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Abstract 

    The objective of this thesis is to introduce the field of epidemiology and its relationship with 

mathematics, as well as how it is modeled using partial differential equations. We specifically 

focus on the epidemic reaction-diffusion model for the spread of HIV, with the aim of studying 

the long-term stability of its solutions. We demonstrate that the model contains two types of 

equilibrium points for solving the proposed system, which describes the transmission of the 

infectious disease among individuals. The epidemic model is analyzed using the reproductive 

number, R0. We study both local and global stability using the Jacobian matrix and the 

appropriate Lyapunov function. Finally, we present numerical examples of simulation 

processes that illustrate the findings discussed throughout the thesis. 

Keywords: epidemiological, equilibrium points, reaction-diffusion, reproductive number R0, 

local stability, global stability.  

 الملخص

التفاضلية  وعلاقته بالرياضيات، بالإضافة إلى كيفية نمذجته باستخدام المعادلات وبئةتقديم مجال علم الال ةمذكرهذه ال هدفت

استقرار الحلول على المدى بهدف دراسة و .نركز بشكل خاص على نموذج التفاعل والانتشار لانتشار فيروس الإيدزو. الجزئية

بين العدوى بانتقال المرض  بدوره قترح، الذي يصفالنموذج يحتوي على نقطتي توازن لحل النظام المتم التوصل الى ان  الطويل،

 حيث درسنا كل من الاستقرار المحلي والاستقرار الكلي ،وتم تحليل النموذج الوبائي باستخدام معدل الانتاج الانجابي ،الافراد

النتائج المناقشة في جميع انحاء  تم تقديم امثلة عددية لعمليات المحاكاة توضح ،باستخدام مصفوفة مناسبة ودالة ليابونوف. في النهاية

                                                                                                                                          المذكرة.

الاستقرار الكلي. ، الاستقرار المحلي ،التكاثر نسبة، انتشار-معادلات تفاعل، نقاط التوازن ،علم الأوبئة :الكلمات الرئيسية  

Résumé 

    L'objectif de ce mémoire est de présenter le domaine de l'épidémiologie et sa relation avec les 

mathématiques, ainsi que la manière dont il est modélisé à travers des équations EDO, EDP. 

Nous abordons le modèle de diffusion de la réaction épidémique du VIH dans le but d'étudier la 

stabilité à long terme de ses solutions. Nous montrons que le modèle comporte deux types de 

points d'équilibre pour résoudre le système proposé, qui décrit la transmission de la maladie 

infectieuse entre les individus. Nous analysons le modèle épidémique en utilisant le nombre de 

reproduction de base R0. Nous étudions la stabilité locale et globale en utilisant la matrice 

jacobienne et la fonction appropriée de Lyapunov. Enfin, nous présentons des exemples 

numériques de simulations qui clarifient et confirment les résultats de l'étude tout au long de ce 

mémoire. 

Mots-clés: épidémiologique, points d'équilibre, réaction-diffusion, nombre de reproduction R0, 

stabilité locale, stabilité globale. 
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Introduction

Mathematics has been utilized for 350 years in the study and combat of infectious diseases, with

recent decades seeing significant advances in the field of mathematical epidemiology. These ill-

nesses now pose fresh difficulties that need for mathematical modeling that combines medical

and mathematical viewpoints. Epidemiology, medicine, biology, and mathematics all cross in the

field of mathematical modeling, which uses equations to show a condensed version of reality. Pan-

demics and epidemics have caused tremendous harm to humanity throughout history, frequently

leading to profound changes and the probable collapse of civilizations. [3], [13].

In recent years, scientists have worked to create mathematical models that are more and more

realistic and answer ever-more-complex issues. The nature of the problems under investigation

and the accessibility of more detailed and accurate data are the causes of this complexity. In

general, mathematical models provide a condensed understanding of reality by formalizing com-

plicated occurrences and making it easier to examine numerous factors and their relationships.

These models contribute to a preliminary understanding of the systems under investigation by

producing and testing hypotheses.

Furthermore, mathematical models [12] serve the primary purpose of predicting events across di-

verse situations, finding particular use in the field of communicable disease epidemiology through

various models based on differential equations or probabilistic approaches. Epidemiological mod-

els play a vital role in comprehending the spread of infectious diseases and predicting future out-

comes. Analytical studies of epidemiological models, involving the analysis of disease transmis-

sion dynamics and considering factors such as population size and disease criteria, examine the

mathematical behavior and characteristics of epidemics. Non-linear equations, such as reaction-

diffusion models, describe the interaction between epidemiological variables like the number of

infected, susceptible, exposed, and recovered individuals. Analyzing such systems involves in-

vestigating equilibrium points and determining their stability, there by enabling the inference of

long-term epidemic behavior. These studies primarily focus on disease control and prevention.

The SIS epidemiology model model has captured the interest of many researchers[2],[4], so in

this research, I conducted an analytical study of an SIS epidemiological model specifically tar-

geted at HIV. The study involved a comprehensive analysis of the disease’s dynamics within a

population, wherein the SIS model represents individuals as susceptible to HIV infection or in-

fected and capable of transmitting the virus. By mathematically analyzing the model’s solutions,

stability, and other characteristics, the objective was to understand the behavior of HIV epidemics

and identify effective disease control strategies. This analytical approach allowed for the explo-

ration of equilibrium points, determination of their stability, and prediction of long-term trends
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in HIV transmission. The insights gained from such studies are valuable in designing interven-

tions, prevention programs, and public health policies aimed at mitigating the spread of HIV and

reducing its impact on affected communities.

My thesis consists of three chapters:

• The first chapter provides an overview of epidemiology as a field and some of its mathemat-

ical models, and the factors R0 which help to determine whether a disease will spread or

disappear.

• The second chapter presents some definitions and concepts that we will used later.

• In the last chapter, firstly, we begin by formulating the model proposed in this study based

on the proposed assumptions. Subsequently, we mathematically analyze the model, partic-

ularly (focusing on the equilibrium points without disease and the endemic point), then we

prove the stability of the system model, then we presents a numerique simulation.
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List of Abbreviation and Symbols

• The set of the real numbers, is denoted by R.

• The set of the positive real numbers, is denoted by R+.

• The set of the real numbers of the n-elements Rn.

• The basic reproductive number, is denoted by R0.

• The determinant of real and complex matrices, is denoted by det (A).

• The trace of real and complex matrices, is denoted by tr (A).

• The inverse of real and complex matrices is denoted by A−1.

• The spectral radius of matrix A is denoted by ρ(A).

• Identify matrix denoted by I.

• ||.|| a norm ecludien.

• The Laplacian operator A, is denoted by ∆A.

∆A =

n∑
i=1

∂2A

∂A2i
.

• Omega an open domain in Rn where n > 1, denoted by Ω.

• The gradient A is denoted by ∇A.

∇A =

(
∂A

∂x1
,
∂A

∂x2
, ...,

∂A

∂xn

)
.

• (PDE) The partial differential equations.

• (ODE) The ordinary differential equations.

• (DFE) Free-disease equilibrium.

• (EE) Endemic equilibrium.
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Chapter 1

An Introduction to Epidemiology

In this chapter we introduce the epidemiology which is a study of how diseases spread and affect

populations, aiming to understand patterns, risk factors, and control measures. In mathematics,

epidemiology uses models to quantify disease transmission dynamics, analyzing variables such as

the reproductive number R0 which represents the average number of new infections caused by

each infected individual. The reproductive number helps predict the potential for outbreaks and

guide public health interventions.

1.1 Description of the epidemiology

1.1.1 Epidemic definition

"Epidemic" [6] is a word composed of two Greek words "epi" which means "on" or "among" and

"demos" which means "people" or "population", its first use in English was in the late 16th centuary,

exactly in 1580, according to the Oxford English Dictionary.

Epidemiology is study of epidemics, this word was uused in 1830 for the first time by the french

physician Louis-René Villermé, but it was populazed by another one, named Dr. Pierre Charles

Alexandre Louis who use this term at the Parisian School of medcin and it was gradually adopted

into English language, when we talk about epidemiology, you think that it is only about medcin,

but it is bigger than that.

1.1.2 Epidemiology

is field of study that deals with the determinants occurrence and distribution of deisease in a

population. This study aims to understand, control and pevent the spread of diseases and to

5



Chapter 1. An Introduction to Epidemiology

adress complex health problems.

There are three main techniques in epidemiology [11] :

Descriptive Epidemiology

It describes the distribution of diseases among individuals and the health phenomenon by time,

place and characteristics of the population. It helps to make hypotheses about disease risk factors.

Analytic Epidemiology

It is the second method, it works for analyzes disease determinants. And it contain two methods:

The case-control and the cohort one.

Experimental Epidemiology

In which the hypothesis is developed and the factors are addressed in a experimental model to

confirm or refute the hypotheses.

1.2 Mathematical Epidemiology

Mathematical epidemiology is a research field and it is considered a powerful tool for managing

infectious disease in the population through mathematical modeling and statistical analysis.

1.2.1 Mathematical modeling

Mathematical modeling is process of creating mathematical representation of a matter or system

in the real world with the use of mathematical equations to describe the behaviour and relation-

ships of the variables involved in the system.

It can be used in making predictions, testing hypotheses- and it can be applied to a wide range of

fields such as Physics, Engeneering, Economics, Biology and Social sciences. It helps researchers

understand complex systems, design optimal solutions.

There are serval steps to obtaining mathematical modeling: identifying the problem, collecting

data, formulating hypotheses, selecting appropiate mathematical instruments, testing and im-

proving the model, as well as using the model to draw conclusions or make predictions. It is a

process of collaboration between mathematicians, scientists and field experts.

1.2. Mathematical Epidemiology 6



Chapter 1. An Introduction to Epidemiology

1.2.2 Epidemiological model

It is one of the mathematical models used to study the spread of infectious diseases and manage

them in the population. It uses mathematical and statistical techniques to learn how infectious

diseas is transmitted and developed within a particular population.

These models can be used to predict the future course of the outbreak and identify the main

factors affecting the spread of the disease.

Epidemiological models in mathematics typically include diffeeremtial equations and probability

theory, and statisistical methods. these are just a few examples of many types of epidemiological

models that use mathematical methods to understand and control infectious disease outbreaks.

