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Abstract 
 

 

             The nuclear shell model is a successful model in nuclear physics, and it is one of the 

important tools for studying nuclear physics. This model is one of the most important theories 

about the nuclear structure in describing the structure of the nucleus in terms of energy spectra 

and spectroscopic properties. 

              The structure of nuclei in the sd shell region has involved many theoretical and 

experimental studies in analysing and understanding their properties. The well-known USD 

(or USDA/B) interactions succeeded in describing the properties of normal positive parity 

states in sd-shell nuclei. The spectroscopic characteristics of the negative parity intruder states 

as well as the normal positive parity states are well described by the PSDPF interaction. 

              The aim work of this study is the description of the energy spectrum and 

spectroscopic properties of the 26Mg nucleus using the PSDPF interaction. The obtained 

results were compared to available experimental data. 
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 ملخص
 

 

نموذجًا ناجحًا في الفيزياء النووية ، وهو أحد الأدوات المهمة لدراسة الفيزياء  ةالنووي طبقاتيعتبر نموذج ال                

في وصف بنية النواة من حيث أطياف الطاقة وخصائص  ةالنووي بنيةأهم النظريات حول اليعتبر هذا النموذج من . النووية

 .التحليل الطيفي

. وفهم خصائصها هاتحليللالعديد من الدراسات النظرية والتجريبية  sdطبقة في منطقة ال نويةتضمنت بنية الأ               

أنوية في وصف خصائص حالات التكافؤ الإيجابية العادية في (  (USDA / B أو USD المعروفة تفاعلاتالنجحت 

للتكافؤ السلبي بالإضافة إلى حالات التكافؤ الإيجابي الطبيعي  يتم وصف الخصائص الطيفية للحالات الدخيلة sdطبقة ال

 . PSDPF بشكل جيد من خلال تفاعل

ثم   PSDPFتفاعل باستخدام Mg26 الطيفية لنواةالهدف من هذه الدراسة هو وصف طيف الطاقة والخصائص              

 .مقارنة النتائج التي تم الحصول عليها مع البيانات التجريبية المتوفرة
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Résumé 
 

 

              Le modèle en couches nucléaire est un modèle réussi en physique nucléaire, et c'est 

l'un des outils importants pour étudier la physique nucléaire. Ce modèle est l'une des théories 

les plus importantes sur la structure nucléaire pour décrire la structure du noyau en termes des 

spectres d'énergie et des propriétés spectroscopiques. 

             La structure des noyaux dans la région de la couche sd a impliqué de nombreuses 

études théoriques et expérimentales dans l'analyse et la compréhension de leurs propriétés. 

Les interactions bien connues USD (ou USDA/B) ont réussi à décrire les propriétés des états 

normaux de parité positive dans les noyaux de la couche sd. Les caractéristiques 

spectroscopiques des états intrus de parité négative ainsi que des états de parité positive 

normale sont bien décrites par l'interaction PSDPF. 

             L'objectif de cette étude est la description du spectre en énergie et des propriétés 

spectroscopiques du noyau 26Mg en utilisant l'interaction PSDPF. Les résultats obtenus ont été 

comparés aux données expérimentales disponibles. 
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INTRODUCTION 

            The nuclear shell model is one of the most important nuclear models of the nuclear 

structure to study the nuclei and determine many nuclear properties (binding energies, 

spins/parities, electromagnetic decay rates, lifetimes and the nature of electromagnetic 

transitions, ect.) 

             Attention was paid to the structure of the nuclei of the sd-shell, whose number of 

protons Z and of neutrons N is located between the two doubly magic nuclei 16O and   

40Ca.This area of nucleiis of primary interest in many experimental and theoretical studies. 

These nuclei have normal states of positive parity called 0ℏ𝜔 states with a 0 particle - 0 hole 

configuration, and indruder states with negative parity having a 1 particle - 1 hole 

configuration, named also1ℏ𝜔 states. The intruder states result from the excitation of one 

nucleon between p andsd-shells for nuclei close to 16O or between sd and pf shells for nuclei 

near 40Ca. For nuclei at the middle of the sd-shell, from Magnesium to Sulphur isotopic 

chains, their intruder states have a completion between the p-sd or sd-pf excitations. In order 

to reproduce these states, the model space should be extended to the complete p–sd–pf 

valence space with a core of 4He. A (0+1)ħω effective interaction, called PSDPF, compatible 

with this extensed valence space has been developed by M. BOUHELAL in Strasbourg to 

ensure a consistent description of both 0ħω and 1ħω states throughout the entire sd-shell. 

  Know ledge of the level structure of 26Mg (a middle sd-shell nucleus) is crucial for 

understanding the level structure of its proton-rich mirror nucleus 26Si produced through the 

thermonuclear 25Al(p,γ)26Si rp-process reaction. The determination of the correct spin/parity 

assignments of 24Si is necessary to calculate the 25Al(p,γ)26Si reaction rate.  

            We used the PSDPF interaction to calculate the spectroscopic characteristics of the 

positive + and negative - parity states of 26Mg and then compared the obtained results with the 

experimental data. Note that, the calculation was made using the Nathan shell model code 

developed by E.Caurier in Strasbourg. 
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The work plan has been divided into three chapters:  

 In chapter I: the nuclear shell model and its useswere presented.  

 In Chapter II: the structure and properties of the sd-shell nuclei, introducing the PSDPF 

interaction, were presented. 

 In Chapter III: the obtained results were discussed and compared with the experimental 

data. 
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Chapter I 

Nuclear shell model 

  The lack of a basic understanding of the nuclear force made it difficult to determine 

the structure and behaviour of the nucleus. It is not surprising therefore that, instead of a 

theory, phenomenological models of the nucleus were constructed to accommodate the many 

remarkable experimental findings [1]. One of the developed models that describe successfully 

the nuclear structure is the shell model. 

             In this chapter, we will explain the basic notions of the shell model, which offers the 

possibility of describing the different characteristics of the nuclei on which the shell model is 

based. 

I.1 Nuclear shell model 

         Hans Suess and Maria Goeppert Mayer discovered the nuclear shell model in 1949. This 

model is based on the motion of the individual nucleons, neutrons, and protons. The 

individual nucleons are considered to be independent particles with independent spins and 

energy levels, each moving in a potential well produced by the action of all of the other 

nucleons [2]. The primary evidence for the nuclear shell model was that nuclei with certain 

specific numbers of protons or neutrons equal to 2, 8, 20, 28, 50, 82, or 126 are particularly 

stable.  

              The underlying picture in this model is that each nucleon moves in a mean potential, 

which is created by its interaction with all the (A-1) other nucleons in the nucleus and is 

identical for all nucleons. In addition to this mean potential, an extra two-body interaction 

should be added. The latter depends on a chosen valence space; such as the PSDPF that is an 

interaction compatible with the p-sd-pf valence space [3]. 

