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Abstract

The objective of this thesis is the exploration of chaos in certain
Zeraouilia-Sprott mappings. In particular, this class of discrete
dynamical systems known for their chaotic behaviors.

s In the first chapter, we mentioned some important and

comprehensive concepts of dynamical systems theory.

¢ In the second chapter, we introduced some Zeraoulia-Sprott
smooth discrete mappings in one and two dimension capable
of generating Chaos.

s In the third chapter, we studied a simple 2-D discrete
piecewise linear chaotic of Zeraoulia-Sprott mapping that is
capable of generating a hyperchaotic double scroll attractor.



Resumé

L'objectif de cette these est I'exploration du chaos dans
certains modeles de Zeraouilia-Sprott. En particulier, cette
classe de systemes dynamiques discrets est reconnue pour
son comportement chaotique.

+» Dans le premier chapitre, nous avons mentionné certains

concepts importants et complets de la théorie des
systemes dynamiques.

+» Dans le deuxiéme chapitre, nous avons introduit certains
applications discrets lisses de Zeraoulia-Sprott en une et
deux dimensions capables de générer du chaos.

¢ Dans le troisieme chapitre, nous avons étudié un modeéle
simple chaotique linéaire en morceaux de Zeraoulia-
Sprott en 2D, capable de générer un attracteur a double
spirale hyperchaotique.
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’ Introduction \

Chaos theory is a crucial branche of the study of dynamical systems. It was coined by the math-
ematician Henri Poincaré at the start of the 20th century while he was working on differential
systems, and it has undergone constant development ever since. There are two types of bifurca-
tion: local and global. Local bifurcation can be completely explained by changes in the stability
of local equilibrium properties, periodic orbits, or other invariant sets as the parameters cross
critical thresholds. Global bifurcation, on the other hand, frequently happens when the larger
invariant sets of the system collide. They cannot be found solely by looking at the security of the
equilibriums (fixed points).

In this study, we concentrate on a novel class of bifurcations known as border collision bifur-
cations. When a fixed point (or periodic point) encounters the switching manifold in piecewise
smooth maps, a bifurcation, which can be classified into two types namely border collision pair
bifurcation and border crossing bifurcation.

We focus on continuous piecewise smooth discrete-time systems in one and two dimensions when

studying bifurcation theory. We have divided this master thesis into three chapters as follows:

e Chapter 1, is dedicated to presenting the key findings regarding chaotic dynamics and

bifurcations in piecewise smooth maps in one and two dimensions.

e Chapter 2, is focused only on searching chaos in 1 and 2-dimensional smooth discrete

Zeraoulia- Sprott mappings.

e Chapter 3, is interested in the serching of choas in some two-dimensional piecewise Zeraoulia-

Sprott mappings.




Chapter 1
Border Collision Bifurcations

The border collision bifurcations are relativley a new class of bifurcations that are entirely
distinct from everything we have previously examined, including saddle node, pitchfork, hopf,
etc. It first appeared as a term in [6], though it was previously presented in Russian literature
under the name C-bifurcation attributed to the scientist Feigen in [5], and it specifically occurs
in piecewise smooth maps for the reason that the latter is very effective at accurately modeling
the non-smoothness in the systems. Switching circuits are an example of this from physics, as this
type of bifurcation is clearly manifested, implies that this bifurcation falls under the category of
global bifurcation that results in the so-called robust chaos and happens when the fixed point’s
nature changes as it crosses the switching surface. However, we are only interested in searching
a portion of these bifurcations.

1.1 Maps and their bifurcation

1.1.1 Fixed point and periodic orbits of maps

A discrete time system is defined by a difference equation:
Tpi1 = fulzn), 2, € R", peR

simple solutions include:
Fixed Points: =, = z,, that is solutions of z* = f (z*).
Periodic Orbits: (zo,...,z,-1) with z;, = f (z3_1) .,k =1,...,p—1and ¢ = f (x,_1) . Therefore,

o= ) = (@) ) B=01,2 0 p— 1

TV
p iterations
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7y T =
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<0 =10 p>0

Figure 1.1: Saddle-node (tangential) bifurcation.

That is, periodic points are fixed points of an iterate f of the map. The stability of fixed points or

periodic orbits can also be studied via linearisation. A fixed point z* is linearly stable if | f' (x*)| <

p—1
1. For the linear stability of a periodic orbit, there is only one condition: H |f (zx)] < 1.
k=0
1.1.2 Bifurcation of maps
Saddle-node (tangential) bifurcation: For z,,; = p+ z, — 22
If 1 > 0, there are two fixed points z% = £!/?; the fixed point 2* = ;i!/? is stable but 2* = —!/?

is not stable.
If u = 0, there is one fixed point 2* = 0, this fixed point is indifferent because |f’ (z*)| = 1
If © < 0, there is no fixed point. Because bifurcation occurs when the straight line y = x touches

the parabola y = y + = — 2? tangentially at u = 0, (See Figure 1.1).

Transcritical bifurcation: For x,,; = (1 + u) z,, — 22
There are always two fixed points * = 0 and z* = u. The fixed point x* = 0 is stable for u < 0,
but becomes unstable for ¢ > 0, while the other fixed point z* = p is unstable for 4 < 0 and

stable for y > 0.

3
n

Supercritical pitchfork bifurcation: For z,,,; = (1 + p) z, — x
When p < 0, there is only one fixed point z* = 0, which is stable.
When p > 0, there are three fixed points; 2* = 44'/? are stable, but z* = 0 unstable.

1.1. Maps and their bifurcation
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stable

1ll]ritliﬂ)]i‘ T
1> 0 ~

(p+ 1)z — a2

Figure 1.2: Transcritical bifurcation.

/ T*:\/#7

T =0

/
<0 =0 >0 -

Figure 1.3: Pitchfork bifurcation.

1.1.3 Logistic map

The logistic map is the simplest quadratic family of maps:

fu(@) =pr(l—z), p=0,

In the context of population dynamics, the two terms 2 and —ua? in this map can be interpreted
as reproduction and starvation (density dependent mortality) respectively.

Fixed points: There are two fixed points * = 0 and z* = (u — 1) /u, provided p > 1.

Linear stability: We have that f/ () = p — 2. If 0 < p < 1, the fixed point z* = 0 is stable, and
the fixed point 2* = (x — 1) /p is not in the range [0,1]. If © > 1, the fixed point 2* = 0 becomes
unstable, but z* = (1 — 1) /u become stable,as long as 1 < i < 3.Because the fixed points z* = 0
and z* = (u — 1) /p exchange stability at 4 = 1, this is a transcritical bifurcation.
Period-doubling bifurcation: As y passes 3, * = (ux — 1) /u becomes unstable (see Figure 4). A
period-two orbit (27,27 ) appears, such that

vi=fu(el), el = £ (7).

In other words, both z* and z* are fixed points of © = f, (f,(z)), but not fixed points of z =
fu (). It's called period-doubling bifurcation, signified by f/. (z*) = —1 at u* = 3.

1.1. Maps and their bifurcation ||J
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O._ﬁ*' T - unktable fixed pbint (M-1)/pm
x ——-—stable period-two orbit
iR B T SR SEEE SLEE St S S

S R O A A S

L 1]
5 10 15 20
NO. of Iterations

Figure 1.4: The fixed point 2* = (u — 1) /i becomes unstable as i > 3, and a period-two orbit
emerges (the iteration for ; = 3.35 is plotted here).

Since
o= fu(fu (@) =a(pe—p+1) (P = (WP +p)o+p+1).

all fixed points of x = f,, (f,, (v)) are

14 /(n—3) (u+1
=0, o = oot V=3)(n+1)

1 24

The first two are inherited from z* = f, (¢*) and the last two form the period two orbits.

1.1.4 Bifurcation of two-dimensional maps

By observing that when a parameter changes, results in eigenvalues of the Jacobian matrix with
unit modulus, the same method may be used to investigate the bifurcation of two-dimensional

maps.

Example 1.1 Consider the map

Tt = Wn + Tn — Ty Yni1 = Tn.
There are two fixed points
(1,91) = (0,0),
(23,93) = (wp).

The Jacobian matrix

1.1. Maps and their bifurcation ]
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Figure 1.5: The eigenvalues of the Jacobian matrix near the two fixed points (0,0) and (u, x) .

