

الجمهورية الجزائرية الديمقراطية الشعبية République algérienne démocratique et populaire وزارة التعليم العالي والبحث العلمي Ministère de l'enseignement supérieur et de la recherche scientifique جامعة الشهيد الشيخ العربي التبسي – تبسة Université Echahid Cheikh Larbi Tebessi – Tébessa معهد المناجم Institut des mines قسم المناجم والجيوتكنولوجيا Département des mines et de la géotechnologie

MEMOIRE

Présenté en vue de l'obtention d'un diplôme de Master académique

Filière : Génie minier

Option : Géotechnique

Etude et analyse des aspectes géotechniques d'une mine souterraine

-cas de la mine de Boukhadra-

Présenté et soutenu par :

NOUIRI Aymen

Devant le jury:

		Grade	Etablissement
Président :	DJELLALI Adel	MCA	Université Echahid Cheikh Larbi Tebessi – Tébessa
Encadreur :	HAMDANE Ali	MAA	Université Echahid Cheikh Larbi Tebessi – Tébessa
Examinateur :	BENGHAZI Zied	MCB	Université Echahid Cheikh Larbi Tebessi – Tébessa

Promotion 2022-2023

الجمهورينة الجزاسرينة التيسقر طية الشعيبينة République Algérienne Démocratique et Populaire

Ministère de l'Enseignement Supérieur

et de la Recherche Scientifique

Université Echahid Cheikh Larbi Tebessi - Téhessa

Année universitaire : 2022-2023

Tébessa le : 08.06.2023

Lettre de soutenabilité

Noms et prénoms de l'étudiant :

NOUIRI Aymen

Niveau : 2^{ème} année Master Option : Géotechnique

Thème :Etude et analyse des aspectes géotechniques d'une mine souterraine

- cas de la mine de Boukhadra-

Nom et prénom de l'encadreur : HAMDANE Ali

Chapitres réalisés	Signature de l'encadreur
Chapitre 1 : Présentation des ouvrages souterrains	
Chapitre 2 : Présentation de la mine de Boukhadra	
Chapitre 3:Classifications et recommandations du soutènement	-8
Chapitre 4 : Analyse de la résistance des roches	-1/
Chapitre 5: Analyse par la méthode convergence- confinement	
Chapitre 6 : Simulation numérique	

الجمهورية الجزائرية الديمقراطية الشعبية وزارة الشهيد الشيخ التعليم العالي و البحث العلمي جامعة العربي التيمي- تبسة

مشرر رقم: مؤرخ في: 2023/05/30 يتضمن الترخيص بمناقشة مذكرة الماستر

إنَّ مدير جامعة العربي التبسي بتبسة،

- بموجب القرار الوزاري رقم 318 و المؤرخ في 05 ماي 2021 المتضمن تعيين السيد "قواسمية عبد الكريم" مديرا لجامعة العربي التيسي - تيسة،

-و بمقتضى للرسوم التنفيذي رقم : 12- 363 مؤرخ في 8 أكتوبر 2012، يعدل و يتمم للرسوم التنفيذي رقم 09 - 08 المؤرخ في : 04 جانفي 2009 و المُتضمن إنشاء جامعة العربي التيّسي بتبسة،

-وبمقتضى للرصوم التنفيذي رقم 268-265 المؤرِّخ في 17 شعبان عام 1429 الموافق 19 غشت سنة 2008 الذي يحدّد نظام الدراسات للحصول على شهادة الليسالس وشهادة الماسار وشهادة الذّكتوراه، لأسيما المادة 9 منه،

- وبموجب القرار رقم 362 المؤرِّع في 09 جوان 2014 الذي يحدّد كيفيات إعداد ومناقشة مذكّرة الماستر، لاسيما المادة 7 هنه،

- وبموجب القرار رقم 1080 للؤرّخ في 13 أكتوبر 2015 والمتضمّن تأهيل ماستر الفروع ذات تسجيل وطني بجامعة تبسة. - وبموجب القرار رقم 375 للؤرّخ في 15 جوان 2020 للعدل لملحق القرار 1080 للؤرّخ في 13 أكتوبر 2015 والمُنضمّن تأهيل ماستر الفروع ذات تسجيل وطني بجامعة تبسة- اختصاص جيوتقتي

-وبموجب المقرر رقم المؤرِّع في 2023/05/29 وللتضمّن لعيين لجنة مناقشة منكّرة الماستر.

يقرّرما يأتى:

المادة الأولى: يُرحَّمنُ للطالب(ذ) توبري أيمن، المولود (3) بتاريخ 1999/11/11 بـ تهسة، بمناقشة مذكَّرة الماستر. والموسومة بـ

Etude et analyse des aspects géotechniques d'une mine souterraine - cas de la mine de Boukhadra

المادة 2: يكلُّف رئيس قسم المتاجم والجيوتكنولوجها بتنفيذ هذا المدَّر الَّذي يسلَّم نسخة عنه إلى الطَّالب المعتي بالمناقشة وأعضاء لجنة المناقشة فور توقيعه، وبضمان نشره عبر فضاءات المؤسَّسة المادية والرقمية.

المادة 3: تُحفظ تمخة عن هذا المَرّر ضمن المُفُ البيداغوس للطَّالب المعني ويَتشر في اللَّشرة الرَّسمية لجامعة. العربي التيسي.

خرر ب تبسة، في: 2023/05/30

عن المدير ، ويتفويض منه

مدين معهد المناجم

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التعليم العالي والبحث العلمي جامعة الشهيد الشيخ العربي التبسي- تبسة

مقرر رقم : مؤرخ في : 2023/05/29

يتضمن ثعيين لجنة مناقشة مذكرة الماستر

إنَّ مدير جامعة العربي التيسي بتبصة.

- يموجب القرار الوزاري رقم 318 و للقرخ في 05 ماي 2021 للتضمن تعيين السيد "قواسمية عبد الكريم" مديرا لجامعة العربي التيسي -تسعة.

- و بمقتضى للرسوم التنفيذي رقم : 12- 363 مؤرغ في 8 أكتوبر 2012، يعدل و يتمم المرسوم التنفيذي رقم 09- 08 المؤرخ ق : 04 جانفي 2009 و المتضمن إنشاء جامعة العربي التبّسي بتبسة.

- ويمقتضي المرسوم التنفيذي رقم 265-08 المؤرّع في 17 شعبان عام 1429 الموافق 19 غشت سنة 2008 الذي يحدّد نظام الدراسات للحصول على شهادة الليسانس وشهادة الماستر وشهادة الذّكتوراء، لأسيما المادة 9 منه.

- ويموجب القرار رقم 1362 للوزيَّ في 09 جوان 2014 الذي يحدَّد كيفيات إعداد ومناقشة مذكَّرة للاسار، لاسيما المادتان 10 و11 منه،

- وبموجب القرار رقم 1380 المؤرّخ في 09 أوت 2016 والمتضمّن موامه التكوينات في اللامار بعنوان جامعة تبسة في مبدان "علوم وتكنولوجيا".

- وسوجب القرار رقم 375 المؤرّخ في 15 جوان 2020 للمدل لمايحق القرار 1080 المؤرّخ في 13 أكتوبر 2015 وللتنضقن تأميل ماستر القروع ذات تسجيل وطاق بجامعة تبسة، اختصاص جيوتقاي

وبعد الأمانخ على محضر المجلس العلمي لمعيد المفاجم المؤرِّ في......

يقرّرما بأتي:

المادة الأولي: تُعيَّنُ بموجب هذا المقرَّر تجنة مناقشة ملكَّرة للاستر للحضَّرة من طرف الطَّالب (٤):

توبري أيمن، للولود (٤) بتاريخ 1999/11/11 ، تيسة .

والموشومة ب Etude et analyse des aspects géotochalques d'une mine souterraine - cas de la mine de Boukhadra والموشومة ب

وللسجّل (٤) بمعهد المناجم

المَادة ٢٤ مَتَمَكَّل اللجنة المُشار إليا ق المَادة الأُولَى من الأمضاء الآتي ذكرهم:

المتبشة	مؤشيسة الانتماء	الرتبة	الاسم واللّقب	nā,
رئيسا	جامعة العربي التيسي - تبسة	أستاذ محاظير - أ	جلال عابل	1
مشرفا	جامعة العربي التيمي - تبسة	أستاذ مساعد - أ	حمدان على	2
lizias	جامعة العربي التيمي - تبسة	أستاذ محاضر -ب	وبادين غازي	3

المادة 3: يكلف رئيس قسم المناجم والجيوتكنولوجيا بتنفيذ هذا المقرّر الذي يُسلّم نسخةً عنه إلى كلّ من الطّالب المعني والمشرف على المذكرة وأعضاد لجنة المناقشة فور توقيعه.

اللادة 4: تحفظ تسخة عن هذا اللغزر في اللغة البيداغوجي للطالب اللعني، وينشر في الآشرة الرَّسمية لجامعة العربي التبسي.

خَرُر ب تَبْسة، في: 2023/05/29 عن المدير ، وبتقويض مله بهير معهد المناجم

الجمهورية الجزائرية التيمقر اطية الشعبية وزارة التعليم العالي والبحث العلمي

مؤسسة التعليم العالى: جامعة الشهيد الشيخ العربي التبسي – تبسة

<u>تصريح شرقى</u> خاص بالالتزام بقواعد التزاهة الطمية لاتجاز بحث

أتا الممضى أدناده

الصفة ; طالب ماستر 2

السيد ; نويري ايمن

الحامل لبطاقة التعريف الوطنية رقم: 402683107 والمسادرة بتاريخ 2022.08.18 المسجل بمعهد المناجم قسم : المناجم والجيوتكاولوجيا

والمكلف بإنجاز أعمال بحث (مذكرة التخرج، مذكرة ماستر)، عنواتها:

Etude et analyse des aspectes géotechniques d'une mine souterraine

-cas de la mine de Boukhadra-

أصرح بشرفي أني ألتزم بمراعاة المعايير العلمية والمنهجية ومعايير الأخلاقيات المهنية والتزاهة الأكاديمية المطلوبة في انجاز البحث المذكور أعلاه.

التاريخ 2023.06.08

إمضاء المعنى (4) طيفًا لسلحق الأرار رقم: 933 المورخ في: 28 جويلية 2016، الذي يحدد القواعد المتطقة بالرقاية من السرقة الملدية ومكافعتها.

Remerciements

Je remercie tout d'abord, ALLAH de nous avoir donné la santé pour terminer ce travail.

Nous remercions :

Mr HAMDANE Ali, mon encadreur qui a accepté d'encadrer ce travail, Nous la remercions pour son soutien, ses conseils, ses orientations durant l'élaboration de ce travail et pour tous ses efforts et ses instructions durant toute notre formation. Nous remercions Mr DJELLALI Adel d'avoir accepté la tache de présider notre jury de soutenance. Un remercîment particulier à BENGHAZI Ziad d'avoir accepté d'examiner notre travail. Mes remerciements vont également à tous les enseignants du département des mines et géotechnologies. Je remercie également tous les responsables de l'entreprise de la mine de BOUKHADRA. Enfin mes remerciements vont à mes collègues mineurs et en particuliers à ma promotion.

NOUIRI AYMEN

Je dédie ce modeste travail à :

Mes chers parents

Qui ont été à côté de moi pendant toute les étapes de mes études

A Mes frères et mes sœurs

Et

À tous ceux qui ont contribué de près ou de loin à la réalisation de ce

mémoire.

NOUIRI AYMEN

Résumé

L'étude de la stabilité des ouvrages miniers souterrains dans les massifs rocheux est la préoccupation majeure de la géotechnique dans le domaine minier. De nombreux facteurs affectent la stabilité des installations minières et en particulier les ouvrages souterrains, parmi lesquelles : les facteurs géologiques, les facteurs géotechniques, et les facteurs géométriques.

Dans ce travail, nous avons étudié la stabilité de la galerie au jour du niveau 1045 m de la mine de Boukhadra, à la willaya de Tébessa-Algérie, qui est destinée à l'extraction de la matière première (minerai de fer). Pour étudier la stabilité de l'ensemble ouvrage/massif, on a fait appel à des méthodes empiriques, analytique et numérique, à partir desquels on a estimé la qualité du terrain traversé par la galerie, et nous avons choisi le type de soutènement à appliquer.

La réaction du massif rocheux a été estimée en utilisant un model numérique à base d'éléments finis (Phase²), on se basant sur les données et les différentes propriétés récentes, déterminées au laboratoire de l'université ou bien fournies par les services techniques de l'entreprise minière. L'étude de la stabilité nous a permis d'identifier le mode de soutènement adéquat.

Mots clés

Stabilité ; ouvrages souterrains ; soutènement ; modélisation numérique, méthode convergence-confinement.

الملخص

إن دراسة استقرار المنشات المنجمية الكائنة بالتكتلات الصخرية تحظى بالاهتمام الاكبر للجيوتقنية في المجال المنجمي. هناك العديد من العوامل المؤثرة على استقرار المنشآت المنجمية وخاصة المتواجدة تحت الارض ومن بين هذه العوامل نذكر منها العوامل الجيولوجية، الجيوتقنية والهندسية.

في هذا العمل قمنا بدراسة استقرار النفق المتواجد على مستوى 1045 متر المخصص للاستغلال المنجمي داخل الشركة المنجمية لاستخراج الحديد والكائنة ببوخضرة ولاية تبسة – الجزائر. ولدراسة استقرار النفق /الكتلة الصخرية، استخدمنا الطرق التجريبية والتحليلية والرقمية، والتي من خلالها قدرنا جودة الأرض، واخترنا نوع الدعامات المراد استخدامها.

باستعمال البرنامج الرقمي (Phase²) المرتكز على طريقة العناصر المنتهية، ومن خلال النتائج المتحصل عليها من خلال اجراء تجارب على عينات صخرية من المنجم في مخبر الجامعة بالإضافة الى المعطيات المقدمة من طرف المؤسسة المنجمية، استطعنا حساب ردة الفعل في مختلف الكتل الصخرية ومن خلال ذلك قمنا بدراسة الاستقرار داخل النفق والتعرف على الاختيار الامثل للدعامات.

الكلمات المفتاحية

الاستقرار، المنشئات التحتية، الدعامات، النمذجة الرقمية، طريقة التقارب والحصر.

Abstract

The study of the stability of underground mining structures in rock masses is the major concern of geotechnics in the mining field. Many factors affect the stability of mining installations and in particular underground structures, including: geological factors, geotechnical factors, and geometric factors.

In this work, we studied the stability of the 1045 m level's gallery of the Boukhadra mine, in the willaya of Tébessa-Algeria, which is intended for the extraction of the raw material (iron ore). To study the stability of the whole structure/mass, we used empirical, analytical and numerical methods, from which we estimated the quality of the ground crossed by the gallery, and we chose the type of support to apply.

The reaction of the rock mass was estimated using a numerical model based on finite elements (Phase2), based on data and the various recent properties, determined in the laboratory of the university or provided by the technical services of the mining company. The study of the stability allowed us to identify the appropriate mode of support.

Key Words:

Stability; underground structures; support; numerical modeling, convergenceconfinement method.

Remerciements	i
Dédicace	Ii
Résumé	Iii
Table des matières	Vi
Liste des figures	Х
Liste des tableaux	xiii
Table des notations	Xv
Introduction générale	1
Chapitre I : Presentation des ouvrages souterrains	4
1.1. Introduction	4
I.2. Les ouvrages souterrains	4
I.2.1. Définition	4
I.2.2. Historique des ouvrages souterrains	5
I.2.3. Importance des ouvrages souterrains	6
I.2.4. Classification des ouvrages souterrains	6
I.2.5. Principaux et différents types des ouvrages souterrains	7
I.2.6. Les problèmes majeurs liés à la construction des ouvrages	7
souterrains	7
1.2.7. Technique de construction des ouvrages souterrains	1
I.2.7.1 Mode de creusement	7
I.2.7.1.1 Creusement à l'explosif	8
I.2.7.1.2 Creusement mécanisé	8
I.2.7.2. Choix de la méthode de creusement	15
I.2.8. Techniques de creusement	15
I.2.8.1 Méthode à pleine section	15
I.2.8.2 Méthode à demi-section	16
I.2.8.3 Méthode à sections divisées	17
I.3 Le soutènement	17
I.3.1 Généralités	17
I.3.2 Définition	17
I.3.3 Classification des modes de soutènement	18
I.3.4 Choix d'un type de soutènement	19

I.3.5 Les différents types de soutènement	19
I.3.5.1 Boulonnage	19
I.3.5.2 Les cintres	21
I.3.5.3 Béton projeté	24
I.4 Conclusion	24
Chapitre II : Présentation de la mine de Boukhadra	
II.1 Introduction	26
II.2 Historique de la mine	26
II.3 La géologie de la mine	26
II.3.1 Situation géographique	27
II.3.2 Stratigraphie	27
II.3.2.1 Trias	28
II.3.2.2 Le crétacé	28
II.3.2.3 Le Tertiaire	29
II.3.2.4 Le Quaternaire	29
II.3.3 Tectonique	30
II.3.4 Hydrogéologie	31
II.3.5 Hydrologie	31
II.3.6 Minéralisation du gisement du Boukhadra	31
II.3.6.1 Nature du minerai exploité	32
II.3.6.2 Caractéristiques de la minéralisation	32
II.3.7 Morphologie du gisement	32
II.4 L'exploitation de la mine de Boukhadra	33
II.4.1 Exploitation à ciel ouvert	34
II.4.2 Exploitation souterrain	36
II.4.2.1 Les avantages de l'ouverture par galerie au jour	36
II.4.2.2 Caractéristiques de la galerie de la mine de Boukhadra	37
II.4.2.3 Les travaux de Foration et de tir	37

Table des matières

II.4.2.4 Les travaux de chargement et de transport	38
II.4.2.5 Les méthodes d'exploitation appliquent au niveau souterrain	39
II.5 Régime de travail de la mine de Boukhadra	39
II.5.1 Organisation des travaux d'exploitation	39
II.5.2 Production de minerai	39
II.6 Durée de vie de la mine	40
II.7 Conclusion	40
Chapitre III : Classifications et recommandations du soutènement	
III.1. Introduction	42
III.2 Généralités	43
III.3 Méthodes empiriques	44
III.3.1 Méthode de D.Deere (RQD)	44
III.3.2 Méthode de Bieniawski (RMR)	45
III.3.3 Méthode de N.Barton (Q-system)	47
III.3.4 Méthode de GSI (Geological Strength Index)	49
III.4.Etude de cas -la galerie 1045-	51
III.4.1. Mesures des paramètres des caractéristiques des discontinuités	54
III.4.2 Caractéristiques physiques et mécaniques des roches stériles et	56
minerai III.4.3. Classification géomécanique du massif rocheux au niveau de	57
III.4.3.1. Application de la méthode de D.Derre	57
III.4.3.2. Application de la méthode de Z.Bieniawski	58
III.4.3.3 Application de la méthode de GSI (Geological Strength	60
III.4.3.4. Application de la méthode de N.Barton	61
III.4.5. Détermination des caractéristiques mécaniques du massif	63
III.4.6. Recommandation du soutènement pour les différentes	63
formations rocheuses au niveau de la galerie 1045	65
III.5 Conclusion	

Chapitre IV : Analyse de la résistance des roches

Table	des	matières

IV.1. Introduction	67
IV.2. Critères de rupture de la matrice rocheuse.	67
IV.2.1 Résistance et critères de résistance	67
IV.2.2 Critère de Mohr-Coulomb	67
IV.2.3 Le Critère de Hoek et Brown	69
IV.3 Présentation du Logiciel Rocscience RocLab	70
IV.3.1 Généralités	70
IV.3.2 Comment puis-je utiliser RocLab	70
IV.4 Application de l'Analyse de la résistance des roches	73
IV.5 Conclusion	80
Chapitre V: Analyse par la méthode convergence-confinement	
V.1 Introduction	82
V.2 La Convergence	82
V.3 Le confinement	82
V.4 Domaines d'utilisation	82
V.5 Principe générale de la méthode	83
V.6 Hypothèses de la méthode	83
V.7 Etapes De Calcul	83
V.8 Courbe de convergence	83
V.9 Courbe de Confinement	85
V.10 Soutènements	85
V.11 Application de la méthode pour notre galerie (la galerie 1045)	88
V.11.1 Caractéristiques géotechniques des roches	88
V.11.2 Les courbes de convergence et de confinement	89
V.13.Conclusion	106
Chapitre VI : Simulation numérique	
VI.1 Introduction	108

VI.2 Interface de programme PHASE² 108

VI.3. Modélisation de la galerie (au niveau1045) par logiciel PHASE ²	109
VI.4. Résultats et discussion de l'analyse de la stabilité	
VI.4.1 Les calculs	118
VI.4.2 Les résultats	119
VI.5.Conclusion	155
Conclusion générale	157
Références bibliographiques	158
Annexe	Ι

Liste des figures

Unablire I	Cha	oitre	Ι
-------------------	-----	-------	---

Figure I.1 Illustration du cycle classique de creusement à l'explosif	8
Figure I.2 Machine à attaque ponctuelle	9
Figure I.3 Bras à attaque radiale	9
Figure I.4 Bras à attaque transversale.	9
Figure I.5 Schéma du principe de travail d'une haveuse.	10
Figure I.6 Haveuse pour roche dures et abrasives (Rc > 120 MPa)	10
Figure I.7 Brise-roche hydraulique.	11
Figure I.8 Mineur boulonneur	11
Figure I.9 Pelle rétro sur chenilles.	12
Figure I.10 Foreuse Mécanique	12
Figure I.11 Aléseur	13
Figure I.12 Machine à attaque globale (tunnelier)	13
Figure I.13 Les composantes de Tunnelier à bouclier	14
Figure I.14 Cycle des opérations minières dans le creusement des galeries.	15
Figure I.15 Choix de la méthode de creusement	15
Figure I.16 Méthode à pleine section	16
Figure I.17 Méthode à demi-section	17
Figure I.18 Méthode à sections divisées	17
Figure I.19 Boulon à ancrage ponctuel	20
Figure I.20 Boulon à ancrage reparti	20
Figure I.21 Boulons à friction	21
Figure I.22 Les cintres en bois	22
Figure I.23 Cintres lourds	22
Figure I.24 Cintres légers	23
Figure I.25 Cintre réticulé	23
Figure I.26 Cintre préfabriqué.	24
Figure I.27 Béton projeté	24

Liste des figures

Chapitre II

Figure II.1 Situation géographique de la ville du Boukhadra	27
Figure II.2 La carte géologique de la mine de Boukhadra	28
Figure II.3 Log stratigraphique du Djebel Boukhadra	30
Figure II.4 Trois coupes transversales dans l'anticlinal de Boukhadra.	33
Figure II.5 Plan topographique du gisement de Boukhadra	33
Figure II.6 Vue panoramique sur les trois filons de la carrière principale	33
Figure II.7 La carrière de la mine de Boukhadra	34
Figure II.8 Sondeuse de type I-RAND I4BH et Chargeuse de type Caterpillar 990 k	35
Figure II.9 Camion 537 Caterpillar 775G	36
Figure II.10 Ouverture par galerie au jour, niveau 1105	36
Figure II.11 Schéma du plan de tir souterrain	37
Figure II.12 Chargeuse transporteuse pneumatique type Atlas Copco St 1020	38
Figure II.13 Camion navette ATLAS COPCO MT2000	38
Chapitre III	
Figure III.1 Différentes méthodes de dimensionnement du soutènement	43
Figure III.2 Exemple de calcul d'un RQD	44
Figure III.3. Type de soutènement en fonction du R.Q.D. et de la portée du tunnel	45
Figure III.4. Soutènement basé sur la valeur Q (d'après Bieniawski)	49
Figure III.5 Profile géologique de la galerie 1045.	52
Figure III.6 L'entrée de la galerie 1045	53
Figure III.7 Orientations des discontinuités	54
Figure III.8 Représentation 2D des discontinuités (Dips program)	55
Figure III.9 Projection stéréographique des discontinuités	55
Figure III.10 Exemple de mesure RQD au niveau de la galerie 1045	58

Chapitré IV

Figure IV.1 Critère de rupture de Mohr-Coulomb représenté dans le plan (τ ; τ)	67
Figure IV.2 Critère de rupture de Mohr-Coulomb représenté dans le plan des contraintes principales (σ_1 ; σ_3)	67
Figure IV.3 Critère de Hoek et Brown	68
Figure IV.4 Présentation de logiciel	69
Figure IV.5 Entrée des paramètres de Hoek Brown	70
Figure IV.6 Les valeurs de la résistance à la compression sigci de la roche intacte	71
Figure IV.7 Les valeurs de l'indice de résistance géologique GSI	71
Figure IV.8 Les valeurs de paramètre mi	72
Figure IV.9Les valeurs de facteur de perturbation D	72
Figure IV.10 Analyse de la résistance des roches de conglomérat	73
Figure IV.11 Analyse de la résistance des roches de calcaire	74
Figure IV.12 Analyse de la résistance des roches de marne jaune	75
Figure IV.13 Analyse de la résistance des roches de marne minéralisée	76
Figure IV.14 Analyse de la résistance des roches de marne grise	76
Figure IV.15 Analyse de la résistance des roches de minerai fer	77
Figure IV.16 Analyse de la résistance des roches de grés	78
Chapitré V	
FigureIV.1.La profondeur et le rayon de la galerie.	88
Figure IV.2 Courbe convergence-confinement (conglomérat)	91
Figure IV.3 Courbe convergence-confinement (calcaire)	93
Figure IV.4 Courbe convergence-confinement (marne jaune)	96
Figure IV.5 Courbe convergence-confinement (marne minéralisé)	98
Figure IV.6 Courbe convergence-confinement (marne grise)	101
Figure IV.7 Courbe convergence-confinement (grés)	103
Figure IV.8 Courbe convergence-confinement (minerai fer)	105

Chapitré VI

Figure VI.1 Présentation de logiciel	108
Figure VI.2 Désignation de l'excavation.	110
Figure VI.3 Désignation des externes.	111
Figure VI.4 Le maillage.	112
Figure VI.5 les pressions des terrains	113
Figure VI.6 Définir les matériaux et leurs propriétés	115
Figure VI.7 Soutènement par boulonnage.	116
Figure VI.8 Soutènement par béton projeté.	117
Figure VI.9 Calculateur	118
Figure VI.10 Présentation des contraintes sigma1.	119
Figure V.11 Déplacements horizontale.	120
Figure V.12 Déplacements verticale	121
Figure V.13 Déplacements totale	122
Figure V.14 Déformation volumétrique	123
Figure V.15 Déformation de cisaillement maximale	124

Liste des tableaux

Chapitre I

Tableau I.1 Classification des ouvrages souterrains		
Tableau I.2Les Principaux et différents types des ouvrages souterrains		
Chapitre II		
Tableau II.1. Composition chimique moyenne du minerai de Boukhadra	36	
Tableau II.2 Paramètres de la méthode d'exploitation à ciel ouvert	39	
Tableau II.3 Caractéristiques de la galerie de la mine de Boukhadra	41	
Chapitre III		
Tableau III.1 Corrélation entre l'indice RQD et la qualité du massif rocheux (tiré de Deere, 1968) [24]	48	
Tableau III.2 Classes et propriétés globales des massifs rocheux (selon Z. Bieniawski)	51	
Tableau III.3 la corrélation entre la valeur de Q et la qualité du massif rocheux [24]	52	
Tableau III Qualité du massif rocheux selon la valeur du GSI [28]	54	
Tableau III.4 Comparaisons des utilisations du RMR et du Q-systemdans le domaine des travaux souterrains (AFTES [2003]) [25]	55	
Tableau III.5 Les dimensions de la galerie principale du niveau 1045 m		
Tableau III.6 Failles et fissures existantes dans le tronçon étudie de la galerie principale du niveau 1045m.	57	
Tableau III.7 Caractéristiques physiques des roches stériles et minerai au niveau 1045	60	
Tableau III.8 Caractéristiques mécaniques des roches stériles et minerai au niveau 1045.	61	
Tableau III.9 Les valeurs de RQD de massif rocheux au niveau de lagalerie 1045	61	
Tableau III.10 Exemple d'application la méthode de Bieniawski	61	
Tableau III.11 Classification de RMR du massif rocheux de la galerie1045	62	
Tableau III.12 Caractéristiques mécaniques à partir du RMR	63	
Tableau III.13 Classification de GSI du massif rocheux de la galerie 1045	64	
Tableau III.14 Excavation Support Ratio (ESR) pour divers typesd'ouvrages souterrains [Barton & al, 1974]	64	
Tableau III.15 Classification de Q système du massif rocheux de lagalerie 1045	65	
Tableau III.16. La cohésion et l'angle de frottement interne du massif rocheux	67	

TableauIII.17 Les systèmes de soutènement proposés par RQD, RMR et O système		
Chapitre V		
TableauIV.1. Caractéristiques géotechniques des massifs rocheux auniveau de la galerie 1045	92	
TableauIV.2. Les valeurs de la courbe de terrain (calcaire)		
TableauIV.3 Les valeurs de la courbe de terrain (marne jaune)		
TableauIV.4 Les valeurs de la courbe de terrain (marne minéralisée)	101	
TableauIV.5 Les valeurs de la courbe de terrain (marne grise)		
TableauIV.6 Les valeurs de la courbe de terrain (grés)	106	
TableauIV.7 Les valeurs de la courbe de terrain (minerai fer)	108	
Chapitre VI		

Tableau.VI.1. Résultats de l'analyse numérique par logiciel PHASE ²	159
---	-----

Table des notations

Notations	Unité	Signification
τ	MPa	Contrainte de cisaillement
$\sigma_{ m n}$	MPa	Contrainte normale
m	/	Constante de matériau non linéaire en fonction de la qualité de la
		roche
a	/	Coefficient en fonction de la rupture de la roche
mi	/	Constante de résistance constante de la roche intacte pour les
		conditions de pointe
Rc	MPa	La résistance à la compression
Rt	MPa	La résistance à la traction
С	MPa	La cohésion du sol / roche
φ	0	Angle de frottement interne
Cm	MPa	La cohésion du massif
φm	0	L'angle de frottement interne du massif
Ci	MPa	La cohésion de a roche intacte
φi	0	L'angle de frottement interne de a roche intacte
Jn	/	Nombre de famille de discontinuités
Jr	/	Paramètre de rugosité des joints
Ja	/	Paramètre d'altération des joints
Jw	/	Paramètre de réduction hydraulique
a	0	Azimut d'une discontinuité
β	0	Pendage d'une discontinuité
ρ	g/cm ³	La masse volumique du matériau
Fs	/	Facteur de sécurité
\mathbf{W}	Ν	Le poids du bloc.
λ	/	Coefficient d'affaiblissement structural du massif rocheux
λ_{Φ}	/	Coefficient de diminution de la valeur de l'angle de frottement
		interne
σ'1	MPa	Contrainte effective maximum à la rupture
σ'3	MPa	Contrainte effective minimum à la rupture
k0	/	Coefficient de pression des terres au repos
Z	Μ	l'épaisseur de la couverture
v	/	Coefficient de poissent
Ε	GPa	Module de Young
σ0	MPa	Contrainte initiale de massif
γ	kN/m ³	Poids volumiques de la roche
R	Μ	Rayon de l'excavation
KP	/	Coefficient de butée
Kb	MPa	Raideur du béton
P _b ^{max}	MPa	Pression maximale du béton
fc28	MPa	Résistance caractéristique à la compression du béton
U_b^{max}	mm	Déplacement maximale du béton

••• xv

Table des notations et liste des abréviations

Kc	MPa	Raideur du béton	
P _c ^{max}	MPa	pression maximale des cintres	
U_c^{max}	mm	Déplacement maximale des cintres	
Ec	MPa	Module de Young de l'acier	
fu	MPa	Résistance de l'acier	
K _{sn}	MPa	Raideur du boulon d'ancrage	
Ks	MPa	Raideur du soutènement	
P ^{max}	MPa	Pression maximale développée par le soutènement	
U_s^{max}	mm	Déplacement maximum du soutènement	
λ (x)	/	Taux de déconfinement	

Liste des abréviations

SONAREM : Société National Algérienne des Réserves Miniers

FERPHOS : Société National Algérienne de Fer-Phosphate

DED : Division d'Etude et Développement

AFTES : Association Française des Tunnels et de l'Espace Souterrain.

