t)� v (t))k2 dt+ 2 hu� (t) ; u (t)� v (t)i dt

) J (u� + t (u� v))� J (u�)

t
=

Z T

0

t k(u (t)� v (t))k2 + 2 hu� (t) ; u (t)� v (t)i dt

) J 0 (u�) (u� v) = 2

Z T

0

hu� (t) ; (u (t)� v (t))i dt;

which establishes the optimality of control u�:

1.2 Optimal control

Optimal control, also known as trajectory optimization, seeks to determine the input (control) to

a dynamical system or system de�ned by PDE (distributed parameter system) that optimize a

given performance functional (maximize pro�t, minimize cost, etc), while satisfying di¤erent kinds

of constraints.

Our main objective in this section will be to recall some classical results about optimal control of

distributed parameter systems which introduced by J. L. Lions [45].

1.2. Optimal control 9
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1.2.1 Problem statement

Let V and U be real Hilbert spaces of states and controls resp. Consider the optimal control problem
in in�nite dimension which is written in the following abstract form

inf
u2Uad

J (u) ; (1.29)

with constraints

Ay(u) = f +Bu; (1.30)

where A be a linear partial di¤erential operator stationary or evolutionary makes an isomorphism

on V 0 identi�ed to V, B 2 L(U;V) the control operator, Uad 2 U a non empty closed convex subset
of admissible controls, f is a source function in V.
Let Z be a Hilbert space of observations. Consider the following quadratic cost function

J (u) = kCy(u)� ydk2Z + hNu; uiU ;8u 2 Uad; (1.31)

where C 2 L(V ;Z) be the observations operator, yd is a �xed observation in Z and N is a sym-

metric de�nite positive operator bounded on U . Then, our optimal control problem consists in

characterizing the control u which minimizes J on Uad i.e.8>><>>:
Find u 2 Uad such as
J (u; y (u)) = inf J (v; y(v)) ;8v 2 Uad;
Ay(v) = f +Bv:

(1.32)

A control-state pair (u; y(u)) is called optimal pair if it solves (1.32).

1.2.2 Optimal control characterization

Theorem 1.1 [23] If the cost function J is Gateaux-di¤erentiable function, then the following

necessary and su¢ cient optimality condition holds

(J 0 (u) ; (v � u))U = (Cy (u)� yd; Cy (v � u))Z +N (u; v � u)U � 0; 8v 2 Uad; (1.33)

which called variational inequality.

Optimality condition

Let p = p(u) be the adjoint state, de�ned by

A�p = C�(Cy(u)� yd); (1.34)

1.2. Optimal control 10
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where C� 2 L(Z;V) the adjoint of C and A� is the adjoint operator of A, then

(Cy(u)� yd; Cy(v � u))Z = (C� (Cy(u)� yd) ; y(v � u))V ;

= (A�p; y(v + u))V ;

= (p;Ay(v � u))V ;

= (p;B(v � u))V ;

= (B�p; v � u)U :

Hence variational inequality 1.33 is equivalent to

(B�p+Nu; v � u)U � 0; 8v 2 Uad; (1.35)

and the unique optimal control u is given by the resolution of the following optimality system8>>>><>>>>:
Ay(u) = f +Bu;

A�p = C�(Cy(u)� yd);

8u 2 Uad;
(B�p+Nu; v � u)U � 0; 8v 2 Uad:

(1.36)

1.2.3 Application (Optimal control of hyperbolic systems)

Let 
 a bounded domain of Rn with boundary � of class C2; T > 0; Q = 
� [0; T ] ; � = �� [0; T ].
Let U = L2(Q) be the space of controls, Uad is the set admissible controls non-empty closed and

convex, B is abounded operator from U to V = L2(0; T ;H1
0 (
)). Consider the following second

order hyperbolic PDE 8>>><>>>:
@2y

@t2
+ A(x)y = f +Bu

y = 0

y(x; 0) = y0(x);
@y

@t
(x; 0) = 0

in Q;

on �;

in 
;

(1.37)

where f 2 L2(Q), y0 2 H1
0 (
) ; y1 2 L2(
):

Our optimal control problem consists in looking for a control function u 2 Uad which minimizes the
following cost function

J (v) = kCy(v)� ydk2Z + (Nv; v)U ; 8v 2 Uad; (1.38)

i.e.

inf
v2Uad

J (v; y(v)) : (1.39)

1.2. Optimal control 11
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In this case, consider the observation space Z = L2(Q):The observation operator is

C : L2(0; T ;H1
0 (
)) �! L2(Q):

Theorem 1.2 [45] The optimal control u solution of (1.37), (1.39) is unique and it�s characterized

by the following optimality system8>>>>>>>>>>>>><>>>>>>>>>>>>>:

@2y

@t2
+ A(x)y = f +Bu in Q;

y = 0 on �;

y(x; 0) = y0(x);
@y

@t
(x; 0) = y1(x) in 
;

@2p

@t2
+ A(x)p = C� (Cy(u)� yd) in Q;

p = 0 on �;

p(x; T ) = 0,
@p

@t
(x; T ) = 0 in 
;

(1.40)

with the variational inequality

(B�p+Nu; v � u)U � 0; 8v 2 Uad: (1.41)

Proof. An optimality condition is written as follow:

J 0 (u) (v � u) = (Cy(u)� yd; Cy(v)� Cy(u))Z +N (u; v � u)U � 0; 8v 2 Uad: (1.42)

Introduce the adjoint state given by8>>><>>>:
d2p

dt2
+ A�p = C� (Cy(u)� yd)

p = 0

p (x; T ) = 0;
dp

dt
(x; T ) = 0

in Q;

on �;

in 
;

(1.43)

Now, let�s rewrite the �rst order Euler (1.42) condition as

(C� (Cy(u)� yd) ; y(v)� y(u))V =

Z T

0

Z



�
d2p

dt2
+ A�p; y(v)� y(u)

�
dxdt

=

Z T

0

Z



(p;B(v � u)) dxdt;

so, we get (1.41).
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1.3 Averaged controllability

In many physical processes, modeling by parameter dependent system appeared to be a challenging

problem. In such a situation where the parameter has an unknown value, we cannot control every

realization of the system by a single control (using a control independent of the parameter). In

this context, Zuazua in [69] introduced the notion of averaged controllability. Its goal is to control

the averaged state of a parameterized system instead of the state with respect to the unknown

parameter.

In this section, we present the notion of averaged controllability for the in�nite dimensional systems

and we give its characterizations and properties, after that we study the optimal control problem

for parameter dependent hyperbolic systems and we characterize the averaged optimal control.

1.3.1 Problem statement

Let 
 be an open subset of Rn with a regular boundary � and consider a time interval ]0; T [ ; whith
T > 0. We denote by Q = 
� ]0; T [ ; � = �� ]0; T [ and we consider the following control system
depending on an unknown parameter �8<:

dy

dt
= A(�)y +B(�)u;

y(0) = y0;

in Q;

in 
;
(1.44)

where the operator A(�) depends on the uncertainty parameter � and generates a strongly con-

tinuous semi-group fS(t; �)gt�0 on the Hilbert state space V, B 2 L(U;V), u = u(t; x) 2 U is a

distributed control which doesn�t depend on �, U is space of controls, the initial data y0(x) 2 V is
independent of the parameter �. To simplify the notation we will assume that � 2 (0; 1):
The solution of the di¤erential system (1.44) can be represented as follows

y (t; �) = S (t; �) y0 +

Z t

0

S (t� s; �)B (�)u (s) ds: (1.45)

1.3.2 Exact, weak & null averaged controllability

De�nition 1.6 The system (1.44) is said to be exactly averaged controllable in time T > 0 if, for

every �nal target yd 2 V, there exists a control u 2 L2 (0; T ;U) independent of the parameter � such
that Z 1

0

y (T; �) d� = yd: (1.46)
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This notion is illustrated on Figure 4.

Figure 4: Exact averaged controllability.

De�nition 1.7 The system (1.45) is said to be weakly averaged controllable in time T > 0 if, for

every " > 0 and every �nal target yd 2 V, there exists a control u 2 L2 (0; T ;U) such thatZ 1

0

y (T; �) d� � yd


V
< ": (1.47)

This notion is illustrated on Figure 5.

Figure 5: Weak averaged controllability.

De�nition 1.8 The system (1.44) is said to be null averaged controllable in time T > 0 if there

exists a control u 2 L2 (0; T ;U) independent of the parameter � such thatZ 1

0

y (T; �) d� = 0: (1.48)

This notion is illustrated on Figure 6.

1.3. Averaged controllability 14
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Figure 6: Null averaged controllability.

Remark 1.4 This concept of averaged controllability di¤ers from that of simultaneous controllabil-

ity in which one is interested on controlling all states simultaneously and not only its average.

1.3.3 The averaged controllability operator

For the system (1.44), consider HA : L
2([0; T ];U)! V the operator de�ned by

HAu =

Z 1

0

Z T

0

S (T � t; �)B (�)u (t) dtd�; (1.49)

and its adjoint H�
A : V ! L2([0; T ];U) is given by

H�
A =

Z 1

0

S� (T � :; �)B� (�) d�: (1.50)

Where B� (resp. S� (T � :; �)) is the adjoint of of B (resp. S (T � :; �)).

HA will be used later to obtain various de�nitions and properties of averaged controllability. For

the study of controllability, without loss generality, we can assume that y0 = 0.

Proposition 1.8

i)The system (1.44) is exactly averaged controllable i¤ HA is surjective i.e. ImHA = V :
ii)The system (1.44) is weakly averaged controllable i¤ the image of HA is dense i.e. ImHA = V :
Proof.

i) The system (1.44) is exactly averaged controllable

() 8y0; yd 2 V ;9u 2 L2(0; T ;U) s.t. yd =
Z 1

0

y (T; �) d� =

Z 1

0

Z T

0

S (T � t; �)B (�)u (t) dtd�;

() HA is surjectif,

() ImHA = V :
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ii) The system (1.44) is weakly averaged controllable

() 8y0; yd 2 V ;9u 2 L2(0; T ;U) :
Z 1

0

y (T; �) d� � yd


V
< ";8" > 0;

() 8yd 2 V ;9u 2 L2(0; T ;U) :
HAu� (

Z 1

0

S (T; �) y0d� + yd)


V
< ";8" > 0;

() ImHA is dense in V :

Proposition 1.9 The system (1.44) is exactly averaged controllable in a time T i¤

9 > 0;8y 2 V :
Z T

0

Z 1

0

B�(�)S� (T � t; �) yd�

2
U

dt �  kyk2V : (1.51)

This last inequality is called "averaged observability inequality".

Proof. According to the proposition (1:8) the exact averaged controllability equivalent to ImHA =

V :
H�
T : V �! L2 (0; T ;U) is continuously invertible (see Theorem 3 in Appendix) i.e

9 > 0;8y 2 V :
Z T

0

kH�
Ayk

2
U dt >  kyk2V :

We introduce the following matrix

GA = HAH�
A =

Z T

0

Z 1

0

S (T � t; �)B (�) d�

Z 1

0

S� (T � t; �)B� (�) d�dt; (1.52)

which is the average controllability Gramian.

1.3.4 The explicit formula of control achieving averaged controllability

As fS(t; �)gt�0 and B (�) are assumed to be continuous for all � 2 (0; 1), then the average control-
lability Gramian verify

9c > 0 s.t. kGAyk2V �
Z T

0

Z 1

0

S(T � t; �)B(�)d�

Z 1

0

B�(�)S�(T � t; �)yd�

2
V
dt � c kyk2V ;8y 2 V.

(1.53)

It is also self-adjoint and no negative since

hGAy; yiV =
Z T

0

Z 1

0

B�(�)S�(T � t; �)yd�

2
V
dt � 0 ;8y 2 V. (1.54)

which implies the existence of a self-adjoin and no negative operator
p
GA also whose square equal

to GA:
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Theorem 1.3

i) There exists a control u 2 L2(0; T ;U) which steer y0 to yd in time T i¤Z 1

0

S(T; �)y0d� � yd 2 Im
p
GA: (1.55)

ii) Among the controls which transfer y0 to yd in time T , there exists a single control u which

minimizes the functional

J (u) =
Z T

0

ku(t)k2U dt: (1.56)

iii) If
R 1
0
S(T; �)y0d� � yd 2 Im

p
GA, then u is given by

û = �
Z 1

0

B�(�)S�(T � t; �)G�1T
�Z 1

0

S(T; �)y0d� � yd

�
d�; 8t 2 [0; T ] : (1.57)

1.3.5 Application (Averaged control of parameter dependent hyper-

bolic systems)

Consider the following abstract hyperbolic problem8><>:
@2y

@t2
+ A(�)y = f +B(�)u

y(x; 0) = y0;
@y

@t
(x; 0) = y1

in Q;

in 
;
(1.58)

Let Z;V be Hilbert spaces with Z is separable and dense in V, f 2 L2(0; T ;V); y0 2 Z; y1 2 V ;
B(�) 2 L(Uad; L2(0; T ;V)) and Uad � L2(0; T ;V): Then, for every � 2 (0; 1) the equation (1.58)
has aunique solution in L2(0; T ;V) [36].

Let

1Z
0

y(x; t; �)d� 2 L2(0; T ;Z) be the averaged state respect to � and yd a given desired state in

L2(0; T ;Z) too, we are interested to the following optimal control problem

inf
v2Uad

J (v) with J (v) =


1Z
0

y(x; t; �)d� � yd


2

L2(0;T ;Z)

+N kvk2L2(0;T ;Z) ; (1.59)

with N > 0.

Theorem 1.4 The averaged optimal control u solution of (1.58) (1.59) is unique and it�s charac-

terized by8>>>><>>>>:
@2y

@t2
+ A (x; �) y = f +B (�)u

@2p

@t2
+ A� (x; �) p =

R 1
0
y(u; t; �)d� � yd

y (x; 0) = y0 (x) ;
@y

@t
(x; 0) = y1 (x) ; p (x; T ) = 0;

@p

@t
(x; T ) = 0

in Q;

in Q;

in 
;

(1.60)
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with the variational inequalityZ T

0

Z



Z 1

0

(B� (�) p+Nu; v � u) d�dxdt � 0; 8v 2 Uad: (1.61)

Proof. An optimality condition is written as follow

J 0 (u) (v � u) =

0@ 1Z
0

y(x; t; u; �)d� � yd;

1Z
0

y(x; t; v; �)d� �
1Z
0

y(x; t; u; �)d�

1A
V

+N (u; v � u)U � 0; 8v 2 Uad: (1.62)

Introduce the following adjoint state8>>><>>>:
@2p

@t2
+ A� (x; �) p =

1Z
0

y(x; t; �)d� � yd

' (x; T ) = 0;
@p

@t
(x; T ) = 0

in Q;

in 
:

Now, let�s rewrite the �rst order Euler (1.62) condition as

Z T

0

Z



0@ 1Z
0

y(x; t; u; �)d� � yd;

1Z
0

y(x; t; v; �)d� �
1Z
0

y(x; t; u; �)d�

1A dxdt

=

Z T

0

Z



Z 1

0

�
d2p

dt2
+ A� (x; �) p; y(v)� y(u)

�
d�dxdt

=

Z T

0

Z



Z 1

0

(p;B (�) (v � u)) d�dxdt:

Hence, we get (1.61).

1.4 No-regrets control & low-regret control for stationary

problems

The concepts of no-regret control and low regret control were developed by Lions [40], [44] for

controlling systems modeled by partial di¤erential equations with missing data or with partial

information.

In what follows, we are devoted to the de�nition of the concept of Pareto control, no regrets control,

and low regrets control for a stationary problem, followed by application on a case of hyperbolic

systems.
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1.4.1 Problem statement

Let G is a non-empty closed subspace of Hilbert space of uncertainties F and let � 2 L(F;V 0). For
f 2 V 0, the equation for the control v 2 U and the uncertainty g 2 G is given by

Ay(v; g) = f +Bv + �g; (1.63)

where the theoretical basis remains the same as the one given in the section above.

The problem (1.63) is well posed in V and therefore it has a single solution denoted y = y(v; g).

For every g 2 G, we have a possible state to which we attach the following cost function

J (v; g) = kCy(v; g)� ydk2Z +N kvk2U ; (1.64)

where C 2 L (V ;Z), Z is the observation space, yd 2 Z and N > 0.

We are concerned with the optimal control of the problem (1.63) (1.64), i.e. we want to solve the

problem

inf
v2U

J (v; g): (1.65)

When G = f0g, then the problem (1.65) becomes a standard optimal control problem.