- Lop - L=2p p
J($1,y1):(1 0),J(x2,y2):< 1 0)-

For the fixed point (z7, y7), the two eigenvalues are governed by

e 1EVTE o
t_1EV-TH
2

we get

For the fixed point (z7, y]), the two eigenvalues are governed by

M= 1—2u+ \/1—1—4#2'
2

The stability of the two fixed points (x}, ;) and (25, y3) are exchanged, indicating the transcritical
bifurcation at p = 0. The bifurcation is also clear from Figure 5. The fixed point (27, y}) = (0,0)
is stable, for ;1 € (—1/4,0). The other fixed point (z3, y5) = (u, i) is stable for ;1 > 0, but becomes
unstable again when A\; = —1, or = 2/3. A period-doubling bifurcation occurs here (associated

with eigenvalue —1).

Other concepts: intermittancy, Lyapunov exponent and the route to chaos

Other significant ideas inspired by maps include:

Complex iterations from fractals (Julia sets).

Chaos and its characterisation (sensitive dependence on initial data, existence of strange
attractors, ...)

Intermittancy (jumping between nearly periodic and chaotic motions) in chaotic regime.

Lyaponov exponents (rate of separation of close trajectories).

1.1. Maps and their bifurcation
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1.2 Piecewise smooth maps

This section examines the piecewise smooth map in one and two dimensions by focusing on three
key ideas: the map’s definition, some of its characteristics, the normal form and fixed points in
both dimensions, and finally the border collision bifurcations. Consider a map F' : R™ — R™ as
follow:

Tpi1 = F(x,), xR 1.D)

Some properties

e The map (1.1) is a piecewise smooth, if the phase space R™ can be partitioned into a finite

number J of disjoint non-empty open regions R;, i = 1,...,.J, and a boundary ¥, so that
J

R™ = (U Ri> Ux.
=1

e The boundary > made up of a union of continuously differentiable surfaces which separate

the regions R;.
e F'is smooth in each regions R;.
e Non-smoothness of F' occurs on ¥, which is called switching surface or switching manifold.

e The map (1.1) is also known as hybrid system. For more details see [7].

The most significant findings regarding these maps relate to the relationship between chaotic be-
haviors and boundary collision bifurcations. Notice that some ingredients form the basis for the
study of this relationship. The first of these is the affinity of the corresponding normal forms for
fixed points on the borders, and the second is the behavior of fixed points (or periodic points) de-
pending on the bifurcation parameters associated with the various cases. This study is conducted

in one and two dimensions using the following informations, which is taken from [8] and [9]:

1.2.1 One-dimensional piecewise smooth maps
Consider the following 1-D piecewise smooth system:

g(l‘ﬂu)a T < Tp

(1.2)
h(x,p), x>z

Tpt1 = f ("Envu) = {

where p is the bifurcation parameter, the smooth curve = = 1, the state space was separated into
two regions. R and Ry given by:

Ry ={zeR:z<ux}
Rr={zeR:xz>ux}

1.2. Piecewise smooth maps
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and the boundary between them is given by:
Y={zxeR:z=umx}
Some properties

e The map f is continuous, but its derivative is discontinuous at the borderline = = .

e The functions g and h are both continuous and they have continuous derivatives in x every-

where except at xy,.
e 1o () is a possible path of fixed points of f, this path depends continuously on ..

e The possible fixed point hits the boundary at a critical parameter value i, : g (11,) = -

The normal form

We need the following theorem in order to simplify and streamline the study of border collision

bifurcations in 1-D piecewise smooth maps:

Theorem 1.1 The piecewise smooth one-dimensional map (1.2) has the following normal form,

which is given by [9]:
ar +p, v <0

1.3
br +p, >0 (1.3)

M (fE,M):{

where 11 is a parameter and a, b are the graph’s slopes at its two sides. (R; and Rp) of the border
z = 0.

Proof. The normal form (1.3) at a fixed point on the border is a piecewise affine approximation
of the map in the neighborhood of the border point x;,. The method of derivation of such a form
is as follows:

1. Let z = = — zp and g = p — p,, then the equation (1.2) becomes:

f@”O:{Mf+%ﬂ+uQ,f<0 (1.4)

h(Z +ap, i+ ), >0

Hence, for map (1.4), we have the following properties:

- The border is at z = 0.
- Two halves of the state space are present R_ = (—o0,0] and R, = [0, c0).

- The fixed point of (1.4) is at the border for the parameter value i = 0.

1.2. Piecewise smooth maps
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2. Expanding f to first order about (0,0) gives:

(-, . [ar+mw+0(z,p), z<
S @)= { b+ v+ O (T, ), T

a = lim:p—>0* é%f ( 70) (15)
b= lim, o+ %f (_ O)
z,0)

such that:

- Due to the smoothness of f in u, the last limit in (1.5) doesn’t depend on the direction
of approach of 0 by .
- The non-linear terms close to the boundary are negligible under the hypotheses v #

0,|al # 1 and |b| # 1.

3. Finally, we define a new parameter 1’ = iv and dropping the higher order terms as in [2],

then the 1-D normal form is given by:

It is similar to the form in (1.3).

The fixed points

e To the right (z > ;) and left (x < ), respectively, of the boundary, let 23, and z} be the

system’s possible fixed points. Then in the normal form (1.3) we have

Th=15>0, if b<IAp>0
and

v =<0, if a<1Ap<O

Border collision bifurcation scenarios: Now, we go over a few border collision bifurcation

scenarios from z;, with x close to 1.

e Border collision bifurcation scenarios can be obtained by various combinations of the
parameters a > b as yu is varied. It is the same for a < b which are summarized in Figure
1.6, because the normal form (1.3) is invariant under the transformation v — —z, u — —p,

a = b. See also [9]:

1.2. Piecewise smooth maps
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Scenario 1: (Persistence of stable fixed point) or Period-1 — Period-1.

If -1 < b < a < 1, then there is no bifurcation and a stable fixed point for 1 < 0 persists

and remains stable for u > 0.
Scenario 2: (Persistence of unstable fixed point) or No Attractor — No Attractor.

If 1 <b<a orb<a< —1, then there is no bifurcation and an unstable fixed point for

1 < 0 persists and remains unstable for ;> 0.

Scenario 3: (Merging and annihilation of stable and unstable fixed points) or No Fixed Point —
Period-1.

If -1 < b <1 < a, then there is a bifurcation from no fixed point for u < 0 to two fixed
points =, (unstable) and xp (stable) for ;1 > 0.

Scenario 4: (Merging and annihilation of two unstable fixed points, plus chaos). No fixed point —

chaos.

Ifa >1and =% < b < —1, then there is a bifurcation from no fixed point to two unstable

fixed points plus a growing chaotic attractor as y is increased through zero.

Scenario 5: (Merging and annihilation of two unstable fixed points) or No fixed point — No attrac-

tor.

If a > 1and b < —%, then there is a bifurcation from no fixed point to two unstable fixed

points as y is increased through zero and there is an unstable chaotic orbit for x> 0.
Scenario 6: (Supercritical border collision period doubling) or Period-1 — Period-2.

Ifb< —1<a<0and —1 < ab < 1, then there is a bifurcation from a stable fixed point x,

to an unstable fixed point xy plus a stable period-2 orbit as x is increased through zero.
Scenario 7: (Subcritical border collision period doubling) or Period-1 — No Attractor.

Ifb < —1<a<0andab > 1, then there is a bifurcation from a stable fixed point z; plus

an unstable period-2 orbit to an unstable fixed point zy as y is increased though zero.

Scenario 8: (Emergence of periodic or chaotic attractor from stable fixed point) or Period-1 —

Periodic or Chaotic Attractor.

1.2. Piecewise smooth maps
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+1

Figure 1.6: Partitioning of the parameter space into regions with the same qualitative phenomena.
The labeling of regions refers to various bifurcation scenarios. 1) Persistence of stable fixed points,
2) Persistence of unstable fixed points, 3) No fixed point to stable and unstable fixed points, 4) No fixed
point to two unstable fixed points and chaotic attractor, 5) No fixed point to two unstable fixed points,
6) Supercritical border collision period doubling, 7) Subcritical border collision period doubling, 8) A
stable fixed point to periodic or chaotic attractor. The regions shown in primed numbers have the

same bifurcation behavior as the unprimed ones when . is varied in the opposite direction.

