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Abstract

The main goal of this memory is to show some Carlman estimates of

parabolic PDEs and its application to controllability problems. We shall

present two kinds: the first is for a heat equation and the second is the general

case of PDEs as well as some applications to solve problems of controllability

of parabolic equations. Actually, these inequalities are lead to the existence of

solutions for controllability problems. Carleman estimates are weighted

inequalities constructed via a very technical method.

Key words: Carleman inequalities, parabolic equations, observability

inequality, null controllability, weight function.




Le but principal de ce mémoire est de montrer quelques estimations de Carlman

pour les EDP paraboliques et son application aux problemes de controlabilité.

Nous présenterons deux types : le premier est pour une équation de chaleur et la

deuxiéme est le cas genéral des EDP ainsi que quelques applications pour

résoudre des problémes de contrélabilité des équations paraboliques. En fait, ces

inégalités conduisent a I’existence de solutions aux problémes de contrdlabilite.

Les estimations de Carleman sont des inégalités pondérées construites par une

méthode tres technique.

Mots clés: Estimation de Carleman, équations paraboliques, inégalité

d’observabilité, controlabilité nulle,fonction de poids.
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Notations & abbreviations

Set of real numbers.

An open set in R"” with boundary 0f).

A boundary of €.

The set of functions belonging to C*° (D), compactly supported in D.
Continuously differentiable function space in Q).

The space of measurable functions of summable squares in D.

The bounded linear operator space.

A inner product in space L? (Q).

Sobolev space.

Closure of ) or D respectively.

The gradient operator.
The Laplacian operator.

The spatial variables.
Derivative for z.
The time variables.
Derivative for t.
The normal derivative.
The adjoint operator of P.
Characteristic function of the set w.
An open set such that @y C w.
Closure of Q2 except wy.
Support of function wu.
Partial differential equations.
Almost every where.
Smaller or equal to approximately.
Sup essentail of function w.
The space of the test functions.

Open subset of 2.




Introduction

Carleman estimates were first presented by Swedish mathematician Torsten Carlman in the 1930s,
exactly in 1932 [5] and [13]. The original motivation for these estimates was to study the behavior
of partial differential equation (PDEs) solutions with variable transactions at exponential weights.
These estimates were circulated and organised by L. Hormander [9]and others for a large class of
differential operators in arbitrary dimensions.

It was initially used to study PDEs, especially those that are difficult to solve using traditional
methods. It also provides a way to estimate the behaviour of PDEs in areas where traditional
methods fail. Carleman estimates address the characterisation of solutions for certain types of
partial differential equations through indirect means.

The basic idea of Carleman estimates is to use an integrated identity that includes a PDE solution
and weight function. The weight function is carefully selected to ensure that these estimates are
found in good form.

Among the latter’s uses in mathematics are some applications that include inverse problems
[11] where they have been used for certain types of inverse problems of partial differential equa-
tions, where they seek to recover information about a factor or function unknown due to some
data and knowledge of the differential equation that governs their behaviour as well as integra-
tive equations. Carleman estimates were used in control theory (see for example [8] and [12]) to
study the controllability and stabilisation of systems governed by partial differential equations.
Spectral theory[15]to study the spectral characteristics of operators in Hilbert spaces. Descrip-
tions of nonlinear analysis are used to study the behaviour of nonlinear systems, such as nonlinear
partial differential equations. Without forgetting the engineering analysis to study the geometric
properties of cubes and subfolds, such as bending and size.

Overall, Carleman estimates provide powerful tools for analyzing complex mathematical sys-
tems and have numerous applications across areas such as photography.

Control theory is a branch of engineering and mathematics that deals with the analysis and
design of controllable systems to achieve the required behavior. This theory is concerned with cre-
ating systems capable of maintaining or changing their condition based on feedback, and involves
using mathematical models to describe system behaviour and developing control algorithms to
handle system input in order to achieve the desired output. The goal of control theory is to
develop techniques and tools that can be used to design systems capable of achieving specific
performance goals, such as stability, response, and accuracy, control theory uses all disciplines.

An example of steering a vehicle, driving an aircraft or satellite to a geostationary orbit,

improving the flow of information into a network, coding and decoding a digital image or SMS,




regulating the thermostat, refining oil, controlling the pH of chemical reactions or optimising
profits from stock market flows... Control can also reduce pain and prolong life. For example,
a blood pressure regulator is designed to maintain this pressure at a constant and appropriate
level; we can also control an epidemic such as studying brain tumor treatment or performing
laser surgery. Plus robots. It is also used in areas such as economics, biology, and social sciences
to model and control complex systems.

