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Abstract

’.L* \ “k/
' o \." e
1

x\ *‘ The purpose of this work is to study the existence of chaos in
" some fractional-order systems, by broving that the studied
* fractional system can display chaotic behavior in two cases.

In the case commensurate using the minimal order systems

"f and in the case incommensurate order using the caracteristic

polynomial, then the corresponding simulation results are
provided to demonstrate the effectiveness of the proposed
method in Matlab.
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General Introduction

Dynamical systems are part of life, Quite often it has been studied as an abstract concept

in mathematics, chaos is one of the few concepts in mathematics which cannot usually be
defined in a word or statement[12]. Most dynamical systems are considered chaotic depending
on either the topological or metric properties of the system [15]. Chaotic systems have been a
focal point of renewed interest for researchers in recent decades and such nonlinear systems
can occur in various natural and man-made systems [16] .
The study of chaos in dynamical systems has revolutionized our understanding of complex
and unpredictable behavior in various scientific disciplines [13]. In the late 20th century, the
subject of research known as "chaos theory" began to take shape. Since then, it has had a
significant influence on several fields [22], including mathematics, physics, biology, and many
more [23]. Henri Poincaré, a French mathematician, made substantial contributions to the
discipline in the early 19"* century [11], which can be seen as the beginning of the history of
chaos in dynamical systems [14]. There are solutions that are quite sensitive to the beginning
circumstances, as Poincaré’s work on the three-body problem in celestial mechanics showed,
the Butterfly Effect is a concept derived from chaos theory, in which this term refers to the
concept that a tiny change in one location and time can cause significant, unforeseen effects
in another location and time [21]. The idea of sensitive dependency on beginning conditions
serves as the foundation for this, where small changes in the starting conditions of a system
can lead to vastly different outcomes over time [18].

Indeed, the idea of chaos extends beyond integer-order systems to fractional-order systems,
and fractional calculus offers a mathematical foundation for analyzing and simulating such
systems since it works with derivatives and integrals of non-integer order [19]. Systems with
fractional order have intricate dynamics, which may involve chaotic behavior [17]. The study
of chaos in fractional-order systems is an active research area [20], and it has implications
for understanding and modelling complex phenomena with memory effects and long-range
interactions. Fractional calculus provides a powerful tool for analyzing and predicting the
behavior of such systems, allowing for a more comprehensive understanding of their dynamics

and potential applications in various fields.



In the first chapter, we recall some basic notions of dynamical systems and the theory of
chaos, also basic definitions and properties of fractional derivatives are provided with numeri-
cal methods for solving fractional-order systems.

In the second chapter, we present some examples of fractional-order chaotic systems.

Finally, the last chapter is devoted to the study of the existence of chaos in a novel fractional-
order system, in the first part, we describe the fractional-order system and we study the equilib-
rium points and the stability, and in the last part, we provide evidence that the system exhibits

chaotic behavior once it reaches a certain threshold of minimum commensurate order.



Chapter 1

Preliminaries

1.1 Introduction

In this chapter, we introduce some preliminaries about dynamical systems and chaos theory,
also basic definitions and properties of fractional derivative are given with numerical method

for solving fractional-order systems, and study its stability.

1.2 Dynamical systems

Dynamical systems refer to systems that change over time. Systems like this may be found in a
number of disciplines, including physics, engineering, biology, economics, and social sciences.

Dynamic systems can be either linear or nonlinear, its classified into two categories:

1.2.1 Continuous dynamic systems

Definition 1.1 A continuous dynamic system is a system where its state changes continuously

over time, and it is represented by the form:
xr, = F(x,t); ve€R" teRT,

with F : R" x Rt — R™ denotes the dynamics of the system.
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1.2.2 Discrete dynamic systems

Definition 1.2 A discrete-time dynamic system is a mathematical model that describes how a
system evolves over time, where time is treated as a sequence of discrete points in time [1], and it

is represented by a fine difference equation as follows:
x(k+1) = F(x(k), k), (1.1)

with z (k) e R", ke Nand F : R" x N — R".