If0 <a<1,b< —1and ab < —1, then there is a bifurcation from a stable fixed point x,
to an unstable fixed point xy plus a period-n attractor, n > 2 or a chaotic attractor which
is depends on the pair of parameters (a, b) as shown in Figure 1.7 as y is increased through

Zero.
e Now we give the following definitions. For more details see [10]:

Definition 1.1 The border collision pair bifurcation is a kind of border collision bifurcations and its
similar to saddle node bifurcation (or tangent bifurcation) in smooth systems, The smooth map in
this bifurcation has no fixed points for negative (respectively, positive) values of u, and two fixed
points for positive (respectively, negative) values of y (one fixed point on one side of the border and
the other fixed point on the other side). Consequently, the border collision pair bifurcation occurs if:

b<l<a

Definition 1.2 The border crossing bifurcation, a kind of border collision bifurcation, resembles

smooth maps’ period doubling bifurcation in several ways (supercritical period doubling bifurcation

1.2. Piecewise smooth maps
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Ps P

Figure 1.7: The parameter region 0 < a < 1 and b < —1, showing the type of attractor for p > 0.
Regions P, correspond the existence of stable period n orbit, inside the shaded region there exists

chaotic attractors.

in smooth maps with one distinction). In this bifurcation, the fixed point remains and crosses the
boundary as y varies through zero and as additional attractors or repellers emerge or vanish as a

result of the split. In fact, border crossing bifurcation happens if
a>—-1and b< —1

Remark 1.1 We may summarize these particular scenarios as follows in light of the previous defini-

tions:

e The two scenarios 1 and 2 belongs to the Scenario A “Persistence of stable fixed point”, at

w=0.
e The three scenarios 3, 4 and 5 belongs to the Scenario B “Border collision pair bifurcation”.

e The last three scenarios 6, 7 and 8 belongs to the Scenario C “Border crossing bifurcation”.

1.2.2 Two-dimensional piecewise smooth maps

Let us consider the following 2-D piecewise smooth system given by:

B o= ?g‘zg ,if @< S(5,p)
g(x,y,p) = fi(@7f&’0) ; (1.6)
= e , it 2> .5(y,
& f4(x7yap) (y p)
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where p is the bifurcation parameter, the smooth curve & = S (g, p) created two regions in the

phase plane R, and Rp given by:

Ry ={(2,9) eR? & <S(yp
Rp={(2,9) eR?, &> S5(7,p)}

and the boundary between them as:
%= {(3,9) € R &=5(5p)}

Some properties

Although the map g is continuous, its derivation discontinues at the borderline = = S (g, p).

Both ¢; and ¢, are continuous functions with continuous derivatives.

In each subregion R, and Rp, the one-sided partial derivatives near the boundary are finite.

The map (1.6) has one fixed point in R; and one fixed point in Ry for a value p, of the
parameter p.
The normal form

As demonstrated in [9], the findings presented above in 1-D normal form provide a complete de-
scription of the bifurcations as p is varied. For 2-D piecewise smooth maps, the normal form for

border collision bifurcation may once more be stated as demonstrated in [8] as follows:

Theorem 1.2 The piecewise smooth two-dimensional map (1.6) has the following normal form:

T 1 T 1
() () (o) e
No(z,y) = - Y 1.7)
=1 v + ! x>0
—6r 0 y 0o )1

where y1 is a parameter and 71, , 01,5 are the traces and determinants of the corresponding matrices

of the linearized map in the two subregions R, and Rp.

Proof. The normal form (1.7) at a fixed point on the border is a piecewise affine approximation
of the map in the neighborhood of the borderline & = S (7, p) .

e The method of derivation of such a form is as follows:

1.2. Piecewise smooth maps
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g-axis, then the equation (1.6) becomes:

Hence, for the map (1.8), we have the following properties:

- The border is z = 0.

1. Letz =2 — S (y,p) and § = g, this p-dependent change of variables moves the border to the

(1.8)

- The phase space is divided into two halves L and R (for left and right), by the next

transformation of coordinates.

- The map (1.8) has a fixed point P, = (0, 7.(p,)) on the border when p = p,.

. The following steps are a summary of coordinate transformation:

- Let e; be a tangent vector in the 7 direction and suppose that the vector e; maps to a

vector es.
- Assume e, is not parallel to e;.

- Define new coordinates again as shown in Figure 1.8.

- Choose the point P, as the new origin for ¢, in the 7 direction and e, in the Z direction.

- In z — y coordinates, the fixed point P, is now (0,0) and the border is given by z = 0.

- Define the new parameter i = p — p,, so ji, = 0.

- Rescale 7 and y again such that at 7 = 0 a unit vector along the g-axis maps to a unit

vector along the z-axis. Then, the map f(Z, 7, p) can be written as F(z, 7, ).

. Now, write the map F'(z,y, i) in the side L in the matrix form as:

Fu(z,y,p) = @Efvzg;) and F7(0,0,0) = (8)

and linearizing F'(z,y, i) in the neighbourhood of (0,0, 0), we have

Ju J T "
FL(:E,y,m:( ! 12)(%)%(“ )+O(z,@7,ﬂ> for 7 <0
Jo1 Ja Y ULy

Sl

(1.9)
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where )
Jll = hIIl_ %fl('f?gvo)
z—0~,5—0
Jio= lim Zf£(z,7,0
12 f_}oi’g_}()ayfl( y,0)
Jo1 = _ IIHE %fZ('T?yaO)
z—0~,y—0
. . 8 _
‘]22 - iH%I_I%HOanQ(xv Y, O)
Tz = li ﬁ_ T, Y, 0
UL 53%01_1?,%%08”]01 <x y )
. . 9 _
\ Ly = :E—>l1]l_1£117—>08‘af2($’ Y 0)

Then, the equation (1.9) becomes:

1 z z
F@gm="" “lan( ™) +o@um for z<0
_5L 0 Yy ULy
such that
Ji1 = 71, (trace) and Jy = —¢; (determinant)

and since a unit vector along the y axis maps to a unit vector along the z axis at 1 = 0, we

have
J12 =
Similarly, for side R we obtain:
o TR 1 x
F x? ) =
= 1)(2

Continuity of the map implies:

ULg

()

ULy

1 and J22:O
) for z >0

VR (%

()=

URy Uy

. Make another change of variables as follow: Let v = z, y = §y — jivy, and pu = fi(v, + vy)

with (v, + v,) # 0. The choice of axis is

A

normal form:
TL

-0
TR

— g

N(z,y)

independent of the parameter. Then, we have the

(1) (1)
)1

1
0
1
0

T

Y
x

Yy

(1.10)

where 1 is the parameter and 77,z , 07, are the traces and determinants of the correspond-

ing matrices of the linearized map in the

{

two subregions R; and Ry given by:

Ry ={(x,y) e R?*}, >0
Rr={(v,y) €eR?}, >0

1.2. Piecewise smooth maps
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- Barder

Figure 1.8: The transformation of coordinates from the two-dimensional piecewise smooth map

to the normal form.

in the regions R; and Rg, the map (1.10) is smooth and the boundary between them is
given by:
Y ={(z,y) eR?* =0, yeR}

Remark 1.2 There exists a relation between the piecewise smooth one-dimensional map’s normal
form and the piecewise smooth two-dimensional map’s normal form, where we can move from (1.7)
to (1.3) when §; are zero for i = L, R.

