
 
 

 

Development and implementation of 
computational code for studying the electronic 

properties of graphene nanostructure 

 People's Democratic Republic of Algeria 
 

Ministry of Higher Education and Scientific Research 

Echahid Cheikh Larbi Tebessi University- Tebessa 

Faculty of Exact Sciences and Natural and Life Sciences
 
 

Order N°: …… 

Series : …… 

Department: Material sciences 
 
 
 
 

Master 
Thesis 

 

Option : Condensed Matter Physics 

Topic: 

Presented by: 

 REDJEM Nabila 

Board of Examiners: 
 

HANINI Faouzi 
 

MCA Echahid Cheikh Larbi Tebessi University 
 

President 

Kirouani Taki-Eddine 
 

MCB 
 

Echahid Cheikh Larbi Tebessi University 
 
Supervisor 

SAOUANE Azzeddine 
 

MCB 
 

Echahid Cheikh Larbi Tebessi University 
 

Examiner 

 
 
 
 
 

Date of graduation : 13/06/2023 

 
2022/2023 



 
 

 

Abstract: 

Graphene is two-dimensional material with attractive electronic properties that have been 

successfully integrated into nanotransistors. However, it still has some issues due to its metallic nature. 

One way to solve this problem is by nanostructuring it. To better understanding the effect of 

nanostructuring on graphene, we need to solve the Schrodinger equation: if we use the tight-binding 

model, the solution of this equation is simply a linear combination of atomic orbital of these 

nanostructures. If you need the energy spectrum of graphene quantum dots with precise shape and 

edges, you need to construct a Hamiltonian matrix based on your input data: unit cell, hopping 

integral, shape and size. In this master thesis, we provide an easy way for writing a code that can 

generate a Hamiltonian matrix for finite size. 

 

Résumé: 

Le graphène est un matériau bidimensionnel doté de propriétés électroniques intéressantes qui 

ont été intégrées avec succès dans des nanotransistors. Cependant, sa nature métallique pose encore 

quelques problèmes. L'un des moyens de résoudre ce problème consiste à le nanostructurer. Pour 

mieux comprendre l'effet de la nanostructuration sur le graphène, nous devons résoudre l'équation de 

Schrodinger : si nous utilisons le modèle de liaison fortes, la solution de cette équation est simplement 

une combinaison linéaire des orbitales atomiques de ces nanostructures. Si vous avez besoin du 

spectre énergétique des nanostructures de graphène avec une forme et des bords précis, vous devez 

construire une matrice hamiltonienne basée sur vos données d'entrée : cellule unite, intégrale de 

transfert, la forme et la taille. Dans ce mémoire de Master, nous proposons une méthode simple pour 

écrire un code capable de générer une matrice hamiltonienne pour une taille finie. 

  الملخص

الجرافین مادة ثنائیة الأبعاد ذات خصائص إلكترونیة جذابة تم دمجھا بنجاح في الترانزستورات 

تتمثل إحدى طرق حل ھذه . ومع ذلك ، لا یزال لدیھا بعض المشكلات بسبب طبیعتھا المعدنیة. النانویة

شكل أفضل ، نحتاج إلى حل معادلة لفھم تأثیر البنیة النانویة على الجرافین ب. المشكلة في ھیكلتھا النانویة

الدوال خطي من  تركیب، فإن حل ھذه المعادلة ھو ببساطة  شدید الإرتباطإذا استخدمنا نموذج : شرودنجر

إذا كنت بحاجة إلى طیف الطاقة لنقاط الجرافین الكمومیة ذات الشكل . لھذه الھیاكل النانویة الذریة

خلیة : لإدخال الخاصة بكمصفوفة ھاملتون بناء على بیانات ا والحواف الدقیقة ، فأنت بحاجة إلى إنشاء

یمكنھ إنشاء مصفوفة  برنامج، نقدم طریقة سھلة لكتابة  ھذه الأطروحة في .الأبعاد، الشكل الوحدة 
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General introduction: 

 

Science is always at the service of human beings, with researchers from all over the 

world work together to solve the challenges and problems facing our society today. 

These problems are interdisciplinary, such as the increase in computer speed, for 

example, which requires electronic engineers to invent new circuits and computer scientists to 

optimize programs, and physicists to discover and create new materials  

As physicists, we understood that the new family of materials (two-dimensional) has a 

huge role to play in tomorrows technological that's why we decided to carry out this study. 

This manuscript is structured around 3 chapters: 

In the first chapter, we discussed the limitations that prevent the development and 

nano-fabrication of electronic components, and proposed a solution: two-dimensional 

materials,  

This chapter concludes with applications of these materials in the field of 

nanoelectronics and optoelectronics. 