When G 6= f0g, then the problem (1.65) has no sense when G is an in�nite dimensional space.

The classical idea is to proceed to the calculation of

inf
v2U

�
sup
g2G

J (v; g)
�
: (1.66)

but J (v; g) hasn�t anupper bound because sup
g2G

J (v; g) = +1:

To avoid di¢ culty arises in (1.66) Lions thought to look only for controls v such that J (v; g) �
J (0; g) ;8g 2 G:

1.4.2 Pareto control

De�nition 1.9 [55] We say that u 2 U is a Pareto control for the system (1.63) (1.64) i¤8>><>>:
J (u; g) � J (v; g) 8v 2 U;8g 2 G;
and if there exists g0 2 G s.t.

J (u; g0) < J (v; g0) 8v 2 U:
(1.67)

De�nition 1.10 [55] We say that a Pareto control u 2 U is related to u0 2 U if

J (u; g) � J (u0; g) 8g 2 G: (1.68)
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1.4.3 No-regret control

De�nition 1.11 We say that u 2 U is a no-regrets control related to u0 for (1.63) (1.64) if u is

the solution to the following problem

inf
v2U

�
sup
g2G

(J (v; g)� J (u0; g))
�
: (1.69)

Remark 1.5 When u0 = 0, the de�nition coincides with that of the no-regrets control de�ned by

Lions [40]

Remark 1.6 Obviously, the problem (1.69) is de�ned only for the controls v 2 U such that

sup
g2G

(J (v; g)� J (u0; g)) <1: (1.70)

Lemma 1.1 [55] For any u0 �xed in U and for any v 2 U we have

J (v; g)� J (u0; g) = J (v; 0)� J (u0; 0) + 2 h��� (v � u0) ; giG0;G ; (1.71)

where � (v) 2 V is de�ned for v 2 U by

A�� (v) = C�C (y(v; 0)� y(0; 0)) : (1.72)

Proof. Due A is an isomorphism, we have

y(v; g) = y(v; 0) + y(0; g)� y(0; 0): (1.73)

From the de�nition of J and (1.73), we have

J (v; g) = kC (y(v; 0) + y(0; g)� y(0; 0))� ydk2Z +N kvk2U
= J (v; 0) + kC (y(0; g)� y(0; 0))k2Z + 2(Cy(v; 0)� yd; C (y(0; g)� y(0; 0))Z ;

and

J (u0; g) = kC (y(u0; 0) + y(0; g)� y(0; 0))� ydk2Z +N kvk2U
= J (u0; 0) + kC (y(0; g)� y(0; 0))k2Z + 2(Cy(u0; 0)� yd; C (y(0; g)� y(0; 0)))Z

it comes

J (v; g)� J (u0; g) = J (v; 0)� J (u0; 0) + 2(C(y(v � u0; 0)� y(0; 0)); C(y(0; g)� y(0; 0)))Z

= J (v; 0)� J (u0; 0) + 2(C�C(y(v � u0; 0)� y(0; 0)); y(0; g)� y(0; 0))V :
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Introduce the state � (v) given by (1.72) to write

J (v; g)� J (u0; g) = J (v; 0)� J (u0; 0) + 2 (A�� (v � u0) ; y(0; g)� y(0; 0))V

= J (v; 0)� J (u0; 0) + 2 (� (v � u0) ; �g)V

= J (v; 0)� J (u0; 0) + 2 h��� (v � u0) ; giG0;G :

Therefore the equation (1.71) is veri�ed.

Remark 1.7 To simplify, we de�ne the operator S such that S(v) = ���(v) for v 2 U . Then, we
have

J (v; g)� J (u0; g) = J (v; 0)� J (u0; 0) + 2 hS (v � u0) ; giG0;G 8g 2 G: (1.74)

Remark 1.8 By (1.74) it is easy to verify that condition (1.70) holds for the no-regret control v

i¤ v 2 K + u0; where

K =
n
w 2 U : hS(w); giG0;G = 0 8g 2 G

o
:

Proposition 1.10 [55] Let u0 2 U . Then there is a unique Pareto control related to u0. Moreover,
it is the unique element of the set K + u0, which minimizes the functional J (v; 0) on K + u0.

Theorem 1.5 Let u0 2 U be a given control, then we have u 2 U is a Pareto control related to u0
i¤ u is a no-regrets control related to u0:

Proof. Let u be a Pareto control related to u0, and let v 2 K + u0. Then

hS(u� u0); giG0;G = 0 = hS(v � u0); giG0;G 8g 2 G;

and we have J (u; 0) � J (v; 0) according to proposition. Thus, using (1.74)

J (u; 0)� J (u0; 0) + 2 hS (u� u0) ; giG0;G � sup
g2G

(J (v; g)� J (u0; g)) 8g 2 G:

Hence

sup
g2G

(J (u; g)� J (u0; g)) � sup
g2G

(J (v; g)� J (u0; g)) 8g 2 G:

Then,

sup
g2G

(J (u; g)� J (u0; g)) = inf
v2K+u0

�
sup
g2G

(J (v; g)� J (u0; g))
�
8g 2 G:

Now, let v 2 UadnK + u0. There exists g0 2 G such that hS(v � u0); giG0;G 6= 0. Then, we have

sup
g2G

(J (v; g)� J (u0; g)) = J (v; 0)� J (u0; 0) + 2 sup
g2G

hS (v � u0) ; giG0;G = +1:
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Note that G is a vector space, and we have only two possibilities:

sup
g2G

hS (w) ; giG0;G = 0 or sup
g2G

hS (w) ; giG0;G = +1:

In this case, lim
t!1

hS (w) ; tgiG0;G = 0:
On the other hand, since u is a Pareto control, we have J (u; g)� J (u0; g) � 0 8g 2 G, hance

J (u; g)� J (u0; g) � 0 � sup
g2G

(J (v; g)� J (u0; g)) 8g 2 G:

Finally,

sup
g2G

(J (u; g)� J (u0; g)) � inf
v2K+u0

�
sup
g2G

(J (v; g)� J (u0; g))
�
8g 2 G:

In conclusion, u is a no-regrets control related to u0.

Conversely: Let u a no-regrets control related to u0. We have

sup
g2G

(J (u; g)� J (u0; g)) � sup
g2G

(J (v; g)� J (u0; g)) 8v 2 U:

Then for v = u0 and take (1.74) into account to �nd

J (u; 0) + 2 sup
g2G

hS (u� u0) ; giG0;G � J (u0; 0) = c 8g 2 G;

where c is a constant.

We have J (u; 0) � 0 then, sup
g2G

hS (u� u0) ; giG0;G � c: We deduce that sup
g2G

hS (u� u0) ; giG0;G = 0:

Therefore, sup
g2G

hS (u� u0) ; giG0;G � 0 8g 2 G;then hS (u� u0) ; giG0;G � 0; Thus u 2 K + u0 and

we have

J (u; 0) � J (v; 0) 8u 2 K + u0:

Finally, we conclude that u is a Pareto control related to u0.

1.4.4 Low-regret control

De�nition 1.12 [44] We say that u 2 U is a low-regret control related to u0 for (1.63) (1.64) if

u is the solution to the following problem

inf
v2U

sup
g2G
(J (v; g)� J (u0; g)�  kgk2G);  > 0: (1.75)

The problem (1.69) is relaxed by introducing for  > 0, see [55] and [57] , the problem

J (v; g) � J (u0; g) +  kgk2G ;  > 0;
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hence

J (v; g)� J (u0; g)�  kgk2G = J (v; 0)� J (u0; 0) + 2 hS(v � u0); giG �  kgk2G ;

which implies

sup
g2G
(J (v; g)� J (u0; g)�  kgk2G) = J (v; 0)� J (u0; 0) + sup

g2G
(2 hS(v � u0); giG �  kgk2G);

by using Legendre transform [6] we obtain

sup
g2G
(J (v; g)� J (u0; g)�  kgk2G) = J (v; 0)� J (u0; 0) +

1


kS(v � u0)k2G :

Then,

inf
v2U
J (v); (1.76)

where

J (v) = J (v; 0)� J (u0; 0) +
1


kS(v � u0)k2G : (1.77)

Existence and uniqueness of low-regret control

Theorem 1.6 Problem (1.76) (1.77) has a single solution u called low-regret control related to u0

Proof. From the de�nition of J ;we have that

J  (v) � �J (u0; 0)8v 2 U:

i.e, d = inf
v2U

J  (v) exists.

Let a minimizing sequence (vn) (See Appendix) such that d = lim
i!1

J (vn) ; we have

�J (u0; 0) � J  (vn) = J (vn; 0)� J (u0; 0) +
1


kS(vn � u0)k2G � d + 1;

which implies that

kCy (vn; 0)� ydk2Z +N kvnk
2
U +

1


kS(vn � u0)k2G � d + J (0; u0) + 1 = C:

we deduce that

kvnkU � C;

kCy (vn; 0)� ydkZ � C; implies kCy (vn; 0)kZ � C;

kS(vn � u0)kG � C
p
; (1.78)
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where the constant C (independent of n) is not always the same.

From (1.78) we deduce that (vn) is bounded in compact space U; then we can extracting a subse-

quence still denoting by (vn) converges weakly to u in U; due to isomorphism of A we deduce that

y (vn; 0) converge weakly to y (u; 0) in V :
The cost function J  (v) is a lower semi continuous

J  (u) � lim
n!1

inf
v2U

J  (vn) = inf
v2U

J  (v) = d;

and we deduce from the convexity strict of the cost function J that u is unique.

Theorem 1.7 The solution u of the relaxed problem (1.76) (1.77)(The unique low-regret control)

converges weakly in U to the no-regrets control related to u0 when  tends to 0.

Proof. Let u be the solution u of the problem (1.76) (1.77) in U then for all v 2 U

J (u; 0)� J (u0; 0) +
1


kS(u � u0)k2G � J (v; 0)� J (u0; 0) +

1


kS(v � u0)k2G 8v 2 U;

In particular for v = u0 we have

J (u; 0)� J (u0; 0) +
1


kS(u � u0)k2G � 0;

and the structure of J (u; 0) in (1.64) gives

kCy (u ; 0)� ydk2Z +N kuk2U + kS(u � u0)k2G � c; (1.79)

where c is a constant independent of :

We deduce from (1.79) that (u) is bounded in U; then we can extract a subsequence still be denoting

(u) converges weakly to u 2 U:
It�s clear that for every v 2 U

J (v; g)� J (u0; g)�  kgk2G � J (v; g)� J (u0; g) 8g 2 G;

hence

J (u; g)� J (u0; g)�  kgk2G � sup
g2G

(J (v; g)� J (u0; g)) 8g 2 G;

when  tend to 0 we obtain

J (u; g)� J (u0; g) � sup
g2G

(J (v; g)� J (u0; g)) 8g 2 G;

In conclusion, u is a no-regret control.
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Low-regret control optimality system

The following proposition gives the optimality system for low-regret control u:

Proposition 1.11 Low-regret control u, solution of (1.76)-(1.77) is characterized by the unique

solution
�
y; �; �; p

	
of the following optimality system8>>>>>>><>>>>>>>:

Ay = f +Bu;

A�� = C�C(y � y(0; 0));

A� =
1

����;

A�p = C�(Cy � yd) + C�C�;

(B�p +Nu; w)U � 0 8w 2 U:

(1.80)

where y (u; 0) = y; �(u) = �

:

Proof. Let u be solution to (1.76) (1.77). A �rst order necessary condition gives for every w 2 U

(C� (Cy(u; 0)� yd) ; y(w; 0)� y (0; 0))V +N (u; w)U +
1


(S(u � u0); S (w))G � 0: (1.81)

By de�nition we have

A�� = C�C(y � y(0; 0));

Let � = �(u) be the solution of

A� =
1


����;

we introduce the adjoint state p = p(u) de�ned by

A�p = C�(Cy � yd) + C�C�:

To simplify the calculations we take u0 = 0:Then,

1


(S(u); S (w))G =

�
1


���(u); �

��(w)

�
G

=

�
1


����(u); �(w)

�
V

=
�
A�; �(w)

�
V

=
�
�; A

��(w)
�
V

=
�
�; C

�C(y(w; 0)� y(0; 0))
�
V

=
�
C�C�; (y(w; 0)� y(0; 0)

�
V

= (A�p � C�(Cy � yd); (y(w; 0)� y(0; 0))V

= (p; A(y(w; 0)� y(0; 0))V � (C
�(Cy � yd); (y(w; 0)� y(0; 0))V :
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Then,
1


(S(u); S (w))G = (p; Bw)V � (C

�(Cy � yd); (y(w; 0)� y(0; 0))V : (1.82)

From (1.81) and (1.82), we deduce the following optimality condition

(B�p +Nu; w)U � 0 8w 2 U;

No-regret control optimality system

First, we solve the problem

A� = �g; 8g 2 G � 2 V,

then

A�� = C�C�; 8� 2 V,

and we pose

Rg = ���; 8g 2 G � 2 V.

We assume that

kRgkĜ � c kgkG ; 8g 2 G; (1.83)

where Ĝ is the complement of G

Theorem 1.8 [46] We suppose that (1.83) is true, the no-regret control u related to u0 solution of

the problem (1.69) is characterized by the single solution fy; �; �; pg8>>>>>>><>>>>>>>:

Ay = f +Bu;

A�� = C�Cy (u; 0)� yd;

A� = ��; � 2 G;
A�p = C� (Cy (u; 0)� yd) + C�C�;

(B�p+Nu;w)U � 0, 8w 2 U:

(1.84)

Proof. From relation (1.79) and Theorem 1.7 the sequence (u) converges weakly in U to u the

unique no-regret control related to u0. The operator B continuous from U in V 0, then,

Bu * Bu weakly in V 0:

Now from the optimality system of the proposition 1.11 the sequence (Ay) is bounded in V 0 and
since A is a isomorphism then

Ay * Ay weakly in V 0:
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By passing to the limit in the �rst equation of the system (1.80), we obtain

Ay = f +Bu:

We also deduced from proposition 1.11 that B�p = �Nu is bounded in V 0. Let R be the operator
such that R( 1


���) = B�p then the hypothesis (1.83), we deduce that ( 1�

��) is bounded in G

closed sub-space of the Hilbert space F . Therefore,

1


��� * � 2 Ĝ � F:

Hence A� = � 1

��� is bounded, and then

�
�
�
also bounded thanks to the isomorphism of A

which implies that

A� * A�, � 2 V :

We have
�
�
�
and (y) are bounded, we obtain that A�� is bounded. Therefore, (p) converges to

p, which gives by passing to the limit (1.80) the optimality system (1.84)

1.4.5 Application (Optimal control of hyperbolic equation with incom-

plete data)

Let 
 be an open bounded set of Rn with smooth boundary �, denote by Q = 
 � (0; T ) and
� = �� (0; T ) ; T > 0: Consider the following hyperbolic system8>>><>>>:

@2y

@t2
+ Ay = f +Bv

y = 0

y(x; 0) = y0 + g0;
@y

@t
(x; 0) = y1 + g1

in Q;

on �;

in 
:

(1.85)

Let V, H two spaces with V �H dense and separable, A 2 L(L2(0; T ;V); L2(0; T ;V 0));
B 2 L(U;L2(0; T ;H)); f 2 L2((0; T );H) and U is a space of controls. Let F be a Hilbert space

with V �F� V 0. Let G0 be a closed subspace of V such that y0 2 V and g0 2 G0 and G1 be a closed
subspace of H such that y1 2 H and g1 2 G1. We denote by

�
y(t; x; g);

@y

@t
(t; x; g)

�
the solution of

the equation (1.85), where g = (g1; g2) and G = G0 �G1.

Let C 2 L (L2((0; T );V);Z) where Z is the observation space.

Consider the cost function

J (v; g) = kCy(v; g)� ydk2Z +N kvk2U ; (1.86)

where yd given in Z and N > 0:
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No-regret control for the hyperbolic equation with incomplete data

We take in the rest of the section u0 = 0: For these cost functions, we are looking for the no-regrets

controls u, verifying (1.69).