1.2.3 Phase space of a dynamical system

Definition 1.3 The phase space of a dynamical system is typically represented as a multidimen-
sional space, where each dimension is a direct representation of a phase variable. A point in this
space represents the system’s state at any given moment, and a trajectory in the phase space depicts

the system’s mobility through time.

1.2.4 Equilibrium point

Definition 1.4 In mathematics, specifically in differential equations, an equilibrium point is a
constant solution to a differential equation.
The point x € R" is an equilibrium point [2] for the differential equation:

@ =f(to) lff(t,%)zo for all t.

Similarly, the point z € R™ is an equilibrium point (or fixed point) for the difference equation.

Tp = f (ko)

f(k,&ék)zz}‘: for k=0,1,2..

In the study of dynamic systems, equilibrium points are crucial because they provide de-
tails about the behavior and stability of the system. They may also be used to create control
systems to manage the behavior of the system and examine how the system behaves close to

its equilibrium point.

1.2. Dynamical systems
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1.3 Chaos theory

1.3.1 Definition of chaotic systems

In dynamic systems, "chaos" refers to a complex behavior that appears to be random or un-
predictable. Because chaotic systems are sensitive to the beginning conditions, tiny changes in
the early circumstances can have a significant impact on the course of events. This makes it

exceedingly difficult, if not impossible, to anticipate the long-term behavior of chaotic systems.

Definition 1.5 Let V be a set. f : V — V is said to be chaotic on V' if f has the following three
properties:

1- f has sensitive dependence on initial conditions.

2 - f is topologically transitive.

3. The periodic points of f are dense in V.

1.3.2 Some characteristics of chaotic systems

Chaotic systems have several properties that distinguish them from other types of dynamical

systems:

Sensitive to initial conditions: This means that small changes in the initial conditions

of the system can lead to large differences in the behavior of the system over time.

e topologically transitive: In mathematics, If a point in the phase space has an orbit that
is dense in the phase space, the dynamical system is said to be topologically transitive.
This means that any point in the phase space is arbitrarily near to the system’s trajectory,

which it follows.

e dense periodic orbits: Since they offer a means of approximating the behavior of chaotic

systems, dense periodic orbits are significant in the study of dynamical systems.

e Lyapunov exponent: The Lyapunov exponent is a way to gauge how quickly close paths

in a dynamical system diverge. It is named after the Russian mathematician Alexander

1.3. Chaos theory B
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Lyapunov, who created the concept in the late 19th century. The Lyapunov exponent is a
measurement of the stability of a dynamical system. On the other hand, if the Lyapunov
exponent is positive, the system is unstable and behaves chaotically because neighboring
paths tend to diverge over time. Nearby paths in the system tend to converge over
time if the Lyapunov exponent is negative, demonstrating that the system is stable. It
is frequently used to investigate the behavior of chaotic systems, in which neighboring

paths are subject to sudden and unpredictable divergence.

1.3.3 Chaos theory applications

Chaos theory has many applications in various fields. Here are some examples:

1. Physics: Chaos theory has been applied in physics to comprehend the behavior of com-

plex systems like celestial mechanics, nonlinear optics, and fluid dynamics.

2. Engineering: Chaos theory has been applied in engineering to enhance the planning
and management of intricate systems including power plants, chemical reactors, and

communication networks.

3. Biology: Chaos theory has been applied in biology to comprehend the functioning of

biological systems including ecological systems, brain networks, and heart cycles.

4. Finance: Chaos theory has been applied in finance to understand the behavior of finan-

cial markets and to develop models that can predict market fluctuations.

5. Computer Science: Chaos theory has been applied in computer science to develop algo-

rithms for optimization and data analysis.

6. Music and Art: Chaos theory has been applied in music and art to create new forms of

expression and to explore the relationship between randomness and creativity.