Overall, control theory is a highly interdisciplinary field with broad-ranging applications.

This study aims to study the controllability of parabolic equations; the tool used to achieve this
goal is the Carleman estimates.

So this work is organised as follows:

In the first chapter, we will provide a reminder of the basic spaces in functional analysis such as
the Hilbert and L? and Sobolev spaces as well as part of the definitions needed for controllability,
and finally we can consider some of the concepts of Carleman estimates including the particular
concepts of creating these estimates and the difference between both types.

In the second chapter, we offer some ways to create Carleman estimates of the equivalent
partial differential equations that we have put forward to study the problem of controllability of
these equations from a suitable weight function.

The third chapter is devoted to study some control problems of parabolic equations to find

observability inequality based on the demonstration of null controllability in Carleman estimates.

iv



Chapter 1

Basics on the controllability of parabolic
PDEs

In this chapter, we will present a reminder on the fundamental spaces in functional analysis as
Hilbert spaces, LP spaces and Sobolev space as well as a part of definitions necessary on the

controllability, and finally we can consider some concepts of Carleman estimates.

1.1 Functional spaces

1.1.1 Hilbert space

Definition 1.1 Let H be a linear space over R. We ask the inner product in H to be a function

(,):HxH-—R,
with the following conditions met:
1. Ve € H: (z, ) > 0and (z, z) = 0 <= 2z = 0 (positivity).
2. Vz,y € H: (z, y) = (y, ) (Symmetry).
3.Vr,y,z€ H: (Ax+py, z) =Xz, 2) +p(y, z) VA, p€R (bilinearity).

A linear space endowed with an inner product is called an inner product space.

An inner product induces a norm, given by

[zl = v/ (2, x). (1.1
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Definition 1.2 Let H be an inner product space. We say that H is a Hilbert space if it is complete

concerning the norm (1.1).

1.1.2 [”(Q2) Spaces

Definition 1.3 Let p € R with 1 < p < oo. We call the space of Lebesgue L (£2) space

LP (Q) = {u : ) — R, v measurable and / lu (z)|P dz < +oo} ,
Q

lull ey = ( / |u<x>\pdx)” . (1.2)

L*(Q) = {u : ) — R, u measurable and / |u (z)|* dx < —i—oo} ,
Q

equipped with the norm

- In the special case p =2 :

is a Hilber space, its inner prduct is

sy = ([ 17 ar)’

L () = {u: Q — R, u measurable and 3¢ > 0 : |u (z)| < ca.e on Q},

- Inthe case p = oo :

equipped with the norm

[ull oo () = supess |u (z)| = inf {c¢ > 0, [u(z)| < ca.eonQ}.
€N

We can define in this space L? () the inner product

(u,v) = /Qu (z) v (v) dv,Yu,v € L* (). (1.3)

1.1.3 [L?(0,T; X) Spaces
Definition 1.4 The space L? (0,7T; X) is defined as follows:

LP(0,T; X) = {u (t) in X, u measurable and /OT lu(2)|)% dt < +oo} ,
equipped with the norm

lull ooy x) = sup ess [[u(@)]lx -
tel0, T

1.1. Functional spaces
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1.1.4 Sobolev spaces
The space H! ()

Definition 1.5 We denote by H' (Q2) the linear subspace of L? () or sobolev space order one on ,

the space
ou

0%

The inner product and the norm in H* () are given respectively by

HI(Q):{UEL2(Q); GLQ(Q),lgign}.

(us )y :/uv d:v—l—/Vu-V'u dz,
0 Q

Jul2. :/u2 dm—l—/Wu 2 da.

Theorem 1.1 H' (Q) is Hilbert space.

and

Definition 1.6 H} () is defined as the closure of D (Q) in H' (Q) i. e.
Hy () = D ().
Proposition 1.1 H} (Q) equipped with the norm and inner product in H' (2), respectively.

Theorem 1.2 (Rellich) If Q) is an bounded open class C?, then canonical injection of H} () in
L?(Q) is compact, i.e. any a bounded set of H} (Q2) is relatively compact in L? () . We write:

H* (Q) — L*(Q) is compact (— continuous injection).