There many types including compartmental models, stochastic models, spatial models .... and

network models.

1.2.3 Compartmental models

Compartmental models are the most commonly used type of epidemiological model, they devide

the population into different compartments based on their disease status, such as susceptible,

exposed, infected and recovred individuals.[17]

SI, SIS models:

SI model: The SI model is one of the classical models that was created by W. Hamar and devel-

oped in 1906. It is a simple one. It devides individuals into two compartments:

-The compartment of susceptible individuals (healthy) who are receptive to the infectious agent

but are not contaminated and can catch the disease and become contagious, they become infec-

tious when dealing with ann infectious individual, noted as (S).

-The compartment of infected individuals noted as (I), who are affected and therefore infectious.

Infection spreads through direct contact between susceptibles and infected individuals. In this

model, there are no recoveries and is only relevant in incurable diseases or if the phenomenon

of acquired immunity can be neglected. An individual changes state that is mean when they

infected, they remain infectious for the duration of the disease and do not recover. However, as

the number of infected individuals changes over time.

We assume that the population is constant and we model it as follows:

1.2. Mathematical Epidemiology 7



Chapter 1. An Introduction to Epidemiology

Figure 1: SI Model

we represent the SI model by system of differential equations:{
dS
dt

= −βSI,
dI
dt

= βSI.

with β is the transmission rate of the disease.

SIS model: The acronym SIS stands for "Susceptible-Infectious-Susceptible", the SIS model is

similar to the SI one, the difference is that in SIS model there are cases where a susceptible

individual becomes infected and the infected ones recover at a certain rate but do not develop

immunity and become susceptible again, thus there is no immunity conferred by previous infec-

tion, s in the case of tuberculosis.

The scheme of the SIS model:

Figure 2: SIS Model

The basic SIS model can be expressed mathemtically as follows:{
dS
dt

= −βSI + γI,
dI
dt

= βSI − γI.

γ is the rate at which infected individuals return to the susceptible state due to loss of immunity

(The rate at which each infected person recovers).

SIR, SIRS models:

SIR model: The SIR is a model of disease dynamics was proposed in 1927 by Kermack and

McKendrick; consisting of three categories of population:

1.2. Mathematical Epidemiology 8
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-The healthy people S.

-The infected people I.

-The recovered or cured people R, who have acquired immunity against reinfection or death.

The SIR model can be used to make predictions about the spread of infectious diseases and

to evaluate the effectiveness of different intervention strategies, such as vaccination or social

distancing measures.

We can model it as follows:

Figure 3: SIR Model

The SIR model consists of three differential equations that describe the changes in the number of

individuals in each category over time. The equations are:
dS
dt

= −βSI,
dI
dt

= βSI − γI,
dR
dt

= γI.

β is the transmission rate of the disease, which represents the probability that an infected indi-

vidual will transmit the disease to a susceptible individual.

γ is the recovery rate of the disease, which represents the rate at which infected individuals

recover and become immune to the disease.

SIRS model The SIRS model differs from SIR model with a litle thing. The difference is that

the SIR assumes that individuals who recover from an infectious disease become immune for life,

hile the SIRS model assumes that immunity wanes over time, and the individual does not acquire

permanent immunity and lose it and that recovered individuals become susceptible to the disease

again and returns to the S compartment at a rate of η , it is often used to study diseases such as

measles.

it is represented by the SIRS model as follows:

1.2. Mathematical Epidemiology 9
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Figure 4: SIRS Model

It can written by: 
dS
dt

= −βSI + ηR,
dI
dt

= βSI − γI,
dR
dt

= γI − ηR.

η The rate of loss of immunity (probability of a recovered individual becoming susceptible again

per unit time).

SEI, SEIR models:

SEI model: The SEI epidemic model is a compartmental model used to understand the spread

of infectious diseases in a population. It divides the population into three compartments:

- S includes individuals who are at risk of contracting the disease.

- E (exposed) icludes individuals that are already infected but not yet contagious (non-infectious),

meaning that the susceptible populations move to class I after a period of latency, during which

they become infectious. This latency period is called the incubation period.

- I includes individuals who are currently infected and can spread the disease to others.

It can modeled as follows:

Figure 5: SEI Model

The equation is: 
dS
dt

= −βSI,
dE
dt

= βSI − αE,
dI
dt

= αE.

1.2. Mathematical Epidemiology 10



Chapter 1. An Introduction to Epidemiology

β The transmission rate, which determines the rate at which susceptible individuals become ex-

posed.

α The incubation rate, which determines the rate at which exposed individuals become infectious.

SEIR model: The SEIR model is more comprehensive than the SEI model because it considers

the possibility of recovered individuals becoming susceptible again in the future, and it can be

used to study the long-term dynamics of infectious diseases.

It represented by:

Figure 6: SEIR Model

and by: 
dS
dt

= −βSI,
dE
dt

= βSI − αE,
dI
dt

= αE − γI,
dR
dt

= γI.

γ is the time between becoming infectious and recovering.

1.3 Basic reproductive number

R0 is a very important parameter in mathematical epidemiology because it can help predict how

quickly a disease will spread and how effective control measures will be in slowing or stopping its

spread.. It represents the average number of people who will contract a disease from one infected

person in a population where everyone is susceptible to the disease [19].

The value of R0 assumes NO pre-existing immunity (everyone is susceptible) meaning, no indi-

viduals are immunized (naturally or through vaccination) i.e No one has been exposed to the

disease before and no one has been vaccinated against the disease.

The value of R0 indicates whether a disease tends to disappear or persist, depending on its value.

The Values of R0 are depends on 3 Factors:

1. Infection Period.

1.3. Basic reproductive number 11
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2. Contact rate.

3. Mode of transmission.

We don’t actually know the true value of R0 until the outbreak is over.

Values of R0 :

It has 3 options:

When the R0 is less than 1, the number of new cases will decline over time, eventually leading to

the end of the outbreak without the need for intervention. (One person transmits the infection to

less than one person).

Example 1.1 we put R0 = 0.25 ( this model is for illustration only). The number of cases decreases

over time.

Figure 7: R0 = 0.25

When the R0 is equal to 1, the number of cases will remain stable, neither increasing nor decreas-

ing. (One person transmits the infection to one person).

Example 1.2 R0 = 1. The number of cases remains stable over time.

1.3. Basic reproductive number 12
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Figure 8: R0 = 1

However, when the R0 is greater than 1, the outbreak is self-sustaining, meaning that the number

of cases will continue to increase unless effective control measures are implemented to reduce

transmission. (One person transmits the infection to more than one person).

Example 1.3 R0 = 2. The number of cases increases over time.

Figure 9: R0 = 2.

We don’t actually know the true value of R0 until the outbreak is over.
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1.3.1 Calcul methods

The reproductive number, or R0, can be calculated using mathematical models that take into

account different factors:

The Anderson and May method:

It was developed by R. M. Anderson and R. M. May in the 1980s and is widely used in the field

of infectious disease epidemiology.

R0 = β × C ×D,

with

β: The probability of disease transmission.

D: The number of contacts.

C: The average duration of the infectious period.

The Van den Driessche and Watmough method:[5]

Either F, V two matrices

F =

(
f1(S, U1, U2)

f2(S, U1, U2)

)
,

V =

(
υ1(U1, U2)

υ2(U1, U2)

)
.

Derivatives of f1, f2 with respect to U1 and U2 respectively:

F =

(
∂f1(S,U1,U2)

∂U1

∂f1(S,U1,U2)
∂U2

∂f2(S,U1,U2)
∂U1

∂f2(S,U1,U2)
∂U2

)
.

Derivatives of υ1, υ2 with respect to U1 and U2 respectively:

V =

(
∂υ1(U1,U2)

∂U1

∂υ1(U1,U2)
∂U2

∂υ2(U1,U2)
∂U1

∂υ2(U1,U2)
∂U2

)
.

Then, we calculate the inverse matrix of V , we get

V −1 =
1

∂υ1(U1,U2)
∂U1

∂υ2(U1,U2)
∂U2

− ∂υ1(U1,U2)
∂U2

∂υ2(U1,U2)
∂U1

(
∂υ2(U1,U2)

∂U2
−∂υ1(U1,U2)

∂U2

−∂υ2(U1,U2)
∂U1

∂υ1(U1,U2)
∂U1

)
.

1.3. Basic reproductive number 14
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Then we calculate the matrix (FV −1) .The basic reproductive number R0 is then defined as the

spectral radius of the Jacobian matrix. The spectral radius refers to the maximum absolute value

of the eigenvalues of the matrix.

ρ
(
FV −1

)
= max

{∣∣λ, λ ∈ σ (FV −1
)∣∣} ,

ρ
(
FV −1

)
= R0.

In the context of epidemiology, the eigenvalues represent the growth rates of different infection

states.

1.3. Basic reproductive number 15



Chapter 2

Reaction-diffusion system and stability in

epidemiology

This chapter focus in concepts that we need in later chapter. It gives the meaning of reaction-

diffusion models which are used in epidemiology to describe the spread of infectious diseases.

They incorporate the interplay between local interactions (reactions) and spatial movement (dif-

fusion) of individuals, then the equilibrium points and for what we use them, and the meaning

of stability analysis which helps determine the conditions under which disease-free or endemic

equilibria emerge, aiding in understanding disease dynamics and control strategies.

2.1 Reaction-diffusion

Reaction diffusion systems [16] of partial differential equations are highly significant in modeling

various real-life applications and have been extensively studied by scientists and academics for

decades, particularly in the last twenty years. These mathematical models are used to represent

physical phenomena such as changes in the concentration of chemical substances over time and

space, the spread of infections among populations and the diffusion of substances across surfaces.

These equations arise as models for the densities of substances or organisms that disperse through

space by various mechanisms and react to each other and their surroundings. Reaction diffusion

models are deterministic, but can be derived from stochastic processes, and are analyzed using

methods from the theory of partial differential equations and dynamical systems. These models

allow us to translate assumptions about stochastic local movement into deterministic descriptions

of global densities.

In ecology, reaction diffusion models are used to study population dynamics and can describe the

existence of a minimal patch size needed to sustain a population, the propagation of wave fronts
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corresponding to biological invasions, and the formation of spatial patterns in the distributions of

populations. These models treat space and time as continuous and are spatially explicit.