I.2 Many-body quantum systems 

 The total energy of N-body quantum system can be acquired as a solution of the time 

independent Schrödinger equation given by [4]: 

�̂�|Ψ(𝑡)〉 = (�̂� + �̂�)|Ψ(𝑡)〉 = 𝐸|Ψ(𝑡)〉                                                                           (1) 
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Where �̂� is composed of the sum of kinetic energy �̂� and potential energy �̂� operators for the 

N-body system: 

�̂� = ∑ (−
ℏ2

2𝑚𝑖
∇2)𝑁

𝑖                                                                                                          (2) 

�̂� = ∑ 𝑣𝑖,𝑗
𝑁
𝑖<𝑗 + ∑ 𝑣𝑖,𝑗,𝑘

𝑁
𝑖<𝑗<𝑘 + ∑ 𝑣𝑖,𝑗,𝑘,𝑙

𝑁
𝑖<𝑗<𝑘<𝑙 + ⋯                                                       (3) 

Where mi is the mass of the ith particle in the system, 𝑣𝑖,𝑗 is the potential between 2-bodies 

(NN) and 𝑣𝑖,𝑗,𝑘 for 3-bodies (NNN) etc [4]. 

The state of 𝑁 −body quantum system is described by its wave function |Ψ(𝑡)〉. 

A common approach used to deal with this many-body problem is by assuming that each 

interacting body is bound in a static mean-field potential 𝑉(𝑖) generated by 𝑁 − 1 bodies: 

(∑ [−
ℏ2

2𝑚𝑖
𝛻𝑖

2 + 𝑉(𝑖)] + [�̂� − ∑ 𝑉(𝑖)𝐴
𝑖=1 ]𝐴

𝑖=1 ) |𝛹(𝑡)〉 = 𝐸|𝛹(𝑡)〉                                      (3) 

�̂�𝑅|Ψ(𝑡)〉 = (�̂� − ∑ 𝑉(𝑖)𝑁
𝑖=1 )|Ψ(𝑡)〉                                                                                (4) 

 𝐻0 = ∑ (𝑡𝑖 + 𝑉𝑖)
𝐴
𝑖=1 = ∑ (

𝑃𝑖
2

2𝑚
+

1

2
𝑚𝜔²𝑟𝑖

2)𝐴
𝑖=1                                                                  (5) 

             Where �̂�0 is the independent particle Hamiltonian describing individual particles 

bound in the mean-field potential. The second term, �̂�𝑅 is the residual interaction, which 

contains the leftover 𝑁-body interactions, where often only the 2 −body 𝑁𝑁 interactions 

are considered. These residual interactions can be treated as perturbations of the mean-

field Hamiltonian [4]. 

I.3 Independent particle shell model 

              In the beginning of the 20th century, experimental evidence from precision 

measurements of different nuclear properties indicated a characteristic pattern of enhanced 

binding energy in nuclei with specific proton and neutron numbers (2,8,20,28,40,50,82,126) 

so-called ’magic’ numbers.The nuclear shell model was developed for describing protons and 

neutrons bound by the strong nuclear force within the nucleus by similarity with the atomic 

shell model. In first approximation, the protons and neutrons are described as independent 

particles bound by each respective mean-field potential (ignoring �̂�𝑅 in Eq.I.4) [4]. 
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I.3.1 The Harmonic Oscillator Potential 

As a first guess a simple harmonic oscillator potential was used [5]: 

𝑉𝐻𝑂 =
1

2
𝑚𝜔²𝑟²                                                                                                                    (6) 

           Where m is the nucleon mass, r is the orbital radius and ω is the angular frequency of 

the oscillator.  

The Schrödinger equation for A nucleons is written as follows: 

𝐻0𝜙 = 𝐸0𝜙                                                                                                                           (7) 

𝐻0: The independent movement of nucleons in one body-potential. 

Where the Hamiltonian of the independent particles potential is given by 

 �̂�0 = ∑ [−
ℏ2

2𝑚𝑖
𝛻𝑖

2 + 𝑉(𝑖)]𝐴
𝑖=1                                                                                              (8) 

The Eigen functions can be given as: 

∅𝑛𝑙𝑚𝑙
(𝑟) = 𝑅𝑛𝑙(𝑟)𝑌𝑙

𝑚𝑙(𝜃, 𝜑)                                                                                               (9) 

Here 𝑙  and 𝑚𝑙  are the quantum numbers of angular momentum and its 𝑜𝑧  projection 

respectively, where as 𝑛 is the radial quantum number. 

Theobtainedsingle-particle energies can be written as [5]:  

𝐸𝑙 = (𝑁 +
3

2
)ℏ𝜔 = (2𝑛 + 𝑙 −

1

2
) ℏ𝜔                                                                                  (10)        

N represents the major number of the harmonic oscillator potential given by: 

𝑁 = 2(𝑛 − 1)  +  𝑙.                                                                                                              (11) 

This potential reproducedonly the first three magic numbers 2, 8, 𝑎𝑛𝑑 20. 

I.3.2 Edge-board effect 

               An improvement was brought by introducing a term representing the “edge-

boardeffect”diven by 𝐷𝑙² (𝐷 < 0)[5] to make nucleons at the potential edge more bound. 

This correction made it possible to remove the degeneracy in 𝑙 of the solution of Harmonic 

Oscillator. The Hamiltonian be comes [5]: 
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ℎ𝑖 = 𝑡𝑖 +
1

2
𝑚𝜔²𝑟𝑖

2 + 𝐷𝑙𝑖
2                                                                                                    (12) 

  The obtained eigen values is given by: 

𝐸𝑛𝑙𝑗
𝑖 = (𝑁 +

3

2
) ℏ𝜔 + 𝐷(𝑙 + 1)ℏ²                                                                                      (13) 

               However, here again we do not find the corrects equence of the magic numbers [5]. 

The inclusion of an attractive orbital angular momentum term 𝑙² broke the degeneracy of 

the principal quantum levels and lowered the potential for nucleons with greater angular 

momentum number. Finally, by adding the contribution from the coupling of orbital 

angular momentum and the intrinsic spin of the protons and neutrons 𝑠 =  1/2 known as 

the spin-orbit interaction 𝑙𝑖 ⃗⃗⃗  𝑠𝑖⃗⃗   resulted in a further broken degeneracy which reproduced 

the observed magic numbers [3]. 

I.3.3 Spin-orbit interaction 

                Only the first three magic numbers were reproduces by the previous Hamiltonian. 

However, up to now the spin of the nucleons has not been taken into account yet (apart from a 

factor 2 in determining the magic numbers) [5]. 

                The nucleon-nucleon force has a spin-orbit component, and one can expect that the 

average single-particle potential also has a spin-orbit part. If 𝑓(𝑟) indicates the intensity of the 

spin-orbit strength, in such a way that the spin-orbit potential has the form [5]: 

𝑉𝑙𝑠 = 𝑓(𝑟)(𝑙 . 𝑆 )                                                                                                                   (14) 

              One can show that 𝑓(𝑟) is peaked at the nuclear surface.By the analogy with the 

electronic case, one often chooses 𝑓(𝑟) related to the spin independent part of the average 

potential in the following way [5]: 

𝑓(𝑟) = 𝜆
1

𝑟

𝑑𝑉

𝑑𝑟
  ; 𝜆 ≈ −0.5  [𝑓𝑚2]                                                                                       (15) 

f(r) is a scalar coefficient for the potential and in principle it depends on 𝑙, s and it represents 

the spin-orbit strength. 