Overall, chaos theory has developed into a potent tool for comprehending the behavior of
complex systems in a wide range of disciplines, and it continues to stimulate new research and

applications in science, engineering, and the arts.

1.3. Chaos theory [J
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1.4 Fractional calculus

Over the years, many mathematicians using their own notation and approach, have found
various definitions that fit the idea of a non-integer order integral or derivative. One version

that has been popularized in the world of fractional calculus is the Riemann Liouville definition.

1.4.1 Useful Mathematical Functions

We first explore several essential mathematical notions that are intrinsically linked to fractional
calculus and will frequently be encountered before looking at the formulation of the Riemann-
Liouville Fractional and caputo derivatives. The beta function and the gamma function are

examples of these.

The Gamma Function

Definition 1.6 The most basic interpretation of the Gamma function is simply the generalization

of the factorial for all real numbers [3]. Its definition is given by

[(z)=[e't"'dt, zeR". (1.2)

The Beta Function

Definition 1.7 Like the Gamma function, the Beta function is defined by a definite integral [3].

Its definition is given by

Bw,y) = FEY 5y eRF. (1.3)

The Beta function can also be defined in terms of the Gamma function:

B(x,y)= [yt (1 —t)’"dt, z,yeR*. (1.4)

1.4.2 Griinwald-Letnikov derivative

The Griinwald-Letnikov derivative [9] is a method used to approximate the derivative of a

function. It is a numerical approach that is particularly useful for functions that are not easily

1.4. Fractional calculus



Chapter 1. Preliminaries

differentiable or for situations where analytical differentiation is not feasible.

Let us consider the continuous function f (). Its first derivative can be expressed as

d oo oy g SO = F(E—)
o/ O =7(t)=lim . (1.5)
By using Ejq. (1.5) twice, we obtain a second derivative of the function f (¢) in the form
d2 _ " 9 fl<t)_f/(t_h>
i = =t (1.6)
o W =2f =B+ f (= 2)
h—0 h?

With (1.5) and (1.6) we can get a third derivative of the function f (¢) as

@ _ " BT f”(t)_fll (t_h)

Safw = =t
_ L O = 3F (=) +3f (¢ —2h) — f(t—3h)
- h3

The Griinwald-Letnikov derivative provides an alternative way to approximate derivatives, es-
pecially for functions that do not have a simple algebraic expression for their derivatives or for
problems where numerical methods are more suitable. However, it’s important to note that
the convergence of the method depends on the properties of the function being differentiated

and the choice of the time step At.

1.4.3 The Riemann-Liouville derivative

Definition 1.8 The Riemann-Liouville derivative of fractional order « of function x (t), [3]is given

as

dm —(m—«a
RLpe v(t) = ——Dyi™ ™ v (t) (1.7)

dtm
1 dm t .
= — t—s)” d
F(m—a)dtm/a( s)7v(s)ds
wherem —1<a<m€eZ".

This derivative was induced by the Riemann-Liouville derivative and is useful inphysics.

1.4. Fractional calculus
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1.4.4 Caputo fractional derivative

Definition 1.9 The Caputo fractional derivative of v(t) is given as:

N Y N 010
D20 (1) = e / TR (1.8)

a

wherem —1<a<meZ™.

1.4.5 Relation between Riemann-Liouville and Caputo fractional deriva-

tives

The relation between Riemann-Liouville and Caputo fractional derivatives with singulareker-

nels given as:
m—1 ’U(k) (Ck)

k—a

“Dgu (t) =" D, v (t) -
k=0

There fore,

If v (a) = v’ (a) = - - - = 0™V (a) = 0, then “D% () =FF Dg,v(t). (1.10)

1.4.6 Stability of Fractional Order Systems

Stability analysis of fractional order systems, which is of main interest in control theory [4] . We
take into consideration the fractional order system in n dimensions below.