In the second chapter, we discussed the application of tight binding model in infinite 

and finite size then we proposed an easy way to find hamiltonian matrix of graphene 

nanostructure. 

 In the last chapter, the details of code are given and we validate our results with literature. 
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1.1 Introduction: 

The world has witnessed a series of major industrial revolutions, each marked by 

significant technological advancements. The first of these, the mechanical revolution, was 

characterized by the invention of machines such as the steam engine and the mechanical 

loom. The energy revolution that followed was made possible by the invention of electricity, 

which transformed the way we produce and use energy.(4) 

However, the true electronic revolution only occurred after the discovery of 

semiconductors, materials with incredible electro-optical properties. This discovery enabled 

the creation of a series of inventions in the field of electronics, such as transistors and diodes, 

which led to the appearance of electronic products in our daily lives, such as phones, 

televisions, computers, etc. (15) 

 

Fig 1.1: Witch is an ancient British computer of the 1950s [01] 

The transition between the electronic revolution and the digital revolution was ensured 

by ingenious inventions of semiconductor-based electronic components. Powerful calculating 

machines were thus created, capable of quickly and efficiently processing information. This 
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transition led to the creation of more sophisticated and powerful electronic devices, such as 

laptops and tablets. (03) 

It should be noted that the first calculating machine was invented in the 17th century, 

but it was limited in its capabilities. In 1944, computers weighed 30 tons and consumed 

around 150 kW to perform simple calculations. Today, a tablet weighs only 700g with a 

powerful microprocessor and incredible features, demonstrating the speed and extent of 

technological evolution in the field of electronics and semiconductors.(11) 

 

Fig 1.2: evolution of computers 

 

How was it possible to create such an advanced tablet? What is the secret of its production? 

The answer is simple: the miniaturization of electronic components. The most crucial 

electronic component in digital electronics is the transistor. It is used to perform numerical 

calculations and works with low electrical voltages. Researchers have succeeded in reducing 

the size of transistors and interconnecting them in millions or even billions in an integrated 

circuit, which has made it possible to create increasingly powerful processors. This 

miniaturization of electronic components is therefore the secret of the creation of the tablet 

and other advanced electronic products that we use today. (08) 
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Fig 1.3) : Intel 4004 contain 2300 transistors in 1971 [02],  b) NVIDIA flagship contain75 billions 

transistors in 2022 [03] 

What are the major consequences of the reduction in the size of electronic components? 

Firstly, the decrease in the size of electronic components leads to a significant 

reduction in manufacturing costs, as fewer raw materials is required to produce a larger 

number of electronic components. (06) 

Secondly, this size reduction also leads to a reduction in power consumption, as 

smaller components require less energy to operate. This is particularly important in portable 

electronic products such as smartphones and tablets, which require high battery autonomy. 

(19) 

Finally, the reduction in the size of electronic components allows for an increase in the 

operating speed of electronic devices and the creation of incredible computing power. In 

1965, Moore's Law was stated, which stated that the number of transistors integrated on a 

chip could double every 18 months. This observation has been respected over the years, and 

the capacity of processors has been multiplied by 10,000,000 since 1971, as shown in Fig 1.4. 

This increase in computing power has enabled the development of new technologies and 

applications, such as artificial intelligence, virtual reality and many others. (12) 
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Fig 1.4 Moore’s Law [04] 

To answer the question of whether Moore's Law will remain valid in the world of 

nanoelectronics and whether the race for miniaturization has an end, current research trends 

must be taken into account. Laboratories and companies working in the field of 

miniaturization dedicate considerable budgets to making electronic components smaller and 

reaching sizes of tens of nanometers. (01) 

However, there are limitations that slow down the nanoelectronics industry. Firstly, 

the number of dopant atoms in semiconductors decreases with the reduction in the size of the 

transistor, which leads to the appearance of logical errors and electrostatic discharges. 

Additionally, cooling the devices is very difficult to achieve, and the reduction in the size of 

electronic components can lead to the appearance of quantum phenomena such as the 

tunneling effect.(18) 

Finally, mass production of microprocessors and other nanoelectronic components is 

limited by lithography techniques and masks. Despite these limitations, researchers continue 

to work on solutions to overcome these obstacles and advance in the miniaturization of 

electronic components. (21) 

In conclusion, Moore's law can continue to hold true in the world of nanoelectronics, 

but current limits of electronic component miniaturization and technical challenges must be 

overcome to continue this trend. (16) 
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The most commonly used semiconductors in electronic component microfabrication 

are silicon and GaAs. However, researchers are planning to replace silicon with new materials 

that have interesting electrical and optical properties, especially for nanofabrication. Two-

dimensional materials (2D) are one of these materials, with monoatomic thickness and 

innovative properties that could be promising for nanoelectronics. (07) 
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1.2. Definition of 2D materials: 

In the bulk, free electrons make random movements in three dimensions, meaning that 

electrons have three degrees of freedom. 