Lemma 1.2 For any v 2 U , we have

J (v; g)�J (0; g) = J (v; 0)�J (0; 0)+2
 �

�@�
@t
(0) ; g0

�
G00;G0

+ h� (0) ; g1iG01;G1

!
8g0; g1 2 G0�G1;

(1.87)

where �(v) be solution of 8>>><>>>:
@2�

@t2
+ A�� = C�C (y(v; 0)� y(0; 0))

� (x; 0) = 0

�(x; T ) = 0;
@�

@t
(x; T ) = 0

in Q;

on �;

in 
;

(1.88)

where A� is the adjoint of A:

Proof. We have

J (v; g)� J (0; g) = J (v; 0)� J (0; 0) + 2(C�C (y(v; 0)� y(0; 0)) ; y(0; g)� y(0; 0))V :

Now introduce �(v) de�nied by (1.88), then

(C�C (y(v; 0)� y(0; 0)) ; y(0; g)� y(0; 0))V = (
@2�

@t2
+ A��; y(0; g)� y(0; 0))V

= �
�
@�

@t
(0) ; g0

�
G00;G0

+ h� (0) ; g1iG01;G1 ;8g 2 G:

Low-regret control

Now,we consider the no-regret control

inf
v2U

�
sup
g2G

(J (v; g)� J (0; g))
�
; (1.89)

from (1.87) the problem is equivalent to the following one

inf
v2U

 
J (v; 0)� J (0; 0) + 2 sup

g2G

 �
�@�
@t
(0) ; g0

�
G00;G0

+ h� (0) ; g1iG01;G1

!!
;
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we relax the problem by adding a quadratic perturbation to get

sup
g2G

(J (v; g)� J (0; g)�  kgkG)

= J (v; 0)� J (0; 0) + 2 sup
g2G

  �
�@�
@t
(v) (0) ; g0

�
G00;G0

+ h� (v) (0) ; g1iG01;G1

!
�  kgkG

!
:

Using the Legendre transform we get

sup
g2G

(J (v; g)� J (0; g)�  kgkG) = J (v; 0)� J (0; 0) +
1



 
k� (v) (0)k2G1 �

@�@t (v) (0)
2
G0

!
:

It comes down to �nding

inf
v2U

J (v); (1.90)

where

J (v) = J (v; 0)� J (u0; 0) +
1



 
k� (v) (0)k2G1 �

@�@t (v) (0)
2
G0

!
(1.91)

Existence and uniqueness of low-regret control

Theorem 1.9 Problem (1.90) (1.91) has a single solution u called low-regret control.

Proof. Demonstration is similar to the one made for the Theorem (1.6)

Low-regret control optimality system

The following proposition gives the optimality system for low-regret control u:

Proposition 1.12 low-regre control u, solution of (1.90) (1.91) is characterized by the unique
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solution
�
y; �; �; p

	
of the following optimality system8>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>:

@2y
@t2

+ Ay = f +Bu;

y(x; 0) = y0;
@y

@t
(x; 0) = y1;

@2�
@t2

+ A�� = C�C (y(u; 0)� y(0; 0)) ;

�(x; T ) = 0;
@�

@t
(x; T ) = 0;

@2�
@t2

+ A� = 0;

�(x; 0) =
1



@�

@t
(0);

@�
@t
(x; 0) =

1


�(0);

@2p
@t2

+ A�p = C�C(y � yd) + C�C�;

p(x; T ) = 0;
@p
@t
(x; T ) = 0;

(B�p +Nu; w)U � 0; 8w 2 U:

(1.92)

where y (u; 0) = y; �(u) = �

:

Proof. Let u be solution to (1.90) (1.91). A �rst order necessary condition gives for every w 2 U

(Cy(u; 0)�yd; C (y(w; 0)� y (0; 0)))Z+N(u; w)U�(
1



@�

@t
(u) (0);

@�

@t
(w) (0))V+(

1


� (u) (0); � (w) (0))V � 0:

(1.93)

Let�s introduce a new state given by8>>>><>>>>:
@2�
@t2

+ A� = 0

� (x; 0) = 0

�(x; 0) =
1



@�

@t
(0);

@�
@t
(x; 0) =

1


�(0)

in Q;

on �;

in 
;

(1.94)

then (1.93) becomes

(C�Cy(u; 0)� yd + C�C�; y(w; 0)� y (0; 0))V +N(u; w)U � 0: (1.95)

We introduce p solution of the problem8>>><>>>:
@2p
@t2

+ Ap = C�Cy(u; 0)� yd + C�C�

p (x; 0) = 0

p(x; T ) = 0;
@p
@t
(x; T ) = 0

in Q;

on �;

in 
;

(1.96)

Then, we have

J 0(u)(w) = (B
�p +Nu; w)U � 0; 8w 2 U; (1.97)
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No-regret control optimality system

Theorem 1.10 The no-regrets control u solution of the problem (1.89) is characterized by the single

solution fy; �; �; pg 8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:

@2y
@t2

+ Ay = f +Bu;

y(x; 0) = y0;
@y

@t
(x; 0) = y1;

@2�

@t2
+ A�� = C�C (y(u; 0)� y(0; 0)) ;

�(x; T ) = 0;
@�

@t
(x; T ) = 0;

@2�

@t2
+ A� = 0;

�(x; 0) = �0;
@�

@t
(x; 0) = �1;

A�p = C�C(y � yd) + C�C�;

p(x; T ) = 0;
@p

@t
(x; T ) = 0;

(B�p+Nu;w)U � 0 8w 2 U;

(1.98)

where

�0 = lim
!0

1



@�

@t
(0) and �0 2 Ĝ0 the complement of G0:

�1 = lim
!0

1


�(0) and �1 2 Ĝ1 the complement of G1:

31



C
h
a
pt
er

2

Averaged controllability of some parameter dependent

hyperbolic systems

In the �rst part of this chapter, null averaged controllability problems are studied by an extension

of the Hilbert Uniqueness Method for parameter dependent wave equation. This approach (HUM),

introduced by Lions [43] in 1986, is based on uniqueness theorems leading to the construction of

suitable Hilbert spaces of the controllable spaces. Then, in the next part, to treat the problem of

parameter dependent vibrating plate equation, we follow the same steps as in the previous part. In

the last part, our objective is to extend the notion of regional controllability for parameter dependent

hyperbolic systems. We use an approach based on an extension of the Hilbert uniqueness method

devoted to the calculation of the control which steers the averaged state(with respect to such a

parameter) towards the desired state only on a given part of the system evolution domain.

2.1 Averaged controllability of parameter dependent wave

equation

In this section, we consider the averaged null controllability property for wave equation depending

on an unknown parameter under the e¤ect of boundary control. We prove the averaged inverse

inequality (averaged observability inequality) by using the multiplier method. Then, applying the

Hilbert uniqueness method well adapted to design a control chosen independently of the parameter

value which steers the average of the state to the origin.
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2.1.1 Problem statement

Let an open bounded subset 
 of Rn with a regular boundary � and T > 0, we denote �0 a non-

empty open part of �; Q = 
� ]0; T [ ; � = �� ]0; T [ ;�0 = �0 � ]0; T [ : We consider the following
wave equation with unknown parameter � and a boundary control action8>>>>>><>>>>>>:

@2y

@t2
� �2�y = 0

y =

(
u

0

y (0; x) = y0 (x) ;
@y

@t
(0; x) = y1 (x)

in Q,

on �0;

on���0;
in 
,

(2.1)

where the velocity of propagation parameter � is supposed to be unknown in (�1; �2) ;V = L2 (
)�
H�2 (
) is the state space, u presents a boundary control action in L2 (�0) ; (y0; y1) 2 V, all are
independent of the parameter �.

It�s well known that the wave equation (2.1) has a unique solution
�
yu(t; x; �);

@yu
@t
(t; x; �)

�
in

C (0; T ;L2 (
)) \ C1 (0; T ;H�1 (
)) [43].

We introduce the following notions of null averaged controllability for the system (2.1).

De�nition 2.1 The system (2.1) is said to be null averaged controllable if there exists a control u

independent of the parameter � such that�Z �2

�1

yu (T; x; �) d�,
Z �2

�1

@yu
@t
(T; x; �) d�

�
= (0; 0) : (2.2)

However, let�s consider the following homogeneous wave equation with smooth initial conditions

given by 8>>><>>>:
@2�

@t2
� �2�� = 0

� = 0

� (0; x) = �0 (x) ;
@�

@t
(0; x) = �1 (x)

in Q,

on �,

in 
,

(2.3)

where the initial data (�0; �1) 2 H1
0 (
)� L2 (
) are independent of the parameter �: It�s well

known that (2.3) has a unique solution [43].

Let�s de�ne for all t 2 (0; T ) the averaged energy with respect to � associated to (2.3) by

Ea (t) =
1

2

Z �2

�1

Z



"����@�@t
����2 + �2 jr�j2

#
dxd�: (2.4)

Lemma 2.1 Let � = �(t; x; �) be a solution to (2.3). Then the averaged energy (2.4) is conserved,

i.e. for all t 2 (0; T )

Ea(t) = Ea(0) =
1

2

Z �2

�1

Z



�
j�1j

2 + �2 jr�0j
2)
�
dxd�: (2.5)
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Proof. Multiply (2.3) by
@�

@t
; integrate on (�1; �2) � Q, then we apply Green formula, Fubini

theorem (See Appendix), we obtain

0 =

Z �2

�1

Z



�
@2�

@t2
� �2��

��
@�

@t

�
dxd�

=

Z �2

�1

Z



1

2

@

@t

����@�@t
����2 � �2��

@�

@t
dxd�

=

Z �2

�1

 
1

2

Z



@

@t

����@�@t
����2 dx+ �2

Z



r�:r
�
@�

@t

�
dx� �2

Z
�

r�:�@�
@t
d�

!
d�

=

Z �2

�1

 
1

2

Z



@

@t

����@�@t
����2 dx+ �2

Z



@

@t
jr�j2 dx� �2

Z
�

r�:�@�
@t
d�

!
d�:

Considering the boundary conditions we get

@Ea(t)

@t
= 0;

and as a result, we have energy conservation.

2.1.2 Averaged inverse & direct inequalities

The main objective of this main section is to establish averaged inverse inequality and averaged

direct inequality of the problem (2.3), such inequalities would be very important in the application

of Hilbert Uniqueness Method (HUM) exactly to prove the coercivity and consistency of an operator

who plays a key role.

For ease of notation, the convention of recurring indices will be applied in the remainder of this

chapter, such as

qk�k =
nP
k=1

qk�k:

Lemma 2.2 Let q : 
! Rn be a vector �eld of class C1 independent of the parameter �, then for
every � solution for (2.3), we have the following identity

1
2

R �2
�1

R
�
�2
����@�@�

����2 qk�kd�d� = R �2�1 R
 @�@t qk @�@xk dx
����T
0

d�

+1
2

R �2
�1

R
Q

@qk
@xk

 ����@�@t
����2 � �2 jr�j2

!
dxdtd�

+
R �2
�1

R
Q
�2
@�

@xi

@qk
@xi

@�

@xk
dxdtd�:

(2.6)
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Proof. We multiply the equation (2.3) with qk
@�

@xk
and we integrate in (�1; �2)�Q we obtain

Z �2

�1

Z
Q

@2�

@t2
qk
@�

@xk
dxdtd�| {z }

(I )

�

Z �2

�1

Z
Q

�2��qk
@�

@xk
dxdtd�| {z }

(II )

= 0.

First, analysis of (I ) Z �2

�1

Z
Q

@2�

@t2
qk
@�

@xk
dxdtd�

=

Z �2

�1

Z



@�

@t
qk
@�

@xk
dx

����T
0

d� �
Z �2

�1

Z
Q

qk
@�

@t

@

@xk

�
@�

@t

�
dxdtd�;

and we know that Z �2

�1

Z
Q

@�

@t
qk

@

@xk

�
@�

@t

�
dxdtd�

=
1

2

Z �2

�1

Z
Q

qk
@

@xk

����@�@t
����2 dxdtd� (2.7)

on the other hand, Gauss�s divergence formula (See Appendix) gives usZ



@

@xk

 
qk

����@�@t
����2
!
dx =

Z
�

qk

����@�@t
����2 �kdx (2.8)

then, it results that

� 1
2

Z �2

�1

Z
Q

qk
@

@xk

����@�@t
����2 dxdtd� = 1

2

Z �2

�1

Z
Q

@qk
@xk

����@�@t
����2 dxdtd� (2.9)

since
@�

@t
= 0 on �. From (2.7) and (2.9) it results

Z �2

�1

Z
Q

@2�

@t2
qk
@�

@xk
dxdtd�

=

Z �2

�1

Z



@�

@t
qk
@�

@xk
dx

����T
0

d� +
1

2

Z �2

�1

Z
Q

@qk
@xk

����@�@t
����2 dxdtd�. (2.10)

Otherwise, analysis of (II ); apply the Green formula (See Appendix) to getZ �2

�1

Z
Q

�2��qk
@�

@xk
dxdtd�

=

Z �2

�1

Z
�

�2
@�

@�
qk
@�

@xk
d�d� �

Z �2

�1

Z
Q

�2r� � r
�
qk
@�

@xk

�
dxdtd�.
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On the other hand, we have

r (�) � r
�
qk
@�

@xk

�
=
@�

@xi
qk

@2�

@xi@xk
+
@�

@xi

@qk
@xi

@�

@xk

=
1

2
qk

@

@xk
jr�j2 + @�

@xi

@qk
@xi

@�

@xk
;

then, Z �2

�1

Z
Q

�2��qk
@�

@xk
dxdtd�

=

Z �2

�1

Z
�

�2
@�

@�
qk
@�

@xk
d�d� � 1

2

Z �2

�1

Z
Q

�2qk
@

@xk
jr�j2 dxdtd�

�
Z �2

�1

Z
Q

�2
@�

@xi

@qk
@xi

@�

@xk
dxdtd�;

from Gauss�s divergence (See Appendix) we get

1

2

Z �2

�1

Z
Q

�2qk
@

@xk
jr�j2 dxdtd�

=
1

2

Z �2

�1

Z
�

�2qk jr�j2 �kd�d� �
1

2

Z �2

�1

Z
Q

�2
@qk
@xk

jr�j2 dxdtd�;

hence Z �2

�1

Z
Q

�2��qk
@�

@xk
dxdtd�

=

Z �2

�1

Z
�

�2
@�

@�
qk
@�

@xk
d�d� � 1

2

Z �2

�1

Z
�

�2qk jr�j2 �kd�d�

+
1

2

Z �2

�1

Z
Q

�2
@qk
@xk

jr�j2 dxdtd� �
Z �2

�1

Z
Q

�2
@�

@xi

@qk
@xi

@�

@xk
dxdtd�: (2.11)

Remark that Z
�

jr�j2 qk�kd� =
Z
�

����@�@�
����2 qk�kd�,

and (2.11) will have the form Z �2

�1

Z
Q

�2��qk
@�

@xk
dxdtd�

=
1

2

Z �2

�1

Z
�

�2qk

����@�@�
����2 �kd�d�

+
1

2

Z �2

�1

Z
Q

�2
@qk
@xk

jr�j2 dxdtd�

�
Z �2

�1

Z
Q

�2
@�

@xi

@qk
@xi

@�

@xk
dxdtd�: (2.12)
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As a result, from (2.12) and (2.10), we deduce that

R �2
�1

R



@�

@t
qk
@�

@xk
dx

����T
0

d�

+1
2

R �2
�1

R
Q

@qk
@xk

 ����@�@t
����2 � �2 jr�j2

!
dxdtd�

�1
2

R �2
�1

R
�
�2
����@�@�

����2 qk�kd�d�
+
R �2
�1

R
Q
�2
@�

@xi

@qk
@xi

@�

@xk
dxdtd� = 0;

hence the identity (2.6).

Let�s give an averaged direct inequality which leads to an important property of � will be called

averaged hidden regularity property.

Theorem 2.1 (Averaged direct inequality) The solution of (2.3) veri�es the following inequalityZ �2

�1

Z
�

�2
����@�@� (t; x; �)

����2 d�d� � CEa (0) ; (2.13)

where C is a positive constant.

Proof. In (2.6), choose a vector �eld q = h such that h:� = 1 on �, we refer the reader to [39,

chapter 1, lemma 3.1 ], and use the conservation of averaged energy property to deduce easily that

1
2

R �2
�1

R
�
�2
����@�@� d�

����2 d� � khkL1(
) R �2�1 �@�@t ; @�@xk
�����T

0

d�

+1
2
krhk(L1(
))n

R �2
�1

R
Q

"����@�@t
����2 � �2 jr�j2

#
dxdtd�

+ krhk(L1(
))n
R �2
�1

R
Q
jr�j2 dxdtd�

� c khkW 1;1(
)

R �2
�1

R



�
j�1j

2 + �2 jr�0j
2)
�
dxd�

� CEa (0) .