(

dil
dtqaljl =h (xla L2, 7xn) )
da2
dtqazfz :h2 («Tl;x%"vxn)u (1 11)
dan
L dtq:fln :hn (Ilax%‘”axn)?

Where ¢; are equal to real number or rational num bers between 0 and 1 and 27 is the Ca-

puto frac tional derivative of order ¢;.for ¢ = 1,2,...,n. If function f; has second continu-

*

ous partial deriva tives in a ball centered at an equilibrium point P* = (z7,z3,...,x}), that is

ey by

fi(ay, s, ...,ar) =0fori=1,2, ..., n, then we have the following results.

cey n

1.4. Fractional calculus
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e Case commensurate if ¢; = ¢ = --- = ¢, = ¢ then the equilibrium point x* of system

(1.11) is asymptotically stable if |arg (spec (J |.+))| > ¢m/2, where the matrix J is the

n

Jacobian matrix of the system (1.11) that is defined as J = [%]
ilij=1

e Case Incommensurate A fractional-order system’s stability is typically influenced by
where its poles and zeros are situated on the complex plane. If all the poles lie in the
left half of the complex plane, the system is said to be asymptotically stable. If some
poles lie on the imaginary axis, the system may exhibit oscillations. If any pole lies in
the right half of the complex plane, the system is unstable. If ¢; are rational numbers
between 0 and 1 such that o; = I;/m;, (I;,m;) = 1,1;, m; € Nfori=1,2,---  n, then the
equilibrium point X* of system (1.11) is asymptotically stable if all roots X of the equation
det (diag (A™*, N2 .o ATO) —

+) = 0. satisfy |arg (\)| > g7 /2, where ¢ = 1/m and

m be the least common multiple of the denominators m; of «;.

1.4.7 Numerical method for solving fractional order systems

Numerical methods for solving fractional-order dynamic systems have become increasingly im-
portant in recent years due to their wide range of applications in physics, engineering, finance,

and other fields. Among these methods we introduce Adams-Bashforth-Moulton algorithm.

Adams-Bashforth-Moulton algorithm

Consider for a € (m — 1, m] the following initial value problem (IVP)

Dy (t)=f(ty(t), 0<t<T, (1.12)

y® 0=y k=01,..,m—1. (1.13)

The IVP (1.12)and (1.13) is equivalent to the Volterra integral equation

m—1 k 1
v = S G+ e [ - Gy ar (114
k=0 ’ 0

1.4. Fractional calculus
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Consider the uniform grid {¢, = nh/n =0,1,..., N} for some integer N and h := T/N. Let
yn (t,) be approximation to y(¢,). Assume that we have already calculated approximations

yn (t;), j =1,2,...,n and we want to obtain y, (t,+1) by means of the equation

m— ha
k)
n+1 - 1 ( mf (thrlayi (tn+1)) + F Oé T 2 Za] n+1f ],yn( )) (1 15)
where
nott —(n—a)(n+1)", if j=0
1= n—j+2)+ =) =2 —j 4+, if 1<j<n, . (1.16)

1, if j=n+1

The preliminary approximation y; (¢,1) is called predictor and is given by

m—

n+1

+—ijn+1f tj,yn (t5))

where

«

i = — (0 1= 5)" = (n = j)"). (1.17)

The error in this method is given by

max |y () — o (£)] = O (7). (1.18)

j=0,1,...N
where p = min (2,1 + ).

It involves predicting the solution at the next time step using the Adams-Bashforth method
and then correcting the solution, both of which are modified to handle fractional derivatives.
The method is accurate and efficient, but it can be computationally expensive for high order

dynamical systems.

1.5 Conclusion

This Chapter contain some prelimanaries about dynamical systems and chaos theory, Also,Basic
definitions and properties of fractional derivative are given with numerical method for solving

fractional differential equations.

