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Abstract

In this memoir, we study quasilinear elliptic equations and
systems with double phase operator. We prove the
existence of a weak solution by applying the theory of
pseudomonotone operators. Furthermore, Imposing some
additional linear condition the gradient variable the
unigueness of the solution is obtained.

Keywords : Elliptic system, Doube phase problems,
pseudomonotone operators, Existence results, Uniqueness.



Resume

Dans ce meémoire, nous etudions les équations elliptiques
guasilinéaires et les systemes avec des opérateurs elliptiques de
double phase. Nous prouvons l'existence d’au moins une solution
faible en appliquant la théorie d’opérateur pseudomonotone. En
imposant des conditions de linéarisation sur la variable de gradient,
pour assurer l'unicité de la solution.

Mots clés : Systeme elliptique, Probleme de double phase,
Opérateur pseudomonotone, Résultat existence, Unicité.
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Introduction

Partial differential equations are of crucial importance in modelization and descrip-
tion of a wide variety of phenomena such as fluid dynamics, quantum physics, sound,
heat, electrostatics, diffusion, gravitation, chemistry, biology, calculator charts and
time prediction.

In recent years, authors have interested by elliptic problems called double phase,
originally the idea to treat such operators comes from Zhikov [36, 37, 38] who intro-
duced such classes to provide models of strongly anisotropic materials; and also the
monograph of Zhikov-Kozlov-Oleinik [39]. In order to describe this phenomenon, he
introduced the functional.

w / Vel + () [Veo]) do, 1)

that generates a double phase operator whose behavior switches between two differ-
ent elliptic situation, on the set {z € Q, p(x) = 0} the operator will be controlled
by gradient of order p and in the case {z € Q, u(x) # 0} it is the gradient of order
q. This reason why it is called double phase operator.

The double phase problems has been studied deeply recently, we refer to the
papers of Baroni-Colombo-Mingione [3, 4, 5], Baroni-Kussi-Mingione [6], Colombo-
Mingione [11, 12] and the references therein concerning the regularity.

In the works of [13, 27, 28] the integral form (1) arise in the context of functional
with non-standard growth, Colasuonno-Squassina [10] studied the corresponding ei-
genvalue problem of the double phase operator with Dirichlet boundary condition he
proved the existence and properties of related variational eigenvalues. By applying
variational methods, Liu [24] treated double phase problems and proved existence
and multiplicity results.

In our work the problem studied depend a non linearity on the right hand side
called convection terms which is functions depends on the gradient of the solution.
Our starting point is the work of Averna-Motreanu-Tornatore [1] who considered a
(p, ¢)-Laplacian problem with a homogeneous Dirichlet boundary condition.

In this memoir we study the existence and uniquesse of solution of double phase
elliptic equation , for the existence we used the theory psudomontone operators
(surjectivety result), by conditions on the convection term, in addition a strong
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condition on the non-linearity we can prove the uniqueness of solution, see [20], this
result is generalized for a system of two equations, the problem treated by the same
manner, see [26].
For other existence results on quasilinear equations with dependence on the gradi-
ent and the p-Laplace or the (p, ¢)-Laplace differential operator we refer to the pa-
pers of Bai-Gasinski-Papageorgiou [2], De Figueiredo-Girardi-Matzeu [14],Dupaigne-
Ghergu-Radulescu [15] , Faraci-Motreanu-Puglisi [16], and the references therein.
The memoir is divided into three chapters.

In the first chapter we suggest some basic concepts concerning functional farme-
work, psudomonotone operators, eigenvalue problems and Nemytskij Operator.

In chapter 2, we study the existence and uniqueness results for the following
double phase problem with convection term

—div (|Vul’? Vu + p () [Vu|"? Vu) = f (z,u, Vu) in Q @)
uw =0 on 0.

Such that Q is a bounded domain of RY, N > 2 with a lipschitz boundary 95).
Where 1 < p < ¢ < N, the function p : Q — [0, 00) is Lipschitz continuous. The
function f: Q x R x RY — R is a carathéodory function that is, x — f (z,s,&) is
measurable for all (s,£) € R x RY and (s,€) — f(x,s,&) is continuous for a. a.
x €.

In the last chapter we study the existence and uniqueness of solution of an elliptic
system with double phase operator and convection term, using the same theory in
chapter 2.



Chapter

Preliminaries

The aim of this chapter is to introduce the basic concepts, notations, and elementary
results that are used throughout the memoire.

1.1] Functional spaces

Lebesgue spaces

Let © C RY be an open set of RY
Definition 1.1.1 [7] Let p € R with 1 < p < oo, we set

LP(Q) = {f: Q— R, f measurable and |f|" € L' (Q)},
equipped with norm

||f||LP(Q) - ||f||p = /|f (l‘)lp dx
Q

We set
L*(Q) ={f:Q — R/f measurable and 3¢ > 0/ |f (z)| < ¢ a.e in Q}.

With
1fllLe@) = IIfllw =inf{c>0/|f ()| < ¢, a.einQ}.
Proposition 1.1.1 [7] Let 1 < p < oo, L? is reflexive, separable, and the dual of
Lisuch that % + % =1.
If p=1, L' is not reflexive, separable and the dual of L.
If p = 0o, L™ is not reflexive, not separable and the dual contains L'.
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Sobolev spaces

Let © C RY be an open set and let p € R with 1 < p < o0

Definition 1.1.2 [7] The sobolev space W (Q) is defined by
WP (Q) = {u € 1P (Q);Vu e (LP (Q))N} .