The Hamiltonian of a single-particle becomes: 

  ℎ𝑖=𝑡𝑖 +
1

2
m𝜔²𝑟𝑖² + 𝐷𝑙𝑖² + 𝑓(𝑟)𝑙𝑖⃗⃗ 𝑠𝑖⃗⃗                                                                                    (16) 
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The obtained single-particle energies can be written as: 

𝐸𝑛𝑙 = (𝑁 +
3

2
)ℏ𝜔 + 𝐷(𝑙 + 1)ℏ2 +

ℏ2

2
〈𝑓(𝑟)〉𝑛𝑙 × {

−(𝑙 + 1)    𝑜𝑓    𝑗 = 𝑙 − 1/2  
𝑙                    𝑜𝑓    𝑗 = 𝑙 + 1/2   

           (17) 

The radial integral 〈𝑓(𝑟)〉𝑛𝑙 can be represented approximately by the relation [5]: 

〈𝑓(𝑟)〉𝑛𝑙 ≈ −20𝐴−2/3𝑀𝑒𝑉                                                                             (18) 

ℏ𝜔 = 41𝐴−
1

3                                                                                                    (19) 

𝑁 Is called the major quantum number and in the last step one has rewritten: 

          𝑛  Represents the number on nodes of the radial wave function and can assume values 

𝑛 =  1;  2; …. up o 𝑁; 𝑙 can assume only positive values (𝑙 ≥  0) up to 𝑁 and gives the parity 

of each 𝑁−th level, which is (−1)𝑙 . Taking into account the Pauli principle and spin, the 

harmonic oscillator energy levels have a large degeneracy, which is given by (𝑁 +  1)(𝑁 +

 2). Each harmonic oscillator level has a large degree of degeneracy that can be written in 

terms of l [5]: 

(𝑁 +  1)(𝑁 +  2) = ∑ 2(2𝑙 + 1)𝑙                                                                                       (20) 

      This new Hamiltonian reproduces all the magic numbers, i. e. 2,8,20,28,50,82,126 as can 

be seen on Figure.I.1.The two leftmost columns show the magic numbers and energies for a 

pure harmonic potential. The splitting of different values of the orbital angular momentum 𝑙 

can be arranged by modifying the central potential. Finally, the spin-orbit coupling splits the 

levels so that they depend on the relative orientation of the spin and orbital angular 

momentum. The number of nucleons per level (2𝑗 +  1) and the resulting magic numbers are 

shown on the right [6].  

Let’s consider Figure.I.1: 

 The spin-orbit coupling shifts the levels 𝑗 =  𝑙 +  1/2 downward while it shifts the 

levels 𝑗 =  𝑙 –  1/2 upward. In other words the parallel coupling of l and s is more 

attractive than the anti-parallel coupling [5]. 

 The nucleons are disposed on the levels from the bottom up and the degeneration of 

each level is given by 2𝑗 +  1 [5]. 
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 At high values of 𝑙 the spin-orbit splitting becomes so strong intense that the harmonic 

oscillator shell structure is modified [6]. 

 

Figure.I.1: Nucleon orbitals in a model with a spin-orbit interaction [6]. 

I.4 Behind the mean field 

              The independent particles model is applicable only for spherical nuclei with single 

nucleon outside an inert core. The case of a nucleus with 𝐴 interacting nucleons (𝑍 protons 

and 𝑁 neutrons) assumes that these nucleons interact in pairs with the two-body interaction 

𝑉𝑖𝑗. The Hamiltonian of this nucleus has the form [5]: 

𝐻 = (∑ [𝑡𝑖 + 𝑈(𝑖)] + [∑ 𝑉𝑖𝑗
𝐴
𝑖>𝑗 − ∑ 𝑈(𝑖)𝐴

𝑖=1 ]𝐴
𝑖=1 ) = 𝐻0 + 𝐻𝑟 = ∑ ℎ𝑖 + 𝐻𝑟

𝐴
𝑖=1                (21) 
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ℎ𝑖: The individual Hamiltonian of a nucleon. 

𝐻𝑟: The residual two-body interaction, which is considered as a perturbation of the main  

H0 : Hamiltonian by an adequate choice. 

I.5 Ingredientes of the shell model 

Any shell model calculations require the following ingredients: 

I.5.1 Choice of the valence space 

 

Figure I.2: Separation of the Hilbert space [7]. 

In the shell model approach, the Hilbert space Figure I.1 is divided into three parts as shown 

in Figure I.2 [7]: 

 An inert core, which includes all the orbits always full, in general corresponds to a 

doubly magic nucleus. The core is composed of 𝑁𝑐 neutrons and 𝑍𝑐 protons.  

 The valence space corresponding to the set of orbits accessible to valence nucleons. 

These different orbits will be partially occupied by the valence nucleons [3]. When 
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studying a nucleus X(Z,N), we must therefore consider 𝑍𝑣 =  Z − 𝑍𝑐 valence protons 

and 𝑁𝑣 = 𝑁 − 𝑁𝑐 valence neutrons [3]. 

 External space, with all the orbits, which will, bydefinition, always be empty in the 

calculations [3]. 

I.5.2 Effective interaction 

             Because of the strong short-range repulsion, the nucleon-nucleon interaction cannot 

be used directly for shell model calculations. These calculations are therefore based on the 

definition of an effective interaction, which is strongly linked to the valence space used. There 

are two types of effective interactions: realistic effective interactions and phenomenological 

effective interactions [3]. 

I.5.3 Shell model codes 

              Several codes have been developed in order to carry out shell model calculations. To 

our knowledge, the most used codes are: GLASGOW [8], ANTOINE [9], VECSSE [10], 

MSHELL [11], REDSTICK [12], RITSSCHIL [13], OXBASH [14], DUPSM [15], and 

NATHAN [9, 16]. We used in our calculations the code NATHAN. 

I.6 Electromagnetic transitions in nuclear shell model 

I.6.1 Electromagnetic transitions selection rules 

               During an electromagnetic transition in a nucleus from an initial state (𝑖) (with 

energy 𝐸𝑖) to a final state (𝑓) (with energy 𝐸𝑓), the nucleon emits or absorbs a gamma photon 

(with an energy 𝐸𝛾). The principles of conservation of the energy and spin/parity make it 

possible to write [5]: 

{
𝐸𝛾 = 𝐸𝑖 − 𝐸𝑓      

𝜋𝑖𝜋𝛾𝜋𝑓 = +1
                                                                                                                   (22)                    

The electromagnetic transition between these nuclear states can only take place if the emitted 

gamma photon carries a total angular momentum �⃗� , with 𝐽 𝑓 = 𝐽 𝑖 + �⃗� . 

|𝐽 𝑖 − 𝐽 𝑓| ≤ ∆𝐿 ≤ 𝐽 𝑖 + 𝐽 𝑓  and  ∆𝑙 > 0                                                                                 (23) 
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𝐽𝑖𝜋𝑖𝐸𝑖                                                                                                                           𝐽𝑓𝜋𝑓𝐸𝑓 

 

𝛾(𝐿, 𝜋)                                  ∆𝐸𝛾                                   (𝐿, 𝜋) 

 

𝐽𝑓𝜋𝑓𝐸𝑓                                                                                                                                𝐽𝑖𝜋𝑖𝐸𝑖  

 

 

 

 

Figure I.3: Gamma emission and absorption in a nucleus. 