1.2 The controllability of parabolic PDEs

Control theory is mainly called dynamic improvement theory, which began in the 20th cen-
tury and continued to evolve and adapt to the needs of mathematicians, physicists, mechanics,
chemists, and biologists. However, it serves as a prelude to many issues of great practical impor-
tance, such as track planning and ecology.

The controllability in our field is the ability to find at least one control so that the controlled
system can reach any final state beforehand and we also know that it is one of the structural
characteristics that characterise the systems and may classify them through their geometric prop-
erties.

1.2. The controllability of parabolic PDEs
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A control problem is of manipulating a system with an input-output space. The input is the
control can be a function in a boundary condition, an initial condition, or a coefficient in a partial
differential equation modelling the system, or any parameter in the equation, and the output is
the state or the solution of the system or any information related to her as shown in the following
chart:

* |Input

e System

Y
¢ Qutput

Observation

FIGURE 1: Control system

Consider the linear differential system

Yy (t)=Ay(t)+Bu(t) ,vte (0,7) (control)
z(t) =Cly, (observation) (1.4)
y(0)=y € D(A)CY, (initial data)

where

1.2. The controllability of parabolic PDEs
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* y(t) € Y the state space, u(t) € U, and z(t) € Z are the spaces assumed to be a separable

Hilbert of infinite dimension;
* u: (0, T) — U is a locally integrable control (input) function;

* 2: (0, T) — Z is a locally integrable observation (output) function;

* A: D(A) CY — Y is an infintisimal generator of a Cy-semi-group {S(t)},., on Y, with A a

parabolic operator;
* B: U — Y is alinear and bounded control operator;
* C:Y — Zis alinear and bounded observation operator.
We will note this by
e (A, B, C) the system (1.4).
e (A, B) the system (1.4) regardless of output(C' = 0).
e (A, C) the system (1.4) regardless of input(B = 0).

The solution of system (1.4) is given by
t
y(t,u,y,) = S(t)y0+/ S (t —s)Bul(t)ds.
0

1.2.1 The operator of controllability

For system(1.4), consider Lr is the bounded linear operator defined by

. { L2(0,T;U) — Y
Tl w() — [1S(t—s)Bu(t)ds,

and the adjoint operator is given by

Y — L2(0,T;U
E{ 0.7;0)

r — L5T = u.

Proof given in [4].

(1.5)

1.2. The controllability of parabolic PDEs



Chapter 1. Basics on the controllability of parabolic PDEs

1.2.2 Different concepts of controllability

Exact Controllability

Definition 1.7 The system (1.4) or the pair (A, B) is exactly controllable in Y on [0, T, if given
any initial and desired data y,, yq € Y there exists a control u € L? (0, T; U) such that the solution
of (1.5) satisfies y (T') = yq. In other words

Yya € Y,Jue L?(0,T;U) : y (T) = ya. (1.6)
Proposition 1.2 The system (1.4) is exactly controllable if and only if:
Im (L) =Y, (L surjective).
Remark 1.1 We recall that Im L7 = {y € Y/Jue L*(0,T;U) : y (t,u,y,) = y}-

Proposition 1.3 (Observability inequality)The system (1.4) is exactly controllable if and only if:

T
B> 0vey [ IBS @l 2 vl (1.7)
0
This inequality is called "Observability inequality".

Approximate controllability

Definition 1.8 The system (1.4) or the pair (A, B) is approximate (or weakly) controllable in Y
on [0, T if:
Vys € Y,Ve > 0,3u e L*(0,T;U) : |y (T) — vally < =& (1.8)

Proposition 1.4 The system (1.4) is approximate controllable if and only if:

Im (L) =Y, (the image of L is densein Y).

Proposition 1.5 The system (1.4) is approximate controllable if and only if L’ is injective.

Null Controllability

Definition 1.9 The system (1.4) or the pair (A, B) is null (or zero) controllable in Y on [0, T if:
VYya €Y, Jue L?(0,T;U) : y(T) = 0. (1.9)

Proposition 1.6 The system (1.4) or the pair (A, B) is null (or zero) controllable in Y on [0, T if
and only if:

1.2. The controllability of parabolic PDEs |[§
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D) 30>0vyey: [TIBS (B)yld > ClS* )yl

ii) Im S (¢) C Im L.