Reaction-diffusion models are spatially explicit, describe population densities and treat space and

time as continuous. They describe how the concentration of two or more chemical species changes

over time and space due to their reactions and diffusion and are used to study pattern formation

and morphogenesis in nature, such as the formation of spots and stripes on animal coats or the

branching patterns of blood vessels.

In the context of epidemics, reaction-diffusion systems have been widely used to model the spread

of epidemics, which involves the diffusion of infectious agents, such as viruses or bacteria, and the

interactions between infected and susceptible individuals. In these models, the chemical species

represent the infected and susceptible individuals and the diffusion term represents the movement

of individuals between neighboring regions. The reaction term describes the transmission of the

disease from infected to susceptible individuals and the recovery or death of infected individuals.

One of the most widely used reaction-diffusion models for studying epidemics is the Kermack-

McKendrick model, which assumes that the population is divided into three compartments: sus-

ceptible individuals, infected individuals and recovered individuals. This model incorporates the

effects of the infection rate, the recovery rate and the diffusion of the disease among different

regions.

Reaction-diffusion models can be used to explore the effects of various control strategies on the

spread of epidemics, such as vaccination, quarantine and social distancing. They can also be used

to investigate the impact of environmental factors, such as temperature and humidity, on the

transmission of infectious agents.

Overall, reaction-diffusion models provide a valuable tool for understanding the complex dy-

namics of epidemics and for informing public health policies and strategies for controlling their

spread.

The concept of diffusion is rooted in the physical sciences, and is defined as the phenomenon

where a group of particles spreads according to the erratic motion of each individual particle.

This results in a spread that is always directed from regions of higher concentration to regions

of lower concentration. The time dependence of the distribution of the particles in space can

be mathematically described by the diffusion equation, which is the formulation of the spread

dynamics. The diffusion theory aims to explain the spread behavior of a group of particles,

rather than just a single particle. This theory can be applied to various fields, such as physics,

biology, social sciences, etc. In biology, diffusion is used to describe processes of biodiffusion and

population dynamics, as well as the spread of infectious diseases among populations. Similarly,

in social sciences, diffusion can be used to describe the spread of ideas, innovations, or lexical
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terms. A reaction refers to a process that involves a change in the state or configuration of a

system. This change can be in the form of a chemical reaction, a nuclear reaction, or a physical

reaction. In general, a reaction involves the conversion of one set of substances or particles into

another set, which may involve the release or absorption of energy. Examples of reactions in

physics include combustion reactions, radioactive decay, and phase transitions.

2.1.1 Reaction diffusion model

Once we have explored various methods for modeling reproduction and dispersion, either for in-

fection, prey, or population in isolation, we then investigate the population dynamic by combining

both mechanisms. Our aim is to observe the temporal and spatial behavior of the population size

while considering different growth models such as exponential and logistic growth. We focus

on diffusion-reaction systems, where the population can grow and disperse simultaneously. We

assume Neumann boundary conditions in the [16] form of:
∂U(x,t)
∂t

= D∆U(x, t) + F (U(x, t)) for all x ∈ Ω, t > 0,
∂U(x,t)
∂η

= 0, on R+ × ∂Ω,

U(x, 0) = U0(x), x ∈ Ω.

In this context, we have a function U(x, t) which represents the population size at any point

x and time t, where x is a spatial variable and t is a temporal variable. The operator ∆ is

the Laplacian operator, which represents the movement of the population from regions of high

density to regions of low density. The matrix D is a diagonal matrix of coefficients (d1, d2, ..., dm),

and the change in the population size over time at a given location x is described by the diffusion

componentD∆U(x, t), whereD is the diffusion coefficient. The growth component is represented

by the function F = (f0, f1, ..., fm), which determines the rate of population growth at each

location.

One example of a reaction-diffusion system for modeling epidemics is the Kermack-McKendrick

model, which assumes that the population is divided into three compartments: susceptible indi-

viduals (S), infected individuals (I), and recovered individuals (R). The model’s equations are

given by: 
∂S
∂t

= d1∆S − βSI,
∂I
∂t

= d2∆I + βSI − γI,
∂R
∂t

= d3∆R + γI,
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where β is the infection rate, γ is the recovery rate, and d1, d2, and d3 are the diffusion coefficients

of the three compartments. The first equation describes the movement of susceptible individuals,

the second describes the movement of infected individuals, and the third describes the movement

of recovered individuals.

The Kermack-McKendrick model exhibits a spatial spread of the epidemic, where the disease

spreads from infected regions to susceptible regions through the diffusion term. The model can

also incorporate other factors such as vaccination, quarantine, and social distancing to study the

effectiveness of different control strategies.

2.2 Equilibrium points

An equilibrium point, or a steady state, is a point in a system where the system remains unchanged

at the equilibrium point. In other words, the net change in the system’s state variables is zero,

many stability problems are naturally formulated with respect to equilibrium points [14].

Definition 2.1 A state x∗ is an equilibrium state (or equilibrium point) of the system if once x(t) is

equal to x∗ , it remains equal to x∗ for all future time. This means

f(x∗) = 0,

after we solve this nonlinear algebraic equations we can found the equilibrium points. A linear

time-invariant system

ẋ = Ax.

If A is nonsingular that is mean the system has a single equilibrium point. If A is singular, it has

an infinity of equilibrium point. A nonlinear system can have several (or infinitely many) isolated

equilibrium points.

2.2.1 Disease-free equilibria

It is a special state in which the entire population is free from the infectious disease under con-

sideration, meaning that it refers to a state in which the disease is completely eradicated from the

population, and there are no infected individuals present. It represents a stable equilibrium point

at which the number of infected individuals is zero (I = 0).

2.2.2 Endemic equilibria

The term refers to a stable and persistent state of disease prevalence in a population. It represents

the long-term equilibrium point at which the number of infected individuals remains constant
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over time, the number of infected individuals is grater than zero (I > 0)[15].

2.3 Stability in epidemiology

It indicates the long-term behaviours and equilibrium states of infectious diseases within the

population. So to understand if the spread of the disease will continue at a constant level, increase

to epidemic proportions, or die out completely.

it is commonly employed in epidemiological models, like compartmental models (SI, SIS, SEI,

SIR, SEIR) to study thr equilibrium points in which they represent steady states where the disease

prevalence remains constant over time.

The stability properties can be categorized as follows:

Stable: the disease prevalence will remain constant over time. Small perturbations or introduc-

tions of infections from outside the system will dampen out, and the system will return to the

equilibrium state.

Unstable: Small perturbations in the disease prevalence can have a profound impact over time,

leading to significant deviations from the equilibrium. These deviations can manifest as either a

rapid escalation in disease transmission, causing an epidemic, or a complete elimination of the

disease.

Asymptotic stability: The asymptotic stability of an equilibrium point in epidemiology refers to

a state where the system not only returns to the equilibrium state but also approaches it with

either an exponential or logarithmic rate. This characteristic implies that the disease prevalence

will remain constant and gradually converge towards a specific level over time.

The stability can be local or global, [15] local stability focuses on the behavior of the system

in the immediate vicinity of an equilibrium point, while global stability considers the behavior

of the system across its entire state space. Local stability analysis relies on linearization and

eigenvalue analysis, while global stability analysis often involves more sophisticated techniques

like Lyapunov functions. Determining global stability provides stronger guarantees about the

long-term behavior of the system under all possible conditions, but it can be more challenging to

establish than local stability.

2.3.1 Local stabillity

Jaccobian matrix which is a matrix of first-order partial derivatives. In the realm of differential

equations and dynamical systems, the Jacobian matrix assumes a vital role in approximating

nonlinear systems around equilibrium points. When dealing with a system of equations that
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encompasses multiple variables, the Jacobian matrix characterizes the localized behavior of the

system near an equilibrium.

If we have this system of equations:
f1(x1, x2, ..., xn) = 0,

f2(x1, x2, ..., xn) = 0,

...

fn(x1, x2, ..., xn) = 0.

Its Jacobian Matrix denoted by J is given by:

J =


∂f1

∂x1

∂f1

∂x2
... ∂f1

∂xn
∂f2

∂x1

∂f2

∂x2
... ∂f2

∂xn

... ... ... ...
∂fn
∂x1

∂fn
∂x2

... ∂fn
∂xn

 .

By evaluating the Jacobian matrix at an equilibrium point, you can obtain valuable information

about the stability properties of the system by examining the eigenvalues of the matrix. The

system is asymptotic stable if all the real part for all eigenvalues is negative (we use it more

detailled in the next chapter).

2.3.2 Global stability

Proving global stability [14] in epidemiology is often more challenging than demonstrating local

stability. global stability refers to demonstrating that an equilibrium point in an epidemiological

model is not only locally stable but also stable for all possible initial conditions and perturbations.

It ensures that the disease prevalence will converge to the equilibrium state from any starting

point in the system’s state space. It usually involves the use of Lyapunov functions, which are

scalar functions that measure the energy or "distance" of the system from the equilibrium. A Lya-

punov function is defined such that it decreases over time, reaching a minimum at the equilibrium

point.

So to establish global stability, the Lyapunov function must be definite positive (it is positive for

all points in the state space except at the equilibrium point where it is zero), and its derivate with

respect to time must be negative or zero.

We define this function as follow:

Theorem 2.1 (Lyapunov Function). [18] Let x∗ be an equilibrium solution of the equation:

x′ = f(x(t)).
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Let Ω be a neighborhood of x∗ contained in U , and let V : Ω→ R be a C1 class function such that:

• V (x∗) = 0,

• ∀ x ∈ Ω\{x∗}, V (x) > 0,

• ∀ x ∈ Ω, V ′(x) ≤ 0.

Then, x∗ is stable.

V named Lyapunov function.

Theorem 2.2 (Strict Lyapunov Function). Let x∗ be an equilibrium solution of the equation:

x′ = f(x(t)).

Let Ω be a neighborhood of x∗ included in U , and let V : Ω→ R be a C1 class function such that:

• V (x∗) = 0.

• ∀ x ∈ Ω\{x∗}, V (x) > 0.