1.5. Conclusion



Chapter 2

Examples of fractional-order chaotic

systems

2.1 Introduction

Chaos in fractional order systems refers to the study of complex dynamical behavior in systems
involving fractional derivatives or integrals. Unlike traditional integer-order systems, fractional
order systems exhibit unique characteristics such as sensitivity to initial conditions, aperiodic
long-term behavior, and the presence of strange attractors in phase space. This area of research

provides insights into the intricate dynamics of physical phenomena.

2.2 Fractional-order chaotic systems

2.2.1 Fractional-order Genesio-Tesi system

The Genesio-Tesi system is a 3D dynamical system that was introduced by Raffaele Genesio
and Alberto Tesi in 1985 [5]. This system has been studied extensively in the literature and
has found applications in various fields, such as secure communication, image encryption, and
chaos synchronization. The fractional-order Genesio-Tesi system can be used as a benchmark

system for testing new fractional-order chaos detection and control algorithms, also this system

15
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can be used as a platform for investigating the effect of fractional-order derivatives on the

dynamics of nonlinear systems". The fractional form of the Genesio-Tesi systemis is described

as follows
Dq.'131 = T2
Dq[EQ = I3, (21)
Dixs = —ax; — bxy — cxs + ma?3,

where x1, x5, x3 are state variables, ¢ is the fractional-order satisfying 0 < ¢ <1, ¢ = 0.97 and
for the parameters a = 6, b = 2.92, ¢ = 1.2, and m = 1, the system can display choatic attractor,

and numerical simlulations of Genesio-Tesi system is depicted in Figure 2.1, 2.2, 2.3, and 2.4.

Figure 2.2: Chaotic attractor of system (2.1) in y — z plane.

2.2. Fractional-order chaotic systems
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Figure 2.4: Chaotic attractor of system (2.1) in = — y plane.

2.2.2 The fractional-order simplified Lorenz system

The fractional order Lorenz system[6] is a generalization of the classical Lorenz system. The
system has been studied extensively in the literature and has found applications in various
fields, such as chaos-based cryptography, secure communication, and image encryption and it

is given by the following from:

diizy _ 10 (y _ x) ’

dtn
L2 — —xz+ (24 — 4c) x + cy, (2.2)

dti2

d¥x3 __ 8
S =Ty — 52,

2.2. Fractional-order chaotic systems
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Figure 2.6: Chaotic attractor of system (2.2) in y — z plane.

where z, y, z are the state variables, and 0 < ¢; < 1,7 = 1,3 determine the fractional order of
the system. For ¢; = ¢o = g3 = 1 and for ¢ € [2.6,7.4] , the system can display choatic attractor,

and numerical simlulations of the Lorenz system is depicted in Figure 2.5, 2.6 and 2.7

2.2.3 The Rabinovich-Fabrikant chaotic system

The Rabinovich-Fabrikant chaotic system [7] is a 3D dynamical system that was introduced
by Michael M. Sushchik and Leonid Fabrikant in 1979. This system has found applications
in various fields, such as chaos-based cryptography, secure communications, and nonlinear

control. It is also used as a benchmark system for testing new chaos detection and control

2.2. Fractional-order chaotic systems
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Figure 2.7: Chaotic attractor of system (2.2) in z — y — z space.

algorithms.

This system is described by the following set of differential equations

CL =y (z—1+2?) + ax,
a=r (3 +1-2%) +ay, 2.3)

Tz = _22(b+xy),0<a<l

where z, y, z are the state variables, 0 < o < 1 is the fractional-order derivative, and for the
parameters ¢ = 0.87, b = 1.1, and for o = 0.99, the system can display choatic attractor, and nu-
merical simlulations of Rabinovich-Fabrikant fractional-order system for the initial conditions

[—1,0,0.5] is depicted in Figure 2.8, 2.9 and 2.10.