As the intrinsic spin of the photon is equal to 1, the gamma transition with 𝐿 = 0 is 

forbidden, and the gamma transition between states 𝐽 𝑖 = 0 → 𝐽 𝑓 = 0is thus forbidden. The 

angular momentum of the transition is called the multipolarity of the radiation. The character 

2𝐿 –pole is dipole for 𝐿 = 1, quadrupole for 𝐿 = 2, octupole for L=3, ect [5]. 

∆ 𝜋𝛾 = {
 𝜋𝛾 = (−1)𝐿               𝑖𝑓 𝜎 = 𝐸𝐿

 𝜋𝛾 = (−1)𝐿+1            𝑖𝑓 𝜎 = 𝑀𝐿
                                                                        (24) 

            The multipole is of electric type ELwhen 𝜋𝛾 = (−1)𝐿 and magnetic ML when 

𝜋𝛾=(−1)𝐿+1. Therefore, 𝛾 transitions that connect states with the same parity will have even 

EL and odd ML, and those that connect states with different parities will have odd EL and 

even ML [5] (see Table I.1). 

Table I.1: Selection rules for some electromagnetic transitions. 

𝑻𝒉𝒆 𝑴𝒖𝒍𝒕𝒊𝒑𝒐𝒍𝒂𝒓𝒊𝒕𝒚 𝑬𝒍𝒆𝒄𝒕𝒓𝒊𝒄 

EL             ∆𝑱 ∆𝝅 

𝑴𝒂𝒈𝒏𝒆𝒕𝒊𝒄 

ML          ∆𝑱 ∆𝝅 

𝑫𝒊𝒑𝒐𝒍𝒂𝒓 

𝑸𝒖𝒂𝒅𝒓𝒖𝒑𝒐𝒍𝒆 

𝑶𝒄𝒕𝒖𝒑𝒐𝒍𝒆 

𝐸11 − 

𝐸22 + 

𝐸33 − 

𝑀11 + 

𝑀22 − 

𝑀33 + 

 

I.6.2 Probabilities of electromagnetic transitions 

The transition probability of (electric or magnetic) transition of multipolarity L is given by 

[5]: 
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B(𝜎𝐿; 𝐽𝑖 → 𝐽𝑓) =
1

2𝐽𝑖+1
|〈𝜓𝑓‖ℳ(𝜎L)‖𝜓𝑖〉|

2
                                                                     (25) 

             With the total angular momentum 𝐽𝑖 and 𝐽𝑓  of the initial state |𝜓𝑖〉and the final 

state |𝜓𝑓〉 respectively, 〈𝜓𝑓‖ℳ(𝜎L)‖𝜓𝑖〉 is the reduced transition matrix element with the 

electromagnetic multipole operator  ℳ(𝜎L), which can have either an electric (𝜎𝐿 =  𝐸𝐿) or 

a magnetic (𝜎𝐿 =  𝑀𝐿)  character. The transition matrix element ℳ(𝜎L)  of an 

electromagnetic decay of an excited state is the same transition matrix element as of the 

excitation process with the same σL character. Therefore thetransition strength of the 

excitation and de-excitation between two states with  𝐽𝑖 and  𝐽𝑓 is connected by [5]: 

B(𝜎L; 𝐽𝑖 → 𝐽𝑓) =
2𝐽𝑓+1

2𝐽𝑖+1
B(𝜎L: 𝐽𝑓 → 𝐽𝑖)                                                                               (26) 

          The value of 𝐵(𝐸𝐿) is usually expressed in terms of 𝑒²𝑏𝐿  =  104 𝑒²𝑓𝑚2𝐿 , whereas 

𝐵(𝑀𝐿) is given in µ𝑁
2 𝑏𝐿−1  =  104µ𝑁

2 𝑓𝑚2(𝐿−1), with µ𝑁  the nuclear magneton. In a single-

particle picture, where only one single nucleon contributes to the electromagnetic transition, 

the so-called “Weisskopf unit” (W.u.) can be defined [5]: 

𝐵(𝐸L)𝑊 =
1

4𝜋
(

3

𝐿+3
)
2

(1.2𝐴1/3)2𝐿                                                                                     (27) 

𝐵(𝑀L)𝑊 =
10

𝜋
(

3

𝐿+2
)
2

(1.2𝐴1/3)2𝐿−2                                                                                 (28) 

In many experiments the lifetime  𝜏 of an excited state is measured to determine the 

transition probability. The probability for the emission of a 𝛾 ray of multipolarity 𝐿 from an 

excited state 𝐽𝑖 in to a lower-lying state  𝐽𝑓 is connected to the 𝐵(𝜎𝐿) value and is expressed 

by  [5]: 

T(𝜎L; 𝐽𝑖 → 𝐽𝑓) =
8𝜋(L+1)

ℏL[(2L+1)‼]2
(
𝐸𝛾

ℏ𝑐
)
2L+1

𝐵(𝜎L; 𝐽𝑖 → 𝐽𝑓)                                                      (29) 

The lifetime of a state 𝐽𝑖, which can decay into several final states 𝐽𝑓 by emission of L-pole 

radiation, is given by [5]: 

𝜏(𝐽𝑖) = (∑ ∑ T(𝜎L; 𝐽𝑖 → 𝐽𝑓)[1 + 𝛼(𝐿)]λ𝐽𝑓
)
−1

                                                                  (30) 

Including the usual 𝐿-pole conversion coefficient 𝛼(𝐿). 



Chapter I 
 

 13 

          The nucleus is composed of an inert core plus a valence particle. The transitions take 

place between states 𝐽𝑖  =  L ± 1/ 2and 𝐽𝑓 = 1/2 of this core. The radial parts of the initial 

and final state wave functions are both constant inside the nucleus of radius R and zero 

outside [5]. 

𝐵(𝐸𝐿) =
9

4𝜋(𝐿+3)2
𝑒²𝑅2𝐿 Γ𝛾

Γw
(𝑒²𝑓𝑚2𝐿)                                                                                (31) 

𝐵(𝑀𝐿) =
90

𝜋(𝐿+3)2
𝜇𝑁

2 𝑅2𝐿−2 Γ𝛾

Γw
(𝜇𝑁

2𝑓𝑚2𝐿−2)                                                                       (32) 

           With 𝑅 = 1.2𝐴
1

3(𝑓𝑚), 𝑒 is the electric charge and µ𝑁=
𝑒ħ

2𝑚𝑐
 is the nuclear magneton. 