JRC: Joint Roughness Coefficient.

RQD: Rock Quality Designation.

RMR: Rock Mass Rating.

GSI: Geological Strength Index.

NGI: Norvegian Geotechnical Institute.

SRF: Stress Reduction Factor.

Q: Rock Tunneling Quality In

SACSIR: South African Council of Scientific and Industrial Research

Introduction générale

Introduction générale

Depuis l'antiquité, l'homme réalise des travaux souterrains, que ce soit en vue de l'extraction de substances minérales ou pour la construction d'ouvrages civils ou militaires. Cependant les méthodes d'étude de la stabilité des ouvrages souterrains et de calcul des soutènements sont encore très empiriques et peu satisfaisantes. Les techniques de creusement sont restées très longtemps peu mécanisées et les équipes de mineurs s'adaptaient peu à peu aux conditions plus ou moins difficiles que la nature impose. Or on assiste actuellement à un développement simultané des projets d'ouvrages souterrains et de méthodes de creusement et de soutènement très mécanisées et de performances remarquables, mais qui s'adaptent difficilement aux aléas et nécessitent une meilleure prévision du comportement des terrains autour de l'excavation.

On peut distinguer deux types d'ouvrages souterrains : les ouvrages temporaires comme pour la plupart des exploitations minières, et les ouvrages permanents tels que les tunnels, 1es voies de communication et les aires de stockages souterrains.

L'objectif du géotechnicien dans une mine est d'assurer l'extraction de la plus grande quantité de minerai possible en toute sécurité, d'où la connaissance des caractéristiques géotechniques et la compréhension du comportement des roches encaissantes sont primordiales.

La résistance des roches intactes, déterminée sur des éprouvettes en laboratoire, est en général élevée; un tel matériau, s'il était homogène et continu, pourrait supporter des sollicitations plus importantes que celles auxquelles il est habituellement soumis, mais, à l'échelle des ouvrages, la plupart des massifs rocheux se comportent comme des milieux discontinus, hétérogènes et anisotropes. Cette complexité du comportement des milieux rocheux est due à leur fracturation qui intervient à des échelles très variées.

Dans le présent travail, une approche numérique a été adoptée afin d'estimer les mouvements des terrains autour de l'ouvrage, et en suite de juger les résultats obtenus.

Ce mémoire est organisé en six chapitres :

Le **premier chapitre** présente des généralités sur les ouvrages et les mines souterraines, ses méthodes de creusement et les types de soutènement.

Le **deuxième chapitre** est consacré à la description géologique des différentes formations rencontrées ainsi que l'étude hydrogéologique et géotechnique du massif rocheux de la mine souterraine de Boukhadra au premier lieu, ensuite les méthodes d'exploitation utilisées dans cette mine.

Le **troisième chapitre** présente d'une part une recherche bibliographique sur les méthodes empiriques, analytiques et numériques de l'étude de stabilité des ouvrages souterrains les plus utilisées dans le domaine minier. D'autre part, l'application de ces méthodes sur la galerie 1045 (la mine de fer de Boukhadra).

Le **quatrième chapitre** est consacré à l'analyse de la résistance des roches selon les critères de Hoek-Brown et Mohr-Coulomb.

Le **cinquième chapitre** est consacré au calcul analytique d'interaction entre le massif excavé et le soutènement choisi, par la méthode dite "Convergence-Confinement".

Le sixième chapitre présente une modélisation de la galerie du niveau 1045 par la méthode des éléments finis au moyen du logiciel PHASE².

Enfin, ce travail sera clôturé par une conclusion générale.

I.1. Introduction

Les ouvrages souterrains constituent un domaine important et en plein développement de la géotechnique. En effet, l'extension des voies de communication (routes, autoroutes et voies ferrées) impose souvent des franchissements difficiles, qui conduisent généralement à la construction de tunnels. De même, l'encombrement de la surface du sol des villes rend nécessaire la construction en souterrain des nouvelles voies de circulation (voirie, métros) et de nouveaux équipements urbains (parkings, réseaux d'assainissement, etc.). Ces derniers ouvrages sont généralement construits à faible profondeur. L'utilisation des cavités souterraines pour le stockage de différents produits constitue également un domaine d'activités conséquent. Les ouvrages souterrains sont donc de types d'usages et de différentes dimensions.

I.2. Les ouvrages souterrains

I.2.1. Définition

On entend par « travaux souterrains » tous travaux exécutés en dessous de la surface du sol dans des excavations ayant une configuration complexe et évolutive. Un ouvrage souterrain est une construction réalisée sous le sol. La réalisation de celle-ci nécessite des travaux de déblais. Ces ouvrages sont souvent destinés :

• à la circulation des personnes, des véhicules et des marchandises (tunnels routiers et autoroutiers, tunnels ferroviaires, métro, ...);

• au stockage des déchets dangereux ou différents produits, en particulier des hydrocarbures

• à la production d'énergie (central nucléaire, central thermique.) ;

• à l'évacuation des eaux usées ou l'approvisionnement en eau potable (aqueduc).

I.2.2. Historique des ouvrages souterrains

Les premiers ouvrages souterrains « manufactures » remontent à l'antiquité, mais ils se sont toujours cantonnés à des faibles longueurs et à de petites sections. Le tunnel le plus ancien actuellement connu semble bien être celui qui été construit en Mésopotamie sous l'Euphrate, il y a 4000 ans à l'époque de la reine Sémiramis, d'une longueur de 1 Km, il reliait le palais royal de Babylone au temple de Jupiter.

L'art des mines ont aussi beaucoup développé au XVIIe siècle, mais il s'agissait d'ouvrages très provisoires et plus souvent de petites sections. Le premier véritable chantier de travaux souterrain pour l'usage public est le tunnel routier du Lioran (cantal), long de 1414 m, dont les travaux s'étalèrent de 1839 à 1846 [1].

I.2.3. Importance des ouvrages souterrains

Les ouvrages souterrains constituent la solution la mieux adaptée à la création de nouvelles infrastructures en zone urbaine et au franchissement des zones montagneuses. En zone urbaine, le sous-sol devient une alternative quasi incontournable aux problèmes d'occupation et d'encombrement de surface. La réalisation des travaux en souterrain permet de s'affranchir des obstacles, d'utiliser au maximum l'espace souterrain quasi illimité et de libérer la surface au sol [1].

I.2.4. Classification des ouvrages souterrains

Les structures souterraines sont définies comme des espaces fermés situés sous la surface du sol. Elles peuvent être percées soit sous la terre ou bien en plein air puis recouverts de remblais. Il est possible de classer ces constructions selon plusieurs critères.

D'après Mestat & al [1999], les structures souterraines peuvent être divisées en deux grandes familles :

• les ouvrages de section plus ou moins régulière et de grande longueur (tunnels, galeries, buses, tuyaux).

• les cavités souterraines et structures enterrées (usines et gares souterraines, parkings, lieux de stockage).

La classification des ouvrages souterrains peut être présentée en fonction de différents paramètres. Barton & al [1974] présente la classification de ces ouvrages en tenant compte de la sécurité requise sous la forme établie dans le TableauI.1.

Classe	Description		
А	Excavation minière à caractère temporaire.		
В	Puits verticaux.		
C	Galeries hydrauliques, collecteur d'assainissement, galeries de		
	reconnaissances		
D	Cavité de stockage, station de traitement d'eau, tunnels routiers,		
	tunnels ferroviaires, tunnels d'accès.		
E	Usines souterraines (plus souvent hydrauliques), tunnels		
	autoroutiers, tunnels ferroviaires, galeries du métro, abri de défense		
	civile.		
F	Centrales nucléaires souterraines, gères souterraines, salles ouvertes		
	au public (sports, spectacles)		

TableauI.1. Classification des	ouvrages souterrains [1]
--------------------------------	--------------------------

I.2.5. Principaux et différents types des ouvrages souterrains

Si l'on se réfère à leur objet, on peut distinguer plusieurs types de tunnels (TableauI.2)

TableauI.2.Les Principaux et	différents types des ouvrages	souterrains [2]
------------------------------	-------------------------------	-----------------

Les tunnels de	Les tunnels de	Les tunnels et cavités de	
communication	Transport	stockage	
- Les tunnels	- Adductions d'eau	- Garages et parkings	
ferroviaires	- Galeries hydrauliques	- Lieux des stockages liquides ou	
- Les tunnels routiers	- Égouts	gazeux	
- Les tunnels de	- Galeries de canalisations	- Dépôts	
navigation			

Si l'on se réfère à leur mode d'exécution, on peut distinguer :

- les tunnels ou cavités construits à ciel ouvert ;

- les tunnels construits en souterrain à faible ou forte profondeur ;
- les tunnels construits par éléments immergés.

I.2.6. Les problèmes majeurs liés à la construction des ouvrages souterrains

• La stabilité de terrain pendant les travaux notamment au front de taille ;

• Le choix de type de soutènement et de revêtement à mettre en œuvre pour assurer la tenue des parois à court terme, puis à long terme ;

• La maîtrise des mouvements engendrés en surface par le creusement particulier lorsque l'ouvrage est construit à une faible profondeur ou à proximité d'autres structures (en site urbain) ;

• Maîtrise les problèmes hydrauliques (présence d'une nappe phréatique).

I.2.7. Technique de construction des ouvrages souterrains

Depuis une trentaine d'années, de nouvelles méthodes de construction ont été introduites sur les chantiers, elles permettent de réaliser des ouvrages en site urbain dans des terrains meubles et aquifères sans occasionner de dégâts importants en surface du sol, la simulation d'un ouvrages souterrain est liée étroitement à la méthode d'excavation et la réponse du massif, la connaissance de ses techniques de construction est importante pour arriver à des phasages de modélisation satisfaisante.

I.2.7.1 Mode de creusement

Le choix de la technique à utiliser est un compromis entre la géométrie de l'ouvrage à réaliser, les caractéristiques du terrain à excaver, les spécificités du site et de son environnement, et les contraintes géologiques et hydrogéologiques. Présence d'eau souterraine). Les progrès des techniques d'excavation, de soutènement et d'enrobage de ces dernières années permettent désormais de construire des ouvrages sur tous types de terrains [3].

I.2.7.1.1 Creusement à l'explosif

Pendant de nombreuses années, le dynamitage a été la méthode la plus utilisée pour creuser des tunnels dans des roches de dureté moyenne élevée, à tel point qu'il est également connu sous le nom d'excavation conventionnelle. D'un point de vue technique ou économique, il est souvent utilisé pour la construction de tunnels dans la roche où le dynamitage manuel (marteaux-piqueurs, pelles hydrauliques) ou le terrassement mécanique n'est plus possible. Peut travailler en sections complètes et partielles (pour les grandes sections, les terrains médiocres, ou lorsque l'orientation du banc est défavorable aux coups perçants horizontaux). La séquence de tir prévoit généralement de faire exploser la charge située au centre du visage d'abord pour dégager le bouchon, puis de faire exploser de plus en plus de charges périphériques avec un retard de quelques microsecondes [4].

Cette technique d'abattage est effectuée de façon circulaire pour chaque vol vers l'avant selon les opérations de base suivantes (détaillées dans la figureI.1).

FigureI.1.Illustration du cycle classique de creusement à l'explosif [4].

I.2.7.1.2 Creusement mécanisé

Les conceptions de ces machines sont généralement directement héritées des plates-formes minières en deux catégories, à savoir les machines d'attaque ponctuelle et les machines d'attaque globale (Tunnelier) [5].

A. Machines à attaque ponctuelle

Ils sont généralement montés sur des châssis chenillés automoteurs. Le châssis supporte un bras mobile éventuellement télescopique équipé d'une tête de fraisage capable de balayer une surface frontale plus ou moins importante autour de sa position moyenne. Dans une machine d'attaque radiale, l'outil tourne autour d'un axe qui se prolonge comme un bras. Dans une machine à attaque latérale, les couteaux, également appelés tambours, tournent autour d'un axe perpendiculaire au bras et attaquent tangentiellement la face avant. Dans le premier cas, l'excavation de chaque couche commence par l'exécution d'un forage perpendiculaire à la surface frontale, permettant à l'outil de pénétrer dans le sol, et se poursuit par un fraisage incrémental de la paroi pré-excavée. Par conséquent, la fraise doit être équipée d'outils permettant ces deux modes d'excavation en continu. Dans le second cas, le creusement est toujours réalisé en principe par fraisage tangentiel à la surface cylindrique du « tambour » [5].

FigureI.2. Machine à attaque ponctuelle [5].

FigureI.3. Bras à attaque radiale [5]

FigureI.4. Bras à attaque transversale [5]

Les machines utilisées dans cette technique sont:

Haveuse :

Machine de pré-découpage (méthode consiste à réaliser une succession de saignées d'épaisseur 15 à 30 cm et de 3 à 5 m de longueur dont le tracé suit le profil théorique de l'extrados de la voûte) constituée d'un bâti support rigide auquel est fixé un chariot mobile pouvant se déplacer sur le contour de la section à excaver et équipé d'une scie spéciale (FigureI.5). Certaines haveuses permettent même de creuser des roches dures et abrasives (Figure I.6). [17]

FigureI.5. Schéma du principe de travail d'une haveuse. [17]

FigureI.6. Haveuse pour roche dures et abrasives (Rc > 120 MPa) [17]

4 Brise-roche hydraulique:

Le creusement de tunnels avec des brise-roche ou des fraises hydrauliques est une méthode courante lorsque le forage et le dynamitage sont interdits, limités ou économiquement impossibles, par exemple pour les tunnels courts (FigureI.7).

FigureI.7. Brise-roche hydraulique.[18]

\rm **Mineur:**

Les mineurs sont destinés à l'abattage du charbon et des matériaux tendres, en éliminant la nécessité du forage et de l'emploi d'explosifs. On distingue:

• Les mineurs continus sont très productifs et fiables dans les travaux d'exploitation minière continue.

• Les mineurs-boulonneurs destinés au percement de routes sécurisé et efficace et au boulonnage de toit dans les mines souterraines de charbon et autres matériaux tendres (FigureI.8.). [13]

FigureI.8. Mineur boulonneur [13]
🖊 Pelle rétro de chantier :

Elle s'enfonce à l'intérieur du tunnel afin de nettoyer les débris de roches présents sur le couronnement et la face verticale et achève la coupe à l'aide du m arteau hydraulique (FigureI.9).

FigureI.9. Pelle rétro sur chenilles.[15]

B. Machine à attaque globale

4 Foreuse Mécanique:

Les foreuses mécaniques permettent de creuser les galeries en pleine section à l'aide de larges têtes d'abattage radiales. Elles sont conçues pour abattre le matériau et le déposer dans les machines de transport auxiliaires selon une opération en continu. Les foreuses mécaniques peuvent fonctionner en simultané avec les équipements de transport qui évacuent le matériau et constituent une solution extrêmement efficace pour créer des entrées et des chambres d'abattage et extraire des piliers (FigureI.10).

FigureI.10. Foreuse Mécanique [13]

🖊 Aléseur

L'aléseur est une machine qui a les mêmes fonctions qu'un tunnelier à appui radial. Il réalise une section définitive à partir d'un avant trou axial (galerie pilote) dans lequel il trouve ses appuis radiaux.

FigureI.11. Aléseur

4 Tunnelier (Tunnel boring machine TBM):

Un tunnelier est une machine permettant d'excaver des tunnels dans des sols et des roches variées allant du sable au granite. Pour les percements d'un diamètre inférieur à 1,8 mètres ces machines sont appelées micro-tunneliers. Les tunneliers classiques de grand diamètre, à attaque globale, progressent dans le terrain sous l'action de vérins de poussée disposés à l'abri du bouclier entre la tête de forage et les anneaux de soutènement fixées mis en place successivement au fur et à mesure de l'avancement.

FigureI.12. Machine à attaque globale (tunnelier) [7]

Le tunnelier a comme avantage de limiter les perturbations dans la roche environnante et de produire une paroi de tunnel lisse. Les tunneliers ont été utilisés

Chapitre I Présentation des ouvrages souterrains

depuis les années 1950s pour la construction de divers tunnels pour des projets miniers à des fins d'accès, de transport des minerais et des rejets, de drainage, d'exploration, d'approvisionnement en eau et de détournement d'eau. Toute perception simplifiée que les tunneliers ne peuvent pas être utilisés pour des projets miniers est fausse.

FigureI.13. Les composantes de Tunnelier à bouclier [7]

L'engin (FigureI.14) comprenant un bouclier à attaque ponctuelle ou globale, les organes de pilotage et les dispositifs d'évacuation des déblais (marinage), de mise en place du soutènement (érecteur) et éventuellement d'injection. Il est complété par un train suiveur.

FigureI.14. Cycle des opérations minières dans le creusement des galeries. [13]

I.2.7.2. Choix de la méthode de creusement

Le choix de la méthode de creusement des ouvrages souterrains dépend notamment de la résistance à la compression simple Rc principalement, de la stabilité et de l'état de fracturation (cas de terrain rocheux).

FigureI.15. Choix de la méthode de creusement [13]

Dans la figureI.15, le diagramme comporte en abscisse la valeur de la résistance à la compression (1 à 300 MPa) et en ordonnée la fracturation exprimée en valeur du Rock Quality Designation (RQD) mesurée sur carotte (voir chapitre 4), ou à partir de l'indice de continuité (Ic). Où (vlm) est la vitesse de passage d'une onde ultrasonore mesurée sur échantillon, et (vlc) la vitesse calculée à partir de la composition minéralogique.

I.2.8. Techniques de creusement

Une technique de construction doit permettre l'abattage et la stabilisation du terrain tout en respectant certains critères d'économie et de rapidité. Plusieurs techniques existent et leur emploi varie selon le type de projet (géométrie de l'ouvrage, profondeur), on distingue trois techniques de creusement [6] :

- Méthode à pleine section.
- Méthode à en demi-section.
- Méthode à sections divisées.

I.2.8.1 Méthode à pleine section

Cette méthode consiste à excaver la totalité de la section du tunnel en une seule fois (figureI.16). Elle est couramment utilisée pour la plupart des tunnels creusés des roches de bonne ou d'assez bonne tenue pour les explosifs, ou pour les tunnels creusés dans des sols pour être couverte par un jumbo ou une machine à attaque ponctuelle. Dans le cas contraire, la méthode nécessite de gros engins et devient extrêmement couteuse [3].

FigureI.16. Méthode à pleine section [3].

I.2.8.2 Méthode à demi-section

Dans la méthode de forage en demi-section, la partie supérieure de la section est forée en premier et la partie inférieure est réalisée avec une différence de temps (FigureI.17). Si nécessaire, le soutènement doit être renforcé avant le perçage du filetage, aussi bien en partie haute (voûtes, blindage, béton projeté, béton) qu'en partie basse (microbilles sous voûtes, colonnes de jetgrouting en parois latérales). En général, le revêtement final n'est pas mis en place tant que toute la section n'a pas été forée [7]. Chapitre I Présentation d

FigureI.17. Méthode à demi-section [7].

I.2.8.3 Méthode à sections divisées

La question d'une éventuelle attaque d'une partie morcelée est liée à la fois à la stabilité du terrain et à la méthode d'excavation adoptée. Lorsque les propriétés mécaniques du sol sont telles que la stabilité des parois et du front ne peut être garantie si l'on continue à couper d'un coup toute la section et qu'on ne veut pas ou ne peut pas utiliser le bouclier, on adoptera généralement des fosses fendues (FigureI.18) [8].

FigureI.18. Méthode à sections divisées [8]

I.3 Le soutènement

I.3.1 Généralités

Chaque année, plusieurs accidents se produisent dans les mines souterraines, sauvent en raison d'un soutènement inadapté, basé sur une caractérisation incorrecte de la masse rocheuse. Pour cela, les auteurs proposent plusieurs méthodes de conception de soutènement qui tient compte de la taille des blocs rocheux des parois de l'excavation. Cet outil devrait aider les ingénieurs miniers et géologues à

Chapitre I Présentation des ouvrages souterrains

concevoir des soutènements qui peuvent prévenir la chute de blocs rocheux instables, offrant ainsi aux travailleurs un milieu de travail plus sécuritaire.

I.3.2 Définition

Le souténement est une structure qui permet d'assurer la stabilité des parois d'une cavité souterraine pendant le temps qui s'écoule entre son creusement et la mise en place éventuelle du revêtement définitif. Le souténement a pour but :

• De garantir la sécurité du personnel travaillant dans la galerie ;

• D'assurer la stabilité des parois de celle-ci dès la phase d'abattage du terrain et, si nécessaire, d'en limiter les déformations ;

• De protéger le terrain dans le cas où celui-ci est susceptible de subir une évolution défavorable (altération, déconsolidation, etc...) après ouverture, conduisant à une diminution inacceptable de ses caractéristiques. [12]

I.3.3 Classification des modes de soutènement

Les soutènements sont généralement classés en quatre catégories principales.

1) Les soutènements agissant comme supports : C'est le soutènement seul qui doit résister aux différents efforts, dans le cas où le terrain à des caractéristiques géo mécaniques faibles [9].

Les éléments employés sont essentiellement :

- Les cintres (lourds et légers) ;
- Plaques métalliques assemblées ;
- Tubes perforés ;
- Voussoirs en béton ;
- Bouclier ;

2) Les soutènements agissant à la fois par confinement et comme armature du terrain encaissant : [9].

Il s'agit du boulonnage sous diverses formes, qu'il soit ou non associé au béton projeté, aux cintres légers ou aux deux dispositifs simultanément :

• Boulons à ancrage ponctuel (à coquille ou à la résine) : fixés par voie mécanique ou chimique.

• Boulons à ancrage réparti (scellés à la résine ou au mortier) :(scellés à la résine ou au mortier).

• Barres foncées.

3) Les soutènements agissant par confinement du terrain encaissant: Ce sont essentiellement :

- Le béton projeté seul,
- Le béton projeté associé à des cintres léger

4) Les soutènements agissant par consolidation du terrain et modification de ses caractéristiques géotechniques ou hydrologiques: [10]

- Injections de consolidation.
- Air comprimé.
- Congélation.

I.3.4 Choix d'un type de soutènement [11]

Le choix raisonné de d'un type de soutènement comprend deux phases successives :

1. Une phase d'analyse technique du problème qui aboutit à l'élimination d'un certain nombre de types de soutènement n raison de leur incompatibilité avec certaines des données techniques du projet qui peuvent être d'ordre géotechnique, géométrique ou liées à l'environnement.

2. Une phase complémentaire d'analyse économique qui fait intervenir :

• D'une part le dimensionnement du soutènement qui est l'un des éléments de calcul du cout.

• D'autre part les éléments de prix de revient propres à l'organisation du chantier considéré : plus au moins grande mécanisation, longueur du tunnel et un délai à respecter.

I.3.5 Les différents types de soutènement

On distingue deux grandes catégories de soutènements :

✓ Boulonnage : Sont des boulons qui arment le terrain ou qui associés ou non à du béton projeté, apportent à la paroi d'excavation une pression radiale rendant en quelque sorte le terrain apte à se soutenir lui-même.

✓ Les cintres : peuvent être définis comme des ossatures le plus souvent métalliques en forme d'arcs ou de portiques disposés dans la section transversale de l'ouvrage. Ils ne sont pas jointifs et constituent un soutènement discontinu du terrain. Un des intérêts d'utiliser le béton comme blindage entre les cintres est de rendre plus efficace l'action du soutènement. [12]

I.3.5.1 Boulonnage

Chapitre I Présentation des ouvrages souterrains

Le boulonnage est une technique légère de soutènement, utilisé en premier lieu en mines souterraines puis développé dans les tunnels, les galeries...etc. On distingue deux grands types de boulons :

1. Les boulons passifs ne sont sollicités que par le déplacement du terrain autour de la paroi. Il en existe deux familles qui ne fonctionnent pas de la même façon :

a) Les boulons à ancrage ponctuel : ce sont les plus anciens ; ils sont fixés au rocher à leur extrémité par une coquille qui s'écarte lorsqu'on visse la tige. Sur la paroi, on visse l'écrou du boulon sur une plaquette. On privilégiera ces boulons pour les roches dures ;

FigureI.19. Boulon à ancrage ponctuel [9].

b) Boulons à ancrage réparti : comme leur nom l'indique, ils sont scellés au terrain sur toute leur longueur. On distingue deux sous-familles technologiques :

• Les boulons scellés : le scellement peut-être du mortier ou de la résine synthétique.

FigureI.20. Boulon à ancrage reparti [9].

• Les boulons à friction : ils n'ont pas besoin de scellement et sont directement au contact des parois du forage par un emmanchement à force (tube fendu) ou par hydro-gonflage (dépliage d'un tube). Ces boulons, particulièrement adaptés aux roches tendres, ont maintenant pratiquement remplacé leurs aînés à ancrage ponctuel car ils sont très rapides à mettre en place et agissent immédiatement.

FigureI.21. Boulons à friction [9].

2. Les boulons actifs sont précontraints. La tige pleine (barre Dywidag ou Arteon) ou le câble de torons sont scellés loin de la paroi par injection d'un coulis de ciment. Ces inclusions sont utilisées pour le soutènement des grandes cavités.

I.3.5.2 Les cintres

Il s'agit d'ossatures en forme d'arcs ou de portiques, disposées selon la section transversale de l'ouvrage et dont les membrures sont placées le long des parois de l'excavation, le calage contre le terrain se faisant soit directement, soit par l'intermédiaire d'une "peau" ou blindage masquant totalement ou partiellement la paroi. Ils sont généralement composés d'éléments relativement rigides. La forme des pièces qui les composent, et qui peuvent être en bois, en métal ou en béton, se rapproche autant que possible du profil de l'ouvrage. C'est ainsi que, dans le cas où ce profil est courbe et où la structure est constituée de profilés métalliques, ceux-ci sont généralement "cintrés" pour épouser la forme précise du profil.

• Le rôle des cintres :

Protection : Protéger contre la chute de blocs. Ils sont destinés à assurer une protection provisoire du personnel.