Remark 2.1 the estimate (2.13) implies the following averaged hidden regularity property for the

solution of (2.3)
@�

@�
(t; x; �) 2 L2 (�) : (2.14)

The rest of this section will be dedicated to establish and prove the averaged inverse inequality

contributing to the main outcomes of uniqueness.

Let us introduce the following notation, for any �xed x0 2 Rn; we set
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m(x) = x� x0, 8x 2 Rn;
�0 = fx 2 �;m(x):�(x) > 0g ;
�0 = �0 � ]0; T [ ;
R0 = km (x)kL1(
) ;
T0 = 2R0:

� (x) is a �eld of unit normal vectors directed outward from Q

Theorem 2.2 (Averaged inverse inequality) Assume that � is of class C2, so for any T > T0

and every solution � of homogeneous problem (2.3), the following inequality is veri�ed

(T � T0)Ea (0) �
R0
2

Z �2

�1

Z
�0

�2
����@�@� (t; x; �)

����2 d�d�: (2.15)

Proof. With the choice of multipliers qk (x) = mk (x) ; we have

@qk
@xj

= �jk;
nX
k=0

@qk
@xk

= n; and
@qk
@xj

@�

@xj

@�

@xk
= jr�j ;

then, identity (2.6) becomes

R �2
�1

R



@�

@t
mk

@�

@xk
dx

����T
0

d� +
n

2

R �2
�1

R
Q

@qk
@xk

 ����@�@t
����2 � �2 jr�j2

!
dxdtd�

+
R �2
�1

R
Q
�2 jr�j dxdtd�

=
1

2

R �2
�1

R
�
�2
����@�@�

����2mk�kd�d�:

(2.16)

On �0, due the Cauchy-Schwarz inequality (See Appendix), we get

0 < m(x):�(x) =

nX
k=0

mk:�k �
 

nX
k=0

m2
k

! 1
2

:

 
nX
k=0

�2k

! 1
2

= km(x)k � R0;

therefore, the identity (2.16) becomes

X +
n

2

R �2
�1

R
Q

 ����@�@t
����2 � �2 jr�j2

!
dxdtd�

+
R �2
�1

R
Q
�2 jr�j dxdtd�

� R0
2

R �2
�1

R
�
�2
����@�@�

����2 d�d�;
(2.17)

where

X =

Z �2

�1

Z



@�

@t
mk

@�

@xk
dxd�

����T
0

:
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In addition

X +
n

2

Z �2

�1

Z
Q

 ����@�@t
����2 � �2 jr�j2

!
dxdtd� +

Z �2

�1

Z
Q

�2 jr�j dxdtd�

= X +
n

2

Z �2

�1

Z
Q

����@�@t
����2 dxdtd� � n

2

Z �2

�1

Z
Q

�2 jr�j2 dxdtd�

+

Z �2

�1

Z
Q

�2 jr�j dxdtd� + 1
2

Z �2

�1

Z
Q

����@�@t
����2 dxdtd� � 12

Z �2

�1

Z
Q

����@�@t
����2 dxdtd�

= X +
n� 1
2

Z �2

�1

Z
Q

����@�@t
����2 dxdtd� + 2� n

2

Z �2

�1

Z
Q

�2 jr�j2 dxdtd� + 1
2

Z �2

�1

Z
Q

����@�@t
����2 dxdtd�

= X +
n� 1
2

Z �2

�1

Z
Q

����@�@t
����2 dxdtd� � n� 1

2

Z �2

�1

Z
Q

�2 jr�j2 dxdtd�

+
1

2

Z �2

�1

Z
Q

����@�@t
����2 dxdtd� + 12

Z �2

�1

Z
Q

�2 jr�j2 dxdtd�

= X +
n� 1
2

Z �2

�1

Z
Q

����@�@t
����2 � �2 jr�j2 dxdtd� + 1

2

Z �2

�1

Z
Q

����@�@t
����2 + �2 jr�j2 dxdtd�:

Let

Y =

Z �2

�1

Z
Q

 ����@�@t
����2 � �2 jr�j2

!
dxdtd�:

Furthermore, we use energy conservation (2.3) and Fubini theorem (See Appendix), inequality (2.17)

becomes

X +
n� 1
2

Y + TEa(0) �
R0
2

Z �2

�1

Z
�0

�2
����@�@�

����2 d�d� (2.18)

We multiply the equation (2.5) by � and we integrate. We getZ �2

�1

Z
Q

�
@2�

@t2
� �2��

�
�dxdtd� = 0;

we have Z �2

�1

Z
Q

@2�

@t2
�dxdtd� =

Z �2

�1

Z



@�

@t
�dxd�

����T
0

�
Z �2

�1

Z
Q

����@�@t
����2 dxdtd�;

on the other hand, according to Green�s identity (See Appendix) and the fact that ( � = 0 on �),

we haveZ �2

�1

Z
Q

�2���dxdtd� =

Z �2

�1

Z
�

�2�
@�

@�
d�d��

Z �2

�1

Z
Q

�2 jr�j2 dxdtd� = �
Z �2

�1

Z
Q

�2 jr�j2 dxdtd�;

then Z �2

�1

Z



@�

@t
�dxd�

����T
0

�
Z �2

�1

Z
Q

 ����@�@t
����2 � �2 jr�j2

!
dxdtd� = 0;
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hence

Y =

Z �2

�1

Z



@�

@t
�dxd�

����T
0

,

thus, we have

X +
n� 1
2

Y =

Z �2

�1

Z



@�

@t

�
mk

@�

@xk
+
n� 1
2

�

�
dxd�

����T
0

(2.19)

Cauchy-Schwarz inequality (See Appendix) givesZ �2

�1

Z



�
@�

@t

�
mk

@�

@xk
+
n� 1
2

�

��
dxd�

�
Z �2

�1

"

2

Z



����@�@t
����2 dxd� + Z �2

�1

1

2"

Z



����mk
@�

@xk
+
n� 1
2

�

����2 dxd�: (2.20)

On the other hand Z



����mk
@�

@xk
+
n� 1
2

�

����2 dx
=

Z



����mk
@�

@xk

����2 dx+ (n� 1)24

Z



j�j2 dx

+(n� 1)
Z



mk
@�

@xk
�dx: (2.21)

In addition Z



mk
@�

@xk
�dx =

1

2

Z



mk
@

@xk

�
j�j2
�
dx;

according to the Gauss divergence formula (See Appendix) and as ( � = 0 on � ) we haveZ



@

@xk

�
mk j�j2

�
dx =

Z
�

�
mk�k j�j

2� d� = 0;
1

2

Z



mk
@

@xk

�
j�j2
�
dx = �1

2

Z



@mk

@xk

�
�2
�
dx = �n

2

Z



j�j2 dx: (2.22)

Using (2.22) in (2.21) , we obtainZ �2

�1

Z



����mk
@�

@xk
+
n� 1
2

�

����2 dxd�
=

Z �2

�1

 Z



����mk
@�

@xk

����2 dx+ (n� 1)24

Z



j�j2 dx� n (n� 1)
2

Z



j�j2 dx
!
d�

=

Z �2

�1

 Z



����mk
@�

@xk

����2 dx� (n2 � 1)4

Z



j�j2 dx
!
d�

�
Z �2

�1

Z



����mk�
@�

@xk

����2 dxd�
� R20

Z �2

�1

�2
Z



jr�j2 dxd�: (2.23)
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Substitute (2.23) in (2.20) with the choice " = R0, we getZ �2

�1

Z



�
@�

@t

�
mk

@�

@xk
+
n� 2
2

�

��
dxd�

� R0
2

Z �2

�1

Z



����@�@t
����2 dxd� + R0

2

Z �2

�1

Z



�2 jr�j2 dxd�

� R0Ea(0): (2.24)

From (2.26) and (2.24), we deduce that����X +
n� 2
2

Y

���� =

�����
Z �2

�1

Z



@�

@t

�
mk

@�

@xk
+
n� 2
2

�

�
dxd�

����T
0

�����
� 2 sup

t2[0;T ]

����Z �2

�1

Z



@�

@t

�
mk

@�

@xk
+
n� 2
2

�

�
dxd�

����
� 2

Z �2

�1

Z



@�

@t

�
mk

@�

@xk
+
n� 2
2

�

�
dxd�


L1(0;T )

� 2R0Ea(0):

We take T0 = 2R0, we obtain ����X +
n� 1
2

Y

���� � T0Ea(0);

then

TE(0)� T0E(0) � TE(0)�
Z �2

�1

Z



@�

@t

�
mk

@�

@xk
+
n� 1
2

�

�
dxd�

����T
0

� R0
2

Z �2

�1

Z
�0

�2
����@�@�

����2 d�d�:
Finally, we get

(T � T0)E(0) �
R0
2

Z �2

�1

Z
�0

�2
����@�@�

����2 d�d�d�d�:

2.1.3 Null averaged controllability. Hilbert uniqueness method

The HUM technique is based on certain uniqueness criteria for the homogeneous system (2.3) and

on the construction, by completion, of certain Hilbertian spaces suited to the system structure.

In this subsection, we present the main steps devoted to calculating the control u(t) that leads the

system�s averaged state (2.1) to the null state. The method is based on the Hilbert Uniqueness

Method (HUM) introduced by Lions (See [43]).
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Theorem 2.3 Assume that the assumptions of Theorem 2.2 hold. Then for any given initial data

(y0; y1) 2 L2 (
)�H�1 (
) there exists u 2 L2(�0) such that the solution of (2.1) satis�es (2.2).

Proof. Fix (�0; �1) 2 H1
0 (
)� L2 (
) and let�s introduce the following backward equation by8>>>>>>><>>>>>>>:

@2 

@t2
� �2� = 0

 =

8<:
R �2
�1
�2
@�

@�
(t; x; �) d�

0

 (T; x; �) = 0;
@ 

@t
(T; x; �) = 0

in Q,

on �0,

on ���0,
in 
.

(2.25)

Multiply (2.3) by  and integrate on [�1; �2]�Q to getZ �2

�1

Z
Q

(
@2�

@t2
� �2��) dxdtd�

=

Z �2

�1

Z



@�

@t
(T; x; �) (T; x; �)d�dx�

Z �2

�1

Z



@�

@t
(0; x; �) (0; x; �)d�dx

�
Z �2

�1

Z



�(T; x; �)
@ 

@t
(T; x; �)dxd� +

Z �2

�1

Z



�(0; x; �)
@ 

@t
(0; x; �)dxd�

+

Z �2

�1

Z
�

�2 (t; x; �)
@�

@�
(t; x; �) d�d� �

Z �2

�1

Z
�

�2� (t; x; �)
@ 

@�
(t; x; �) d�d�

= 0:

Consider boundary condition to obtainZ



�0 (x)

Z �2

�1

@ 

@t
(0; x; �) d�dx�

Z



�1 (x)

Z �2

�1

 (0; x; �) d�dx =

Z
�0

����Z �2

�1

�2
@�

@�
d�

����2 d�.
De�ne an operator � by

� (�0; �1) =

�Z �2

�1

@ 

@t
(0; x; �) d�;�

Z �2

�1

 (0; x; �) d�

�
,

therefore,

(� (�0; �1) ; (�0; �1)) =

Z
�0

����Z �2

�1

�2
@�

@�
d�

����2 d�: (2.26)

By Theorem (2.1), Theorem (2.2) and the Lax-Milgram theorem, it follows that � de�nes an

isomorphism from H1
0 (
)�L2 (
) to H�1 (
)�L2 (
). That is for all (y1;�y0) 2 H�1 (
)�L2 (
),

the equation � (�0; �1) = (y1;�y0) has a unique solution (�0; �1). With this initial condition, we
solve (2.3) and then we solve (2.25). Thus, we have found a control

u =

Z �2

�1

�2
@�

@�
(t; x; �) d�;

such that the solution of (2.1) satis�es (2.2).
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2.2 Averaged controllability of parameter dependent vi-

brating plate equation

In this section, we use the same steps used in the previous section to treat the problem of the

vibrating plate equation i.e. we demonstrate an averaged inverse and direct inequalities giving some

coercivity and continuity results for the main introduced operator in Hilbert uniqueness method

and moreover, we describe the main steps of the Hilbert uniqueness method for the null averaged

controllability problem.

2.2.1 Problem statement

Let 
 be a non-empty bounded domain in Rn having a regular boundary � and T > 0, we denote

Q = 
 � ]0; T [ ; � = � � ]0; T [. We consider the following controlled system which describes the

vibrations of plate 8>>>>>>>>><>>>>>>>>>:

@2y

@t2
+�(a(x; �)�y) = 0

y = 0;

@y

@�
=

(
u

0

y(0; x) = y0(x);
@y

@t
(0; x) = y1(x)

in Q;

on �;

on �0;

on���0;
in 
;

(2.27)

where a 2 C1(]�1; �2[ ; L
1(
));V = L2 (
) � H�2 (
) is the state spase, u presents a boundary

control action in L2 (�0) : For (y0; y1) 2 L2 (
)�H�2 (
) and u (all are independent of the parameter

�), system (2.27) has a unique weak solution
�
yu(t; x; �);

@yu
@t
(t; x; �)

�
2 C (0; T ;V) [31].

We are interested in the following controllability problem

De�nition 2.2 For T > 0 and the initial data (y0; y1) 2 L2 (
) � H�2 (
) ; the system (2.27) is

said to be null averaged controllable if there exists a control u independent of the parameter � such

that �Z �2

�1

y (T; x; �) d�;

Z �2

�1

@y

@t
(T; x; �) d�

�
= (0; 0) : (2.28)

Let us now introduce the following homogeneous plate system8>>>>><>>>>>:

@2�

@t2
+�(a(x; �)��) = 0

� =
@�

@�
= 0

�(0; x) = �0(x);
@�

@t
(0; x) = �1(x)

in Q;

on �;

in 
;

(2.29)
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where (�0; �1) 2 H2
0 (
)�L2 (
), in prinsiple, are independent of the parametre �. It�s well known

that (2.29) has a unique solution [70].

We de�ne the averaged energy Ea(t) with respect to � associated to the system (2.29) de�ned by

the following formula

Ea(t) =
1

2

Z �2

�1

Z



"����@�@t
����2 + a(x; �) j��j2

#
dxd�: (2.30)

Lemma 2.3 For all � = �(x; t; �) solution of the problem (2.29) the averaged energy (2.30) is

conserved for all t 2 (0; T ) i.e.

Ea(t) = Ea(0) =
1

2

Z �2

�1

Z



�
j�1j

2 + a(x; �) j��0j
2� dxd�: (2.31)

Proof. We multipling the equation (2.29) by
@�

@t
and integrate on (�1; �2) � Q, then we apply

Green formula and Fubini theorem (See Appendix), we obtainZ �2

�1

Z



�
@2�

@t2
+�(a(x; �)��)

�
@�

@t
dxd�

=
1

2

Z �2

�1

@

@t

Z



����@�@t
����2 dxd� + Z �2

�1

Z



a(x; �)���

�
@�

@t

�
dxd�

�
Z �2

�1

Z
�

�
a(x; �)��

�
@

@�

�
@�

@t

��
� @

@�
(a(x; �)��)

@�

@t

�
d�d�:

Considering the boundary conditions we get

@Ea(t)

@t
= 0;

and as a result, we have energy conservation.

2.2.2 Averaged direct & inverse inequalities

The results of this section will serve as a basis for the Hilbert Uniqueness Method (HUM) for

parameter dependent vibrating plate equation. We shall here establish an identity for the weak

solutions of the problem (2.29) which will then prove the averaged observability theorems. These

will be obtained by using a special multiplier.

Lemma 2.4 Let q : 
! Rn be a vector �eld of class C2 independent of the uncertainty parameter
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�, then for every solution � of (2.29), the following identity holds

1

2

Z �2

�1

Z
�

a(x; �)qk�k j��j
2 d�d�

=

Z �2

�1

Z



@�

@t
qk
@�

@xk
dxd�

����T
0

+
1

2

Z �2

�1

Z
Q

@qk
@xk

����@�@t
����2 dxdtd�

+

Z �2

�1

Z
Q

a(x; �)�qk��
@�

@xk
dxdtd�

+2

Z �2

�1

Z
Q

a(x; �)
@qk
@xj

��
@2�

@xj@xk
dxdtd�

�1
2

Z �2

�1

Z
Q

@

@xk
(a(x; �)qk) j��j2 dxdtd�: (2.32)

Proof. We multiply the equation (2.29) with qk
@�

@xk
and we integrate in (�1; �2)�Q we obtain

Z �2

�1

Z
Q

@2�

@t2
qk
@�

@xk
dxdtd�| {z }

(I )

+

Z �2

�1

Z
Q

�(a(x; �)��)qk
@�

@xk
dxdtd�| {z }

(II )

= 0.