If one of dimension of the material is nanometric in size, electrons move freely in two 

dimensions, in which case they have two degrees of freedom. 

If both dimensions of the material are nanometric in size, electrons have only one 

degree of freedom, meaning they can move freely in a single direction. 

If all three dimensions of the material are nanometric in size, the electron is 

completely confined and has 0 degrees of freedom. 

Therefore, nanomaterials can be classified based on the degrees of freedom of their 

electrons, as shown in the following table: (05) 

 

Fig 1.5   a) 2d material    b) 1d material    c) 0d material 

A two-dimensional material is a 2D material whose thickness is very thin, on the order of a 

nanometer. 

Based on their planar structures, they can be easily integrated into electronic devices 

and make contacts, unlike the integration of carbon nanotubes or fullerene C60, which is 

difficult. 

These 2D materials can be integrated with semiconductors such as silicon or GaAs. 

The electronic properties can be modified, and the Eg (bandgap) can be tuned, which allows 

for the control of the frequency of the emitted light. 

The power consumption of the integrated circuit can be reduced, and the information 

processing speed and computing capacity can be increased. (22) 
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The conversion efficiency of electric-light or vice versa can be increased in 

optoelectronic devices. (06) 

1.3 Graphene: 

Graphene is a two-dimensional material with a hexagonal crystal structure, as 

illustrated in Fig 1.6. It is widely recognized as one of the stiffest materials and is also 

considered the best conductor of electricity and heat among all known materials. Additionally, 

graphene is transparent, making it interesting for applications in the fields of optics and 

electronics. (13) 

 

Fig 1.6 shows the nano-sized deformations that provide stability in the structure of grapheme 

 

André Geim and Konstantin Novoselov [05] discovered graphene for the first time in 

2004, and they received the Nobel Prize in Physics in 2010 for this discovery. By using 

adhesive tape (Scotch tape), thin graphite sheets were isolated from a graphite, as shown in 

Fig 1.7. The repetition of folding these sheets leads to thinner graphite flakes. These flakes are 

deposited on a SiC or SiO2 substrate, and graphene is identified using an optical microscope. 

(14) 
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Fig 1.7 a) Adhesive tape with graphite,  b) Image obtained by optical microscope of graphene 

deposited on an SiO2 substrate.[06] 

 

The electronic configuration of carbon is 1s2 2s2 2p2, so it has four valence electrons. 

Hybridization between the 2s and 2px and 2py orbitals forms three orbitals called sp2, which 

are oriented at 120° in the plane, as shown in the following figure. (20) 

 

Fig 1.8 hybridation sp2  

There are two types of bonds in graphene: 

The sigma σ bond: Each carbon atom is covalently bonded to three neighboring carbon 

atoms through sp2 orbitals. The carbon atoms are arranged in an ordered manner on a 

hexagonal lattice, which gives graphene exceptional rigidity due to these σ bonds. (04) 
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The π bonds: formed by overlapping of pz orbitals, which are perpendicular to the 

graphene plane.(09) 

What are the reasons for the high electron mobility in graphene? 

There are two main reasons for this: 

1. Ballistic transport: The classical Drude model for describing electric current in solids, 

where electrons undergo many collisions to move, does not always apply to two-

dimensional materials such as graphene, as electrons undergo very few collisions [07].  

2. This is due to the strong (sigma) bonds between carbon atoms, which make graphene 

very rigid and significantly reduce the number of scatterers. (10) 
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1.4 Applications: 

The field of two-dimensional materials is a relatively new area of research, but it is 

very promising, as evidenced by the large number of scientific articles and patents filed since 

2004 concerning graphene. It is worth mentioning that the global graphene market was 

estimated at 150 million dollars in 2020. (17) 

 

Fig 1.9: number of patents on graphene that have been filed since the year of its discovery until 2014 

[08] 

Researchers have successfully incorporated two-dimensional materials such as 

graphene into  various electronic components such as transistors, sensors, photodetectors, and 

electrodes. The integration of these materials into technological applications is interesting for 

two main reasons. First, materials with atomic thickness have unique and highly attractive 

properties such as charge mobility in the case of graphene, making them in high demand. In 

addition, the geometry and architecture of nano-electronic components are mainly based on 

planar structures, such as stacking layers . (22) 

In the following, we will present some research work that has been carried out in 

laboratories to integrate graphene into nanocomponents. (07) 
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1.4.1 Field Effect Transistor (FET) based on graphene 