• ∀ x ∈ Ω, V ′(x) < 0.

Then, x∗ is asymptotically stable.

V named Strict Lyapunov function.
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Chapter 3

Modelling and Mathematical analysis for a

diffusive epidemic model

In recent years, there has been a growing interest among researchers in the study of infectious

diseases, with the aim of improving treatment and reducing mortality rates through predicting

the spread of diseases. One type of model that has been proposed and studied extensively is

the susceptible-infected-susceptible (SIS) epidemic reaction-diffusion model. Researchers have

explored various approaches to modeling disease transmission, including the standard incidence

transmission term βSI/N , which was proposed as an alternative to mass action. Some researchers

proposed a frequency-dependent SIS reaction-diffusion model for a population living in a contin-

uous spatial habitat, and some of them discussed the global stability of the endemic equilibrium

in some special cases for this model. Over the years, researchers have discovered many important

and interesting properties of these models, such as the reproductive number R0 and the global

stability of the disease-free equilibrium.

Our study focuses on the reaction-diffusion system given by the following equations [2]:{
∂s
∂t
− d1∆s = Λ− β sϕ(i)

s+i
− µs, in R+ × Ω,

∂i
∂t
− d2∆i = β sϕ(i)

s+i
− (µ+ σ)i, in R+ × Ω.

(3.1)

The diffusion coefficients in our model are represented by the positive constants d1 and d2, while

the Laplacian operator on Ω is denoted by the symbol ∆. Here, Ω ⊂ Rn is a bounded open subset

of Rn with a smooth boundary ∂Ω. Furthermore, we assume that the initial condition:

s(x, 0) = s0(x), i(x, 0) = i0(x), in Ω, (3.2)

and homogeneous Neumann boundary conditions:
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∂s

∂η
=
∂i

∂η
= 0, in R+ × Ω. (3.3)

The nonlinearity ϕ is assumed to be a nonnegative and continuously differentiable function on

R+ such that:

ϕ(0) = 0, (3.4)

and

0 < iϕ′(i) ≤ ϕ(i) for all i > 0. (3.5)

Mathematical modeling in biology is an essential tool for improving our understanding of epi-

demiological patterns and disease control, particularly for infectious diseases which continue to

target large populations and remain a leading cause of mortality . One example of a mathematical

model is the system proposed to describe the transmission of HIV in a population consisting of

susceptible individuals s and infected individuals i. The model parameters include Λ for the flow

rate of newly exposed individuals, µ for the death rate, β for the rate of disease prevalence among

individuals per unit time, and σ, which is given by σ = µ + η and 1
η
is the mean period of sexual

activity of affected individuals. It is important to note that diseases such as stroke, coronary heart

disease, and infectious diseases remain among the leading causes of death worldwide.

The present study has successfully established the system models (3.1-3.3) and corresponding

parameter descriptions.

3.1 Properties of the model

The subsequent sections of this paper will introduce the solution to the primary problem, define

the basic reproductive number R0, and establish its connection to the local stability of the system.

However, prior to delving into these topics, it is important to introduce a lemma, which we will

prove to be valuable in later sections.

Lemma 3.1 Condition (3.3-3.5) implies

0 <
ϕ(i)

i
≤ ϕ′(0) for all i > 0. (3.6)

Proof. Starting with the inequality

0 < iϕ′(i) ≤ ϕ(i) for all i > 0,
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we can divide both sides by i to obtain

0 < ϕ′(i) ≤ ϕ(i)

i
.

Since ϕ(i) is continuously differentiable with ϕ(0) = 0, we know that ϕ′(0) exists. Thus, we can use

the mean value theorem to obtain

ϕ′(0) =
ϕ(i)− ϕ(0)

i− 0
,

so

ϕ(i) = ϕ(0) + iϕ′(0).

Dividing both sides by i, we have
ϕ(i)

i
= ϕ′(0).

Now, since ϕ(i) is nonnegative and ϕ(0) = 0, we have

0 ≤ ϕ(i)

i
≤ ϕ(i)− ϕ(0)

i− 0
=
ϕ(i)

i
,

we get

0 < ϕ′(i) ≤ ϕ(i)

i
≤ ϕ′(0).

3.2 Existence of equilibria

The objective of this section is to demonstrate the presence of steady state solutions for equations

(3.1)-(3.3) and compute the fundamental basic reproduction number R0. The system of equations

(3.1-3.3) can be simplified into the following set of ordinary differential equations (ODEs){
ds
dt

= Λ− β sϕ(i)
s+i
− µs, in R+,

di
dt

= β sϕ(i)
s+i
− (µ+ σ)i in R+,

(3.7)

with initial conditions:

s0(x) > 0, i0(x) ≥ 0. (3.8)

Proposition 3.1 • If R0 < 1, the system (3.7) accepts one equilibrium point E0.

• If R0 < 1, the system (3.7) has two equilibrium points E0 and E∗.
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Proof. The positive equilibria of syste, (3.7) - (3.8) satisfies{
Λ− β sϕ(i)

s+i
− µs = 0,

β sϕ(i)
s+i
− (µ+ σ)i = 0.

(3.9)

First, if i = 0 it becomes: {
Λ− β sϕ(0)

s+0
− µs = 0,

β sϕ(0)
s+0
− (µ+ σ)× 0 = 0,

so

s =
Λ

µ
.

We get that the system (3.9) has only equilibrium E0 =
(

Λ
µ
, 0
)

. Then, we take i > 0 to study

endemic steady state conditions, from adding the two equations in the system (3.9) we get

Λ− β sϕ(i)

s+ i
− µs+ β

sϕ(i)

s+ i
− (µ+ σ)i = 0,

Λ− (µ+ σ)i = µs ,

s =
Λ

µ
− (µ+ σ)i

µ
. (3.10)

By substituting in the first equation.We start by s+ i :

s+ i =
Λ− (µ+ σ)i

µ
+ i,

=
Λ− µi− σi+ µi

µ

=
Λ− σi
µ

,

then

s

s+ i
=

Λ− (µ+ σ)i

µ
× µ

Λ− σi

=
Λ− (µ+ σ)i

Λ− σi ,

we substite in the first equation:

Λ− β sϕ(i)

s+ i
− µs = 0,

Λ− βϕ(i)
Λ− (µ+ σ)i

Λ− σi − Λ + (µ+ σ)i = 0,
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we get

βϕ(i)

(µ+ σ)i
=

Λ− σi
Λ− (µ+ σ)i

,

βϕ(i)

(µ+ σ)i
[Λ− (µ+ σ)i] = Λ− σi,

Λβϕ(i)

(µ+ σ)i
− βϕ(i) = Λ− σi,

βϕ(i)

(µ+ σ)i
=

Λ− σi+ βϕ(i)

Λ
.

h(i) =
βϕ(i)

(µ+ σ)i
− [1− σi

Λ
+
βϕ(i)

Λ
],

h(i) = 0 for any i > 0, (3.11)

h(i) is continuous for any i > 0. By using the intermediate value theorem, there exists a real

i∗ ∈ (0, Λ
σ

) such that (3.11) holds.

lim
i→0

h(i) = lim
i→0

βϕ(i)

(µ+ σ)i
− [1− σi

Λ
+
βϕ(i)

Λ
],

=
βϕ′(0)

(µ+ σ)
− [1− σ(0)

Λ
+
βϕ(0)

Λ
],

=
βϕ′(0)

(µ+ σ)
− 1 > 0,

= R0 − 1 > 0,

3.2. Existence of equilibria 27



Chapter 3. Modelling and Mathematical analysis for a diffusive epidemic model

and

lim
i→Λ

σ

h(i) = lim
i→Λ

σ

βϕ(i)

(µ+ σ)i
− [1− σi

Λ
+
βϕ(i)

Λ
],

=
βϕ(Λ

σ
)

(µ+ σ)Λ
σ

− [1−
σ(Λ

σ
)

Λ
+
βϕ(Λ

σ
)

Λ
],

=
βϕ(Λ

σ
)

(µ+ σ)Λ
σ

−
βϕ(Λ

σ
)

Λ

=
βϕ(Λ

σ
)

µ(Λ
σ

) + Λ
−
βϕ(Λ

σ
)

Λ

=
βϕ(Λ

σ
)

Λ(1 + µ
σ
)
−
βϕ(Λ

σ
)

Λ

=
βϕ(Λ

σ
)− βϕ(Λ

σ
)(1 + µ

σ
)

Λ(1 + µ
σ
)

=
βϕ(Λ

σ
)

Λ
(
1− 1− µ

σ

1 + µ
σ

)

=
βϕ(Λ

σ
)

Λ
(
−µ
σ

σ+µ
σ

)

=
βϕ(Λ

σ
)

Λ
(
−µ
σ + µ

) < 0.

If the derivative of h is negative for all values of i greater than zero, then the function is monoton-

ically decreasing in that interval using (3.4)-(3.6).

dh(i)

di
=

βϕ′(i)(µ+ σ)i− (µ+ σ)βϕ(i)

((µ+ σ)i)2
− (
−σ
Λ

+
βϕ(i)

Λ
)

=
βiϕ′(i)− βϕ(i)

(µ+ σ)i2
+

1

Λ
(σ − βϕ′(i))

=
β(iϕ′(i)− ϕ(i))

(µ+ σ)i2
+

1

Λ
(σ − βϕ′(i)) < 0.

Consequently, there exists a unique real i∗ within the interval (0, Λ
σ

) for which h(i∗) = 0. This

condition implies the existence of a unique s∗ = Λ
µ
− (µ+σ)i∗

µ
. As a result, we can conclude that the

proof is complete.

3.3 Basic reproductive number R0 of the model

The basic reproductive number R0 can be defined as the spectral radius of the matrix FV −1 [9]-

[7]
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So, we can write the systems (3.7)-(3.8) in the following vector form

(
it

st

)
=

(
β sϕ(i)

s+i
− (µ+ σ)i

Λ− β sϕ(i)
s+i
− µs

)

=

(
β sϕ(i)

s+i

0

)
−
(

(µ+ σ)i

−Λ + β sϕ(i)
s+i

+ µs

)
.