The space WP (Q) is equipped with the norm

=

P

by = (Il + 1VulEn)”
if p= oo, The space WP () is equipped with the norm
[l oo ) = max ([[ul o » [Vulls) -

Proposition 1.1.2 [7 WP is Banach space for every 1 < p < co. WP is reflezive
for 1 < p < oo, and it is Separable for 1 < p < oco.

W7 () Space

Definition 1.1.3 [7] For 1 < p < 400 we define the space W (Q) as being the
closure of D (Q) in WP (Q), and we write

Wi-p

Wo? (@) = D(Q)

1.1.4| Musielak-Orlicz space

Let H :  x [0,400) — [0, +00) be the function
(2, 8) = 87 + pu () 4,
where 1 < p < g < N, and

1 _
14 i {2 — [0,00) is Lipschitz continuous. (1.1)
p

We set
Py () := /H(x, ul) dx =/(\u|p + p () |u|?) d.

Q Q
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Definition 1.1.4 [24] The Musielak-Orlicz space L™ (Q) is defined by

L"(Q) =< ulu:Q— R, is measurable and py, (u) := /H (z, |u]) de < +o00

Q

Fquipped with the norm
|ull,, = inf {7’ >0 py (E) < 1} :
T

Proposition 1.1.3 [2/] The space L ™ (2) a separable, uniformly convexr and so a
reflexive Banach space. Furthermore we define

LI (Q2) = qulu:Q— R is measurable and /u (z) Ju|dx < 400 ¢,

Q
and endow it with the semi norm
1
q
ull, . = /u(w) |u|? d

Q

In the same way we define L (Q, RN).
From Colasuonno-Squassina [10],we have the continuous embeddings

L7(Q) — L™ (Q) — L (Q) N LI () .

For w # 0 we that py < ) =1 and so, it follows that

Tl
min {[[ullz, , [lull3} < llull, + [Jullg < max {[Jully, fJull} - (1.2)
Definition 1.1.5 [24] The Musielak-Orlicz sobolev space WYH (Q) defined by
WHH(Q) = {u e L™ (Q) : |[Vu| € L (Q)},

equipped with the norm
[ull1 2, = [Vully, + [lully, -

where ||Vull,, = ||[Vulll; -
By Wy (Q) we denote the completion of C° (Q) in WM and thanks to (1.1) we
have an equivalent norm on W™ (Q) given by

||uH1,H,0 = ||Vu||H 5
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Proposition 1.1.4 [2/] Both space W™ (Q) and W™ (Q) are uniformly convez,
and so, reflexive Banach space.
In addition it is known that the embedding

W' () — L7 (Q), (1.3)
18 compact where r < p*, with p* being the critical exponent to p given by

Np

= 1.4
recall that 1 < p < N. From (1.2) we directly obtain that
min { Jull? ool pe0 f < lully + Nl < masc{lull pe0 . lulfpo} . (15)

for allu €Wy (Q).

Proposition 1.1.5 [21] Let 1 <p < q < N, %qq_l <p, p(x) €L>®(Q), u(x) >0
for a. a. x € Q) be satisfied and let

be the critical exponents to p. Then the following embeddings hold

(i) L™ (Q) —L" () and WY WL (Q) are continuous for all v € [1,p];
(ii) WhH L7 (Q) is continuous for all r € [1,p*];

(iit) W L7 (Q) is compact for all v € [1,p*);

(iv) WEH L7 (9Q) is continuous for all r € [1,p.];

(v) WlH —L"(0Q) is compact for all r € [1, p,)

(vi) LT () — L1 (Q)is continuous;

(vii) L9 (Q) — L™ (Q) is continuous.

Monotone operators

Definition 1.2.1 [9] Let X be real Banach space, and let A : X — X* be an
operator.
(1) A is called monotone if and only if

(Au — Av,u — v) > Ofor all u,v € X.
(17) A is called strictly monotone if and only if

(Au— Av,u —v) > 0 for u,v € X with u # v.
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(1ii) A is called strongly monotone if and only if there is the constant ¢ > 0 such
that
(Au— Av,u—v) > ¢|lu—v|? for all u,v € X.

iv) A is called uniformly monotone if and only i
v) A is called uniforml if and only if
(Au — Av,u —v) > a(||lu—o||) |lu — vl| for all u,v € X.

Where the continuous function « : RY — R* is strictly monotone increasing with
a(0) =0 and a(t) — 400 ast — +o0

Definition 1.2.2 [9] Let X be a real Banach space, and let A : X — X* be an
operator A is called hemicontinuous if for allu,v € X, the mapst — (A (u + tv),v)
18 continuous from R in R.

Definition 1.2.3 [9] Let X be real Banach space, and let A : X — X* be an
operator. A is called coercive if and only if

(Au,v) _

lull—oo |||

Y

|1.3] Pseudomonotone Operators

Definition 1.3.1 [9] The operator A : X — X* is pseudomonotone if and only if
Uy, — U and

lim sup (Au,, u,, — u) <0 implies Au,, = Au and (Au,, u,) — (Au,u) .

n—oo

Lemma 1.3.1 [J] Let A,B : X — X* be operators on the real reflexive Banach
space X. Then the following implications hold

(i) If A is monotone and hemicontinuous, then A is pseudomonotone.

(i1) If A is strongly continuous, then A is pseudomonotone.

(i1i) If A and B are pseudomonotone, A+ B is pseudomonotone.

Theorem 1.3.1 [20] Let X be a real, reflexive Banach space, and let A: X — X*
be a pseudomonotone, bounded, and coercive operator,and b € X*. Then a solution
of the equation Au = b exists.