Γ𝛾 and Γw  are the transition width and the Weisskopf estimate (in 𝑒𝑉 ) (see Table I.2), 

respectively. We define "the strength of a transition" in Weisskopf units (u.W.) by the formula 

[5]: 

 𝑆 =
Γ𝛾

Γw
                                                                                                                               (33) 

Table I.2:  Single-particle width (Weisskopf estimate) 𝛤𝑤 (W. u.) in MeV [5]. 

𝑬𝒍𝒆𝒄𝒕𝒓𝒊𝒄  𝑴𝒂𝒈𝒏𝒆𝒕𝒊𝒄 

𝜞𝒘(𝐄𝟏) = 𝟔𝟖 𝑨
𝟐

𝟑⁄ 𝑬𝜸
𝟑  Γw(M1) = 21 Eγ

3 

𝜞𝒘(𝐄𝟐) = 𝟒. 𝟗 × 𝟏𝟎−𝟓𝑨
𝟒

𝟑⁄ 𝑬𝜸
𝟓  Γw(M2) = 1.5 × 10−5A

2
3⁄ Eγ

5 

𝜞𝒘(𝐄𝟑) = 𝟐. 𝟑 × 𝟏𝟎−𝟏𝟏𝑨𝟐𝑬𝜸
𝟕  𝛤𝑤(M3) = 6.8 × 10−12𝐴

4
3⁄ 𝐸𝛾

7 

𝜞𝒘(𝐄𝟒) = 𝟔. 𝟖 × 𝟏𝟎−𝟏𝟖𝑨
𝟖

𝟑⁄ 𝑬𝜸
𝟗  𝛤𝑤(M4) = 2.1 × 10−18𝐴2𝐸𝛾

9 

𝜞𝒘(𝐄𝟓) = 𝟏. 𝟔 × 𝟏𝟎−𝟐𝟒𝑨
𝟏𝟎

𝟑⁄ 𝑬𝜸
𝟏𝟏  𝛤𝑤(M5) = 4.9 × 10−25𝐴

8
3⁄ 𝐸𝛾

11 

 

I.6.3 Operators 

 Electric operator 

The electric operator is given by the following formula [5]: 

ℳ𝐿𝑀 = ∑ 𝑒(𝑘)𝐴
𝑖=1 𝑟𝐿(𝑘)𝑌𝐿𝑀(𝑟(𝑘))                                                                                   (34) 

Where 𝑒(𝑘) denotes the free electric charge of a nucleon 𝑘, that equal: 



Chapter I 
 

 14 

{
𝑒(𝑘) = 0 ⇒ 𝑓𝑜𝑟 𝑛𝑒𝑢𝑡𝑟𝑜𝑛𝑠

𝑒(𝑘) = 𝑒 ⇒ 𝑓𝑜𝑟 𝑝𝑟𝑜𝑡𝑜𝑛𝑠
  

 Magnetic operator 

The magnetic operator is given by the following formula [5]: 

ℳ𝐿𝑀 = ∑ µ𝑁
𝐴
𝑖=1 [𝑔𝑠(k)𝑠 ⃗⃗ (k) +

2𝑔𝑙 (𝑘)

𝐿+1
𝑙 (k)]. ∇ (k)𝑟𝑙 (k)𝑌𝐿𝑀(𝑟(𝑘))                                    (35) 

µ𝐍 Is the nuclear magneton given by µ𝑁=
𝑒ħ

2𝑚𝑐
 . 

𝑔𝑙(k) and 𝑔𝑠(k) denote the orbital and spin gyromagnetic factors, respectively.In TableI.3 are 

presented the free orbital and sping factors values [5]. 

TableI.3:  Free orbital and spin 𝑔 factors values [5]. 

𝒈(k) Protons Neutrons 

𝒈𝒔(k) 5.586 -3.826 

𝒈𝒍(k) 1 0 

 Notes 

The reduced probability of a transition B(E2) allows figuring out if the transition is 

due to an individual or collective contribution of nucleons in the nucleus. Indeed, the B(E2) is 

rather weak for a spherical nucleus and higher for a collective or deformed nucleus. 

If the initial state decreases to different final states, then the total transition width 𝛤𝑇 is the 

sum of the partial widths [5]: 

𝛤𝑇=∑ 𝛤𝛾𝑘𝑘                                                                                                                            (36) 

The half-life is given according to the meanlife-time by [5]: 

𝑇1
2⁄
= 𝜏. 𝑙𝑛2                                                                                                                      (37) 

             In this chapter we started by stating the magic numbers and the shell structure from 

the nuclear shell model, beyond the mean field and the shell model ingredients. The second 

part of this chapter introduces essential tools, which are the electromagnetic transitions.  

In the next chapter we deal with the sd-shell nuclei, an area of our current work. 
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Chapter II 

Description of sd-shell nuclei and the PSDPF interaction 

In recent years, researchers have paid attention to the properties of nuclei that belong 

to the sd-shell region, and they have been the subjects of many experimental studies. 

          In this chapter we introduce the properties of sd-shell nuclei. Then we present the 

PSDPF interaction that has been developed and succeeded in characterizing the properties of 

nuclei throughout the sd-shell.  

II.1 sd-shell nuclei 

             The region of sd-shell nuclei is comprised between the magic doubling nuclei 16O  

and 46Ca. These nuclei contain a number of protons and neutrons between 8 and 20 includes. 

There are 146 experimentally known nuclei of which 26 are stable (Figure II.1). These nuclei 

are characterized, at low excitation energy, by the coexistence of normal positive“+” parity 

states and intruded negative “−” parity states [3]. 

In our thesis, we are interested in studying the structure of “26Mg”, situated in the middle of 

the sd-shell. 

 

Figure II.1: Chart of the sd-shell nuclei [17]. 
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II.2 States in sd-shell nuclei 

II.2.1 Normal states 

            The normal positive parity states in the sd-shell nuclei result from the distribution of 

the active nucleons, whose number is (A-16), within the sd valence space (0ħω space). This 

and p shells are filled and inactive to form an inert "16O" core. This implies the configuration 

0 particles-0 holes (0p-0h), hence the name of states 0ħω. The interactions describing are usd 

[18], usd A or B [19]. 

II.2.2 Intruder States 

            The sd-shell nuclei may have two types of intruder states corresponding to the 

promotion of one nucleon or more across the p-sd or sd-pf shells. We explain their 

carachterestics in the following sections. 

II.2.2.1 Positive parity states 

            In an sd nucleus, we can find positive parity intruder states for which the configuration 

is outof the sd valence space and possess a (2p−2h) configuration for the 2ħω states or 

(4p−4h) forthe 4ħω states, the corresponding nucleus is generally deformed. These effects 

were observed in the doubly magic nuclei,16O, and 40Ca [3]. 