Chapitre I Présentation des ouvrages souterrains

Soutènement : Ralentir les phénomènes de déformation et de convergence des parois avant la mise en place du revêtement définitif.

Renforcement : consolider ou à restaurer les ouvrages anciens.

👃 Les cintres en bois :

Sont de plus en plus rarement utilisés en raison notamment du fait qu'ils nécessitent une main-d'œuvre très qualifiée pour la mise en œuvre ; ils sont réservés aux petits ouvrages ou aux ouvrages de section irrégulière.

FigureI.22. Les cintres en bois [9].

🖊 Les cintres métalliques lourds :

Constitués de profilés de forte inertie cintrés ou assemblés de façon rigide sont capables d'agir comme de véritables soutènements dans la mesure où la section du souterrain n'est pas trop importante. Suivant leur mode d'assemblage, il peut s'agir de profilés simples, accouplés ou à treillis. Les profils les plus fréquemment utilisés vont de l'H 140 à l'H 260. On peut aussi classer dans cette catégorie les cintres mobiles ou télécopiables que l'on déplace au fur et à mesure de l'avancement du front [9].

FigureI.23. Cintres lourds [9].

22

4 Cintres métalliques légers :

Ces cintres présentent une capacité de portance limitée et une grande déformabilité. Ils sont d'un maniement beaucoup plus aisé que les cintres rigides et peuvent être utilisés uniquement à titre de protection [9].

Figure I.24. Cintres légers [9].

Cintres en bétons.

Il existe cependant deux types d'application du béton qui peuvent être rattachés à la catégorie des cintres, il s'agit:

 \checkmark Cintres à armature réticulée : Cintres constitue de 3 aciers HA reliés entre eux par des aciers de plus faibles section et facilement cintrables a la forme de l'excavation.

FigureI.25. Cintre réticulé [9].

✓ Cintres préfabriqués en béton arme : Qui peuvent être utilisés dans les fonctions de soutènement ou de renforcement.

FigureI.26. Cintre préfabriqué [9].

I.3.5.3 Béton projeté :

Le béton projeté est avant tout une méthode de mise en place. C'est mélange de base projeté par voie pneumatique à l'aide d'une lance pour former une masse dense et homogène rendue compacte par sa propre énergie cinétique. Il constitue ce que l'on a appelé la méthode de construction avec soutènement immédiat par béton projeté et boulonnage.

FigureI.27. Béton projeté [9].

I.4 Conclusion

Dans ce chapitre nous avons donné un aperçu général sur les ouvrages et les mines souterrains. On s'est concentré et abordé la nécessité de déterminer la méthode de creusement pour l'extraction de minerai en toute sécurité ainsi que le rôle principal du soutènement pour assurer la sécurité des excavations.

II.1 Introduction

Les conditions géologiques et hydrogéologiques sont des facteurs déterminants du degré de difficulté et du cout de réalisation d'un ouvrage souterrain et elles ont une grande influence sur le choix des méthodes d'excavation et de soutènement. Cette partie est consacrée à la situation géographique ainsi que l'historique des travaux géologiques et miniers concernant le gisement de Boukhadra.

II.2 Historique de la mine

L'exploitation de la mine de Boukhadra fut entamée durant l'époque Romains pour l'extraction du cuivre dans la zone de pic ; par la suite l'exploitation a porté sur le zinc et autre poly métaux par la concession de Boukhadra [Mr TADRO].

• Entre 1903 et 1906, la concession Mokta El Hadid réalisa les premiers travaux de recherche par galerie entre les niveaux 845 et 1225;

• De 1926 à 1966, date de nationalisation des mines, c'était la société de l'Ouenza qui exploitait le gite de Boukhadra. Cette dernière avait effectué de la recherche systématique par des travaux miniers et par des sondages sur le gisement de Boukhadra;

• Durant la période de 1967 à 1984 la SONARE Métal chargée de l'exploitation et des recherches sur les gites ferrifères de l'Ouenza et Boukhadra ;

• Après la restructuration des entreprises (1983-1984), c'était FERPHOS qui gérait, exploitait, et développait ces recherches sur l'ensemble des gites ferrifères existant sur le territoire national ;

• Depuis la date du 18/10/2001 et dans le cadre de partenariat avec l'étrangère Holding L.N.M.N.V. a signé l'accord de partenariat avec HADID OUENZA BOUKHADRA filiale FERPHOS avec70% ;

• Le 01/01/2005 la nomination a été modifiée par Mittal Steel Tébéssa ;

• Le 18/08/2007 la nomination a été modifiée par Arcelor mittal Tébéssa.

• Depuis 2016, la société des Mines de fer de l'Est (MFE) gère les travaux d'exploitation et de développement jusqu'à ce jour. [20]

II.3 La géologie de la mine

II.3.1 Situation géographique

Le djebel de Boukhadra se situe sur l'atlas saharien, à l'Est Algérien. L'unité de Boukhadra se trouve à une altitude de 850 m, le point culminant du djebel est de 1463 mètres. La ville de Boukhadra fait partie de la willaya de Tébessa, elle se situe à 45Km au Nord-est de celle -ci, à 200Km au sud de la ville côtière d'Annaba, et à 18Km de la frontière Tunisienne. Elle est reliée à Annaba par une voie ferrée qui assure le transport du minerai de fer au complexe d'El-Hadjar.

Le climat est continental et sec, les températures varient entre 40°C en été et 0°C en hiver, la pluviométrie est faible, parfois de faibles chutes de neige. Le gisement est entre les méridiens 8° -01' 8° -04' Est et les parallèles 35° -40'et 35° -50' Nord.

Figure II.1. Situation géographique de la ville du Boukhadra [21].

II. 3.2 Stratigraphie

Djebel Boukhadra appartenant au domaine de l'atlas saharien est caractérisé par une structure géologique anticlinale très simple, de direction NE/SO, avec une terminaison périclinale au NE. Le cœur de la structure est représenté par des sédiments de l'Aptien.

• Du point de vue litho-stratigraphique, la région de Boukhadra est constituée par des sédiments du mésozoïque tertiaire en partie du quaternaire.

• En dehors du trias évaporitique, les terrains qui affleurent dans l'Atlas saharien oriental sont caractérisés par des dépôts allant du crétacé inférieur au miocène. [20] Les principales formations géologiques qui affleurent dans le massif de Boukhadra:

✓ Les évaporites du Trias ;

✓ Les séries sédimentaires du Crétacé moyen et supérieur ;

 ✓ Les formations du Miocène ; On remarque l'absence des terrains du Jurassique et du Paléogène. ChapitreII Présentation de la mine de Boukhadra

Figure II.2. Carte géologique de la mine de Boukhadra (Dubourdieu, 1956).

II.3.2.1 Trias

Les dépôts du trias sont développés dans les parties Ouest- Sud et Sud – Est, ils sont représentés par des marnes bariolées, gypses dolomies (cargneules) et les débris de calcaires et degrés. Ces formations sont en contact anormal ou en discordance avec les dépôts du crétacé (Aptien) suite au phénomène de diapirisme .Dans la carrière de Boukhadra (gîte ouest) le trias affleure aux niveaux 890- 902 et 914.

II.3.2.2 Le crétacé

Dans le profil du crétacé, nous retrouvons le Cénomanien, l'Aptien, l'Albien, le Coniacien, et le Cénomanien où on a la série Aptienne, porteuse de la minéralisation est caractérisée par des marnes et des calcaires constituant la partie inférieure qui encaisse le gîte Sud, des calcaires récifaux construits, à organismes fossiles qui constituent le niveau porteur de la minéralisation principale et des grés et calcaires de la partie supérieure de l'Aptien non productif et on a :

📥 L'Aptien

Les dépôts ou les sédiments aptiens de la région Boukhadra occupent des vastes surfaces. L'aptien se présente sous forme de deux faciès bien distincts :

✓ Faciès carbonaté (calcaire)

✓ Faciès terrigènes (marneux- gréseux- calcareux).

📥 L'Albien

La base et le sommet de l'albien sont surtout représentés par des marnes, la partie moyenne étant constituée dans une large mesure par des calcaires sublitographiques.

📥 Vraconiene

La séquence est composée de minces lits de marnes avec intercalation d'argile marneuse noires et de calcaires marneux-argileux. La puissance maximale est de (470m).

📥 Le Cénomanien

Il s'agit d'une série de marnes gris ou verdâtres grises, avec par endroits des intercalations de calcaires.

📥 Turonien

Les dépôts de cet âge s'observent dans la partie Ouest et Sud du domaine traité. Il s'agit surtout de calcaires épais et massif pélitique marneux dans la partie basale, avec de rares minces intercalations de marnes. La puissance est variable, décamétrique jusqu'aux quelques centaines de mètres.

📥 Coniacien

Contient les marnes argileuses avec intercalation d'argile marneuse et par endroit de calcaire marneux.

II.3.2.3 Le Tertiaire

Les dépôts classés comme Tertiaire (miocène) sont observés seulement dans la partie occidentale du domaine étudié et sont représentés par des conglomérats à éléments variés, cimentés par une matrice carbonatée et des intercalations de roches gréseuses.

II.3.2.4 Le Quaternaire

Les dépôts du quaternaire sont formés par un matériel caillouteux, blocs de calcaires, grés débris de minerai et les conglomérats, ils sont répandus sur les flancs de la montagne et les parties basses du relief. [20]

Figure II.3. Log stratigraphique du Djebel Boukhadra [21]

II.3.3 Tectonique

La région de Boukhadra est marquée par deux phases tectoniques ; la phase de plissement et la phase de tectonique cassante. Dans la structure anticlinale de Boukhadra, on observe deux grandes dislocations tectoniques :

• La lère se prolonge presque parallèlement à l'axe de l'anticlinal à partir du pic vers la terminaison périclinale.

• La 2 ème zone de dislocation tectonique de direction WNW-ESE coupe la structure dans sa partie centrale en deux parts, l'amplitude de cette dislocation peut arriver jusqu'à 1000 mètres.

• D'autres failles, sans importance majeure sont à signaler. [20]

Le diapirisme : Triasique avait une contribution principale dans la formation de la structure du djebel Boukhadra.

D'après les études hydrogéologiques il n'y a aucune nappe aquifère en eau potable dans la région minière de Boukhadra mais il existe une nappe aquifère d'eau non potable qui est caractérisée par un niveau hydrostatique égal à 818m. Selon le relief la géomorphologie, deux sources apparaissent en surface dans le niveau 977m, une source à débit faible (Ain Zazie) qui aide à combler le manque d'eau rencontré auprès la population. Dans le niveau Amont 926m, un mince filet d'eau apparait entre les marnes cette eau est récupérée par une citerne pour l'arrosage de la piste ainsi dans les forages. [20]

II.3.5 Hydrologie

Selon la géologie on ne peut pas parler d'oueds, ou de réseau hydrographique proprement dit, mais on remarque des talwegs secs pendant une longue période de l'année et à faible écoulement, leurs captages sont pratiquement impossibles à cause de la topographie et leurs faibles quantités. [20]

II.3.6 Minéralisation du gisement du Boukhadra

II.3.6.1 Nature du minerai exploité

• Le minerai exploité est le fer sous forme d'oxyde de fer montré par l'hématite rouge (Fe2O3) présente en abondance dans ce gisement avec une teneur moyenne de 54% de fer.

• Le gisement est de forme ventriculaire, dont la genèse est hydrothermale ou sédimentaire, d'une longueur de 900 à 2200m et d'une puissance variant de 10 à 15m. [22]

II.3.6.2 Caractéristiques de la minéralisation

La minéralisation est de type hématite-limonite résultant de l'oxydation de la sidérite. Minerai est de l'hématite de formule chimique Fe2O3 et de densité d = 2.7La teneur en Fer varie de 51 à 54 %.

Eléments	SiO2	CaO	MgO	A12O3	BaSO 4	S	Mn	Cu	Р
Teneur en %	4.00	7.10	2.00	2.25	Trace	0.04	1.98	Trace	0.02

Tableau II.1. Composition chimique moyenne du minerai de Boukhadra [22]

II.3.7 Morphologie du gisement

Le gisement ferrugineux de Boukhadra, appartenant au domaine de l'Atlas saharien est localisé dans le massif montagneux de Djebel Boukhadra, caractérisé par une structure anticlinale très simple de direction NE-SO avec une terminaison périclinale au NE.

Djebel Boukhadra s'étend sur une longueur de 7 à 8 Km et une largeur variant de 3 à 5 Km, suivant une direction NE-SO. Les côtes absolues dans les limites de la concession minière variant de 750Km au pied de la montagne à 1463m au point culminant, localisé au niveau du pic de Boukhadra. [22]

Globalement le gisement de Boukhadra est composé de quatre (04) corps minéralisés principaux et les petites veines de moindre importance :

- Corps principal ;
- Corps Nord ;
- Corps Médian ;
- Corps Sud ; et les petites veines de moindre importance.

Figure II.5. Plan topographique du gisement de Boukhadra.[21]

Figure II.6. Vue panoramique sur les trois filons de la carrière principale. [21]

II.4 L'exploitation de la mine de Boukhadra

L'exploitation de la mine de Boukhadra se fait par deux modes d'exploitation, ce dernier est composé des quartiers d'exploitation à ciel ouvert et souterrain qui représente environ 50 millions de tonnes des réserves de fer avec une teneur supérieur à 50% en fer. Les quartiers sont les suivants :

- Mine à ciel ouvert principale, se divisée en : Site amont,
 - Site médian,
 - Site aval.

- Quartier BK II,
- Quartier souterrain,
- Quartier Ain Zazia.

Actuellement, les travaux d'exploitation sont s'effectues au niveau de la mine à ciel ouvert principale avec ses trois sites (amont, aval et médian) qui représente les principales sources de minerai de la mine avec le quartier. Concernant les autres quartiers, le quartier BK II est épuisé, d'autre part, le quartier Ain Zazia représente une faible teneur du minerai. [20]

II.4.1 Exploitation à ciel ouvert

Elle est appliquée sur trois sites :

- Carrière Pic : épuisée

- Carrière Principale : les travaux d'exploitation sont arrêtés et ils ont procédé à des travaux de développement.

- Carrière BKII : elle est en développement.

L'ouverture est faite au moyen de tranchées communes multiples, la hauteur du gradin est de 15 m dans les parties amont, de 12 m dans les parties aval, à l'exception du site PIC elle est de10m.

Figure II.7. La carrière de la mine de Boukhadra.

Paramètres	Désignations	Valeurs	Unités
Hauteur de gradin	Hg	15	М
Largeur d'enlevure	А	4.2	М
Largeur de la plate-forme de travail	L _{pt}	76.26	m
Largeur du tas de roche abattus	Х	46.42	m
La chausse de transport	Т	15.47	m
Largeur de prisme d'éboulement	Z	3.67	m
Largeur de prisme d'éboulement	V_{cha}	225	m/p
Vitesse d'avancement du front	A _{an}	31.9	m/an

TableauII.2. Paramètres de la méthode d'exploitation à ciel ouvert [22]

* Les travaux de Foration, de chargement et de transport

La foration s'effectue aux moyens de sondeuses, de chariots et de marteaux perforateurs. Les diamètres des trous de foration sont respectivement de 160 mm, 80 mm et de 26 mm. L'abattage s'effectue à l'explosif par tir électrique.

Dans la mine de Boukhadra les engins utilisés pour les travaux de chargement sont :

• Une chargeuse sur pneus CATERPILLAR 990k d'une capacité du godet de 8.6 m³.

• Pelle LIEBHERR 414 d'une capacité du godet de 6 m³.

Le transport s'effectue à l'aide des camions de type CATERPILLAR 775 G de capacité 60 Tonnes vers les terrils extérieurs au périmètre d'exploitation pour le stérile sur une distance d'un (1) Km et vers le concasseur pour le minerai sur une distance de 4 Km.

Les travaux de terrassement se fait par le bulldozeur.

Figure II.8.Sondeuse de type I-RAND I4BH et Chargeuse de type Caterpillar 990 k

Figure II.9. Camion 537 Caterpillar 775G

II.4.2 Exploitation souterrain

Le gisement de Boukhadra est situé dans un relief montagneux et considéré comme un gisement dressant par conséquent l'ouverture est réalisée par galerie au jour, cette galerie est située au niveau 1105m et elle constitue le niveau de base de la 3ème phase et le niveau de tête de la 4ème phase. Elle est utilisée pour le roulage (le transport du minerai exploité), l'aérage, la circulation des ouvriers et les matérielles. [20]

L'exploitation souterraine localisée dans la partie Sud de gisement (corps Sud) qui est divisé en trois (03) axes :

- ✓ Axe Nord;
- ✓ Axe Sud-est;
- ✓ Axe Principal.

Figure II.10. Ouverture par galerie au jour, niveau 1105.

II.4.2.1 Les avantages de l'ouverture par galerie au jour

• Simplicité de schéma d'ouverture ;

• Absence des dépenses pour la construction des installations des culbutages et d'extraction ;

• Rapidité de la mise en œuvre de la mine ;

• Possibilité d'emploi du transport sur pneu.

II.4.2.2 Caractéristiques de la galerie de la mine de Boukhadra

Tableau II.3. Caractéristiques de la galerie de la mine de Boukhadra. [21]

Paramètres	Valeur	Unité
Hauteur moyenne	3	М
Largeur moyenne	4	М
Section	12	m ²
Longueur	800	М

II.4.2.3 Les travaux de Foration et de tir

La Foration dans le souterrain est par des trous profonds en éventails elles s'effectuent par un chariot de Foration travaillons a l'air comprimé.

L'abattage s'effectue à l'aide des explosifs de type Samex et Anfomil par tir électrique. [20]

Méthode de forage des trous d'abattage forme de ventaille

Figure II.11. Schéma du plan de tir souterrain [21]

II.4.2.4 Les travaux de chargement et de transport

Après l'abattage du minerai, l'évacuation de ce dernier se fait en deux étapes :

- La première étape : consiste à déverser le minerai vers la cheminée principale, qui assure la liaison entre les niveaux supérieurs et les niveaux inférieurs.

ChapitreII Présentation de la mine de Boukhadra

- La deuxième étape : consiste à charger le minerai stocké à la base de la cheminée principale par une chargeuse souterraine, et le transporter par un camion souterrain jusqu'à la zone de Stockage située au niveau 1105m à ciel ouvert. Après il sera transporté à l'aide des camions jusqu'à la zone de préparation mécanique.

• Le chargement du minerai est assuré par une chargeuse transporteuse pneumatique type ATLAS COPCO St 1020 d'une capacité de godet de 3.8 m³.

Figure II.12. Chargeuse transporteuse pneumatique type ATLAS COPCO St 1020
Le transport du minerai au jour est assuré par des camions navettes de capacité de 20 Tonnes de type ATLAS COPCO (MT 2000).

Figure II.13. Camion navette ATLAS COPCO MT2000.

II.4.2.5 Les méthodes d'exploitation appliquent au niveau souterrain

Il y a plusieurs méthodes d'exploitation qui ont été expérimentées depuis le début des travaux d'exploitation jusqu'à nos jours, ils représentent comme suit :

• Méthode d'exploitation par chambre magasin au fond du niveau 1105 sur les deux axes Nord et Sud-est (période 1974 jusqu'à 1976, méthode SOVIETIQUE) ;

• ler étage (niveau 1255/ 1285) Méthode d'exploitation en sous niveaux foudroyés bloc 1 et 2 (variante SUEDOISE) ;

2^{eme} étage (niveau 1165 / 1225) méthode d'exploitation en sous niveaux abattu
 Période 1992/1999 ;

3^{eme} étage (1105/1165) axe nord méthode d'exploitation en sous niveaux abattu.
[20]

II.5 Régime de travail de la mine de Boukhadra

II.5.1 Organisation des travaux d'exploitation

Vu de besoins croissant et compte tenu de la matière première, la mine est dotée D'un régime de travail de 16h/24h effectué selon le calendrier suivant :

- 1er Poste de 5 h à 13h
- 2éme poste de 13h à 21. [20]

• Pour les travaux d'extraction - chargement et de transport :

✓ Pour le minerai :	- Nombre de postes 2	p/j
---------------------	----------------------	-----

- Durée d'un poste 8 h

- ✓ Pour le stérile : Nombre de postes 2 p/j
 - Durée d'un poste 8 h

• Pour les travaux de forage et de tir :

✓ Foration : - Nombre de postes 2 p/j

- Durée d'un poste 8 h

✓ Chargement des trous : - Nombre de poste 1 p/j

- Durée d'un poste 5 h

II.5.2 Production de minerai

• Production annuelle planifiée : [22]

Pan =280550 t/an. (Donnée par l'entreprise)

• Production par mois : Pmois =Pan/ (Nmois/an); (t/ mois)

Nmois/an = 12 mois

Pmois =280550/12 Alors : Pmois =23379.16 T/mois

39

• Production par semaine : P semaine =Pmois/ (Nsemaine/moi), t/semaine

Nsemaine/mois = 4 semaines

Psemaine=23379.16/4= 5844.78 t/semaine

• Production journalière : Pj = Pan/(Nj/an) t/jour

Où : ✓ Pour le stérile : Nj/an=330 jour/an

Pj = 280550/330 = 850.15 t/jour

✓ Pour le minerai : Nj/an=266 jour/an

Pj = 287450/266 = 1054.69 t/jour

• Production par poste : Pp = Pj/(Np);(t/poste)

Où : ✓ Pour le stérile : Pp=850.15/2= 425.07 t/poste

✓ Pour le minerai : Pp=1054.69/2= 527.34 t/poste

II.6 Durée de vie de la mine

Tv= Tc +Rexp /Pan +text; an

Tc : durée de construction de la mine = 2 ans

Rexp : réserves exploitables

 $Rexp = 12\ 000\ 000\ tonne$

Pan : production annuelle planifiée de la mine = 288550 tonnes

text : durée d'extinction de la mine = 2 ans.

Alors : $Tv = 2 + (12\ 000\ 000/280550) + 2$ Tv = 47 ans

II.7 Conclusion

On a abordé dans ce chapitre les conditions géologiques et minières de la mine de Boukhadra, ces conditions ont un rôle très important sur le plan stratégique (à long terme), tactique (à moyen terme) et opérationnel (à court terme) des études technicoéconomiques de la mine.

III.1. Introduction

Les méthodes de classification empiriques des massifs rocheux sont fondées sur des corrélations entre, d'une part, l'identification physique et la classification des roches et, d'autre part, des caractéristiques de soutènement. Ces méthodes sont utilisées dans les études préliminaires et ne concernent que les ouvrages creusés dans les roches. Elles présentent l'avantage d'être simples et rapides, donc peu couteuses, Néanmoins, leur emploi et l'interprétation des résultats nécessitent une certaine habileté de la part de l'ingénieur d'études.

L'utilisation d'une classification géomécanique donne beaucoup d'avantages comptés par plusieurs auteurs comme suit :

• Produit une meilleure communication entre la géologie, l'ingénierie et la production;

• Les expériences, les observations et le jugement de l'ingénieur sont corrélés plus efficacement par un système de classification quantifiable ;

• Les ingénieurs préfèrent des chiffres au lieu de description pour l'évaluation du massif rocheux ;

• Les classifications permettent de mieux organiser les connaissances.

Mais pour qu'une classification remplir son rôle elle doit présenter les caractéristiques suivants :

- Être simple d'applicable et reproductible ;
- Présenter et définir les termes d'une manière claire, précise et reconnue ;
- Incorporer les paramètres significatifs de la masse rocheuse ;

• Permettre une évaluation quantitative des divers paramètres, par des essais simples et peu dispendieux sur le site ;

• Contenir un système de pointage adéquat permettant de considérer chacun des paramètres selon son importance relative ;

• Fournir les données comptabilisées, en valeurs qualitatives et quantitatives à l'ingénieur. Depuis un siècle, différents chercheurs ont essayé de caractériser la roche afin d'extrapoler des relations empiriques pour le design sécuritaire des excavations.

III.2 Généralités

On peut classer les méthodes de dimensionnement du soutènement en trois grandes catégories (voir Figure III.1) :

1- Méthodes métrologiques :

On peut citer trois méthodes :

- Pression sur le soutènement.
- Contrainte dans le soutènement.
- Mouvement du massif.

2- Méthodes empiriques :

Les plus utilisés sont celles de :

- Dejean Raffoux.
- M. Protodiakonov
- A.F.T.E.S
- GSI (Geological Strength Index)
- Barton et Al.
- Z.Bieniaswski.
- D.Deere.
- Lauffer.
- Terzaghi.

3- Méthodes analytiques et numériques :

On a :

- Réactions hyperstatiques.
- Intégrales frontières.

- Éléments finis.
- Différence finis.
- Blocs rigides.
- Éléments distincts.
- Convergence-confinement.

Dans ce travail on utilise les méthodes de Deere, Z.Bieniaswski, N.Barton et la méthode de convergence-confinement.

III.3 Méthodes empiriques

III.3.1 Méthode de D.Deere (RQD)

Le Rock Quality Designation (RQD) a été développé par Deere et al. (1967) à fin de donner une estimation quantitative de la fracturation influençant le comportement de la masse rocheuse à partir de l'examen de carottes obtenues par des forages.

Le RQD est défini comme le pourcentage des morceaux intacts de longueur supérieure à 10 cm, sur la longueur totale du forage. Ce paramètre est défini comme suit :

RQD = (L1 + L2 + ... + Ln) / L x 100%

FigureIII.2 Exemple de calcul d'un RQD

La relation entre la valeur du RQD et la qualité du massif peut être établie selon la proposition de (Deere, 1968) et elle est présentée au tableauIII.1 ci-dessous.

Tableau III.1 : Corrélation entre l'indice RQD et la qualité du massif rocheux (tiréde Deere, 1968) [24]

RQD (%)	Qualité du massif rocheux
< 25	Très pauvre
25 - 50	Pauvre
50 - 75	Moyenne
75 - 90	Bonne

Deere (1964, et al, 1966, 1970) et d'autres comme Merrit (1968) basaient leurs méthodes de classification des ouvrages souterrains principalement sur ce paramètre (figure III.3).

Figure III.3. Type de soutènement en fonction du R.Q.D. et de la portée du tunnel.[33]

III.3.2 Méthode de Bieniawski (RMR)

Cette classification a été développée par Bieniawski [1973] au South African Council of Scientific and Industrial Research (SACSIR). Elle est basée sur l'étude de quelques centaines de tunnels creusés principalement dans des roches sédimentaires à profondeur modérée. L'utilisation de cette classification nécessite de diviser au préalable le site en régions homogènes d'un point de vue de structures géologiques. Chaque région est classifiée séparément.

Le RMR résulte de la somme de cinq notes de caractérisation (de A1 à A5) et d'une note d'ajustement). La somme de ces notes attribue une valeur comprise entre 0 et 100 au massif. Cette valeur utilise à plus de 70% la fracturation et elle accorde 15% d'influence aux propriétés de la matrice rocheuse et 15% à la présence d'eau (AFTES [2003]).

La distribution des notes correspondant à chaque cas est détaillée dans l'annexe 1.

Quant à la signification des indices du RMR, ils sont définis comme suit : [3]

• A1 (Strength of intact rock material) : la résistance à la compression simple de la matrice rocheuse est obtenue, soit par procédure d'écrasement d'un échantillon, soit par procédure de chargement ponctuel (note : de 0 à 15).

• A2 (Rock Quality Designation RQD, Deere [1964]) : il caractérise la qualité des carottes de sondage en calculant le rapport entre la longueur cumulée des carottes supérieures à dix centimètres et la longueur to

tale considérée (note : de 3 à 20).

• A3 (Spacing of discontinuities) : dans le cas de plusieurs familles de fractures le minimum des notes attribuées à l'espacement des fractures est considéré (note : de 5 à 20).

• A4 (Conditions of discontinuities) : cet indice caractérise l'extension, l'ouverture, la rugosité, le matériau de remplissage et l'altération des épontes des discontinuités (note : de 0 à 30).

• A5 (Groundwater conditions) : Il est en rapport avec les conditions hydrogéologiques et consiste à réaliser des mesures de flux d'eau ou de pressions interstitielles des joints (note : de 0 à 15).

• **B** (Adjustement for joint orientation) : c'est un facteur correctif qui est en rapport avec l'effet de l'azimut et du pendage des familles de discontinuités sur la stabilité de l'ouvrage (note : de -12 à 12 pour les tunnels, de -25 à 0 pour les fondations et de -60 à 0 pour les talus).La somme des cinq premiers indices caractérise le RMR de base. Quant aux travaux souterrains, il faut ajouter l'effet du facteur correctif (Bieniawski [1989]). Le RMR89 s'écrit alors :

$$RMR89 = A1 + A2 + A3 + A4 + A5 + B$$
(2)

Cette classification ne prend pas en considération l'état de contrainte in-situ ni la rugosité des fractures et l'angle de frottement du matériau de remplissage ; les roches gonflantes n'y sont pas non plus traitées. L'application de cette classification est limitée aux cas de massifs dont la matrice a une bonne résistance et dont le comportement est régi par les discontinuités.

* Estimation des paramètres mécaniques à partir du RMR

Pour les cinq classes définies par le RMR, Bieniawski [1989] propose un angle de frottement interne et une cohésion homogénéisée du massif rocheux (tableau IV.2).