First, analysis of (I ) Z �2

�1

Z
Q

@2�

@t2
qk
@�

@xk
dxdtd�

=

Z �2

�1

Z



@�

@t
qk
@�

@xk
dx

����T
0

d� �
Z �2

�1

Z
Q

@�

@t
qk

@

@xk

�
@�

@t

�
dxdtd�; (2.33)

and we know that Z �2

�1

Z
Q

@�

@t
qk

@

@xk

�
@�

@t

�
dxdtd�

=
1

2

Z �2

�1

Z
Q

qk
@

@xk

����@�@t
����2 dxdtd�

= �1
2

Z �2

�1

Z
Q

@qk
@xk

����@�@t
����2 dxdtd�; (2.34)

since
@�

@t
= 0 on �. From (2.33) and (2.34) it results

Z �2

�1

Z
Q

@2�

@t2
qk
@�

@xk
dxdtd�

=

Z �2

�1

Z



@�

@t
qk
@�

@xk
dxd�

����T
0

+
1

2

Z �2

�1

Z
Q

@qk
@xk

����@�@t
����2 dxdtd�: (2.35)
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Otherwise, analysis of (II )

apply the Green formula (See Appendix) to getZ �2

�1

Z
Q

�(a(x; �)��)qk
@�

@xk
dxdtd�

=

Z �2

�1

Z
Q

a(x; �)���

�
qk
@�

@xk

�
dxdtd�

+

Z �2

�1

Z
�

@

@�
(a(x; �)��) qk

@�

@xk
d�d�

�
Z �2

�1

Z
�

a(x; �)��
@

@�

�
qk
@�

@xk

�
d�d�

=

Z �2

�1

Z
Q

a(x; �)���

�
qk
@�

@xk

�
dxdtd�

�
Z �2

�1

Z
�

a(x; �)��
@

@�

�
qk
@�

@xk

�
d�d�; (2.36)

because qk
@�

@xk
= 0 on �. In additionZ �2

�1

�

�
qk
@�

@xk

�
d� =

Z �2

�1

�
�qk

@�

@xk
+ 2

@qk
@xj

@2�

@xj@xk
+ qk

@��

@xk

�
d�; (2.37)

and Z �2

�1

@

@�

�
qk
@�

@xk

�
d� =

Z �2

�1

�
@qk
@�

@�

@xk
+ qk

@2�

@�@xk

�
d� =

Z �2

�1

qk
@2�

@�@xk
d� on �; (2.38)

therefore Z �2

�1

Z
Q

�(a(x; �)��)qk
@�

@xk
dxdtd�

=

Z �2

�1

Z
Q

a(x; �)���qk
@�

@xk
dxdtd�

+2

Z �2

�1

Z
Q

a(x; �)��
@qk
@xj

@2�

@xj@xk
dxdtd�

+

Z �2

�1

Z
Q

a(x; �)��qk
@��

@xk
dxdtd�

�
Z �2

�1

Z
�

a(x; �)��qk
@2�

@�@xk
d�d�: (2.39)

We note that Z �2

�1

Z
Q

a(x; �)��qk
@��

@xk
dxdtd�

=
1

2

Z �2

�1

Z
Q

a(x; �)qk
@

@xk
j��j2 dxdtd�

= �1
2

Z �2

�1

Z
Q

@

@xk
(a(x; �)qk) j��j2 dxdtd� +

1

2

Z �2

�1

Z
�

a(x; �)qk�k j��j
2 d�d�; (2.40)
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then Z �2

�1

Z
Q

�(a(x; �)��)qk
@�

@xk
dxdtd�

=

Z �2

�1

Z
Q

a(x; �)���qk
@�

@xk
dxdtd�

+2

Z �2

�1

Z
Q

a(x; �)��
@qk
@xj

@2�

@xj@xk
dxdtd�

�1
2

Z �2

�1

Z
Q

@

@xk
(a(x; �)qk) j��j2 dxdtd�

�
Z �2

�1

Z
�

�
a(x; �)��qk

@2�

@�@xk
� 1
2
a(x; �)qk�k j��j

2

�
d�d�: (2.41)

Furthermore, since � 2 H2
0 (
), we have

@2�

@�@xk
=
@2�

@�2
�k and

@2�

@2xk
=
@2�

@�2
�2k on �; (2.42)

hence Z �2

�1

Z
�

�
�a(x; �)��qk

@2�

@�@xk
+
1

2
a(x; �)qk�k j��j

2

�
d�d�

= �1
2

Z �2

�1

Z
�

a(x; �)qk�k j��j
2 d�d�: (2.43)

As a result, from (2.35) and (2.41)- (2.43), we deduce thatZ �2

�1

Z



@�

@t
qk
@�

@xk
d�dx

����T
0

d� +
1

2

Z �2

�1

Z
Q

@qk
@xk

����@�@t
����2 dxdtd�

+

Z �2

�1

Z
Q

a(x; �)�qk��
@�

@xk
dxdtd�

+2

Z �2

�1

Z
Q

a(x; �)
@qk
@xj

��
@2�

@xj@xk
dxdtd�

�1
2

Z �2

�1

Z
Q

@

@xk
(a(x; �)qk) j��j2 dxdtd�

�
Z �2

�1

1

2

Z
�

a(x; �)qk�k j��j
2 d�d�

= 0; (2.44)

hence the identity (2.32).

Theorem 2.4 (Averaged direct inequality) Given T > 0 arbitrarily, there exists a constant

C = C(T ) > 0 s.t the solution of (2.29) satis�es the following inequality

1

2

Z �2

�1

Z
�

a(x; �) j��j2 d�d� � CEa(0): (2.45)
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Proof. We apply the identity in Lemma 2.4 with a vector �eld q = h and h:� = 1 constructed in

[43, chapter1, lemma 3.2] we obtain easily the estimate (2.45) with a suitable constant C, where

C is a constant depending on khkW 2;1(
) :

Remark 2.2 From Theorem 2.4 we deduce the following trace result

(�0; �1) 2 H2
0 (
)� L2 (
)) �� 2 L2(�):

Now, we serve a basis result for the next subsection (Hilbert Uniqueness Method (HUM)). This

result is averaged observability inequality.

Let us introduce the following notation, for any �xed x0 2 Rn; we set

m(x) = x� x0, 8x 2 Rn;
�0 = fx 2 �;m(x):�(x) > 0g ;
�0 = �0 � ]0; T [ ;
R0 = sup

x2

jm(x)j ;

T0 =
R20

inf
�2[�1;�2]

�
�21
� ;

where � (x) is a �eld of unit normal vectors directed outward from Q and �1 is the �rst eigenvalue

of the problem

�(a(x; �)�w) = ��21a(x; �)�w; 8w 2 H2
0 (
) :

Theorem 2.5 (Averaged inverse inequality)Assume that � is of class C3, so for any T > T0

and every solution � of homogeneous problem (2.29), the following inequality is veri�ed:

(T � T0)Ea (0) �
R0
4

Z �2

�1

Z
�0

a(x; �) j��j2 d�d�: (2.46)

Proof. With the choice of multipliers qk (x) = mk (x) ; we have

@qk
@xj

= �jk;

nX
k=0

@qk
@xk

= n; and
@qk
@xj

@2�

@xj@xk
= j4�j ;

then, identity (2.32) becomesZ �2

�1

Z



@�

@t
mk

@�

@xk
dxd�

����T
0

+
n

2

Z �2

�1

Z
Q

����@�@t
����2 � a(x; �) j��j2 dxdtd�

+2

Z �2

�1

Z
Q

a(x; �) j��j2 dxdtd�

=
1

2

Z �2

�1

Z
�

a(x; �)mk�k j��j
2 d�d�: (2.47)

2.2. Averaged controllability of parameter dependent vibrating plate equation 48



Chapter 2. Averaged controllability of some parameter dependent hyperbolic systems

On �0, due the Cauchy-Schwarz inequality (See Appendix), we get

0 < m(x):�(x) =
nX
k=0

mk:�k �
 

nX
k=0

m2
k

! 1
2

:

 
nX
k=0

�2k

! 1
2

= km(x)k � R0;

therefore, the identity (2.47) becomes

X +
n

2

Z �2

�1

Z
Q

����@�@t
����2 � a(x; �) j��j2 dxdtd�

+2

Z �2

�1

Z
Q

a(x; �) j��j2 dxdtd�

� R0
2

Z �2

�1

Z
�0

a(x; �) j��j2 d�d�; (2.48)

where

X =

Z �2

�1

Z



@�

@t
qk
@�

@xk
dxd�

����T
0

:

In addition

X +
n

2

Z �2

�1

Z
Q

����@�@t
����2 � a(x; �) j��j2 dxdtd� + 2

Z �2

�1

Z
Q

a(x; �) j��j2 dxdtd�

= X +
n� 2
2

Z �2

�1

Z
Q

����@�@t
����2 � a(x; �) j��j2 dxdtd� +

Z �2

�1

Z
Q

����@�@t
����2 + a(x; �) j��j2 dxdtd�:

Let

Y =

Z �2

�1

Z
Q

 ����@�@t
����2 � a(x; �) j��j2

!
dxdtd�:

Furthermore, we use energy conservation (2.31) gives and Fubini theorem (See Appendix), inequality

(2.48) becomes

X +
n� 2
2

Y + 2TEa(0) �
R0
2

Z �2

�1

Z
�0

a(x; �) j��j2 d�d�: (2.49)

We multiply the equation (2.29) by � and we integrate. We get

Y =

Z �2

�1

Z



@�

@t
�dxd�

����T
0

.

thus, we have

X +
n� 2
2

Y =

Z �2

�1

Z



@�

@t

�
mk

@�

@xk
+
n� 2
2

�

�
dxd�

����T
0

: (2.50)

Cauchy-Schwarz inequality (See Appendix) givesZ �2

�1

Z



�
@�

@t

�
mk

@�

@xk
+
n� 2
2

�

��
dxd�

�
Z �2

�1

"

2

Z



����@�@t
����2 dxd� + Z �2

�1

1

2"

Z



����mk
@�

@xk
+
n� 2
2

�

����2 dxd�; (2.51)
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on the other hand Z



����mk
@�

@xk
+
n� 2
2

�

����2 dx
=

Z



����mk
@�

@xk

����2 dx+ (n� 2)24

Z



j�j2 dx

+(n� 2)
Z



mk
@�

@xk
�dx: (2.52)

In addition Z



mk
@�

@xk
�dx =

1

2

Z



mk
@

@xk

�
j�j2
�
dx;

according to the Gauss divergence formula and as ( � = 0 on � ), we haveZ



@

@xk

�
mk j�j2

�
dx =

Z
�

�
mk�k j�j

2� dx = 0;
1

2

Z



mk
@

@xk

�
j�j2
�
dx = �1

2

Z



@mk

@xk

�
�2
�
dx = �n

2

Z



j�j2 dx: (2.53)

Using (2.53) in (2.52) , we obtainZ �2

�1

Z



����mk
@�

@xk
+
n� 2
2

�

����2 dxd�
=

Z �2

�1

 Z



����mk
@�

@xk

����2 dx+ (n� 2)24

Z



j�j2 dx� n (n� 2)
2

Z



j�j2 dx
!
d�

=

Z �2

�1

 Z



����mk
@�

@xk

����2 dx� (n2 � 4)4

Z



j�j2 dx
!
d�

�
Z �2

�1

Z



����mk
@�

@xk

����2 dxd� � R20

Z �2

�1

Z



jr�j2 dxd� � R20

Z �2

�1

Z



1

�21
a(x; �) j��j2 dxd�

�
Z �2

�1

Z



R20�
�21
�a(x; �) j��j2 dxd�: (2.54)

Substitute (2.54) in (2.51) with the choice " =
R0
�1
, we get

Z �2

�1

Z



�
@�

@t

�
mk

@�

@xk
+
n� 2
2

�

��
dxd�

�
Z �2

�1

Z



R0
2�1

����@�@t
����2 dxd� + Z �2

�1

Z



R0
2�1

a(x; �) j��j2 dxd�

� R0
inf

�2[�1;�2]
(�1)

Ea(0) (2.55)
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From (2.50) and (2.55), we deduce that����X +
n� 2
2

Y

���� =

�����
Z �2

�1

Z



@�

@t

�
mk

@�

@xk
+
n� 2
2

�

�
dxd�

����T
0

�����
� 2 sup

t2[0;T ]

����Z �2

�1

Z



@�

@t

�
mk

@�

@xk
+
n� 2
2

�

�
dxd�

����
� 2

Z �2

�1

Z



@�

@t

�
mk

@�

@xk
+
n� 2
2

�

�
dxd�


L1(0;T )

� 2
R0

inf
�2[�1;�2]

(�1)
Ea(0):

We take T0 =
R0

inf
�2[�1;�2]

(�1)
, we obtain

����X +
n� 2
2

Y

���� � T0Ea(0);

then

TE(0)� T0E(0) � TE(0)�
Z �2

�1

Z



@�

@t

�
mk

@�

@xk
+
n� 2
2

�

�
dxd�

����T
0

� R0
4

Z �2

�1

Z
�0

a(x; �) j��j2 d�d�:

Finally, we get

(T � T0)E(0) �
R0
4

Z �2

�1

Z
�0

a(x; �) j��j2 d�d�:

2.2.3 Null averaged controllability. Hilbert uniqueness method

In this section, we present the essential steps devoted to the calculation of the control u(t) which

steers the averaged state of the system (2.27) to the null state. The method is based on the Hilbert

Uniqueness Method (HUM) introduced by Lions.

Theorem 2.6 Assume that the assumptions of Theorem 2.5 hold. Then for any given initial data

(y0; y1) 2 L2 (
)�H�2 (
) there exists u 2 L2(�0) such that the solution of (2.27) satis�es (2.28).
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Proof. Fix (�0; �1) 2 H2
0 (
) � L2 (
) arbitrarily. Consider the problem (2.29) and the following

backward system 8>>>>>>>>><>>>>>>>>>:

@2 

@t2
+�(a(x; �)� ) = 0

 = 0

@ 

@�
=

( R �2
�1
a(x; �)��d�

0

 (T; x) =
@ 

@t
(T; x) = 0

in Q;

on �;

on � (x0) ;

on �� (x0) ;

in 
:

(2.56)

De�ne the operator � by

� (�0; �1) =

�Z �2

�1

@ 

@t
(0; x; �)d�;�

Z �2

�1

 (0; x; �)d�

�
: (2.57)

Multiply (2.29) by  and integrate on [�1; �2]�Q to obtainZ �2

�1

Z
Q

@2�

@t2
+�(a(x; �)��) dxdtd�

=

Z �2

�1

Z



@�

@t
(T; x; �) (T; x; �)d�dx�

Z �2

�1

Z



@�

@t
(0; x; �) (0; x; �)d�dx

�
Z �2

�1

Z



�(T; x; �)
@ 

@t
(T; x; �)dxd� +

Z �2

�1

Z



�(0; x; �)
@ 

@t
(0; x; �)dxd�

+

Z �2

�1

Z
�

 
@

@�
(a(x; �)��) d�d� �

Z �2

�1

Z
�

a(x; �)��
@ 

@�
d�d�

= 0:

By boundary condition, we getZ



�0(x)

Z �2

�1

@ 

@t
(0; x; �)d�dx�

Z



�1(x)

Z �2

�1

 (0; x; �)d�dx =

Z
�0

����Z �2

�1

a(x; �)��d�

����2 d�;
therefore

(� (�0; �1) ; (�0; �1)) =

Z
�0

����Z �2

�1

a(x; �)��d�

����2 d�: (2.58)

By Theorem (2.4), Theorem (2.5) and the Lax-Milgram theorem, it follows that � de�nes an

isomorphism from H2
0 (
)�L2 (
) to H�2 (
)�L2 (
). That is for all (y1;�y0) 2 H�2 (
)�L2 (
),

the equation � (�0; �1) = (y1;�y0) has a unique solution (�0; �1). With this initial condition we
solve (2.29). Then,we solve (2.56). Thus, we have found a control

u =

Z �2

�1

a(x; �)��d�;

such that the solution of (2.27) satis�es (2.28).
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2.3 Regional averaged controllability of parameter depen-

dent hyperbolic systems

This section concerns regional averaged controllability of parameter dependent hyperbolic systems.