The Jacobian matrices associated with the vectors

(
β sϕ(i)

s+i

0

)
and

(
(µ+ σ)i

−Λ + β sϕ(i)
s+i

+ µs

)
at the

disease-free equilibrium E0 =
(

Λ
µ
, 0
)

are provided as follows

J1(s, i) =

(
[βsϕ′(i)](s+i)−sϕ(i)

(s+i)2

[βϕ(i)](s+i)−sϕ(i)
(s+i)2

0 0

)
.

Then, we have

J1(E0) =

(
βϕ′(0) 0

0 0

)

=

(
F 0

0 0

)
,

Moreover, we have

J2(s, i) =

(
µ+ σ 0

[βsϕ′(i)](s+i)−sϕ(i)
(s+i)2

[βϕ(i)](s+i)−sϕ(i)
(s+i)2 + µ

)
.

J2(E0) =

(
µ+ σ 0

βϕ′(0) µ

)
,

=

(
V 0

V1 V2

)
.

Calculating V −1

V −1 =
1

V V2

(
V2 0

−V1 V

)

=

(
1
V

0
−V1

V V2

1
V2

)
.
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Then FV −1

FV −1 =

(
F 0

0 0

)
×
(

1
V

0
−V1

V V2

1
V2

)

=

(
F
V

0

0 0

)
.

R0 is the spectral radius of a matrix is the maximum absolute value among all the eigenvalues of

the matrix.

To determine the spectral radius of a this matrix, we need to calculate its eigenvalues and then

identify the one with the highest absolute value,

det(FV −1 − λI) = 0.

(
F
V
− λ 0

0 −λ

)
= 0.

(
F

V
− λ
)

(0− λ)− 0 = 0

λ(λ− F

V
) = 0.

The eigenvalues are the values of λ that satisfy this equation which are λ1 = 0 and λ2 = F
V

the

hightest value is λ2 so the reproductive number R0 is given by:

R0 = ρ(FV −1)

=
F

V
.

R0 =
βϕ′(0)

µ+ σ
. (3.12)

3.4 Positivity of solutions

When the initial data (3.2) satisfy the following conditions:

s (x, 0) = s0 (x) > 0, i (x, 0) = i0 (x) ≥ 0, in Ω. (3.13)

By applying the maximum principle to system (3.1)-(3.3), it can be deduced that the functions

s (t, x) and i (t, x) satisfy certain conditions

s (t, x) > 0, i (t, x) ≥ 0, ∀ (t, x) ∈ (0, Tmax)× Ω. (3.14)
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3.5 Existence of solutions

The proposition below establishes that solutions of system (3.1)-(3.3) exists globally over time

span, and these solutions remain bounded by parameter-dependent constant. This proposition

holds under the assumption that the function satisfies conditions (3.4) and (3.5).

Proposition 3.2 Assume that the initial data s0, i0 ∈ C
(
Ω̄
)

and fulfill (3.13), and also ϕ satisfies

(3.4) and (3.5). Then the solution (s, i) of system (3.1)-(3.3) exists uniquely and globally in time.

Moreover, (3.14) holds for Tmax = +∞, as well as ther exists a constant A (s0, i0,Λ, β, µ, σ) > 0, such

that

‖s (·, t)‖L∞(Ω) + ‖i (·, t)‖L∞(Ω) ≤ A, for all t > 0. (3.15)

Furthermore, there exists a positive constant Ã (Λ, β, µ, σ) such that for a large T > 0,

‖s (·, t)‖L∞(Ω) + ‖i (·, t)‖L∞(Ω) ≤ Ã, for all t > T. (3.16)

Proof. Let s (t, x) ∈ (0, Tmax) × Ω, we can formulate the first part of the local solution for system

(3.1) which given by:
∂s
∂t
− d1∆s = Λ− β sϕ(i)

s+i
− µs, in (0, Tmax)× Ω ,

s (0, x) = s0 (x) , on Ω ,
∂s
∂ν

= 0, on (0, Tmax)× ∂Ω.

(3.17)

For any positive function i (t, x) ∈ (0, Tmax)×Ω, there is an upper solution exists for (3.17) which

is provided by:

C1 = max

{
Λ

µ
, ‖s0‖C(Ω̄)

}
.

By using the comparison principle, s (t, x) ≤ C1 in [0, Tmax)× Ω̄, which is uniformly bounded .

We consider

χ̃ =

∫
Ω

(s (x, t) + i (x, t)) dx.

Using (3.1)-(3.3):

d

dt
χ̃ (t) = Λ |Ω| −

∫
Ω

(µs (x, t) + (µ+ σ) i (x, t)) dx (3.18)

≤ Λ |Ω| − µχ̃ (t) .

Using Gronwall’s inequality, and for t ∈ (0, Tmax) , we have

χ̃ (t) ≤ C2, (3.19)
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which is greater than 0.

i (t, ·) ∈ L1 (Ω) . (3.20)

Using the second equation of (3.1), there exists C3 > 0, depends on C2 such that i (t, x) ≤ C3

in [0, Tmax) × Ω̄, also by using the standard theory of semilinear parabolic systems, we deduce

Tmax =∞.
and when Tmax = +∞, problem (3.17) becomes

∂s
∂t
− d1∆s = Λ− β sϕ(i)

s+i
− µs ≤ Λ− µs, in (0,+∞)× Ω,

s (0, x) = s0 (x) ≤ ‖s0‖C(Ω̄) , on Ω,

∂s
∂ν

= 0, on (0,∞)× ∂Ω.

(3.21)

We use the the comparison principle to find that s (t, x) ≤ ω (t) where ω (t) = ‖s0‖C(Ω̄) e
−µt +(

Λ
µ

)
(1− e−µt) which is the unique solution of the initial value problem

{
dω
dt

= Λ− µω, t > 0,

ω (0) = ‖s0‖C(Ω̄) .
(3.22)

Then for x ∈ Ω̄, we have

s (t, x) ≤ ω (t) −→t→∞
Λ

µ
.

Thus, we have an upper bound for ‖s (t, ·)‖L∞(Ω) independent of the initial data for a given suffi-

ciently large t, and we found that ‖i (t, ·)‖L∞(Ω) also bounded by a positive constant independent

of the initial data for a large enough t.

3.6 The local stability of ODE

In the case of ODE we study the system in the absence of diffusion.

We now turn our attention to analyzing the local asymptotic stability of two equilibrium points:

the disease-free equilibrium point E0 and the endemic equilibrium point E∗, as outlined in the

following proposition.

Proposition 3.3 1. If R0 < 1 the disease-free equilibrium point E0 is locally asymptotically sta-

ble.

2. If R0 > 1, E0 is unstable and the endemic equilibrium point E∗is locally asymptotically stable.
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Proof. In order to establish the local asymptotic stability, we utilize the Jacobian matrix, which

given as follows.

J(s, i) =

(
−µ− β iϕ(i)

(s+i)2 −β sϕ
′(i)(s+i)−sϕ(i)

(s+i)2

β iϕ(i)
(s+i)2 β sϕ

′(i)(s+i)−sϕ(i)
(s+i)2 − (µ+ σ)

)
. (3.23)

First of all, at E0, we have

J(E0) =

 −µ− β (0)ϕ(0)

( Λ
µ

+0)2 −β ( Λ
µ

)ϕ′(0)( Λ
µ

+0)−( Λ
µ

)ϕ(0)

( Λ
µ

+0)2

β (0)ϕ(0)

( Λ
µ

+0)2 β
( Λ
µ

)ϕ′(0)( Λ
µ

+0)−( Λ
µ

)ϕ(0)

( Λ
µ

+0)2 − (µ+ σ)

 ,

=

 −µ −β ( Λ
µ

)2ϕ′(0)

( Λ
µ

)2

0 β
( Λ
µ

)2ϕ′(0)

( Λ
µ

+0)2 − (µ+ σ)

 ,

=

(
−µ −βϕ′(0)

0 βϕ′(0)− (µ+ σ)

)
,

then, we can calculate the eigenvalues of J(E∗) as follows

det(J(E0)− λI) = 0,

det

(
−µ− λ −βϕ′(0)

0 βϕ′(0)− (µ+ σ)− λ

)
= 0,

we get

(−µ− λ) [βϕ′(0)− (µ+ σ)− λ] = 0,

so we can show that the eigenvalues are

λ1 = −µ < 0 because µ > 0, (3.24)

λ2 = βϕ′(0)− (µ+ σ), λ2 < 0 only when R0 < 1,

and it leqds to asymptotic stability result.

In the second case it is clearly that the equilibrium E0 is unstable when R0 > 1, but the system

possesses an equilibrium point E∗.

Evaluating the matrix (3.23) at E∗, we obtain

J(E∗) =

(
−µ− β i∗ϕ(i∗)

(s∗+i∗)2 −β s
∗ϕ′(i∗)(s∗+i∗)−s∗ϕ(i∗)

(s∗+i∗)2

β i∗ϕ(i∗)
(s∗+i∗)2 β s

∗ϕ′(i∗)(s∗+i∗)−s∗ϕ(i∗)
(s∗+i∗)2 − (µ+ σ)

)
. (3.25)
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We put

X = β
i∗ϕ(i∗)

(s∗ + i∗)2
, (3.26)

and

Y = β
s∗ϕ′(i∗)(s∗ + i∗)− s∗ϕ(i∗)

(s∗ + i∗)2
. (3.27)

So, we get

J(E∗) =

(
−µ−X −Y

X Y − (µ+ σ)

)
. (3.28)

The equilibrium E∗ is locally asymptotically stable if tr (J(E∗)) < 0 and det (J(E∗)) > 0.

We start by calculating the tr (J(E∗))

tr (J(E∗)) = −µ−X + Y − (µ+ σ).

