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Résumé

La problématique abordée dans cette thèse concerne l’étude de certains problèmes elliptiques

non linéaires. Notre approche est basée sur des méthodes variationnelles. Tout d’abord, nous

avons étudié un système critique de type Shrödinger-Kirchhoff faisant intervenir l’opérateur

p-Lplacien fractionnaire avec conditions aux limites de Dirichlet, où nous avons prouvé

l’existence de deux solutions faibles en utilisant la variété de Nehari et la méthode de fibering.

Deuxièmement, nous avons considéré une classe de problèmes p(x)-laplacien. En appliquant

le théorème du col de la montagne et le théorème de la fontaine, respectivement, l’existence

et la multiplicité des solutions ont été obtenues.

Mots clés: p (x)-Laplacien, p-Laplacien fractionnaire, condition de Palais-Smale, méthodes

variationelles, théorème du col de la montagne, théorème de la fontaine, variété de Nehari,

méthode de fibering.



Abstract

The problem addressed in this thesis concerns the study of some nonlinear elliptic problems.

Our approach is based on variational methods. First, we studied a critical Schrödinger-

Kirchhoff type system involving the fractional p-Laplacian operator with Dirichlet boundary

conditions, where we proved the existence of two weak solutions by using the Nehari mani-

fold and the fibering method. Second, we considered a class of p(x)-Laplacian problems. By

applying the mountain pass theorem and fountain theorem, respectively, the existence and

multiplicity of solutions were obtained.

Keywords: p (x)-Laplacian, fractional p-Laplacian, Palais-Smale condition, variational meth-

ods, mountain pass theorem, fountain theorem, Nehari Manifold, fibering method.



Notations

∀: for all.

∃: there exists.

N ≥ 1 : Dimension of the space domain.

RN : the N -dimensional Euclidean space.

Ω : An open bounded set of RN .

∂
∂xi

: the partial derivative with respect to the i-th component of x.

X : a Banach space.

X ′: the dual space of X .

∂Ω: boundary of Ω.

a.e.: abbreviation for almost everywhere.

< ., . >: the duality pairing between X and X ′.

∇u =
(

∂u
∂x1
, ∂u
∂x2
, ..., ∂u

∂xN

)
: the gradient of u.

∆u =
N∑
i=1

∂2u
∂x2

i
: the Laplacian of u.

div u =
N∑
i=1

∂u
∂xi

: the divergence of u.

→: strong convergence.

⇀: weak convergence.

↪→: continuous embedding.

||.||: the norm.

⊕: direct sum.

C(Ω) : the space of continuous real-valued functions on Ω.

C∞
0 (Ω) or D(Ω): infinitely differentiable functions with compact support on Ω.

C+(Ω) = {p ∈ C(Ω), p(x) > 1,∀x ∈ Ω}.

p− = infΩ p(x) and p+ = supΩ p(x), for p ∈ C+(Ω).

Lp(x)(Ω) = {u : Ω → R, is measurable :
∫
Ω
|u(x)|p(x)dx <∞}.

W 1,p(x)(Ω) = {f ∈ Lp(x)(Ω) : |∇f | ∈ Lp(x)(Ω)}.



For s ∈ (0, 1),W s,p(Ω) =
{
u ∈ Lp(Ω) |

∫
Ω

∫
Ω

|u(x)−u(y)|p

|x−y|N+ps dxdy <∞
}
.

Bε(x) = {y ∈ RN : |x− y| < ε}.



Introduction

Recently, research in nonlinear analysis has mainly focused on nonlinear elliptic boundary

value problems. The description of various phenomena in science and engineering requires

the use of problems of this kind.

There are different methods that have been used to prove the existence results for this

kind of problems, one of these is the variational method. This method is applied to problems

with a variational structure.

In this thesis, our main purpose is to study the existence and multiplicity of solutions

for some nonlinear elliptic boundary value problems using variational methods. The varia-

tional method finds solutions of equations by considering solutions as critical points of an

appropriately chosen function (called energy functional of the problem).

Lately, problems with nonlocal operators (fractional elliptic operators) have attracted

considerable attention from many authors. This type of operators plays an essential role in

our real life and in the description of many different phenomena, such as in physics, finance,

optimization, and population dynamics.

In this context, this thesis deals with the multiplicity of solutions for critical Schrödinger-

Kirchhoff type systems involving the fractional p-Laplacian operator. More precisely„ we

consider the following system:



K1( ∥w∥pR1
)
(
(−∆)spw +R1(x) |w|p−2w

)
= b1(x) |w|p

∗
s−2w + λf(x,w, z) in Ω,

K2( ∥z∥pR2
)
(
(−∆)spz +R2(x) |z|p−2 z

)
= b2(x) |z|p

∗
s−2 z + λg(x,w, z) in Ω,

w, z > 0 in Ω,

w = z = 0 on RN \ Ω,

(0.1)

where Ω ⊂ RN is a bounded Lipschitz domain, N > ps, 0 < s < 1 < q < p, p∗s =
Np

N−sp
, λ > 0,

the functions b1, b2, R1, R2, K1, K2, f and g are assumed to satisfy some suitable assumptions.
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The operator (−∆)sp represents the fractional p-Laplacian operator, defined by

(−∆)sp u(x) = 2lim
ε→0

∫
RN\Bε(x)

|u(x)− u(y)|p−2 (u(x)− u(y))

|x− y|N+ps
dy, x ∈ RN ,

where Bε(x) = {y ∈ RN : |x − y| < ε}. A typical feature of problem (0.1) is the nonlocality,

in the sense that the value of (−∆)sp u(x) at any point x ∈ Ω depends not only on the values

of u on Ω, but actually on the entire space RN . Therefore, the Dirichlet datum is given in

RN \ Ω. Moreover, the presence of the Kirchhoff functions K1 and K2 implies that the first

two equations in (0.1) are no longer pointwise equalities, therefore it is often called nonlocal

problem.

The system described in equation (0.1) is associated with the stationary version of the

Kirchhoff equation

ρ
∂2u

∂t2
−

(
P0

h
+
E

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx

)
∂2u

∂x2
= 0, (0.2)

presented by Kirchhoff [38] in 1883. The parameters L, h,E, ρ and P0 are constants. The

model (0.2) extends the classical d’Alembert’s wave equation by considering the effects of

the changes in the length of the strings during the vibrations.

In the last decades, much interest has grown in elliptic equations of Kirchhoff-type

involving critical exponents see [32, 35, 45] for the setting of bounded domains and [36, 40, 41]

for the context set in Rn. Fiscella and Valdinoci in [33] studied the existence of nonnegative

solutions for the following problem of Kirchhoff-type
M(
∫ ∫
R2n

|u(x)−u(y)|2
|x−y|n+2s dxdy)(−∆)su = λf(x, u) + |u|2

∗
s−2 u in Ω,

u = 0 on Rn \ Ω,

(0.3)

where λ is a positive real number, (−∆)s represents the fractional Laplace operator, the

functions M and f are continuous. Since then, fractional problems of Kirchhoff-type have

been extensively explored by numerous researchers. In particular, in reference [42], the

authors employed Ekeland’s variational principle in conjunction with the mountain pass

theorem to establish the existence of solutions and analyze their asymptotic behavior for the
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Schrödinger-Kirchhoff type system described below:

F ([(u, v)]ps,p + ∥u, v∥pp,G )
(
Ls

pu+G(x) |u|p−2 u
)
= µHu(x, u, v) +

t
p∗s
|v|w|u|t−2u in Rn,

F ([(u, v)]ps,p + ∥u, v∥pp,G )
(
Ls

pv +G(x) |v|p−2 v
)
= µHv(x, u, v) +

w
p∗s
|u|t|v|w−2v in Rn,

(0.4)

where t+w = p∗s, G : Rn → R+, F : R+
0 → R+

0 are continuous,Hu andHv are two Caratheodory

functions and µ is a positive parameter.

The thesis also concerns the existence and multiplicity of solutions for a class of p(x)-

Laplacian problems. As a particular case, we study the following class of Steklov boundary

value problems involving the p(x)-Laplacian operator


−div

(
h (x) |∇u|p(x)−2∇u

)
+ |u|p(x)−2 u = S (x, u) in Ω,

h (x) |∇u|p(x)−2 ∂u
∂v

+ l(x)|u|w(x)−2u = Q(x, u) on ∂Ω,

(0.5)

and 
−div

(
h (x) |∇u|p(x)−2∇u

)
+ |u|p(x)−2 u = S (x, u) + µ |u|δ(x)−2 u in Ω,

h (x) |∇u|p(x)−2 ∂u
∂v

+ l(x)|u|w(x)−2u = Q(x, u) on ∂Ω,

(0.6)

where Ω ⊂ RN , (N ≥ 2), is a bounded domain with a Lipschitz boundary ∂Ω. The symbol ∂v

is the outer normal derivative on ∂Ω. The functions p(x), δ(x), w, S,Q, h and l are assumed to

satisfy some suitable assumptions, µ is a positive parameter and the operator

(−∆)p(x)v(x) = −div(|∇v|p(x)−2∇v),

is the p(x)-Laplacian. This operator, with p > 1, is an extension of the p-Laplace opera-

tor (−∆)pv = −div(|∇v|p−2∇v). However, unlike the p-Laplace operator, the p(x)-Laplace

operator exhibits a more complex non-linearity and lacks homogeneity.

In the last two decades, nonlinear partial differential problems with nonstandard growth

conditions have garnered more and more attention because of their great interest in other

fields, such as electrorheological fluids [47], thermorheological fluids [9] and image restoration

[18]. For more details, we refer to [24, 29].

The rapid development of variable exponent Lebesgue and Sobolev spaces aided in

appearing some physical models. These spaces were introduced in the 1930s by Orcliz [44].
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They were initially investigated for theoretical interest. Later, they appeared in the study of

functionals of the calculus of variations with nonstandard growth.

In recent years, problems of type (0.5) and (0.6) have been investigated by many papers

( see [3–5, 10, 11, 16, 17, 29, 52]). For example, Z. Yücedag [52] studied problem (0.5) with

l (x) = −1, and Q (x, u) = 0 and she showed in this case that problem (0.5) has at least one

nontrivial weak solution. In a recent paper [17], Chammem et al. considered problems (0.5)

and (0.6) in the case:

S(x, u) = v1(x)h1(u) and Q(x, u) = v2(x)h2(u),

and they obtained results on existence and multiplicity of solutions.

This thesis consists of four chapters that are briefly presented below.

In the first chapter, we give all the necessary tools that will be needed in the course of this

work.

In the second chapter, we present critical point theory and variational methods including

mountain pass theorem, fountain theorem, Nehari manifold, and fibering method.

In the third chapter, we study the existence of multiple solutions for problem (0.1) by

using the Nehari manifold method and the fibering maps analysis.

In the fourth chapter, we prove the existence of a nontrivial weak solution of problem (0.5)

by using the mountain pass theorem. Moreover, we show that problem (0.6) has infinitely

many pairs of weak solutions by means of fountain theorem.



C
H

A
P

T
E

R

1
Preliminaries

Contents

1.1 Function spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1.1 Space of continuous functions . . . . . . . . . . . . . . . . . . . . . . 16

1.1.2 Standard Lebesgue and Sobolev spaces . . . . . . . . . . . . . . . . . 16

1.1.3 Variable exponent Lebesgue spaces . . . . . . . . . . . . . . . . . . . 18

1.1.4 Variable exponent Sobolev spaces . . . . . . . . . . . . . . . . . . . . 19

1.1.5 Fractional Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2 Some classes of operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4 Some convergence criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23



1.1 Function spaces 16

In this chapter, we briefly recall some definitions and preliminary notions of the necessary

function spaces and describe their basic properties. Moreover, we provide some notions

about operators and differentiability, and we present some results about integration theory

such as the fundamental convergence criteria.

Note that the results introduced in this chapter are not given in full generality, they will

be presented as our study requires.

1.1 Function spaces

We start by recalling the space of continuous functions.

1.1.1 Space of continuous functions

For an open domain Ω of RN , the function u : Ω → R is defined as continuous if

∀x0 ∈ Ω, ∀ε > 0,∃σ > 0,

such that

∥x− x0∥ < σ =⇒ |w(x)− w(x0)| < ε,

here, ||.|| is the well-known Euclidean norm.

We introduce the following notations:

C (Ω) := {w : Ω → R is continuous} ,

C
(
Ω
)
:=
{
w : Ω → R is continuous and extends continuously to Ω

}
.

We define the norm over C (Ω), by

∥w∥C = sup
x∈Ω

|w(x)| .

1.1.2 Standard Lebesgue and Sobolev spaces

We present fundamental facts concerning classical Lebesgue spaces Lp (Ω) and Sobolev spaces

W 1,p(Ω). These properties are well-established and can be found in various references such
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as [1, 12, 13, 21, 34].

Everywhere in this part, we consider Ω as an open subset of RN , endowed with the

measure of Lebesgue dx.