2.2.4 3D Fractional-Order Chaotic System

The fractional-order 3D chaotic system [8] is constructed, which is described as follows:

Dz =y,
DQy = —r — yz) (2.4)
Dz =a|x| + xy — b,

where z, y, z are the state variables, 0 < ¢ < 1 is the fractional-order satisfying, and for the pa-

rameters a = 2.5,b = 1.35, and ¢ = 0.9, the system can display choatic attractor and numerical

2.2. Fractional-order chaotic systems
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Figure 2.9: Chaotic attractor of system (2.3) in z — z plan.

simlulations of the fractional-order 3D chaotic system is depicted in Figure 2.11, 2.12, 2.13 and

2.14.

2.2.5 Fractional-Order Rossler System

The fractional order Rossler system is a generalization of the well-known Rossler system, which
is a system of ordinary differential equations (ODEs) that exhibits chaotic behavior. The frac-
tional order Rossler system extends the concept by introducing fractional derivatives instead

of ordinary derivatives.

2.2. Fractional-order chaotic systems



Chapter 2. Examples of fractional-order chaotic systems

Figure 2.10: Chaotic attractor of system (2.3) in x — y — z space.

Figure 2.11: Chaotic attractor of system (2.4) in x — y plan.

The fractional order Rossler system [9] is given by the following nonlinear equations:

Dy = —y — 2,
Dq2y =2 + ay’ (2.5)

DBz =bxr —cz + xz.

where z, y, z are the state variables, a, b and c are parameters, and ¢;, i = 1, 3 are the fractional-
order derativative. For ¢; = 0.9, ¢o = 0.85,95 = 0,95, and for the parameters (a;b;c) =
(0.5,0.2,10) and ICs (¢, yo,20) = (0.5,1.5,0.1), the system can display choatic attractor, and

numerical simlulations of the Rossler system is depicted in Figure 2.15 and 2.16.

2.2. Fractional-order chaotic systems



Chapter 2. Examples of fractional-order chaotic systems

Figure 2.13: Chaotic attractor of system (2.4) in y — z plane.

2.3 Conclusion

In this chapter, we have presented some examples of fractional-order 3D chaotic systems.
There are many other examples of such systems, each with its own unique behavior and char-

acteristics.

2.3. Conclusion
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Figure 2.16: Chaotic attractor of system (2.5) in z — y — z space.

2.3. Conclusion



Chapter 3

Existence of Chaos in a fractional order

System

3.1 Introduction

In this chapter, we study the existence of chaos in a fractional order system

3.2 Description of the chaotic system

The chaotic system [10] is described by the independent nonlinear system of differential equa-

tions that follows:
r=ay—x,

y = —br — 2z, (3.1
2 =cz+ ny -,
where x, y and z are the states and a, b, ¢ are constant, positive, parameters of the system.
The new system (3.1) has totally seven terms on the right-hand side with a cubic nonlinearity.

The parameters’ typical values are:

a=1, b=0.46, ¢ = 0.46. (3.2)
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3.2.1 Chaotic Dynamics of Fractional chaotic system

In this section, we study the chaotic dynamics of fractional novel chaotic system It is obtained

from the classical system, described in (3.1), by replacing the first time derivative £ by a

fractional derivative 2=, where the last denotes the differential operator in the sense of Caputo.

The fractional version of novel chaotic system reads as

d*lzx
dto1
a*2y __

T = —bxr — 2z, (3.3)

d*3z
dt>3

=ay —x,

:cz+xy2—x,

where a = (ay, as, ag) is subject to 0 < ay, g, ag < 1.

The state space of the system (3.3) is three-dimensional, The right-hand side of the system (3.3)

vector field is defined by
v (z) y—x
vy 2)=| vy | =| -046z—:z (3.4)
vs (2) 0.46z + xy? — x

The divergence of the vector field v is easily calculated as

8@1 8v2 8U3

diV’U(.%):%-i-a—y-i-g

=—14+0+0.46=—-0.54 < 0. (3.5)

A necessary and sufficient condition for system (3.3) to be dissipative is that the divergence of
the vector field v is negative. In view of Eq (3.5), it is immediate that system (3.3) is dissipative
if and only if ¢ > 1 with an exponential rate 2 = ¢~054,

Thus, in the dynamical system (3.3), a volume element V; is apparently contracted by the
flow into a volume element Vpe %5 in time ¢. This means that each volume containing the
trajectories of this dynamical system shrinks to zero as ¢ — oo at an exponential rate. So, all
the orbits of the dynamical system (3.3) will be eventually confined to a special subset that

has zero volume, and the asymptotic motion of system (3.3) will settle onto an attractor of the

system.