We explore an approach using an extension of the Hilbert Uniqueness Method that leads to the

calculation of the control (independent of the parameter) with minimum energy for the cases of

internal zone actuator and internal pointwise actuator which drives the system to a given regional

averaged state. We consider the case where the subregion of interest is a part of the system evolution

domain.

2.3.1 Problem statement

Let an open bounded subset 
 of Rn with a regular boundary � and T > 0. We denote ! a subregion

of 
, Q = 
 � ]0; T [ ; � = �� ]0; T [ : We consider the following hyperbolic PDE depending on an
unknown parameter � with an internal control action8>>><>>>:

@2y

@t2
= A(�)y +Bu

y(t; �) = 0

y(0; x) = y0(x);
@y

@t
(0; x) = y1(x)

in Q,

on �,

in 
,

(2.59)

where A(�) is a second-order elliptic linear operator depends on the uncertainty parameter � 2
(0; 1),V = L2 (
)�L2 (
) is the state space, B 2 L(U;L2(0; T ;V 0)) is the control operator supposed
to be independent of � where U = L2(0; T ;Rp) is a space of controls, u = u(t; x) 2 U is a

distributed control which doesn�t depend on �. The initial data (y0(x); y1(x) 2 V are independent

of the parameter �. We denote by
�
yu(t; x; �);

@yu
@t
(t; x; �)

�
the solution of the equation (2.59).

The system (2.59) may be written as8><>:
@z

@t
(t) = �A(�)z + �Bu(t);

z(0; x) = z0(x) =

�
y0(x)

y1(x)

�
;

(2.60)

where

z =

� y(t; x; �)
@y

@t
(t; x; �)

�
; �A(�) =

 
0 I

A(�) 0

!
and �Bu =

�
0

Bu(t; x)

�
; (2.61)

the solution of (2.60) is given by

z(t; �) = �S(t; �)z0 +

Z t

0

�S(t� � ; �) �Bu(�)d� ; (2.62)
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where
�
�S(t; �)

	
t�0is the semi-group generated by

�A(�): For ! being a region of the domain 
 ,

consider the restriction operator �!

�! : L
2 (
)� L2 (
)! L2 (!)� L2 (!) ;

(z1; z2) 7! (z1; z2) j!; (2.63)

where ��! denotes its adjoint de�ned from H1
0 (!)� L2 (!) to H1

0 (
)� L2 (
) and given by

��! (z1; z2) =

(
(z1; z2)

0

in !;

in 
n!:
(2.64)

2.3.2 Exact and weak regional averaged controllability: De�nitions and

properties

The regional averaged controllability notion is obtained by combining the concept of regional con-

trollability introduced by El Jai in [16] and averaged controllability notion introduced by Zuazua in

[69]. Then, we are only interested in steering the state average (with respect to such a parameter)

towards the desired state on the subregion !:

Here, The concept of regional averaged controllability will be formulated and we will give its de�n-

itions and properties.

De�nition 2.3 The system (2.59) is said to be exactly regionally averaged controllable on !

if for every �nal target (y1d; y
2
d) 2 L2 (!) � L2 (!) ; there exists a control u 2 U independent of the

parameter � such that

�!

�Z 1

0

yu(T; �)d�;

Z 1

0

@yu
@t
(T; �)d�

�
=
�
y1d; y

2
d

�
. (2.65)

De�nition 2.4 The system (2.59) is said to be weakly regionally averaged controllable on !

if for every �nal target (y1d; y
2
d) 2 L2 (!) � L2 (!) and for all " > 0, there exists a control u 2 U

independent of the parameter � such thatZ 1

0

yu(T; �)d� � y1d


H1
0 (!)

+

Z 1

0

@yu
@t
(T; �)d� � y2d


L2(!)

� ". (2.66)

Suppose that HA : U ! L2 (
)� L2 (
) is de�ned by

u 7!
�
yu(T; �);

@yu
@t
(T; �)

�
: (2.67)
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It is clear that the system (2.59) is exactly (resp. weakly) regionally averaged controllable on ! if

Im

�
�!

Z 1

0

HAd�

�
= L2 (!)� L2 (!) ; (2.68)

(resp:Im

�
�!

Z 1

0

HAd�

�
= L2 (!)� L2 (!)); (2.69)

Remark 2.3

1. The above de�nition of regional average controllability is weaker than the standard one (re-

gional controllability) since only the averaged state is transferred and not the state itself .

2. The mentioned de�nition means that we are interested in the transfer of the averaged state

with respect to the unknown parameter to the desired function only on the subregion ! � 
.

Proposition 2.1 1. The system (2.59) is exactly (resp.weakly) regionally averaged controllable

on ! i¤

ker (�!) + Im

�Z 1

0

HAd�

�
= L2 (
)� L2 (
) : (2.70)

2. The system (2.59) is weakly regionally averaged controllable on ! i¤

ker (�!) + Im

�Z 1

0

HAd�

�
= L2 (
)� L2 (
)): (2.71)

Proof. 1. Let z 2 L2 (
) � L2 (
) then �!z 2 L2 (!) � L2 (!). The system (2.59) is exactly

regionally averaged controllable on !, then there exist u 2 U such that �!z = �!
R 1
0
HAud�.

Let z1 = z �
R 1
0
HAud� and z2 =

R 1
0
HAud�; we have z = z1 + z2 with z1 2 ker (�!) and z2 2

Im
�R 1

0
HAd�

�
:

Conversely, let z 2 L2 (!) � L2 (!) ; then ẑ = ��!z 2 L2 (
) � L2 (
) which allows us to write

ẑ = z1 + z2 with z1 2 ker (�!) and z2 2 Im
�R 1

0
HAd�

�
; therefore, ẑ = z1 + Im

�R 1
0
HAud�

�
which

gives z = �!
R 1
0
HAud� and thus the system (2.59) is exactly regionally averaged controllable on !.

2. Let z 2 L2 (
) � L2 (
) then �!z 2 L2 (!) � L2 (!). The system (2.59) is weakly regionally

averaged controllable on !; then there exist un 2 U such that �!z = lim
�
�!
R 1
0
HAund�

�
. Let

z1 = z � z2 with z2 = lim
�R 1

0
HAund�

�
; then we have z = z1 + z2 with z1 2 ker (�!) and

z2 2 Im
R 1
0
H�d�.

Conversely, let z 2 L2 (!) � L2 (!), then ẑ = ��!z 2 L2 (
) � L2 (
) which allows us to write

ẑ = z1 + z2 with z1 2 ker (�!) and z2 2 Im
R 1
0
HAd�: Consequently, there exists un 2 U such that

z2 = Im
R 1
0
HAund�; therefore, ẑ = z1 + Im

R 1
0
HAund� which gives z = lim

�
�!
R 1
0
HAund�

�
, thus

the system (2.59) is weakly regionally averaged controllable on !.
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2.3.3 Characterization of regional averaged control

In this subsection, for two di¤erent control actions, zone and pointwise, we determine the minimum

energy control that assures the transformation of the averaged solution to a desired state in a

subregion !. The technique built here is based on an extension of the Hilbert uniqueness method

(HUM) initiated by Lions in [39].

The case of internal zone actuator

We consider the folowing hyperbolic system excited by controls which applied via internal zone ac-

tuators (D; f) where D � 
 is the support of the actuator and f 2 L2 (
) is the spatial distribution
of the action on the support D8>>><>>>:

@2y

@t2
= A(�)y + �Dfu

y(t; �) = 0

y(0; x) = y0(x);
@y

@t
(0; x) = y1(x)

in Q,

on �,

in 
,

(2.72)

Consider the following minimization problem8><>:
min

u2L2(0;T )
J (u) = kuk2L2(0;T ) such that:�R 1

0
yu(T; �)d� = y1d and

R 1
0

@yu
@t
(T; �)d� = y2d

�
in !;

(2.73)

where
�
yu(T; �);

@yu
@t
(T; �)

�
the solution of (2.59), (y1d; y

2
d) 2 L2 (!) � L2 (!) is a desired state at

time T .

Next, we show a direct approach to the solution of the regional averaged controllability problem

with minimum control energy by using the HUMs.

Let G be a set given by

G =
�
('1; '0) 2 L2 (
)� L2 (
) such that '1 = '0 = 0 in 
n!

	
.

In addition, for any ('1; '0) 2 G; we introduce the parameter dependent adjoint system8>>><>>>:
@2'

@t2
= A�(�)'

'(t; �) = 0

'(T; x) = '0 (x) ;
@'

@t
(T; �) = '1 (x)

in Q,

on �,

in 
,

(2.74)

where the data at the �nal time t = T , ('1; '0) 2 G are independent of the uncertainty parameter

�:
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We de�ne the following seminorm in G

k('1; '0)kG =

0@Z T

0

�����
�
f;

Z 1

0

'(t; �)d�

�
L2(D)

�����
2

dt

1A 1
2

: (2.75)

Lemma 2.5 The seminorm (2.75) de�nes a norm on G if the system (2.72) is weakly regionally

averaged controllable on !.

Proof. The system (2.72) may be written as

@z

@t
(t) = �A(�)z + �Bu(t);

where

z =

� y(t; x; �)
@y

@t
(t; x; �)

�
, �A(�) =

 
0 I

A(�) 0

!
and �Bu(t; x) =

�
0

�Dfu

�
:

Also, the system (2.74) is equivalent to8>>>>><>>>>>:
@

@t

0@ '
@'

@t

1A = �A�(�)

0@ '
@'

@t

1A ;� '(T; x)
@'

@t
(T; x)

�
=

�
'0(x)

'1(x)

�
;

(2.76)

where �A�(�) is the adjoint operator of �A(�): For

H� : U ! L2 (
)� L2 (
) ; (2.77)

u 7!
�
yu (T; �) ;

@yu
@t
(T; �)

�
:

Moreover, if the system (2.72) is weakly regionally averaged controllable on !, we have

Im

�
�!

Z 1

0

H�d�

�
= L2 (!)� L2 (!), ker

�
�!

Z 1

0

H�d�

��
= f0g , ker

�Z 1

0

H�
�d��

�
!

�
= f0g ;

and we have

H�
� =

�B� �S�(T � �; �);

hence Z 1

0

H�
�d��

�
! =

Z 1

0

�B� �S�(T � �; �)d���!;

where �B�is the adjoint of �B and
�
�S�(t; �)

�
t�0 is the semigroup generated by

�A�(�). The eqution

k('1; '0)kG = 0 gives
D
f;
R 1
0
'(t; �)d�

E
L2(D)

= 0 on [0; T ] ; then, we have*�
�Df

0

�
;

� R 1
0
'(t; �)d�R 1

0

@'

@t
(t; �)d�

�+
L2(
)�L2(
)

= 0() �B�
� R 1

0
'(t; �)d�R 1

0

@'

@t
(t; �)d�

�
= 0:
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See [64] and [11] for mor details.

In this case the function � '(t; �)
@'

@t
(t; �)

�
= �S�(T � �; �)

�
'0
'1

�
;

is the solution of the system (2.76). Thus, we get�
f; �D

Z 1

0

'(t; �)d�

�
L2(
)

= 0,
Z 1

0

�B� �S�(T � �; �)d�
�
'0
'1

�
= 0:

Consequently,
�
'0
'1

�
2 ker

�R 1
0
H�
�d��

�
!

�
. As the system (2.76) is weakly regionally averaged

controllable on !, it follows that '0 (x) = '1 (x) = 0 and therefore, (2.75) is a norm.

Now, consider the following system8>>>><>>>>:
@2 

@t2
= A(�) +

D
f;
R 1
0
'(t; �)d�

E
L2(D)

�Df

 (t; �; �) = 0

 (0; x) = y0(x);
@ 

@t
(0; x) = y1(x)

in Q,

on �,

in 
,

(2.78)

which is controlled by the solution of the system (2.74).

LetM be the a¢ ne operator de�ned by

M ('1; '0) = P
�Z 1

0

 (T; �)d�;�
Z 1

0

@ 

@t
(T; �)d�

�
; (2.79)

where P = ��!�!:

The system (2.78) can be decomposed into two subsystems, the �rst is given by8>>><>>>:
@2 1
@t2

= A(�) 1

 1(t; �) = 0

 1(0; x) = y0(x);
@ 1
@t
(0; x) = y1(x)

in Q,

on �,

in 
,

(2.80)

and the second is given by8>>>><>>>>:
@2 2
@t2

= A(�) 2 +
D
f;
R 1
0
'(t; �)d�

E
L2(D)

�Df

 2(t; �) = 0

 2(0; x) = 0;
@ 2
@t
(0; x) = 0

in Q,

on �,

in 
.

(2.81)

Now we consider the operator � de�ned by

� ('1; '0) = P
�Z 1

0

 2(T; �)d�;�
Z 1

0

@ 2
@t
(T; �)d�

�
: (2.82)
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Then, the regional average controllability problem on ! reduces to solving the equation:

� ('1; '0) = ��!
�
y1d;�y2d

�
� P

�Z 1

0

 1(T; �)d�;

Z 1

0

�@ 1
@t
(T; �)d�

�
, (2.83)

and we have proved the following result

Theorem 2.7 If the system (2.72) is weakly regionally averaged controllable on !, then for any

(y1d; y
2
d) 2 L2 (!)� L2 (!) the equation (2.83) has a unique solution '0; '1; and the control

u�(t) =

�
f;

Z 1

0

'(t; �)d�

�
L2(D)

;

steers the average state of system (2.72) to (y1d; y
2
d) at time T in !. Moreover, u

� solves the minimum

problem (2.73).

Proof. We see that if the system (2.72) is weakly regionally averaged controllable on !, then k:kG
is a norm on the space G (Lemma 2.5).

We denote the completion of G with respect to the norm (2.75) again by G and G� be its dual.

We will show that (2.83) has a unique solution in G. For that purpose, multiply (2.74) by  2 and

integrate on Q to getZ
Q

@2'

@t2
(t; �) 2(t; �)dxdt =

Z
Q

A� (�)'(t; �) 2(t; �)dxdt,

which givesZ



�
@'

@t
(t; �) 2(t; �)

�T
0

dx�
Z



�
'(t; �)

@ 2
@t
(t; �)

�T
0

dx+

Z
Q

'(t; �)
@2 2
@t2

(t; �)dxdt

=

Z
Q

A� (�)'(t; �) 2(t; �)dxdt.

By the Green formula and with the boundary condition, we have

h'1;  2(T; �)i �
�
'0;

@ 2
@t
(T; �)

�
=

Z T

0

�
f;

Z 1

0

'(t; �)d�

�
L2(D)

hf; '(t; �)iL2(D) dt,

then integrate on (0; 1) to obtain�
'1;

Z 1

0

 2(T; �)d�

�
�
�
'0;

Z 1

0

@ 2
@t
(T; �)d�)

�
=

Z T

0

�����f;Z 1

0

'(t; �)d�

�����2
L2(D)

dt

= k('1; '0)k
2
G .

We have

h� ('1; '0) ; ('1; '0)i =
Z T

0

�
f;

Z 1

0

'(t; �)d�

�2
L2(D)

dt = k('1; '0)k
2
G .
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Hence, we conclude that � is an isomorphism between G and G� [65]: Then (2.83) has a unique

solution and

u�(t) =

�
f;

Z 1

0

'(t; �)d�

�
L2(D)

;

is a solution of the problem (2.73).

Now, let u(t) and v(t) are solutions of (2.73). We multiply (2.74) by yu(t; �)� yv(t; �), apply Green
formula and considering the boundary and initial conditions, we getZ T

0

hf; '(t; �)iL2(D) (u(t)� v(t))dt =

�
'0;

�
@yu
@t
(T; �)� @yv

@t
(T; �)

��
L2(D)

�h'1; (yu(T; �)� yv(T; �))iL2(D) ;

integrate over (0; 1), we obtainZ T

0

�
f;

Z 1

0

'(t; �)d�

�
L2(D)

(u(t)� v(t))dt =

�
'0;

Z 1

0

�
@yu
@t
(T; �)� @yv

@t
(T; �)

�
d�

�
L2(D)

�
�
'1;

Z 1

0

(yu(T; �)� yv(T; �))d�

�
L2(D)

,

then, Z T

0

�
f;

Z 1

0

'(t; �)d�

�
L2(D)

(u(t)� v(t))dt = 0.

Now, we have

1

2
J 0(u�(t))(u(t)� v(t)) =

Z T

0

(u�(t))(u(t)� v(t))dt

=

Z T

0

�
f;

Z 1

0

'(t; �)d�

�
L2(D)

(u(t)� v(t))dt.