We have

β
s∗ϕ(i∗)

s∗ + i∗
− (µ+ σ)i∗ = 0,

β
s∗ϕ(i∗)

s∗ + i∗
= (µ+ σ)i∗

(µ+ σ) = β
s∗ϕ(i∗)

(s∗ + i∗)i∗
,

and from (3.5), we have

0 < iϕ′(i) ≤ ϕ(i)

ϕ′(i) ≤ ϕ(i)

i
,

So, we use them as follows

−X + Y − (µ+ σ) = −β i∗ϕ(i∗)

(s∗ + i∗)2
+ β

s∗ϕ′(i∗)(s∗ + i∗)− s∗ϕ(i∗)

(s∗ + i∗)2
− β s∗ϕ(i∗)

(s∗ + i∗)i∗
, (3.29)

= −β i∗ϕ(i∗)

(s∗ + i∗)2
+ β

s∗ϕ′(i∗)(s∗ + i∗)

(s∗ + i∗)2
− β s∗ϕ(i∗)

(s∗ + i∗)2
− β s∗ϕ(i∗)

(s∗ + i∗)i∗

= −β i∗ϕ(i∗)

(s∗ + i∗)2
+ β

s∗ϕ′(i∗)

(s∗ + i∗)
− β s∗ϕ(i∗)

(s∗ + i∗)2
− β s∗ϕ(i∗)

(s∗ + i∗)i∗

≤ −β i∗ϕ(i∗)

(s∗ + i∗)2
+ β

s∗ϕ(i∗)

i∗(s∗ + i∗)
− β s∗ϕ(i∗)

(s∗ + i∗)2
− β s∗ϕ(i∗)

(s∗ + i∗)i∗

≤ −β i∗ϕ(i∗)

(s∗ + i∗)2
− β s∗ϕ(i∗)

(s∗ + i∗)2

≤ −β ϕ(i∗)

(s∗ + i∗)2
(s∗ + i∗) ,

≤ −β ϕ(i∗)

(s∗ + i∗)
< 0,
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so we find that :

tr (J(E∗)) = −µ−X + Y − (µ+ σ) < 0,

we move to the determinant of the Jacobian which is given by:

det (J(E∗)) = (−µ−X) (Y − (µ+ σ))− (−Y X)

= (−µ−X) (Y − (µ+ σ)) + Y X

= −µY + µ(µ+ σ)−XY +X(µ+ σ) + Y X

= µ (X − Y + σ + µ) + σX.

We can see easily (3.29) that the det (J(E∗)) > 0, so the endemic equilibrium E∗ is locally asymp-

totically stable.

3.7 The local stability of PDE

In the case of PDE, we study the system in the presence of diffusion.

So we investigate the local stability of more general partial differential equations (PDE) cases

(3.1)-(3.3).

Theorem 3.1 For system (3.1)

1. If R0 < 1, the disease-free equilibrium E0 is locally asymptotically stable.

2. If R0 > 1, the endemic equilibrium E∗is locally asymptotically stable.

Proof. We have the system in the PDE case which satisfaies the equilibrim points which given by:{
d1∆s+ Λ− β sϕ(i)

s+i
− µs = 0, in R+ × Ω,

d2∆i+ β sϕ(i)
s+i
− (µ+ σ)i = 0, in R+ × Ω.

(3.30)

subject to the homogeneous Neumann boundary condition ∂i
∂ν

= ∂s
∂ν

= 0, in R+ × Ω[1].

Let 0 = λ0 < λ1 ≤ λ2 ≤ ... . be the sequence of eigenvalues for the elliptic operator (−∆) subject

to the homogeneous Neumann boundary condition on Ω, where each λj has multiplicity mj ≥ 1.

Also let Φjh , 1 ≤ h ≤ mj, (Φ0 = const and λj → ∞ at j → ∞) be the normalized eigenfunctions

corresponding to λj. That is, Φjh and λj satisfy −∆Φjh = λjΦjh in Ω, with ∂Φjh∂ν = 0 in ∂Ω, and∫
Ω

Φ2
jh(x)dx = 1.
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we start by the first equilibrium point E0.

Its Jacobian matrix given by:

L (E0) =

(
d1∆− µ −βϕ′(0)

0 d2∆ + βϕ′(0)− (µ+ σ)

)
.

Similar to the ODE case, the asymptotic stability can be determined by examining the eigenvalues

of the operator L if they have negative real parts. we suppose (Υ(x),Ψ(x)) is an eigenfunction of

L corresponding to an eigenvalue ξ,

we have

L(Υ(x),Ψ(x))t = ξ(Υ(x),Ψ(x))t.

Give us

(L− ξI)

(
Υ

Ψ

)
=

(
0

0

)
.

leading to:

∑
0≤j≤∞,1≤h≤mj

(Jj − ξI)

(
ajh

bjh

)
Φjh =

(
0

0

)
.

where:

Υ =
∑

0≤j≤∞,1≤h≤mj

ajhΦjh, Ψ =
∑

0≤j≤∞,1≤h≤mj

bjhΦjh,

and

Jj (E0) =

(
−d1λj − µ −βϕ′(0)

0 −d2λj + βϕ′(0)− (µ+ σ)

)
, for all j. (3.31)

We can easily shown that the eigenvalues of the matrix are given for all i ≥ 0 by:{
k1j = −d1λj − µ,

k2j = −d2λj + βϕ′(0)− (µ+ σ).

Given that the Laplacian eigenvalues are positive and arranged in ascending order, it is evident

that both k1j and k2j possess negative real parts when R0 < 1. As a result, it is lead to the local

stablility of E0.

Then we move to the second equilibrium E∗ satisfies (3.3)-(3.30). Its corresponding linearization

operator is

L (E∗) =

(
d1∆− µ−X −Y

X d2∆ + Y − (µ+ σ)

)
.
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The values of X and Y are taken from (3.26) and (3.27), the stability of E* rests on the negativity

of the real parts of the eigenvalues of matrice:

Jj (E∗) =

(
−d1λj − µ−X −Y

X −d2λj + Y − (µ+ σ)

)
,

the trace is as follows

tr (Jj (E∗)) = −d1λj − µ−X − d2λj + Y − (µ+ σ)

= −λj (d1 + d2)− µ+ (−X + Y − (µ+ σ) < 0.

So tr (Jj (E∗)) < 0.

The determinant of the Jacobian is given by:

det (Jj (E∗)) = [−d1λj − µ−X] [−d2λj + Y − (µ+ σ)] +XY,

= d1d2λ
2
j − d1λj + (µ+ σ)d1λj + µd2λj − µY + µ(µ+ σ) +Xd2λj −XY

+(µ+ σ)X +XY,

= d1d2λ
2
j + [−d1Y + (µ+ σ)d1 + µd2 +Xd2]λj + µ[−Y + µ+ σ +X] + σX

= d1d2λ
2
j + [−d1Y + (µ+ σ)d1 + µd2 +Xd2]λj + det J(E∗).

We put that

H0 = −d1Y + (µ+ σ)d1 + µd2 +Xd2,

= d1(−Y + (µ+ σ)) + d2(µ+X)

= d1

(
−β s

∗ϕ′(i∗)(s∗ + i∗)− s∗ϕ(i∗)

(s∗ + i∗)2
+ (µ+ σ)) + d2(µ+ β

i∗ϕ(i∗)

(s∗ + i∗)2

)
.

Keeping in mind that (s∗, i∗) are solutions of system (3.1), so we get:{
Λ = β s

∗ϕ(i∗)
s+i∗ + µs∗ = (µ+ σ)i∗ + µs∗,

(µ+ σ)i∗ = β s
∗ϕ(i∗)
s∗+i∗ ,

(3.32)

and from (3.5) and (3.32), we get

H0 ≥ d1(−β s
∗ϕ(i∗)(s∗ + i∗)

i∗(s∗ + i∗)2
+ β

s∗ϕ(i∗)

(s∗ + i∗)2
+ β

s∗ϕ(i∗)

i∗(s∗ + i∗)
) + d2(µ+ β

i∗ϕ(i∗)

(s∗ + i∗)2
).

≥ d1β
s∗ϕ(i∗)

(s∗ + i∗)
+ d2(µ+ β

i∗ϕ(i∗)

(s∗ + i∗)2
) > 0,

which is leading to det (Jj (E∗)) > 0. Hence, E∗ is locally asymptotically stable.
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3.8 Global stability

We have chosen to analyze R0 < 1 and R0 > 1 separatefy in order to examine the global stability

that is depends on the reproductive number R0.

3.8.1 Global asymptotic stability for R0 < 1

Theorem 3.2 If R0 < 1, E0 is a globally asymptotically stable for system (3.1), whith

ϕ′ (0) ≤ Λ

β
(
θΛ
µ

+ 2Λ
µ+σ

) , (3.33)

and

θ >
(d1 + d2)2

4d1d2

. (3.34)

Proof. Let:

Fθ(t) =

∫
Ω

[
is+

θ

2

(
s− Λ

µ

)2

+
1

2
i2 + 2

Λ

µ+ σ
i

]
dx,

we have to show that Fθ(t) is a Lyapunov function.

At E0 =
(

Λ
µ
, 0
)
, Fθ(t) = 0.

When Λ
µ
6= 0 we will prove that Fθ(t) > 0.

Calculating the derivate

Ḟθ(t) =

∫
Ω

(
∂s

∂t
i+

∂i

∂t
s)dx+ θ

∫
Ω

1

2

∂s

∂t

(
s− Λ

µ

)
+
∂s

∂t

(
s− Λ

µ

)
+

∫
Ω

1

2

∂i

∂t
idx+

1

2

∂i

∂t
idx

+2
Λ

µ+ σ

∫
Ω

∂i

∂t
dx.

=

∫
Ω

(
∂s

∂t
i+

∂i

∂t
s)dx+ θ

∫
Ω

1

2
× 2

∂s

∂t

(
s− Λ

µ

)
+

∫
Ω

1

2
× 2

∂i

∂t
idx+ 2

Λ

µ+ σ

∫
Ω

∂i

∂t
dx

=

∫
Ω

(
∂s

∂t
i+

∂i

∂t
s)dx+ θ

∫
Ω

∂s

∂t

(
s− Λ

µ

)
+

∫
Ω

∂i

∂t
idx+ 2

Λ

µ+ σ

∫
Ω

∂i

∂t
dx.