For the proof of this theorem see [8], it was proved by using the Galerkin
method.it is summarized in the following steps:
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Stepl Solution of Galerkin equations, take a sequence (ej), of linearly inde-
pendent vectors in V', such that setting

Vp := span{ey,...,ea},

yields V = U,V,,. We are looking for a solution u,, € V,,, which is of the form

Up = ZcZ@k,
k=1
and which solves the Galerkin equations
(A(uy) — fyex) =0for ke {1,....,.n}.

Step2 A priori estimates, we show that (u,) is bounded.
Step3 Weak convergence.
We show that there is a subsequenc (u,,) with

Up — U aS M — 00.
Step4 We show that u is a solution of the original equation Au = b, u € X. see [4]

Theorem 1.3.2 [7](Lebesgue’s dominated convergence) Let (f,) be a sequence of
functions in L' (Q) that satisfy

fn () — f a. e, on €, there is a function g € L' () such that for all n,

|fu(x)] < g(x), a. e. on Q.
Then

fe Q) and |f, — fll,1 — 0.

Lemma 1.3.2 [7] (Fatou’s Lemma)
Let (f,,) a sequence of functions in L' (Q) that satisfy, for alln, f, >0,

sup [ f, < oo, for almost all z € Q we set f(z) = liminff, () < +o00. Then
fe L' (Q) and

n—oo

4 F(z)dz < lim inf é £ (2) da.
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1.4| Nemytskij Operator

Definition 1.4.1 [9] (Carathéodory Function) Let Q C RN, N > 1, be a nonempty
measurable set, and let f: QX R™ — R, m > 1, and u : Q@ — R™ The function f is
called a Carathéodory function if the following two conditions are satisfied

(1) x — f(z,s) is measurable in ) for all s € R™.

(ii) s +— f(x,s) is continuous on R™ for a.e.x € Q.

Definition 1.4.2 [ (Nemytskij Operator) Let @ C RN, N > 1, be a nonempty
measurable set, and let f : Q x R™ — R, m > 1, and u : 2 — R™ be a given
function. Then the superposition or Nemytskij operator F' assigns u — f o u; i.
e., F is given by

Fu(x)=(fou)(x)=f(x,u(x)) forxz e Q.

Lemma 1.4.1 [9] Let f : Q x R™ — R, m > 1, be a Carathéodory function that
satisfies a growth condition of the form

|f (z,s)] < k(x —FCZ’SZlq Vs = (81,..-,8m) € R™, a. ex € Q,

for some positive constant ¢ and some k € LY(Q), and 1 < q, p; < oo for all
it =1,.....,m. Then the Nemytskij operator F defined by

Fu(z) = f(x,uy (x), .oyt (),

is continuous and bounded from LF' () x ... x LP™ (Q) into LT (Q2). Here u denotes
the vector function u = (uy, .....uy,). Furthermore,

||Fu||L‘1(Q) (HkHLq(Q +Z||Uz||Lpl<Q)>

Eigenvalue problems

For 1 < p < oo, the p-Laplacian of a function f on an open bounded domain {2 is
defined by

Apf =div (|VfP2V).

Lemma 1.5.1 LetV be a closed subspace of W (Q) and WP () €V € WP (Q).
Then it holds
(i) =A, : V — V *is continuous bounded and has the (S )-property. i e, if every
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sequence {u,}, in 'V such that v, — u and lim sup (—Apu,,u, —u) < 0 has a

n—o0

converngent subsequence {uy, }, such that w,, — u.
(ii) —A, - WP (Q) — W14 (Q) s

a) strictly monotone if 1 < p < 0.

b) strongly monotone if p = 2.

¢) uniformly monotone if 2 < p < 0.

Definition 1.5.1 we say that u EWé’p (Q), u # 0, is an eigenfunction of the oper-
ator —Apu if:

/ \Vul|P > Vu.Vds = )\/ lulP~? u.d, (1.6)
Q Q

for all p € C§° (2). The corresponding real number A is called eigenvalue.
Let A1, defined by

[ IVul’ dx
Mp=  inf & 1.7
b wewbr(@)uzo [ [ul” dz (1.7)
Q
equivalent to
A1 p = inf /|Vu|p dx : /\u|p dr=1,u € Wy (Q),u#0 p, (1.8)
Q Q

A1p 18 the first eigenvalue of p-laplacian operator with homogeneous Dirichlet con-
ditions at the edge.

Some Inequalities

Holder’s Inequality
Let 1 <p,q < o0, %—l—%:l. Ifue (), ve L (), then one has

/ fuv] d < [full ey X 10l e -
Q

Monotonicity Inequality
Let 1 < p < co. Consider the vector-valued function a : RY — R¥ defined by

a(€) = [¢["7*¢ for £ #0, a(0) =0,

If 1 < p < 2, then we have
(@(€) —a(@).(—-¢&)>0foral ¢ eRY, £#¢.

10
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If 2 < p < o0, then a constant ¢ > 0 exists such that

(a(€) —a().(E=&)>cle ¢ forall € € RY.

Young’s Inequality
Let1<p,q<ooandi+%:1then

al? b

ab< —+— (a,b>0).
p q

11
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Existence and uniqueness results for double
phase problems with convection term

2.1 Introduction

In this chapter, we study the existence and uniqueness results for double phase
problems with convection term

{ div (|Vul"? Vu + p (2) |[Vu|* ? Vu) = f (z,u, Vu), in Q 2.1)

u =0 on 0f),

whereas () is a bounded domain of RY with smooth boundary 92, where 1 < p <
g < N, the function p: Q — [0,00) is supposed to be Lipschitz continuous and
f: QxR xRY — R is a Carathéodory function.

2.2| Definition and notations

We give the following two definitions before we give our main result.