The fixed points:

e Let P, and Py be the possible fixed points of the system near the border to the right:
x < S(y,p) and left: x > S (g, p) of the border respectively. Then in the normal form (1.7)

we have

_ I —SrLp
P = (1—TL+5L> 1—TL+5L> € Rp

— M —(SR,LL
Pr = (1—TR+5R’ 1—TR+5R> € ltr

with eigenvalues A\ 1, and \p ;2 respectively.

e The eigenvalues of the related Jacobian matrix determine the stability of the fixed points,

ie.,

)\:%(Tﬂ:m>

Border collision bifurcations: The border collision bifurcations can be obtained by various com-
binations of the values 7;,7r,0; and 0 as p is varied through zero and because our study of
this bifurcations in this dimension is limited only to a part that is the classification of fixed points
under the both conditions |§;| < 1 and |dr| < 1.As a result, the following are the possible fixed
point types for the normal form map (1.7) in Figure 1.9:

1.2. Piecewise smooth maps
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The fixed pointis a flip saddle if
T<(1+d)

The fixed point is a flip attractor if
(1+d)<T<2v8

The fixed point is a spiral attractor if

_zﬁcrffﬁ

The fixed point is a rﬁgular attractor if
2v'd <1 <(1+d)

The fixed point is a regular saddle if
r>1+8

’Ij
T

FY Y Y g
SN AN AN AN

Figure 1.9: The types of fixed points of the normal form map.

(1) For positive determinant

(1.a) For2v6 <7 < (14 6), then the Jacobian matrix has two real eigenvalues 0 < Ajz, Ao < 1

and the fixed point is a regular attractor.

(1.b) For 7 > 1+ 6, then the Jacobian matrix has two real eigenvalues 0 < A\;;, < 1, A, > 1 and

the fixed point is a regular saddle.

(1.c) For —(1+6) < 7 < —2V/0,then the Jacobian matrix has two real eigenvalues —1 <
Az, A2, < 0 and the fixed point is a flip attractor.

(1.d) For 7 < —(1+), then the Jacobian matrix has two real eigenvalues —1 < X\, < 0,
Aoz, < —1 and the fixed point is a flip saddle.

(1.e) For 0 < 7 < 2V/6, then the Jacobian matrix has two complex eigenvalues | A,z |, [Aar| < 1

and the fixed point is a clockwise spiral.

(1.g) For —2v/§ < 7 < 0, then the Jacobian matrix has two complex eigenvalues |\, |, |Xoz| < 1

and the fixed point is a counter-clockwise spiral.

(2) For negative determinant

(2.a) For — (1+ ) < 7 < (1+), then the Jacobian matrix has two real eigenvalues —1 < A,
< 0,0 < A2z < 1 and the fixed point is a flip attractor.

1.2. Piecewise smooth maps
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(2.b) For 7> (1+ ), then the Jacobian matrix has two real eigenvalues \;;, > 1,—1 < Ay, <0
and the fixed point is a flip saddle.

(2.¢) For 7 < —(1+ ), then the Jacobian matrix has two real eigenvalues 0 < A\, < 1, Ay < —1
and the fixed point is a flip saddle. See also [10].

1.2. Piecewise smooth maps
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Chaos in some smooth Zeraoulia-Sprott

discrete mappings

This chapter presents some smooth Zeraoulia-Sprott discrete mappings in one and two dimen-
sional with rigorous analysis and numerical simulations along some graphical representation.
The presence of chaotic behavior is characterized by sensitive dependence on initial conditions,
the emergence of strange attractors, and irregular dynamics. The influence of key parameters on
the chaotic dynamics is examined, revealing bifurcations phenomena and transitions between dif-
ferent dynamical regimes that contribute to the understanding of chaos theory in smooth discrete

mappings.

2.1 Chaos in S-unimodality and Collet-Eckmann maps

This section is focused only in 1-D discrete mappings generates chaos.

2.1.1 S-unimodality

Definition 2.1 Amap f : [a,b] — [a,b] is S-unimodal on the interval [a, b] if:

(a) The function f (z) is of class C°.
(b) The point a is a fixed point with b its other preimage i.e. f (a) = f (b) = a.

(c) There is a unique maximum at ¢ € (a, b) such that f (x) is strictly increasing on z € [a, ¢) and

strictly decreasing on (c, b] .

23
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(d) The function f has a negative Shwarzian derivative, i.e.,

@ 3 @Y
SUD) =T 2(f’(fv)) <0

forallz € I —{y, f (y)=0}.

Remark 2.1 The S-unimodal mappings have importance in chaos theory due to the theorem given
in [11] claiming that each attracting periodic orbit attracts at least one critical point or boundary
point. Thus, an S-unimodal map can have at most one periodic attractor which will attract the

critical point.

Theorem 2.1 Let f : I — I be an S-unimodal map on the interval I = [a,b], then each attract-
ing periodic orbit attracts at least one critical point or boundary point. Furthermore, each neutral

periodic orbit is attracting.

Theorem 2.2 Let ¢, (z) : I = [a,b] — I be a parametric S-unimodal map with the unique
maximum at ¢ € (a,b) and ¢, (¢) = b, YV € (Vmin, Vmax) , then o, (x) generates robust chaos for
V € (Vmin, Vmax) - Here vy, and vy, are defined to be the minimum and the maximum values of the

parameter v in which ¢, (x) generates robust chaos.

Let a < b be two real numbers. Let us consider a function g, : [a,b] — R and g, is of class C®.

Consider the controlled 1-D discrete mapping given by:

Thr = G (xk) T u (@) =@, (21), 2.1

IZS (Vmina Vma.x) .

where u : [a,b] — [a,b] is the unknown controller to be chosen. Define the controller « : [a,b] —

la, b] by the following conditios:

(A1) The controller u (z) is of class C®.

(A2) The controller u () has the following special values:

u(b)=a—g,(b

u(a) =a—gy(a)
There exist a point ¢ € (a,b) : u' (c) = —g, (¢)

2.1. Chaos in S-unimodality and Collet-Eckmann maps



Chapter 2. Chaos in some smooth Zeraoulia-Sprott discrete mappings

(A3)
a—g,(z) <u(r) <b—g,(z) forall z € a,bl.
(A4)
u (x) > —g, () forall z € [a,c).
(AS)
u (z) < —g, (z) forall z e (c,b].
(A6)

"

! ! " 12 " 2
2 (gy (z) +u (x)) (gy (x) +u (x)) -3 (gl, () +u (m)) < 0forall z € [a,b].
Theorem 2.3 The controlled map (2.1) generates chaos for all v € (Vimin, Vmax)-

For more informations see [1].

Proposition 2.1 The set of controllers u verifying conditions (A1)-(A6) is not empty.

Proof. Take g, (z) = vz, with z € [0,1] and v € [0,4] . Define the controller u (z) = —vz?. Hence,
¢, () = vz (1 — ). The conditions (A1)-(A6) for the controller u are satisfied.
More generally, take g, (x) = vz, with = € [0, 1]. Define the controller

u(z) =—(v+pB+7)z®+ a® + vz,

where )
0§U<%,
0<v<y<l—u,
v+ B+ <1,
\ 5<miﬂ{1—(7+U),%\/13v2+301)7+2172—%7—%1;},
Hence,

p, (2) = (~v = B—7)2° + pz* + (v + 7).
The conditions (A1)-(A6) are satisfied. For the one- dimensional map ¢, (z) = vz (1 — x), there

is only one Lyaponov exponent, defined by

n—1
1
LE = lim —» log|(2z; — 1) v].
=0

n—oo 1,

The Lyaponov exponent is presented in Figure 2.1. Clearly it is strictly positive in a wide range of

the bifurcation parameter v. m

2.1. Chaos in S-unimodality and Collet-Eckmann maps
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an 36 ) a8 k] 40

Figure 2.1: The Lyaponov exponent of the map ¢, () = va (1 — x) for v € [3.5,4].

2.1.2 Collet-Eckmann condition

Examples of maps characterized by a positive Lyaponov exponent for the critical value are the

Collet-Eckmann maps

Definition 2.2 A S-inimodal maps f is called Collet-Eckmann (CE) if there exist constants C' > 0,
A > 1 such that for every n > 0 we have that

1D (") (f ()] > A"

where c is the unique critical point of f, i.e. f (¢) = 0. The unimodal Collet-Eckmann maps are
strongly hyperbolic along the critical orbit, i.e., the Collet-Eckmann Condition implies a positive

Lyaponov exponent of the system.

Definition 2.3 An analytic family { f\} of unimodal maps is nontrivial if regular if regular parame-

ters are dense.

Theorem 2.4 Let {f\} be a nontrivial analytic family of unimodal maps (in any number of para-

meters). Then almost every nonregular parameter is Collet-Eckmann.