By replacing the values of the partial derivatives ∂s
∂t

and ∂i
∂t

with their corresponding values from

equation (3.1), we can obtain the following expression:
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Ḟθ(t) =

∫
Ω

∂s

∂t
idx+

∫
Ω

∂i

∂t
sdx+ θ

∫
Ω

∂s

∂t

(
s− Λ

µ

)
dx+

∫
Ω

∂i

∂t
idx (3.35)

+2
Λ

µ+ σ

∫
Ω

∂i

∂t
dx

=

∫
Ω

[
i+ θ

(
s− Λ

µ

)]
∂s

∂t
dx+

∫
Ω

[
s+ i+ 2

Λ

µ+ σ

]
∂i

∂t
dx

=

∫
Ω

[
i+ θ

(
s− Λ

µ

)](
d1∆s+ Λ− β sϕ(i)

s+ i
− µs

)
dx

+

∫
Ω

[
s+ i+ 2

Λ

µ+ σ

](
d2∆i+ β

sϕ(i)

s+ i
− (µ+ σ)i

)
dx

= I1 + I2.

We can write I1 as I11 + I12, and we use the Neumann boundary conditions in (3.3) qnd Green’s

formula we get

I11 =

∫
Ω

[
i+ θ

(
s− Λ

µ

)]
d1∆sdx

= d1

∫
Ω

(
i+ θs− θΛ

µ

)
∆sdx

= −d1

∫
Ω

(∇i+ θ∇s)∇sdx

= −d1

∫
Ω

∇i∇sdx− θd1

∫
Ω

|∇s|2 dx,

and

I12 =

∫
Ω

[
s+ i+ 2

Λ

µ+ σ

]
d2∆idx

= d2

∫
Ω

(
s+ i+ 2

Λ

µ+ σ

)
∆idx

= −d2

∫
Ω

(∇s+∇i)∇idx

= −d2

∫
Ω

∇s∇idx− d2

∫
Ω

|∇i|2 dx,

so we can write this term I1 as follows

I1 = −d1

∫
Ω

∇i∇sdx− θd1

∫
Ω

|∇s|2 dx− d2

∫
Ω

∇s∇idx− d2

∫
Ω

|∇i|2 dx

= −
∫

Ω

(
d1 (∇i∇s) + d2 (∇i∇s) + θd1 |∇s|2 + d2 |∇i|2

)
dx

= −
∫

Ω

(
θd1 |∇s|2 + (d1 + d2)∇i∇s+ d2 |∇i|2

)
dx

= −
∫

Ω

Q (∇s,∇i) dx,
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where Q (∇s,∇i) is a quadratic form.

As we know Q positive because θ, d1 and d2 are satisfying the conditions θd1 > 0 and θ > (d1+d2)2

4d1d2
,

which gives us

I1 ≤ 0. (3.36)

Now, we move to the other part I2 which is given by the rest of the expression

I2 =

∫
Ω

[(
i+ θ

(
s− Λ

µ

))(
Λ− β sϕ(i)

s+ i
− µs

)]
dx

+

∫
Ω

[(
s+ i+ 2

Λ

µ+ σ

)(
β
sϕ(i)

s+ i
− (µ+ σ)i

)]
dx

= Λ

∫
Ω

idx− β
∫

Ω

isϕ(i)

s+ i
dx− µ

∫
Ω

isdx+ θ

∫
Ω

Λ

(
s− Λ

µ

)
dx− θβ

∫
Ω

(
s− Λ

µ

)
sϕ(i)

s+ i
dx

−θµ
∫

Ω

s

(
s− Λ

µ

)
dx+ β

∫
Ω

s2ϕ(i)

s+ i
dx+ β

∫
Ω

isϕ(i)

s+ i
dx+

2βΛ

µ+ σ

∫
Ω

sϕ(i)

s+ i
dx

−(µ+ σ)

∫
Ω

sidx − (µ+ σ)

∫
Ω

i2dx − 2Λ

∫
Ω

idx

= −µ
∫

Ω

isdx+ Λ

∫
Ω

idx− β
∫

Ω

isϕ(i)

s+ i
dx− θµ

∫
Ω

(
s− Λ

µ

)2

dx− θβ
∫

Ω

s2ϕ(i)

s+ i
dx

+θβ
Λ

µ

∫
Ω

sϕ(i)

s+ i
dx+ β

∫
Ω

s2ϕ(i)

s+ i
dx− (µ+ σ)

∫
Ω

sidx + β

∫
Ω

isϕ(i)

s+ i
dx

−(µ+ σ)

∫
Ω

i2dx + 2
βΛ

µ+ σ

∫
Ω

sϕ(i)

s+ i
dx− Λ

∫
Ω

idx,

= I21 + I22 + I23 + I24,

which are:

I21 = β

∫
Ω

s2ϕ(i)

s+ i
dx− θβ

∫
Ω

s2ϕ(i)

s+ i
dx− β

∫
Ω

isϕ(i)

s+ i
dx, (3.37)

I22 = β

∫
Ω

isϕ(i)

s+ i
dx, (3.38)

I23 = −Λ

∫
Ω

idx− (µ+ σ)

∫
Ω

sidx (3.39)

≤ −Λ

∫
Ω

idx,

I24 = θβ
Λ

µ

∫
Ω

sϕ(i)

s+ i
dx+ 2

βΛ

µ+ σ

∫
Ω

sϕ(i)

s+ i
dx− θµ

∫
Ω

(
s− Λ

µ

)2

dx− (µ+ σ)

∫
Ω

i2dx .

By using
s

s+ i
≤ 1, (3.40)
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we get that

I24 ≤
(
θβ

Λ

µ
+ 2

βΛ

µ+ σ

)∫
Ω

ϕ(i)dx− θµ
∫

Ω

(
s− Λ

µ

)2

dx− (µ+ σ)

∫
Ω

i2dx . (3.41)

so by using (3.37), (3.38), (3.41) and (3.39), we can easily show that

I2 = I21 + I22 + I23 + I24

≤ β

∫
Ω

s2ϕ(i)

s+ i
dx− θβ

∫
Ω

s2ϕ(i)

s+ i
dx− β

∫
Ω

isϕ(i)

s+ i
dx+ β

∫
Ω

isϕ(i)

s+ i
dx

+

[(
θβ

Λ

µ
+ 2

βΛ

µ+ σ

)
ϕ′(0)− Λ

] ∫
Ω

idx− θµ
∫

Ω

(
s− Λ

µ

)2

dx− (µ+ σ)

∫
Ω

i2dx

≤ β

∫
Ω

s2ϕ(i)

s+ i
dx− θβ

∫
Ω

s2ϕ(i)

s+ i
dx

+

[(
θβ

Λ

µ
+ 2

βΛ

µ+ σ

)
ϕ′(0)− Λ

] ∫
Ω

idx− θµ
∫

Ω

(
s− Λ

µ

)2

dx− (µ+ σ)

∫
Ω

i2dx,

from (3.34):

I2 ≤ β (1− θ)
∫

Ω

s2ϕ(i)

s+ i
dx− θµ

∫
Ω

(
s− Λ

µ

)2

dx− (µ+ σ)

∫
Ω

i2dx. (3.42)

Finally we get fron (3.36) and (3.42):

Ḟθ (t) ≤ −θd1

∫
Ω

|∇s|2 dx− d2

∫
Ω

|∇i|2 dx− θµ
∫

Ω

(
s− Λ

µ

)2

dx− (µ+ σ)

∫
Ω

i2dx (3.43)

≤ 0.

.

Finally, by Lyapunov direct method E0 is globally asymptotically stable.

3.8.2 Global asymptotic stability with R0 > 1

First of all we have to prove a lemma extract from [8] , then we will appropriate Lyapunov

function.

We take :

V (x) = x− 1− lnx, for all x > 0. (3.44)

Lemma 3.2 Given that ϕ satisfies criteria (3.12) and (3.44) . The inequality

V

(
ϕ(i)
s+i

ϕ(i∗)
s∗+i∗

)
≤ V

(
i

i∗

)
, (3.45)

holds, where (s∗, i∗) is the endemic equilibrium point E, of system.
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Proof. from (3.12) we note that ϕ is nondeacreasing function for all i > 0. 2[8]-[10]

we put

g (i) =
ϕ(i)

s+ i
,

and

m (i) =
g (i)

i
, also m (i∗) =

g (i∗)

i∗
,

At thr first case, we suppose that i ≥ i∗,

m′(i) =
g′(i)i− g(i)

i2

≤ g(i)− g(i)

i2
= 0.

Thus, m is deacreasing function,

m(i) ≤ m(i∗)

g (i)

i
≤ g (i∗)

i∗
,

since
g (i)

g (i∗)
≤ i

i∗
,

from (3.12) we get that g increasing , so we have:

1 ≤ g (i)

g (i∗)
≤ i

i∗
,

note that:

V ′ (x) = 1− 1

x
.

Thus, V is increasing for x > 1.

Hence

V

(
g (i)

g (i∗)

)
≤ V

(
i

i∗

)
V

(
ϕ(i)
s+i

ϕ(i∗)
s∗+i∗

)
≤ V

(
i

i∗

)
,

holds.

In the second case, for 0 < i < i∗, and note that m (i) is decreasing function,
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m(i) > m(i∗),

g (i)

i
>

g (i∗)

i∗
,

g (i)

g (i∗)
>

i

i∗
.

g (i) : nondecreasing so

g (i) < g (i∗)

leading to

1 >
g (i)

g (i∗)
,

so

1 >

ϕ(i)
s+i

ϕ(i∗)
s∗+i∗

>
i

i∗
> 0.

V is decreasing for 0 < x < 1.

Hence

V

(
ϕ(i)
s+i

ϕ(i∗)
s∗+i∗

)
≤ V

(
i

i∗

)
,

holds.

Theorem 3.3 If R0 > 1, E∗ is a globally asymptotically stable, endemic steady state for system (3.1)

Proof. For this prove, we consider the condidate Lyapunov function

W (t) =

∫
Ω

[
s∗V

( s
s∗

)
+ i∗V

(
i

i∗

)]
dx.