Definition 2.2.1 Let X be a reflexive Banach space, X*its dual space and denote
by (.,.) its duality pairing. Let A: X — X*, then
(a) A satisfies (S5)-property if u, — u in X and limsup (Au,, u, —u) < 0 imply

n—oo

Up — u N X;
(b) A is called pseudomonotone operator if u,, — w in X andlimsup (A (u,) , u, — u) <

n—oo

0 imply Au, — Au and (Au,, u,) — (Au, u).
Our existence result is based on the following surjectivity result for pseudomonotone
operators, see, e.g. Carl-Le-Motreanu [9)].

12
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convection term

Definition 2.2.2 We say that u W™ (Q) is a weak solution of problem (1,1) if
it satisfies

/ (|Vu|p_2 Vu+ p () |[Vu|7? Vu) Vds = /f (x,u, Vu) pdz, (2.2)

Q

for all test functions ¢ EW(I)’H (Q). by the embedding (1.3) and the fact that p < q
along with (1.5)we easily see that a weak solution of (2.2) is well-defined.

Let A W5 (Q) =W ™ (Q)* be the operator defined by

(A / ]Vu|p_2 Vu+ p(z) |[Vul|"? Vu) Veds, (2.3)
Q

Where (., .),, is the duality pairing between W™ (Q) and its dual space W' (Q)*.The
properties of the operator A W™ () =W (Q)* are summarized in the following
proposition, see Liu-Dai [18]

Proposition 2.2.1 The operator A defined by (2.3) is bounded, continuous, mono-
tone (hence maximal monotone) and of type (Sy).

Proof.
1) A is bounded. For convenience in writing we set A\, := [jul|, Ag := ||v]|. By
Holder’s inequality and Young’s inequality, we have that

q
u

VuVU Vqu
’< ,\17,\2 d$+f:“ N ,\Qdm
1 1
P q
< (1] dﬁ) (£ ) +(f “é” o) (ragofs]w)”
Vu 1 u
ngf dx+q fu r) | Y- da:+59 e 1fu X— dz,
Vu qu 1 Yv vq
Sq—( N A—ldff>+5<£72 +£l~‘l’—2d%)=
< = —I—

Hence, we have that

1A ()]

x- = sup [{A(u),v)| <2|ully,

loll<1

which implies that A is bounded.

2) A is continuous

Suppose that u; — u in Wy (Q). For all v €W ™ (Q) with ||v]| = 1 by the Holder
inequality,

13



Chapter 2. Existence and uniqueness results for double phase problems with
convection term

(A () = A(w),0)| <[V [ Yy — [Vul”™ Vau
+ || (@) [V [T Vg — [Vl V|| V0]

Since L' (Q) — L (Q)NLL (Q), Vu; — Vuin I (Q)NLL (), and [|[Voll,, Vo],
are uniformly bounded, according to Theorem (Lebesgue’s dominated convergence)

vl

qp

lim [(A(u;) —A(u),v)| <0=A(u;) — A(u).

Uj—s 00 Jj—00

3) A is monotone
Yu,v € Wy (Q)

(Au — Av,u —v) = [(|Vul’ + |Vul?) + p(z) (Vu|! + |[Vo|?)d
Q
— [(|VulP? VuVo + |VoP 2 VoVu)de (*)
0
— [p(x) (|Vu|*? VuVo + |Vo|*? VoVu))dz,
0

by using inequatity of Young we have

p p
/|vu|p2 VuVudz < /|Vu|p1|Vv|dx < / (’V“’ + [Vl )dw,sz _r_
S D p—1
Q Q Q

It follows

/\Vu\p2 Vqudx+/]Vv|p2 VoVudz < /|Vu]pda:+/]Vv\pda:,
Q Q Q Q

/,u (z) (|Vu|"? VuVo + |Vo|" > VoVu))dz < /u (x) |Vu|? dx + /u (z) | Vvl dz,
Q Q 0
by substitution in (x) finds

(Au — Av,u —v) > 0.
4) A verifiy (S, )-propriety, assume that {u,} C X, v, — u and
limsup (A (u,) — A (u) ,u, —u) <0
n—-—+00

]
A special case: A special case of the operator A defined by (2.3) occurs when

1 = 0. This leads to the operator
A, WP (Q) =WeP (Q)* defined by

Ay ()., = [ VuP? VuVpds,
Q

14
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convection term

where (.,.), is the duality pairing between WP (Q) and its dual space WP (Q)*.
This operator is the well-known p-Laplace differential operator.

Another special case happens when ¢ = 1, that is, 4, , :Wé’q(Q) —Wha(Q)"
defined by

(Agp (u), ), , = / \Vul"~? Vu.Vods + / IVu|"? Vu.Vd, (2.4)
Q Q

where (.,.), , stands for the duality pairing between W14 (Q) and its dual space
Wy (Q)", is the so-called (¢, p)-Laplace differential operator.

|2.3| Existence result

We suppose the following hypotheses:
(H) f : @ x R x RY — R is a Carathéodory function such that

(i) There exists o € LaT (©) and ay,as > 0 such that

q1

[ (25,6 Sar € +azls|" " +a(w), (2.4)
for a. a. x € Q, for all s € R and for all ¢ € RV, where 1 < ¢; < p* with the critical
exponent p*given in (1.4).

(ii) There exists w € L' (Q) and b; by > 0 such that
fl@,5,8) s < b [E]" + ba|s” +w (@), (2.5)
for a. a. x € Q, for all s € R and for all £ € RY. Moreover,
b+ by}, < 1, (2.6)

where \; , is the first eigenvalue of the Dirichlet eigenvalue problem for the p -
Laplacien.