3.2. Description of the chaotic system



Chapter 3. Existence of Chaos in a fractional order System

3.2.2 Equilibrium points and stability

For the values of parameters (3.2), the system (3.3) has three equilibrium points, given by

E, : (0,0,0),
E, : (1.100727032, 1.100727032, —0.5063344349) ,

FEs : (—1.100727032, —1.100727032, 0.5063344349) .

Clearly, F; is an equilibrium of the system (3.3) for all values of the parameters a, b, and c. The
equilibrium points E,, F3 of system (3.3) are real only when ¢b > 1. When ¢b < 1, Ej is the
only real equilibrium of (3.3).

The Jacobian matrix of the system (3.3) evaluated at the equilibrium point E* = (z*, y*, 2*) is:

-1 1 0
J(E*) = —0.46 0 -1
—1+9y* 2xy 0.46

For E;:
—1-X 1 0
J(Ey) = —0.46 —A\ -1
-1 0 0.46—AX
Determinant:

P\ (E;) = —\* — 0.54)\% 4 1.2116.

So, we obtain the eigenvalues

A1 = 09131216591, (3.6)
Ao = —0.7265608295 + 0.89386029184,
As = —0.7265608295 — 0.8938602918:.

For Es:
With the same method, the eigenvalues of the Jacobian at E, are
S 1 0
J(Es) = —0.46 —A —1
0.211599999 2.423199998 0.46 — A

3.2. Description of the chaotic system
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Determinant:

Py (Ey) = —\* — 0.54)\% — 2.4232)\ — 2.4232.

which has the eigenvalues
A = —0.887212, \y = 0.173606 — 1.643517, A3 = 0.173606 + 1.64351% (3.7)

For Es :

With the same method, the eigenvalues of the Jacobian at F5 are

11—\ 1 0
J(Es) = —0.46 -\ -1
0.211599999 2.423199998 (.46 — \

Determinant:

Py (E3) = =X\ — 0.54)\* — 2.4232)\ — 2.4232.

which has the eigenvalues
A = —0.887212, Ay = 0.173606 — 1.643517, A3 = 0.173606 + 1.64351¢ (3.8)

Since the linearization matrices J (E;), J (E»), and J (E3) have eigenvalues with positive real
parts, it follows from Lyapunov stability theory [17] that the equilibrium points Fi, F», and Fj3
are unstable, and this implies chaos in the dissipative system (3.3). So, the trajectories of the
system (3.3) diverge from the three equilibrium points and orbit onto the strange attractor of

the system (3.3).

3.2.3 Minimal order for chaos

Commensurate case
In the case of the comensurate-order system, we have ¢ = 1, b = 0.46 and ¢ = 0.46, where
a; = as = ag = « a necessary condition for the fractional-order nonlinear system (3.3) to be

chaotic is:

2
o > — arctan (
™

[fm (A)]
Re (}) ) ’

3.2. Description of the chaotic system
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For Ei:

2 |Im (Ao 3)|
— t -~ 77
o > arctan < Re (M)

2 <0.8938602918)

12

—arctan | —
s 0.7265608295

12

2
Z (0.8882780847)
n

12

0.5654953921.

For Es, Es:

2 |Im ()\273)|
a > - arctan < Re(>\2,3)

2 1.64351
~ —arctan | ————
T <O.173606)

2
~ (1.465555353)

12

l

~ 0.9330015154.
Thus, the necessary condition of existence chaos in fractional-order system (3.3) is:
a > 0.9330015154.