Definition 1.1 Let 1 ≤ p <∞. We set

Lp (Ω) =

{
h : Ω −→ R is measurable, and

∫
Ω

|h|p dx < +∞
}
, [12]

we define the norm of h in Lp (Ω) by

∥h∥Lp = ∥h∥p =
(∫

Ω

|h|p dx
)1/p

. [12]

Definition 1.2 We define the space of essentially bounded functions

L∞ (Ω) = {g : Ω −→ R measurable and ∃ a constant S, |g (x)| ≤ S a.e on Ω} , [12]

the norm in this space is defined as

∥g∥L∞ = ∥g∥∞ = inf {S; |g| ≤ S a.e on Ω} .

Remark 1.1 Let g ∈ L∞ (Ω), then

|g| ≤ ∥g∥L∞ a.e. on Ω. [12]

Theorem 1.1 Let 1 ≤ p ≤ ∞. Suppose that u ∈ Lp and v ∈ Lp′ with 1
p
+ 1

p′
= 1. Then, one has

∫
Ω

|uv| ≤ ∥u∥Lp ∥v∥Lp′ . [12]

Definition 1.3 [12] For 1 ≤ p ≤ ∞, The Sobolev space W 1,p(Ω) is defined as the set of functions

w ∈ Lp(Ω) such that the weak derivative ∇w exists in the distributional sense and also belongs to

Lp(Ω).

The norm over W 1,p(Ω) is introduced as follows

∥w∥W 1,p = ∥w∥Lp + ∥∇w∥Lp , [12]
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where 1 ≤ p <∞.

Proposition 1.1 [12] The functional spaces W 1,q(Ω) and Lq(Ω) with 1 ≤ q ≤ ∞ are Banach spaces.

Moreover, they are reflexive for 1 < q <∞, and typically separable for 1 ≤ q <∞.

Further properties of these spaces can be derived in sections 1.1.3 and 1.1.4, by considering

them as a special case of the variable exponent spaces properties.

1.1.3 Variable exponent Lebesgue spaces

We introduce fundamental information about variable exponent Lebesgue spaces. For a

more comprehensive understanding of this topic, we recommend referring to the following

references [6–8, 19, 20, 23, 30, 39, 46, 48].

Let Ω be a bounded open subset of RN . Set

C+(Ω) = {p ∈ C(Ω), p(x) > 1, ∀x ∈ Ω}.

For any variable exponent p ∈ C+(Ω), we define

p− = inf
Ω
p(x), p+ = sup

Ω

p(x).

We also denoteC+(∂Ω) and q−, q+ for every q(x) ∈ C(∂Ω).We introduce the variable exponent

Lebesgue spaces as Lp(x)(Ω) and Lq(x)(∂Ω) with the following definitions:

Lp(x)(Ω): comprises measurable real-valued functions f : Ω → R, for which

ϑ(f) =

∫
Ω

|f(x)|p(x)dx,

is finite.

The space Lq(x)(∂Ω): comprises measurable real-valued functions f : ∂Ω → R with

ϑ∂(f) =

∫
∂Ω

|f(x)|q(x)dσ,

is finite.
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We define the norms over these spaces, by

||f ||Lp(x)(Ω) = |f |Lp(x)(Ω) = inf{γ > 0 :

∫
Ω

|f(x)
γ

|p(x)dx ≤ 1},

and

||f ||Lp(x)(∂Ω) = |f |Lp(x)(∂Ω) = inf{λ > 0 :

∫
∂Ω

|f(x)
λ

|p(x)dσ ≤ 1},

where, dσ represents the surface measure on ∂Ω.

Proposition 1.2 ( [27, 30]).

(1) Lp(x)(Ω), equipped with its norm, is a separable and uniformly convex Banach space.

(2) Let z ∈ C+(Ω). The Hölder inequality holds, namely, if f ∈ Lz(x)(Ω) and g ∈ Lw(x)(Ω), with
1

z(x)
+ 1

w(x)
= 1. Then, we have

|
∫
Ω

fgdx| ≤ (
1

z−
+

1

w− )|f |z(x)|g|w(x).

(3) If z, w ∈ C+(Ω) with z(x) ≤ w(x), so the continuous embedding from the space Lw(x)(Ω) to

Lz(x)(Ω) holds.

Theorem 1.2 [30] For any f ∈ Lp(x)(Ω), one has

(1) ϑ(f) < 1(resp > 1,= 1) if and only if |f |Lp(x)(Ω) < 1 (resp > 1,= 1),

(2) |f |p
+

Lp(x)(Ω)
≤ ϑ(f) ≤ |f |p

−

Lp(x)(Ω)
, if |f |Lp(x)(Ω) < 1,

(3) |f |p
−

Lp(x)(Ω)
≤ ϑ(f) ≤ |f |p

+

Lp(x)(Ω)
, if |f |Lp(x)(Ω) > 1.

Proposition 1.3 (see [48]) For any f ∈ Lp(x)(∂Ω), one has

(1) If |f |Lp(x)(∂Ω) < 1, then |f |p
+

Lp(x)(∂Ω)
≤ ϑ∂(f) ≤ |f |p

−

Lp(x)(∂Ω)
,

(2) If |f |Lp(x)(∂Ω) > 1, then |f |p
−

Lp(x)(∂Ω)
≤ ϑ∂(f) ≤ |f |p

+

Lp(x)(∂Ω)
.

Lemma 1.1 ( [26]) Let f ∈ Lw(y)(RN) with f ̸= 0. Let q be in L∞(Ω) with 1 ≤ q(y).w(y) ≤ ∞, for

a.e y ∈ Ω. Then,

(1) |f |w−

q(y)w(y) ≤ ||f |q(y)|w(y) ≤ |f |w+

q(y)w(y), if |f |q(y)w(y) ≥ 1,

(2) |f |w+

q(y)w(y) ≤ ||f |q(y)|w(y) ≤ |f |w−

q(y)w(y), if |f |q(y)w(y) ≤ 1.

1.1.4 Variable exponent Sobolev spaces

We present fundamental information about Sobolev spaces with variable exponent. For an

exposition of these concepts, we refer to [23, 26, 30].
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Let Ω denote a bounded open set of RN . The space is characterized by the following

definition:

W 1,p(x)(Ω) = {g ∈ Lp(x)(Ω) such that |∇g| ∈ Lp(x)(Ω)},

where the function p(x) : is continuous, defined on Ω and takes values in the interval [1,+∞[.

We define the norm over W 1,p(x)(Ω), by

∥f∥W 1,p(x)(Ω) = inf{λ > 0 :

∫
Ω

(
|f(x)

λ
|p(x) + |∇f(x)

λ
|p(x)

)
dx ≤ 1}.

The subspace W 1,p(x)
0 (Ω) is defined as the closure of the space C∞

0 (Ω) in the functional space

W 1,p(x)(Ω).

Proposition 1.4 (see [26, 30, 51])

(1) Whenever p(x) ∈ C+(Ω), the functional spaces W 1,p(x)(Ω) and W 1,p(x)
0 (Ω) are Banach spaces,

moreover they are separable and reflexive.

(2) Suppose w ∈ C+(Ω) where w(x) < p∗(x), for every x ∈ Ω. In this case, the continuous and

compact embedding from the functional space W 1,p(x)(Ω) to Lw(x)(Ω) holds, where

p∗ (x) =


Np(x)
N−p(x)

, if p(x) < N,

∞, if p(x) ≥ N.

(3) Suppose w ∈ C+(∂Ω) where w(x) < p∗(x) for every x ∈ ∂Ω. In this case, the trace embedding

from the space W 1,p(x)(Ω) to Lw(x)(∂Ω) is continuous and compact,where

p∗ (x) =


(N−1)p(x)
N−p(x)

, if p(x) < N,

∞, if p(x) ≥ N.

1.1.5 Fractional Sobolev spaces

Definition 1.4 [21] The fractional Sobolev space W s,p(Ω) on a smooth bounded domain Ω ⊂ RN ,

where s ∈]0, 1[ and 1 ≤ p <∞, is defined as follows:

W s,p(Ω) =

{
w ∈ Lp(Ω) |

∫
Ω

∫
Ω

|w(x)− w(y)|p

|x− y|N+ps
dxdy <∞

}
.
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Proposition 1.5 [21] The space W s,p(Ω), 0 ≤ s < 1, is a Banach space, endowed with the following

norm

∥v∥W s,p(Ω) = (∥v∥pLp(Ω) + [∥v∥′s,p]
p)

1
p ,

where [∥v∥′s,p]p =
∫
Ω×Ω

|v(x)−v(y)|p

|x−y|N+ps dxdy.

Proposition 1.6 [21] The functional space W s,p(Ω) has a local nature, which means that the product

φv belongs to W s,p(Ω), for each v in the functional space W s,p(Ω) and each φ ∈ D(Ω).

Proposition 1.7 [21] The space D(RN) is dense in W s,p(Ω).

Theorem 1.3 [22] Let Ω ⊆ RN be an extension domain for W s,p, s ∈ (0, 1) and p ∈ [1,+∞) with

N > ps. So, for any r such that p ≤ r ≤ p∗s, the continuous embedding from W s,p(Ω) into Lr(Ω)

holds. In other words, there exists Cr > 0 such that for each v ∈ W s,p(Ω), one has

∥v∥Lr(Ω) ≤ Cr ∥v∥W s,p(Ω) ,

where r belongs to [p, p∗s]. Whenever Ω is bounded, so the embedding from W s,p(Ω) to Lq(Ω) is

continuous if q belongs to [1, p∗s].

Theorem 1.4 [21] Let s ∈ [0, 1[ and p > 1. Suppose Ω is a bounded Lipschitz open domain of RN ,

N ≥ 1. Then, we have:

• If sp < N , so for any q < Np/(N − sp), the compact embedding from the space W s,p(Ω) into

Lq holds.

• If sp = N , so for any q <∞, the compact embedding from W s,p(Ω) into Lq holds.

• If sp > N , so for λ < s−N/p, the compact embedding from the functional space W s,p(Ω) into

C0,λ
b (Ω) holds.

1.2 Some classes of operators

Definition 1.5 Consider (W, ∥.∥) as a real reflexive separable Banach space, and let W ′ denote its

topological dual space. We say that T : W → W ′,

• is a continuous operator if ∥Txn − Tx∥W ′ → 0 when ∥xn − x∥W → 0.
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• is a compact operator if for any bounded set A in W , the image set T (A) is relatively compact

in W ′. In other words, the closure of T (A) is compact in W ′.

• is a coercive operator if

lim
∥x∥→+∞

⟨T (x), x⟩
∥x∥

= +∞.

• is a monotone operator if

⟨Tz − Tv, z − v⟩≥0,∀z, v ∈ W with z ̸= v.

• is a strictly monotone operator if

⟨Tz − Tv, z − v⟩>0,∀z, v ∈ W with z ̸= v.

• is a bounded operator if it maps any bounded set to a bounded set.

• is a semi-continuous operator

if wn → w when n→ ∞ implies Twn ⇀ Tw when n→ ∞.

• is a strongly continuous operator

if vn ⇀ v implies Tvn → Tv when n→ ∞.

Definition 1.6 [43] Let W be a reflexive space, D be a nonempty subset of W and T : D → W ′ be a

mapping. We define T to be a mapping of (S)+ type if, for every sequence {un}n≥1 ⊂ D such that un

converges weakly to u in W and lim supn→∞⟨T (un) , (un − u)⟩ ≤ 0, so un → u strongly in W.

1.3 Derivatives

There are several notions of derivatives for functions defined on Banach spaces. We start with

the directional derivative.

Let W be a Banach space.



1.4 Some convergence criteria 23

Definition 1.7 [37] (Directional derivative) Let U be a subset of W and G : U → R. If v ∈ U

and h ∈ W we have v + th ∈ U. The function G has (at v) a derivative in the direction of the vector h,

denoted as G′
z(u), if the following limit exists

lim
t→

+
0

G(v + th)−G(v)

t
, for every t > 0 small enough.

Definition 1.8 [37] (Gateaux derivative) Let U be a subset of W and G : U → R. The function G

is Gateaux differentiable at v ∈ U , if there exists an element l ∈ W ′ such that in each direction z ∈ W

where G(v + tz) exists for t > 0 small enough, the directional derivative G′
z(v) exists and we have

⟨G′(v), z⟩ = ⟨l, z⟩ = lim
t→

+
0

G(v + tz)−G(v)

t
.

Definition 1.9 [37] (Frechet derivative) Let U be a subset of W and G : U → R. The function G

is said to be Frechet differentiable at u ∈ U , if there exists an element l ∈ W ′, such that:

∀v ∈ U G(v)−G(u) = ⟨l, v − u⟩+ o(v − u).

1.4 Some convergence criteria

Theorem 1.5 [12] Let the sequence (gn)n∈N of Lp (Ω) and consider a function g that belongs to

Lp (Ω) such that

∥gn − g∥p −→
n−→∞

0.