Theorem 2.3.1 [20] Let 1 < p < q < N and let hypotheses (1.1) and (H) be
satisfied. Then problem (2.1) admits at least one weak solution u € W(l,’H (Q).

Proof. Let Ny : Wy (Q) C L™ (Q) — L% (2) be the Nemytskij operator associated
to f and let i*: L% (Q) — W5 (Q)* be the adjoint operator of the embedding i
Wy (Q) — L™ (Q). For u € Wy (Q) we define Ny : = i* o N; and set

A(u) = A(u) — Ny (u). (2.7)
From the growth condition on f,see (2.4), we easily that A : W5 (Q) — W5 (Q)" maps

bounded sets into bounded sets. Let us now prove that A is pseudomonotone, see
Definition 2.2.1(b).To this end, let {u,} -, € W' (Q) be a sequence such that

n>1

U, — uin Wy (Q) and limsup (A (u,) , 4, — u),, < 0. (2.8)

n—oo

15



Chapter 2. Existence and uniqueness results for double phase problems with
convection term

From the compact embedding in (1.3)we obtain that
up, — uin L7 (), (2.9)

since ¢; < p*. Using the strong convergence in L” (£2) , see (2.9) , along with Holder’s
inequality and the growth condition on f we obtain

lim [ f(z,un, Vuy,) (4, —u)dx = 0.

n—oo

Q

Therefore, we can pass to the limit in the weak formulation in (2.2) replacing u by
u, and ¢ by u, — u. This gives

limsup (A (un) , 4y, — u)y, = limsup (A (u,) , u, — u),, < 0. (2.10)

n—oo n—oo

From Proposition 2.2.1 we know that A fulfills the (S, )-property and so we con-
clude, in view of (2.8) and (2.10), that u, — u in Wy (). Hence, because of the
continuity of A, we have that A (u,) — A (u) in W3 ()" which proves that A is
pseudomonoton.

Next we show that the operator A is coercive, that is,

Au,
llwlly,3¢,0—00 ”qu.H,O

From the representation of the first eigenvalue of the p-Laplacian, see (1.8) , replacing
r by p, we have the inequality

[ull? < Arp IVullf for all u e WP (). (2.12)
Since Wy (Q) € W,y” (Q) and by applying (2.12), (2.5) and (1.2) we derive

(u),u) = f(|vu|p*2 Vu + p () |Vul'™? Vau) .Vudx—éf (2, u, Vu) udx

ISl Jull, — b [~ byl — ol
(1= by = baA ) Il + el = ol
(1—b1—62 ) (Il + ) = ol

1= by = o) min { [l g, 1l e b = 1]y

(A

>
>
>

Therefore, since 1 < p < ¢ and (2.6), it follows (2.11) and thus, the operator
A: Wy (Q) — W (Q)" is coercive. Hence, the operator A: Wy (Q) — Wy (Q)* is
bounded, pseudomonotone and coercive. Then Theorem 1.3.1 provides u € W(l)’H (Q)
such that A (u) = 0. By the definition of A, see (2.7), the function u turns out to
be a weak solution of problem (2.1) which completes the proof. m
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convection term

Example 2.3.1 The following function satisfies hyootheses (H), where for simpli-
city we drop the x-dependence

f(s,6)=—dy|s|" ?s+dy|E[P" forall s e R and all € € RV,
with 1 < ¢; < p*,d; > 0 and

p

p—l—i—)\Lp

2.4| Uniqueness result

Let us now give sufficient conditions on the perturbation such that problem (1.2)
has a unique weak solution. To this end, we need the following stronger conditions
on the convection term f :Q x R x RY — R.

(Uy) There exists ¢; > 0 such that

(f(x757§>_f(x7t7§>) (S_t) SCl|5_t|27

for a. a. x € Q, for all 5, € R and for all £ € RV,
(Uy) There exists p € L () with 1 < 7/ < p* and ¢, > 0 such that £ — f
(x;8,€) — p(x) is linear for a. a. x € Q, for all s € R and

|f (I,S,g) —p(l‘)| < ¢ |€|’

for a. a. x € Q, for all s € R and for all £ € RY. Moreover,
_1
GAy A <1, (2.13)

where )\ 5 is the first eigenvalue of the Dirichlet eigenvalue problem for the Laplace
differential operator.

Theorem 2.4.1 [20] Let (1.1), (H), (Uy), and (Us) be satisfied and let 2 = p <
q < N. Then, problem (2.1) admits a unique weak solution.

Proof. Let u,v € Wy (Q) be two weak solutions of (2.1). Taking in both weak
formulations the test function ¢ = u — v and subtracting these equations result in

f IV (u—v)]*dz + f,u (\Vu|q_2 Vu — |[Vo|'™? Vo) .V (u—v)dx
—f f(x,u,Vu) — f(mvVu))(u—v)dx—l—g(f(x,v,Vu)—f(a:,v,VU))(u—v)dx,
(2.14)

17
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convection term

sine the second term on the left-hand side of (2.14) is nonnegative, we have the
simple estimate

f|V u—v)? dx—i—f,u (|Vu|q_2 Vu — |[Vo|'™? Vu) .V (u—v)de

>f|V (u—v)|* dz. (2.15)

The right-hand side of (2.14) can be estimated via (U;) , (U,) and Holder’s inequality

(f (z,u, Vu) — f (z,0,Vu)) (u—v)dz+ [ (f (z,0,Vu) = f (z,0,Vv)) (u—v)dx

Q
clHu—UHg—i-é( (a: v, V( (u—v) ))—p(x))dx
¢ ||u—U||§+CQ£|u—U||V(u—v)|dm

N O—

IN

< (cl)\fé + @AE) |V (u— U)||§ )
(2.16)
Combining (2.14), (2.15) and (2.16) gives
;1
IV =0l = [ V=P ds < (@0 +edd) IV@-oli. 210
Then, by (2.13) and (2.17), we get that u =v. ®