Incommensurate case
In the case of the incomensurate-order system where a; # as # a3 If ay, as and as.
are rational numbers between zero and one, which are not necessarily equal, The necessary

condition for the system (3.3) to exhibit chaotic oscillations in the incommensurate case is :

sy — min; (Jarg (A (Jg))[) >0, i=1,2,3

Where \; (Jg), i = 1,2,3, are the eigenvalues of the Jacobian matrix Jx of the system (3.3) at
the equilibrium F, M is the LC' M of the fractional orders.
For example, if a; = 1, ay = 0.95, a3 = 0.975, then we have [, = 40, [, = 38, I3 = 39 and

M = 40. The characteristic equation of the system evaluated at the equilibrium F; is :
det (diag [)\Mal  AMez )\Maﬂ — JEZ.) =0

det (diag [\, A, A¥] — Jp,) =0 i=1,2,3.

3.2. Description of the chaotic system



Chapter 3. Existence of Chaos in a fractional order System

For F; :
det (diag [A*, A**, A¥] — Jp,) =0,
MO0 -1 1 0
det 0 X 0 | —| —046 0 -1 =0
0 0 ¥ ~1 0 046
AT 0460 + X7 +0.460% — 0.46A% — 1.2116 = 0
For Es 5 :

det (diag [)\40, 3%, )\39} — JEM) =0,

M0 0 -1 1 0
det 0 \® 0 - —0.46 0 -1 =0
0 0 M\ 0.2111599999 2.423199998 0.46

M 04607 + X7 4 2.4232010 + 046037 — 0.467\38 + 2.42276 = 0

From the roots of the above equations, we find A\ = 0.997665. whose argument is zero which is
the minimum argument,

min (Jarg (A; (Jg))[) = 0,

and hence the necesary stability condition is holds because

Vs
— —0>0
80 ’

3.2.4 Chaos by using Lyapunov exponents test

The Lyapunov exponent is a way to gauge how quickly close paths in a dynamical system
diverge. It is named after the Russian mathematician Alexander Lyapunov, who created the
concept in the late 19¢h century. The Lyapunov exponent is a measurement of the stability of a
dynamical system. Nearby paths in the system tend to converge over time if the Lyapunov ex-
ponent is negative, demonstrating that the system is stable. On the other hand, if the Lyapunov
exponent is positive, the system is unstable and behaves chaotically because neighboring paths

tend to diverge over time. It is frequently used to investigate the behavior of chaotic systems,

3.2. Description of the chaotic system
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in which neighboring paths are subject to sudden and unpredictable divergence.
The Lyapunov exponent where computed using Matlab in 10%s, and the Lyapunov spectrum
is shown in figure 3.1 and 3.2 for two cases with commensurate and incommensurate respec-

tively.

LEs

0 200 400 600 800 1000

—L1=0.0935
——L12=0.000
L3=-0.8700

06

-0.8

100 200 300 400 500 600 700 800 900
1(s)

Figure 3.2: Lyapunov exponents spectrum of system (4.1) for or; = 0.95, ap = ay = 0.98.
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3.3 Conclusion

In this chapter, we and we provided evidence that these systems exhibit chaotic behavior once

it reaches a certain threshold of minimum commensurate order.
General conclusion

In this work, we have studied the existence of chaos in fractional order systems in a novel
chaotic system, in the first chapter we have mentioned some basic concepts of dynamical sys-
tems and chaos theory, and also basic definitions and properties of fractional derivatives with
numerical methods to solve fractional-order systems, and in the next chapter we have provided
some examples of chaotic fractional order systems with numerical simulation. In the last chap-
ter we have a novel 3D fractional order system is introduced and its basic properties have been
studied. Moreover, the two necessary conditions of the existence of chaos in commensurate
order and incommensurate order are given. Also, the Lyapunov exponents are calculated using

Matlab to prove that the proposed system exhibits chaotic behavior.

3.3. Conclusion
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