A field effect transistor is an electronic component that has three electrodes, as shown 

in Fig 1.10: (01) 

 

Fig 1.10 Transistor FET 

1. The source and drain 

2. The gate, which is placed above the device 

3. The channel 

4. The dielectric that separates the channel from the gate. 

Electric current flows between the source and drain. However, this current can be 

regulated by applying a voltage to the gate [09]. When the voltage applied to the gate is high 

enough, it creates an electric field that allows control of the current flow between the source 

and drain. Thus, current flow can be allowed or blocked depending on the voltage applied to 

the gate. (15) 

In electronics, transistors are often used to create logic circuits, it can be used to represent 

a data bit, where Ioff corresponds to the value 0 and Ion corresponds to the value 1. By 

combining multiple transistors, more complex circuits can be created to perform logical 

operations, calculations, and data processing. (13) 

The channel length of the transistor plays an important role in the transport of electrons 

through the channel. When the channel length is long, electrons move by diffusion, which 

means they undergo collisions with the atoms of the material constituting the channel. These 

collisions have the effect of slowing down electrons and reducing their speed. In this case, 

Ohm's law can be used to describe the behavior of the transistor. (20) 
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On the other hand, when the channel length is very short, on the order of a few tens of 

nanometers, the transport of electrons through the channel becomes ballistic. This means that 

electrons move at a constant speed without undergoing significant collisions with the atoms of 

the material. (22) 

If we fabricate a nano FET transistor and integrate graphene as a channel [10], we will 

have enormous advantages: 

1. The time required to traverse the channel is too short, about 0.1 picoseconds (10-12 s), 

as electrons move with ballistic manner over distances of around 0.3 microns at room 

temperature. 

2. The speed of electrons is high, as electrons travel the same distance a hundred times 

faster in graphene than in silicon and gallium arsenide (GaAs). 

We recall that the front gate allows controlling the flow of electric current from the source 

to the drain by systematically measuring the electrical conductivity (resistance) as a function 

of the gate voltage Vg. (08) 

 

Fig 1.11 the resistivity as a function of the gate voltage Vg [11] 
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From the semi-classical theory of electron transport, we know that electrical conductivity 

is proportional to the density of charge carriers. Therefore, from the curve, we can deduce the 

following information: 

- If we apply a positive gate voltage Vg > 0, the Fermi energy of graphene shifts 

towards the conduction band, that increases the density of charge carriers (electrons) 

and thus increases conductivity. 

- If we apply a negative gate voltage Vg < 0, the Fermi energy of graphene shifts 

towards the valence band, that increases the density of charge carriers (holes) and thus 

increases conductivity. 

- If we apply zero gate voltage Vg = 0, the conductivity of graphene is very low but 

never vanishes due to the absence of a bandgap. (09) 

Therefore, if we apply a high gate voltage Vg, we can pass an electric current Ion from the 

drain to the source because if Vg is zero, the current Ioff is very low, but it does not become 

zero. (19) 

Graphene has a zero bandgap, and it exhibits a too low Ion/ Ioff ratio due to the reason 

mentioned above. This ratio is unfavorable for the operation of a transistor. (12) 
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1.4.2 Sensors 

Sensors are devices capable of converting a physical quantity into an electrical signal, 

and they are widely used in many technological and industrial applications. The design of 

innovative sensors at competitive prices requires the integration of new materials such as 

graphene. The integration of graphene into sensors is promising because this material has 

attractive mechanical properties such as rigidity and flexibility, in addition to being 

transparent, making it the ideal material for this type of application. Moreover, the best 

sensors on the market are those that exhibit high sensitivity, meaning that a small variation in 

the detected physical quantity will cause a considerable change in the electrical signal and in   

this context; graphene-based sensors show significant sensitivity. (20) 

Masses or molecules can also be detected mechanically by a nanoelectromechanical 

(NEM) sensor based on graphene. Fig 1.12 represents a nanomechanical resonator (a 

mechanical structure that vibrates periodically and also has a natural frequency). (03) 

 

Fig 1.12 Nano-electromechanical sensor contains a graphene that connects to the two electrodes [13] 

When a molecule attaches to the graphene, it leads to a modification of the mass and 

natural frequency of this resonator. Consequently, this also leads to a modification of the 

detected electrical signal. (04) 
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1.4.3 Photodetector 

A photodetector is an electronic device designed to detect and convert light into an 

electrical current. This process occurs through the absorption of photons by the photosensitive 

material. Photodetectors are used in several inventions such as remote controls, DVD players, 

and DVDs. (09) 