Example 2.4.1 The following function satisfies hypotheses (H), (Uy) and (Us),
where for simplicity we drop the s-dependence,

N
= Zﬁzfﬁ—p(x) for a. a. x € Q and for all £ € RY,

with2 =p < q1 < 2%, p€ L*(Q) and

. 1 _
81 <min {1 233 Ava |

where § = (3, 8,,...0y) € RY.
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Chapter

Existence and uniqueness of elliptic systems
with double phase operators and convection
terms

3.1 Introduction

In this chapter, we are concerned with the existence and uniqueness of elliptic sys-
tems with double phase operators and convection term

—div (|Vul[" 7 Vu + py (2) |[Vu|" V) = fi (2,u,v, Vi, Vo) in Q
—div (|Vv|pz—2 Vo + py (2) |[Vo|272 Vo) = fo(z,u,v, Vu, Vo) in Q (3.1)
u=v =0 on 0L,
where 1 < p; < ¢; < N, p; : © — [0,00) are Lipschitz continuous and f; :  x R x
R x RY x RY — R are Carathéodory function.

3.2 Definitions and notations

We give the following definition before we give our main result.

Definition 3.2.1 We say that (u,v) € W5™ (Q) x W52 (Q) is a weak solution of
problem (3.1) if

i (\Vu\pl*2 Vu + py (z) | V"2 Vu) Vedr = [ fi (z,u,v, Vu, Vv) pdo
) Q
[ (IVU]P? 2 Vo + g (2) [V 272 Vo) Vda = [ fo (2,u,v, Vu, Vo) dda,
Q 0

(3.2)
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is satisfied for all test functions (¢,) € Wy (Q) x Wy (Q). Taking the embed-
ding (1.3) into account, along with the growth conditions on fiandfs , we see that
the definition of a weak solution is well defined.

Our existence result is based on the following surjectivity result for pseudomono-
tone operators, see, e.g., Carl-Le-Motreanu[5],or Papageorgiou-Winkert [27].
We consider the space W:= W' (Q) x W™ (Q) endowed with the norm

s )= Nl g, 0+ 101 g0

for every (u,v) € Wy (Q) x Wy (Q).
Then we consider the operator

A WHE(Q) x W (Q) — (W Q)" x (WHT2 ()7,
defined by

(A, 0), (0,000 m0, = S (VU V4 oy (2) [Vl 72 Vu) Vede s
Q@ 3.3

+[ (IVo2 2 Vo + py (2) |Vo|2 72 Vo) .Veda.
v
Where (., .)HleZ is the duality pairing between W5 (Q) x W™ (Q) and its dual

space (WHH(Q))* x (W7 (Q))* Then next result summarizes the properties of
the operator A.

Lemma 3.2.1 Let A : Wy (Q) x W' (Q) — <Wé’H1 (Q))* X <W(1)’H2 (Q))* be
the operator defined by (3.3). Then, A is bounded, continuous, monotone (hence
maximal monotone), and of type (Sy). The proof to the one in Liu-Dai [18]

3.3 Existence result

We assume the following hypotheses on the nonlinearities fi, f.
(H) fi,f2: QxR xR xRY x RY — R are Carthéodory functions such that

(1) There exist a; € LrT (Q) (i = 1,2) such that
[f1 (25,8, Q) < A |s|™ + Az [t +As [ [t + A [§]7+A5 [C]"+A6 [ [ +[on ()],

| fo (2,8, 4,€,C)] < Bi|s|"+Ba |t|+Bs s |t]"+Ba |€]”+Bs |¢|* +Bs |€]" ¢ +]ou (2)],

for a. a. z € Q, for all s,¢t € R and for all £,( € RY, where Aj, B;, j = 1,...6,
are nonnegative constants and with 1 < r; < p!, i = 1,2. Moreover, the exponents
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ag,be, £ =1,...,8, are nonnegative and satisfy the following conditions

r1—1
1) a1 <ry—1, (E2) ax < 11 T2,

a3+a4 < r—1 1 (E4) T']_ lp,

3 7’2—7‘1’

)
)
5) ag < “- p2, (Es) Z—Z-I—ZS "= =t
) b
)

— 1

(Eg) b2 < To — ].
9 b4 < o= L (Ew) bs < T2 1]91;
11) b < i pz; (E12) b7 +5 b8 < 2=l

— o

6

SESNONGRGHG

(
(
(
(
(
(

(43) There exist w € L' () and A,T" > 0 such that
file,s,t,6,Q s+ fa (2,56, 0t <AL+ () + T ([s” + 1) +w (), (3.4)
for a. a. x € Q, for all 5, € R and for all £, ¢ € RY and with

A+ Imax {A], <1, (3.5)

1,p1> lpz

where \; ,, is the first eigenvalue of the p;-Laplacian, see (1.6).
Let us consider, for example, the third term on the right-hand side of the growth
of fi. Applying Holder’s inequality we get

1
s1
Ag/ |u|™ Ju]™ pdx < Ag/ /]u\“m dx /]U]am dz /\90|S3 dx ,
Q o \'o Q

(3.6)
where (u,v) € Wp™ (Q) x W5 (Q), ¢ € W5™ (Q) and
1 1 1
— =+ — =1
S1 So S3
Taking s3 = r; with 1 < r; < pf and using s; < - as well as 59 < leads to

@+%§ﬁ—{

1 T2 1
which is exactly condition (E3). Note that the conditions in (H) (i) are chosen
in order to prove our main results by applying the compact embedding (1.3). Of
course, for the finiteness of the integrals in the weak formulation (3.2), we can also
allow critical growth to have a well defined weak formulation. Now we are ready to
formulate and prove our main result in this section.