The unicity of u� comes from the strict convexity of J and this J 0(u�)(u�v) = 0 which establishes
the optimality of u�.

The case of internal pointwise actuator

In this case, we consider a hyperbolic system excited by controls which applied via internal pointwise

actuators (b; �) located at b 2 
8>>><>>>:
@2y

@t2
= A(�)y + �(x� b)u

y(t; �) = 0

y(0; x) = y0(x);
@y

@t
(0; x) = y1(x)

in Q,

on �,

in 
.

(2.84)
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Now, for a given ('1; '0) 2 G, we consider the system (2.74) and de�ne the mapping

k('1; '0)kG =
 Z T

0

�Z 1

0

'(t; b; �)d�

�2
dt

! 1
2

; (2.85)

which is a norm on G if the system (2.84) is weakly regionally averaged controllable on !; and we

consider the following system8>>><>>>:
@2 

@t2
(t; x; �) = A(�) + �(x� b)

R 1
0
'(t; b; �)d�

 (0; x; �) = y0(x);
@ 

@t
(0; x; �) = y1(x)

 (t; �; �) = 0

in Q,

in 
,

on �,

(2.86)

which has a unique solution  (t; x; �) can be written as  (t; x; �) =  1(t; x; �) +  2(t; x; �), where

 1(t; x; �) is the solution of (2.78) and 	2(t; x; �) is a solution of the following system8>>><>>>:
@2 2
@t2

= A(�) 2 + �(x� b)
R 1
0
'(t; b; �)d�

 2(0; x) = 0;
@ 2
@t
(0; x) = 0

 2(t; �) = 0

in Q,

in 
,

on �.

(2.87)

For ('1; '0) 2 G; let � be the operator de�ned by (2.81) where  2(t; x; �) is the solution of (2.87).
The regional averaged controllability problem on ! is then equivalent to the resolution of the

equation:

� ('1; '0) = ��!
�
z1d;�z2d

�
� P

�Z 1

0

 1(T; �)d�;

Z 1

0

�@ 1
@t
(T; �)d�

�
; (2.88)

and we have proved the following result

Theorem 2.8 If the system (2.84) is weakly regionally averaged controllable on !, then for any

(y1d; y
2
d) 2 L2 (!)� L2 (!) the equation (2.88) has a unique solution '0; '1; and the control

u�(t) =

Z 1

0

'(t; b; �)d�;

steers the averaged state of system (2.84) to (y1d; y
2
d) at time T in !. Moreover, u� solves the

minimum problem (2.73).

Proof. The proof of Theorem (2.8) is similar to that of Theorem (3.26).
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On the averaged no-regret control for parameter de-

pendent systems with missing data

In this chapter, we study general and abstract control systems depending on a parameter and with

missing data. By combining the low-regret technique of J.-L. Lions and the averaged control notion

introduced recently by E. Zuazua, we prove that we can steer the averaged state of our system to a

desired state using the notion of averaged no-regret and averaged low-regret control. More precisely,

we prove the convergence of the averaged low-regret control to the averaged no-regret control and

we prove that the problem we are considering has a unique averaged no-regret control that we

characterize by a singular optimality system. As an example, we apply the described theory on

parameter dependent electromagnetic wave equation with missing initial conditions.

3.1 Problem Statement

Let V be a Hilbert space of dual V 0, � 2 (0; 1) is an unknown parameter, A (�) 2 L(V ;V 0) a partial
di¤erential operator, U the Hilbert space of controls, and B (�) 2 L(U;V 0) a control operator. Let
G be a nonempty closed vector subspace of the Hilbert space of missing data F , and � 2 L(F;V).
The state equation related to the control v 2 U and to the missing data g 2 G is given by

A(�)y = B(�)v + �g: (3.1)

Supposing that A is an isomorphism from V to V 0, (3:1) is well posed in V. Denote by y = y(v; g; �)

the unique solution to (3:1) depending on the control v, the missing data g and depends continuously
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on �: Also, we suppose that the operators A (�) and B (�) depend on � continuously.

We want to choose a control v independently of � and g in a way such that the averaged state

function y approaches a given observation yd 2 V, i.e. we want to minimize the quadratic cost
functional

J (v; g) =

Z 1

0

y (v; g; �) d��yd
2
V
+N kvk2U ; (3.2)

where N 2 R�+.
We are concerned with optimal controls v of the (3:1)� (3:2) with missing initial data g, i.e.

inf
v2U

J (v; g); 8g 2 G:

Since the subspace G is di¤erent from f0g, the above minimization problem has no sense (G having
in�nite elements). One idea is then to solve the minmax problem

inf
v2U

�
sup
g2G

(J (v; g))
�
;

but J (v; g) is not upper bounded since sup
g2G

(J (v; g)) = +1. A natural idea of Lions [40] is to

search for controls v such that

J (v; g)� J (0; g) � 0; 8g 2 G:

Those controls v are called averaged no-regret controls.

3.2 Averaged no-regret control & averaged low-regret con-

trol

First, we introduce the averaged no-regret control of (3.1)-(3.2). As in [57] and [19], it is de�ned by

De�nition 3.1 [20] We say that u 2 U is an averaged no-regret control for (3.1)-(3.2) if u is a

solution to the following problem

inf
v2U

�
sup
g2G
(J (v; g)� J (0; g))

�
; (3.3)

we shall isolate g to a form where the classical theory of optimal control can be applied, the method

is shown in the following Lemma
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Lemma 3.1 For all v 2 U and g 2 G we have

J (v; g)� J (0; g) = J (v; 0)� J (0; 0) + 2
�
��
Z 1

0

�(v; �)d�; g

�
G0;G

; (3.4)

where � is given by the following backward wave equation

A� (�) �(v; �) =

Z 1

0

y(v; 0; �)d�; (3.5)

A� (resp. ��) being the adjoint of A (resp. �).

Proof. It�s easy to check that for all (v; g) 2 U �G

J (v; g)� J (0; g) = J (v; 0)� J (0; 0) + 2
�Z 1

0

y(v; 0; �)d�;

Z 1

0

y(0; g; �)d�

�
V
.

Now, we introduce an adjoint state � de�ned by (3.5) and apply Green formula to get�Z 1

0

y(v; 0; �)d�;

Z 1

0

y(0; g; �)d�

�
V
=

Z 1

0

�Z 1

0

y(v; 0; �)d�; y(0; g; �)

�
V
d�

=

Z 1

0

hA� (�) �(v; �); y(0; g; �)iV 0;V d�

=

�
��
Z 1

0

�(v; �)d�; g

�
G0;G

;

(notice that A (�) y(0; g; �) = �g). Then,

J (v; g)� J (0; g) = J (v; 0)� J (0; 0) + 2
�
��
Z 1

0

�(v; �)d�; g

�
G0;G

:

The averaged no-regret control seems to be di¢ cult to characterize in this present form (see [55]), for

this reason we relax the averaged no-regret control problem by making some quadratic perturbation.

Thus, we de�ne the averaged low-regret control notion.

De�nition 3.2 [19] We say that u 2 U is an averaged low-regret control for (3.1)-(3.2) if u is a

solution to the following problem

inf
v2U

�
sup
g2G
(J (v; g)� J (0; g)�  kgk2G)

�
; (3.6)

where  is a strictly positive and small parameter.

Then according to (3.4), problem (3.6) is equivalent to
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inf
v2U

 
J (v; 0)� J (0; 0) +

 
sup
g2G
2

�
��
Z 1

0

�(v; �)d�; g

�
G0;G

�  kgk2G

!!
:

which by means of Legendre�Fenchel transform (see [6] and [5] ) is equivalent to the following

problem

For any  > 0, �nd u 2 U such that

inf
v2U
J (v) ; (3.7)

where

J (v) = J (v; 0)� J (0; 0) +
1



�� Z 1

0

�(v; �)d�

2
G

: (3.8)

3.3 Existence and characterization of the averaged low-

regret control

In this section, our main objective would be to prove that the averaged low-regret problem (3.7)-

(3.8) has a unique solution that converges to the unique solution of averaged no-regret control (3.3).

In addition, we will give the equations that describe the low-regret control.

We begin by proving the existence of the averaged low-regret control for (3.1)-(3.2).

Theorem 3.1 There exists a unique averaged low-regret control denoted by u solution to the prob-

lem of minimization (3.7)-(3.8).

Proof. From the de�nition of J; it�s clear that for every v 2 U : J (v) � �J (0; 0), this means
that (3.7)-(3.8) has a solution.

Let be then (vn) 2 U a minimizing sequence (See Appendix) such that

lim
n!1

J (vn) = d.

We have,

J (vn) = J (vn; 0)� J (0; 0) +
1



�� Z 1

0

�(vn; �)d�

2
G

� d + 1;

which implies that

J (vn; 0) � C;

1



�� Z 1

0

�(vn; �)d�

2
G

� C;
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where C is a positive constant independent of n. Hence, using the fact that

J (vn; 0) =
Z 1

0

y (vn; 0; �) d��yd
2
V
+N kvnk

2
U :

This implies the following estimates

kvnkU � C; (3.9)Z 1

0

y (vn; 0; �) d�


V
� C; (3.10)�� Z 1

0

�(vn; �)d�


G

� pC; (3.11)

From (3.9), we deduce that there exists a subsequence still denoted (vn) such that

vn * u weakly in U .

Moreover, by continuity w.r.t. data and (3.10), we get

ky (vn; 0; �)kV � C; (3.12)

then,

y (vn; 0; �)* y weakly in V, (3.13)

by passing to limit and uniqueness of limit we prove that y = y (u; 0; �). In view of (3.10),(3.13)

and by the Lebesgue-dominated convergence theorem, we getZ 1

0

y (vn; 0; �) d� *

Z 1

0

y (u; 0; �) d� weakly in V.

Moreover, we have

A� (�) �(vn; �) =

Z 1

0

y(vn; 0; �)d� *

Z 1

0

y (u; 0; �) d� = A� (�) �(u; �) weakly in V,

as A� (�) is an isomorphism, we have also

�(vn; �)* �(u; �) weakly in V.

In a manner similar to the convergence of y(vn; 0; �); we getZ 1

0

�(vn; �)d� *

Z 1

0

�(u; �)d� weakly in V,

and according to the continuity of ��; we deduce the following convergence

��
Z 1

0

�(vn; �)d� * ��
Z 1

0

�(u; �)d� weakly in V.
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This implies that

J (u) = J (u; 0)� J (0; 0) +
1



�� Z 1

0

�(u; �)d�

2
G

� inf
n2N

 
J (vn; 0)� J (0; 0) +

1



�� Z 1

0

�(vn; �)d�

2
G

!
� d:

Thus u is a minimizing solution. Moreover, the uniqueness of u follows from strict convexity and

weak lower semi-continuity of the functional J (v).
Now, we can now characterise the averaged low-regret control u.

Theorem 3.2 For all  > 0, the averaged low-regret control u, solution of (3.7)-(3.8) is charac-

terized by the unique solution
�
y; �; �; p

	
of the following optimality system8>>>>>>>><>>>>>>>>:

A(�)y = B(�)u;

A� (�) �(u; �) =
R 1
0
y(u; 0; �)d�;

A(�)� =
1


���

R 1
0
�(u; �)d�;

A� (�) p =
R 1
0

�
� + y(u; 0; �)

�
d� � yd;R 1

0
B�p +Nu = 0 in U:

(3.14)

Proof. A �rst order necessary condition gives for every w 2 L2 (�0)

(
R 1
0
y(u; 0; �)d� � yd;

R 1
0
y(w; 0; �)d�)V +N(u; w)U+

1


(��
R 1
0
�(u; �)d�; �

� R 1
0
�(w; �)d�)G � 0:

(3.15)

Let � = �(u; 0) be the solution of

A(�)� =
1


���

Z 1

0

�(u; �)d�; (3.16)

Then,

1


(��
Z 1

0

�(u; �)d�; �
�
Z 1

0

�(w; �)d�)G = (

Z 1

0

A(�)�d�;

Z 1

0

�(w; �)d�)V

=

Z 1

0

(�;

Z 1

0

y(w; 0; �)d�)Vd�

= (

Z 1

0

�d�;

Z 1

0

y(w; 0; �)d�)V :

Hence, the optimality condition (3.15) is equivalent to�Z 1

0

�
y(u; 0; �) + �

�
d� � yd;

Z 1

0

y(w; 0; �)d�

�
V
+N(u; w)U � 0: (3.17)
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Again, let�s construct an adjoint state p = p(u) solution to

A� (�) p =

Z 1

0

�
� + y(u; 0; �)

�
d� � yd: (3.18)

Then (3.15) is equivalent to�Z 1

0

B� (�) pd� +Nu; w

�
U

� 0 8w 2 U: (3.19)

Since U is a Hilbert space, we also have�Z 1

0

B� (�) pd� +Nu; w

�
U

� 0 8w 2 U; (3.20)

which gives (3.14). This ends the proof.

3.4 Existence and characterization of the averaged no-regret

control

Now we give a singular optimality system for the approximate averaded no-regret control.

Theorem 3.3 When  ! 0; the averaged low-regret control u converges to the averaged no-regret

control u, solution of (3.3).

Proof. As u is an averaged low-regret control, then for every v 2 U

J (u; 0)� J (0; 0) +
1



�� Z 1

0

�(u; �)d�

2
G

� J (v; 0)� J (0; 0) + 1


�� Z 1

0

�(v; �)d�

2
G

;

take v = 0 to �ndZ 1

0

y (u; 0; �) d��yd
2
V
+N kuk2U +

1



�� Z 1

0

�(u; �)d�

2
G

� J (0; 0) ;

from which, we deduce the following bounds

kukU � C; (3.21)Z 1

0

y (u; 0; �) d�


V
� C; (3.22)�� Z 1

0

�(u; �)d�

2
G

� C; (3.23)

3.4. Existence and characterization of the averaged no-regret control 68



Chapter 3. On the averaged no-regret control for parameter dependent systems with
missing data

where C is a positive constant independent of �, then, by (3.21), we �nd that there exists a

subsequence still denoted u such that

u * u weakly in U:

It remains to prove that u is an averaged no-regret control i.e. a solution for (3.3). It�s clear that

for all v 2 U
J (u; g)� J (0; g)�  kgk2G � J (v; g)� J (0; g),

then,

J (u; g)� J (0; g)�  kgk2G � sup
g2G
(J (v; g)� J (0; g)),

make  ! 0 to get

J (u; g)� J (0; g) � sup
g2G
(J (v; g)� J (0; g));

i.e. u is an averaged no-regret control.

Finally, we can present the following theorem giving a full characterization the averaged no-regret

control.

Theorem 3.4 The averaged no-regret control u is characterized by the following optimality system8>>>>>>><>>>>>>>:

A(�)y = B(�)u;

A� (�) �(u; �) =
R 1
0
y(u; 0; �)d�;

A(�)� = �;

A� (�) p =
R 1
0
(�+ y(u; 0; �)) d� � yd;R 1

0
B�p+Nu = 0 in U;

(3.24)

where � (x) = lim
!0

1


���

R 1
0
�(u; �)d� weakly in U .

Proof. From Theorem 3.3, we know that

u * u weakly in U;

then, as B(�) is bounded, we �nd

B(�)u * B(�)u weakly in V :

Also, by continuity w.r.t. data y (u; 0; �) converges weakly to y (u; 0; �) in V, and from the conti-

nuity of A(�); we deduce that

A(�)y (u; 0; �)* A(�)y (u; 0; �) weakly in V ;
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from the limit uniqueness, we deduce

A(�)y (u; 0; �) = B(�)u:

By reasoning by contradiction and from (3.23), we have�� Z 1

0

�(u; �)d�

2
G

� C )
�� Z 1

0

�(u; �)d�


G

� C;

i.e. ��
R 1
0
�(u; �)d� is bounded in V, then as � is bounded,

1


���

R 1
0
�(u; �)d� is also bounded,

then, we get
1


���

Z 1

0

�(u; �)d� * � weakly in V ;

Likewise, A(�)� is bounded and by isomorphism of A(�); we know that � is bounded also and

converges to �, then

A(�)� * A(�)� weakly in V ;

hence,

A(�)� = �:

Moreover, from the boundness of y and �; we deduce the boundness of A(�)p and therefore p
is bounded in V, and we get

A� (�) p =

Z 1

0

(�+ y(u; 0; �)) d� � yd:

At last, pass to limit in the variational inequality of (3.14) and use weak convergences of u; p to

u; p resp. to get Z 1

0

B�p+Nu = 0 in U:

3.5 Application (Optimal control of parameter dependent

electromagnetic wave equation with missing initial con-

ditions)

In this section, we apply the above method throughout the example given below in situation bound-

ary control and missing initial conditions.
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Let an open bounded subset 
 of Rn with a regular boundary � and T > 0. We set Q = 
� ]0; T [ ;
� = � � ]0; T [ : We consider the following linear electromagnetic wave equation depending on an
unknown parameter � with a boundry control action8>>>>>><>>>>>>:

@2y

@t2
��y + p (x; �) y = 0

y =

(
v

0

y (x; 0) = y0 (x) ;
@y

@t
(x; 0) = y1 (x)

in Q;

on �0;

on � n �0;
in 
;

(3.25)

where p 2 L1 (
) is the potential term supposed dependent on an unknown parameter � 2 (0; 1)
presents the dielectric permittivity, v presents a boundary control action in L2 (�0), y0 2 H1

0 (
) ;

y1 2 L2 (
) are the initial position and velocity respectively, both supposed unknown and all

independent of the parameter �. The wave equation (3.25) has a unique solution y (v; y0; y1; �) in

C([0; T ];H1(
)) \ C1([0; T ];L2(
)) [29]. We denote g = (y0; y1) 2 G = H1
0 (
)� L2 (
) the initial

missing data.