Let us consider the controlled 1-D mapings by (2.1) where u : [a,b] — |a,b] is the unknown
controller to be chosen such that: there exist constants C' > 0, A\ > 1 such that for every n > 0 we
have that

1D ((u+90)") (u+g0) (€))] > CA™.

where ¢ is the unique critical point of ¢, = u + g,, i.e. (u+g,) (¢) = 0. Define the controller

u : [a,b] — [a,b] by the following conditions:

2.1. Chaos in S-unimodality and Collet-Eckmann maps
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(B1) There exists an invertible function ¢ : [a, b] — [a, b] such that
(€00, (@) = (fro ) (@)
for all x € [a,b], where {f,} is any nontrivial analytic family of unimodal maps.
(B2) The controller u (z) is of class C3.
(B3) The controller u () has the following special values:

u(a) =a—gy(a)
u(b)=a—g, (b
There exist a point ¢ € (a,b) : u' (c) = —g, (¢)

(B4)
a—g,(x) <u(zx) <b—g,(z) forall z € [a,b].
(B5)
u (z) > —g, (z) forall z € [a,c).
(B6)
u (z) < —g, (z) forall z € (c,b].
(B7)

n

2 (g1, )+ () (o0 () + 0" @) =3 () (@) 44" (@) < 0

forallz € |[a,b].

Theorem 2.5 The controlled map (2.1) generates chaos for almost every nonregular parameter \.

Proposition 2.2 The set of controllers u verifying conditions (B1) — (B7) is not empty.

Proof. The quadratic family

Ha)=Aa(l-2") -1, S<A<2

N

is an unimodal map on the interval [—1, 1] . Let us consider a,b € [—1,1] such that -1 < a < b < 1.

Let
2 a+b

b—a +a—b

2.1. Chaos in S-unimodality and Collet-Eckmann maps
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Figure 2.2: The Lyaponov exponent of the map ¢, (z) = —2vz® + (3v — 1) for v € [1.5,2).

for all « € [a,b]. Then, conditions (B1)-(B7) are satisfied. The Lyaponov exponent of the map
¢, (r) = —2vz? 4+ (v — 1) is shown in Figure 2.1. Here, we take ¢ = —1,b = 1 and v = X €
[1.5,2).

u
In this case, this Lyaponov exponent is strictly positive in a wide range of the bifurcation parame-

ter v.

2.2 Chaos in a minimal 2-D quadratic map

In this section, We've described a plane’s minimal discrete quadratic chaotic map. This map’s
intricate dynamical characteristics, such as fixed points, bifurcations, dynamical behavior, dimen-
sion, and basin boundaries, were examined. The map is ideal for more researchs since it is filled
with interesting dynamical behaviors.

The Hénom map [12] given by

(2.2)

T

h(fc,y)=<

has been widely studied because it is the simplest example of a dissipative map with chaotic

1 —ax?+ by>

solutions. It has a single quadratic nonlinearity and an area contraction that depends only on b
and is thus constant over the orbit in tha ab-plane. It can also be written as a one dimensional
time-delalyed map:

Tpy1 =1 — axi + bxp_1 (2.3)

Here we analyse an equally simple two-dimensional quadratic map given by

1—ay®+bx
x

f(e,y) = ( @24

2.2. Chaos in a minimal 2-D quadratic map
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where a and b are bifurcation parameters. Equation (2.4) is an interesting minimal system, similar
to the Hénom map, but with the time delay in the non-linear rather than the linear term as

evidence by writing it in the time-delayed form:
Tpi1=1— axi,l + bz, (2.5)

Despite its apparent similarity and simplicity, it differs from the Hénom map in that it has a
nonuniform dissipation, a more rich and varied route to chaos, and a much wider variety of
attractors. The map (2.4) has attractors covering the entire range of dimensions from 1 to 2 with
basin of attraction that are often much more complicated than for the Hénom map. These systems
are special cases of general 2-D quadratic maps. This system is differs from other well-mnown
2-D maps such as the delayed logistic map [13] given by

g(x,y) = (ax (- y)) (2.6)

X

Equation (2,4) is not topologically aquivalent to equation (2.6).

2.2.1 Fixed points and their stability

The Jacobian matrix of the map (2.4) is

J(:L’,y) = < 11) _i;ly )

and its characteristic polynamials for a fixed point (z, z) is given by
A2 —bA+2az =0 2.7)

The local stability of the two equilibria is studied by evaluating the roots of equation (2.7). Hence
if a > — ((—=b+1)/2)?, then the map (2.4) has two fixed points:

_ [ b=1—V4a—2b+b?+1 b—1—+V4a—2b+b+1
1 — 9
2a 2a
_ [ b=14+V4a—2b+b2+1 b—1++V4a—2b+b2+1
2 — 9
2a 2a

whereas if a < — ((—b+1) /2)?, then the map (2.4) has no fixed point.
P is unstable in the following cases:

1.a>—((-b+1)/2)*,b<0.

2.2. Chaos in a minimal 2-D quadratic map
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2. a>—((=b+1)/2)%,a> (1/2)b+ (3/4)b* — (1/4) ,b > 0.

P is a saddle point in the following case:

1.a>—((=b+1)/2)% a < (1/2)b+ (3/4)b*> — (1/4) ,b > 0.

On the other hand, P, is unstable in the following cases:

1a>—((=b+1)/2)*,a> (1/8)b* — (1/8) b + (1/64) b*, b > 2.

2. a>—((=b+1)/2)%,a>—(1/2)b+ (3/4),b < 2.

3. a>—((=b+1)/2)°,a < (1/8)b* — (1/8) b + (1/64)b*,b > 2.

P, is stable in the following cases:

1. a

v

—((=b+1)/2)%,a> (1/8)b* — (1/8) b® + (1/64) b*,
—((=b+1)/2)*,a < —(1/2)b+ (3/4) ,b < 2.

v

a

2. a>—((=b+1)/2)%,a < (1/8) 62 — (1/8)1* + (1/64) b*,0 < b < 2.

3.a>—((=b+1)/2)°,a < (1/8)b* — (1/8) b + (1/64) b*,
a>(1/2)b+(3/4)b—(1/4),-2<b<0

P, is a saddle point in the following cases:

1oa>—((=b+1)/2)%, a< (1/8) 1% — (1/8) b + (1/64) b*,
a < (1/2)b+ (3/4)6 — (1/4), -2 < b < 2.

2.2. Chaos in a minimal 2-D quadratic map
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- b=0

Figure 2.3: Stability of the fixed points of the map (2.4) in the ab-plane, where the numbers on
the figure are as follows: 1: P; is unstable, 2: P;is a saddle, 3: P, is stable, 4: P, is unstable,
5: Piis a saddle, 6: P, is stable, and the regions (B;),;., have respectively the following
boundaries: a = — ((—=b+1)/2)*,a = (1/8)b* — (1/8)1® + (1/64)b*,a = — (1/2)b+ (3/4) ,a =
(1/2) b+ (3/4)b* — (1/4).

A shematic representation of these results is given in Figure 2.3, where the regions (B;), .., have
respectively the following boundaries:

o = —((=b+1)/2)°,a=(1/8)b* — (1/8) b + (1/64) b*

a = —(1/2)b+(3/4),a = (1/2)b+ (3/4)b* — (1/4).

2.2.2 Numerical Computations

Observation of chaotic attractors: For the system (2.4) the values of a and b that maximize the

largest Lyaponov exponent with ¢ = 1 and with b = 1 are as follows:

1. For a = 1, one has b = 0.675 and Lyaponov exponents (base-¢) is 0.007595

2. For b = 1, one has a = 0.59948 and Lyaponov exponents are 0.091912 and —0.074313. The
corresponding chaotic attractor are shown respectively in Figure 2.4. (b) and (c) along with
their basins of attraction in white. Note that the basin boundary nearly touches the attractor

for these cases and is apparently a fractal for the case (c) in Figure 2.4.

2.2. Chaos in a minimal 2-D quadratic map
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Figure 2.4: (a) A period orbit of the map (2.4) with its basin of attraction (white) obtained for a =
1and b = 0.1. (b) The chaotic attractor with its basin of attraction (white) fora = 1 and b = 0.675.
(c) Another chaotic attractor with its basin of attraction (white) for @ = 0.59948 and b = 1. (d) A

quasi-periodic orbit with its basin of attraction (white) for « = 1 and b = 0.17.