Tableau III.2 : Classes et propriétés globales des massifs rocheux (selon Z. Bieniawski)

Valeur du	81 à 100	61 à 81	41 à 60	21 à 40	0 à 20
RMR					
Classe	Ι	II	III	IV	V
	Très bon	Bon rocher	Rocher	Rocher	Rocher
Description	rocher		moyen	médiocre	très
					médiocre
Cohésion		300 à 400	200 à 300	100 à 200	<100
C _m (KPa)	> 400				
Angle de					
frottement	> 45	35 à 45	25 à 35	15 à 25	<15
interne φ					
(°)					

Plusieurs auteurs ont proposé des relations entre les paramètres mécaniques du massif rocheux et la valeur du RMR. Nous avons retenu les relations suivantes qui permettent d'estimer une cohésion et un angle de frottement, ainsi qu'un module d'Young : [4]

$E_{eq} (GPa) = 10(^{RMR - 10)/40}$	(Serafim & Pereira, 1983) [27]	(3)
-------------------------------------	--------------------------------	-----

 $\varphi_{éq}(^{\circ}) = 0.5 \text{ RMR} + 8.3 \pm 7.2$ (Trunck & Hönisch, 1989) [27] (5)

III.3.3 Méthode de N.Barton (Q-system)

Développée par le Norvegian Geotechnical Institute (NGI), cette classification a été établie pour prévoir le soutènement des excavations exécutées dans des terrains à contrainte horizontale élevée (Barton et al. [1974]). Elle est caractérisée par un indice de qualité Q variant entre 0.001 pour un massif très mauvais et 1000 pour un massif très bon. Dans la pratique, cet indice est réduit entre 0.005 et 50.
$$\mathbf{Q} = \frac{RQD}{Jn} \times \frac{Jr}{Ja} \times \frac{Jw}{SRF} \tag{6}$$

Avec :

• **RQD** (Rock Quality Designation, Deere [1988]) caractérise la qualité des carottes de sondage.

• Jn (Joint set number) représente le nombre de familles de discontinuités.

• Jr (Joint roughness number) représente la rugosité des épontes de la famille de discontinuité la plus défavorable en terme d'orientation.

- Ja (Joint alteration number) caractérise l'état d'altération des discontinuités.
- **Jw** (Joint water reduction) est un facteur de réduction du à la présence de l'eau dans les joints.

• SRF (Stress Reduction Factor) est un facteur de réduction des contraintes dans le massif.

D'une façon globale, RQD/Jn représente l'effet de la taille des blocs, Jr/Ja caractérise la qualité mécanique de contact entre les blocs en cisaillement et Jw/SRF décrit l'état initial du massif par rapport à l'eau et aux contraintes. Dans cette classification, l'évaluation de Q dépend de l'état des contraintes dans le massif et des paramètres non intrinsèques de la matrice rocheuse. La contribution directe de la résistance mécanique de la matrice rocheuse est absente. En outre l'orientation des joints n'apparait pas dans cette classification. [25]

Les paramètres de ce système sont obtenus au moyen des tableaux dans l'annexe 1.

Le tableau ci-dessous représente la corrélation entre la valeur de Q et la qualité du massif rocheux

Valeur Q	Classe	Qualité du massif rocheux
400-1000	А	Exceptionnellement bon
100-400	А	Extrêmement bon
40-100	А	Très bon
10-40	В	Bon
4-10	С	Moyen
1-4	D	Mauvais
0.1-1	E	Très mauvais
0.01-0.1	F	Extrêmement mauvais
0.001-0.01	G	Exceptionnellement mauvais

TableauIII.3. la corrélation entre la valeur de Q et la qualité du massif rocheux [24]

Figure III.4. Soutènement basé sur la valeur Q (d'après Bieniawski)

III.3.4 Méthode de GSI (Geological Strength Index)

Introduit par Hoek et al. [1995] puis amélioré par Hoek et Brown [1997], le Geological Strength Index ne présente pas une classification géomécanique en soi. Cependant, il constitue un lien entre le RMR (Q-system) et la détermination des paramètres de déformabilité et de résistance des massifs rocheux.

Afin d'estimer le GSI, il est nécessaire de calculer le RMR' et le Q' qui sont des valeurs modifiées de RMR et de Q. Le RMR' est calculé en retenant une valeur 15 pour le coefficient relatif à l'eau (A5) et une valeur nulle pour le coefficient de correction relatif à l'orientation des discontinuités (B).

$$RMR' = A1 + A2 + A3 + A4 + 15$$
(7)

De même, Q' se calcule en ne tenant pas compte de l'état initial du massif par rapport à l'eau et aux contraintes.

$$\mathbf{Q'} = \frac{RQD}{Jn} \times \frac{Jr}{Ja} \tag{8}$$

Ayant calculé RMR' et Q' le GSI se détermine comme suit :

$$GSI = (RMR)_{89} - 5 Si (RMR)_{89} > 23 (9)$$

$$GSI = 9(\log Q' + 44) Si (RMR)_{89} < 23 (10)$$

Le GSI représente une certaine estimation de la réduction de la résistance du massif rocheux suivant les conditions géologiques. Il est un paramètre essentiel dans

le critère de Hoek et Brown [1997]. Pour un massif rocheux, ce critère s'écrit dans le plan de contraintes principales (σ_1 ; σ_3)

$$\sigma_{1} = \sigma_{3} + \sigma_{c} \left(\frac{mb\sigma c}{\sigma c + s}\right)^{-a}$$
(11)

$$m_{b} = m_{i} e^{\left(\frac{GSI \cdot 100}{28}\right)}$$

$$m_{i} = \frac{\sigma c}{\sigma t}$$

Pour GSI > 25 (bon rocher) : a = 0; 5; s = e^{\left(\frac{GSI - 100}{9}\right)}

Pour GSI < 25 (rocher de qualité médiocre) : s = 0; a=0.65 $\left(\frac{GSI}{100}\right)$

s, a et mb sont des constantes caractéristiques du massif. \mathbf{m}_i représente le rapport entre la résistance à la compression simple σ_c et la résistance à la traction simple σ_t de la roche intacte. $\frac{mb}{mi}$ Varie entre de faibles valeurs (< 0:1) pour des massifs fracturés et peu frottant à des valeurs 0.4 à 0.6 pour des massifs de roches dures ne comportant que peu de fractures à rugosité élevée. [29]

L'estimation du GSI s'appuie sur une observation directe de la structure du massif rocheux à partir d'un examen de la qualité de la masse rocheuse in situ.

Cet indice varie entre 5 et 85. Par définition, les valeurs proches de 5 correspondent à des matériaux de très mauvaise qualité, tandis que les valeurs proches de 85 décrivent des matériaux d'excellente qualité. [28]

Valeur de	76-95	56-75	41-55	21-40	<20
GSI					
Qualité de	Très bonne	Bonne	Moyenne	Mauvaise	Très
massif					mauvaise

Tableau III. Qualité du massif rocheux selon la valeur du GSI [28]

Tableau III.4. Comparaisons des utilisations du RMR et du Q-system dans le domaine des travaux souterrains (AFTES [2003]) [25]

	RMR	Q système
	• Bonne prise en compte de	• Bonne prise en compte
Caractérisation	l'organisation de la fracturation,	des propriétés mécaniques
globale du	sauf pour les massifs rocheux	des discontinuités.
massif rocheux	anisotropes (schistes, ardoises)	•Prise en compte des
		contraintes naturelles.
	•Existence des relations empiriques	•Existence des relations

Chapitre III Classifications et recommandations du soutènement

Evaluation des	liant RMR aux paramètres de	empiriques liant Q et					
caractéristiques	déformabilité et de résistance.	paramètres physiques et					
mécanique à		mécaniques (vitesse des					
l'échelle du		ondes longitudinales,					
massif		déformabilité)					
	•Utilisation nécessitant une très gra	nde prudence, en particulier					
	pour les paramètres de résistance :						
	Proscrire les corrélations en cascade						
	$Q \rightarrow RMR \rightarrow (m, s)^* \rightarrow (C_m, \phi_m)$						
	•Prise en compte de l'orientation	•Non prise en compte de					
	des discontinuités par rapport à	l'orientation des					
	l'ouvrage.	discontinuités par rapport à					
	•Définition raide de la longueur de	l'ouvrage.					
	volée.	•Définition rapide des					
	•Définition du temps de tenue sans	soutènements à mettre en					
Utilisation	soutènement (approche	œuvre (voutes, parement et					
pour les	conservative)	intersections) mais fausse					
ouvrages	•Ne prend pas en compte la	impression de précision					
	méthode d'excavation	concernant la longueur des					
		boulons.					
		•Utilisation en phase amont					
		(projet) et aval (suivi de					
		creusement)					
		•Prise en compte de					
		l'évolution des techniques					
		de soutènement.					
*: Paramètres du critère de résistance généralisés de Hoek et Brown [1997]							

III.4.Etude de cas -la galerie 1045-

Nous nous intéressons dans cette mémoire à un ouvrage souterrain qui va nous décrire la structure géologique du massif rocheux de Boukhadra ; c'est la galerie principale du niveau 1045 dont nous présentons la coupe géologique visuelle (FigureIV.3)

Figure III.5 Profile géologique de la galerie 1045.

Les dimensions de la galerie 1045 sont représentées par le tableau IV.6

Hauteur moyenne (m)	3-4
Largeur moyenne (m)	4
Langueur (m)	230
Section (m ²)	12-13

Tableau III.5. Les dimensions de la galerie principale du niveau 1045 m

FigureIII.6 L'entrée de la galerie 1045

Le tableau IV.6 donne une quantification des discontinuités (failles, fissures) dans le tronçon étudié (la galerie principale du niveau 1045m).

0	D:	Orient	ation		Desc	ription	
nº	Discontinuit és	Direction	Pendag e	Ouverture (cm)	Remplissage	Altération	Rugosité
1	Faille	275N	758	20	Argile	Légèrement altéré	Rugueuse
2	Joints de stratification	120N	45NE	-	-	Légèrement altéré	Lisse
3	Joints de stratification	120N	45NE	_	_	Moyennement altéré	Lisse
4	Faille	65N	60NO	40	Calcite	Sain	Rugueuse
5	Faille	65N	60NO	40	Calcite	Sain	Lisse
6	Joints de stratification	302N	70SO	-	Argile	Légèrement altéré	Lisse
7	Joints de stratification	302N	70SO	-	Argile	Légèrement altéré	Lisse
8	Faille	60N	35SO	-	Argile	Moyennement altéré	Rugueuse
9	Faille	60N	35SO	6	Argile	Moyennement altéré	Rugueuse
10	Faille	60N	3580	6	-	Moyennement altéré	Lisse
11	Faille	60N	3580	-	-	Moyennement altéré	Lisse
12	Des petites	302N	70SO	-	-	Sain	Lisse

TableauIII.6. Failles et fissures existantes dans le tronçon étudie de la galerie principale du niveau 1045m.

	fissures						
13	Des petites fissures	302N	70SO	-	-	Sain	Lisse
14	Des petites fissures	302N	70SO	-	-	Sain	Lisse
15	Faille	275N	40S	-	Calcite	Légèrement altéré	Rugueuse
16	Faille	275N	40S	-	Calcite	Légèrement altéré	Rugueuse
17	Faille	60N	75NO	_	Calcite	Légèrement altéré	Rugueuse
18	Faille	60N	75NO	-	Calcite	Sain	Rugueuse

III.4.1. Mesures des paramètres des caractéristiques des discontinuités au niveau de la galerie 1045

On désigne par discontinuité une interruption de la roche qui résulte de la formation du massif. Les discontinuités dans la mine de Boukhadra peuvent être d'origine tectonique (failles, fractures) ou stratigraphique. Ce réseau de discontinuités confère au massif une structure,

importante à connaître pour la stabilité.

Lacaractérisation de chaque discontinuité va ainsi reposer sur les paramètres suivants :

• Le pendage, est l'angle entre l'horizontale et la ligne de plus grande pente du plan de la discontinuité ou le pendage c'est l'angle entre une ligne verticale et la normale du plan de la discontinuité. En général, les valeurs dependage sont prises entre 0 et 90°

• L'azimute de pendage, angle entre la direction vers le Nord et la normale à l'intersection du plan horizontal avec le plan de discontinuité.

FigureIII.7 orientations des discontinuités

54

Chapitre III Classifications et recommandations du soutènement

Ces projections stéréographiques permettent ainsi de distinguer des familles directionnelles dans la base de données. Certaines familles pouvaient déjà être pressenties sur le terrain, ou peuvent être devinées sur les projections stéréographiques.

Projection stéréographique des discontinuités du massif rocheux au niveau de la galerie 1045 est représentée sur la figure ci-dessous:

FigureIII.8 Représentation 2D des discontinuités (Dips program)

FigureIII.9. Projection stéréographique des discontuinités

* Interprétation des résultats

Le nombre de discontinuités n'est pas suffisant pour former des familles bien distinctes, mais la plupart des discontinuités s'intermittent ce qui engendre des dièdres et des blocs rocheux susceptibles de chutées, et ceci est compatible avec les observations in situ. Par conséquent l'application d'un système de soutènement adéquat est nécessaire.

III.4.2 Caractéristiques physiques et mécaniques des roches stériles et minerai

La reconnaissance des massifs rocheux permet de comprendre les problèmes qui peuvent se poser lors d'une étude d'un projet minier ou de construction. La reconnaissance des propriétés d'un terrain constitue le lien entre la cause d'un sinistre et les remèdes que l'on propose de mettre en place.

Les propriétés physiques et mécaniques des roches ont une grande influence sur la stabilité des terrains, la caractérisation d'un massif rocheux se base sur l'identification de ses propriétés physico-mécaniques au laboratoire et sur terrain (du massif lui-même).

Parmi les propriétés physiques importantes : la masse volumique, la porosité et l'humidité. Les propriétés mécaniques sont : la résistance à la traction, la résistance à la compression, la cohésion et l'angle de frottement interne.

Nous avons prélevé plus de 30 échantillons à travers la galerie principale au niveau 1045 m sur les différentes formations rocheuses rencontrées ; ces échantillons sont soumis à des essais au laboratoire pour la détermination des propriétés physico-mécaniques des roches.

Les différentes formations rocheuses rencontrées à travers la galerie principale au niveau 1045 m sont : Les grés ; calcaires ; marne jaune ; marne minéralisée ; marnes gris ; minerai de fer et conglomérats.

4 Caractéristiques physiques

Les propriétés physiques de la mine au niveau de la galerie 1045m sont résumées dans le tableau ci-dessous :

TableauIII.7. Caractéristiques physiques des roches stériles et minerai au niveau1045

Propriétés physiques	Calcaire	Marne jaune	Marne gris	Minerai fer	Marne minéralisé	Conglomérat	Grés
Masse volumique ρ (g/cm ³)	2.7	2.2	2.2	2.6	2.4	2.3	2.3
Teneur en eau w (%)	3.8	1.32	1.57	-	2.16	2.43	-
Porosité n (%)	51	6.5	15	-	12	79	-
Degré de saturation Sr (%)	21.19	34.08	37.53	-	37.57	7.19	-
Dureté	7	3	4	5	3	4	4

4 Caractéristiques mécaniques

Les propriétés mécaniques de la mine au niveau de la galerie 1045m sont résumées dans le tableau ci-dessous :

TableauIII.8. Caractéristiques mécaniques des roches stériles et minerai au niveau1045.

Propriétés mécaniques	Calcaire	Marne jaune	Marne gris	Minerai fer	Marne minéralisé	Conglomérat	Grés
Cohésion C (MPa)	0.81	0.17	0.12	0.69	0.14	0.098	0.26
Angle de frottement interne φ (°)	47.8	23.16	18.05	40.8	18.62	46	31.2
Résistance à la compression Rc (MPa)	78.4	16.67	16.67	53.73	20	20	20
Résistance à la traction Rt (MPa)	4.7	1.7	1.7	5.4	2	1.8	1.4
Module du Young E (MPa)	19840	4470	3350	21000	4470	4490	4500

III.4.3. Classification géomécanique du massif rocheux au niveau de la galerie 1045

III.4.3.1. Application de la méthode de D.Derre

Les résultats de RQD sont donnés dans le tableau suivant :

Tableau III.9 Les valeurs de RQD de massif rocheux au niveau de la galerie 1045

Massif rocheux	Longueur totale	Somme des >10cm	RQD (%)	Qualité du massif
	(cm)			
Conglomérat	100	19,15,21	55	Moyenne
Calcaire	180	14,27,18,19,20,19	65	Moyenne
Marne jaune	160	15,12,10,20,13,10	50	Pauvre
Marne grise	165	18,12,10,16,30	52	Moyenne
Grés	120	22,12,10,28	60	Moyenne
Marne minéralisée	150	16,25,11,26	52	Moyenne
Minerai fer	140	24,14,18,26,30	80	Bonne

* Interprétation des résultats :

Comme synthèse des résultats obtenus par le système de classification selon D.Derre, le massif rocheux de Boukhadra au niveau de la galerie 1045 est formé par des roches allant d'une moyenne qualité à une bonne qualité.

Figure III.10. Exemple de mesure RQD au niveau de la galerie 1045

III.4.3.2. Application de la méthode de Z.Bieniawski

L'application de la classification de Bieniawski attribue une note à chacun des paramètres en fonction de l'intervalle de valeurs dans lequel ils se situent. Leur influence sur le comportement du massif n'étant pas équivalente, Bieniawski a affecté à chacun un indice de pondération. La valeur du RMR varie entre O et 100. Cette valeur est divisée en cinq classes qui décrivent la qualité du massif rocheux. D'un extrême à l'autre, on passe de la classe 1, pour un RMR compris entre 81 et 100, qui est décrite comme une roche de très bonne qualité à la classe 5 pour un RMR inférieur à 20 et qui correspond à une roche de très mauvaise qualité.

Le tableau suivant les paramètres, les valeurs et les notes d'après la méthode de Bieniawski :

А	Paramètre	Valeur	Note
1	Résistance à la compression unie axiale	78	7
	(MPa)		
2	Indicateur de qualité de roche (RQD %)	65	13
3	Espacement des discontinuités (mm)	600-2000	15
4	Nature des discor	tinuités	

Tableau III.10 Exemple d'application la méthode de Bieniawski (pour les calcaires)

Chapitre III Classifications et recommandations du soutènement

	Longueur de discontinuité	3 à 10 m	2					
	Ouverture	0.1 à 1 mm	4					
	Rugosité	Faible rugueuse	3					
	Remplissage	Aucun	6					
	Degré d'altération	Légèrement altéré	5					
5	Condition hydraulique	Complétement sec	15					
	RMR de base =	70						
В	Orientation et pendage des	Défavorable	-10					
	discontinuités							
	RMR ₈₉ =60							

Les résultats de classification par le RMR du massif rocheux au niveau de la galerie 1045 sont mentionnés dans le tableau IV.9

	Paramètres	Calcaire	Marne jaune	Marne gris	Marne Minéralisé	Gris	Conglomérat	Minerai fer
A1	Résistance du matériau rocheux intact (MPa)	78.4	16.67	16.67	16.67	20	20	53.73
	Indice de cotation	7	2	2	2	2	2	7
A2	ROD (%)	65	50	52	52	60	55	80
	Indice de cotation	13	13	13	13	13	13	17
A3	Espacement des discontinuités (m)	0.6-2	0.2-0.6	0.2-0.6	0.2-0.6	0.6-2	0.6-2	0.6-2
	Indice de cotation	15	10	10	10	15	15	15
A4	Condition des discontinuités	(1)	(2)	(2)	(2)	(2)	(2)	(1)
	Indice de cotation	20	10	10	10	10	10	20
A5	Condition hydraulique	Sec	Sec	Sec	Sec	Sec	Sec	Sec
	Indice de cotation	15	15	15	15	15	15	15
	RMR de base	70	48	48	48	55	55	74
	Ajustement	-5	-5	-5	-5	-5	-5	-5
	RMR ₈₉	65	43	43	43	50	50	69
	Classification	Bonne	Moyenne	Moyenne	Moyenne	Moyenne	Moyenne	Bonne

Tableau III.11 Classification de RMR du massif rocheux de la galerie 1045

Notes : (1) surfaces très rugueuses, discontinues, jointives, épontes non altérées

(2) surfaces légèrement rugueuses, épontes fortement altérées

Interprétation des résultats

Comme synthèse des résultats obtenus par le système de classification selon Bienwiaski, le massif rocheux de Boukhadra au niveau de la galerie 1045 est formé par des roches allant d'une moyenne qualité à une bonne qualité.

Estimation des caractéristiques mécaniques à partir du RMR
 TableauIII.12 Caractéristiques mécaniques à partir du RMR

Caractéristiques	Calcaire	Minerai	Marne	Marne	Grés	Marne	Conglomérat
mécaniques		fer	jaune	gris		minéralisé	
Eéq (GPa)	23.71	29.85	6.68	6.68	10	6.68	10
C _{éq} (KPa)	325	345	215	215	250	215	250
φ _{éq} (°)	48	50	37	37	40.5	37	40.5

III.4.3.3 Application de la méthode de GSI (Geological Strength Index)

A partir d'observation directes de la structure de massif rocheux au niveau de la galerie 1045m, en se basant sur le critère de Hoek et Brown, on détermine la valeur de GSI de chaque formation géologique.

A partir des résultats de la compagne d'observation, nous avons pu établir les valeurs de GSI de chaque formation géologique pour les différents faciès représentés sur le tableau ci-dessous.

Type de la roche	GSI(%)	Classification
Calcaire	65	Bon
Minerai fer	65	Bon
Marne jaune	50	Moyen
Marne minéralise	40	Moyen
Grés	50	Moyen
Conglomérat	50	Moyen
Marne gris	40	Moyen

Tableau III.13 Classification de GSI du massif rocheux de la galerie 1045

* Interprétation des résultats

Comme synthèse des résultats obtenus par le système de classification selon le GSI, le massif rocheux de Boukhadra au niveau de la galerie 1045 est formé par des roches allant d'une moyenne qualité à une bonne qualité.

III.4.3.4. Application de la méthode de N.Barton

L'indice Q peut varier de 0,001 à 1000. La valeur de Q est divisée en 9 classes correspondant à la qualité du massif depuis exceptionnellement mauvaise jusqu' à exceptionnellement bonne (Tableau. IV.3).

Après avoir défini la valeur de l'indice Q représentatif de la qualité du massif, Barton a introduit un paramètre supplémentaire De, appelé dimension équivalente de l'excavation :

$$\mathbf{De} = \frac{\mathbf{D} \ (\text{longeur}; \text{diamètre ou hauteur de l'éxcavation})}{ESR}$$
(11)

Avec D la dimension de l'excavation (portée, largeur ou hauteur) et ESR (Excavation Support Ratio) étant un facteur dépendant de la finalité de l'excavation, autrement dit, du degré de sécurité recherché pour la stabilité. Des valeurs sont suggérées dans le tableau IV.11.

Tableau	III.14	Excavation	Support	Ratio	(ESR)	pour	divers	types	d'ouvrages
souterrair	ns [Bart	on & al, 1974	4]						

Classe	Catégorie d'excavation	ESR
Α	Mines temporaires	3-5
В	Mines permanentes, galeries pour des projets hydro-électriques, galeries pilotes.	1.6
С	Cavernes de stockage, usine de traitement d'eau, tunnels routiers et ferroviaires d'importance mineure, chambre d'équilibre et galeries d'accès pour les projets hydro-électriques.	1.3
D	Cavernes de centrale électrique, tunnels routiers et ferroviaires d'importance majeure, aménagements de défense civile, portails de tunnels et galeries transversales	1
E	Centrales nucléaires souterraines, stations de métro, aménagements sportifs et publics, usines souterraines	0.8

La portée maximale en deçà de laquelle la cavité peut rester stable sans soutènement est estimée à l'aide de la relation suivante :

Portée non soutenue = $2xESRxQ^{0.4}$ (12)

Lorsque la portée d'une excavation excède la portée limite prédite par l'équation ci-dessus, il est nécessaire d'installer un système de soutènement en vue de maintenir le massif rocheux entourant l'excavation dans des conditions acceptables de stabilité. Contrairement à la classification de Bieniawski, le Q-system a connu très peu de modifications depuis sa publication.

Les seuls changements ont eu lieu au niveau du paramètre SRF avec un changement de valeur dans le cas de roches compétentes et sous de très fortes contraintes.[23]

Les résultats de classification par le Q système du massif rocheux au niveau de la galerie 1045 sont présentés dans le tableau ci-dessous.

Paramètres	Calcaire	Marne jaune	Marne gris	Marne minéralisé	Gris	Conglomérat	Minerai fer
RQD (Rock Quality Désignations)	65	50	52	52	60	55	80
Nombre de familles de discontinuités (Jn)	3	4	4	4	3	3	3
Indice de rugosité des discontinuités (Jr)	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Indice d'altération des discontinuités (Ja)	1	1	1	1	1	1	1
Facteur lié à la pression hydraulique (Jw)	1	1	1	1	1	1	1
Facteur de réduction de contrainte (SRF)	1	1	1	1	1	1	1
Q	32.5	18.75	19.5	19.5	30	27.5	40
Classification	Bon roche	Bon roche	Bon roche	Bon roche	Bon roche	Bon roche	Bon roche
De	2.5	2.5	2.5	2.5	2.5	2.5	2.5
E (GPa)	15.12	12.7	12.9	12.9	14.7	14.4	16.0 2

Tableau III.1	5 Classification de	e Q système	du massif rocheux	de la galerie 1045
---------------	---------------------	-------------	-------------------	--------------------

Cette classification à donner comme résultats ; le massif rocheux de Boukhara au niveau de la galerie 1045m est formé par des roches de bonne qualité.

Détermination du module de déformabilité du massif.

Le Q-system permet de calculer le module de déformabilité du massif. Pour un même massif rocheux il existe trois valeurs de module de déformabilité: un module minimum (Emin), un module maximum (Emax) et un module moyen (Emoy).

Ces 3 modules peuvent être calculés à l'aide de l'indice Q :

 $E_{min} = 10.logQ$ $E_{max} = 40.logQ$ 62

 $E_{mov} = 25.\log Q$

III.4.5. Détermination des caractéristiques mécaniques du massif rocheux

Pour déterminer les propriétés mécaniques C_m et ϕ_m du massif rocheux, il est nécessaire de tenir compte de plusieurs paramètres correctifs qui sont principalement

✓ Le coefficient d'affaiblissement structural du massif rocheux λ .

 \checkmark Le coefficient de diminution de la valeur de l'angle de frottement interne λ_{ϕ}

Les valeurs de C_m et ϕ_m sont déterminées par les formules suivantes :

$$C_{\rm m} = \lambda . C_{\rm i} \qquad (13)$$
$$\phi_{\rm m} = \lambda_{\phi}. \ \phi_{\rm i} \qquad (14)$$

Avec :

•

 C_m et ϕ_m : La cohésion et l'angle de frottement interne du massif ;

 C_i et ϕ_i : La cohésion en l'angle de frottement interne de a roche intacte ;

 λ et λ_{ϕ} : coefficients correctifs (sans unités).

Typiquement :

 $\lambda = 0.026$ et $\lambda_{\phi} = 0.8$

Le tableau III.16 représente la cohésion et l'angle de frottement interne du massif rocheux :

Massif	Conglomérat	Calcaire	Marne	Marne	Marne	Grés	Minerai
rocheux			jaune	grise	minéralisée		fer
C _m (MPa)	0.0026	0.02	0.004	0.003	0.0036	0.007	0.018
$\phi_m(^\circ)$	37.14	38.24	18.53	14.44	14.9	25	32.64

III.4.6. Recommandation du soutènement pour les différentes formations rocheuses au niveau de la galerie 1045

Les recommandations des soutènements proposés par (RQD, RMR et Q système) donnent une base de conception du soutènement des mines souterraines lors de la planification et les phases de construction du projet. L'application de ces trois méthodes dans le cas de la mine souterraine de Boukhadra a donné des résultats comparables.

On voit clairement dans le (TableauIV.12) que Q système propose des systèmes de soutènement très proche.