II.2.2.2 Negative parity states 

              The intruder states with negative parity result from the promotion of one nucleon 

from p to sd or from sd to pf shells, these states have a (1p−1h) configuration and are also 

called 1ħω states. The interaction describing the 1ħω states is the PSDPF interaction [3,20]. In 

this case,the model space is extended to the full p-ds-pf space and the inert core is 4He. These 

states appear at low excitation energies [17]. 

The sd nuclei that possess observed 1ℏω intruder states are shown in Figure II.2. 

II.3 The PSDPF interaction 

        In order to describe simultaneously both negative and positive parity states in sd-shell 

nuclei, and the transitions between these different states, we use the (0+1)ħω PSDPF 

interaction developed in Strasbourg by M. Bouhelal and al. [3,20]. In this case, the core used 

is restricted to the 4He doubly magic nucleus and the valence space includes the p,sd and pf 

shells, containing the 9 sub-shells: 1𝑝3/2 , 1𝑝1/2 , 1𝑑5/2 , 2𝑠1/2 , 1𝑑3/2 , 1𝑓7/2 , 2𝑝3/2 , 1𝑓5/2  , 2𝑝1/2 . 
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Figure II.2: Chart of sd nuclei with known negative parity intruder states [17]. 

II.4 Shell model ingredients for sd-shell nuclei 

 Valence space: the full 𝒑 − 𝒔𝒅 − 𝒑𝒇 space. 

 Compatible interaction with this space: PSDPF interaction. 

 Code of calculation: the shell model code NATHAN [9, 16]. 

II.5 Description of positive and negative parity states in sd nuclei 

               The sd-shell nucleus that interested usin our thesis is the 26Mg, with 12 protons and 

14 neutrons. In this nucleus, the ground state is 0+ that corresponds to the fulfilling 1𝑑5/2 sub-

shell, i.e. containing 12 nucleons(6 protons and 6 neutrons). Figure II-3 represents an example 

of the first excited positive - and negative – parity states, 2+ and 3− , respectively, and the 

ground 0+ state in 26Mg. 

 The first negative parity excited state 3− in (b), results from the jump of a proton from the 

1p1/2 sub-shell towards the 1𝑑5/2 sub-shell with a probability of 08%. 

 The first positive parity excited state 2+ shown in part (c), results from the occupation of the 

1𝑑5/2  from the valence protons and neutrons with a probability of 19%. 
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(a)                                                                  (b) 

 

 

 

 

 

 

 

Figure II.3: Shematic distribution of (a) the ground state (b) the first 𝟏ℏ𝝎 excited state in 

𝑴𝒈 
𝟐𝟔  and (c) the first 𝟎ℏ𝝎 excited state. 

II.6 Electromagnetic Transitions in the sd Nuclei 

           The PSDPF interaction reproduced the energy spectra of several sd nuclei and some 

isotopic chains [21-58] and provided great success in describing the 0 and 1ħω states of nuclei 

across the sd-shell. The electromagnetic transitions are a useful test of the wave functions for 

each evolving interaction. The electromagnetic operators need the following parameters: 

effective charges and gyromagnetic factors. Transitions between positive parity states E2 and 

M1 have been studied using USDA/B interactions [60]. 
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             M. LABIDI has studied the E3 transitions by adjusting its effective charges to 

available experimental values [28, 59]. The obtained parameters for the three E2, M1 [60] and 

E3[28, 59] transitions are presented on Table II.1. 

Table II .1: Adjusted parameters for the transitions E2, M1 and E3. 

W. A. Richter and B. A. Brown [60] M. Labidi[28, 59] 

 

Effective charges (E2) 

 

 

 

Gyromagnetic factors (M1) 

 

 

Effective charges (E3) 

 

 

𝑒𝑝 = 1.36 

 

𝑔𝑙𝑝 = 1.159 

 

 

𝑒𝑝 = 1.36 

 𝑔𝑠𝑝 = 5.150 

 

𝑒𝑛 = 0.45 

𝑔𝑙𝑛 = −0.090 

 

 

𝑒𝑛 = 0.48 

𝑔𝑠𝑛 = −3.550 

 

 

               In this chapter, we have identified the sd-shell nuclei region, described some of its 

properties. An illustration of a specific probability distribution for the first two excited states 

with positive - and negative - parity as well as the ground state was shown. The last chapter is 

dedicated to the study of the spectroscopic properties of  26Mg . 
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Chapter III 

Spectroscopic properties of 26Mg 

             In the first and second chapters, we have looked over the concepts of the nuclear shell 

model, the properties of the sd nuclei, and the PSDPF interaction. In this chapter, we will 

calculate the spectroscopic properties of 26Mg using the Nathan code and the PSDPF 

interaction and compare the results with available experimental data. The aim of our work 

here is to identify the ambiguous states. 

III.1 Experimental versus calculated spectroscopic properties of 

26Mg 

We used the computational code Nathan and the (0+1)ħω PSDPF interaction to 

calculate some spectroscopic properties of 26Mg.We discuss in the following session the 

comparison experimental versus theory separately for the energy spectrum and strengths of 

the transitions in Weisskopf units (u.W.). 

III.1.1 Energy spectrum  

                       26Mg is a neutron-rich nucleus that has Z < N, its energy spectrum is experimentally 

well studied up to around 5.6 MeV. We used the analogous T = 1 states in 26Si and 26Al, 

which enables us confirm the uncertain states to assign all the ambiguous states in 26Mg with 

their appropriate spin/parity, Jπ, values. We present on Table III.1 the comparison 

experimental versus calculated excitation energies on columns 2 and 4, and the Jπ values on 

columns 1 and 3, respectively. In the last column we show difference in energy, ∆E = ETh -

Eexp .The energy differences give us information about our results as follows: 

 States with ΔE> 400 keV (shown in red on Table III.1), have a collective contribution 

with more than 0p-0h or 1p-1h configurations for + or – states, respectively, and those 

with ΔE≥ 1  MeV are pure collective states.   

 ΔE< −400 keV (shown in blue) are not well reproduced using PSDPF. 
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Table III. 1: Experimental versus calculated energy spectra of 26Mg. 