Route to chaos:

1. It is well known that the Hénom map typically undergoes a period-doubling route to chaos

as the parameters are varied.

2. The Lozi map [14] has no period-doubling route, but rather it goes directly from a border-

collision bifurcation developed from a stable period orbit [15;16].

3. The chaotic attractor given in [17] is obtained from a border-collision period-doubling bi-
furcation scenario. This scenario involves a sequence of pairs of bifurcations, whereby each

pair consists of a border-collision bifurcation and a potchfork bifurcation.

4. The minimal quadratic chaotic attractor (2.4) results from a quasi-periodic route to chaos

as shown in Figure 2.5.

Thus, the three chaotic systems go via different and distinguishable routes to chaos.
Dynamical behaviors with parameter variation: The dynamical behaviors of the map (2.4) are

investigated numerically.

1. Figure 2.6 shows regions of unbounded (white), fixed point (gray), periodic (blue), quasi-
periodic (green), and chaotic (red) solutions in the ab-plane for the map (2.4), where we
use |LE| < 0.0001 as the crirterion for quasi-periodic orbits with 10° iterations for each

point.

2.2. Chaos in a minimal 2-D quadratic map
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Figure 2.5: (a) The quasi-periodic route to chaos for the map (2.4) obtained for b = 0.6 and
0 < a < 1.07. (b) Variation of the Lyaponov exponents of map (2.4) versus the parameter
0 < a<1.07with b= 0.6.

2. For comparison, Figure 2.7 shows a similar plot for the Hénom map [18].

3. There are values for which both Lyaponov exponents are positive as shown in Figure 2.5.
3(b) and 6(b). indicating hyperchaos.

4. Since the map (2.4) is not everywhere dissipative, its attractor can have a dimension equal

to or even greater than 2.0 by virtue of the folding afforder by the quadratic nonlinearity.

5. The correlation dimension was calculated using the extraplation method of Sprott and Row-
lands (2001) [19], and the results are ploted in Figure 2.9 for the map (2.4) with a = 1
and b = 0.675 where the Lyaponov exponents are 0.171496 and 0.007595. The correlation
dimension is approximately constant with a value of about 1.87 for all embeddings greater
than 1.

6. Figure 2.10 shows the regions of the ab-plane where the system is dissipative and bounded
(in black) and where it is dissipative but area-expanding (in white) as determined from the

sign of the numerical average of log |2ay| over the orbit on the attractor.

2.2. Chaos in a minimal 2-D quadratic map
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Figure 2.6: Regions of dynamical behaviors in the ab-plane for the map (2.4)

7. Figure 2.11 was obtained by using 200 different random initial conditions and looking for

cases where the distribution of the average value of = on the attractor is bimodal.

2.3 Chaos in a simple 2-D rational discrete mapping

This section present a simple rational chaotic map along some of its dynamical properties. In
[20] the following new 1-D discrete iterative system with a rational fraction was discovered in a

study of evolutionary algorithms:

_ _ 2.
9(2) = g7 0 2:8)

where « is a parameter, The map (2.8) describes different random evolutionary processes, and it
is much more complicated than the logistic system. In [21] an extended version of the former

one-dimensional discrete chaotic system given in [20] to two-dimensions is given as follows:

h(z,y) = (“T” +bx>, 2.9)
0.14+y?

where a and b are parameters. The map (2.9) has more complicated dynamical behavior than
the one-dimensional map (2.8). Based on these studied in [20, 21], a new and very simple 2-D
map, characterized by the existence of only one rational fraction with no vanishing denominator

is constructed and is given by:

f(zy) = <x1_fby) (2.10)

2.3. Chaos in a simple 2-D rational discrete mapping
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Figure 2.7: Regions of dynamical behaviors in the ab-plane for the Hénom map.
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Figure 2.8: (a) The bifurcation diagram for the map (2.4) obtained for ¢ = 1.0 and 0 < b < 67.
(b) Variation of the Lyaponov exponents of map (2.4) versus the parameter 0 < b < 0.67, with

a=1.

2.3. Chaos in a simple 2-D rational discrete mapping
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Figure 2.9: Correlation dimension versus embedding dimension for the map (2.4) with « = 1 and
b=0.675.

Figure 2.10: The sign of the average of log|2ay| over the orbit on the attractors of the system

(2.4) in the ab-plane defines the regions of net expansion and contraction.

Figure 2.11: The regions of ab—space for multiple attractors.

2.3. Chaos in a simple 2-D rational discrete mapping
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where a and b are bifurcation parameters. First, the new map (2.10) is algebraically simpler but
with more complicated behavior than map (2.9), and second, it produces several new chaotic
attractors obtained via the quasi-periodic route to chaos. The essential motivation for this work is
to provide a basic analysis of f and to give a detailed study of its dynamics. Some basic dynamical
behaviors of map (2.10) are investigated here by both theoretical analysis and numerical simula-
tion. Possibly, this is the first simple rational map whose fraction has no vanishing denominator
that gives chaotic attractors via a quasi-periodic route to chaos

Some basic properties: The chaotic attractors described by map (2.10) have several important

properties such as:

1. The map (2.10) is defined for all points in the plane.

2. The associated function f (z,y) of the map (2.10) is of class C* (R?), and it has no vanishing

denominator.

3. The new chaotic map (2.10) is symmetric under the coordinate transformation (z,y) —
(—x,—y), and this transformation persists for all values of the map parameters.

—ax __
1+y2

y. Assume in this paper that —1 < a < 4. Then if b # 1, the only fixed point of the map (2.10)

Briefly, the fixed points of map (2.10) are the real solutions of the equations rxand z+by =

is P = (0,0), and if b = 1, then the y—axis is invariant by iteration of the map f. The Jacobian

matrix of map (2.10) evaluated at a point (z,y) is given by:

—a 2axy
Df(x,y) = < 14“11/2 (147)/2)2 ) ’ (2.11)

and at the fixed point p = (0, 0), the Jacobian matrix is given by

Df(sc,w:(_l“ 2)

The local stability of P is studied by evaluating the eigenvalues of the Jacobian Df (P). The

eigenvalues of D f (P) are: A\; = —a and A\, = b. Then one has the following results:

1. If |a| < 1 and |b| < 1, then P is asymptotically stable.

2. If |a| > 1 or |b| > 1, then P is an unstable fixed point.

2.3. Chaos in a simple 2-D rational discrete mapping



Chapter 2. Chaos in some smooth Zeraoulia-Sprott discrete mappings

Figure 2.12: (a) Regions of dynamical behaviors in the ab-plane for the rational map (2.10). (b)
Regions of dynamical behaviors in the ab-plane for the rational

3. Ifla| < 1and |b] > 1, or |a| > 1 and |b|] < 1, then P is saddle point.
4. If |a| = 1 or || = 1, then P is a non-hyperbolic fixed point.

Numerical simulationsThere are several possible ways for a discrete dynamical system to make
a transition from regular behavior to chaos. Bifurcation diagrams display these routes and allow
one to identify the chaotic regions in ab-space from which the chaotic attractors can be deter-
mined. In [21] the chaotic attractors are obtained via a period-doubling bifurcation route to
chaos as shown in Figure 2.12 (a) while Figure 2.12 (b) shows regions of unbounded (white),
fixed point (gray), periodic (blue), quasi-periodic (green), and chaotic (red) solutions in the ab-
plane for the map (2.10).

If we fix parameter b = 0.6 and vary —1 < a < 4, the map (2.10) exhibits the following dynamical
behaviors as shown in Figure 2.13 (a):

1. In the interval —1 < a < 1, the map (2.10) converges to the fixed point (0, 0).

2. For 1 < a < 2, as shown in Figure 2.14 (a) it converges to a period-2 attractor followed by
a quasi-periodic orbit for 2 < a < 3.

3. In the interval 3 < a < 4, it converges to a chaotic attractor shown in Figure 2.14(b) via a

quasi-periodic route to chaos except for a number of periodic windows.

2.3. Chaos in a simple 2-D rational discrete mapping
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Figure 2.13: (a) The quasi-periodic route to chaos for the map (2.10) obtained for b = 0.6 and
—1 < a < 4. (b) Variation of the Lyapunov exponents of map (2.10) versus the parameter
—1 < a<4withb=0.6.