Exact Controllable

Approximate controllable

E

MNull Controllability

FIGURE 2 : Different concepts of controllability

1.3 Weight function

To develop Calman estimates, we need a special function called the weight function, and this

function has conditions to choose summarised in the following Lemma.

Lemma 1.1 Let wy C w be an arbitrarily fixed subdomain of ) such that wy C w C €. Then, there
exists a function 1 € C*(Q) such that

P(z) >0,  foreveryz €,
P(x) =0 for all x € 09,
|Vi(x)] >0, forall xz € Q\wo.

- The form of this function is given by

¥z, t)=d(z) = B({t—t) +co,to€ (0, T); B, co >0,

with d € C? (D), |Vd| # 0 on D, and inf(, 1eq (z, t) > 0.
Proof. The proof of this lemma is given in [18], [10]. =

1.3. Weight function
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1.4 Carleman estimates

Carleman estimates were presented in 1939 by the Swedish mathematician Torsten Carlman.
Carleman estimates found different applications in mathematical analysis branches, in their be-
ginnings used to show the results of uniqueness in solutions to elliptical partial differential equa-
tions. Estimates of the Carlman type were also found in the fields of new applications, especially
partial differential equation control theory and spectrum theory, as well as in the study of reverse
problems.

Carleman estimates are a powerful tool in the study of parabolic equations, providing a way to
estimate the solution of the equation in terms of its initial data and limits. This makes it useful
to examine problems of control, as one is interested in creating the necessary conditions for
controlling the solution of the parabolic equation, and this is the goal of this memory.

In particular, Carleman estimates can be used to show that if certain requirements are met for
equation transactions and boundary data, the solution can be controlled by appropriate border
controls. This is done by showing that if these requirements are met, the solution can be assessed
in terms of its initial data and border controls.

Carleman estimates were also used to study control problems in other types of partial differential
equations, such as hyperbolic equations and equation systems. In addition, they have been used
to study reverse problems, where one is interested in recovering information about transactions
or raw data from solution notes.

A typical Carleman inequality in the form below
le*ull < e Pull,

this formula for parabolic equation see [2]

2 2 2
1 ¢ 3 ¢ P
Hh2ehuH + ’ h2erV u thhPuH ,
L2 L2

=

L
where P is a differential operator; u a function; ¢ a function called a weight function; » > 0 a

small parameter; s > 0 a real parameter and C' > 0.

1.4.1 Types of Carleman estimates

Carleman estimates are a powerful tool in the study of partial differential equations (PDEs).
They provide a way to estimate the solution of a PDE from above or below by using a weight
function that satisfies certain properties. In particular, Carleman estimates can be used to prove

the uniqueness and stability results for solutions of PDEs.

1.4. Carleman estimates ||J
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Actually, there are two types of Carleman estimates

Global Carleman estimates

Global Carleman estimates for parabolic equations are estimates that hold uniformly over the
entire domain of the equation. These estimates are useful for proving global uniqueness and

stability results for solutions of parabolic equations.

Theorem 1.3 (Global Carleman estimate). Let ¢ be a function that satisfies Assumption 7.7
(see[14] ). Then there exist 5, > 0 and C' > 0 such that

2

L2((0, T)Xw)) ’

| o=
2(Q)

for 0 < (T +T?)e < 64, h = et (T —t) and u € C* ([0, T] x Q) such that u[y 1y, o =0

Proof. see [[14], Theorem 7.8|. m

2
h%e%uH + ‘
L2(Q)

3 @
h2erV,u

2 @ 2
h ehPuH + ‘
L2(Q)

1
hie%u‘

Local Carleman estimates

Local Carleman estimates, on the other hand, hold only in the neighbourhood of a given point
in the domain. These estimates are useful for proving local uniqueness and stability results for
solutions of parabolic equations.

There are different types of Carleman estimates depending on the type of PDE being studied and
the properties of the weight function used. Examples include exponential Carleman estimates,

polynomial Carleman estimates, and logarithmic Carleman estimates.

Theorem 1.4 (Local Carleman estimate away from the boundary). Let K be a compact set of
and Van open subset of ) that is a neighbourhood of K. Let ¢ be a weight function that satisfies
Assumption 7.1[see [14]]in V.

Then there exist C' > 0 and §, > 0 such that

foru e C* ([0, T] x Q), with uw € C° (K) for all t € [0, T] and 0 < (T + T?%)e < Js.