The graphene-based photodetector is an example of a modern photodetector. As 

illustrated in Fig 1.13, it generates an electrical current when exposed to light. This current is 

produced by the energy transition of electrons from the valence band to the conduction band, 

which is caused by the absorption of photons. This process also results in the creation of 

charge carriers, namely electrons and holes. (14) 

 

Fig 1.13 shows a photodetector based on a simple architecture (graphene-metal-metal)[14] 

 

The graphene-based photodetector works over a wide range of wavelengths because 

the dispersion relation (E as a function of k) is linear around the Fermi energy and the 

bandgap is zero, so all photons with different frequencies can generate charge carriers, unlike 

other semiconductor-based photodetectors where the frequency of the incident photons must 

be greater than Eg/h.(20) 

The integration of graphene into photodetectors is a promising because: 
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1. Due to the planar geometry of this material, integrating it into photodetector 

architecture is easy and straightforward. 

2. The response time (the time required to generate a photocurrent) is related to mobility, 

and graphene has high mobility, and their electrons move with a Fermi velocity VF of 

106 m/s, making the response time too short. 

3. The possibility of detecting any high wavelength of electromagnetic wave ,this ability 

is due to the absence of a bandgap in this material. (21) 

Graphene is an atom-thick material that absorbs almost 2.3% of incident light, which is 

less favorable for optoelectronic applications. Therefore, it is necessary to improve their light 

absorption, and researchers have recently succeeded in increasing absorption by incorporating 

nanoparticles with graphene into the photodetector . (15) 
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1.4.4 Transparent electrode: 

To manufacture electronic devices such as OLED screens, touch-screens, or 

photovoltaic cells, require materials for electrodes which can pass the electric current and 

light simultaneously. Among the materials used for this purpose, ITO (indium-tin oxide) is 

widely used due to its high electrical conductivity and optical transparency. However, it has 

undesirable mechanical properties such as fragility and limited flexibility. In the future, it is 

desired to replace ITO with graphene, as this material has advantages such as chemical and 

thermal stability, transparency, high electrical conductivity, flexibility, and strength superior 

to that of steel. In addition, it is easy to achieve ohmic contact with graphene because its work 

function is similar to that of ITO. (21) 

 

Fig 1.14: graphene OLED [16] 

1.5 Conclusion: 

As mentioned earlier, laboratory-scale electronic devices based on graphene and other 

two-dimensional materials such as nanotransistors have already been manufactured. Scientists 

are now seeking to commercialize them by moving from the fabrication of a single 

nanotransistor to that of a billion transistors on a chip. However, this requires mastering and 

developing new miniaturization techniques as well as the ability to manufacture these 

materials on a large scale, with high quality and at a lower cost. This is the current main 

challenge in the research field of two-dimensional materials. (16) 
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2.1. Introduction: 

To understand the behavior of electrons in the solid, physicists have proposed several 

models, which are based mainly on approximations and simplifications of  the Schrödinger 

equation such as the free electron model (17), which neglects all kinds of interactions and it 

takes into account only the kinetic energy of an electron. However, this model has limitations 

because it cannot explain the difference between a metal and an insulator. (18) 

There are other correct models such as tight binding model. The idea behind it is the 

following: the Schrodinger equation in solid is a complicated differential equation and an 

exact analytical solution is not always available, one way to solve it is to suppose that the 

solution can be written as the linear combination of orthogonal functions that belong to the 

Hilbert space, if we want more precise solution and make a better approximation of the exact 

solution, the most accurate choice of these orthogonal functions are atomic orbital functions. 

The name of this model "tight binding" comes from the choice of atomic orbital; these 

functions are almost localized in the centers of their nuclei (18). 

 

2.2 Tight-binding model for infinite dimensions: 

Application the tight binding model in infinite dimensions monolayer material requires 

several assumptions and simplifications like 

 1. The monolayer material is perfect and does not contain any defects. 

 2. Coulomb interactions between electrons are negligible. 

3. The monolayer material is crystal, it has a periodicity and symmetry then it can be 

described by a Bravais lattice with base. 

-One the most important consequence of this assumption is that potential is just 

periodic function which has the same periodicity of the Bravais lattice or the potential 

is identical on all Bravais nodes. 

4. The wave function is constructed as a linear combination of all atomic orbitals 

found in the monolayer material and then it will be re-written in simple form by 

application of Bloch’s theorem (19). 

5. While solving the Schrodinger equation, we discover integrals called hopping 

energy and we assume that the values of these integrals are important only for the near 

neighbors. 

-This study is useful for finding the dispersion relation and it help us to determine the exact 

values of the hopping energy (20). 