So, there exist a subsequence (gnk
)k∈N and a function h in Lp (Ω) satisfying the following

conditions:

• gnk
(x) −→ g (x) a.e on Ω,

• |gnk
(x)| ≤ h (x) ∀k, a.e. on Ω.

Theorem 1.6 [12] ( Lebesgue’s dominated convergence theorem ) Consider the sequence of

functions (un) in L1(Ω) such that

• un(x) converges almost everywhere to u on Ω.
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• We suppose that there exists v ∈ L1(Ω) such that for all n, we have

|un(x)| ≤ v(x), a.e. on Ω.

Then u ∈ L1(Ω) and

∥un − u∥L1 −→ 0.

Lemma 1.2 [49] (Brezis–Lieb Lemma). Let Ω ⊂ RN be an open bounded domain, 1 ≤ p <∞ and

(un) ⊂ Lp(Ω) a bounded sequence. Assume that un → u a.e. on Ω, then

lim
n→∞

(∥un∥pp − ∥un − u∥pp) = ∥u∥pp .

Now, we give the definition of a Carathéodory function.

Definition 1.10 Let Ω ⊂ RN be an open bounded domain,N ≥ 1. We say that f = f(x, ξ) :

Ω× RN → R is a Carathéodory function if for all ξ ∈ RN

f(., ξ) : Ω → R,

is measurable and

f(x, .) : RN → R,

is continuous for almost every x ∈ Ω.
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This chapter addresses critical point theory and variational methods that will be used to

obtain the main results in this thesis.

2.1 Critical point theory

2.1.1 Critical points and Lagrange multiplier

Definition 2.1 (Homogeneous function) Let f : Rn → R be a function of n variables. Then f is

said to be homogeneous of degree k if for any s > 0 and any vector x ∈ Rn, the function satisfies the

equation:

f(sx) = skf(x).

Definition 2.2 (Coercivity) The function f is coercive if

lim
∥x∥→∞

f(x) = ∞.

Definition 2.3 [37] (Critical point) Let W be a Banach space, U an open subset of W and J : U →

R a function of class C1. Let w ∈ U , if J ′(w) = 0, then w is called a critical point of J . On the other

hand, w is a regular point of J, if it is not a critical point.

Let c ∈ R, if there exists u ∈ U with J(u) = c and J ′(u)=0, therefore c is called a critical value of

J . On the other hand, we consider c as a regular value of J , if it does not correspond to a critical value.

Definition 2.4 [37] (Lagrange multiplier) Let W be a Banach space, and consider functions

F : W → R and J : W → R that belong to class C1, and a set:

S = {u ∈ W : F (u) = 0},

where F ′(u) ̸= 0 for any u ∈ S. The critical value of J on S is defined as the real number c such that

there exists u ∈ S and λ ∈ R satisfying:

J(u) = c and J ′(u) = λF ′(u).

The real λ is referred to as the Lagrange multiplier for c, while u represents a critical point of J on the

set S.
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Proposition 2.1 [37] Under the assumptions and notations of definition 2.4, we assume that u0 ∈ S

and J(u0) = infv∈S J(v). So, there exists λ ∈ R such that:

J ′(u0) = λF ′(u0).

2.1.2 Palais-Smale condition

Definition 2.5 [37] Let J be a functional defined on a Banach space W and belonging to the class

C1(W,R) and let a ∈ R. The Palais-Smale condition is satisfied by J at the level a, means that every

(un)n ∈ W, satisfying the following condition

J(un) → a with J ′(un) converges to 0 in the dual space W ′,

possesses a convergent subsequence.

Remark 2.1 The sequence (un)n is referred to as the Palais-Smale sequence.

2.1.3 Mountain pass theorem

We introduce the following theorem:

Theorem 2.1 [49] Let Y be a Banach space, Φ : Y → R a function belongs to the class C1, e ∈ Y

and r > 0 with ∥e∥ > r. Suppose that

(1) b = inf ||u||=r Φ(u) > Φ(0) ≥ Φ(e),

and

(2) The function Φ satisfies the (PS)c condition.

So, c is a critical value of Φ, where c is given as follows

c = inf
γ∈Γ

max
t∈[0,1]

Φ(γ(t)),

and Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e}.
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2.1.4 Fountain theorem

Remark 2.2 Since X be a reflexive and separable Banach space, there exist {ei}∞i=1 ⊂ X and

{e∗j}∞j=1 ⊂ X∗ such that

X = span{ei, i = 1, 2, . . . }, X∗ = span{e∗j , j = 1, 2, . . . } (2.1)

where

⟨ei, e∗j⟩ =

 1 if i = j,

0 if i ̸= j.
(2.2)

For t = 1, 2 . . . , denote

Xt = span{et}, Yt =
t⊕

i=1

Xi, Zt =
⊕
i≥t

Xi. (2.3)

Proposition 2.2 (Fountain theorem, see [28, 49]). Assume that

(H1)X is a Banach space, φ ∈ C1(X,R) is an even functional, the subspaces Xt, Yt and Zt are

given by (2.3). If for every, t = 1, 2, ...,, there exists ρt > γt > 0, such that

(H2) infu∈Zt,∥u∥=γt φ(u) → ∞ as t→ ∞,

(H3)maxu∈Yt,∥u∥=ρt φ(u) ≤ 0,

(H4)φ satisfies (PS) condition for every c > 0.

Then, φ has a sequence of critical values tending to +∞.

2.2 The Nehari Manifold

Nehari’s variational method has proven to be highly valuable in critical point theory. He

introduced this method by investigating a boundary value problem associated with a specific

nonlinear second-order ordinary differential equation defined on an interval [a, b]. Nehari

demonstrated the existence of a nontrivial solution to this problem, which can be acquired

through the constrained minimization for the corresponding energy functional.

The Nehari manifold method can be described as follows:

Considering a Banach space E and suppose J ∈ C1(E,R) be a continuously differentiable
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functional. If z ̸= 0 and J
′
(z) = 0. So z belongs to the set

N =
{
z ∈ E\ {0} :

〈
J

′
(z), z

〉
= 0
}
.

This set N serves as a natural constraint for finding nontrivial solutions. It is referred to as

the Nehari manifold. Put

c := inf J(z).
z∈N

Under suitable conditions on J , one expects that there exists a z0 ∈ N where c is attained, and

z0 is a critical point of the function J .

2.3 Fibering method

The fibering method, also known as the decomposition method, was introduced by Pohozaev

in the late 1990s as a technique to study certain variational problems.

Let A : X → Y be a nonlinear operator between two Banach spaces. We consider the equation

A(v) = h. (2.4)

This method is based on the representation of the equation’s solutions as

v = su,

where s ∈ R, s ̸= 0 in some open J ⊆ R. To fully understand the fibering method, we provide

a comprehensive description starting with the definition of the fiber map. We define the fiber

map ϕ(s) : R+ → R,

ϕ(s) = J(sv).

Next, we compute the first and second derivatives of ϕ(s), denoted as ϕ′(s) and ϕ′′(s) respec-

tively. These derivatives play an important role in partitioning the set N into three distinct

parts N0, N+ and N−, and corresponding respectively, to points of inflection, local minima,

and local maxima of ϕ defined as follows:

N0 = {u ∈ N : ϕ′′(1) = 0} ,
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N+ = {u ∈ N : ϕ′′(1) > 0} ,

N− = {u ∈ N : ϕ′′(1) < 1} .

The choice of using ϕ′′(1) in these definitions is deliberate. It ensures that if v is a local

minimum for J , then ϕ has a local minimum at s = 1. By partitioning S into these three parts,

we can analyze the behavior of the solutions and explore the existence of local minima, local

maxima, and points of inflection.
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In this chapter, by using the Nehari manifold method and the fibering maps analysis,

we prove the existence of two nontrivial weak solutions for a specific type of Schrödinger-

Kirchhoff elliptic system. This system involves critical exponents and the nonlocal fractional

p-Laplacian. In the first part, we introduce our problem and discuss its variational formulation.

Moreover, we state our main result. Then, in the next part, we present the Nehari manifold

structure with the analysis of fibering maps, which is related to our problem. In the last

part, we establish the proof of our main result. The results of this chapter are based on our

paper [31].

In the sequel, i will represent either the number 1 or 2.

3.1 Introduction

We take into consideration the following system



K1( ∥w∥pR1
)
(
(−∆)spw +R1(x) |w|p−2w

)
= b1(x) |w|p

∗
s−2w + λf(x,w, z) in Ω,

K2( ∥z∥pR2
)
(
(−∆)spz +R2(x) |z|p−2 z

)
= b2(x) |z|p

∗
s−2 z + λg(x,w, z) in Ω,

w, z > 0 in Ω,

w = z = 0 on RN \ Ω,

(3.1)

here, ∥.∥R1
and ∥.∥R2

will be introduced later in accordance with (3.8), Ω is a Lipschitz

bounded domain in RN , N > ps, 0 < s < 1 < q < p, p∗s =
Np

N−sp
, λ > 0, the weight functions

b1 and b2 are bounded and positive on the domain Ω, and (−∆)sp represents the fractional

p-Laplacian operator, which is defined as

(−∆)sp u = 2lim
ε→0

∫
RN\Bε(x)

|u(x)− u(y)|p−2 (u(x)− u(y))

|x− y|N+ps
dy, x ∈ RN ,

where Bε(x) = {y ∈ RN : |x− y| < ε}, for further details about this operator, we advise the

reader to see [22]. We suppose that the function Ri : Ω → (0,∞) is continous and there is

Ri > 0 with inf
Ω
Ri ≥ Ri. Also, we suppose that Ki : (0,∞) → (0,∞) is continuous and satisfy

certain conditions:

(H1) lim
t→+∞

t1−
p∗s
p Ki(t) = 0.
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(H2) There exists ki > 0 such that for all t > 0,

Ki(t) ≥ ki.

(H3) There exists θi ∈ [1, p
∗
s

p
[ such that for all t > 0,

Ki(t)t ≤ θiK̂i(t),

where K̂i(t) =
∫ t

0
Ki(s)ds. Let

k = min(k1, k2). (3.2)

θ = max(θ1, θ2). (3.3)

Moreover, the functions f and g belong to the classC(Ω̄×R×R, [0,∞[) and have homogeneity

of degree (q − 1). This means that for every t greater than zero and (x,w, z) belonging to the

set Ω× R× R, the following equations hold:

 f(x, tw, tz) = tq−1f(x,w, z),

g(x, tw, tz) = tq−1g(x,w, z).
(3.4)

More specifically, we present the function H : Ω̄× R× R → R which satisfies the equations:

Hw(x,w, z) = f(x,w, z) and Hz(x,w, z) = g(x,w, z),

where Hw (respectively, Hz) represents the partial derivative of H with respect to w (re-

spectively, z). It is worth noting that the function H is in the class C1(Ω̄ × R × R,R) and

satisfies:

H(x, tw, tz) = tqH(x,w, z)(t > 0), (x,w, z) ∈ Ω̄× R× R, (3.5)

qH(x,w, z) = uf(x,w, z) + vg(x,w, z), (3.6)

|H(x,w, z)| ≤ γ(|w|q + |z|q), for some constant γ > 0. (3.7)
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Before presenting our result, we would like to introduce some notations. For s ∈ (0, 1), we

introduce the functional space

W s,p(Q) =

{
z ∈ Lp(Ω) and

z(x)− z(y)

|x− y|
N
p
+s

∈ Lp(Q, dxdy)

}
,

equipped with the norm

∥z∥W s,p(Q) =

∥z∥pLp(Ω) +

∫
Q

|z(x)− z(y)|p

|x− y|N+ps
dxdy

 1
p

,

where Ωc = RN \ Ω, Q = R2N⧹(Ωc × Ωc). The fact that (W s,p(Q), ∥w∥W s,p(Q)) is a uniformly

convex Banach space is a widely recognized result.

Next, Lp(Ω, Ri) represents the Lebesgue space of functions w : Ω → R, such that

Ri(x)|w|p ∈ L1(Ω). It is equipped with the following norm

∥w∥p,Ri
=

∫
Ω

Ri(x)|w|pdx

 1
p

.

Let us denote by W s,p
Ri

(Q) the completion of C∞
0 (Q) with respect to the norm

∥w∥Ri
=

∥w∥pp,Ri
+

∫
Q

|w(x)− w(y)|p

|x− y|N+ps
dxdy

 1
p

. (3.8)

According to Theorem 1.3, we have the knowledge that the embedding W s,p
Ri

(Q) ↪→ Lr(Ω) is

continuous for every r ∈ [p, p∗s]. This implies the existence of a positive constant Cr > 0 such

that

∥w∥r ≤ Cr∥w∥Ri
for all w ∈ W s,p

Ri
(Q).