EMg 𝐸𝑇ℎ 
∆𝐸 = 𝐸𝑇ℎ − 𝐸𝐸𝑥 

𝐽𝜋 𝐸 𝐽𝑖
𝜋 𝐸 

0+ 0 01
+ 0 0 

2+ 1,809 21
+ 1,878 0,069 

2+ 2,938 22
+ 3,042 0,104 

0+ 3,589 02
+ 3,829 0,24 

3+ 3,942 31
+ 3,99 0,048 

4+ 4,319 41
+ 4,397 0,078 

2+ 4,333 23
+ 4,59 0,257 

3+ 4,35 32
+ 4,389 0,039 

2+ 4,835 24
+ 4,944 0,109 

4+ 4,901 42
+ 5,013 0,112 

0+ 4,972 03
+ 4,909 -0,063 

 5,181 25
+ 5,5 0,319 

2+ 5,292 26
+ 6,668 1,376 

4+ 5,476 43
+ 5,553 0,077 

(1+) 5,691 11
+ 5,693 0,002 

(1+,2+) 5,711 11
− 6,663 0,952 

4+ 5,716 44
+ 5,925 0,209 

3+ 6,125 33
+ 6,283 0,158 

0+ 6,256 04
+ 6,278 0,022 

(4+) 6,623 45
+ 6,815 0,192 

 6,634 12
+ 6,668 0,034 

2+ 6,745 27
+ 6,936 0,191 

3- 6,876 31
− 6,716 -0,16 

(5+) 6,978 51
+ 7,086 0,108 

1- 7,062 12
− 7,49 0,428 

2+ 7,1 28
+ 7,214 0,114 

(0 ,1)+ 7,2 05
+ 8,07 0,87 

3+ 7,246 34
+ 7,341 0,095 

 7,261 21
− 6,736 -0,525 

(4-) 7,283 41
− 7,898 0,615 

3- 7,349 32
− 7,495 0,146 

2+ 7,371 29
+ 7,575 0,204 

(5+) 7,396 52
+ 7,447 0,051 

(0,1)+ 7,428 13
+ 7,93 0,502 

(2-) 7,542 22
− 7,697 0,155 

(4+) 7,677 46
+ 7,53 -0,147 

1(-) 7,697 13
− 7,728 0,031 

3+ 7,726 35
+ 7,7 -0,026 

(4+) 7,774 47
+ 7,883 0,109 

(2 ,3)+ 7,818 36
+ 8,301 0,483 

3- 7,824 33
− 7,935 0,111 

2+ 7,84 210
+  8,379 0,539 

 7,851 23
− 7,951 0,1 

5- 7,95 51
− 8,318 0,368 

 8,034 211
+  8,993 0,959 

2(+) 8,052 24
− 8,145 0,093 
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3- 8,185 34
− 8,195 0,01 

(6+) 8,201 61
+ 8,252 0,051 

1- 8,227 14
− 8,041 -0,186 

(3+) 8,251 35
− 8,554 0,303 

 8,399 42
− 8,396 -0,003 

(3+)  8,459 37
+ 8,536 0,077 

 8,464 48
+ 8,682 0,218 

(6+) 8,472 62
+ 8,56 0,088 

1- 8,504 15
− 8,724 0,22 

(2+) 8,532 14
+ 8,443 -0,089 

 8,576 06
+ 8,831 0,255 

5- 8,625 52
− 9,063 0,438 

(3,5) 8,67 53
+ 8,49 -0,18 

(2 To 

4)+ 8,706 25
− 

8,73 0,024 

 8,706 49
+ 8,757 0,051 

2+ 8,864 212
+  9,359 0,495 

(2+) 8,904 26
− 8,824 -0,08 

 8,93 410
+  9,219 0,289 

1- 8,959 16
− 8,776 -0,183 

 9,02 43
− 8,773 -0,247 

3(+) 9,043 36
− 8,777 -0,266 

5+ 9,064 54
+ 9,182 0,118 

6+ 9,111 63
+ 9,17 0,059 

1 9,14 17
− 9 -0,14 

(6-) 9,169 61
− 9,426 0,257 

 9,206 44
− 9,548 0,342 

1(+) 9,239 18
− 9,274 0,035 

(4+) 9,261 411
+  9,34 0,079 

(2+) 9,281 213
+  9,489 0,208 

 9,291 37
− 9,119 -0,172 

 9,304 214
+  9,556 0,252 

 9,316 215
+  9,89 0,574 

(2+ To 

4+) 9,326 
412

+  
9,409 0,083 

4+ 9,371 413
+  9,855 0,484 

6+ 9,383 64
+ 9,69 0,307 

3+ 9,428 38
+ 9,199 -0,229 

(1 To 

5)+ 9,471 
39

+ 
9,405 -0,066 

 9,471 15
+ 9,416 -0,055 

5+ 9,54 55
+ 9,575 0,035 

1+ 9,564 16
+ 9,452 -0,112 

(2- To 

4) 9,574 
38

− 
9,478 -0,096 

4+ 9,579 414
+  10,175 0,596 

 9,59 216
+  10,269 0,679 

 9,857 217
+  10,491 0,901 

(0 To 

5)+ 9,681 
310

+  
9,689 0,008 
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1(-) 9,771 53
− 9,649 -0,122 

 9,771 19
− 9,915 0,144 

 9,771 18
+ 10,138 0,367 

1+ 9,779 17
+ 9,649 -0,13 

 9,779 19
+ 10,527 0,748 

 9,814 56
+ 9,694 -0,12 

(5,7)+ 9,83 71
+ 9,788 -0,042 

 9,883 57
+ 10,249 0,366 

3+ 9,9 311
+  10,093 0,193 

 9,927 45
− 10,039 0,112 

 9,982 312
+  10,531 0,549 

(6+) 9,989 65
+ 10,037 0,048 

5- 10,04 54
− 9,858 -0,182 

 10,069 55
− 10,301 0,232 

1- 10,103 110
−  10,022 -0,081 

0+ 10,159 07
+ 10,161 0,002 

   01
− 8,004  

 

The spectrum of 26Mg contains the 107, among them 35 have negative eparity, and 72 

have positive parity .All the observed states have their theoretical counter parts. Based on this 

comparison, the ∆E differences for each Jπ value concerning + and – states are shown on 

Figures III.1 and III.2, respectively. All the + states were either quite well described using 

PSDPF or have a collective character. Concerning the – states, most of the observed states are 

are in good agreement using PSDPF, except for the proposed 21
−. Few – states have collective 

configuration. All the uncertain states having Jπ in parenthesis were confirmed following this 

study. In addition, we were able to attribute spin/parity values for all states with unknown Jπ. 

In order to illustrate well the collective states for each J+ and J- value in the studied 

nucleus, we present on Figures III.3 and III.4, respectively, the comparison experimental 

versus calculated of their excitation energies. We can see that the variation of the excitation 

energies for all the Jπ values are remarkably well described by PSDPF and the both 

experimental and theoretical values have the same shape. 
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Figure III. 1: Energy difference, ΔE, for the J+ states in 26Mg. 

 

Figure III. 2: Energy difference, ΔE, for the J- states in 26Mg. 

 



Chapter III 

 
 25 

 

 

 

 

Figure III. 3: Experimental versus calculated excitation energies for each J+ in 26Mg. 
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Figure III.4: Experimental versus calculated excitation energies for each J- in 26Mg. 
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III.1.2 Strengths of the transitions 

                  After the remarkable success of the PSDPF interaction in describing the energy 

spectrum of the 26Mg nucleus, we calculated the strengths of the transitions in Weisskopf 

units (u.W.) defined in the previous chapter in eq. 33. In our calculation we used the 

effective charges and gyromagnetic factors given on Table II.1, for Electric EL transitions and 

Magnetic ML transitions, respectively. Note that the same gyromagnetic factors have been 

used for both M1 and M2 transitions. The calculated strengths of the transitions in Weisskopf 

units (u.W.) are compared with the experimental ones on Tables III. 2. On this Table, we 

show the Jπ of the initial and final states in columns 1 and 3 and the nature of the 

transition (σL) relating these states is presented in column 2. In the 2 last columns, we 

compare calculated and experimental (with the errors) strengths of the transitions S. 