The value of hopping energy of graphene for first near neighbors is -2.8 ev (05). 
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2.3 Tight-binding model for finite size: 

Bloch's theorem only applies when we imposed symmetry and periodicity in our 

system, this approach is an efficient and fast way to reduce mathematical calculations. 

However, in cases where the system does not have symmetry, such as a system that contains 

defects or it is a nanostructure, we can always apply the tight binding model but we will not 

be able to use the Bloch’s theorem. (19) 

The purpose of this chapter is built a code that helps us to construct Hamiltonian 

matrix of graphene nanostructure. (20) 

First, let’s explain the theoretical aspects behind this code, the wave function of an 

electron with energy E is linear combination of all atomic orbital found in our nanostructure  

( ) ( )
m

r r R c 


  
r r ur

 

Now, we need to know the exact values of coefficient  by following these steps: 

1. We put these previous solutions in Schrodinger equation  
m

H H c 


   

2.  We can obtain a system of linear equations by multiplying previous equation by s  

Where s=1, …,m;  m: total number of atomic orbital in our nanostructure 

1 1 1 1,1 2 1,2 1, 1....
m

m mH H c c H c H c H Ec 


          

2 2 1 2,1 2 2,2 2, 2....
m

m mH H c c H c H c H Ec 


          

                                ……………………. 

1 1 1 1,1 2 1,2 1, 1....
m

m m m m m m m mH H c c H c H c H Ec 


               

1 ,1 2 ,2 ,....
m

m m m m m m m mH H c c H c H c H Ec 


          

These linear equations can be written in matrix form 

1,1 1, 1 1

,1 ,

.. ..
. . . . .
. . . . .

.. ..

m

m m m m m

H H c c

E

H H c c

    
    
    
    
         

 

In this study, it is assumed that the overlap integrals are negligible, which makes the 

atomic orbital an orthogonal basis. (22) 
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The diagonal element represents onsite energy of an electron in orbital i  

The non-diagonal element  equals zero if orbital i is not near neighbor of orbital j 

3. The problem has now become purely numerical, where we need to find the eigenvalues 

(energies) and the eigenvectors (coefficients ci) of the Hamiltonian matrix. (17) 

 

2.4. Tight-binding model for graphene nanostructure: 

The fast way to obtain the Hamiltonian matrix of graphene to assume that the wave 
function of graphene can be written as follows 

 , , , ,

N

A i A i B i B i
i

c c     (19) 

Which ,A i  represents the atomic orbital 2pz of carbon atom denoted A in unit cell i. 

And ,B i represents the atomic orbital 2pz of carbon atom denoted B in unit cell i. 

N  is total number of unit cells in nanostructure 

Let’s start with a simple example and we choose N=4. In this case, the wave function is 

,1 ,1 ,1 ,1 ,2 ,2 ,2 ,2 ,3 ,3 ,3 ,3 ,4 ,4 ,4 ,4A A B B A A B B A A B B A A B Bc c c c c c c c               

 

 

 
Fig 2.1: simple case  

The following equations are obtained by projection of atomic orbital of unit cell i ( ,A i  

and ,B i ) in Schrödinger equation  (15) 

1 1 1 1 2 2 4 4...A Ai A B Ai B A Ai A B Ai B Aic H c H c H c H Ec             

1 1 1 1 2 2 4 4...A Bi A B Bi B A Bi A B Bi B Bic H c H c H c H Ec             

Previous equations can be rewritten in matrix form   
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1 1 2 21 2

1 1 2 21 2

....Ai A Ai B Ai A Ai BA A

Bi A Bi B Bi A Bi BB B

H H H Hc c
H H H Hc c

       
       

      
       

      
 

4 4 4 1

4 4 4 1

Ai A Ai B A A

Bi A Bi B B B

H H c c
E

H H c c
   
   

    
     

    
 

If we denote the following submatrix 

,

Ai Aj Ai Bj

i j

Bi Aj Bi Bj

H H
h

H H

   

   

 
  
 
 

 

This example leads us to assume that Hamiltonian matrix can be rewritten by submatrix hi,j (12) 

1,1 1,

,1 ,

..
. . .

..

N

N N N

h h
H

h h

 
   
 
   
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2.5. Construction of the Hamiltonian matrix:  

The simplest shape of graphene nanostructure to start with is parallelogram  (09) 

 
    Fig 2.2: labeling the unit cells 

Some remarks can help us in coding 

1. Each unit cell has own index (iu, ju) and it has its own number num Fig 2.2 

2. The relation between number of unit cells and their indices is num= iu+1+(ju*nx). 

Where nX is total number of unit cells along x direction and nY is total number of unit 

cells in y direction. 