From (Lemma 2.1 of [50]), the embedding of W s,p
Ri

(Q) in Lr(Ω) is compact for 1 ≤ r < p∗s. Let

W = W s,p
R1

(Q)×W s,p
R2

(Q), endowed with

∥(w, z)∥ = (∥w∥pR1
+ ∥z∥pR2

)
1
p .
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Then, (W, ∥.∥) is a reflexive Banach space. For simplicity, we denote

A(w, z) = ∥(w, z)∥p.

Definition 3.1 We say that the pair of functions (w, z) ∈ W is a weak solution of (3.1), if

K1 (∥w∥p)

∫
Q

|w(x)− w(y)|p−2 (w(x)− w(y))(v(x)− v(y))

|x− y|N+ps
dxdy +

∫
Ω

R1(x) |w|p−2wvdx



+K2 (∥z∥p)

∫
Q

|z(x)− z(y)|p−2 (z(x)− z(y))(u(x)− u(y))

|x− y|N+ps
dxdy +

∫
Ω

R2(x) |z|p−2 zudx


=

∫
Ω

(b1(x) |w|p
∗
s−2wv + b2(x) |z|p

∗
s−2 zu)dx+ λ

∫
Ω

(Hw(x,w, z)v +Hz(x,w, z)u)dx,

for any (v, u) ∈ W.

We consider the Euler-Lagrange functional Jλ : W → R, defined by

Jλ(w, z) =
1

p
(K̂1(A1(w)) + K̂2(A2(z)))−

1

p∗s
B(w, z)− λC(w, z), (3.9)

where

Ai (u) = ∥u∥pVi
, u ∈ W

B (w, z) =

∫
Ω

(b1(x) |w|p
∗
s + b2(x) |z|p

∗
s)dx,

and

C (w, z) =

∫
Ω

H(x,w, z)dx.

It is easily seen that, Jλ ∈ C1(W,R), and furthermore, J ′
λ : W → W ′ is given by

⟨J ′
λ(w, z), (w, z)⟩ = A1(w)K1(A1(w)) + A2(z)K2(A2(z))−B(w, z)− λqC(w, z), (3.10)

where W ′ is the dual space of W .

Hence, critical points of J are weak solutions of problem (3.1).
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Let Sp,Ri
represent the best Sobolev constant for the embedding from the functional space

W s,p
Ri

(Q) to Lp∗s(Ω)

Sp,Ri
= inf

u∈W s,p
Ri

(Q)\{0}

∥w∥pRi

∥w∥pp∗s
. (3.11)

Put

S = min(Sp,R1 , Sp,R2). (3.12)

Now, we announce our main result.

Theorem 3.1 Suppose that s ∈ (0, 1), ps < N , 1 < q < p < p∗s and equations (3.4), (3.5), (3.6),

(3.7) hold. If Ki satisfies (H1)− (H3), then there exists a positive value λ∗ such that for all λ in the

interval (0, λ∗), the problem (3.1) possesses at least two nontrivial weak solutions.

3.2 The Nehari manifold method and fibering maps analysis

In this section, we present some fundamental results regarding the Nehari manifold and the

analysis of fibering maps. These results will be utilized in the subsequent section. Since Jλ

is not bounded from below on W , we aim to establish the boundedness from below of the

energy functional Jλ on a specific set of W , referred to as the Nehari manifold. We define this

manifold as follows:

Nλ = {(w, z) ∈ W\{(0, 0)}, ⟨J ′
λ(w, z), (w, z)⟩W = 0},

it is evident that an element (w, z) ∈ Nλ, is equivalent to

A1(w)M1(A1(w)) + A2(z)M2(A2(z))−B(w, z)− λqC(w, z) = 0, (3.13)

where A1, A2, B and C are introduced in Section 3.1.

Hence, from (3.10), we note that elements in Nλ are equivalent to nontrivial critical points

that represent solutions of problem (3.1). To gain a better understanding of Nλ, it is beneficial

to analyze it in terms of the stationary points of the fibering maps φw,z : (0,∞) → R. These

fibering maps are given as follows:

φw,z(t) =
1

p
(K̂1(t

pA1(w)) + K̂2(t
pA2(z)))−

tp
∗
s

p∗s
B(w, z)− λtqC(w, z) = Jλ(tw, tz).
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A simple computation shows that

φ′
w,z(t) = tp−1(A1(w)K1(t

pA1(w)) + A2(z)K2(t
pA2(z)))

−tp∗s−1B(w, z)− λqtq−1C(w, z),

φ′′
w,z(t) = (p− 1)tp−2 (A1(w)K1(t

pA1(w)) + A2(z)K2(t
pA2(z)))

+pt2p−2
(
(A1(w))

2K ′
1(t

pA1(w)) + (A2(z))
2K ′

2(t
pA2(z)

)
−(p∗s − 1)tp

∗
s−2B(w, z)− λq(q − 1)tq−2C(w, z).

We recommend referring to the following sources [14, 15, 25], for more details and properties

about these maps.

It can be easily observed that for any t > 0,

φ′
w,z(t) = ⟨J ′

λ(tw, tz), (w, z)⟩W =
1

t2
⟨J ′

λ(tw, tz), (tw, tz)⟩W .

So, the pair (tw, tz) belongs to the Nehari manifold Nλ, is equivalent to φ′
w,z(t) = 0. In the

particular situation, if t = 1 we get (w, z) ∈ Nλ, is equivalent to φ′
w,z(1) = 0. Therefore, from

(3.13), we get

φ′′
w,z(1) = (p− 1) (A1(w)K1(A1(w)) + A2(z)K2(A2(z)))

+p
(
(A1(w))

2K ′
1(A1(w)) + (A2(z))

2K ′
2(A2(z))

)
−(p∗s − 1)B(w, z)− λq(q − 1)C(w, z)

= p
(
(A1(w))

2K ′
1(A1(w)) + (A2(z))

2K ′
2(A2(z))

)
− (p∗s − p)B(w, z)− λq(q − p)C(w, z)(3.14)

= p
(
(A1(w))

2K ′
1(A1(w)) + (A2(z))

2K ′
2(A2(z))

)
−(p∗s − p) (A1(w)K1(A1(w)) + A2(z)K2(A2(z))) + λq(p∗s − q)C(w, z) (3.15)

= p
(
(A1(w))

2K ′
1(A1(w)) + (A2(z))

2K ′
2(A2(z))

)
+(p− q) (A1(w)K1(A1(w)) + A2(z)K2(A2(z)))− (p∗s − q)B(w, z). (3.16)
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To achieve a multiplicity of solutions, we can split the Nehari manifold Nλ into three distinct

parts.

N0
λ =

{
(w, z) ∈ Nλ such that φ′′

w,z(1) = 0
}
=
{
(w, z) ∈ W : φ′

w,z(1) = 0 and φ′′
w,z(1) = 0

}
,

N+
λ =

{
(w, z) ∈ Nλ such that φ′′

w,z(1) > 0
}
=
{
(w, z) ∈ W : φ′

w,z(1) = 0 and φ′′
w,z(1) > 0

}
,

N−
λ =

{
(w, z) ∈ Nλ such that φ′′

w,z(1) < 0
}
=
{
(w, z) ∈ W : φ′

w,z(1) = 0 and φ′′
w,z(1) < 0

}
.

Lemma 3.1 Assume that (w0, z0) is a local minimizer for Jλ on Nλ, and (w0, z0) ̸∈ N0
λ. So, (w0, z0)

is a critical point of Jλ.

Proof Let (w0, z0) represents a local minimizer for Jλ on Nλ, then it follows that (w0, z0)

satisfies the optimization problem
min

(w,z)∈Nλ

Jλ(w, z) = Jλ(w0, z0),

β(w0, z0) = 0,

where

β(w, z) = A1(w)K1(A1(w)) + A2(z)K2(A2(z))−B(w, z)− λqC(w, z).

By applying the Lagrange multipliers theorem, we can conclude that there is a real number δ,

such that

J ′
λ(w0, z0) = δβ′(w0, z0). (3.17)

As (w0, z0) ∈ Nλ, we obtain

δ⟨β′(w0, z0), (w0, z0)⟩W = ⟨J ′
λ(w0, z0), (w0, z0)⟩W = 0. (3.18)
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Moreover, from (3.13) and the constraint β(w0, z0) = 0, we obtain

⟨β′(w0, z0), (w0, z0)⟩W = p
(
(A1(w0))

2K ′
1(A1(w0)) + (A2(z0))

2K ′
2(A2(z0))

)
−(p∗s − p)B(w0, z0)− λq(q − p)C(w0, z0)

= φ′′
w0,z0

(1).

Since (w0, z0) ̸∈ N0
λ, so φ′′

w0,z0
(1) ̸= 0. Thus, by (3.18) we find that δ = 0. Hence, by substitution

of δ in (3.17), we get J ′
λ(w0, z0) = 0. Therefore, Lemma 3.1 is proved.

To gain a better understanding of the Nehari manifold and fibering maps, we introduce

the function ψw,z : (0,∞) → R , defined as

ψw,z(t) = tp−q (A1(w)K1(t
pA1(w)) + A2(z)K2(t

pA2(z)))− tp
∗
s−qB(w, z)− λqC(w, z). (3.19)

We observe that

tq−1ψw,z(t) = φ′
w,z(t).

Thus, it is evident that, (tw, tz) ∈ Nλ is equivalent to

ψw,z(t) = 0. (3.20)

By a straightforward computation, we have

ψ′
w,z(t) = (p− q)tp−q−1 (A1(w)K1(t

pA1(w)) + A2(z)K2(t
pA2(z)))

+pt2p−q−1
(
A2

1(w)K
′
1(t

pA1(w)) + A2
2(z)K

′
2(t

pA2(z))
)
− (p∗s − q)tp

∗
s−q−1B(w, z),

therefore, we see that, if (tw, tz) ∈ Nλ, then

tq−1ψ′
w,z(t) = φ′′

w,z(t). (3.21)

So, (tw, tz) ∈ N+
λ ,
(
respectively, (tw, tz) ∈ N−

λ

)
is equivalent to ψ′

w,z(t) > 0, (respectively,

ψ′
w,z(t) < 0).

Put

λ∗ =
(kS)

p∗s−q

p∗s−p

γq|Ω|
p∗s−q

p∗s

(
p∗s − p

p∗s − q

)(
p− q

(p∗s − q)b

) p−q
p∗s−p

. (3.22)
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Lemma 3.2 Let (w, z) ∈ Nλ and suppose that (H1) and (H2) hold. So, there exists λ∗ > 0 and two

unique values t1 > 0 and t2 > 0, such that (t1w, t1z) ∈ N+
λ , (t2w, t2z) ∈ N−

λ for any λ within the

interval (0, λ∗).

Proof By (H1) and (3.19), we note that ψw,z(t) → −λqC(w, z) when t → 0+, ψw,z(t) → −∞

when t→ ∞. On the other hand, by combining (3.7), (3.11) with the Hölder inequality, we

get

B(w, z) ≤ ∥b1∥∞∥w∥p
∗
s

p∗s
+ ∥b2∥∞∥z∥p

∗
s

p∗s
≤ b(∥w∥p

∗
s

p∗s
+ ∥z∥p

∗
s

p∗s
)

≤ b(S
− p∗s

p

p,R1
(A1(w))

p∗s
p + S

− p∗s
p

p,R2
(A2(z))

p∗s
p ) ≤ S− p∗s

p b(A(w, z))
p∗s
p ,

(3.23)

C(w, z) ≤ γ(∥w∥qq + ∥z∥qq) ≤ γ |Ω|
p∗s−q

p∗s (∥w∥qp∗s + ∥z∥qp∗s) ≤ γS− q
p |Ω|

p∗s−q

p∗s (A(w, z))
q
p , (3.24)

where b = max(∥b1∥∞, ∥b2∥∞) and S is defined in (3.12). Therefore, by using (H2), and by

combining (3.23) with (3.24), we get

ψw,z (t) ≥ tp−q(k1A1(w) + k2A2(z))− tp
∗
s−qS− p∗s

p b(A(w, z))
p∗s
p

−λqγS− q
p |Ω|

p∗s−q

p∗s (A(w, z))
q
p

≥ ktp−qA(w, z)− tp
∗
s−qS− p∗s

p b(A(w, z))
p∗s
p

−λqγS− q
p |Ω|

p∗s−q

p∗s (A(w, z))
q
p

≥ (A(w, z))
q
pFw,z(t), (3.25)

where

Fw,z(t) = ktp−q(A(w, z))
p−q
p − tp

∗
s−qS− p∗s

p b(A(w, z))
p∗s−q

p

−λqγS− q
p |Ω|

p∗s−q

p∗s ,

with k is given in (3.2). Since 1 < q < p < p∗s, we note that lim
t→0+

Fw,z(t) < 0 and lim
t→∞

Fw,z(t) =

−∞. So, By a straightforward computation we can demonstrate that Fw,z(t) has a unique

critical point at

tmax(w, z) =

(
k

S− p∗s
p b

(
p− q

p∗s − q

)) 1
p∗s−p

(A(w, z))
−1
p , (3.26)
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moreover

Fw,z(tmax) = qγS− q
p |Ω|

p∗s−q

p∗s (λ∗ − λ), (3.27)

with λ∗ is determined by (3.22).