We want to choose a control v independently of � and g in a way such that the average state

function y approaches a given observation yd 2 L2 (Q), i.e. we want to minimize the quadratic cost
functional

J (v; g) =
Z 1

0

y (v; g; �) d��yd
2
L2(Q)

+N kvk2L2(�0) ; (3.26)

where yd 2 L2 (Q) is a given observation and N 2 R�+.

Lemma 3.2 For all v 2 L2 (�0) and g 2 G we have

J (v; g)� J (0; g) = J (v; 0)� J (0; 0)

�2
Z



y0 (x)

Z 1

0

@�

@t
(x; 0) d�dx+ 2

Z



y1 (x)

Z 1

0

� (x; 0) d�dx; (3.27)

where � is given by the following backward wave equation8>>><>>>:
@2�

@t2
��� + p (x; �) � =

R 1
0
y (v; 0; �) d�

� = 0

� (x; T ) = 0;
@�

@t
(x; T ) = 0

in Q;

on �;

in 
;

(3.28)

which has a unique solution in C([0; T ];H1
0 (
)) \ C1([0; T ];L2(
)) [29].

Proof. It�s easy to check that for all (v; g) 2 L2 (�0)�G

J (v; g)� J (0; g) = J (v; 0)� J (0; 0) + 2
Z
Q

�Z 1

0

y(v; 0)d�

��Z 1

0

y(0; g)d�

�
dxdt.

3.5. Application (Optimal control of parameter dependent electromagnetic wave equation
with missing initial conditions) 71



Chapter 3. On the averaged no-regret control for parameter dependent systems with
missing data

Now,we introduce an adjoint state � de�ned by (3.28) and apply Green formula to get

Z
Q

�Z 1

0

y(v; 0)d�

��Z 1

0

y(0; g)d�

�
dxdt =

TZ
0

Z



�
@2�

@t2
��� + p (x; �) �

��Z 1

0

y(0; g)d�

�
dxdt

= �2
Z



y0 (x)

Z 1

0

@�

@t
(v; 0) d�dx+ 2

Z



y1 (x)

Z 1

0

� (v; 0) d�dx:

Then,

J (v; g)� J (0; g) = J (v; 0)� J (0; 0)

�2
Z



y0 (x)

Z 1

0

@�

@t
(x; 0) d�dx+ 2

Z



y1 (x)

Z 1

0

� (x; 0) d�dx:

From section 3.2, the averaged low-regret control associated with (3.25)-(3.26) is de�ned by

inf
v2L2(�0)

J (v) ; (3.29)

where

J (v) = J (v; 0)�J (0; 0)+
1



Z 1

0

@� (v; �)

@t
(x; 0) d�

2
H1
0 (
)

+
1



Z 1

0

� (v; �) (x; 0) d�

2
L2(
)

: (3.30)

Now, we can now characterise the unique averaged low-regret control u .

Theorem 3.5 For all  > 0, the averaged low-regret control u, solution of (3.29)-(3.30) is char-

acterized by the unique solution
�
y; �; �; p

	
of the following optimality system
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8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

@2y
@t2

��y + p(x; �)y = 0;

@2�
@t2

��� + p(x; �)� =
R 1
0
y (u; 0; �) d�;

@2�
@t2

��� + p(x; �)� = 0;

@2q
@t2

��q + p(x; �)q =
R 1
0

�
� + y (u; 0; �)

�
d� � yd in Q;

y =

(
u

0

on �0
on � n �0

; � = 0;

� = 0; q = 0 on �;

y(0; x) = 0;
@y
@t
(0; x) = 0;

�(x; T ) = 0;
@�
@t
(x; T ) = 0;

� (x; 0) = �
1



R 1
0

@� (u)

@t
(x; 0) d�;

@�
@t
(x; 0) =

1



R 1
0
� (u) (x; 0) d�;

q(T; x) = 0;
@q
@t
(T; x) = 0 in 
;

(3.31)

with

u =
1

N

Z 1

0

@q
@�

d� in L2 (�0) : (3.32)

Proof. A �rst order necessary condition gives for every w 2 L2 (�0)

(
R 1
0
y(u; 0)d� � yd;

R 1
0
y(w; 0)d�)L2(Q) +N(u; w)L2(�0)+

( 1


R 1
0

@� (u)

@t
(0)d�;

R 1
0

@� (w)

@t
(0)d�)L2(
) + (

1


R 1
0
� (u) (0)d�;

R 1
0
� (w) (0)d�)L2(
) = 0:

(3.33)

Let � = �(u; 0) be the solution of8>>>><>>>>:
@2�
@t2

��� + p (x; �) � = 0

� = 0

� (x; 0) = �
1



R 1
0

@� (u)

@t
(x; 0) d�;

@�
@t
(x; 0) =

1



R 1
0
� (u) (x; 0) d�

in Q;

on �;

in 
:

(3.34)

Hence, the optimality condition (3.33) is equivalent to

(

Z 1

0

y(u; 0) + �d� � yd;

Z 1

0

y(w; 0)d� � y (0; 0))L2(Q) +N(u; w)L2(�0) = 0: (3.35)

Again, let�s construct an adjoint state q = q(u) solution to8>>><>>>:
@2q
@t2

��q + p (x; �) q =
R 1
0

�
� + y (u; 0; �)

�
d� � yd

q = 0

q (x; T ) = 0;
@q
@t
(x; T ) = 0

in Q;

on �;

in 
:

(3.36)
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Then (3.33) is equivalent to

u =
1

N

Z 1

0

@q
@�

d� in L2 (�0) . (3.37)

which gives (3.32). This ends the proof.

Now we give a singular optimality system for the approximate no-regret control. Before doing this

we give some a priori estimates as follows

Proposition 3.1 There is some C > 0 independent of  such that

kukL2(�0) � C; (3.38)Z 1

0

y (u; 0; �) d�


L2(Q)

� C; (3.39)

ky (u; 0; �)kL2(Q) � C; (3.40)Z 1

0

@� (u; �)

@t
(x; 0) d�


H�1(
)

� C
p
; (3.41)Z 1

0

� (u; �) (x; 0) d�


L2(
)

� C
p
; (3.42)�L1(0;T ;H1

0 (
))
� C; (3.43)

kqkL1(0;T ;H1
0 (
))

� C; (3.44)

Proof. u solves the optimal problem (3.29)(3.30), and we have particularly

J (u) � J (0) .

Then, from the de�nition of J

J (u; 0) +
1



Z 1

0

@� (u; �)

@t
(x; 0) d�

2
L2(
)

+
1



Z 1

0

� (u; �) (x; 0) d�

2
L2(
)

� J (0; 0) ;

this gives (3.38),(3.39), (3.41) and (3.42). The bound (3.40) follows by a way similar to (3.12).

From energy conservation property with (3.41) and (3.42).

E� (t) =
1

2

Z



"����@�@t
����2 + ��r���2 + q (x; �)

�����2
#
dx = E� (0) � C,

we �nd (3.43).

To get q estimates, just reverse the time variable by taking s = T � t to �nd (3.44).

Finally, we can present the following theorem giving a full characterization the average no-regret

control.
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Theorem 3.6 The average no-regret control u is characterized by the following optimality system8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

@2y

@t2
��y + p(x; �)y = 0;

@2�

@t2
��� + p(x; �)� =

R 1
0
y (u; 0; �) d�;

@2�

@t2
���+ p(x; �)� = 0;

@2q

@t2
��q + p (x; �) q =

R 1
0
(�+ y (u; 0; �)) d� � yd in Q;

y =

(
u

0

on �0
on � n �0

; � = 0

� = 0; q = 0 on �,

y(0; x) = 0;
@y

@t
(0; x) = 0;

�(x; T ) = 0;
@�

@t
(x; T ) = 0;

� (x; 0) = �1 (x) ;
@�

@t
(x; 0) = �2 (x) ;

q(T; x) = 0;
@q

@t
(T; x) = 0 in 
,

(3.45)

with

u =
1

N

Z 1

0

@p

@�
d� in L2 (�0) ,

and

�1 (x) = lim
!0

� 1



R 1
0

@� (u)

@t
(x; 0) d� weakly in H1

0 (
),

�2 (x) = lim
!0

1



R 1
0
� (u) (x; 0) d� weakly in L2 (
).

Proof. From (3.40) continuity w.r.t data, we can deduce that

y (u; 0; �)* y (u; 0; �) weakly in L2 (
) ;

solution to 8>>>>>><>>>>>>:

@2y

@t2
��y + p (x; �) y = 0

y =

(
u

0

y (x; 0) = 0;
@y

@t
(x; 0) = 0

in Q;

on �0;

on � n �0;
in 
:

Again, by (3.39) and dominated convergence theoremZ 1

0

y (u; 0; �) d� *

Z 1

0

y (u; 0; �) d� weakly in L2 (�0) .

The rest of equations in (3.45) leads by a similar way, except the convergences of initial data � (x; 0),
@�

@t
(x; 0) which will be as follows.
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�1


@� (u; �)

@t
(x; 0)* �1 (x) weakly in H1

0 (
) ;

and
1


� (u; �) (x; 0)* �2 (x) weakly in L2 (
) .
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Conclusion and future perspectives

Main Contributions

In this thesis, we have studied the controllability and the optimal control of some distributed systems

with missing data and depending on an unknown parameter.

In Chapter 2, we have proved the averaged null controllability for a wave equation with an unknown

velocity of propagation parameter under the e¤ect of boundary control. We have de�ned the

averaged energy where we have proved its conservation. Next, we have established a fundamental

theorem containing an averaged inverse inequality which is the key point to prove the averaged null

controllability of the wave equation for a large enough time. Then we have applied the famous

Hilbert uniqueness method which was introduced by Lions to construct an independent parameter

control that steers the averaged state of a wave equation containing an unknown to zero. In the same

way, we have treated the problem of the vibrating plate equation. Afterward, we have extended

the usual results of regional controllability to hyperbolic parameter dependent systems. We have

created a new concept which is regional averaged controllability and we have used an approach

based on regional controllability tools in connection with averaged control structure based on an

extension of the Hilbert uniqueness method devoted to the calculation of the control that steers the

state average (with respect to such a parameter) towards the desired state only on a given part of

the system evolution domain.

In Chapter 3, , we have studied general and abstract control systems depending on a parameter

and with missing data. we have given a characterization (optimality system) using the averaged no-

regret control method. more precisely, we have proved the convergence of the averaged low-regret

control to the averaged no-regret control for which we have obtained a singular optimality system.
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Hence, we have proved that we can bring the averaged state of our system to a desired state. Then ,

we apply the described theory on parameter dependent electromagnetic wave equation with missing

initial conditions.

Perspectives

Hereafter, we list some possible developments for future research works.

� Concerning averaged regional controllability introduced in Chapter 2, to further generalize
the previous treatise, one should consider the following case

� the control operator B is also dependent on the parameter �.

�The case of boundary subregion.

�When the systems considered are parabolic parameter dependent systems or fractional

order systems.

� Another perspective that we could be interested in generalizing the result obtained in chapter
3 to the case of other systems which have many biomedical applications.
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Appendix

De�nition 1 [59] A family fS(t)gt�0 of operators in L(V) (where V is the state space) is a strongly
continuous semi-group or C0-semi-group on V if
i) S(0) = I.

ii) S(t+ s) = S(t)S(s), for all s; t � 0:
iii) lim

t!0+
S(t)x = x 8x 2 V :

De�nition 2 [59] The linear operator A : D(A)! V, de�ned by

D(A) =

�
x 2 V : lim

t!0

S(t)x� x

t
existe

�
:

Ax = lim
t!0

S(t)x� x

t
; 8x 2 D(A):

is called the in�nitesimal generator of the semi-group S.

De�nition 3 [59] Let� = fz 2 C : '1 � arg z � '2; '1 � 0 � '2g a sector inC:A family fS(z)gz2�
of linear operators bounded on H is said to be an analytical (holomorphic) semi-group in � if it

satis�es the following conditions:

i) S(z1 + z2) = S(z1)S(z2),8 z1; z2 2 �:
ii) S(0) = I .

iii) lim
z!0;z2�

S(z)x = x 8x 2 H:
iv) The application z 2 �� = �n f0g 7! S (z)x 2 H is analytical, 8x 2 H:
Proprety 1 [7] The adjoint A� of A generates the semi-group fS�(t)gt�0 adjoint of fS(t)gt�0 which
is also strongly continuous on the dual V 0of V .
De�nition 4 Let J : U � X ! Y be an operator with Banach spaces X; Y and U 6= ; open. J
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is called directionally di¤erentiable at x 2 U if the limit

DJ (x; h) = lim
t!0+

J (x+ th)� J (x)
t

2 Y;

exists for all h 2 X. J is called Gâteaux di¤erentiable at x 2 U if J is directionally di¤erentiable

at x and the directional derivative J 0(x) : h 2 X ! DJ (x; h) 2 Y is bounded and linear,i.e.,

J (x) 2 L(X; Y ):
Theorem 1 [60] (Integration by Parts Formulas) Let 
 � Rn, be a C1� domain. For vector
�elds

V =(V1; V2; : : : ; Vn) : 
! Rn;

with V 2 C1
�


�
, the Gauss divergence formula holdsZ




divVdx =

Z
�

V:�d�; (1)

where divV =
nP
i=0

@Vj
@xi

; � denotes the outward normal unit vector to �, and d� is the �surface�

measure on �.

A number of useful identities can be derived from (1). Applying (1) to fV,with f 2 C1
�


�
, and

recalling the identity

div (fV) = f: divV +rf:V;

we obtain the following integration by parts formulaZ



f divVdx =

Z
�

fV:�d�+

Z



rf:Vdx: (2)

Choosing V = rg; g 2 C2 (
)\ 2 C1
�


�
, since divrg = 4g and 4g:� = @g

@�
, the following

Green�s identity follows Z



f4gdx =
Z
�

f
@g

@�
d��

Z



rfrgdx: (3)

In particular, the choice f = 1 yields Z



f4gdx =
Z
�

@g

@�
d�: (4)

If also f 2 C2 (
)\ 2 C1
�


�
interchanging the roles of g and f in (3) and subtracting, we derive

a second Green�s identityZ



f4gdx�
Z



4fgdx =
Z
�

�
f
@g

@�
� g

@f

@�

�
d�: (5)

Theorem 2 Let any real numbers a , b and let p; q be real numbers connected by the relationship
1

p
+
1

q
= 1:
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Then we have the Cauchy inequality

ab � 1

2

�
a2 + b2

�
:

Theorem 3 [45] Let E and F be two Banach spaces A : D(A) � E ! F an unbounded operator

of dense and closed domain then :

1)A surjectif

2)9 > 0 : kvkF � kA�vkE 8v 2 D(A�)
3)ker(A) = f0g and Im(A�) is closed.
De�nition 4 A minimizing sequence of criterion J on the set K is a sequence (un)n2IN � K such

that lim
n!+1

J(un) = inf
v2K

J(v)

Theorem 4 (Fubini) Let f be a continuous function on [a; b]� [c; d] with values in C. ThenZ b

a

�Z d

c

f(x; y)dy

�
dx =

Z d

c

�Z b

a

f(x; y)dx

�
dy:
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