 

3. From Fig 2.3, we can deduce the formulas that help us calculate the numbers of first 

nearest neighbors. 

The number of downright nearest neighbor can be calculated by 

numdoR= iu+1+((ju-1)*nX) 
The number of down left nearest neighbor can be calculated by 

numdoL= iu+2+((ju-1)*nX) 
The number of upper right nearest neighbor can be calculated by 

numupR= iu+1+((ju+1)*nX) 
The number of upper left nearest neighbor can be calculated by 

numupL= iu+((ju+1)*nX)(16) 
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Fig 2.3: index of nearest neighbor 

 

4. Assuming we have two cells, the first unit cell with num =k and the second one with num= 

s then the diagonal sub-matrices  

,k k

t
h

t



 

  
 

 

Where  is hopping energy and  is onsite energy; it is conventionally assumed that  equals 

0 ev 

5. If the unit cell k is nearest neighbor of unit cell s, then  

,

0
0 0k s

t
h  

  
 

 if s equals numdoR or numdoL.; ,

0 0
0k sh

t
 

  
 

 if s equals numupL or numupR. 

6. If unit cell s is not a nearest neighbor of unit cell k then ,

0 0
0 0k sh  

  
 

  

7. Each projection of ( ,A k and ,B k ) in Schrödinger equation yields a row of sub-matrix  

,1 ,2 ,3 ,...k k k k NL h h h h     (13)
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3.1 Coding section: 
This code is written in Python, and we need import tow libraries: Numpy and 

Matplotlib 

import numpy as np 

import matplotlib.pyplot as plt 

we start writing a class cellunit for unit cell, the goal of this class is to collect information 

about the indices and number of current unit cell and the number of their first nearest 

neighbors. (14) 

class cellunit: 

     def __init__(s, i, j, nX, nY): 
s.nX= nX 
s.nY= nY 
s.iu= i 
s.ju= j 
s.Eonsite= 0 
s.t= -2.8 
s.numupL, s.numupR, s.numdoR, s.numdoL= 0, 0, 0, 0 
s.num= (s.iu+1)+s.nX*s.ju 

 

When constructor of this class is executed; the number of unit cell s.num is calculated 

based on the equation mentioned in remark 02. (06) 

The numbers of the first nearest neighbor unit cells are initialized as zero but we must create a 

Method called neigbN in this class that allows us to calculate them based on remark 3. 

Before that, we must verify if the nearest neighbor with indices (iu, ju) are inside our shape or 

not. if this condition is satisfied ,   

 

def  isinside(s, i, j): 

             d=(i>=0 and j>=0 and i<=s.nX-1 and j <= s.nY-1) 

             return d 

def  neigbN (s):  

  i= s.iu 

  j= s.ju+1 

if (s.isinside(i, j)): 

s.numupR= (s.iu+1)+s.nX*(s.ju+1) 

i=s.iu-1 

               j=s.ju+1    
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             if(s.isinside(i, j)): 

                      s.numupL= (s.iu)+s.nX*(s.ju+1) 

              i=s.iu 

              j=s.ju-1 

              if (s.isinside(i, j)): 

                      s.numdoR= (s.iu+1)+s.nX*(s.ju-1) 

              i= s.iu+1 

              j= s.ju-1 

             if (s.isinside(i, j)): 

        s.numdoL= (s.iu+2)+s.nX*(s.ju-1) 

 

In this class, we define a new method Looknei  which receives an object of class cellunit b 

and it compares the numbers between b.num and num of current unit cell and it will return a 

sub-matrix ,i jh based on the remarks (5 , 6, 7) (11) 

 

def  Looknei (s, b):     
Ediag= np.array ([[s.E, s.t], [s.t, s.E]]) 
tup=   np.array ([[0, s.t], [0, 0]]) 
tdown=   np.array ([[0, 0], [s.t, 0]]) 
zero=    np.array ([[0, 0], [0, 0]]) 

              if (s.num== b.num): 
              return Ediag  

elif (b.num == s.numupLorb.num == s.numupR):             
                      return tup 

elif (b.num == s.numdoRorb.num == s.numdoL):         
              return tdown 
         else: 
              return zero 
 

Next, we write new class called “nanostructure”, in the constructor of this class we 

define total number of unit cell along x-direction (nX) and along y-direction (nY) as well as 

the total number of unit cells in our nanostructure N=nX*nY (08) 

When the constructor of this class executed, a list called “nanos” will be created and it 

will contain N objects of class cellunit, each object has own indices and own number 

class  nanostructure:     
       def __init__(s, nxx, nyy): 

s.nX= nxx; 
s.nY= nyy; 
s.N= s.nX*s.nY;         
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s.nanos= []         
for j in range(s.nY): 

              for i in range(s.nX): 
s.nanos.append(cell(i, j, s.nX, s.nY)) 
 

In this class, we define a method named neig(s), the main goal of this method is to 

perform calculation of the numbers of first near neighbors for each declared unit cell nanos[i] 

          def  neig(s): 
     for i in range(s.N): 

s.nanos[i].neigbN() 
 

The sub-matrix h2,3 for example can be constructed by calling the following method  

s.nanos[2].Looknei(s.nanos(3)) 

if we want to construct the following row of sub-matrix: 2,1 2,2 2,3 2,... NL h h h h     

● Iterate over i from 1 to N for obtaining all elements of the row L . 