If we consider λ to be less than λ∗, then, we have

Fw,z(tmax) > 0,

therefore, from (3.25), we get

ψw,z(tmax) ≥ (A(w, z))
q
pFw,z(tmax) > 0. (3.28)

As a result of analyzing the variation of ψw,z(t), we can deduce the existence of two unique

values t1 < tmax(w, z) and t2 > tmax(w, z), such that ψ′
w,z(t1) > 0, ψ′

w,z(t2) < 0, and

ψw,z(t1) = 0 = ψw,z(t2).

Finally, it can be deduced from (3.20) and (3.21) that (t1w, t1z) ∈ N+
λ and (t2w, t2z) ∈ N−

λ .

The fact that sets N+
λ and N−

λ are nonempty can be observed from Lemma 3.2. Now, in the

subsequent lemma, we give a property associated with N0
λ.

Lemma 3.3 Assume that (H2) is satisfied, then for every λ values in the interval (0, λ∗), we have

N0
λ = ∅.

Proof Let us proceed by employing a proof by contradiction. Suppose that there is λ greater

than zero with 0 < λ < λ∗ such that N0
λ ̸= ∅. That is there exists (w0, z0) ∈ N0

λ. From (H2),

(3.15) and (3.24), we get

0 = φ′′
w,z(1) = p

(
(A1(w))

2K ′
1(A1(w)) + (A2(z))

2K ′
2(A2(z))

)
−(p∗s − p) (A1(w)K1(A1(w)) + A2(z)K2(A2(z))) + λq(p∗s − q)C(w, z)

≤ p
(
(A1(w))

2K ′
1(A1(w)) + (A2(z))

2K ′
2(A2(z))

)
−(p∗s − p) (k1A1(w) + k2A2(z)) + λq(p∗s − q)C(w, z)

≤ p
(
(A1(w))

2K ′
1(A1(w)) + (A2(z))

2K ′
2(A2(z))

)
−(p∗s − p)kA(w, z) + λq(p∗s − q)γS− q

p |Ω|
p∗s−q

p∗s (A(w, z))
q
p . (3.29)
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On the other hand, from (H2), (3.16) and (3.23), one has

0 = φ′′
w,z(1) = p

(
(A1(w))

2K ′
1(A1(w)) + (A2(z))

2K ′
2(A2(z))

)
+(p− q) (A1(w)K1(A1(w)) + A2(z)K2(A2(z)))− (p∗s − q)B(w, z)

≥ p
(
(A1(w))

2K ′
1(A1(w)) + (A2(z))

2K ′
2(A2(z))

)
+(p− q) (k1A1(w) + k2A2(z))− (p∗s − q)B(w, z)

≥ p
(
(A1(w))

2M ′
1(A1(w)) + (A2(z))

2M ′
2(A2(z))

)
+(p− q)kA(w, z)− (p∗s − q)S− p∗s

p b(A(w, z))
p∗s
p . (3.30)

Then, combining (3.29) and (3.30), we get

λ ≥ k(A(w, z))
p−q
p − S− p∗s

p b(A(w, z))
p∗s−q

p

qγS− q
p |Ω|

p∗s−q

p∗s

. (3.31)

Now, we define the function H on (0,∞), by

H(t) =
kt

p−q
p − S− p∗s

p bt
p∗s−q

p

qγS− q
p |Ω|

p∗s−q

p∗s

,

since p∗s > p > q > 1, then, we observe that lim
t→0+

H(t) = 0 and lim
t→∞

H(t) = −∞, thus, a

straightforward calculation demonstrates that the function H achieves its maximum at

t̃ =

( p− q

p∗s − q

)
kS

p∗s
p

b


p

p∗s−p

,

and

max
t>0

H(t) = H(t̃) = λ∗. (3.32)

Hence, by equations (3.31) and (3.32), we have

λ ≥ max
t>0

H(t) = λ∗,

and this contradicts the assumption that 0 < λ < λ∗. Then, N0
λ = ∅, for λ ∈ (0, λ∗).

Lemma 3.4 Let (H2)− (H3) hold. So Jλ is coercive and bounded from below on Nλ.
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Proof If (w, z) ∈ Nλ, (3.13) implies that

B(w, z) = A1(w)K1(A1(w)) + A2(z)K2(A2(z))− λqC(w, z),

this implies

Jλ(w, z) =
1

p
(K̂1(A1(w)) + K̂2(A2(z)))−

1

p∗s
(A1(w)K1(A1(w)) + A2(z)K2(A2(z)))

−λ
(
1− q

p∗s

)
C(w, z).

Moreover, By virtue of assumptions (H2), (H3) and from (3.24), we get

Jλ(w, z) ≥
1

θ1p
A1(w)K1(A1(w)) +

1

θ2p
A2(z)K2(A2(z))−

1

p∗s
A1(w)K1(A1(w))

− 1

p∗s
A2(z)K2(A2(z))− λ

(
1− q

p∗s

)
C(w, z)

≥
(

1

θp
− 1

p∗s

)
(A1(w)K1(A1(w)) + A2(z)K2(A2(z)))− λ

(
1− q

p∗s

)
C(w, z)

≥
(

1

θp
− 1

p∗s

)
(k1A1(w) + k2A2(z))− λ

(
1− q

p∗s

)
C(w, z)

≥ k

(
1

θp
− 1

p∗s

)
A(w, z)− λ

(
1− q

p∗s

)
γS− q

p |Ω|
p∗s−q

p∗s (A(w, z))
q
p ,

where θ is given in (3.3). By considering q < p and p∗s > θp, it can be concluded that, Jλ is

coercive and bounded from below on Nλ.

By Lemma (3.3), we can write Nλ = N+
λ ∪N−

λ . Furthermore, Lemma (3.4), enables us to

define,

α−
λ = inf

(w,z)∈N−
λ

Jλ(w, z) and α+
λ = inf

(w,z)∈N+
λ

Jλ(w, z).

3.3 Proof of the main result

Proposition 3.1 If (H2)− (H3) hold, then there exist a positive value t0 and an element (w0, z0) ∈

W\{0}, with (w0, z0) > 0 in RN , such that

1

p
(K̂1(A1(w0)t

p
0) + K̂2(A2(z0)t

p
0))−

t
p∗s
0

p∗s
B(w0, z0) =

(
s

N
− θ − 1

θp

)
b

−N
sp∗s (

kS

θ
)

N
sp . (3.33)
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Proof For every (w, z) ∈ W \ {0}, we define ζw,z : (0,∞) → R, as

ζw,z (t) =
1

p
(K̂1(A1(tw)) + K̂2(A2(tz)))−

1

p∗s
B(t(w, z))

=
1

p
(K̂1(t

pA1(w)) + K̂2(t
pA2(z)))−

tp
∗
s

p∗s
B(w, z).

From (H3) it can be shown that lim
t→0+

ζw,z(t) ≥ 0 and lim
t→∞

ζw,z(t) = −∞. It is obvious that ζ

belongs to the class C1, moreover, from (H2) and (H3), we obtain

ζw,z (t) ≥
tp

θ1p
A1(w)K1(t

pA1(w)) +
tp

θ2p
A2(z)K2(t

pA2(z))−
tp

∗
s

p∗s
B(w, z)

≥ tp

θp
(A1(w)K1(t

pA1(w)) + A2(z)K2(t
pA2(z)))−

tp
∗
s

p∗s
B(w, z)

≥ tp

θp
(k1A1(w) + k2A2(z))−

tp
∗
s

p∗s
B(w, z)

≥ k

θp
tpA(w, z)− tp

∗
s

p∗s
B(w, z) = ωw,z(t).

Since lim
t→0

ωw,z(t) = 0 and lim
t→∞

ωw,z(t) = −∞. Then, ωw,z attains its global maximum at

t∗ =

(
kA(w, z)

θB(w, z)

) 1
p∗s−p

.

Moreover, from (3.23) and the fact that p∗s > θp, we have

sup
t>0

ωw,z (t) = ωw,z(t∗)

=

(
p∗s − p

pp∗s

)(
k

θ

) p∗s
p∗s−p

(A(w, z))
p∗s

p∗s−p (B(w, z))
− p

p∗s−p

=

(
p∗s − p

pp∗s

)(
k

θ

) p∗s
p∗s−p

(
(A(w, z))−

p∗s
p B(w, z)

)− p
p∗s−p

=
s

N

(
k

θ

)N
sp

(A(w, z))
N
sp (B(w, z))

− N
sp∗s

≥ s

N
b

−N
sp∗s (

kS

θ
)

N
sp

≥
(
s

N
− θ − 1

θp

)
b

−N
sp∗s (

kS

θ
)

N
sp (3.34)

=

(
p∗s − θp

θpp∗s

)
b

−N
sp∗s (

kS

θ
)

N
sp > 0.
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Then, from (3.34) and the variations of the functions ζw,z and ωw,z, we have

sup
t>0

ζw,z ≥ sup
t>0

ωw,z ≥
(
s

N
− θ − 1

θp

)
b

−N
sp∗s (

kS

θ
)

N
sp .

Therefore, there exists t0 > 0, that satisfy

ζw,z (t0) =

(
s

N
− θ − 1

θp

)
b

−N
sp∗s (

kS

θ
)

N
sp .

This concludes the proof of Proposition 3.1.

Put

L = (p− q)

(
k

q

(
s

N
− θ − 1

θp

))− q
p−q
(
p∗s − q

θp2

) p
p−q
(
γS− q

p |Ω|
p∗s−q

p∗s

) p
p−q

. (3.35)

Proposition 3.2 Assume that conditions (H2)− (H3) hold. If p∗s > p > q > 1. Then, every Palais

Smale sequence {(wk, zk)} ⊂ W for Jλ at level c, with

c <

(
s

N
− θ − 1

θp

)
b

−N
sp∗s

(
kS

θ

)N
sp

− λ
p

p−qL, (3.36)

has a convergent subsequence.

Proof Let {(wn, zn)} be a Palais Smale sequence for Jλ at level c, meaning that the functional

Jλ(wn, zn) → c and J ′
λ(wn, zn) → 0, as n→ ∞. From Lemma (3.4), we observe that {(wn, zn)} is

bounded in W . So, there exist a subsequence indicated by {(wn, zn)}, satisfying the following

properties:

(wn, zn) ⇀ (w∗, z∗) weakly in W, ∥wn∥R1 → µ, ∥zn∥R2 → η,

(wn, zn) ⇀ (w∗, z∗) weakly in Lp∗s (Ω)× Lp∗s (Ω) ,

(wn, zn) → (w∗, z∗) strongly in Lq(Ω)× Lq(Ω), 1 ≤ q < p∗s, (3.37)

(wn, zn) → (w∗, z∗) a.e. in Ω,

as n → ∞, where µ > 0 and η > 0. Since 1 ≤ q < p∗s. So, by Theorem 1.5, there exists

l1(x), l2(x) ∈ Lq(Ω) such that

|wn(x)| ≤ l1(x), |zn(x)| ≤ l2(x) a.e. in Ω.
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Thus, using the dominated convergence theorem, we deduce that

C(wn, zn) −→ C(w∗, z∗), as n→ ∞. (3.38)

Furthermore, based on the Brezis-Lieb Lemma (Lemma 1.2), we have the following relations:

A1(wn) = A1(wn − w∗) + A1(w∗) + o(1),

A2(zn) = A2(zn − z∗) + A2(z∗) + o(1),

and

B(wn, zn) = B (wn − w∗, zn − z∗) +B(w∗, z∗) + o(1),

as n→ ∞. Consequently, as the value of n tends to infinity, we get

o(1) = ⟨J ′
λ(wn, zn), (wn − w∗, zn − z∗)⟩W

= K1(A1(wn))

∫
Q

|wn(x)− wn(y)|p−1 ((wn − w∗)(x)− (wn − w∗)(y))

|x− y|N+ps
dxdy

+

∫
Ω

R1(x) |wn|p−1 (wn − w∗)dx

−
∫
Ω

b1(x)|wn|p
∗
s−1(wn − w∗)dx

+K2(A2(zn))

∫
Q

|zn(x)− zn(y)|p−1 ((zn − z∗)(x)− (zn − z∗)(y))

|x− y|N+ps
dxdy

+

∫
Ω

R2(x) |zn|p−1 (zn − z∗)dx

−
∫
Ω

b2(x)|zn|p
∗
s−1(zn − z∗)dx

−λ
∫
Ω

(Hw(x,wn, zn)(wn − w∗) +Hz(x,wn, zn)(zn − z∗))dx

= K1(µ
p)(µp − A1(w∗)) +K2(η

p)(ηp − A2(z∗))−
∫
Ω

(b1(x)|wn|p
∗
s + b2(x)|zn|p

∗
s)dx

+

∫
Ω

(b1(x)|w∗|p
∗
s + b2(x)|z∗|p

∗
s)dx

−λ
∫
Ω

(Hw(x,wn, zn)(wn − w∗) +Hz(x,wn, zn)(zn − z∗))dx+ o(1)

= K1 (µ
p)A1 (wn − w∗) +K2 (η

p)A2 (zn − z∗)−B(wn − w∗, zn − z∗)
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−λ
∫
Ω

(Hw(x,wn, zn)(wn − w∗) +Hz(x,wn, zn)(zn − z∗))dx+ o(1),

therefore,

K1 (µ
p) lim

n→∞
A1(wn − w∗) +K2 (η

p) lim
n→∞

A2(zn − z∗) = lim
n→∞

B (wn − w∗, zn − z∗)

+ lim
n→∞

λ
∫
Ω

(Hw(x,wn, zn)(wn − w∗) +Hz(x,wn, zn)(zn − z∗))dx.