Proof. see [[14], Theorem 7.3]. m

2 2 2

1 ¢ 3 ¢ P

h2ehuH + ) h2erV u thhPuH ,
L2 L2

<]

L

1.4. Carleman estimates |



Chapter 2

Construction of Carleman estimates of
parabolic PDEs

In this chapter, we will present some techniques for creating Carleman estimates of parabolic
partial differential equations in the case of Dirichlet boundary conditions. These estimates were

presented in 1922 by Swedish mathematician Torsten Carlman who called them Carleman in-

equality .

2.1 Carleman estimates for the heat equation

Let Q@ € R", n > 1 be a bounded spatial domain with smooth boundary 0f2. For a given time
T > 0, we denote Q = Q2 x (0, 7).

0
@ -

FIGURE 3: The space-time cylinder

Let D C @ be a bounded with smooth boundary 9D.

10
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Consider the following heat equation with v € C§°(D)

Owu(z,t) = Au(z,t) + f(z,t), in D. 2.1)

Our aim is to find an estimate of the previous equation in the following form see [20]

/ s(|Vu(z, ) > + Ju(z, t)]?)e** @D dedt < C’/ |f (z,1)]2e*¢ @D dzdt, (2.2)
D D

where s > 0 is a large parameter in some domain, ¢(z,t) is a suitable weight function, and
constant C' > 0.

This estimate (2.2) is called a Carleman estimate. We note that the estimate is valid uniformly
for all parameters s > 0, i.e., s > so: a constant. Therefore, the constant C' > 0 should be
independent of s > sy and u € C§°(D).

To prove this estimate, we assume that the weight function ¢(z, t) verifies

e(x) >0  foreveryz € (,
@(x)|89 = Oa (2'3)
IVp(z)| >0 forall z € Q\wp.

The first step is multiplying equation (2.1) by e***%) to get
[Ou(z,t) — Au(z, t)] eP@D = f(x,t)es?@D,

Then

[0 — Al u(z, 1)) = f(a, t)e> 0,

Suppose that

w(x,t) = e @z, 1),

and
Puw(z,t) = @D (9, — A)(e *?@h ),

The second step is to calculate the norm in L? (D) space, attached
/ fre2e@h dy dt = / |Pw(z,t)|? da dt.
D D

Now we seek to find a lower estimate for || Pw(z,t) Hiz( D)
We set

Pw(:c,t) = 65@(1”:)(3,5 _ A)(ef&p(m,t)w)
—  se(@) [(at(e_w(x’t)w(a:,t)) _ A(e—sw(x,t)w(z,t))} '

2.1. Carleman estimates for the heat equation
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We obtain

0t(e_8‘p(x7t)w(x, t) = w(zx, t)@te_s“"(x’t) + e_sw(x’t)atw(x, t) (2.4
= @Dz, t) — sw(z,t)Oppe @Y,

Besides that

Aw(z,t) = —se 2@ (2, 1) Ap + s @0 (|[V|)? — 2se @DV w - Vi + Aw (2.5)
result from

a(efsap(z,t)w(x’t)) . 890 —s@(m,t)w(x t)_i_e_s‘f’(mvt)—a(w(m’t)) and

ox; N 890, Ox;
az(eisLP(x’t)w(w? t)) 0 8(70 —sp(x,t) d —sp(x,t) 8(&) (l’, t))
dz? N [8@(8@( W(Lt))} * 8_a:i<€ Ox; )
o 8290 —sp(x,t) 890 0 —sp(z,t)
= —5 [8_x?€ w(z,t) + 8%6_%(6 w(z,t)
0(W($,t)) 0 —sp(z,t) GQW(I,t) —sp(x,t)
* 0r, Oz, (e )+ 0z? ©
_ 82@ —sp(z,t) 890 6(,0 75@(3: t)
= —s [8_5(:226 w(m,t)} + s* oz, (9% w(z,t)
_g 890 3w(m, t) efsgo(m,t) 890 8&)(1’ t) 7s<p(x,t)
— _Se—scp(a:,t)w(l, >8 ¥ ( 8<p )26_S(p(x’t)W(I, t) — 9se —sp(x,t) a(p 8(4](1’ t) .