4. We remark the appearence of a singularity in the LEs at a = 1.25, and b = 0.6.

5. The map (2.10) has dissipative orbits for the regions shown in black in Figure 2.15 and
area-expanding orbits for the regions shown in white.

6. There are also regions of hyperchaos, for example at a = 2.6, and b = 1.2.

7. It is well known that basin boundaries arise in dissipative dynamical systems when two
or more attractors are present, the sets that separate different basins are called the basin
boundaries. For the map (2.10) we have calculated the attractors and their basins of attrac-
tion on a grid in ab-space where the system is chaotic, Figure 2.16 and 2.14 show some of a
wide variety of possible attractors. Also, most of the basin boundaries are smooth, and we
note that there are basins of attraction for b > 1, as shown in Figure 2.16 (a), but evidently
none for b < 1.

8. There are some regular and chaotic regions in ab-space where two coexisting attractors

apparently occur as shown in the black region of Figure 2.17.

2.3. Chaos in a simple 2-D rational discrete mapping
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Figure 2.14: Attractors of the map (2.10) (a) Quasi-periodic orbit for a« = 2.7, b = 0.6. (b) Chaotic
orbit for a = 3.7,b = 0.6.

ab+2azxy+abh?
(y2+1)°
system (2.10) in the ab-plane defines the regions of net expansion and contraction.

Figure 2.15: The sign of the average of log

’ over the orbit on the attractors of the

2.3. Chaos in a simple 2-D rational discrete mapping
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Figure 2.16: Attractors of the map (2.10) with (a) a =2.4,b = 1.3,(b) a = 2.9,b = 0.6,(c) a = 2.9,
b=08,(d)a=33b=04,e)a=4,b=08,) a=40b=009.

Figure 2.17: The regions of ab-space with multiple attractors for the map (2.10), obtained by
using 200 different random initial conditions and looking for cases where the distribution of the

average value of x on the attractor is bimodal.

2.3. Chaos in a simple 2-D rational discrete mapping



Chapter 3

Chaos in some 2-D piecewise

Zeraoulia-Sprott mappings

This chapter examines the finding of chaos in 2-D piecewise Zeraouilia-Sprott mappings. By em-
ploying mathematical analysis and numerical simulations, the research investigates the presence
of chaotic behavior characterized by sensitive dependence on initial conditions, the presence of
strange attractors, and irregular dynamics. Furthermore, the impact of key parameters on the
chaotic dynamics is explored, revealing bifurcation scenarios and transitions between different
dynamical regimes. This findings contribute to the understanding of chaos theory and its impli-

cations in various scientific domains.

3.1 Chaos in a discrete hyperchaotic double scroll

This section have described a simple 2-D discrete piecewise linear chaotic map that is capable
of generating a hyperchaotic double scroll attractor. it calls the discrete hyperchaotic double
scroll. It has the same non-linearity as used in the well known Chua circuit. It is well known that
if two or more Lyaponov exponents of a dynamical system are positive throughout of parameter
space, then the resulting attractors are hyperchaotic. The importance of these attractors is that
they are less regular and are seemingly almost full in space. On the other hand, the attractors

generated by Chua’s circuit [22] given by

o = a(y—h(z)
Yy = rx—y+=z
z = =Py

42
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are associated with saddle-focus homoclinic loops are not hyperchaotic.

where h (z) = 27”1”(’”0_’”12)(‘”1'_‘x_”). The double scroll attractor for this case is shown in Figure
3.1.

)

Figure 3.1: The classic double scroll attractor obtained for o = 9.35, 5 = 14.79, my = —%, mp = z

The double scroll is more complex than the Lorenz-type and the hyperbolic attractors. The circuit
realizations of low-dimensional maps is simpler than with high-dimensional continuous systems.
For this reason, we present a discrete version of Chua’s circuit attractor governed by a simple 2-D
piecewise linear map that is capable of producing hyperchaotic attractors with the same shape as
the classic double scroll attractor, which is not hyperchaotic.

3.1.1 A formula for a discrete hyperchaotic double scroll map

We present the new map and show some of its basic properties. Consider the following 2-D

fzy) = (I _gf (y)) (3.1)

where a and b are the bifurcation parameters, & is given above by the characteristic function of

piecewise linear map:

the so-called double scroll attractor and m, and m; are respectively the slopes of the inner and
outer sets of the original Chua circuit. Systems such as the one in (3.1) typpically have no direct
application to particular physical systems, but they serve to exemplify the kinds of dynamical
behaviors, such as routes to chaos, that are common in physical chaotic systems. We call it
discrete hyperchaotic double scroll because of its similarity to the well-known Chua circuit.

Firstly, the associated function f (x,y) is continuous in R?, but it is not differentiable at the points
(x,—1) and (z,1) for all x € R. Secondly, the map (3.1) is a diffeomorphism except at points
(z,—1) and (z,1) when abmymg # 0, since the determinant of its Jacobian is non zero if and only

if abmy # 0 or abm; # 0, but it does not preserve area and it is not a reversing twist map for

3.1. Chaos in a discrete hyperchaotic double scroll
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all values of the systel parameters. Thirdly, the map (3.1) is symmmetric under the coordinate
transformion (z,y) — (—xz, —y), and this transformation persists for all values of the system para-
meters. Therefor, the chaotic attractor obtained for map (3.1) is symmetric just like the classical
double scroll.

Due to the shape of the vector field f of the map (3.1), the plane can be devided into three linear

regions denoted by:

Ri = {(z,y) eR?/y =1},
Ry = {(z,y) R/ |yl <1},
Ry = {(z,y) eR*/y < —1}.
where in each of these regions the map (3.1) is linear. However, it is easy to verify that for all

values of the parameters mg, m; such that mgm, > 0, the map (3.1) has a single fixed point (0, 0),

while if mgm; < 0, the map (3.1) has three fixed points, and they are given by

myp —Mmge M1 — My
Pl — < 9 )

bm1 mq

P, = (0,0),

P3 _ (mo—ml’mo—ml).
bm1 mq

Obviously, the Jacobian matrix of the map (3.1) evaluated at the fixed points P, and P; is the

< 1 —abmy )
Jiz =
1 0

Therefore, the two equilibrium points P, and P; have the same stability type. The Jacobian matrix

same and given by

of the map (3.1) evaluated at the fixed point P, is given by

1 —abmyg
J2 -
1 0

where the local stability of these equilibria can be studied by evaluating the eigenvalues of the

corresponding Jacobian matrices given by the solution of their characteristic polynomials.

3.1.2 The hyperchaoticity of the attractor

We give sufficient conditions for the hyperchaoticity of the discrete hyperchaotic double scroll

given by the map (3.1). It is shown in [23] that if we consider a system =1 = f (z1), 2 € Q C

3.1. Chaos in a discrete hyperchaotic double scroll
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R", such that
If (@) £ N < 400

with a smallest eigenvalue of f’ (z)" f’ (z) that satisfies

Auin (£ @) ( (@))) = 0> 0.

where N2 > 0, then for any z, € (, all the Lyaponov exponents at z, are located inside [%, In N ] ,
that is,

1
%9 <, <InN, i=1,2 .n

where [; are the Lyaponov exponents for the map f. For the map (3.1), one has that

b24+a2m244/2024+b44+2a2m2+a*m*—2a2b2m2+1+1 .
\/ 1 \/ 1 1 1 : if |y| > 1

1 (z, )]l = \/ 2 < 400

b2+a2m8+\/2b2+b4+2a2m(2) +atmi—2a2b2m2+1+1

5 ,if |yl <1
and
b24a2m2—4/2024+b44+2a2m2+a*m*—2a2b2m2+1+1 .
Ami (f'(x)Tf'(:L')> = = s — i Jy[ =1
min o b24a2m2—/2024+b4+2a2m2+a*mi—2a2b2m2+1+1 .
-V y 0 0 0 . if |y‘ <1
If

|m1|? [mol

la| > max (L L)

lam | lamo|
\/a2m%71 ’ \/a2m371

then both Lyaponov exponents of the map (3.1) are positive for all initial conditions (g, 39) € R?,

|b| > max

and hence the corresponding attractor is hyperchaotic, Figure 3.2 shows the Lyaponov expo-
nent spectrum for the map (3.1). The regions of hyperchaos are —3.365 < a < 3.323 and
—3.323 < a < 3.365.