The derivate of W (t) as follows

Ẇ (t) =

∫
Ω

[
ds

dt

(
1− s∗

s

)
+
di

dt

(
1− i∗

i

)]
dx (3.46)

=

∫
Ω

(
1− s∗

s

)[
d1∆s+ Λ− β sϕ(i)

s+ i
− µs

]
dx

+

∫
Ω

(
1− i∗

i

)[
d2∆i+ β

sϕ(i)

s+ i
− (µ+ σ)i

]
dx, (3.47)
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we have to use Green’s formula and Neuman boundry conditions to get

Ẇ (t) = −d1

∫
Ω

∇
(

1− s∗

s

)
∇sdx+

∫
Ω

(
1− s∗

s

)(
Λ− β sϕ(i)

s+ i
− µs

)
dx− d2

∫
Ω

∇
(

1− i∗

i

)
∇idx

+

∫
Ω

(
1− i∗

i

)(
β
sϕ(i)

s+ i
− (µ+ σ)i

)
dx

= −d1

∫
Ω

s∗

s2
|∇s|2 dx+

∫
Ω

(
1− s∗

s

)(
Λ− β sϕ(i)

s+ i
− µs

)
dx− d2

∫
Ω

i∗

i2
|∇i|2 dx

+

∫
Ω

(
1− i∗

i

)(
β
sϕ(i)

s+ i
− (µ+ σ)i

)
dx

= M +N,

we put that

M = −d1

∫
Ω

s∗

s
|∇s|2 dx− d2

∫
Ω

i∗

i
|∇i|2 dx, (3.48)

it is clear that

M ≤ 0.

We move to

N =

∫
Ω

(
1− s∗

s

)(
Λ− β sϕ(i)

s+ i
− µs

)
dx+

∫
Ω

(
1− i∗

i

)(
β
sϕ(i)

s+ i
− (µ+ σ)i

)
dx, (3.49)

3.8. Global stability 44



Chapter 3. Modelling and Mathematical analysis for a diffusive epidemic model

we substitute (3.32) in (3.49) we get

N =

∫
Ω

(
1− s∗

s

)(
β
s∗ϕ(i∗)

s∗ + i∗
+ µs∗ − β sϕ(i)

s+ i
− µs

)
dx, (3.50)

+

∫
Ω

(
1− i∗

i

)(
β
sϕ(i)

s+ i
− β s∗iϕ(i∗)

i∗ (s∗ + i∗)

)
dx, (3.51)

=

∫
Ω

[(
1− s∗

s

)
(µs∗ − µs) +

(
1− s∗

s

)(
β
s∗ϕ(i∗)

s∗ + i∗
− β sϕ(i)

s+ i

)]
dx,

+

∫
Ω

(
1− i∗

i

)[
β
sϕ(i)

s+ i
− β s∗iϕ(i∗)

i∗ (s∗ + i∗)

]
dx

=

∫
Ω

[µs∗ − µs− s∗

s
µs∗ +

s∗

s
µs+ β

s∗ϕ(i∗)

s∗ + i∗
− β sϕ(i)

s+ i
− s∗

s
× β s

∗ϕ(i∗)

s∗ + i∗
+
s∗

s
× β sϕ(i)

s+ i

+β
sϕ(i)

s+ i
− β s∗iϕ(i∗)

i∗ (s∗ + i∗)
− i∗

i
× β sϕ(i)

s+ i
+
i∗

i
× β s∗iϕ(i∗)

i∗ (s∗ + i∗)
]dx

=

∫
Ω

µs∗
(

1− s

s∗
− s∗

s
+ 1

)
dx+ β

s∗ϕ(i∗)

s∗ + i∗

∫
Ω

(1−
sϕ(i)
s+i

s∗ϕ(i∗)
s∗+i∗

− s∗

s
+
s∗

s
×

sϕ(i)
s+i

s∗ϕ(i∗)
s∗+i∗

+

sϕ(i)
s+i

s∗ϕ(i∗)
s∗+i∗

− i

i∗
− i∗

i
×

sϕ(i)
s+i

s∗ϕ(i∗)
s∗+i∗

+ 1)dx

=

∫
Ω

µs∗
(

1− s∗

s

)(
1− s

s∗

)
dx

+β
s∗ϕ(i∗)

s∗ + i∗

∫
Ω

[(
1− s∗

s

)(
1−

sϕ(i)
s+i

s∗ϕ(i∗)
s∗+i∗

)
+

(
1− i∗

i

)( sϕ(i)
s+i

s∗ϕ(i∗)
s∗+i∗

− i

i∗

)]
dx (3.52)

= µs∗
∫

Ω

(
1− s∗

s

)(
1− s

s∗

)
dx+ β

s∗ϕ(i∗)

s∗ + i∗

∫
Ω

[
1− s∗

s
+

ϕ(i)
s+i

ϕ(i∗)
s∗+i∗

+ 1− i

i∗
−

i∗sϕ(i)
s+i

is∗ϕ(i∗)
s∗+i∗

]
dx.

with some algebric manipulations, we obtain

(
1− s∗

s

)(
1− s

s∗

)
= −V

(
s∗

s

)
− V

( s
s∗

)
,

1− s∗

s
= −V

(
s∗

s

)
− ln

(
s∗

s

)
,

1− i

i∗
= −V

(
i

i∗

)
− ln

(
i

i∗

)
,

−1 +

ϕ(i)
s+i

ϕ(i∗)
s∗+i∗

= V

(
ϕ(i)
s+i

ϕ(i∗)
s∗+i∗

)
+ ln

(
ϕ(i)
s+i

ϕ(i∗)
s∗+i∗

)
,

1−
i∗sϕ(i)
s+i

is∗ϕ(i∗)
s∗+i∗

= −V
(

i∗sϕ(i)
s+i

is∗ϕ(i∗)
s∗+i∗

)
− ln

(
i∗sϕ(i)
s+i

is∗ϕ(i∗)
s∗+i∗

)
.

Then, we have
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− ln

(
s∗

s

)
− ln

(
i

i∗

)
+ ln

(
ϕ(i)
s+i

ϕ(i∗)
s∗+i∗

)
− ln

(
i∗sϕ(i)
s+i

is∗ϕ(i∗)
s∗+i∗

)
= 0.

and thanks to (3.45) we find

N = −µs∗
∫

Ω

[
V

(
s∗

s

)
+ V

( s
s∗

)]
dx

+β
s∗ϕ(i∗)

s∗ + i∗

∫
Ω

[
−V

(
s∗

s

)
− V

(
i

i∗

)
+ V

(
ϕ(i)
s+i

ϕ(i∗)
s∗+i∗

)
− V

(
i∗sϕ(i)
s+i

is∗ϕ(i∗)
s∗+i∗

)]
dx.

which is less than or equal to 0.

So we have that M ≤ 0 and N ≤ 0, leading to Ẇ (t) ≤ 0. Hence, the global asymptotic stability

of E∗ foloozs fro, Lyqpunov function direct method

3.9 Numerical example

we consider the function ϕ (i) = i
1+i
, and we obtain

∂s
∂t
− d1∆s = Λ− β si

(s+i)(1+i)
− µs in (0,+∞)× Ω,

∂i
∂t
− d2∆i = β si

(s+i)(1+i)
− (µ+ σ)i in (0,+∞)× Ω,

s0(x) = s(x, 0), i0(x) = i(x, 0) in Ω,
∂s
∂ν

= ∂i
∂ν

= 0 in (0,+∞)× Ω.

(3.53)

The imposed conditions may be verified as follows:{
ϕ (0) = 0, ϕ′ (0) = 1,

iϕ′ (i) = i
(1+i)2 ≤ i

1+i
= ϕ (i) .

The steady states of system (3.53) are given by E0 =
(

Λ
µ
, 0
)

and E∗ =
(

Λ(1+i∗)
β−σ(1+i∗) ,Λ

(1+i∗)(σ+µ)−β
(σ+µ)(σ(1+i∗)−β

)
with the reproductive number R0 = β

σ+µ
. In the table bollow, we use different sets of parameters

to obtain numerical solutions in the ODE and PDE. For the second example, we assume a single

spatial dimension with Ω = (0, 10) throughout the PDE simulations.

Table: Simulation parameters for the Example:

Set s0 i0 d1 d2 Λ β µ σ

ODE set 1 2.5 7 - - 0.8 0.3 0.4 0.2

ODE set 2 6 2.5 - - 0.8 0.6 0.1 0.3

PDE set 1 2 + cosx
7

3 + sinx
8

0.02 0.01 0.8 3
10

2
5

1
5

PDE set 2 1.8 + cosx
5

3 + cosx
6

2 0.5 0.9 2
7

1
10

6
100
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The following is a description of the results:

Figure 10 : shows the solutions in the ODE case subject to set 1, with R0 = 0.5. In this case, as

R0 < 1, E0 = (2, 0) is globally asymptotically stable.

Figure 11 : shows the solutions in the ODE case subject to set 2, with R0 = 1.5. In this case, as

R0 > 1, E∗ = (6.2223, 0.826) is globally asymptotically stable.

Figure 12, 13 : depicts the solution in the PDE case subject to parameter set 2, whereR0 = 1.7857,

which by Theorem (3-4) means that E∗ = (7.9586, 0.65072) is globally asymptotically stable.

Figure 10: Numerical solutions of system (3.53) (ODE case) subject to the first

set of parameters.
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Figure 11: Numerical solutions of system (3.53) (ODE case) subject to the

second set of parameters.

Figure 12: Numerical solutions of system (3.53) susceptible population (PDE case)

subject to the second set of parameters.
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Figure 13: Numerical solutions of system (3.53) infected population (PDE case)

subject to the second set of parameters.

Conclusion

We studied an epidemiological model that describes the spread of an infectious disease among

people. By analyzing non-linear equations, many important results emerge, the model reveals

the existence of equilibrium points, these points can be stable or unstable, indicating the long-

term behavior of the disease within the population. The disease dies out or persist within the

population depending on the reproductive number. The concept of basic reproduction number

(R0), which represents the average number of secondary infections caused by a single infected

individual in a susceptible population. In this work we focus on analyzing the stability of equilib-

rium points in the proposed model using the Lyapunov function. The results demonstrate that the

disease-free equilibrium and the endemic equilibrium are both locally and globally asymptotically

stable under specific conditions. Specifically, the disease-free equilibrium is stable when the re-

production number (R0) is less than 1, while the endemic equilibrium is stable when R0 is greater

than 1. These findings provide crucial insights into the dynamics and long-term behavior of the

model, emphasizing the importance of the reproduction number in determining the stability of

disease equilibria. In future, we look forward to new research studying the case of R0 = 0, it is

interesting to know if the dosease-free and endemic equilibrium will be stable.
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