Table III.2: Comparison experimental versus calculated strengths of the transitions in 

Weisskopf units (u.W.) of 26Mg 

𝐽𝑖
𝜋  ( 𝑖𝑛𝑖) 𝜎𝐿 𝐽𝑖

𝜋  ( 𝑓𝑖𝑛) STh [u.W] SEx [u.W] 

21
+ 𝐸2 02

+ 0,01 1.07 ±0.08 

21
+ 𝐸2 03

+ 0,002 0.06 ±0.04 

22
+ 𝐸2 03

+ 0,34 7.4 ±1.3 

21
+ 𝐸2 04

+ 0,05 1.2 ±0.8 

21
+ 𝐸2 01

+ 15.01 13.4 ±0.6 

 
22

+ 

𝐸2 01
+ 0,91 0.39 ±0,4 

𝐸2 
21

+ 
8,2 6.1± 2,1. 

𝑀1 0,09 0.096± 0,006 

23
+ 𝐸2 01

+ 0,02 0.24± 0.05 

24
+ 

𝐸2 01
+ 0,16 0.15 ±0.04 

𝑀1 22
+ 0,001 0.096 ±0.021 

26
+ 

𝐸2 01
+ 0,03 >0.10 

𝑀1 31
+ 0,00026 >0.026 

31
+ 

𝐸2  
22

+ 

0,003 0.23 +37–22 

𝑀1 0,0055 0.0162 ±24 

𝑀1 21
+ 0,00089 0.00104 ±16 

 
32

+ 

𝐸2 
21

+ 
1,45 0.06± 0.05 

𝑀1 0,0124 0.0066 ±18 

𝐸2 
22

+ 
24 9 ±4 

𝑀1 0,03 0.033 ±9 
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33
+ 𝑀1 32

+ 0,41 0.20 ±0.90 

41
+ 𝐸2 21

+ 4,5 4.5 ±0.3 

42
+ 𝐸2 

21
+ 13 14 ±0.3 

22
+ 3 2.5 ±0.6 

43
+ 

𝐸2 21
+ 1,3 1.1 ±0.4 

𝐸2 
31

+ 
17,1 12 ±5 

𝑀1 0.083 0.071 ±0.022 
𝐸2 

41
+ 

2,16 12 +19–11 
𝑀1 0,28 0.34 ±0.10 

44
+ 

𝐸2 21
+ 1,4 3.1± 1.4 

𝐸2 
31

+ 
1,11 0.036 ±0.010 

𝑀1 0,002 0.4± 0.2 
𝐸2 

32
+ 

7,591 0.017± 5 
𝑀1 0,03 1.7± 0.5 

45
+ 

𝐸2 23
+ 11,25 12 ±4 

𝐸2 
42

+ 
0,69 0.09± 4 

𝑀1 0,067 12 +52–8 
𝑀1 43

+ 0,0214 0.063± 0.018 

51
+ 

𝐸2 
31

+ 3,67 4.8 ±1.9 

32
+ 1,99 1.5± 1.2 

𝐸2 41
+ 
 

4,412 0.012± 0.005 
𝑀1 0,01 3.2± 1.4 
𝐸2 42

+ 
 

4,7 13± 9 
𝑀1 0,01 0.010± 0.007 
𝐸2 

43
+ 

10 24 ±15 
𝑀1 0,1 0.22± 0.09 

52
+ 

𝐸2 
44

+ 
3,4 >4.6 

𝑀1 0,17 >0.16 

 
 

63
+ 
 

 
𝐸2 

 

41
+ 1,17 >0.80 

42
+ 1,02 >1.4 

43
+ 11,1 >8.8 

44
+ 0,3 >9.4 

𝑀1 52
+ 0,03 >0.032 

71
+ 
 

𝐸2 61
+ 
 

0,13 <18 
𝑀1 0,06 >0.084 

11
− 
 

𝐸1 
02

+ 0,00081 >0.00089 
21

+ 0,00142 >0.00015 

18
− 𝐸1 01

+ 0,006 0,072±0.00 9 

31
− 𝐸1 31

+ 0,00032 0,000011 ±0,000005 

41
− 

𝐸1 31
+ 0,00022 0,00043 ±15 

𝐸1 
41

+ 
0,0004 40 +60–30 

𝑀2 0,00044 0,00031± 15 

51
− 

𝐸1 
41

+ 
0,0018501 0,0008± 4 

𝑀1 0,03 5 +8–4 

𝐸1 44
+ 0,31 50 +80–40 
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𝑀1 0,02 0,0015± 0.0007 

52
− 

𝐸1 41
+ 0,0018 0.000051 ±0.000016 

𝐸1 
45

+ 
0,0011 2,9 ±2.1 

𝑀2 0,0004 0,0028 ±0.0006 

61
− 

𝐸1 51
+ 0,000000307 0,00034 ±0.00013 

𝐸2 41
− 10,5 26 ±10 

𝐸1 
52

+ 
0,00128 8 +12–7 

𝑀2 0.01163 0,0011 ±0.0004 
𝐸2 

51
− 

20,9 18 ±17 
𝑀1 0,078 0,25 ±0.08 

 

This table represents 29 initial states whose strengths were measured. Most of these 

states have more than one electromagnetic transition type (σL). For example, the  𝑱𝒊
𝝅( 𝒊𝒏𝒊) =

𝟓𝟏
+ statehas 5 final equivalence states with pure E2 transition to the final states 𝑱𝒊

𝝅(𝒇𝒊𝒏) =

𝟑𝟏
+, 𝟑𝟐

+; and a substitution  M1+E2 transitions to the  𝑱𝒊
𝝅(𝒇𝒊𝒏) = 𝟒𝟏

+, 𝟒𝟐
+, 𝟒𝟑

+. 

Almost all the measured strengths are quite well reproduced using the PSDPF 

interaction within the bar errors. 

 

 

In this chapter, we studied the spectroscopic properties of the 26Mg nucleus using the 

PSDPF interaction, i.e. the energy spectrum and the strengths of the transitions in Weisskopf 

units (u.W.).  
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Conclusion 

 

The aim of our work is the study of the spectroscopic properties of 26Mg nucleus 

within the shell model framework. In the calculation, the Nathan code and the PSDPF 

interaction were used. 

The energy spectrum of 26Mg nucleus was calculated up to about 10 MeV. The PSDPF 

described quite well the reported properties. Through this study, we could get information 

about the collective states. This study allowed us also to confirm the uncertain states and to 

make important predictions of Jπ Values for the ambiguous states. Them spin/parity 

assignments of all states in the 26Mg nucleus constitute crucial indicators for identifying those 

in the mirror 26Si nucleus, especially states of astrophysical interest. 

The strengths of the transitions in Weisskopf units (u.W.) are a good test for any 

interaction. We calculated all the measured strengths and compared the to experiment. The 

results are in quite well agreement with experiment within the bar errors. 
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