			Les typ	es de soutènement	
Type de roche	Système de classification	Boulon d'ancrage	Béton projeté	Cintres métalliques	Additional Supports
Calcaire	RQD = 65 (Moyenne)	Espacement : 0.9 à 1.5 m + treillis soudés	10 cm ou plus en voute et en parement	Poid: léger à moyen Espacemnt:1.2 à 1.5 m	Boulons d'ancrage
	RMR =65 (Bon)	Espacement : 1.5-2m	50mm en la voute	Non rentable	Occasionnellement treillis soudé en voute
	Q = 32.5 (Bon)	boulonnage local passif, injecté	Néant	Néant	Néant
	RQD = 50 (Pauvre)	Espacement : 0.6 to 1.2m + treillis soudés	15 cm ou plus en voute et en parement	Poid: moyen à lourd Espacement: 0.2 à 1.2 m	Boulons d'ancrage (1.2 à 1.8m)
Marne jaune	RMR =43 (Moyenne)	Espacement : 1-1.5m	100 mm en voute et 50mm en piédroits	Cintres légers d'éspacement 1.5-2m	treillis soudés + 30mm de béton projeté en voute si nécessaire
	Q = 18.75 (Bon)	boulonnage local passif, injecté	Néant	Néant	Néant
	RQD = 52 (Moyen)	Espacement: 0.9 à 1.5 m + treillis soudés	10 cm ou plus en voute et en parement	Poid: léger à moyen Espacemnt:1.2 à 1.5 m	Boulons d'ancrage
Marne gris	RMR =43 (Moyen)	Espacement : 1-1.5m	100 mm en voute et 50mm en piédroits.	Cintres légers d'éspacement 1.5-2m	treillis soudés + 30mm de béton projeté en voute si nécessaire
	Q = 19.5 (Bon)	boulonnage local passif, injecté	Néant	Néant	Néant
	RQD = 52 (Moyen)	Espacement: 0.9 à 1.5 m + treillis soudés	10 cm ou plus en voute et en parement	Poid: léger à moyen Espacemnt:1.2 à 1.5 m	Boulons d'ancrage
Marne minéralisé	RMR =43 (Moyen)	Espacement : 1-1.5m	. 100 mm en voute et 50mm en piédroits.	Cintres légers d'éspacement 1.5-2m	treillis soudés + 30mm de béton projeté en voute si nécessaire
	Q = 19.5 (Bon)	boulonnage local passif, injecté	Néant	Néant	Néant
	RQD = 60 (Moyen)	Espacement: 0.9 à 1.5 m + treillis soudés	10 cm ou plus en voute et en parement	Poid: léger à moyen Espacemnt:1.2 à 1.5 m	Boulons d'ancrage

TableauIII.17 Les systèmes de soutènement proposés par RQD, RMR et Q système

Grés	RMR =50 (Moyen)	Espacement : 1-1.5m	. 100 mm en voute et 50mm en piédroits.	Cintres légers d'éspacement 1.5-2m	treillis soudés + 30mm de béton projeté en voute si nécessaire
	Q = 30 (Bon)	boulonnage local passif, injecté	Néant	Néant	Néant
	RQD = 80 (Bon)	Espacement : 1.5 à 1.8 m + treillis soudés	5 à 7.5 cm en voute	Poid : léger Espacement:1.5 à 1.8m	Néant
Minerai fer	RMR =69 (Bon)	Espacement : 1.5-2m	50mm en la voute	Non rentable	Occasionnellement treillis soudé en voute
	Q = 40 (Bon)	boulonnage local passif, injecté	Néant	Néant	Néant
	RQD = 55 (Moyen)	Espacement: 0.9 à 1.5 m + treillis soudés	10 cm ou plus en voute et en parement	Poid: léger à moyen Espacemnt:1.2 à 1.5 m	Boulons d'ancrage
Conglomérat	RMR =50 (Moyen)	Espacement : 1-1.5m	. 100 mm en voute et 50mm en piédroits.	Cintres légers d'éspacement 1.5-2m	treillis soudés + 30mm de béton projeté en voute si nécessaire
	Q = 27.5 (Bon)	boulonnage local passif, injecté	Néant	Néant	Néant

* Interprétation des résultats

Comme synthèse le RMR qui est plus souple dans le choix du système de soutènements, mais n'est pas, en réalité, en désaccord avec les autres méthodes de classification bien que les trois méthodes ont donné des recommandations relativement similaires pour le système de soutènement. La décision finale du soutènement sera faite sur un critère techno-économique.

III.5 Conclusion

Dans cette partie de notre travail, on a classifié le massif rocheux par le système Q Barton, RQD, RMR et le GSI en permettent d'orienter le choix du type de soutènement. Et on a pu établir un model correspondant à une excavation souterraine comme un objet de notre étude en utilisant le programme PHASE².

IV.1 Introduction

La roche résiste à l'effort de cisaillement par deux mécanismes internes, cohésion et frottement interne. La cohésion est une mesure de liaison interne de la roche. Le frottement interne résulte du contact entre les particules, et est défini par l'angle de frottement interne.

IV.2. Critères de rupture de la matrice rocheuse.

IV.2.1 Résistance et critères de résistance

La limite de résistance est définie par la contrainte à laquelle le matériau commence à se déformer de façon plastique. Cela représente généralement une limite supérieure à la charge qui peut être appliquée. Un critère de résistance limite est une hypothèse qui concerne la limite de contrainte sous n'importe quel état de contraintes. Ceci est généralement décrit par trois contraintes principales.

IV.2.2 Critère de Mohr-Coulomb

Le critère de Mohr-Coulomb est la combinaison de deux approches : relation linéaire entre les contraintes normale et tangentielle de Coulomb et expression du critère comme enveloppe des cercles de Mohr [31].

Ce critère peut être écrit sous une forme linéaire des contraintes [30] :

$$\tau \le \tau_{\max} = C + \sigma_n \tan \phi \tag{15}$$

Avec τ la contrainte tangentielle et σ_n la contrainte normale au plan de rupture ; C la cohésion sur une unité de surface ; ϕ l'angle de frottement interne.

FigureIV.1. Critère de rupture de Mohr-Coulomb représenté dans le plan (τ ; σ) [30]

Le critère de Mohr-Coulomb permet de calculer d'autres paramètres mécaniques employés fréquemment par les concepteurs des ouvrages dans les massifs rocheux tels que la résistance à la compression simple et à la traction.

En effet, du fait que $\sigma_3 < \sigma_2 < \sigma_1$ alors la résistance à la compression simple de la roche σ_c résulte d'une contrainte σ_3 nulle d'où :

$$\sigma_{\rm c} = \sigma_1 = \frac{2C.cos\varphi}{1-sin\varphi} \tag{16}$$

De même, pour une contrainte σ_1 nulle, l'expression de la résistance à la traction s'écrit :

$$\sigma_t = \sigma_3 = - \frac{2C.cos\varphi}{1+sin\varphi} \tag{17}$$

D'où :

$$\frac{\sigma c}{\sigma t} = -\frac{1+sin\varphi}{1-sin\varphi}$$
(18)

La formulation mathématique du critère de Mohr-Coulomb peut être écrite dans le plan des contraintes principales sous la forme :

$$\sigma_1 = \frac{1 + \sin\varphi}{1 - \sin\varphi} \,\sigma_3 + 2\mathbf{C} \,\frac{\cos\varphi}{1 - \sin\varphi} \tag{19}$$

Le critère de Mohr-Coulomb peut aussi être représenté dans un graphique $\sigma 1-\sigma 3$.

$$\sigma_1 = \sigma_c + \sigma_3 \tan \psi \tag{20}$$

$$\tan \psi = \frac{1 + \sin \varphi}{1 - \sin \varphi} \tag{21}$$

$$\sigma_1 = \sigma_c + \sigma_3 \frac{1 + \sin\varphi}{1 - \sin\varphi}$$
(22)

Figure IV.2. Critère de rupture de Mohr-Coulomb représenté dans le plan des contraintes principales (σ_1 ; σ_3) [30].

IV.2.3 Le Critère de Hoek et Brown

Hoek et Brown ont proposé un critère de rupture empirique pour les massifs rocheux fracturés. L'enveloppe de résistance de Hoek-Brown n'est pas une ligne droite. C'est une courbe. A haut niveau de contrainte, l'enveloppe s'incurve vers le bas, et donne ainsi une évaluation de résistance inférieure à celle de l'enveloppe de Mohr-Coulomb. [32]

C'est un critère empirique basé sur des résultats réels d'essais obtenus sur diverses roches. L'emploi et le choix des paramètres est très facile. Il peut être étendu aux massifs rocheux. Il est employé couramment en mécanique des roches et dans le dimensionnement des ouvrages.

Figure IV.3. Critère de Hoek et Brown [30].

L'expression de ce critère généralisé est la suivante : [30]

$$\sigma'_{1} = \sigma'_{3} + \sigma_{ci} \left(\mathbf{m}_{b} \left(\frac{\sigma'^{3}}{\sigma_{ci}} \right) + \mathbf{s} \right)^{a}$$
(23)

Avec:

- σ'_1 : est la contrainte effective maximum à la rupture ;
- σ'_3 : est la contrainte effective minimum à la rupture ;
- σ_{ci} : est la résistance à la compression de la matrice rocheuse intacte ;
- mb : est la valeur de la constante m de Hoek et Brown pour le massif rocheux ;

• s et a sont des constantes adimensionnelles qui dépendent de l'état et du degré de fracturation du massif rocheux (pour la roche intacte s = 1)

IV.3 Présentation du Logiciel Rocscience RocLab

IV.3.1 Généralités

Roclab est logiciel qui permet de déterminer la résistance de la asse rocheuse sur la base du critére généralisé de Hoek Brown.

RocLab est un produit de Rocscience Inc. Il s'agit d'un logiciel libre.

Le programme RocLab offre une mise en œuvre simple et intuitive du critère de Hoek Brown, permettant aux utilisateurs d'obtenir facilement des estimations fiables des propriétés de la masse rocheuse, et de visualiser les effets des paramètres changeants de la masse rocheuse sur les enveloppes de rupture.

Les propriétés de la masse rocheuse déterminées par RocLab peuvent être utilisées comme données d'entrée pour les programmes d'analyse numérique tels que Phase2 ou Slide.

IV.3.2 Comment puis-je utiliser RocLab

Les tâches suivantes peuvent être accomplies avec RocLab :

Déterminez les paramètres de résistance Hoek-Brown généralisés d'un massif rocheux (mb, s et a), sur la base des données d'entrée suivantes :

- La résistance à la compression non confinée des sigci de la roche intacte ;
- Le paramètre de roche intacte mi
- L'indice de résistance géologique GSI
- Le facteur de perturbation D

🗁 Hoek-Brown Elassification	<u> </u>
viewi 20 MP	
GSI 50	- 3 2
mi 10 📑	- <u>1</u>
D 0 🔅	- 12 1
Hoek-Brown Criterion	
mb 1.677	-
\$ 0.0039	-
a 0.506	-
Eailure Envelope Bange	
Application: Tunnels	-
sig3max 0.6642	- MPa
Unit Weight 0.026	1N/m3
Tunnel Depth 50 n	n
Mohr-Coulomb Fit	_
	-
c 0.367	MPa
c 0.367 phi 49.98	MPa deg
c 0.367 phi 49.98 Rock Mass Parameters	MPa deg
c 0.367 phi 49.98 Rock Mass Parameters - sigt -0.069	MPa deg MPa
c 0.367 phi 49.98 Rock Mass Parameters sigt -0.069 sigc 1.807	MPa deg MPa MPa
c 0.367 phi 49.98 Rock Mass Parameters sigt -0.069 sigc 1.807 sigcm 5.230	MPa deg MPa MPa MPa
c 0.367 phi 49.98 Rock Mass Parameters sigt -0.069 sigc 1.807 sigcm 5.230 Em 5477.23	MPa deg MPa MPa MPa MPa
c 0.367 phi 49.98 Rock Mass Parameters sigt -0.069 sigc 1.807 sigcm 5.230 Em 5477.23 ■ Copy Data	MPa deg MPa MPa MPa MPa
c 0.367 phi 49.98 Rock Mass Parameters sigt -0.069 sigc 1.807 sigcm 5.230 Em 5477.23 Em Copy Data	MPa deg MPa MPa MPa MPa
c 0.367 phi 49.98 Rock Mass Parameters sigt -0.069 sigc 1.807 sigcm 5.230 Em 5477.23 ≧≧ Copy Data	MPa deg MPa MPa MPa
c 0.367 phi 49.98 Rock Mass Parameters sigt -0.069 sigc 1.807 sigcm 5.230 Em 5477.23 IBB Copy Data	MPa deg MPa MPa MPa MPa
c 0.367 phi 49.98 Rock Mass Parameters sigt -0.069 sigc 1.807 sigcm 5.230 Em 5477.23 Em Copy Data	MPa deg MPa MPa MPa MPa

Figure IV.5.Entrée des paramètres de Hoek Brown

Intact Uniaxial Compressive Strength		×
Field Estimate of Strength	Examples	Strength (MPa)
Specimen can only be chipped with a geological hammer.	Fresh basalt, chert, diabase, gneiss, granite, quartzite.	>250
Specimen requires many blows of a geological hammer to fracture it.	Amphibolite, sandstone, basalt, gabbro, gneiss, granodiorite, limestone, marble, rhyolite, tuff.	100-250
Specimen requires more than one blow of a geological hammer to fracture it.	Limestone, marble, phyllite, sandstone, schist, shale.	50-100
Cannot be scraped or peeled with a pocket knife, specimen can be fractured with a single blow from a geological hammer.	Claystone, coal, concrete, schist, shale, siltstone.	25-50
Can be peeled with a pocket knife with difficulty, shallow indentation made by firm blow with point of a geological hammer.	Chalk, rocksalt, potash.	5-25
Crumbles under firm blows with point of a geological hammer, can be peeled by a pocket knife.	Highly weathered or altered rock.	1-5
Indented by thumbnail.	Stiff fault gouge.	0.25-1
Uniaxial Compressive Strength (sigci): 💷 📑 MPa 🛛 OK Cancel		

Figure IV.6. Les valeurs de la résistance à la compression sigci de la roche intacte

Figure IV.7. Les valeurs de l'indice de résistance géologique GSI

Figure IV.8. Les valeurs de paramètre mi

Figure IV.9.Les valeurs de facteur de perturbation D

IV.4 Application de l'Analyse de la résistance des roches

$$σ_1 = γ. Z$$
(24)

 $σ_3 = k_0. σ_1$
(25)

Avec :

 $k_0 = \frac{\nu}{1 - \nu}$

 k_0 : Coefficient de pression des terres au repos

Z : l'épaisseur de la couverture en m

v: Coefficient de poissent

Pour une valeur typique : v = 0.25 donc : $k_0=0.33$

4 Conglomérat

$$\gamma = 23 \text{kN/m}^3$$

Z= 20m

 $\sigma_1 = \gamma$. Z = 23× 20 = 460 kPa = 0.46 MPa

 $\sigma_3 = k_0. \sigma_1 = 0.33 \times 0.46 = 0.152 \text{ MPa}$

La figures ci-dessous représentent l'analyse de la résistance des roches à l'aide de **Roclab :**

Figure IV.10 Analyse de la résistance des roches de conglomérat

🖊 Calcaire

$$\gamma = 27 \text{kN/m}^3$$

Z= 90m
 $\sigma_1 = \gamma$. Z = 27× 90 = 2430 kPa = 2.43 MPa
 $\sigma_3 = k_0$. $\sigma_1 = 0.33 \times 2.43 = 0.802$ MPa

Figure IV.11 Analyse de la résistance des roches de calcaire

🖊 Marne jaune

$$\begin{split} \gamma &= 22 k N/m^3 \\ Z &= 120 m \\ \sigma_1 &= \gamma. \ Z &= 22 \times 120 = 2640 \ k Pa = 2.64 \ M Pa \\ \sigma_3 &= k_0. \ \sigma_1 &= 0.33 \times 2.64 \ = 0.871 \ M Pa \end{split}$$

Figure IV.12 Analyse de la résistance des roches de marne jaune

🖊 Marne minéralisé

 $\gamma = 24$ kN/m³ et Z= 120m $\sigma_1 = \gamma$. Z = 24 × 120 = 2880 kPa = 2.88 MPa $\sigma_3 = k_0$. $\sigma_1 = 0.33 \times 2.88 = 0.95$ MPa

Figure IV.13 Analyse de la résistance des roches de marne minéralisée

🖊 Marne gris

- $\gamma = 22 \text{ kN/m3}$ Z= 120m, 130m Si Z=120m $\sigma_1 = \gamma$. Z = 22 × 120 = 2640 kPa = 2.64 MPa $\sigma_3 = \text{k0}$. $\sigma_1 = 0.33 \times 2.64 = 0.87$ MPa Si Z=130m
- $\sigma 1 = \gamma$. Z = 22 × 130 = 2860 kPa = 2.86 MPa
- σ 3 =k0. σ 1= 0.33×2.86 =0.94 MPa

Figure IV.14 Analyse de la résistance des roches de marne grise

🖊 Minerai fer

- $\gamma = 26 \text{ kN/m3}$
- Z= 120m, 130m, 150m
- Si Z=120m
- $\sigma_1 = \gamma$. Z = 26 × 120 = 3120 kPa = 3.12 MPa
- $\sigma_3 = k0. \sigma_1 = 0.33 \times 3.12 = 1.03 \text{ MPa}$
- Si Z=130m
- $\sigma_1 = \gamma$. Z = 26 × 130 = 3380 kPa = 3.38 MPa
- $\sigma_3 = k0. \sigma_1 = 0.33 \times 3.38 = 1.15 \text{ MPa}$
- Si Z=150m

 $\sigma_1 = \gamma$. Z = 26 × 150 = 3900 kPa = 3.90 MPa

 $\sigma_3 = k0. \sigma_1 = 0.33 \times 3.90 = 1.29 \text{ MPa}$

Figure IV.15. Analyse de la résistance des roches de minerai fer

\rm Grés

$$\begin{split} &\gamma = 23 kN/m^3 \\ &Z = 120m \\ &\sigma_1 = &\gamma. \; Z = 23 \times 120 = 2760 \; kPa = 2.76 \; MPa \\ &\sigma_3 = &k_0. \; \sigma_1 = 0.33 \times 2.76 = &0.91 \; MPa \end{split}$$

Figure IV.16 Analyse de la résistance des roches de grés fer

* Interprétation des résultats

L'analyse de résistance à la base des critères de rupture de Hoek-Brown et de Mohr-Coulomb a démontré que le calcaire et le minerai de fer montrent une bonne résistance et ne sont pas sujets d'effondrement au niveau de la galerie 1045 m quoique le calcaire a démontré une meilleure résistance. Par contre, la marne grise, la marne jaune, la marne minéralisée, et le conglomérat ont démontré une faible résistance conduisant à des ruptures et instabilités potentielles d'où la plus faible résistance est attribuée à la marne grise.

IV.5 Conclusion

L'analyse de résistance est une étape inévitable pour assurer une meilleure compréhension et une fiable prévision du comportement du massif rocheux. Les critères de rupture sont les plus importants outils utilisés à cette fin.

V.1 Introduction

Le calcul analytique de l'interaction entre un massif et son soutènement est abordé ici par la méthode dite « convergence-confinement » c'est une méthode de calcul simple mais largement utilisée.

La méthode tient compte des facteurs jugés plus importants sur l'équilibre final du complexe roche-soutènement, à savoir :

1. La déformabilité du terrain, notamment son comportement après la rupture et dans le temps,

2. La raideur du soutènement,

3. Enfin, la déformation que le massif rocheux a déjà atteinte lors de la mise en place du soutènement.

V.2 La Convergence

La convergence d'une section d'un tunnel suivant une direction est le déplacement relatif des deux points opposés du parement dans cette direction au fur et à mesure de l'avancement du front de taille.

V.3 Le confinement

Est la pression radiale qui s'applique sur le pourtour de l'excavation, en présence d'un soutènement. Il constitue en quelque sorte le chargement du soutènement. On parle aussi de déconfinement, mais pour le terrain. Il s'agit de la décompression causée par la présence du tunnel. Ce déconfinement s'amorce bien en avant du front (un diamètre environ) [34].

V.4 Domaines d'utilisation

Dans le cas de canaux circulaires creusés à des profondeurs modérées ou supérieures du massif rocheux où la contrainte peut être considérée comme isotrope et homogène, la méthode des contraintes convergentes conduit à un dimensionnement satisfaisant des appuis. Dans d'autres cas, il donne l'ordre de grandeur de la déformation attendue, il permet la sélection de déterminants à introduire dans des calculs plus affinés, et guide la sélection de propriétés conservées lors de la phase d'avant-projet (Bouvard & al, 1988).

La méthode en question sert également de base au contrôle et à l'interprétation des mesures réalisées sur le site. Sa souplesse d'utilisation permet l'adaptation rapide d'un projet initial aux conditions rencontrées lors du creusement.

V.5 Principe générale de la méthode

Considérons une section plane d'un terrain dans lequel on souhaite creuser une galerie circulaire. Ce terrain est soumis à une contrainte naturelle correspondant à un état initial isotrope P. Le déplacement radial u des parois de la galerie non encore excavée est évidemment nul. Pour modéliser l'excavation de la galerie, nous supposons d'abord la cavité remplie d'un liquide à une pression Pi correspondant à l'état initial isotrope P [35].

V.6 Hypothèses de la méthode

- Hypothèse des déformations planes,
- Hypothèse d'isotropie des contraintes initiales ($K_0 = 1$) et d'isotropie du massif.
- La cavité étudiée a une forme cylindrique.

V.7 Etapes De Calcul [35]

La méthode comporte quatre étapes :

• Première étape : Courbe caractéristique du terrain.

• Deuxième étape : Convergence acquise à la paroi au moment de la mise en place du soutènement.

- Troisième étape : Courbe caractéristique de soutènement.
- Quatrième étape: Equilibre final.

V.8 Courbe de convergence

Pour passer d'un état tridimensionnel, avec un terrain qui se déconfine progressivement autour du front de taille, à un état de déformation plane (que l'on rencontre traditionnellement dans une section éloignée du front), on introduit une pression fictive en paroi. Cette pression, uniformément répartie sur le pourtour de l'excavation, a une valeur qui décroît avec l'éloignement au front. Pi varie ainsi de σ_0 à 0; de l'état de contrainte initial à l'état entièrement déconfiné. L'évolution de Pi est donc gouvernée par la distance x, qui permet de se situer par rapport au front de taille (où x = 0) On écrit :

$$\mathbf{P}_{i} = (1 - \lambda (\mathbf{x})) \, \boldsymbol{\sigma}_{0} \tag{26}$$

 λ (x) est appelé taux de déconfinement car il caractérise l'état du massif à l'endroit x considéré, il varie de 0 (état initial, en avant du front de taille) à 1 (état complètement déconfine, loin en arrière du front).

La théorie des milieux continus nous donne ensuite les champs de déplacement et de contrainte autour du tunnel. Là où réside encore une forte incertitude, c'est dans l'équation permettant de définir λ (x). Plusieurs auteurs ont proposé des formules, nous en retiendrons la plus simple, lorsque le terrain reste en élasticité :

$$\lambda(x) = \alpha + (1 - \alpha) \left(1 - \left[\frac{m0.R}{m0 R + x}\right]^2\right)$$
(27)

 α Et m₀ sont deux constantes (respectivement 0.25 et 0.75) et R le rayon d'excavation. La courbe de convergence est la courbe donnant la valeur du déplacement en paroi en fonction de la pression fictive *Pi*, et en l'absence de soutènement. Il s'agit d'une courbe u paramétrique (de paramètre(x)) qui est représenté sur un graphe (*Pi*, u).

Les données :

R : Rayon de l'excavation ;

E : Caractéristiques de rupture du terrain ;

v: Coefficient de poisson;

C : Caractéristiques de rupture du terrain (ou Rc et);

φ: Angle de frottement;

V: Poids volumiques du rocher dans la zone décomprimée ;

 σ_0 : Contrainte initiale de massif. $\sigma_0 = \gamma h$

Tel que :

 R_c : La résistance en compression simple des terrains,

$$R_{\mathcal{C}} = \frac{2c + \cos\varphi}{1 - \sin\varphi} = 2c \tan\left(\frac{\pi}{4} + \frac{\varphi}{2}\right)$$
(28)

K_P : Coefficient de butée

$$K_P = \tan^2\left(\frac{\pi}{4} + \frac{\varphi}{2}\right) = \frac{1 + \sin\varphi}{1 - \sin\varphi}$$
(29)

* Etapes de calcul

• Si $\sigma_0 < \frac{Rc}{2}$ Le comportement est élastique et le creusement n'entraîne pas de déformations plastiques.

Calcul du déplacement à la paroi pour une pression de soutènement nul.

$$\boldsymbol{u}_0 = \frac{(1+v)\sigma 0.R}{E} \tag{30}$$

La courbe caractéristique est une droite passant par les deux points de coordonnées :

$$\begin{cases} P = \sigma 0\\ u = 0 \end{cases} \qquad \qquad \begin{cases} P = 0\\ ui = \frac{(1+v)\sigma 0.R}{E} \end{cases}$$
• Si $\sigma_0 > \frac{Rc}{2}$ Ce cas représente la fin de l'élasticité.

Pour trace la courbe caractéristique du terrain $(P\lambda = ())$ les équations suivantes sera utilisée: \checkmark Taux de déconfinement (x)

- ✓ Déplacement (λ)
- ✓ La pression (λ)

✓ Calcule de taux de déconfinement λ (**x**)

$$\lambda(x) = \alpha + (1 - \alpha) \left(1 - \left[\frac{m0.R}{m0 R + x}\right]^2\right)$$
(27)

Avec : α et m₀ sont deux constantes (respectivement 0.25 et 0.75) et R le rayon d'excavation.

✓ Calcul de déplacement (λ)

$$U(\lambda) = \lambda(x). u_0 \tag{31}$$

Avec : $\boldsymbol{u_0} = \frac{(1+v)\sigma 0.R}{E}$

✓ Calcule de la pression P(λ)

$$P(\lambda) = (1 - \lambda(x)) \sigma_0$$
(26)

V.9 Courbe de Confinement [35]

Une deuxième courbe est requise pour la méthode. Il s'agit de la courbe de confinement, qui va permettre de caractériser le comportement du soutènement sous son chargement. Le chargement considéré est purement radial, il s'agit d'une pression appliquée sur tout le pourtour extérieur de la structure. Le calcul du déplacement radial us en fonction de la pression appliquée Ps permet de tracer la courbe de confinement sur un graphe identique à celui de la courbe de convergence.

Pour tracer la courbe de confinement ou la courbe caractéristique de soutènement on détermine trois valeurs :

• La raideur de soutènement : $K_s = \frac{\Delta P}{\Delta U}$

• La pression maximale admissible P_{max} qui correspond à la pression en rupture de soutènement.

• Le déplacement *U*.

V.10 Soutènements

1. Béton projeté

a) Raideur du béton K_b:

$$K_{b} = \frac{Eb.e}{(1-\nu^{2}).R} \quad (Cas du revêtement mince)$$
(32)

$$\boldsymbol{K_{b}} = \frac{Eb(R_{int}^{2} - R_{ext}^{2})}{(1-\nu)[(1-2\nu)R_{int}^{2} + R_{ext}^{2}]} \quad (Cas \text{ du revêtement épais}) \quad (33)$$

b) La pression maximale du béton P_b^{max} :

La pression maximale que peut développer un anneau mince vaut :

$$\mathbf{P}_{\mathbf{b}}^{\max} = \frac{\sigma_{b}^{\max}.e}{R} \tag{34}$$

La pression maximale que peut développer un anneau épais vaut :

$$\mathbf{P}_{\mathbf{b}}^{\max} = \frac{R_{int}^2 - R_{ext}^2}{R_{int}^2 + R_{ext}^2} \sigma_b^{\max}$$
(35)

Avec :

$$\sigma_b^{max} = \frac{f_{c28, 0.85}}{\gamma_b} \tag{36}$$

0u :

• fc28 : La résistance caractéristique à la compression du béton utilisé à 28 jours.

• $\gamma b = \text{Coefficient de sécurité}$: $\begin{cases} \gamma b = 1.5 \text{ Coefficient de sécurité situation normale} \\ \gamma b = 1.15 \text{ Coefficient de sécurité situation accidentelle} \end{cases}$

c) Le Déplacement U_b^{max} :

$$U_b^{max} = \frac{P_b^{max}.R}{K_b}$$
(37)

Caractéristiques de béton projeté

- modules E_b de béton projeté: $E_b = 12$ GPa = 12000MPa
- coefficient de poison : v = 0.2
- rayon de la galerie : R = 2.5m

- $\gamma b = 1.5$

2. Cintres métalliques

a) Raideur du Cintre K_c :

$$K_c = \frac{Ec.Ac}{R.\alpha}$$
(38)

b) La pression maximale P_c^{max} :

$$P_c^{max} = \frac{fu.Ac}{R.\alpha}$$
(39)

c) Le Déplacement U_c^{max} :

$$U_c^{max} = \frac{P_c^{max}.R}{Kc} \tag{40}$$

Avec :

- Ec : Module de Young de l'acier ;
- Ac : Section des cintres ;
- α : Espacement des cintres ;
- fu : Résistance de l'acier.

> Caractéristiques des cintres métalliques

- Section HEB-220: $Ac = 91.04cm^2$
- la qualité de l'acier est : S275
- Module de Young de l'acier : $E_c = 210$ GPa = 210000MPa
- Résistance de l'acier : fu = 410MPa

3. Boulons d'ancrage

Dans le cas de boulons à ancrage on a :

La pression équivalente peut être calculée par :

$$\mathbf{P} = \frac{F}{e_c \cdot e_l} = \frac{A_s \cdot E_b}{L \cdot e_c \cdot e_t} \cdot \mathbf{u}$$
(41)

Avec : $F = A_s \cdot E_s \cdot \frac{u}{L}$

La raideur à prendre en compte est donc:

$$K_{sn} = \mathbf{P} \cdot \frac{R}{u} = \frac{R}{e_c \cdot e_t} \cdot \frac{A_s \cdot E_b}{L}$$
(42)

Avec :

 E_b : Module de l'acier du boulon (E_b=2.1 × 10⁵ MPa)

- e_t : Espacement transversale entre boulons.
- e_l : Espacement longitudinal entre boulons.
- R : rayon de l'excavation.
- As : Section du boulon.