Theorem 3.3.1 [26] Let 1 < p; < ¢ < N, i = 1,2, and let hypotheses (1.2) and
(H) be satisfied. Then, there exists a weak solutwn (u v) € Wy (Q) x W™ (Q)
of problem (3.1).
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Proof. Let

A

Nf.l

7

WM () x Wy () € L™ (Q) x L™ (Q) — L' (Q) x L' (),
be the Nemytskij operator associated to f;. Moreover, let
Q) x D5 (@) — (W (@) (W7 (@)
be the adjoint operator for the embedding
i s WA (9) % WE™ () — I (@) x I (©).

We then define

Ny, o= i o Ny - W™ (92) x Wo™ (@) — (W™ ()" (We™ ()",
which is well defined by hypotheses (H) (). We set
A(u,v) := A(u,v) — Ny, (u,v) — Ny, (u,v). (3.7)

Our aim is to apply Theorem 1.3.1, so, we need to show that A is bounded, pseudo-
monotone and coercive.

1) A is bounded

The boundedness of A follows directly from the boundedness of A and the growth
conditions on fjand f, stated in (H) (i).

2) A is pseudomonotone.

To this end, let {(tn,vn)},cn C Wi () x W™ (Q) be a sequence such that

(Un, V) — (u,v) in W™ (Q) x Wy (Q), (3.8)
and
lim sup (A (tn, vn) , (Un = U, Un = U)) 3y, 30, < 0 (3.9)

Taking the compact embedding (1.3) into account yields
U, — uin L (Q) and v, — v in L™ (Q), (3.10)
since r; < pj and ry < p3, respectively. We want to show that
lim [ fi (2, up, Un, Vg, V) (4, — u) de =0,
e

lim [ fo (2, Un, U, Vg, VU,,) (v, — v) dz = 0. (3.11)
’VL—»OOQ

Let us consider the first expression in (3.11). By the growth condition (H) (i) it

follows
ffl (2, Up, Up, Vg, VU,) (u, — u) dx

Q

S T Jual™ + Ao 0al® + Ay un® o + Ay [V (312
)

+As [Vua|™ + Ag |Vun|" [Vua|™ + |ay (2)] |un — u| dz.
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Applying Holder’s inequality, (3.10) and condition (FE;) and (Es), respectively, we
obtain

1
Ay [ [un]™ [t — u] dz < Ay (f || 71 dx> R r——
Q Q
< Cr (14 unll ™) lun = wll,, — 0,

T1

and )
e

Ao [ |0n|™ Jup, — uldx < Ay <fvi2r,1dx) " [t — ull,,
0 0

r
<0 (1 i anuzs) P —

for some C1,C5 > 0. Moreover, Holder’s inequality with exponents x1, 41,2, > 1

such that
1 1 1

ras <711, Yras <T9, =11, —+ —+—=1
1 Y1 A
gives, by hypothesis (E3),

a3ry a4yl T1

Aa [l [0 i = ul o < A a2, Nl =, = .
Q

Next we apply Holder’s inequality with exponents r1, 7] and use (E;) and (Es) to
get

»—?\‘ =

T1

Ay [ |Vug|™ |uy — ulde < Ay (f |V, " dm) l|wn, — ul|
0 0

<y (1 i ||wn||;;) tn — ul,, — 0,

and

|~

T

As [ V0] [t — u| dz < As (f [V 0,| %" da:) [m—
Q Q

RN

p2
<€ (14 1905t ) o = ul, =0
for some C3,Cy > 0. Furthermore, condition (Fg) allows us to apply Holder’s in-

equality with exponents x5, 92, 20 > 1 such that

1 1 1
Toay < pr, Yoag < P2, 20 =11, —+ —+ — =1,
T2 Y2 22

in order to have

arr2 agy2 T1

s [ 1907 (907 (= ) o < A a2, 902, 1 = all,, =0,
Q
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Since both [|Vu,]|
(3.12) we have

and ||Vu,|| are bounded. Finally, for the last term in
a7r agy2

[ 101 @y = w)de < ], o = ul,, =0,
Q

Combining all the calculations above give

lim [ fi (2, upn, Un, Vg, Vo) (U, —u)dx = 0.

n—00
Q

Applying similar arguments proves that

lim [ fo(x,upn, Uy, Vi, Vo) (v, —v)dz = 0.

n—oo

Q

Hence, (3.11) is fulfilled. We now take the weak formulation (3.2), replace u by
Up, U by Uy, @ by u, —u and 1 by v,, — v and use (3.9) as well as (3.11) in order
to have

lim sup (A (tn, vy) , (Up — w, v, — v)>Hle2 = limsup (A (up, vy) , (up — u, v, — U)>H1><H2 <0.

Since A satisfies the (S, )-property, see Lemma 3.2.1, we derive from (3.8) and (3.13)
that
(tn, Vp) — (u,v) in W70 (Q) x W52 (Q).

Since A is continuous we have A (u,, v,) — A (u,v) in (W™ (Q))* x (WyTe (Q))* :
which proves that A is pseudomonotone.

3) A is coercive.