By (3.7), (3.37) and Holder’s inequality, we get

∫
Ω

(Hw(x,wn, zn)(wn − w∗) +Hz(x,wn, zn)(zn − z∗))dx

≤ γq

∫
Ω

|wn|q−1(wn − w∗)dx+ γq

∫
Ω

|zn|q−1(zn − z∗)dx

≤ γq∥wn∥q−1
q ∥wn − w∗∥q + γq∥zn∥q−1

q ∥zn − z∗∥q

≤ Cqγq∥wn∥q−1
R1

∥wn − w∗∥q + Cqγq∥zn∥q−1
R2

∥zn − z∗∥q,

such that Cq is a positive constant. So, we obtain

lim
n→∞

∫
Ω

(Hw(x,wn, zn)(wn − w∗) +Hz(x,wn, zn)(zn − z∗))dx = 0. (3.39)

Thus, from (3.39), we deduce that

K1 (µ
p) lim

n→∞
A1(wn − w∗) +K2 (η

p) lim
n→∞

A2(zn − z∗) = lim
n→∞

B (wn − w∗, zn − z∗) .

Let us denote

a := lim
n→∞

B (wn − w∗, zn − z∗) = K1 (µ
p) lim

n→∞
A1(wn − w∗) +K2 (η

p) lim
n→∞

A2(zn − z∗).

Therefore, we aim to prove that (wn, zn) converges strongly to (w∗, z∗) which means that a = 0.

We assume by contradiction that a > 0. Thus, from (H2), we get

A1(wn − w∗)K1(µ
p) + A2(zn − z∗)K2(η

p) ≥ k1A1(wn − w∗) + k2A2(zn − z∗)

≥ kA(wn − w∗, zn − z∗). (3.40)
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Using (3.23), we get

A(wn − w∗, zn − z∗) ≥ Sb
− p

p∗s (B (wn − w∗, zn − z∗))
p
p∗s . (3.41)

So, using (3.40) and (3.41), we obtain

A1(wn − w∗)K1(A1(w∗)) + A2(zn − z∗)K2(A2(z∗)) ≥ kSb
− p

p∗s (B (wn − w∗, zn − z∗))
p
p∗s .

Which implies that

a ≥ b
−N
sp∗s (kS)

N
sp
. (3.42)

So, from (H3), (3.38) and (3.42), we get

c = lim
n−→∞

Jλ(wn, zn) = lim
n−→∞

(
Jλ(wn, zn)−

1

p∗s
⟨J ′

λ(wn, zn), (wn, zn)⟩W
)

= lim
n−→∞

[
1

p

(
K̂1 (A1(wn)) + K̂2 (A2(zn))

)
− 1

p∗s
A1(wn)K1(A1(wn))

− 1

p∗s
A2(zn)K2 (A2(zn))− λ

(
p∗s − q

p∗s

)
C(wn, zn)

]
≥ lim

n−→∞

[
1

θ1p
A1(wn)K1(A1(wn)) +

1

θ2p
A2(zn)K2 (A2(zn))

− 1

p∗s
(A1(wn)K1(A1(wn)) + A2(zn)K2 (A2(zn)))

−λ
(
p∗s − q

p∗s

)
C(wn, zn)

]
≥ lim

n−→∞

[(
1

θp
− 1

p∗s

)
(A1(wn)K1(A1(wn)) + A2(zn)K2 (A2(zn)))

−λ
(
p∗s − q

p∗s

)
C(wn, zn)

]
= lim

n−→∞

[(
p∗s − θp

θpp∗s

)
A1(wn)K1(µ

p) +

(
p∗s − θp

θpp∗s

)
A2(zn)K2(η

p)

−λ
(
p∗s − q

p∗s

)
C(wn, zn)

]
= lim

n−→∞

[(
p∗s − θp

θpp∗s

)
(A1(wn − w∗)K1(µ

p) + A2(zn − z∗)K2(η
p))

+

(
p∗s − θp

θpp∗s

)
(A1(w∗)K1(µ

p) + A2(z∗)K2(η
p))− λ

(
p∗s − q

p∗s

)
C(wn, zn)

]
=

(
s

N
− θ − 1

θp

)
a+

(
s

N
− θ − 1

θp

)
(A1(w∗)K1(µ

p) + A2(z∗)K2(η
p))
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−λ
(
p∗s − q

p∗s

)
C(w∗, z∗)

≥
(
s

N
− θ − 1

θp

)
a+

(
s

N
− θ − 1

θp

)
(k1A1(w∗) + k2A2(z∗))

−λ
(
p∗s − q

p∗s

)
C(w∗, z∗)

≥
(
s

N
− θ − 1

θp

)
b

−N
sp∗s (kS)

N
sp

+

(
s

N
− θ − 1

θp

)
kA(w∗, z∗)

−λ
(
p∗s − q

p∗s

)
C(w∗, z∗).

On the other hand from (3.24), and considering the fact that θp < p∗s, we get

c ≥
(
s

N
− θ − 1

θp

)
b

−N
sp∗s (kS)

N
sp

+

(
s

N
− θ − 1

θp

)
kA(w∗, z∗)

−λγS− q
p |Ω|

p∗s−q

p∗s

(
p∗s − q

θp

)
(A(w∗, z∗))

q
p

=

(
s

N
− θ − 1

θp

)
b

−N
sp∗s (kS)

N
sp

+ h (A(w∗, z∗)) , (3.43)

where h is defined as

h(ξ) =

(
s

N
− θ − 1

θp

)
kξ − λγS− q

p |Ω|
p∗s−q

p∗s

(
p∗s − q

θp

)
ξ

q
p .

A straightforward calculation demonstrates that h attains its minimum at

ξ0 =

(
λqγS− q

p |Ω|
p∗s−q

p∗s

(
p∗ − q

kp

)
1

s
N
θp− (θ − 1)

) p
p−q

,

and

inf
ξ>0

h (ξ) = h(ξ0) = −λ
p

p−qL, (3.44)

where L is defined in (3.35).

Therefore, by (3.43), (3.44), and using 1 ≤ θ, we get

c ≥
(
s

N
− θ − 1

θp

)
b

−N
sp∗s (kS)

N
sp − λ

p
p−qL

≥
(
s

N
− θ − 1

θp

)
b

−N
sp∗s (

kS

θ
)

N
sp − λ

p
p−qL.

This contradicts (3.36). Hence, a = 0. So, we deduce that (wn, zn) → (w∗, z∗) strongly in W .
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This ends the proof.

Proposition 3.3 Assume that (H2) − (H3) hold, then, there exist a positive value t0, λ∗ > 0, and

(w0, z0) ∈ W , such that

Jλ(t0w0, t0z0) ≤
(
s

N
− θ − 1

θp

)
b

−N
sp∗s (

kS

θ
)

N
sp − λ

p
p−qL, (3.45)

holds for λ is within the interval (0, λ∗). In particular

α−
λ <

(
s

N
− θ − 1

θp

)
b

−N
sp∗s (

kS

θ
)

N
sp − λ

p
p−qL. (3.46)

Proof We put

λ∗∗ =

(
1

L

(
s

N
− θ − 1

θp

)
b

−N
sp∗s (

kS

θ
)

N
sp

) p−q
p

.

Then, for every λ in the interval (0, λ∗∗), we have

(
s

N
− θ − 1

θp

)
b

−N
sp∗s (

kS

θ
)

N
sp − λ

p
p−qL > 0. (3.47)

By (3.33), there exists t0 and (w0, z0) ∈ W \ {0}, such that

Jλ(t0w0, t0z0) =
1

p

(
K̂1(t

p
0A1(w0)) + K̂2(t

p
0A2(z0))

)
− tp

∗

0

p∗
B(w0, z0)− λtq0C(w0, z0)

=

(
s

N
− θ − 1

θp

)
b

−N
sp∗s (

kS

θ
)

N
sp − λtq0C(w0, z0). (3.48)

Put

λ∗∗∗ =

(
tq0C(w0, z0)

L

) p−q
q

,

therefore, for every λ ∈ (0, λ∗∗∗), we obtain

−λtq0C(w0, z0) < −λ
p

p−qL. (3.49)

Thus, from (3.48) and (3.49), we get

Jλ(t0w0, t0z0) <

(
s

N
− θ − 1

θp

)
b

−N
sp∗s (

kS

θ
)

N
sp − λ

p
p−qL.

Hence, (3.45) hold true.
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Finally, by choosing

λ∗ = min(λ∗, λ∗∗, λ∗∗∗).

Then, we can ensure that for all values of λ in the interval (0, λ∗), the fibering maps analysis

φw,z(t) = Jλ(tw, tz), leads to

α−
λ <

(
s

N
− θ − 1

θp

)
b

−N
sp∗s (

kS

θ
)

N
sp − λ

p
p−qL.

Proof of Theorem (3.1) By Lemma 3.4, Jλ is bounded from below on N+
λ and N−

λ . Therefore,

there are two sequences {(w+
k , z

+
k )} ∈ N+

λ and {(w−
k , z

−
k )} ∈ N−

λ , such that as k approaches

infinity:

Jλ(w
+
k , z

+
k ) −→ inf

(w,z)∈N+
λ

Jλ(w, z) = α+
λ ,

and

Jλ(w
−
k , z

−
k ) −→ inf

(w,z)∈N−
λ

Jλ(w, z) = α−
λ .

Using the fibering maps analysis φw,z(t) we can deduce that α+
λ < 0 and α−

λ > 0. Furthermore,

according to Propositions (3.2) and (3.3), we have

Jλ(w
+
k , z

+
k ) −→ Jλ(w

+
∗ , z

+
∗ ) = inf

(w,z)∈N+
λ

Jλ(w, z) = α+
λ , J

′
λ(w

+
k , z

+
k ) −→ 0,

and

Jλ(w
−
k , z

−
k ) −→ Jλ(w

−
∗ , z

−
∗ ) = inf

(w,z)∈N−
λ

Jλ(w, z) = α−
λ , J

′
λ(w

−
k , z

−
k ) −→ 0,

as k tends to infinity. Therefore, (w+
∗ , z

+
∗ ) (respectively, (w−

∗ , z
−
∗ )) is a minimizer of Jλ on N+

λ

(respectively, on N−
λ ). So, by Lemma 3.1, problem (3.1) admits two solutions (w+

∗ , z
+
∗ ) ∈ N+

λ

and (w−
∗ , z

−
∗ ) ∈ N−

λ inW.Moreover, since N+
λ ∩N−

λ = ∅, then (w+
∗ , z

+
∗ ) and (w−

∗ , z
−
∗ ) are distinct.

Finally, the facts that α+
λ < 0 and α−

λ > 0 imply that (w+
∗ , z

+
∗ ) and (w−

∗ , z
−
∗ ) are two nontrivial

solutions for the problem (3.1). This finishes the proof.
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In this chapter, we prove the existence and multiplicity results for a class of p(x)-Laplacian

problems using variational methods. The results of this chapter are based on our paper [2].

4.1 Introduction

We consider the boundary value problems


Lp(x)u+ |u|p(x)−2 u = S (x, u) in Ω,

h (x) |∇u|p(x)−2 ∂u
∂ν

+ l(x)|u|w(x)−2u = Q(x, u) on ∂Ω,

(4.1)

and 
Lp(x)u+ |u|p(x)−2 u = S (x, u) + µ |u|δ(x)−2 u in Ω,

h (x) |∇u|p(x)−2 ∂u
∂ν

+ l(x)|u|w(x)−2u = Q(x, u) on ∂Ω,

(4.2)

where

Lp(x)u = −div(h(x)|∇u|p(x)−2∇u)),

Ω is a bounded domain in RN , (N ≥ 2), the symbol ∂Ω represents a Lipschitz boundary of Ω,

ν is the outer normal to ∂Ω,

(−∆)p(x)u(x) = −div(|∇u|p(x)−2∇u),

is the p(x)-Laplace operator, p(x), δ(x) : Ω → (1,+∞)) are bounded continuous functions,

w(x) ∈ C(∂Ω, (1,+∞)), the parameter µ is positive, S : Ω× R → R and Q : ∂Ω× R → R are

Carathéodory functions, z(x) ̸= γ(x) ̸= w(y), for every x ∈ Ω and every y ∈ ∂Ω, h and l are

continuous functions with

h1 ≤ h(x) ≤ h2, and l1 ≤ l(x) ≤ l2, (4.3)

where the constants h1, h2, l1 and l2 are positive.