Caractéristiques des boulons d'ancrage

- -La longueur de boulons d'ancrage L= 6m
- -Diamètre de boulons d'ancrage D=25mm

-Section du boulon : As $=\frac{25^2}{4}\pi = 490.87 \text{mm}^2$

 $-E_b=2.1.10^5$ MPa

V.11. Application de la méthode pour notre galerie (la galerie 1045)

V.11.1 Caractéristiques géotechniques des roches

TableauIV.1.Caractéristiques géotechniques des massifs rocheux au niveau de la galerie 1045

Caractéristiques	Conglomérat	Calcaire Marne		Marne	Marne	Grés	Minerai
géotechniques			jaune	minéralisé	grise		fer
γ (KN/m³)	23	27	22	24	22	23	26
φ (°)	37.14	38.24	18.53	14.9	14.44	25	32.64
C (MPa)	0.0026	0.02	0.0044	0.0036	0.0036	0.007	0.018
E (GPa)	2.236	10.521	2.041	1.257	1.147	2.236	8.691
R _c (MPa)	2.025	2.166	1.403	1.310	1.298	1.593	1.906
v (coefficient de	0.25	0.25	0.25	0.25	0.25	0.25	0.25
poissent)							
H (l'épaisseur de							
la couverture en	21.5	91.5	121.5	121.5	121.5	131.5	151.5
m)							
$\sigma_0 = \gamma. H(MPa)$	0.49	2.47	2.67	2.91	2.67	3.02	3.94

La galerie est de 2.5 m de rayon et le soutènement est composé de cintres, béton projeté et de boulons d'ancrage.

FigureIV.1.La profondeur et le rayon de la galerie.

• Calcul de Rc:

$$Rc = \frac{2c + \cos \phi}{1 - \sin \phi} = 2c \tan \left(\frac{\pi}{4} + \frac{\phi}{2}\right)$$

- Conglomérat : $R_c = \frac{2.(0.0026) + \cos 37.14}{1 - \sin 37.14} = 2.025 \text{ MPa}$

- Calcaire : $R_c = \frac{2.(0.02) + \cos 38.24}{1 \sin 38.24} = 2.166 \text{ MPa}$
- Marne jaune : $R_c = \frac{2.(0.0044) + \cos 18.53}{1 \sin 18.53} = 1.403 \text{ MPa}$
- Marne minéralisée : $R_c = \frac{2.(0.0036) + cos14.9}{1 sin 14.9} = 1.310 \text{ MPa}$
- Marne grise : $R_c = \frac{2.(0.003) + \cos 14.44}{1 \sin 14.44} = 1.298 \text{ MPa}$

- Grés :
$$R_c = \frac{2.(0.007) + \cos 25}{1 - \sin 25} = 1.593$$
 MPa

- Minerai fer :
$$R_c = \frac{2.(0.018) + \cos 32.64}{1 - \sin 32.64} = 1.906 \text{ MPa}$$

• Calcul de K_p:

$$K_{p} = tan^{2} \left(\frac{\pi}{4} + \frac{\varphi}{2}\right) = \frac{1 + \sin\varphi}{1 - \sin\varphi}$$

- Conglomérat : $K_P = \frac{1 + \sin 37.14}{1 \sin 37.14} = 4.047$
- Calcaire : $K_P = \frac{1 + \sin 38.24}{1 \sin 38.24} = 4.248$
- Marne jaune : $K_P = \frac{1 + \sin 18.53}{1 \sin 18.53} = 1.931$
- Marne minéralisée : $K_P = \frac{1 + \sin 14.9}{1 \sin 14.9} = 1.692$

- Marne grise :
$$K_P = \frac{1 + \sin 14.44}{1 - \sin 14.44} = 1.664$$

- Grise :
$$K_P = \frac{1 + \sin 25}{1 - \sin 25} = 2.464$$

- Minerai fer : $K_P = \frac{1 + \sin 32.64}{1 - \sin 32.64} = 3.342$

V.11.2 Les courbes de convergence et de confinement

1. Pour le conglomérat :

a) Courbe caractéristique du terrain (la courbe de convergence) :

On a :

$$\frac{\text{Rc}}{2} = \frac{2.025}{2} = 1.012 \text{ MPa} \text{ ; donc } \sigma_0 < \frac{\text{Rc}}{2}$$

Le comportement est élastique et le creusement n'entraîne pas de déformations plastiques. Calcul du déplacement à la paroi pour une pression de soutènement nul.

$$\boldsymbol{u_0} = \frac{(1+v)\sigma 0.R}{E} = \frac{(1+0.25)(0.49).1.5}{(2.236)(10^3)} = 0.00041 \text{mm} = 0.41 \text{ mm}$$

La courbe caractéristique du terrain est une droite passant par les deux points de coordonnées suivantes :

 $\begin{cases} P = \sigma 0 = 0.49 MPa \\ u = 0 mm \end{cases}$

$$\begin{cases} P = 0\\ u0 = \frac{(1+v)\sigma 0.R}{E} = 0.41mm \end{cases}$$

b) Courbe caractéristique du soutènement (de confinement)

On a :

- ✤ Béton projeté (épaisseur: e = 10cm= 0.1m)
- Module De Rigidité *K*_b:

$$K_{b} = \frac{\text{Eb.e}}{(1-\nu^{2}).R} = \frac{12000.0.1}{(1-0.2^{2}).1.5} = 833.33 \text{ MPa}$$

• Pression maximale P_b^{max} :

$$\sigma_b^{max} = \frac{f_{c_{28.0.85}}}{\gamma_b} = \frac{25.(0.85)}{1.5} = 14.16$$
MPa

$$P_b^{max} = \frac{\sigma_b^{max}.e}{R} = \frac{14.16 \times 0.1}{1.5} = 0.944$$
MPa

• Le Déplacement U_b^{max} :

$$U_b^{max} = \frac{P_b^{max}.R}{K_b} = \frac{0.944 \times 1.5}{833.33} = 0.0017$$
m = 1.7 mm

- Cintres métalliques (Cintres HEB-220) (Espacement=2m)
- Module De Rigidité *K*_c :

$$K_c = \frac{Ec.Ac}{R.\alpha} = \frac{210000.(91.04.\ 10^{-4})}{1.5 \times 2} = 637.28$$
MPa

• Pression maximale P_c^{max} :

$$P_c^{max} = \frac{fu.Ac}{R.\alpha} = \frac{410.(91.04.\ 10^{-4})}{1.5.\ 2} = 1.24$$
MPa

• Le Déplacement U_c^{max} :

$$U_c^{max} = \frac{P_c^{max}.R}{\text{Kc}} = \frac{1.24 \times 1.5}{637.28} = 0.0029 \text{m} = 2.9 \text{mm}$$

Boulons d'ancrage (Espacement entre boulons : 2m)

$$K_{sn} = \frac{R}{e_c \cdot e_t} \cdot \frac{A_s \cdot E_b}{L} = \frac{1.5}{2 \cdot 2} \cdot \frac{(490.87 \times 10^{-6})(2.1 \times 10^5)}{6} = 17.18$$
MPa

 $P_{max} = 0.067 MPa$

Combinaison des soutènements

• Raideur du soutènement :

 $K_s = K_b + K_c + K_{sn} = 833.33 + 637.28 + 17.18 = 1487.80 MPa$

• Pression maximale développée par le soutènement

 $P_s^{max} = P_b^{max} + P_c^{max} = 0.944 + 1.24 + 0.067 = 2.251$ MPa

• Déplacement maximum du soutènement

$$U_s^{max} = \frac{P_s^{max}.R}{\text{Ks}} = \frac{2.251 \times 1.5}{1487.80} = 0.0022 \text{m} = 2.2 \text{mm}$$

• Calcul de point de départ de la courbe caractéristique du soutènement

 $U_{s0} > 0.265 \times U_0 > 0.265 \times 0.41 > 0.11 \text{ mm}$

La courbe caractéristique est une droite passant par les deux points de coordonnées :

$$\begin{cases} P = 0 \text{ MPa} \\ Us0 = 0.11 \text{ mm} \end{cases} \begin{cases} P_s^{max} = 2.251 \text{ MPa} \\ U_s^{max} = 2.2mm \end{cases}$$

Le graphe de convergence confinement représente dans la figure ci=dessous :

Figure IV.2 Courbe convergence-confinement (conglomérat)

A travers l'étude graphique, on détermine le point d'équilibre obtenu par l'intersection des courbes caractéristiques de convergence (terrain) et de confinement (soutènement) : $P_{équilibre} = 0.1MPa$

.

 $U_{\acute{e}quilibre} = 0.33 mm$

2. Pour le calcaire :

a) Courbe caractéristique du terrain (la courbe de convergence) :

On a :

 $\frac{\text{Rc}}{2} = \frac{2.166}{2} = 1.083 \text{ MPa} \text{ ; donc } \boldsymbol{\sigma}_0 > \frac{\text{Rc}}{2} \text{ ; Ce cas représente la fin de l'élasticité.}$

• Calcule de taux de déconfinement λ (x)

Pour x=1m; λ (x=1) = α + (1 - α) (1- $\left[\frac{m0.R}{m0 R + x}\right]^2$)

$$= 0.25 + (1 - 0.25) \left(1 - \left[\frac{(0.75).1.5}{(0.75)1.5 + 1}\right]^2\right)$$

= 0.79

•Calcul de déplacement (λ)

U(λ) = λ (x). u_0 $u_0 = \frac{(1+v)\sigma 0.R}{E} = \frac{(1+0.25)(2.47).1.5}{(10.52)(10^3)} = 0.00044 \text{ m} = 0.44 \text{ mm}$

Donc : $U(\lambda) = (0.79)(0.44) = 0.35$ mm

• Calcule de la pression $P(\lambda)$

 $P(\lambda) = (1 - \lambda(x)) \sigma_0 = (1 - \lambda(x)) 2.47$

Les valeurs de la courbe caractéristique du terrain sont représentés dans le tableau suivant :

TableauIV.2. Les valeurs de la courbe de terrai	n (calcaire)
--	--------------

Λ	0	0.79	0.85	0.93	1
Ρ (λ) (MPa)	2.47	0.52	0.37	0.17	0
$U(\lambda)$ (mm)	0	0.35	0.37	0.41	0.44

b) Courbe caractéristique du soutènement (confinement)

On a :

Séton projeté (épaisseur= 0.1m)

• Module De Rigidité *K*_b:

$$K_{b} = \frac{Eb.e}{(1-\nu^{2}).R} = \frac{12000.0.1}{(1-0.2^{2})1.5} = 833.33$$
MPa

• Pression maximale P_b^{max} :

$$\sigma_b^{max} = \frac{f_{c28.\ 0.85}}{\gamma_b} = \frac{25.(0.85)}{1.5} = 14.16$$
MPa

$$P_b^{max} = \frac{\sigma_b^{max}.e}{R} = \frac{14.16 \times 0.1}{1.5} = 0.94$$
MPa

• Le Déplacement U_b^{max} :

$$U_b^{max} = \frac{P_b^{max}.R}{K_b} = \frac{0.94 \times 1.5}{833.33} = 0.0017$$
m = 1.7mm

Boulons d'ancrage (Espacement entre boulons : 2m)

$$K_{sn} = \frac{R}{e_c \cdot e_t} \cdot \frac{A_s \cdot E_b}{L} = \frac{1.5}{2 \times 2} \cdot \frac{(490.87.10^{-6})(2.1.10^5)}{6} = 6.43 \text{ MPa}$$

 $P_{max} = 2.606MPa$

* Combinaison du boulon et béton projeté

• Raideur du soutènement :

 $K_s = K_b + K_{sn} = 833.33 + 6.43 = 839.76 MPa$

• Pression maximale développée par le soutènement

 $P_s^{max} = P_b^{max} + P = 0.94 + 2.606 = 3.54 \text{ MPa}$

• Déplacement maximum du soutènement

$$U_s^{max} = \frac{P_s^{max}.R}{Ks} = \frac{3.546 \times 1.5}{839.76} = 0.0062 \text{m} = 6.2 \text{mm}$$

• Calcul de point de départ de la courbe caractéristique du soutènement

 $U_{s0} > 0.265 \times U_0 > 0.265 \times 0.44 > 0.085 \text{ mm}$

La courbe caractéristique est une droite passant par les deux points de coordonnées :

$$\begin{cases} P = 0 \text{ MPa} \\ Us0 = 0.12 \text{ mm} \end{cases} \begin{cases} P_s^{max} = 3.54 \text{ MPa} \\ U_s^{max} = 6.2 \text{ mm} \end{cases}$$

Le graphe de convergence confinement représente dans la figure ci=dessous :

Figure IV.3 Courbe convergence-confinement (calcaire)

A travers l'étude graphique, on détermine le point d'équilibre obtenu par l'intersection des courbes caractéristiques de convergence (terrain) et de confinement (soutènement) : $P_{équilibre} = 0.3MPa$

 $U_{\acute{e}quilibre} = 0.4 mm$

3. Pour la marne jaune :

a) Courbe caractéristique du terrain (la courbe de convergence) :

On a :

$$\frac{\text{Rc}}{2} = \frac{1.403}{2} = 0.702 \text{ MPa} \text{ ; donc } \sigma_0 > \frac{\text{Rc}}{2}$$

Ce cas représente la fin de l'élasticité.

• Calcule de taux de déconfinement λ (x)

Pour x=1m ; λ (x=1) = 0.25 + (1 – 0.25) (1 – [$\frac{(0.75).1.5}{(0.75)1.5+1}$]²)

 λ (x=1) =0.79

•Calcul de déplacement (λ)

 $U(\lambda) = \lambda(x). u_0$

$$u_0 = \frac{(1+v)\sigma 0.R}{E} = \frac{(1+0.25)(2.67).1.5}{(3.08)(10^3)} = 0.0016 \text{ m} = 1.6 \text{mm}$$

Donc : $U(\lambda) = (0.79)(1.6) = 1.26$ mm

• Calcule de la pression $P(\lambda)$

 $P(\lambda) = (1 - \lambda(x)) \sigma_0 = (1 - \lambda(x)) 2.67$

Les valeurs de la courbe caractéristique du terrain sont représentés dans le tableau suivant :

Tab	leauIV	7.3	Les	vale	eurs	de	la	cour	be d	e teri	ain	(marne	jaune)
-----	--------	------------	-----	------	------	----	----	------	------	--------	-----	--------	-------	---

λ	0	0.79	0.85	0.93	1
$P(\lambda)$ (MPa)	2.67	0.56	0.40	0.18	0
$U(\lambda)$ (mm)	0	1.26	1.36	1.48	1.6

b) Courbe caractéristique du soutènement (confinement)

On a :

✤ Béton projeté (épaisseur: e = 15cm= 0.15m)

• Module De Rigidité *K*_b:

$$K_{b} = \frac{\text{Eb.}e}{(1-\nu^{2}).R} = \frac{12000 \times 0.15}{(1-0.2^{2}).1.5} = 1250 \text{ MPa}$$

• Pression maximale P_b^{max} :

$$\sigma_b^{max} = \frac{f_{c28.\ 0.85}}{\gamma_b} = \frac{25.(0.85)}{1.5} = 14.16$$
MPa

$$P_b^{max} = \frac{\sigma_b^{max}.e}{R} = \frac{14.16 \times 0.15}{1.5} = 1.416 \text{MPa}$$

• Le Déplacement U_h^{max} :

$$U_b^{max} = \frac{P_b^{max}.R}{K_b} = \frac{1.416 \times 1.5}{1250} = 0.0017 \text{m} = 1.7 \text{mm}$$

- Cintres métalliques (Cintres HEB-220) (Espacement=2m)
- Module De Rigidité *K*_c :

$$K_c = \frac{Ec.Ac}{R.\alpha} = \frac{210000.(91.04.\ 10^{-4})}{1.5 \times 2} = 637.28$$
MPa

• Pression maximale P_c^{max} :

$$P_c^{max} = \frac{fu.Ac}{R.\alpha} = \frac{410.(91.04.\ 10^{-4})}{1.5 \cdot 2} = 1.24$$
MPa

• Le Déplacement U_c^{max} :

$$U_c^{max} = \frac{P_c^{max}.R}{\text{Kc}} = \frac{1.24 \times 1.5}{637.28} = 0.0029 \text{m} = 2.9 \text{mm}$$

Solutions d'ancrage (Espacement entre boulons : 1.5m)

$$K_{sn} = \frac{R}{e_c \cdot e_t} \cdot \frac{A_s \cdot E_b}{L} = \frac{1.5}{1.5 \times 1.5} \cdot \frac{(490.87 \times 10^{-6})(2.1 \times 10^5)}{6} = 11.45$$
MPa

 $P_{max} = 0.119 MPa$

Combinaison des soutènements

• Raideur du soutènement :

$$K_s = K_b + K_c + K_{sn} = 1250 + 637.28 + 11.45 = 1898.73 MPa$$

• Pression maximale développée par le soutènement

$$P_s^{max} = P_b^{max} + P_c^{max} + P_{max} = 1.416 + 1.24 + 0.119 = 2.775 MPa$$

• Déplacement maximum du soutènement

$$U_s^{max} = \frac{P_s^{max}.R}{\text{Ks}} = \frac{2.775 \times 1.5}{1898.73} = 0.0022 \text{m} = 2.2 \text{mm}$$

• Calcul de point de départ de la courbe caractéristique du soutènement

$$U_{s0} > 0.265 \times U_0 > 0.265 \times 1.6 > 0.41 \text{ mm}$$

La courbe caractéristique est une droite passant par les deux points de coordonnées :

$$\begin{cases} P = 0 \text{ MPa} \\ Us0 = 0.41 \text{mm} \end{cases} \begin{cases} P_s^{max} = 2.251 \text{ MPa} \\ U_s^{max} = 2.2mm \end{cases}$$

Le graphe de convergence confinement représente dans la figure ci=dessous :

Figure IV.4 Courbe convergence-confinement (marne jaune)

A travers l'étude graphique, on détermine le point d'équilibre obtenu par l'intersection des courbes caractéristiques de convergence (terrain) et de confinement (soutènement) :

 $P_{\text{équilibre}} = 0.5 MPa$

 $U_{équilibre} = 2.6 mm$

4. Pour la marne minéralisée :

a) Courbe caractéristique du terrain (la courbe de convergence) :

On a :

$$\frac{\text{Rc}}{2} = \frac{1.310}{2} = 0.65 \text{ MPa} \text{ ; donc } \sigma_0 > \frac{\text{Rc}}{2}$$

Ce cas représente la fin de l'élasticité.

• Calcule de taux de déconfinement λ (**x**)

Pour x=1m; λ (x=1) = 0.25 + (1 - 0.25) (1 - $\left[\frac{(0.75).1.5}{(0.75).1.5+1}\right]^2$)

 λ (x=1) =0.79

•Calcul de déplacement (λ)

U(λ) = λ (x). u_0 $u_0 = \frac{(1+v)\sigma 0.R}{E} = \frac{(1+0.25)(2.91)1.5}{(1.26)(10^3)} = 0.0043 \text{ m} = 4.3 \text{ mm}$

Donc : $U(\lambda) = (0.79)(4.3) = 3.39$ mm

• Calcule de la pression $P(\lambda)$

 $P(\lambda) = (1 - \lambda(x)) \sigma_0 = (1 - \lambda(x)) 2.91$

Les valeurs de la courbe caractéristique du terrain sont représentés dans le tableau suivant :

TableauIV.4 Les valeurs de la courbe de terrain (marne minéralisée)

λ	0	0.79	0.83	0.93	1
$P(\lambda)$ (MPa)	2.91	0.61	0.49	0.20	0
$U(\lambda) (mm)$	0	3.39	3.56	3.99	4.3

b) Courbe caractéristique du soutènement (confinement)

On a :

- ✤ Béton projeté (épaisseur: e = 10cm= 0.1m)
- Module De Rigidité *K*_b:

$$K_{b} = \frac{Eb.e}{(1-\nu^{2}).R} = \frac{12000.0.1}{(1-0.2^{2}).1.5} = 833.33 \text{ MPa}$$

• Pression maximale P_b^{max} :

$$\sigma_b^{max} = \frac{f_{c_{28.0.85}}}{\gamma_b} = \frac{25.(0.85)}{1.5} = 14.16$$
MPa

$$P_b^{max} = \frac{\sigma_b^{max}.e}{R} = \frac{14.16 \times 0.1}{1.5} = 0.944$$
MPa

• Le Déplacement U_b^{max} :

$$U_b^{max} = \frac{P_b^{max}.R}{K_b} = \frac{0.944 \times 1.5}{833.33} = 0.0017$$
m = 1.7mm

Cintres métalliques (Cintres HEB-220) (Espacement=2m)

• Module De Rigidité *K*_c :

$$K_c = \frac{Ec.Ac}{R.\alpha} = \frac{210000.(91.04.\ 10^{-4})}{1.5 \times 2} = 637.28$$
MPa

• Pression maximale P_c^{max} :

$$P_c^{max} = \frac{fu.Ac}{R.\alpha} = \frac{410.(91.04.\ 10^{-4})}{1.5 \ . \ 2} = 1.24$$
MPa

• Le Déplacement U_c^{max} :

$$U_c^{max} = \frac{P_c^{max}.R}{\text{Kc}} = \frac{1.24 \times 1.5}{637.28} = 0.0029 \text{m} = 2.9 \text{mm}$$

Solutions d'ancrage (Espacement entre boulons : 2m)

$$K_{sn} = \frac{R}{e_c \cdot e_t} \cdot \frac{A_s \cdot E_b}{L} = \frac{1.5}{2 \cdot 2} \cdot \frac{(490.87 \times 10^{-6})(2.1 \times 10^5)}{6} = 17.18$$
MPa

 $P_{max} = 0.067 MPa$

* Combinaison des soutènements

• Raideur du soutènement :

 $K_s = K_b + K_c + K_{sn} = 833.33 + 637.28 + 17.18 = 1487.80 MPa$

• Pression maximale développée par le soutènement

$$P_s^{max} = P_b^{max} + P_c^{max} + P_{max} = 0.944 + 1.24 + 0.067 = 2.251 \text{MPa}$$

• Déplacement maximum du soutènement

$$U_s^{max} = \frac{P_s^{max}.R}{K_s} = \frac{2.251 \times 1.5}{1487.80} = 0.0022 \text{m} = 2.2 \text{mm}$$

• Calcul de point de départ de la courbe caractéristique du soutènement

$$U_{s0} > 0.265 \times U_0 > 0.265 \times 4.3 > 1.14 \text{ mm}$$

La courbe caractéristique est une droite passant par les deux points de coordonnées :

$$\begin{cases} P = 0 \text{ MPa} \\ U_{s0} = 0.14 \text{mm} \end{cases} \begin{cases} P_s^{max} = 2.251 \text{ MPa} \\ U_s^{max} = 2.2mm \end{cases}$$

Le graphe de convergence confinement représente dans la figure ci=dessous :

Figure IV.5 Courbe convergence-confinement (marne minéralisé)

A travers l'étude graphique, on détermine le point d'équilibre obtenu par l'intersection des courbes caractéristiques de convergence (terrain) et de confinement (soutènement) :

 $P_{\text{équilibre}} = 0.6 MPa$

 $U_{\acute{e}quilibre} = 6.1 mm$

5. Pour la marne grise :

a) Courbe caractéristique du terrain (la courbe de convergence) :

On a :

 $\frac{\text{Rc}}{2} = \frac{1.298}{2} = 0.65 \text{ MPa} \text{ ; donc } \sigma_0 > \frac{\text{Rc}}{2}$

Ce cas représente la fin de l'élasticité.

• Calcule de taux de déconfinement λ (x)

Pour x=1m; λ (x=1) = 0.25 + (1 - 0.25) (1 - $\left[\frac{(0.75).1.5}{(0.75)1.5 + 1}\right]^2$)

 λ (x=1) =0.79

•Calcul de déplacement (λ)

U(λ) = λ (x). u_0 $u_0 = \frac{(1+v)\sigma 0.R}{E} = \frac{(1+0.25)(2.67).1.5}{(1.14)(10^3)} = 0.0044 \text{ m} = 4.4 \text{mm}$

Donc : $U(\lambda) = (0.79)(4.4) = 3.47$ mm

• Calcule de la pression $P(\lambda)$

 $P(\lambda) = (1 - \lambda(x)) \sigma_0 = (1 - \lambda(x)) 2.67$

Les valeurs de la courbe caractéristique du terrain sont représentés dans le tableau suivant :

λ	0	0.79	0.83	0.93	1
$P(\lambda)$ (MPa)	2.67	0.56	0.45	0.18	0
$U(\lambda) (mm)$	0	3.47	3.65	4.09	4.4

b) Courbe caractéristique du soutènement (confinement)

On a :

Séton projeté (épaisseur: e = 10cm= 0.1m)

• Module De Rigidité *K*_b:

$$K_{b} = \frac{\text{Eb.e}}{(1-\nu^{2}).R} = \frac{12000 \times 0.1}{(1-0.2^{2}).1.5} = 833.33 \text{ MPa}$$

• Pression maximale P_{h}^{max} :

$$\sigma_b^{max} = \frac{f_{c_{28.\ 0.85}}}{\gamma_b} = \frac{25.(0.85)}{1.5} = 14.16$$
MPa

$$P_b^{max} = \frac{\sigma_b^{max}.e}{R} = \frac{14.16 \times 0.1}{1.5} = 0.944$$
MPa

• Le Déplacement U_b^{max} :

$$U_b^{max} = \frac{P_b^{max}.R}{K_b} = \frac{0.944 \times 1.5}{833.33} = 0.0017 \text{m} = 1.7 \text{mm}$$

Cintres métalliques (Cintres HEB-220) (Espacement=2m)

• Module De Rigidité *K*_c :

$$K_c = \frac{Ec.Ac}{R.\alpha} = \frac{210000.(91.04.\ 10^{-4})}{1.5 \times 2} = 637.28$$
MPa

• Pression maximale P_c^{max} :

$$P_c^{max} = \frac{fu.Ac}{R.\alpha} = \frac{410.(91.04.\ 10^{-4})}{1.5.\ 2} = 1.24$$
MPa

• Le Déplacement U_c^{max} :

$$U_c^{max} = \frac{P_c^{max}.R}{\text{Kc}} = \frac{1.24 \times 1.5}{637.28} = 0.0029 \text{m} = 2.9 \text{mm}$$

Solutions d'ancrage (Espacement entre boulons : 2m)

$$K_{sn} = \frac{R}{e_c \cdot e_t} \cdot \frac{A_s \cdot E_b}{L} = \frac{1.5}{2 \cdot 2} \cdot \frac{(490.87 \times 10^{-6})(2.1 \times 10^5)}{6} = 17.18$$
MPa

 $P_{max} = 0.067 MPa$

Combinaison des soutènements

• Raideur du soutènement :

 $K_s = K_b + K_c + K_{sn} = 833.33 + 637.28 + 17.18 = 1487.80 MPa$

• Pression maximale développée par le soutènement

 $P_s^{max} = P_b^{max} + P_c^{max} + P_{max} = 0.944 + 1.24 + 0.067 = 2.251 \text{MPa}$

• Déplacement maximum du soutènement

$$U_s^{max} = \frac{P_s^{max}.R}{Ks} = \frac{2.251 \times 1.5}{1487.80} = 0.0022 \text{m} = 2.2 \text{mm}$$

• Calcul de point de départ de la courbe caractéristique du soutènement

 $U_{s0} > 0.265 \times U_0 > 0.265 \times 4.4 > 1.16 \text{ mm}$

La courbe caractéristique est une droite passant par les deux points de coordonnées :

$\int P = 0 MPa$	$\int P_s^{max} = 2.251 MPa$
Us0 = 0.16mm	$U_s^{max} = 2.2mm$

Le graphe de convergence confinement représente dans la figure ci=dessous :

Figure IV.6 Courbe convergence-confinement (marne grise)

A travers l'étude graphique, on détermine le point d'équilibre obtenu par l'intersection des courbes caractéristiques de convergence (terrain) et de confinement (soutènement) :

 $P_{\acute{e}quilibre} = 0.6 MPa$

 $U_{\text{équilibre}} = 5.5 \text{mm}$

6. Pour les grés :

a) Courbe caractéristique du terrain (la courbe de convergence) :

On a :

$$\frac{\text{Rc}}{2} = \frac{1.593}{2} = 0.79 \text{ MPa}$$
; donc $\sigma_0 > \frac{\text{Rc}}{2}$

Ce cas représente la fin de l'élasticité.