First of all taking into account the representation(1.8) and replacing r by p; and po,
respectively, we have

lullyy < Aip

[Vallpy and Jollf? < App, [VollF: (3.14)

17]72

for all (u,v) € W)™ (Q) x Wy™ (Q). Note that Wy™ (Q) € Wy (Q) and
W™ () € Wo™ ()
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Applying these facts along with (3.14),(3.4) , and (1.4) leads to

(A, 0), (4, 0))g, s, = [ (VU 72 Vu+ py (2) [Vu|"7? Vu) . Vude
—l—f (Vo[ 2 Vo + py (z )£|2V1)\q272 Vv) .Vudz

—ffl x,u,v, Vu, Vo) Ud(['—ffg x,u,v, Vu, Vo) vdx
>nw4-uwmmm+MM|+wvm@u

—A(MVuH FI90l22) =T (i + 12 - il

> (1—A—TAL) kum + ||V ®
+ (1= A =TAL) Vol + || Vol —

(1 — A — I'max {)\1 o1 ML pz}) <H1111 {HU| 11),1711,0 ] 1M1, 0})

+mmﬂwuwowm“ﬁJ—wwﬂ®

q1,4
o]l

Since 1 < p; < ¢; and condition (3.5) holds, it follows that A is coercive.

From the Claims 1-3 we see that A is bounded, pseudomonotone and coercive.
Therefore, by Theorem 1.3.1, there exists (u,v) EWl Q) x W™ (Q) such that
A (u,v) = 0. Taking into account the definition of A, see equation (3.7), it follows
that (u,v) is a weak solution of problem (3.1). That finishes the proof. m

3.4| Uniqueness result

Now we consider the uniqueness of solutions of (3.1). To this end, let f : Q x R? x
(RY )2 — R? be the vector field defined by:

f(x737£) = (fl ($>37€>7f2 (33',8,5)),

for a.a. x € Q, for all s € R? and for all £ € (]RN )2. We suppose the following
conditions on f :
(Uy) There exists ¢; > 0 such that

(f(x,s,f)—f(x,t,ﬁ)).(s—t) S61|S—t|27

for a.a. € €, for all 5,t € R? and for all £ € (RN)z.
(Uz) There exist p = (py,p,) with p; € L (), 1 < s; < p} and ¢ > 0 such that

f(z,s,.) — p(x) is linear on (]RN)2 for a.a. z € Q, and for all s € R? and

| (z,5,8) = p ()] < ealé],

for a.a. x € €, for all s € R? and for all £ € (RN)Q.
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Theorem 3.4.1 [26]Let (1.2), (H), (Uy), and (Us) be satisfied. If2 =p; < ¢ < N
fori=1,2 and
cidiy + o2 (2M1,)% < 1, (3.15)

then there exists a unique weak solution of problem (3.1).

Proof. Let u = (uy, u) , v = (v1,v2) € Wy'™ (Q)x Wy (Q) be two weak solutions
of (3.1). Considering the weak formulation for u and v, choosing ¢ = u; — vy as
well as 1) = us — vo and subtracting the related equations gives

[V (uy —vy)Pde+ [ |V (ug —v1) ] do

?f—ful () (|Vuy |2 Vﬂul — V|2 Voy) .V (ug — v1) do

—1—?#2 () (|Vua| ™2 Vg — [Vua| 272 Vuy) .V (ug — vg) da (3.16)
—f f(z,u,Vu) — f (z,0,Vv)). (u—v)dz

+f (z,v,Vu) — p(x) — f (2,0, Vv) +p (). (u—v)dz.

%72 ¢ we see that the third and the fourth integral
on the left hand side of (3.16) are nonnegative, that is,

[V (uy —v)) [P dx + [ |V (ug — vq)[* dze
0 0

+ [ 1y () (|Vu1|qr2 Vuy — [V |97 Vi) .V (ug — vy) dz
—i—f,u2 x) (|VUQ|q2_2 Vuy — |VU2|QQ_2 va) V (ug — v9) dx (3.17)

f\V Ul—U1| dx—l—f]V UQ_U2>‘ dz

= IV (us —v1) |5 + HV (us — v2) |

On the other side, by applying (U;) to the first integral on the right hand side of
(3.16) and (Us) to the second we obtain along with Holder’s inequality

f(f(x u, Vu) — f (z,v,Vu)) . (u—v)dx
+f f(z,v,Vu) —p(z) — f(z,v,Vv)+p(z)). (u—v)dz

1 (flur = U1||z + [lug — U2||§)
(fi(z, 01,02, (U1 —v1)V (U1 —v1), (w1 — 1) V (ug — v2)) — py (7))dx
+J (f2

(x,v1,v2, (Uug — V) V (u1 — v1), (ug — v2) V (ug — v3)) — py (z)) dx
< e (IV (=01l + IV (w2 = v2)]5)
+62f |U1 — v1] + Juz — v2]) (|V (ur — v2) [P + |V (uz — v2)[?)

< (e + e DY) (19 s = o)+ 1V (= e)l).

+ IA

{O%D% o {O

[NIE

dx

(3.18)
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Combining (3.16),(3.17) and (3.18) gives

IV (uy — v1)|5 + |V (uz — va) |13

_ N 3.19
< (enh 4o (A2 (IV (0 o) B4 1V (i~ i) 19

Taking (3.15) into account, we see from (3.19)that u; = v; and us = v and so the
solution of (3.1) is unique m
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Conclusion

In this memoir, we studied the existence and uniqueness of quasilinear elliptic equa-
tion and system with double phase operator, using theory of pseudomonotone oper-
ator.
These result can be generalized to more problems with different boundary condi-
tions, it can be treated in other ways, by using fixed point theory or by minimization
of energy functional.

studies in this area provide valuable results that will contribute to exploring new
horizons for research in this emerging topic, so we looking forward to study the
multiplicity of solution of this kind of problems in Nehari Manifold, and extending
the study to the double phase problems with variable exponents.
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