● Call function np.append(L, u, axis=1) from numpy library which allows to append 

matrix to actual submatrix    21 22 23 24 21 22 23 24h h h h h h h h   

We define a method called “MakeLine” that allows us to construct a row of sub-matrix  
 

def  MakeLine(s, numL):  

L= np.array(s.nanos[numL].Looknei(s.nanos[0])) 
for i in range(1, s.dim):             

u= s.nanos[numL].Looknei(s.nanos[i]) 
L= np.append (L, u, axis=1)     

return L 
 

In this stage, we can call MakeLine(s, 1) to generate the first row of submatrix 

1,1 1,2 1,3 1,... NH h h h h      

if we call it again MakeLine(s, 2) it will return to us the second row of the submatrix  

2,1 2,2 2,3 2,... NL h h h h     

 

if we use the append function  H= np.append(H, L, axis=0)  we obtain  

1,1 1,2 1,3 1,

2,1 2,2 2,3 2,

...
...

N

N

h h h h
h h h h
 
 
 

 

Now, if we want to obtain the entire Hamiltonian matrix, we must iterate over i from 1 to N 

def  MakeHamiltonian(s):         
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        H=  s.MakeLine(0) 
        for i in range(1, s.N):             
            L= s.MakeLine(i)             
            H= np.append(H, L, axis=0)          
        return H 
 
Finally, we obtain the entire Hamiltonian matrix when the method MakeHamiltonian() is 

executed  The constructed matrix is Hermitian and its eigenvalues are real. 

The dimension of H is (2N*2N) because we have N unit cells, and each unit cell contains two 

atoms 

The hopping energy is only significant for first nearest neighbors. If N is large the resulting 

matrix becomes sparse matrix, and there are specific numerical methods available for finding 

eigenvalues and eigenvectors of this kind of matrix, such as eigh() from Scipy.library. 

In our nanostructure class, we can import Scipy library and define method solve () as follows 

(02) 

import scipy as sc 

    def  solve(s, H): 

              return sc.eigh(H) 
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3.2. Results and validation: 

 

In this section, we present the results obtained from our code where the energy 

spectrum is calculated for different size of graphene nanostructures as shown in Fig 3.1 (19) 

 

ù 

 

 

 

 

 

 

 

 

 

           a)                                                            b) 

 

 

 

a) b) 

 

 

 

 

 

 

   c)       d) 

Fig 3.1: Comparison between energy spectrums of four nanostructures. a) 128 atoms, b) 338 atoms,  

c) 800 atoms, d) 1250 atoms 

 

The application of tight-binding model for nanostructure which owns a shape 

mentioned in Fig 3.1 give us the following informations: (22) 

1. The appearance of two energy bands: conduction band and valence band 

2. A discrete energy spectrum for small sizes and a continuous energy spectrum for large sizes 

3. The appearance of degeneracy at the Fermi level 
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4. The degenerate energy states increase with size of nanostructures 

 

Our nanostructure contains zigzag edges; this edge is responsible of the observed degeneracy. 

This result has been confirmed through calculation of local density of state (21). 

 

We can create a graphene nonoribbon with an armchair edge configuration by putting  

nY>> nX.  This is because, as shown in Fig 2.2, the armchair edge appears in the x-direction 

(22) 

 

 
Fig 3.2 energy spectrum for graphene nanoribbon with nX=16 and nY=2 

 

In Fig 3.2: we demonstrate that our code successfully predicts the band gap opening in 

graphene nanoribbon with armchair edge (22). 
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General Conclusion 
 

The code developed in this study serves as a fundamental building block for finding 

the Hamiltonian matrix for more complex shapes of graphene nanostructure. It can also be 

used for calculating the local density of states or studying quantum transport in this material. 

 

In addition, we can explore the outcomes of our code, as they contribute to the 

estimation of electron probabilities at specific locations with corresponding energy levels 

 Based on our results, we can conclude also that the electronic properties of the nanoribbon 

are significantly influenced by its edge configuration 
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