• Calcule de taux de déconfinement λ (**x**)

Pour x=1m;
$$\lambda$$
 (x=1) = 0.25 + (1 - 0.25) (1 - $\left[\frac{(0.75).1.5}{(0.75)1.5 + 1}\right]^2$)

 λ (x=1) =0.79

•Calcul de déplacement (λ)

U(
$$\lambda$$
) = λ (x). u_0
 $u_0 = \frac{(1+v)\sigma 0.R}{E} = \frac{(1+0.25)(3.02)1.5}{(2.23)(10^3)} = 0.0025 \text{ m} = 2.5 \text{ mm}$

Donc : $U(\lambda) = (0.79)(2.5) = 1.97$ mm

• Calcule de la pression $P(\lambda)$

 $P(\lambda) = (1 - \lambda(x)) \sigma_0 = (1 - \lambda(x)) 3.02$

Les valeurs de la courbe caractéristique du terrain sont représentés dans le tableau suivant :

λ	0	0.79	0.83	0.95	1
$P(\lambda)$ (MPa)	3.02	0.63	0.51	0.15	0
$U(\lambda) (mm)$	0	1.97	2.07	2.37	2.5

TableauIV.6 Les valeurs de la courbe de terrain (grés)

b) Courbe caractéristique du soutènement (confinement)

On a :

✤ Béton projeté (épaisseur: e = 10cm= 0.1m)

• Module De Rigidité *K*_b:

$$K_{b} = \frac{\text{Eb.e}}{(1-\nu^{2}).R} = \frac{12000 \times 0.1}{(1-0.2^{2}).1.5} = 833.33 \text{ MPa}$$

• Pression maximale P_b^{max} :

$$\sigma_b^{max} = \frac{f_{c28.\ 0.85}}{\gamma_b} = \frac{25.(0.85)}{1.5} = 14.16$$
MPa

$$P_b^{max} = \frac{\sigma_b^{max}.e}{R} = \frac{14.16 \times 0.1}{1.5} = 0.944$$
MPa

• Le Déplacement U_b^{max} :

$$U_b^{max} = \frac{P_b^{max}.R}{K_b} = \frac{0.944 \times 1.5}{833.33} = 0.0017$$
m = 1.7mm

Cintres métalliques (Cintres HEB-220) (Espacement=2m)

• Module De Rigidité *K*_c :

$$K_c = \frac{Ec.Ac}{R.\alpha} = \frac{210000.(91.04.\ 10^{-4})}{1.5 \times 2} = 637.28$$
MPa

• Pression maximale P_c^{max} :

$$P_c^{max} = \frac{fu.Ac}{R.\alpha} = \frac{410.(91.04.\ 10^{-4})}{1.5.\ 2} = 1.24$$
MPa

• Le Déplacement U_c^{max} :

$$U_c^{max} = \frac{P_c^{max}.R}{\text{Kc}} = \frac{1.24 \times 1.5}{637.28} = 0.0029 \text{m} = 2.9 \text{mm}$$

Soulons d'ancrage (Espacement entre boulons : 2m)

$$K_{sn} = \frac{R}{e_c \cdot e_t} \cdot \frac{A_s \cdot E_b}{L} = \frac{1.5}{2 \cdot 2} \cdot \frac{(490.87 \times 10^{-6})(2.1 \times 10^5)}{6} = 17.18$$
MPa

 $P_{max} = 0.067 MPa$

* Combinaison des soutènements

• Raideur du soutènement :

 $K_s = K_b + K_c + K_{sn} = 833.33 + 637.28 + 17.18 = 1487.80 MPa$

• Pression maximale développée par le soutènement

 $P_s^{max} = P_b^{max} + P_c^{max} + P_{max} = 0.944 + 1.24 + 0.067 = 2.251 \text{MPa}$

• Déplacement maximum du soutènement

$$U_s^{max} = \frac{P_s^{max}.R}{K_s} = \frac{2.251 \times 1.5}{1487.80} = 0.0022 \text{m} = 2.2 \text{mm}$$

• Calcul de point de départ de la courbe caractéristique du soutènement

 $U_{s0} > 0.265 \times U_0 > 0.265 \times 2.5 > 0.66 \text{ mm}$

La courbe caractéristique est une droite passant par les deux points de coordonnées :

 $\begin{cases} P = 0 \text{ MPa} \\ Us0 = 0.66 \text{mm} \end{cases}$

$$\begin{cases} P_s^{max} = 2.251 \text{MPa} \\ U_s^{max} = 2.2mm \end{cases}$$

Le graphe de convergence confinement représente dans la figure ci=dessous :

Figure IV.7 Courbe convergence-confinement (grés)

A travers l'étude graphique, on détermine le point d'équilibre obtenu par l'intersection des courbes caractéristiques de convergence (terrain) et de confinement (soutènement) : $P_{équilibre} = 0.5MPa$

 $U_{\text{équilibre}} = 2.5 \text{mm}$

7. Pour le minerai de fer :

a) Courbe caractéristique du terrain (la courbe de convergence) :

On a :

 $\frac{\text{Rc}}{2} = \frac{1.906}{2} = 0.953 \text{ MPa} \text{ ; donc } \sigma_0 > \frac{\text{Rc}}{2}$

Ce cas représente la fin de l'élasticité.

• Calcule de taux de déconfinement λ (**x**)

Pour x=1m; λ (x=1) = 0.25 + (1 - 0.25) (1 - $\left[\frac{(0.75)5}{(0.75)1.5 + 1}\right]^2$)

 λ (x=1) =0.79

•Calcul de déplacement (λ)

 $U(\lambda) = \lambda(x). u_0$ $u_0 = \frac{(1+v)\sigma 0.R}{E} = \frac{(1+0.25)(3.94)1.5}{(8.69)(10^3)} = 0.00085 \text{ m} = 0.85 \text{mm}$

Donc : $U(\lambda) = (0.79)(0.85) = 0.67$ mm

• Calcule de la pression $P(\lambda)$

 $P(\lambda) = (1 - \lambda(x)) \sigma_0 = (1 - \lambda(x)) 3.94$

Les valeurs de la courbe caractéristique du terrain sont représentés dans le tableau suivant :

λ	0	0.79	0.85	0.93	1
$P(\lambda)$ (MPa)	3.94	0.82	0.59	0.28	0
U (λ) (mm)	0	0.67	0.72	0.79	0.85

b) Courbe caractéristique du soutènement (confinement)

On a :

Séton projeté (épaisseur= 0.05m)

• Module De Rigidité *K*_b:

$$K_{b} = \frac{Eb.e}{(1-\nu^{2}).R} = \frac{12000 \times 0.05}{(1-0.2^{2})1.5} = 416.67 \text{MPa}$$

• Pression maximale P_b^{max} :

$$\sigma_b^{max} = \frac{f_{c28.\ 0.85}}{\gamma_b} = \frac{25.(0.85)}{1.5} = 14.16$$
MPa

$$P_b^{max} = \frac{\sigma_b^{max}.e}{R} = \frac{14.16 \times 0.05}{1.5} = 0.47$$
MPa

• Le Déplacement U_b^{max} :

$$U_b^{max} = \frac{P_b^{max}.R}{K_b} = \frac{0.47 \times 1.5}{416.67} = 0.0016$$
 m = 1.6 mm

Solutions d'ancrage (Espacement entre boulons : 1.5m)

$$K_{sn} = \frac{R}{e_c \cdot e_t} \cdot \frac{A_s \cdot E_b}{L} = \frac{1.5}{1.5 \times 1.5} \cdot \frac{(490.87.10^{-6})(2.1.10^5)}{6} = 17.18 \text{ MPa}$$

 $P_{max} = 2.606 MPa$

* Combinaison du boulon et béton projeté

• Raideur du soutènement :

 $K_s = K_b + K_{sn} = 416.67 + 17.18 = 433.85 MPa$

• Pression maximale développée par le soutènement

 $P_s^{max} = P_b^{max} + P = 0.47 + 2.606 = 3.076 \text{ MPa}$

• Déplacement maximum du soutènement

 $U_s^{max} = \frac{P_s^{max}.R}{\text{Ks}} = \frac{3.076 \times 1.5}{433.85} = 0.01 \text{ m} = 10 \text{ mm}$

• Calcul de point de départ de la courbe caractéristique du soutènement

$$U_{\text{S0}} > 0.265 \times U_{\text{0}} > 0.265 \times 0.85 > 0.22 \text{ mm}$$

La courbe caractéristique est une droite passant par les deux points de coordonnées :

$\int P = 0 MPa$	$\int P_s^{max} = 3.076 MPa$
Us0 = 0.22mm	$U_s^{max} = 10 mm$

Le graphe de convergence confinement représente dans la figure ci=dessous :

Figure IV.8 Courbe convergence-confinement (minerai fer)

A travers l'étude graphique, on détermine le point d'équilibre obtenu par l'intersection des courbes caractéristiques de convergence (terrain) et de confinement (soutènement) : $P_{équilibre} = 0.4MPa$

 $U_{\acute{e}quilibre} = 1.05 mm$

V.11.Conclusion

On obtient ainsi par la méthode convergence-confinement, un ensemble d'informations qui orientent le choix initial du mode de soutènement et serviront de base au contrôle du comportement à effectuer pendant les travaux.

VI.1 Introduction

PHASE² est un programme d'éléments finis en plastique bidimensionnel pour le calcul des contraintes et des déplacements autour des ouvertures souterraines, et peut être utilisé pour résoudre un large éventail de problèmes miniers et de génie civil,

Impliquant : [36]

- 1. Déformation plane ou axisymétrie
- 2. Matériaux élastiques ou plastiques
- 3. Excavations étagées (jusqu'à 50 étapes)
- 4. Multiples matériaux
- 5. Support (boulons / béton projeté)
- 6. Contrainte de champ constante ou gravité
- 7. Roche Jointe
- 8. Eaux souterraines (inclure la pression interstitielle dans l'analyse)

VI.2 Interface de programme PHASE²

Ŭ	File	Edit	View	Analysis	Bour	ndaries	Mesh	Loadin	g Disp	lacemen	ts S	upport	Groun	dwater	Prope	erties \	Windo	w Hel	р				- 5	×
D	🖻 ·	-	(5 🍣	K) v	Cil. 🔻		V 📽 🛙	e e		•	Q. Z	0,0	Q±	00	j 🖬 4	<u>s</u> (2	6	16	a ⁰ +	$\times \mathbb{A}^{+}$	¥ 🗣		
	₹ É	Ð		3 🐼 🔻	§ + %	8 - I 4	4 4	ő <u>∧</u>	X	1 1	K, ₹	ŭ×	18/1	2 - 1	1	E	P 😰	j 🖺 🛛	E 🗗	B				
10																							Ļ	_
· · · · ·																								
		20		-15	-10) 	5		0		5		10	18	5	20		25		30		35	40	
	<u> </u>		stage	1/																				
Rea	dy													[-17	.447, 15.	983	

FigureV.1. Présentation de logiciel

1. Menu

2. Onglets de flux de travail: Il est recommandé aux utilisateurs de suivre l'ordre des onglets de flux de travail lors de la construction d'un modèle. La sélection d'un onglet de flux de travail se reflétera dans les icônes de la barre d'outils, qui correspondent à chaque onglet de flux de travail.

3. Icônes de la barre d'outils: ces icônes sont des raccourcis de menu qui peuvent être utilisés pour accélérer le processus de modélisation. Les icônes de la barre d'outils varient en fonction de l'onglet de flux de travail sélectionné.

4. Arbre de visibilité: ce volet facilite la visualisation des composants du modèle en présentant les entités du modèle, y compris les charges, les conditions aux limites des eaux souterraines, les revêtements, etc. sous forme d'arbre. Utilisez l'arborescence pour activer / désactiver la visibilité d'un élément. Cliquez avec le bouton droit sur les éléments pour zoomer ou supprimer. Un clic gauche sur un idem mettra en évidence l'élément sur l'interface de modélisation (vous pouvez modifier l'apparence de la zone de surbrillance sous l'onglet général dans les options d'affichage).

5. Grille de propriétés: toutes les entités présentes dans l'arborescence de visibilité peuvent être visualisées à l'aide de la grille de propriétés, qui permet aux utilisateurs de modifier rapidement les propriétés de n'importe quelle entité de modèle. Les matériaux du modèle peuvent également être sélectionnés et modifiés à l'aide de la grille de propriétés. [36]

6. Interface de modélisation.

VI.3. Modélisation de la galerie (au niveau1045) par logiciel PHASE²

Ces dernières années l'application du model PHASE² pour le calcul de la stabilité dans les mines et les ouvrages souterrains est avéré l'un des meilleurs moyens permettant d'atteindre les objectifs projetés par les différentes compagnies. La simplicité du programme et les bonnes résultats obtenus encourage de plus en plus les ingénieurs chercheurs à opter pour ce model que nous allons l'utiliser pour l'étude de stabilité des galeries au niveau 1045m de la mine de Boukhadra.

a. La première étape ajoutée l'excavation

Project Settings			? ×
General Stress Analy	sis Groundwater	Strength Reduction P	roject Summary
Number of Stages:	1 🕂	Rename Stages	
Analysis Type:	Plane Strain	-	
Solver Type:	Gaussian Eliminat	ion 🔻	
Units: Metric, s	tress as MPa	•	
m, MN, MN/m, MPa	a, MN/m3		
1			
- <u>1</u>		OK	Cancel

Chapitre VI

												-							
🎇 Pha	se2 - [P	roject2	*1															-	\Box \times
🏹 File	Edit	View	Analysis	Boundaries	Mesh	Loading	Displacemer	ts Supp	oort G	roundwa	ter Pi	operties	Wind	w Help					- 8 ×
D 🖻	- 🖬		s	Add Exc	avation		Ctrl+1	€, Q	2	Q, Q ‡ (20 🖸		8	1 🔚 🕇	16 0	0 v N	A 78	97	
	9.62		3 27 <		ernal terial		Ctrl+2 Ctrl+3	· - Ľ	1	810	- 🎢	1 5 1 5	P 9	2 💵 🖻	: 😢	卧			
:				Add Sta	ge		Ctrl+4												
8-				🛛 Add Joir	nt		Ctrl+5												↓
				Add Pier	zometric	Line	Ctrl+6												
				Add Site	ictural ini	tenace	Cui+7												
-				Edit			•												
				© ₇ Selection	n <u>F</u> ilter]											
-9-																			
:																			
-		7																	
		4																	
۰L																			
440	INA S	-20 Stage	1/	-10			0		10			20			30			40	
D Pro	ject1	🔰 Proje	ect2*																
											Ente	r vertes	[t=tabl	e, i=circle	e, esc=ca	ancel]:			
Add exc																			
Huu exe	vation	bounda	ary								DAT	A TIPS N	IN S	NAP GRI	ORTHO	OSNA	P	_	/
Huu exci	vation	bounda	ary								DAT	A TIPS N	IN S	NAP GRI	ORTHO	O OSNA	P		//
Huu exci				ns							DAT	A TIPS M	IN S	NAP GRI	ORTHO	05NA	P	×	
Huu exci	Ar		ptio	ns							DAT	A TIPS N	IN S	NAP GRI	ORTHO	OSNA	P	×	
	Ar	c O	ptio	ns							DAT	A TIPS N	IN S	NAP GRI	ORTHO	OSNA	P	×	
	Ar	c 0	ption	ns nition r	netho	od —					DAT	A TIPS N	IN S	NAP GRI		OSNA ?)K	×	
	Ar	c 0	ption	ns nition n	netho	od —					DAT	A TIPS M	IN S	NAP GRI		2 OSNA)K	×	
	Ar	c O - An	ption c defi 3	ns nition m points c	netho on arc	od —					DAT	A TIPS M	IN S	NAP GRI) OSNA ?)K	×	
	Ar	c O - An	ption c defi 3	ns inition m points c	netho in ari	od —					DAT	A TIPS M	IN S	NAP GRI		c Cal)K ncel	×	
	Ar	c 0 - An (™ ption c defi ● <u>3</u> 1 ○ St	ns inition m points c art, cer	netho in ari	od c	nd poin	ts			DAT	A TIPS M	IN S	NAP GRI		car)K ncel	×	
	Ar	c 0 - An (ption c defi ● <u>3</u> 1 ○ St	ns inition m points c art, cer	netho in ari iter a	od c ind <u>e</u> r	nd poin	ts		. Io	DA1	A TIPS M	IN 5	NAP GRI		cal)K ncel	×	
	Ar	c 0 - An (ny ption € <u>3</u> 1 C St C St	ns inition m points c art, cer art, cer	netho in ari iter a	od c and <u>e</u> r	nd poin	ts .cw,	-cw) 0		A TIPS M	IN 5	NAP GRI		Car)K ncel	×	
	Ar	c 0 - An (" ption ● <u>3</u> ● St ● St	ns nition m points c art, cer art, cer	netho in ari iter a iter a	od c and <u>e</u> r and <u>a</u> r	nd poin ngle (+(ts ccw,	-cw) [0	DAT	A TIPS M	IN 5			Cal)K ncel	×	
	Ar	c 0 - An (" ption ● <u>3</u> 1 ● St ● St	ns nition m points c art, cer art, cer	netho on aro iter a iter a	od c and <u>e</u> r and <u>a</u> r	nd poin ngle (+c	ts ccw,	-CW) [0	 	A TIPS M				Car)K ncel	×	
	Ar	c Ο - Απ ((option c defi ● <u>3</u> ○ St ○ St	ns nition m points c art, cer art, cer	netho in arr iter a iter a	od c and <u>e</u> r and <u>a</u> r	nd poin ngle (+(ts .cw,	-CW) 0		A TIPS M				Cal)K ncel	×	
	Ar	c 0 - An (((ry ption ● <u>3</u> ○ St ○ St c to p	ns nition m points c art, cer art, cer iolyline	netho in ari iter a iter a	od c and <u>e</u> r and <u>a</u> r versio	nd poin ngle (+a	ts :cw, od—	-CW) 0		A TIPS IV				Car)K ncel	×	
	Ar	c 0 - An (((ption c defi ● <u>3</u> ○ St ○ St c to p	ns nition m points c art, cer art, cer iolyline	netho in arr iter a iter a conv	od c and <u>e</u> r and <u>a</u> r versio	nd poin ngle (+a	ts ccw, od—	-cw) [0	DA1					Cal)K ncel	×	
		c 0 - An (((- An	" ption ● <u>3</u> ○ St ○ St c to p	ns nition m points c art, cen art, cen nolyline umber c	netho in an iter a iter a conv	od c und <u>e</u> r und <u>a</u> r versio	nd poin ngle (+c n meth s:	ts ccw, od—	-cw) 0						Car)K ncel	×	
		c 0 - An ((((™ ption • <u>3</u> • St C St C St c to p • <u>N</u> u	ns nition m points c art, cer art, cer olyline umber c	netho in an iter a iter a conv	od c und <u>e</u> r und <u>a</u> r versio gment	nd poin ngle (+c n meth s:	ts ccw, od—	-cw) 0						Cal)K ncel	×	
		c 0 - An ((((Pption c defi	ns nition rr points c art, cer art, cer olyline unber c poroxim	netho in an iter a iter a conv	od c and <u>e</u> r and <u>a</u> r versio gment gment	nd poin ngle (+a n meth s: nt lena	ts ccw, od-	-cw) 0						Car)K ncel	×	

Figure V.2. Désignation de l'excavation.

b. La deuxième étape ajoutée des externes

🎆 Phase2 - [Project1*]			_	
🚺 File Edit View Analysis	Boundaries Mesh Loading Dis	placements Support Groundwat	ter Properties Window Help	- 8 ×
🗅 🗃 🚽 🖬 🖪 🎒 🚞	Q Add Excavation	Ctrl+1 🗨 🔍 📌 📿 Ot o	2° 🖞 🖸 🗃 🥖 🖄 🔚 📲 🏌 🚜 👻 😪 🖄	
	Add External	Ctrl+2		
	Add Material	Ctrl+3		
	Add Stage	Ctrl+4		
	Add Joint	Ctrl+5		+
	Add Piezometric Line	Ctrl+6		-
-	Add Structural Interface	Ctrl+7		
	Edit	•		
-	On Coloritor Filter			
1	Selection Filter			
		pool		
		í lí		
-				
-				
1 <mark></mark>				
-30	-20 -10	Ó	10 20	30
Stage 17				
Add external boundary			DATA TIPS MIN SNAP JGKID ORTHO OSNAP	//.

Chapitre VI Simulation numérique

Figure V.3. Désignation des externes.

C. La 3^{éme} étape le maillage

Figure V.4. Le maillage.

d. La 4 ^{éme} étape introduire les pressions de terrains

Chapitre VI Simulation numérique

Field Stress Properties		? ×
Field Stress Type: Constant 🗸		ОК
Sigma 1 (MPa, Comp. +):	10	Cancel
Sigma 3 (MPa, Comp. +):	10	
Sigma Z (MPa, Comp. +):	10	
Angle (degrees from horizontal, CCW):	0	
Locked-in horizontal stress (in plane) (MPa, Comp. +) :	0	
2 sed-in horizontal stress (out-of-plane) (MPa, Comp. +) :	0	\underline{A} dvanced >>

Figure V.5. .les pressions des terrains

e. Le 5^{éme} étape ajouter les matériels et leurs propriétés

Chapitre VI	Simulation	numérique
-------------	------------	-----------

fine Material Properties				? ×
🗆 Material 1 📄 Material 2 🗖	Material 3 🗖 🗖	Material 4 📃 🖪	Material 5 📃 🗖 Material 6	📕 🔲 Mater 📕 🕨
Name: Material 1		٨	Material Colour:	-
nitial Element Loading: Field Stress	Only 🔻	Unit W	/eight: (MN/m3):	0.027
Elastic Properties				
Elastic Type: Isotropic	•			
Young's Modulus (MPa):	20000		Poisson's Ratio:	0.2
E1 (MPa): 20000	E2 (MPa):	20000	Ez (MPa):	20000
v12: 0.2	v1z:	0.2	v2z:	0.2
- Strength Parameters Failure Criterion: Mohr Coulomb Tensile Strength (MPa):	•	Material Type: Dilation Angle (d	Elastic	•
Fric. Angle (peak) (deg):	35	Fric. Angle (resid	d) (deg):	35
Cohesion (peak) (MPa):	10.5	Cohesion (resid)	I (MPa):	10.5
Stage Properties Define Factors	tu m Dependent — ne Properties	- Unsaturated S	Shear Strength- 0 Air Entry (MPa):	0
Copy To 🗌 Show only pre	operties used in mo	odel <mark>2</mark>	ОК	Cancel

Figure V.6. Définir les matériaux et leurs propriétés

f. Le $6^{\acute{e}me}$ étape sélectionné le mode de soutènement

1. Boulonnage

Chapitre VI Simulation numérique

Figure V.7. Soutènement par boulonnage.

2. Béton projeté

Phase2 - [Project1.fez*]	- 🗆 X
🚺 File Edit View Analysis Boundaries Mesh Loading Displacements Support Groundwat	er Properties Window Help – & ×
🗅 🗃 🗸 📓 🎘 🕫 👻 🕬 🐨 🖬 📶 📢 🏙 📑 🖬 🚺 🕀 🤅 🖌 Add Bolt	Ctrl+B 🛛 🖓 🔚 📲 🎋 🛩 🔧 🐇 💥 🖙
I Add Bolt <u>P</u> attern III → ① ② Ø Ø ♥ ♥ ▼ ♥ ▼ ♥ ■ ○ ♥ ♡ ▲ Ø III Ø ▷ ★ ₩ Delete Bolts	Pa 📭 🖭 💽 🐘
Move Bolt Ends	$\overline{\mathbf{v}}$
Stretch Bolts	71. ↓
P-	Ctrl+L
D <u>e</u> lete Liner	
Reverse Liner Orie	ntation
- Automatic Liner R	emoval
	10 20 30
K K D D Stage 1	
Select boundary segm	ents to add liners to [enter=done, esc=cancel]
Add liners to boundary segments	DATA TIPS MIN SNAP GRID ORTHO OSNAP 2.582, 12.732

Elastic Properties		Liner Type
Young's Modulus (MPa):	30000	Beam Formulation: Timoshenko
Poisson's Ratio:	0.2	C Geosynthetic (e.g. geotextile, geogrid)
Strength Parameters		Geometry
Material Type: 📀 Elas	stic C Plastic	Thickness (m): 0.1
Compressive Strength (peak) (MPa)	35	C Area (m2): 0.1
Compressive Strength (residual) (MF	Pa): 5	Moment of Inertia (m4): 8.3e-00
Tensile Strength (peak) (MPa):	5	Include Unit Weight in Analysis
Tensile Strength (residual) (MPa):	0	Unit Weight: (MN/m3): 0.0
ensile Strength (peak) (MPa): ensile Strength (residual) (MPa):	5	Include Unit Weight in Analysis Unit Weight: (MN/m3): 0.0

Figure V.8.Soutènement par béton projeté.

VI.4.1 Les calculs

Le modèle est bidimensionnel (2D) calculé en déformations planes dans le profil à travers la section de la galerie.

Phase2 - [Project1.fez*]	-	
🚺 File Edit View Analysis Boundaries Mesh Loadi	g Displacements Support Groundwater Properties Window Help	- 8 ×
□ □	≝ ▤ ◙ ⊕ @ Q ऌ ऌ ॡ 약 및 ፬ ฮ ฮ భ ☱ ╡ Ҟ Ⴥ ▾ ╰ ๕ ་४ ๕ ་४ ⊭ ▓ ■ ⌀ ་ҳ ー ํํํ ∠ ४′ / ⊂ ≠४′ ₪ ₪ ♥ ष 및 ▣ ♥ 隊	
. Int <u>e</u> rpret		
SSR Search Area	<u> </u>	
8-	$K \times K \times $	
-		
1		
	THE REAL PROPERTY AND A DECEMPENDATION OF THE PR	
₽- ▲		
1		
-40 -30 -20	-10 0 10 20 30	40
	l I	
Compute stress results (automatically computes groundwater to	p. if required) DATA TIPS MIN SNAP GRID ORTHO OSNAP -36.196 15.9	42 /

File Queue:	Input File:	marne jaune exaval	tion.fez	
	Writing File: Elements:	2727	DOF:	2704
		100% (sta	age 1 of 1)	
Processed Files:		100% (load	step 1 of	1]
	Iteration		Мак	
2				
System Statistics:	Solid Toleranc			
Free Disk = 23463 MB Total Memory = 3764 MB	Calculated:		Max	
Max. Swap Memory (KB): 1927350	Fluid Tolerance Calculated:	•	Маж	
Execution Priority: Below Normal 🗸 🗸		100	1%	
	decomposing			
<u>∎ О</u> реп ▼ 🔟 <u>D</u> е	lete	👖 Resume		Abort

Figure V.9.Calculateur

VI.4.2 Les résultats

Pinterpret - [Project1.fez:Sigma 1]	-	Ц×
🔟 File Edit View Data Analysis Query Graph Groundwater Tools Window Help		- 8 ×
	2	
V→VV(型型型)X→N @→@@ X→■→@→ @→ V→ / ≪ ⊂→ □→ Q→ △// △	0 -	
▼ ≟ ▼ ⊖ ▼ ⊉ ▼ <mark>⊯</mark> □ □ ▼ ⊯ ▼ <mark>№</mark> ▼ ◎ ▼ □ ▼		
7.50		↓.
10.50		—
13.50		
16.50		
19.50		
34.50		
37.50		
40.50		
	30	
Stage 1		
	ļ	
For Help, press F1 DATA TIPS OFF SNAP GRID ORTHO OSNAP 2	7.103, -6.40	01 //.

Figure V.10. Présentation des contraintes sigma1.

Conglomérat :

Figure V.11. Déplacements horizontale.

Figure V.12. Déplacements verticale

Figure V.13. Déplacements totale

Figure V.14. Déformation volumétrique

Chapitre VI Simulation numérique

Figure V.15. Déformation de cisaillement maximale

***** Calcaire

Figure V.16. Déplacements horizontale.

Figure V.17. Déplacements verticale.

Figure V.18. Déplacements totale.

Figure V.19. Déformation volumétrique

Chapitre VI Simulation numérique

Figure V.20. Déformation de cisaillement maximale

* Marne jaune

Figure V.21. Déplacements horizontale.

Figure V.22. Déplacements verticale.

Figure V.22. Déplacements totale.

Figure V.23. Déformation volumétrique.

Figure V.24. Déformation de cisaillement maximale.

* Marne minéralisée

Figure V.25. Déplacements horizontale.

Figure V.26. Déplacements verticale.

Figure V.27. Déplacements totale.

Figure V.27. Déformation volumétrique.

Figure V.28. Déformation de cisaillement maximale.

Chapitre VI Simulation numérique

Figure V.29. Déplacements horizontale.

Chapitre VI St

Figure V.30. Déplacements verticale.

Chapitre VI Simulation numérique

Figure V.31. Déplacements totale.

Figure V.32. Déformation volumétrique.

Figure V.33. Déformation de cisaillement maximale.

Grés

Figure V.34. Déplacements horizontale.

Figure V.35. Déplacements verticale.

Figure V.36. Déplacements totale.

Figure V.37. Déformation volumétrique.

Figure V.38. Déformation de cisaillement maximale.

✤ Minerai fer

Figure V.39. Déplacements horizontale.

Figure V.40. Déplacements verticale.

Figure V.41. Déplacements totale.

```
Chapitre VI
```


Figure V.42. Déformation volumétrique.

Figure V.43. Déformation de cisaillement maximale.