The discrete hyperchaotic double scroll results from a stable period-3 orbit transitioning to a fully
developed chaotic regime, as shown in Figure 3.3.

This particular type of bifurcation is called a border-collision bifurcation as shown in Figure 3.4,
and it is only observed scenario. For —3.365 < a < 3.365, the map (3.1) begins with a reverse
border collision bifurcation leading to a stable period-3 orbit, and then collapses to a point that
is reborn as stable period-3 orbit leading to fully developed chaos,However, it seems that the
proposed map behaves in a similar way to the 4-D dynamical system given in [24], i.e., both

hyperchaotic attractors are obtained by a border-collision bifurcation [25].

3.1. Chaos in a discrete hyperchaotic double scroll
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Figure 3.2: Variation of the Lyaponov exponents of the map (3.1) versus the parameter —3.365 <

a < 3.365 with b = 1.4, mg = —0.43, and m; = 0.41.

Figure 3.3: The discrete hyperchaotic double scroll attractor obtained from the map (3.1) for
a=3.36,b = 1.4, my = —0.43, and m; = 0.41 with initial conditions x = y = 0.1.

Figure 3.5 shows regions in the ab-plane given by (a,b) € [—3.365,3.365] x [—2,2] of unbounded
(white), periodic orbits of period 1 and 3 (blue), and chaotic (including hyperchaotic attractors)

(red) solutions in the ab-plane for the map (3.1), with 10 iterations for each point are shown in .




Figure 3.4: The border-collision bifurcation route to chaos of the map (3.1) versus the parameter
—3.365 < a < 3.365 with b = 1.4, mo = —0.43, and m; = 0.41.

-3.365 a ' 2.365

Figure 3.5: Regions of dynamical behaviors in the ab-plane for the map (3.1).




Conclusion

In conclusion, this study focused on the exploration of chaos in certain Zeraouilia-Sprott map-
pings. The objective was to investigate the dynamical behaviors and chaotic properties exhibited
by these mappings which commenced by providing a comprehensive overview of chaos theory
and its relevance in various scientific disciplines. It established a theoretical foundation for un-
derstanding the chaotic phenomena observed in dynamical systems. Additionally, the study in-
troduced the Zeraouilia-Sprott mappings, which are a class of discrete dynamical systems known
for their chaotic behaviors, through rigorous mathematical analysis, numerical simulations, and
graphical representations. This study revealed the presence of chaos in the Zeraouilia-Sprott map-
pings under investigation and the chaotic nature was identified by observing sensitive dependence
on initial conditions, irregular and aperiodic behavior, and the presence of strange attractors. The
examination of bifurcations diagrams also covered the emergence of complex dynamical regimes,
including period-doubling cascades and intermittency. Furthermore, this research explored the
influence of key parameters on the chaotic dynamics of the Zeraouilia-Sprott mappings. It was
observed that slight variations in the parameter values could lead to significant changes in the
system’s behavior, resulting in transitions from regular to chaotic motions and contribute to the
understanding of chaos theory and its manifestation. The identification and characterization of
chaotic behavior in these mappings expand the existing knowledge of discrete dynamical systems
and their applications. The results also have implications in various fields such as physics, bi-
ology, and engineering, where chaos theory has diverse applications. Overally, this memory of
the master’s degree project demonstrates the complexity and richness of chaos in some selected
Zeraouilia-Sprott mappings. The research outcomes provide a valuable insights into the dynamics
of these mappings and the groundwork for further investigations in the realm of chaos theory and

its practical implications.




Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

E. Zeraoulia, Chaotifying one-dimensional discrete mappings using S-unimodality and
Collet-Eckmann condition, International Journal of Bifurcations and Chaos, 29 (4),
1950050, 2019.

E. Zeraoulia and J. C. Sprott, A minimal 2-D quadratic map with quasi-periodic route to
chaos, International Journal of Bifurcations and Chaos, 18 (5), 1567-1577, 2008.

E. Zeraoulia, On the dynamics of a new simple 2-D rational discrete mapping, International
Journal of Bifurcations and Chaos, 21 (1), 155-160, 2011.

E. Zeraoulia and J. C. Sprott, The discrete hyperchaotic double scroll. International Journal of
Bifurcations and Chaos, 19 (3), 1023-1027, 2009.

M. L. Feigin, Doubling of the oscillation period with C-bifurcations in piecewise continuous
systems, Prikl, Mat, Meh, 34, 861-869, 1970.

H. E. Nusse and J. A. Yorke, Border-collision bifurcations including "period two to period three"
for piecewise smooth systems, Phys, D, 57 (1-2), 39-57, 1992.

C. H. Wong, Border collision bifurcations in piecewise smooth systems, A thesis for the degree
of Doctor of Philosophy, University of Manchester, 2011.

S. Banerjee and C. Grebogi, Border collision bifurcations in two-dimensional piecewise smooth
maps, Phys, Rev, E, 59 (4), 4052-4061, 1999.

S. Banerjee, M. S. Karthik, G. Yuan, and J. A. Yorke, Bifurcations in one-dimensional piecewise
smooth maps— theory and applications in switching circuits, IEEE Trans, Circuits Systems I
Fund. Theory Appl, 47 (3), 389-394, 2000.

49



Bibliography

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

E. Zeraoulia, Dynamical systems, Theory and Applications, Science Publishers, 2018.

D. Singer, Stable orbits and bifurcation of maps of the interval, SIAM J. Appl. Math. 35,
260-267, 1978.

M. Hénom, A two dimensional mapping with a strange attractor, Commun. Math, Phys. 50,
69-77, 1976.

D. G. Aronson, M. A. Chory, G. R. Hall, R. P McGe- hee, Bifurcations from an invariant cir-cle
for two-parameter families of maps of the plane: A computer-assisted study, Commun. Math.
Phys. 83, 303-354, 1982.

R. Lozi, Un attracteur étrange du type attracteur de Hénon, J. Physique. Col loque C5, Sup-
plément au n° 8, 39, 9-10, 1978.

Y. Cao, Z. Liu, Orientation-preserving Lozi map, Chaos Solit. Fract.9, 1857-1863, 1998.

M. A. Aziz-Alaoui, C. Robert, C. Grebogi, Dynamics of a Hénon-Lozi map, Chaos Solit. Fract.
12, 2323-2341, 2001.

E. Zeraoulia, A new chaotic attractor from 2-D discrete mapping via border-collision period
doubling scenario, Discr. Dyn. Nature Soci. 9, 235-238, 2005.

J. C. Sprott, Chaos and Time-Series Analysis, Oxford University Press, 2003.

J. C. Sprott, G. Rowlands, Improved correlation dimension calculation, Int. J. Bifurcation and
Chaos 11, 1865-1880, 2001.

J. A. Lu, X. Wu, J. Lu, L. Kang, A new discrete chaotic system with rational fraction and its
dynamical behaviors, Chaos, Solitons & Fractals 22, 311-319, 2004.

L. Chang, J. Lu, X. Deng, A new two-dimensional discrete chaotic system with rational fraction
and its tracking and synchronization, Chaos, Solitons & Fractals 24, 1135-1143, 2005.

L. O. Chua, M. Komuro, T. Matsumoto, The double scroll family, Part I and II, IEEE Trans.
Circuits. Syst. CAS-33, 1073—1118, 1986.

C. Li, G. Chen, Estimating the Lyapunov exponents of discrete systems, Chaos. 14 (2), 343—
346, 2004.

K. Thamilmaran, M. Lakshmanan, A. Venkatesan, Hyperchaos in a Modified Canonical Chua’s
Circuit, Int. J. Bifurcation and Chaos. 14 (1), 221—244, 2004.

Bibliography



Bibliography

[25] S. Banerjee, C. Grebogi, Border collision bifurcations in two-dimensional piecewise smooth
maps, Phys. Rev. E. 59 (4), 4052—4061, 1999.

[26] M. Burger, R. Fetecau, Y. Huang, Stationary states and asymptotic behavior of aggregation
models with nonlinear local repulsion. SIAM Journal on Applied Dynamical Systems, 13(1),

397-424, 2014.

Bibliography