We define

∥u∥ = inf{κ > 0 :

∫
Ω

(h(x)|u(x)
κ
|p(x) + l(x)|∇u(x)

κ
|p(x))dx ≤ 1}, for u ∈ W 1,p(x)(Ω),
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from (4.3), we can verify that ∥u∥ is an equivalent norm on the variable exponent space

W 1,p(x)(Ω).

In the sequel, positive constants ci, i = 1, 2, ...., are employed to represent values that may

vary from one line to another.

4.2 Existence result

Our aim is to demonstrate the existence of a nontrivial weak solution for problem (4.1) using

the mountain pass theorem. We will now present the hypotheses regarding problem (4.1) as

follows:

(A0) ∃C1 > 0 and α ∈ C+(Ω), such that

|S (x, u)| ≤ C1

(
1 + |u|α(x)−1

)
, for all (x, u) ∈ Ω× R,

where

1 < α (x) < p∗ (x) . (4.4)

(A1) ∃C2 > 0 and β ∈ C+(∂Ω), such that

|Q (x, u)| ≤ C2

(
1 + |u|β(x)−1

)
, for all (x, u) ∈ ∂Ω× R,

where

1 < β (x) < p∗ (x) , q (x) < p∗ (x) . (4.5)

(A2) As u→ 0, we have

S (x, u) = o
(
|u|p

+−1
)

, for any x ∈ Ω.

(A3) As u→ 0, we have

Q (x, u) = o
(
|u|p

+−1
)

, for any x ∈ ∂Ω.

(A4) There exist a constant K1 > 0 and θ1 > p+ such that for any x ∈ Ω,

0 < θ1Ŝ(x, u) ≤ S(x, u)u, |u| ≥ K1,
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where Ŝ(x, t) =
∫ t

0
S(x, s)ds.

(A5) There exist a constant K2 > 0, θ2 > p+ such that

0 < θ2Q̂(x, u) ≤ Q(x, u)u, |u| ≥ K2, for all x ∈ ∂Ω,

where Q̂(x, t) =
∫ t

0
Q(x, s)ds.

We denote

Σ(u) =

∫
Ω

(h (x) |∇u|p(x) + |u|p(x))dx, for every u ∈ W 1,p(x) (Ω) .

Proposition 4.1 (see [17, 30, 52]) There exist ξ1 > 0, ξ2 > 0, such that

(i)Σ(u) ≥ 1 =⇒ ξ1||u||p
− ≤ Σ(u) ≤ ξ2||u||p

+ ,

(ii) Σ(u) ≤ 1 =⇒ ξ1||u||p
+ ≤ Σ(u) ≤ ξ2||u||p

− .

Definition 4.1 A function u ∈ X = W 1,p(x)(Ω), is called a weak solution to problem (4.1), if

∫
Ω
h (x) |∇u|p(x)−2∇u∇v +

∫
Ω
|u|p(x)−2uvdx−

∫
Ω
S(x, u)vdx+

∫
∂Ω
l(x)|u|w(x)−2uvdσ

−
∫
∂Ω
Q(x, u)vdσ = 0,

for any v ∈ X .

Let us define the energy functional Ψ : X → R,

Ψ(u) = I(u) +G(u)− ϕ(u),

where

I(u) =

∫
Ω

h (x) |∇u|p(x) + |u|p(x)

p(x)
dx,

G(u) =

∫
∂Ω

l(x)|u|w(x)

w(x)
dσ,

and

ϕ(u) =

∫
Ω

Ŝ(x, u)dx+

∫
∂Ω

Q̂(x, u)dσ.
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Proposition 4.2 (see [52])

I ∈ C1 (X,R) , Then

⟨I ′
(u) , v⟩ =

∫
Ω

(
h (x) |∇u|p(x)−2∇u∇v + |u|p(x)−2 uv

)
dx,

for all u, v ∈ X . Moreover, I ′ is a mapping of type (S+).

Proposition 4.3 ( [30, 52])

G ∈ C1 (X,R) , and

⟨G′
(u) , v⟩ =

∫
∂Ω

l (x) |u|w(x)−2 uvdσ, for all u, v ∈ X.

Moreover, the function G and its derivative are sequentially weakly-strongly continuous. On other

words, if un ⇀ u in X it follows that G (un) → G (u) and G′
(un) → G

′
(u) .

Remark 4.1 From Lemma 1.1 and proposition 1.4 , and under assumptions (A0) , (A1) , it is easy to

show that ϕ ∈ C1 (X,R) and

⟨ϕ′
(u) , v⟩ =

∫
Ω

S (x, u (x)) v (x) dx+

∫
∂Ω

Q (x, u (x)) v (x) dσ, for all u, v ∈ X.

Hence, from Proposition 4.2, Proposition 4.3 and remark 4.1, it is easily seen that Ψ ∈

C1 (X,R). Furthermore, for each u, v ∈ X , we have the following expression:

⟨Ψ′
(u) , v⟩ = ⟨I ′

(u) , v⟩+ ⟨G′
(u) , v⟩+ ⟨ϕ′

(u) , v⟩.

Thus, the critical points of Ψ are equivalent to the weak solutions of (4.1).

The result we have obtained is as follows

Theorem 4.1 Suppose that (A0)− (A5) are verified. If min (θ1, θ2) > w+ and min (α−, β−) > p+,

then problem (4.1) has a nontrivial weak solution.

The proof of our result is structured into multiple lemmas.

Lemma 4.1 Let min (θ1, θ2) > w+, and assume that (A0) , (A1) , (A4) (A5) are verified, then, Ψ

satisfies the (PS) condition.
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Proof Suppose that {un} ⊂ X is a sequence such that

Ψ(un) → c as n→ ∞, (4.6)

where c > 0 is constant.

Ψ
′
(un) → 0, in X∗, as n→ ∞. (4.7)

From (4.6) there exist N1 > 0, such that

|Ψ(un)| ≤ N1. (4.8)

By (4.7) there exists N2 > 0 such that

∣∣∣⟨Ψ′
(un) , un⟩

∣∣∣ ≤ N2. (4.9)

Now, we need to show that {un} is bounded. By contradiction, we assume that ∥un∥ ≥ 1.

Using (4.8) and (4.9), we get for θ := min (θ1, θ2)

N1 ≥ Ψ(un)

≥ 1

p+
Σ (un) +

1

w+

∫
∂Ω

l (x) |un|w(x) dσ − ϕ (un)

≥ 1

p+
Σ (un) +

1

θ

∫
∂Ω

l (x) |un|w(x) dσ − ϕ (un) , (4.10)

and

N2 ≥ −⟨Ψ′
(un) , un⟩ = −Σ (un)−

∫
∂Ω

l (x) |un|w(x) dσ + ⟨ϕ′
(un) , un⟩. (4.11)

Using (4.10), (4.11) and Proposition 4.1, we get

θN1 +N2 ≥
(
θ

p+
− 1

)
Σ (un)− θϕ (un) + ⟨ϕ′

(un) , un⟩

≥
(
θ

p+
− 1

)
ξ1 ∥un∥p

−
+

∫
Ω

(
S (x, un)un − θ1Ŝ (x, un)

)
dx

+

∫
∂Ω

(
Q (x, un)un − θ2Q̂ (x, un)

)
dσ.
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Hence, from hypotheses (A4)− (A5), we have

θN1 +N2 ≥
(
θ

p+
− 1

)
ξ1 ∥un∥p

−
.

Using θ = min (θ1, θ2) > p+, we obtain a contradiction as n→ ∞.

Consequently, it can be deduced that {un} is bounded X. So, there exist a subsequence

denoted by {un}, and a component u ∈ X such that, {un} converges to u weakly in X.

By considering p+ < α (x) < p∗ (x) and w (x) < p∗ (x), according to Proposition 1.4, we

deduce that 
un → u, strongly in Lα(x) (Ω) ,

un → u, strongly in Lp+ (Ω) ,

un → u, strongly in Lw(x) (Ω) .

To prove that un → u strongly in X, we have

⟨Ψ′
(un) , un − u⟩ = ⟨I ′

(un) , un − u⟩+
∫
∂Ω

l (x) |un|w(x)−2 un (un − u) dσ

−
∫
Ω

S (x, un) (un − u) dx−
∫
∂Ω

Q (x, un) (un − u) dσ.

From the Hölder’s inequality and by Proposition 1.4 and Lemma 1.1, we get

∫
∂Ω

l (x) |un|w(x)−1 |un − u| dσ ≤ l2 |un − u|Lw(x)

∣∣∣|un|w(x)−1
∣∣∣
L

w(x)
w(x)−1

≤ l2 |un − u|Lw(x) max
(
|un|w

+−1
Lw(x) , |un|w

−−1
Lw(x)

)
≤ c1 |un − u|Lw(x) max

(
∥un∥w

+−1 , ∥un∥w
−−1
)
.

Thus,

lim
n→∞

∫
∂Ω

l (x) |un|w(x)−2 un (un − u) dσ = 0. (4.12)

Using (A0) , Proposition 1.4 and Lemma 1.1, and the Hölder’s inequality, we obtain∣∣∣∣∫
Ω

S (x, un) (un − u) dx

∣∣∣∣ ≤ ∫
Ω

C1 |un − u| dx+
∫
Ω

C1 |un|α(x)−1 |un − u| dx

≤ C1 |Ω|
p+−1

p+ |un − u|Lp+ (Ω) + C1 |un − u|Lα(x)

∣∣∣|un|α(x)−1
∣∣∣
L

α(x)
α(x)−1

≤ C1 |Ω|
p+−1

p+ |un − u|Lp+ (Ω)
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+C1 |un − u|Lα(x) max
(
|un|α

+−1
Lα(x) , |un|α

−−1
Lα(x)

)
≤ C1 |Ω|

p+−1

p+ |un − u|Lp+ (Ω)

+C1 |un − u|Lα(x) max
(
||un||α

+−1 , ||un||α
−−1
)
.

It follows that

lim
n→∞

∫
Ω

S (x, un) (un − u) dx = 0. (4.13)

Similarly,

lim
n→∞

∫
∂Ω

Q (x, un) (un − u) dσ = 0. (4.14)

Since ⟨Ψ′
(un) , un − u⟩ → 0 and by using (4.12) – (4.14), we get

⟨I ′
(un) , un − u⟩ → 0,

Now, letting n→ ∞, we obtain

⟨I ′
(u) , un − u⟩ → 0.

Thus

lim
n→∞

⟨I ′
(un)− I

′
(u) , un − u⟩ = 0.

So, it follows from Proposition 4.2 that un → u strongly in X.

Lemma 4.2 Let min (α−, β−) > p+, and assume that (A0)− (A3) hold, then there exist ρ > 0, r > 0

such that, for u ∈ X, we have

Ψ(u) ≥ ρ for all u ∈ X with ∥u∥ = r.

Proof Let u ∈ X, be such that ∥u∥ < 1. Assumptions (A0) and (A2) imply

∣∣∣Ŝ (x, u)
∣∣∣ ≤ ε1 |u|p

+

+ C (ε1) |u|α(x) , for every (x, u) ∈ Ω× R. (4.15)

Similarly, from hypothesis (A1) and (A3), we get

∣∣∣Q̂ (x, u)
∣∣∣ ≤ ε2 |u|p

+

+ C (ε2) |u|β(x) , for any (x, u) ∈ ∂Ω× R. (4.16)
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Then, using (4.15),(4.16), Theorem 1.2 and proposition 1.3, we obtain

Ψ(u) ≥ 1

p+
Σ (u)−

∫
Ω

(
ε1 |u|p

+

+ C (ε1) |u|α(x)
)
dx−

∫
∂Ω

(
ε2 |u|p

+

+ C (ε2) |u|β(x)
)
dσ

≥ 1

p+
Σ (u)−

∫
Ω

ε1 |u|p
+

dx− C (ε1)max
(
|u|α

−

Lα(x)(Ω) , |u|
α+

Lα(x)(Ω)

)
−
∫
∂Ω

ε2 |u|p
+

dσ

−C (ε2)max
(
|u|β

−

Lβ(x)(∂Ω)
, |u|β

+

Lβ(x)(∂Ω)

)
.