Anal	yse	Conglomérat	Calcaire	Marne jaune	Marne minéralisée	Marne grés	Grés	Minerai fer
Déplacement	Sans soutènement	2.5×10 ⁻⁴	3.3×10 ⁻⁴	1.4×10 ⁻³	3.3×10 ⁻³	3.3×10 ⁻³	1.5×10 ⁻³	5.5×10 ⁻⁴
Horizontale (m)	Avec soutènement	2×10 ⁻⁴	2.7×10 ⁻⁴	1×10 ⁻³	2.7×10 ⁻³	2.4×10 ⁻³	1.2×10 ⁻³	4.4×10 ⁻⁴
Déplacement	Sans soutènement	1.65×10^{-3}	2.5×10 ⁻³	8.5×10 ⁻³	1.65×10 ⁻²	2.4×10 ⁻²	1×10 ⁻²	3.3×10 ⁻³
Verticale (m)	Avec soutènement	1.35×10 ⁻³	1.5×10 ⁻³	7.3×10 ⁻⁴	1.2×10 ⁻²	1.6×10 ⁻²	8×10 ⁻³	3×10 ⁻³
Déplacement	Sans soutènement	1.4×10 ⁻³	1.5×10 ⁻³	8.5×10 ⁻³	1.6×10 ⁻²	1.7×10 ⁻²	9×10 ⁻³	3×10 ⁻³
Totale (m)	Avec soutènement	1.33×10 ⁻³	1.12×10 ⁻³	7.2×10 ⁻³	1.52×10 ⁻²	1.62×10 -2	8.1×10 ⁻³	2.7×10 ⁻³
Déformation	Sans soutènement	3.6×10 ⁻⁴	3.85×10 ⁻⁴	2.4×10 ⁻³	4.2×10 ⁻³	4.2×10 ⁻³	2.6×10 ⁻³	7.8×10 ⁻⁴
volumétrique	Avec soutènement	3.3×10 ⁻⁴	3.5×10 ⁻⁴	2.2×10 ⁻³	3.5×10 ⁻³	3.85×10	2×10 ⁻³	7.5×10 ⁻⁴
Déformation	Sans soutènement	4×10 ⁻⁴	5×10 ⁻⁴	2.25×10 ⁻³	4×10 ⁻³	5×10 ⁻³	3×10 ⁻³	8×10 ⁻⁴
maximale de cisaillement	Avec soutènement	3.4×10 ⁻⁴	4×10 ⁻⁴	2.1×10 ⁻³	3.6×10 ⁻³	4.25×10	2.1×10 ⁻³	7.6×10 ⁻⁴
Domaine de	déformation	Grande déformation	Faibles déformation	Grande déformation	Grande déformation	Grande déformation	Moyennes déformation	Faibles déformation

|--|

VI.5.Conclusion

L'étude menée dans ce chapitre nous a permis de mettre en évidence le comportement de la section étudiée sur la base des résultats obtenus. Une modèle numérique est très complexe à cause de la géométrie variable et le nombre des paramètres géotechnique considérés.

L'analyse numérique, nous montres que :

- les faibles déformations coïncidentes bien avec les résistances élevées de la matrice rocheuse, par contre les formations rocheuses caractérisées par une qualité médiocre (faible résistance mécanique) montrent des valeurs un peu élevées.

- Après avoir appliqué les différents systèmes de soutènements (boulonnage, cintres métalliques et béton projeté) on a remarqué un abaissement considérable des valeurs des déformations au niveau des formations à faible résistance, le soutènement pratiquement n'a aucun effet sur les formations rocheuses de bonne qualité.

Les ouvrages souterrains jouent un rôle très important dans la vie moderne surtout que leur construction est devenue très aisée vue les choix multiples de méthodes de creusement et de soutènements disponibles à nos jours.

Une partie importante de ces ouvrages est les mines souterraines, dont leur études technico-économiques, aboutissants aux plans stratégique (à long terme), tactique (à moyen terme) et opérationnel (à court terme), se base essentiellement sur les conditions géologiques et minières dont la connaissance est primordiale.

L'utilisation de plusieurs systèmes de classification géomécaniques du massif rocheux : Q de Barton, RQD, RMR et le GSI, a permis d'orienter le choix du type de soutènement dont les résultats seront l'objet d'une modélisation numérique par la méthode des éléments finis au moyen du programme PHASE².

L'analyse de résistance à la base des critères de rupture de Hoek-Brown et de Mohr-Coulomb a démontré que le calcaire et le minerai de fer montrent une bonne résistance et ne sont pas sujets d'effondrement au niveau de la galerie 1045 m quoique le calcaire a démontré une meilleure résistance. Par contre, la marne grise, la marne jaune, la marne minéralisée, et le conglomérat ont démontré une faible résistance conduisant à des ruptures et instabilités potentielles d'où la plus faible résistance est attribuée à la marne grise.

La méthode convergence-confinement est un moyen très pratique pour orienter le choix initial du mode de soutènement, issu des méthodes empiriques, et sert de base au contrôle du comportement à effectuer pendant les travaux. Pour le cas de la galerie 1045 m, la méthode a démontré que le système de soutènement recommandé par les méthodes empiriques est parfaitement adéquat.

L'analyse numérique par la méthode des éléments finis au moyen du programme PHASE²., nous montres que :

- Les faibles déformations coïncident bien avec les résistances élevées de la matrice rocheuse, par contre les formations rocheuses caractérisées par une qualité médiocre (faible résistance mécanique) montrent des valeurs de déformation un peu élevées.

- Après avoir appliqué les différents systèmes de soutènements (boulonnage, cintres métalliques et béton projeté) on a remarqué un abaissement considérable des valeurs des déformations au niveau des formations à faible résistance. Le soutènement pratiquement n'a aucun effet sur les formations rocheuses de bonne qualité.

[1] N. Bousbia « Interaction entre ouvrages souterrains », Thèse doctorat en géotechnique, Université de Skikda. (2016)

[2] Cetu, Dossier pilote des tunnels : section 2-géologie-hydrogéologiegéotechnique, Ministère de l'équipement, des transports se du logement –direction des routes, France (1998),

[3] Modalisation d'un tunnel bitube -priseen compte de l'effet de renforcement du front de taille », Mémoire de Fin d'Etudes pour l'Obtention du Diplôme de Master Académique Génie Civil, Université Mohammed Seddik Ben Yahia –Jijel, p:2.

[4] R-M Faure, Mohamed Ghouari: outils-cetu. Creusement à l'explosif

[5] Pierre Gesta, «Tunneliers» Ingénieur de l'École Centrale de Paris, Ancien Directeur à la SOGEA, Président du Comité technique de l'Association Française des Travaux en Souterrains (AFTES).

[6] Djenane Mohamed, «Modélisation Numérique De L'effet De La Construction D'un Ouvrage Souterrain Sur Le Comportement De La Superstructure –Application Pour Le Metro D'Alger-», pour l'obtention du diplôme de Magister en Génie Civil, Université Colonel El Hadj Lakhdar De Batna.

[7] CETu4, 1998, Centre d'Etude des Tunnels, Dossier pilote des tunnels génie civil section 4, «procédés de creusement et de soutènement»

[8] Pierre Gesta, «Travaux Souterrains» Ingénieur de l'École Centrale de Paris, Ancien Directeur à la SOGEA, Président du Comité technique de l'Association Française des Travaux en Souterrains (AFTES).

[9] Khettar Meziane et Lyes Krim, «Conception et Etude d'un tunnel autoroutier bitube situé sur la pénétrante de TIZIOUZOU» Mémoire Pour l'obtention du diplôme d'Ingénieur d'Etat ;(Travaux Publics) ENSTP, Alger ; 2016.

[10] Bekkari Hadda« Retro-analyse tridimensionnelle d'un tunnel instrumente à faible profondeur » Mémoire de fin d'études Master Université Mohamed Khider Faculté des sciences et de la technologie Département de génie civil et hydraulique Biskra

[11] Etude numérique de la stabilité d'une section du Tunnel T4 de l'autoroute Est-Ouest., mémoire magister de l'université EL Hadj Lakhdar-Batna.

[12] Jaques Fines « le soutènement des galeries minière », Ecole des Mines de paris, [1998]

[13] cours de creusement des ouvrages souterrains exploitation minier. Benghazi .Z

[14] <u>https://www.semat.be/media/productattach/2/2/22-05-g-h-f-03-01_web-1.pdf</u>

[15] <u>https://www.encoloc.com/wpcontent/uploads/2018/11/LIEBHERR_R916NLC-</u> <u>Classic_Pelles-sur-chenilles-standards.pdf</u>

[16] Département d'étude et développement de la mine de Boukhadra (DED),Rapport géologique actualisé de Boukhadra,

[17] Documents fournie par l'entreprise, « les plans topographiques et géologiques de la mine, la géologie de la mine»

[18] Documents de la mine de BOUKHADRA. Réaliser par l'entreprise étrangère Arcelor Mittal.

[19] Zhao J, « Propriétés des discontinuités », part 3, cours de mécanique des roches,L'école polytechnique fédérale de Lausanne. [2008]

[20] Maciej A, « Modification des classifications mécaniques pour les massifs rocheux schisteux », Thèse de maitrise des sciences appliquées de l'université de Montréal, Spécialité génie minier, 180 pages. [2012],

[21] AFTES., « Caractérisation des massifs rocheux utile à l'étude et la réalisation des Ouvrages souterrains »206 Pages. [2003],

[22] Duffaut P. et Homand F., « Manuel de mécanique des roche » Tome 1 : fondements, Comité français de mécanique des roches, 88 pages. [2000],

[23] Bieniawski, Z. T. Engineering rock mass classifications : a complete manual for engineers and geologists in mining, civil, and petroleum engineering. New York John Wiley and Sons(1989).

[24] Chalhoub M « Apport des méthodes d'homogénéisation numérique à la classification des massifs rocheux fracturés », Thèse de doctorat 2006, École Nationale des Mines de Paris, 206 pages. ., [2006],

[25] Véronique Merrien-Soukatchoff, Yann Gunzburger 'Utilisation des classifications de massifs rocheux pour l'analyse du comportement de pentes'.

[26] ZAHO.J. «Roches et massifs rocheux, Mécanique des roches 1er partie» EPF.France. 65 p (2008),

[27] http://www2.ggl.ulaval.ca/personnel/bourque/s2/r.metam.html

[28] Hoek E et Bray J.W.,, « Rock Slope Engineering », Revised 3rd Edition, The Institution of Mining and Metallurgy, London, pp.341-351. (1981)

[29] Amara Idir, «Etude de comportement d'un tronçon du tunnel d'Ait Yahia Moussa.», Mémoires De Fin D'etude En vue de l'obtention du diplôme de Master En Génie Civil, Université Mouloud Mammeri de Tizi Ouzou 2018 [30] Amara Idir, , «Etude de comportement d'un tronçon du tunnel d'Ait Yahia Moussa.», Mémoires De Fin D'etude En vue de l'obtention du diplôme de Master En Génie Civil, Université Mouloud Mammeri de Tizi Ouzou. 2018

[31] A.BOUVARD-LECOANET, G.COLMBET, F.ESTEULLE, 2008: «ouvrages souterrains .conception, réalisation entretien.

[32] Phase2_TutorialManual:

https://www.rocscience.com/help/rs2/knowledge_base/general_modeling.htm

 Tableau.1. Paramètres de classification des roches et notes de pondération

	P	aramètres			Coefficients				
	Résistar	Indice de franklin Is (MPa)	>10	4 - 10	2 - 4	1 - 2	In frar	dice (klin tilise	de non é
A1	ce de la roche	A Résistance à la compressi on (MPa)	<250	100-250	50-100	25-50	5-25	1-5	4
		Notes	15	12	7	4	2	1	0
		RQD (%)	90-100	75-90	50-75	25-50		<25	
A2		Notes	20	17	13	8		3	
4.7	Esp	pacement (m)	>2	0.6 - 2	0.2-0.6	0.06-0.2		<0.	06
лэ		Notes	20	15	10	8	5		
А4	Nat	ure des joints	Surface très rugueuse non continus en pentes en contacte En pentes non altérées	Surface légèreme nt rugueuse épaisseur <1 mm Eponte non altérées	Surface légèrement rugueuse Epaisseur <1mm. Eponte altérées	Surface Lustrée ou remplissago <5mm joints continus	Ren ot ot j	nplis e u<5n i join uvert >5mn joints ontin	sag nm ts ts n s us
		Notes	30	25	20	10		0	
		Débit sur 10m	Aucun venu d'eau	<10	10-25	20-125		>1	25
	Venus	Pression d'eau contrainte principale	0	<0.1	0.1-0.2	0.2-0.5		>0.5	
~		Hydrogéologie	Complètemer t sec	Humide	Suintement (eau Interstitiell e)	Pression d'eau modérée	Pr séi V	oblèr ieux enue d'eau	ne de s
		Notes	15	10	7	4		0	

	Indicateur de pendage d'orientation des joints		Très favorale	Favorable	Moyen	Défavorable	Très défavorable	
	Note	Tunnel	0	-2	-5	-10	-12	
	Dire	ection perpen	liculaire à l'axe du tunnel		Direction parallèle à l'axe du tunnel			
Tunnel	Dans le sens du pendage		Dans le sens contraire du pendage					
	P :45°- 90°	P:20°- 45°	P : 20°-45°	P : 20°-45°	P : 45°- 90°	P : 20°-45°	P : 0°-20°	
	Très favorabl e	Favorable	Moyen	Défavorabl e	Très défavora ble	Moyen	Défavorable	
Note pour les Fondations		0	-2	-7	-15	-25		
N	ote pour	les Talus	0	-5	-25	-50	-60	

Tableau 2. Valeur du paramètre de réduction en fonction du pendage et de l'orientation du tunnel

Tableau.3 Classe et propriétés de la masse rocheuse en fonction du RMR

Note globale RMR	100-81	80-61	60-41	40-21	<20
Classe de rocher et description	1 Très bon rocher	2 Bon rocher	3 Rocher moyen	4 Rocher médiocre	5 Rocher très médiocre
Cohésion <i>Cm</i> (KPa)	400	300-400	200-300	100-200	100
Angle de frottmet Interne Φm (°)	45	35-45	25-35	15-25	15
Temps de tenue moyen	20 ans pour 15m de portée	1an pour 10m de portée	1 semaine pour 5 m de portée	10 heures pour 2.5 de portée	30 mn pour 1m de portée

•••

e	Type de soutènement						
och	Bo	ulons d'encrages	Béto	on projeté		Cintres 1	nétalliques
Classe de la r	Espac e- ment	Compléme nt d'ancrag e	Voûte	Piédroi ts	Compléme nt de soutènement	Туре	Espace ments
1		Généralement	pas nécess	saire			
2	1.5- 2.0m	Occasionn el- lement	50mm	Néant	Néant	Non	rentable
3	1.0- 1.5m	Treillis soudé+ 30mm de béton projeté en voûte	100 mm	50mm	Occasionn el- lement treillis et boulons si nécessaire	Ci ntr es lé ge rs	1.5-2.0
4	0.5- 1.0m	Treillis soudé+30- 50mm de béton projeté en voûte et en piédroits	150 mm	100mm	Treillis soudé et boulons de 2 à 3m d'espacemen t	Cintres moyens +50 mm de béton projeté	0.7-1.5
5	Non recommandé		200mm	150mm	Treillis soudé et boulons et cintres légers	Immédi atem ent 80mm de béton projeté puis cintres lourds	0.7m

Tableau.4 Recommandation pour le soutènement selon Z. BIENIAWSKI

Figure.1. Classification de N.BARTON Relation entre Q et De et les

catégories desoutènement

Tableau.5. Paramètre Jn description et indices de joints

	Indice des familles de joints	Jn
Α	Rocher massif, joints rares ou absents	5-1.1.0
В	Une famille de joints	2
С	Une famille + joints erratiques	3
D	Deux familles de joints	4
E	Deux familles+ joints erratiques	6
F	Trois familles de joints	9
G	Trois familles + joints erratiques	12
Н	Quatre familles ou plus, joints erratiques,	15
	fracturation très dense, "morceaux de sucre",	
	etc	
I	Rocher broyé, meuble	20

Note :

- 1- Pour les croisements des galeries ou de tunnels, à (3.0 x Jn);
- 2- Pour les têtes d'accès, adopter (2.0 x Jn) ;

3- Le paramètre Jn est souvent influencé par la foliation, la schistosité, le clivage ou la stratification du rocher. Si ces phénomènes son bien marqués, il faut évidemment considérer ces joints parallèles comme une famille. Par contre si peu de joints sont visibles, ou si la fréquence de rupture des carottes par suite de ces phénomènes est faible, il convient alors d'en tenir compte sous la rubrique « joints erratiques ». **Tableau.6.** Paramètre Jr description et indices de joints

	Indice de rugosité des joints	Jr
	(a) Epontes en contact ; (b) Epontes en contact	
	après cisaillement de moins de 10 cm	
Α	Joints discontinus	4
В	Joints ondulés, rugueux ou irréguliers	3
С	Joints ondulé, lisses	2
D	Joints ondulés, striés (lisses, luisants, polis)	1.5
E	Joints plans, rugueux ou irréguliers	1.5
F	Joints plans, lisses	01
G	Joints plans, striés	0.5

	Indices de rugosité des joints	Jr
	(c) Epontes hors contact après cisaillement Zone	
н	argileuse d'épaisseur suffisante pour empêcher le contact. Zone	1.0
J	sableuse, graveleuse ou broyée d'épaisseur suffisante pour	1.0
	empêcher le contact.	

Note 1 : Jr (et Ja du tableau suivant) doit être évalué pour la famille de joints là moins résistante présente dans la zone étudiée. Cependant si la famille qui présente la plus faible valeur Jr/Ja, est orientée favorablement pour la stabilité de l'ouvrage, il se peut qu'une autre famille, moins favorablement orientée, soit plus significative et il convient alors de considérer la valeur de Jr/Ja de cette deuxième famille même si elle est plus élevée. La valeur de Jr/Ja adoptée sera celle correspondant à la surface qui a la plus grande probabilité d'amorcer la rupture.

Note 2 : Ajouter 1.0 si l'espacement moyen des joints est supérieur à 3m. Note 3 : Jr=0.5 si les joints plans et striés comportent des linéations et que ces linéations sont orientées de telle sorte qu'elles peuvent amorcer une rupture

Epontes en contact	caractèr	e du joint	Conditions	Eponte
	Joints propres	Joint serré, recimenté	Remplissage de quartz, épidoteetc.	Ja=0.75
		Epontes non altérées	Pas d'enduit, taches superficielles	1.0
		Epontes légèrement altérées	Enduit minérale non radoucissant,grains sans argile	2.0
	Enduits de Remplissage	Enduits à frottement	Sable, silte, calciteetc. non radoucissant	3.0
		Enduits à cohésion	Argile,chlorite,talc,etc. radoucissant	4.0
Epontes en ou hors contact	Remplissage	Туре	Eponte a contacts remplissage léger (<5mm)	Epontes hors contact remplissage épais
	Matériaux frottant	Sable,silte, calciteetc.	Ja=4	Ja=8
	Remplissage fortement surconsolidé	Remplissage compact d'argile, chlorite, talc.etc	6	5-10
	Remplissage légèrement surconsolidé	Surconsolidation légère ou moyenned'argile ,chlorite,talc.etc.	8	12
	Remplissages d'argiles gonflantes	Matériaux gonflantes (ex : montmorillonite)	8-12	13-20

Tableau.7. Paramètre Ja description et indices de joints

Tableau.8. Paramètre Jw description et indices de joints

1	influence de l'eau en charge	Jw	Pression d'eau approximative (kg/cm2)
Α	Excavation à sec ou faibles venues d'eau (<5 l/mn localement)	1.00	<1.0
В	Venue d'eau ou pressions faibles, débourrage occasionnel au droit d'un joint	0.66	1.0-2.5
С	Fortes venues d'eau ou pression importante, débourrages fréquents	0.50	2.5-10.0
D	Très fortes venues d'eau hors des tirs, diminuant ensuite avec le temps	0.33	2.5-10.0
Е	Très fortes venues d'eau ou pression très importante sans réduction notable avec le temps	0.20-0.10	>10.0
F	Très fortes venue d'eau ou pressions très importantes sans réduction notable avec le temps.	0.10-0.05	>1.0

Note :

1-Les indices C à F sont des estimations grossières. Prendre une valeur Jw plus élevée dans le cas de la mise en place d'un dispositif de drainage.

2- Les problèmes particuliers liés à la formation de glace ne sont pas pris en compte.

Tableau.9. Paramètre SRF, description et indices

Annexe

	(a) Ouvrages recoupant des zones de faiblesse provoquant la décompression du rocher lors du percement	SRF
А	Zones de faiblesse fréquentes, contenant de l'argile ou du rocher décomposé	10.0
	chimiquement ; rocher environnant très décomprimé (toutes profondeurs)	
в	Zones de faiblesse individuelles, contenant de l'argile ou du rocher	5.0
	décomposé chimiquement (profondeur de l'excavation ≤50m)	
С	Zones de faiblesse individuelles, contenant de l'argile ou du rocher	2.5
	décomposé chimiquement (profondeur de l'excavation >50m)	
D	Nombreuses zones de cisaillement en rocher sain, sans argile ; rocher	7.5
	environnant décomprimé (toutes profondeurs)	
Е	Zones de cisaillement individuelles en rocher rigide, sans argile (prof de	5.0
	l'excavation ≤50m)	
F	Zones de cisaillement individuelles en rocher sain en rocher rigide, sans	2.5
	argile (profondeur de l'excavation >50m)	
G	Joints ouverts, rocher très fracturé et décomprimé, "morceaux de sucre",	5.0
	etc (toutes profondeurs)	

	(b) Rocher sain, problèmes de contraintes in situ	Rc/o1	Rt/σ1	SRF
Н	Contraintes faibles, excavation peu profonde	>200	>13	2.5
J	Contraintes moyennes	200-10	13-0.66	1.0
К	Contraintes importantes, structure très serrée	10-5	0.66-0.33	0.5-2
	(condition normalement favorable à la stabilité mais			
	peut être défavorable à la tenue des piédroits)			
L	Quelques " coups de toit" (rocher massif)	5-2.5	0.33-0.16	5-10
М	"coups de toit " importants (rocher massif)	<2.5	<0.16	10-20
	(b) Rocher sain, problèmes de contraintes in situ	$\mathbf{R}c/\sigma 1$	Rt/m1	SPE
	(b) Rocher sam, problemes de contraintes in situ	101	RUOI	SIL
н	Contraintes faibles, excavation peu profonde	>200	>13	2.5
H J	Contraintes faibles, excavation peu profonde Contraintes moyennes	>200 200-10	>13	2.5 1.0
H J K	Contraintes faibles, excavation peu profonde Contraintes moyennes Contraintes importantes, structure très serrée	>200 200-10 10-5	>13 13-0.66 0.66-0.33	2.5 1.0 0.5-2
H J K	Contraintes faibles, excavation peu profonde Contraintes moyennes Contraintes importantes, structure très serrée (condition normalement favorable à la stabilité mais	>200 200-10 10-5	>13 13-0.66 0.66-0.33	2.5 1.0 0.5-2
H J K	Contraintes faibles, excavation peu profonde Contraintes moyennes Contraintes importantes, structure très serrée (condition normalement favorable à la stabilité mais peut être défavorable à la tenue des piédroits)	>200 200-10 10-5	>13 13-0.66 0.66-0.33	2.5 1.0 0.5-2
H J K L	Contraintes faibles, excavation peu profonde Contraintes moyennes Contraintes importantes, structure très serrée (condition normalement favorable à la stabilité mais peut être défavorable à la tenue des piédroits) Quelques '' coups de toit'' (rocher massif)	>200 200-10 10-5 5-2.5	>13 13-0.66 0.66-0.33 0.33-0.16	2.5 1.0 0.5-2 5-10

(c)	Rocher "poussant" (déformation plastique du rocher sous l'action de	SRF
	fortes contraintes naturelles)	
N	Rocher "poussant" à moyenne pression	5-10
0	Rocher "poussant" à forte pression	10-20
(d)	Rocher gonflant (action chimique en fonction de la présence d'eau)	SRF
Р	Pressions de gonflement moyennes	5-10
Q	Pressions de gonflement importantes	10-15

Note :

1- Réduire l'indice SRF de 25-50% si les zones de cisaillement influent sur l'excavation mais ne la traversent pas.

Si l'état de contraintes initiales est fortement anisotrope (lorsqu'il a pu être mesuré):

• Pour 5 σ 1/ σ 3 10 : réduire Rc et Rt à 0.8Rc et 0.8Rt ;

• Pour $\sigma 1/\sigma 3$ 10 : réduire Rc et Rt à 0.6Rc et 0.6Rt Rc et Rt sont respectivement les résistances à la compression uniaxiale et en traction. $\sigma 1$ et $\sigma 3$ représentant respectivement les contraintes principales majeure et mineure.

Il est rare que la hauteur de couverture au-dessus du toit soit plus faible que la largeur de l'ouvrage. Si c'est le cas, il est suggéré de porter l'indice SRF de 2.5 à 5.

La résistance de la matrice (Rc et Rt) est évaluée dans la direction qui est défavorable à la stabilité (particulièrement important dans le cas de roches fortement anisotropes). De plus les échantillons doivent être saturés lorsque cette condition correspond à la situation in situ. Pour les roches susceptibles de se détériorer au contact de l'eau, il faut prendre une estimation très conservatrice de la résistance mécanique.

• Prédimensionnement du soutènement à partir de la classification de N. BARTON

N. BARTON propose d'évaluer le soutènement des piédroits et les soutènements provisoires de la même façon en utilisant les indications ci-dessous.

1. Soutènement définitif des piédroits:

Le plus souvent et pour des conditions moyennes de rocher on applique le dispositif prévu pour la voûte en multipliant par 1,5 la maille des ancrages et par 2/3 l'épaisseur de béton projeté. Si la roche est mauvaise, le même dispositif sera appliqué aux piédroits et même au radier. Les parois de grande hauteur sont à considérer en particulier. Une méthode empirique consiste aussi à

2. Soutènement provisoire:

N. BARTON pense que l'on obtient une estimation réaliste en remplaçant : ESR par 1,5.ESR Q (voûte) par 5.Q (voûte)

Qp (piédroits) par 5.Qp (piédroits).

Légende:

sb - (Spot bolting) boulonnage local

B - (Systematic bolting) boulonnage systématique suivi de l'écartement des boulons en m (utg) - (Untensioned, grouted) passif, injecté

(tg) - (Tensioned) précontraint (coquille à expansif on pour les massifs résistants, scellement au coulis et post-contraint pour les massifs très médiocres voir note XI)

S - (Shotcrete) béton projeté suivi de l'épaisseur en cm

(mr) - (Mesh reinforced) treillis soudéclm - (Chain link mesh) grillage

CCA - (Cast Concrete Arch) revêtement en béton coffré suivi de l'épaisseur en cm

(sr) -(Steel reinforced) armature acier

Note : Les boulons sont supposés être de f20 mm.

Tableau10. Méthode de N. BARTON Soutènement des massifs de qualité

"excellente, extrêmement bonne, très bonne, bonne" ou Q = 10 à 1000

Catégorie Soutènement	Facteurs déterminants			100 F	Vair
	RQD Jn	<u>Jr</u> Ja	Jr <u>Portée</u> Soutènement Ja ESR		Notes
1*	-			sb (utg)	-
3*	-		-	sb (utg)	-
4*	- 1	-	-	sb (utg)	-
5*	-	-	-	sb (utg)	-
6*	-	-	-	sb (utg)	
7*	- 1	*		sb (utg)	-
8*	-	-	-	sb (utg)	
9	≥ 20 < 20	-	-	sb (utg) B (utg) 2,5-3 m	-
10	≥ 30 < 30	-		B (utg) 2-3 m B (utg) 1,5-2 m + clm	-
. 11*	≥ 30 < 30	-	-	B (tg) 2-3 m B (tg) 1,5-2 m + clm	-
12*	≥ 30 < 30	:	-	B (tg) 2-3 m B (tg) 1,5-2 m + clm	-
13	≥ 10	≥ 1.5	-	sb (utg)	I
0.75577.04	≥ 10	< 1,5		B (utg) 1,5-2 m	1 1
	< 10	≥ 1,5	-	B (utg) 1,5-2 m	1
8	< 10	< 1,5	-	B (utg) 1,5-2 m + S 2-3 cm	1
14	≥ 10	-	≥ 15 m	B (tg) 1,5-2 m + clm	1.11
	< 10	-	≥ 15 m	B (tg) 1,5-2 m + S (mr) 5-10 cm	. 1.11
	-	_	< 15 m	B (utg) 1,5-2 m + clm	1.111

Tableau.10. GSI et qualité du massif rocheux

Valeur GSI	76 – 95	<mark>56 - 75</mark>	41 – 55	21 – 40	< 20
Qualité du massif rocheux	Très bon	Bon	Moyen	Mauvais	Très mauvais

Tableau1. Estimation du GSI à partir d'une description géologique de la masse rocheuse, d'après Hoek et Brown (1995).

Figure2. Présentation des contraintes sigma 1.

Figure3. Présentation des contraintes sigma xx après soutènement.