Since 1 < p+ < α− and 1 < p+ < β−, then by Proposition 1.4, we get

Ψ(u) ≥ 1

p+
Σ(u)− (ε1c1 + ε2c2) ∥u∥p

+

− c3C (ε1) ∥u∥α
−
− c4C (ε2) ∥u∥β

−

So, by Proposition 4.1, we get

Ψ(u) ≥ ξ1
p+

∥u∥p
+

− (ε1c1 + ε2c2) ∥u∥p
+

− c3C (ε1) ∥u∥α
−
− c4C (ε2) ∥u∥β

−

≥ ∥u∥p
+

(
ξ1
p+

− ε1c1 − ε2c2 − c3C (ε1) ∥u∥α
−−p+ − c4C (ε2) ∥u∥β

−−p+
)
.

Choose ε1 and ε2 small enough that 0 < ε1c1 + ε2c2 <
ξ1
2p+

, we get

Ψ(u) ≥ ∥u∥p
+

(
ξ1
2p+

− c3C (ε1) ∥u∥α
−−p+ − c4C (ε2) ∥u∥β

−−p+
)

≥ ∥u∥p
+

(
ξ1
2p+

− η ∥u∥λ
)
.

λ = min
(
α− − p+, β− − p+

)
,

and

η = c3C (ε1) + c4C (ε2) .

Choose ∥u∥ = r small enough and since α−, β− > p+, we get

ξ1
2p+

− ηrλ > 0.

Hence

Ψ(u) ≥ rp
+

(
ξ1
2p+

− ηrλ
)

= ρ > 0.
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Lemma 4.3 Let min (θ1, θ2) > w+, and assume that (A4) , (A5) are verified, then, there exists e1 ∈ X

such that

∥e1∥ > r, and Ψ(e1) < 0.

Proof By (A4) and (A5) ,∃m1 > 0 and m2 > 0 such that

Ŝ (x, t) ≥ m1 |t|θ1 , (x, t) ∈ Ω× R, (4.17)

and

Q̂ (x, t) ≥ m2 |t|θ2 , (x, t) ∈ ∂Ω× R. (4.18)

Let t > 1 be large enough and e ∈ X, such that
∫
Ω
|e|θ1 dx > 0,. Then, we have

Ψ(te) =

∫
Ω

h (x) |∇ (te)|p(x) + |te|p(x)

p (x)
dx+

∫
∂Ω

l (x)
|te|w(x)

w (x)
dσ

−
∫
Ω

Ŝ (x, te) dx−
∫
∂Ω

Q̂ (x, te) dσ.

So, using (4.17) and (4.18), we get

Ψ(te) ≤ tp
+

p−

∫
Ω

h (x) |∇ (e)|p(x) + |e|p(x) dx+ tw
+

w− l2

∫
∂Ω

|e|w(x) dσ

−m1t
θ1

∫
Ω

|e|θ1 dx−m2t
θ2

∫
∂Ω

|e|θ2 dσ.

Using the fact that min (θ1, θ2) > max (q+, p+) , we obtain

Ψ(te) → −∞, as t→ ∞.

Then, we deduce that there exists t1 > 0 and e1 = t1e, with ∥e1∥ > r and Ψ(e1) < 0.

Proof of Theorem4.1 Based on Lemma 4.2, Lemma 4.3, and Lemma 4.1, we can infer that

Ψ fulfills all the conditions outlined in Theorem 2.1. Hence, in accordance with the mountain

pass theorem, the problem (4.1) possesses a nontrivial weak solution.



4.3 Multiplicity result 62

4.3 Multiplicity result

We will assume through this section that δ ∈ C+

(
Ω
)

with

δ− < p−.

For problem (4.2), we assume that (A0)− (A1) and (A4)− (A5) are verified, and that

(A6) S (x,−u) = −S (x, u), for any (x, u) ∈ (Ω× R).

(A7) Q (x,−u) = −Q (x, u), for any (x, u) ∈ (∂Ω× R).

We consider the functional Φµ : X → R associated to (4.2), defined by:

Φµ (u) = Ψ (u)− µ

∫
Ω

|u|δ(x)

δ (x)
,

where Ψ is introduced in section 4.2.

Remark 4.2 Φµ ∈ C1 (X,R) . Moreover, the critical points of the functional Φµ represent the weak

solutions of problem (4.2).

Proposition 4.4 (see [51]). Define

βt = sup{|u|Lβ(x)(Ω) : ||u|| = 1, u ∈ Zt},

where β(x) belongs to the space C+(Ω) with β(x) < p∗(x), for any x ∈ Ω,

wt = sup{|u|Lw(x)(∂Ω) : ||u|| = 1, u ∈ Zt},

where w(x) belongs to the space C+(∂Ω) such that w(x) < p∗(x), for every x ∈ ∂Ω.

Then, limt→∞ βt = 0, limt→∞wt = 0.

Lemma 4.4 Let min(θ1, θ2) > w+ and suppose that the assumptions (A0) , (A1) , (A4) and (A5) are

verified. So, for all µ > 0,Φµ satisfies the (PS) condition.

Proof Let {un} ⊂ X, be a sequence and

Φµ (un) → c, (4.19)
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where c > 0 is constant.

Φ
′

µ (un) → 0, in X∗, as n→ ∞. (4.20)

By (4.19) and (4.20), there exist M1 > 0 and M2 > 0, such that

|Φµ (un)| ≤M1, (4.21)

and ∣∣∣⟨Φ′

µ (un) , un⟩
∣∣∣ ≤M2. (4.22)

Now, we need to prove that {un} is bounded. By contradiction, we assume that ∥un∥ ≥ 1.

By (4.21), we have

M1 ≥ Φµ (un) = I (un) +G (un)− ϕ (un)− µ

∫
Ω

|un|δ(x)

δ (x)
dx

≥ 1

p+
Σ (un) +

1

w+

∫
∂Ω

l (x) |un|w(x) dσ − ϕ (un)− µ

∫
Ω

|un|δ(x)

δ−
dx

≥ 1

p+
Σ (un) +

1

θ

∫
∂Ω

l (x) |un|w(x) dσ − ϕ (un)− µ

∫
Ω

|un|δ(x)

δ−
dx, (4.23)

where θ = min (θ1, θ2) .

On the other hand, from (4.22), we get

M2 ≥ −⟨Φ′

µ (un) , un⟩ = −Σ (un)−
∫
∂Ω

l (x) |un|w(x) dσ + ⟨ϕ′
(un) , un⟩+ µ

∫
Ω

|un|δ(x) dx. (4.24)

Using (4.23), (4.24), assumptions (A4)− (A5) and Proposition 4.1, we get

θM1 +M2 ≥
(
θ

p+
− 1

)
Σ (un)− θ

(
ϕ (un) + µ

∫
Ω

|u|δ(x)

δ−
dx

)
+ ⟨ϕ′

(un) , un⟩

+µ

∫
Ω

|un|δ(x) dx

≥
(
θ

p+
− 1

)
ξ1 ∥un∥p

−
+

∫
Ω

(
S (x, un)un − θ1Ŝ (x, un)

)
dx

+

∫
∂Ω

(
Q (x, un)un − θ2Q̂ (x, un)

)
dσ + µ

∫
Ω

(
1− θ

δ−

)
|un|δ(x) dx

≥
(
θ

p+
− 1

)
ξ1 ∥un∥p

−
+ µ

∫
Ω

(
1− θ

δ−

)
|un|δ(x) dx.
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Thus,

θM1 +M2 ≥
(
θ

p+
− 1

)
ξ1 ∥un∥p

−
+ µ

(
1− θ

δ−

)∫
Ω

|un|δ(x) dx. (4.25)

By Proposition 1.4, ∃c > 0, such that

∫
Ω

|un|δ(x) dx ≤ |un|lLδ(x)(Ω) ≤ c ∥un∥l . (4.26)

where l = δ− or δ+.

So, it follows from (4.25) and (4.26) that

θM1 +M2 ≥
(
θ

p+
− 1

)
ξ1 ∥un∥p

−
− cµ

(
θ

δ−
− 1

)
∥un∥l .

Using θ > p+ ≥ p− > l, we obtain a contradiction as n → ∞. So, we deduce that {un}

is bounded in X. Therefore, there exists {un} (a subsequence) and u ∈ X such that {un}

converges weakly to u ∈ X. We omit the rest of the proof because it is similar to the one in

Lemma 4.1.

Theorem 4.2 Assume that (A0)− (A1) and (A4)− (A7) hold. If min(α−, β−) > p+,min(θ1, θ2) >

w+, then, Φµ has a sequence of critical points {±un} with

Φµ(±un) → ∞, n→ ∞.

Proof Obviously, from (A6) and (A7), Φµ is an even functional and according to Lemma 4.4,

Φµ satisfies the (PS) condition. Next, we are going to prove (H2) and (H3) .

Let u ∈ Zt with ∥u∥ > 1, using (A0) and (A1), we have

Φµ (u) ≥
1

p+
Σ (u)−

∫
Ω

C1(1 + |u|α(x))dx−
∫
∂Ω

C2(1 + |u|β(x))dσ

− µ

δ−

∫
Ω

|u|δ(x)dx

≥ ξ1
p+

||u||p− − C1max
(
|u|α

−

Lα(x)(Ω) , |u|
α+

Lα(x)(Ω)

)
−C2max

(
|u|β

−

Lβ(x)(∂Ω)
, |u|β

+

Lβ(x)(∂Ω)

)
− c1

− µ

δ−
max

(
|u|δ

−

Lδ(x)(Ω) , |u|
δ+

Lδ(x)(Ω)

)
.

If |u|α
+

Lα(x)(Ω) is the maximum of {|u|α
−

Lα(x)(Ω) , |u|
α+

Lα(x)(Ω) , |u|
β−

Lβ(x)(Ω)
, |u|β

+

Lβ(x)(Ω)
, |u|δ

−

Lδ(x)(Ω) , |u|
δ+

Lδ(x)(Ω)}.
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Therefore, by Proposition 4.4, we get

Φµ (u) ≥
ξ1
p+

||u||p− − c2(µ, δ
−) |u|α

+

Lα(x)(Ω) − c1

≥ ξ1
p+

||u||p− − c2(µ, δ
−)αα+

t ||u||α+ − c1.

Choose γt = (
c2(µ,δ−)α+αα+

t

ξ1
)

1
p−−α+ = ||u||, then we have

Φµ(u) ≥ ξ1(
1

p+
− 1

α+
)γp

−

t − c1. (4.27)

Since αt → 0 when t → ∞ and p+ < α− ≤ α+, it follows that 1/p+ − 1/α+ > 0 and γt → ∞.

Hence, we get Φµ(u) → ∞ where u ∈ Zt and ||u|| = γt as t→ ∞. For the remaining cases, the

proof is similar. So, (H2) holds.

Using (4.17) and (4.18), then for any u ∈ Yt such that ||u|| = ρt > γt > 1, we obtain

Φµ(u) ≤
1

p−
Σ(u) +

l2
w−

∫
∂Ω

|u|w(x) dσ −
∫
Ω

Ŝ(x, u)dx− µ

δ−

∫
Ω

|u|δ(x) dx

−
∫
∂Ω

Q̂(x, u)dσ

≤ ξ1
p−

||u||p+ +
l2
w− max{|u|w

−

Lw(x)(∂Ω) , |u|
w+

Lw(x)(∂Ω)}

−m1

∫
Ω

|u|θ1 dx−m2

∫
∂Ω

|u|θ2 dσ.

If max{|u|w
−

Lw(x)(∂Ω) , |u|
w+

Lw(x)(∂Ω)} = |u|w
+

Lw(x)(∂Ω), then, we have

Φµ(u) ≤
ξ1
p−

||u||p+ +
l2
w− |u|w

+

Lw(x)(∂Ω) −m1

∫
Ω

|u|θ1 dx−m2

∫
∂Ω

|u|θ2 dσ.

Since dim Yt <∞, all norms are equivalent in Yt. Then, we get

Φµ(u) ≤
ξ1
p−

||u||p+ +
l2
w− c2||u||

w+ − c3||u||θ1 − c4||u||θ2 . (4.28)

also, since max(w+, p+) < min(θ1, θ2), then, we have Φµ(u) → −∞ when ||u|| → ∞. For

the remaining case, the proof follows a similar approach, and for brevity, we omit it here,

therefore (H3) fulfills. Thus, the proof is complete.



Conclusion

In this thesis, we have studied the existence and multiplicity of solutions for some nonlinear

elliptic problems using variational techniques.

In Chapter 3, using the Nehari manifold method and fibering maps analysis, we have

proved the existence of two nontrivial solutions for a critical Schrödinger-Kirchhoff type

system involving the fractional p-Laplacian in a bounded domain with homogenous Dirichlet

boundary conditions.

In Chapter 4, by applying the mountain pass theorem and fountain theorem, we have

showed the existence and multiplicity of solutions for a class of p(x)-Laplacian problems.

In perspective, the problem considered in the third chapter can be extended to include the

case of variable exponents.
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