ox 2 8"13% 8331 amz

Then, by (2.4) and (2.5), we have this result

Pu(z,t) = e?@De=¢@0gu(x,t) — sw(x, t)Oype P @ e=5?@N 9,0 (x, 1) — sw(x, t)Dype P
- (—se’sw(“’t)w(x, t)Ap + s~ 2@y (x,1)(|Vp|)? = 2se @DV w - Vi + Aw)]
= Ouw(x,t) — sw(x, )0 + sw(x, t)Ap — s2w(|Vp|)? — 25Vw - Vo — Aw,

and, we can write

Pw(z,t) = dw(r,t) — Aw — 2sVw - Vi + (=500 — s*(|[V|)? + sAp)w(z, t). (2.6)

In this case, we decompose the operator P into the symmetric part P, and the antisymmetric part

P_ (see appendix Proposition 4.3 [A.5])

2.1. Carleman estimates for the heat equation
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Pw=P.w+ P w.

The third step is a calculus of the adjoint P*of P with
(Pva)H(D) = (w7P*U)L2(D) v, w < C(C))O (D)-
We have, for all v,w € C§° (D)

(atva)L2(D) = (Waatv)y(p)

and
(_AW’U)LQ(D) = (w, —AU)L2(D)

by integration by parts (see appendix Theorem 4.1), and the Green theorem (see appendix Theorem
4.2). We get

P*w = —0w(x,t) — Aw + 25Vw - Vo — (50,0 + s*(|Vp|)? — sAp)w(z,t). 2.7
On the other hand, we define P, and P_ (see appendix Theorem 4.3 [A.6], [A.7]) by
P =1(P+P*), P.=1(P-P").

Use the equation of P and P*, to get

1 .
P.w = §(P+P*)w )

= —Aw(x,t) — (s9p + 5% |V w

and

1 o
Lp- P (9
= OJw+ (sAp)w+ 2sVp - Vw.

We have

/ fre? @t dy dt = / |Pw(z, t)|* da dt.
D D

By (%) and (*x), we get

2.1. Carleman estimates for the heat equation
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/ 2@y at = / |Pyw 4 P_w|?da dt
D D

2
= |[Prw+ Pwllz2p -
We know that
| Prw + P—“Hiam = ||P+W||i2(D) + HP—WH2L2(D) +2(Prw , P_w)pap) 2 2(Pew , P-w) a2y -
Therefore, we will find an estimate of the right side as follows

2(Prw, P_w)pappy = 2 (—Aw(z,t) — (sOpp + 8 Vol w , 0w + (sAp)w + 25V - Vw)
= 2(—Aw(z,1),0w) 12 (py + 2 (—Aw(, 1), 25V - VW) 2y
+2 (—Aw(z, 1), (sAp) w) 2y — 2 ((sOip + 8 Vol )w, Ow)
—2 ((s0ip + 5 |V )w, 25V o - Vw)LQ(D
—2((sOpp + 5° IVo|*)w, (sAp) w)

L*(D)

)

L2(D) >

where w € C§°(D), we will reduce the orders of derivatives of w, and the constants C; > 0,
i = 1, 4 denote constants independent of s.

Let us make some calculations

—2((sOpp + 5° IV|H)w, 25V - Vw)Lz(D) = —43/ (((sOyp + 5° IVo|Hw) Ve - Vw) dz dt
D

= —4s Z/ {(sOpp + s |Vgp|2)w} Oip - Ojw dx dt
i=1 YD

= QSZ/ {(sOpp + & |Vg0|2)} dpp - 0; (W) du dt,
i=1 /D

since
2woiw = 0; (w2) <— 0, (wZ) = wo;w.

We have
—2 ((s@tgp+82]Vg0|2)w,2$Vg0-Vw)LQ(D) = QSan /D 0; {(s0yp + 82 |V} (W) da dt
= QS/DV{(S(?tgo—l—sQ]Vgo]Z)Vgo} (w?) da dt
_ 25/[){V(58t<p+82\Vg0]2)Vg0} (?)

+25/ {(sOpp + s |Vg0|2)Agp} (w?) dz dt.
D

2.1. Carleman estimates for the heat equation
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Using the Green formula (see appendix Theorem 4.2), we get
2 (= Aw, (589) W) papy = —25 /D Aw(@, 1) - (Ap) w)da dt
= QS/DVw -V((Ap)w)dz dt
= 28/D (A@) - |Vw|* dz dt + 23/DV (Ap) - wVw dz dt,

and

3/ V (Ap)’ wVw dz dt‘ < C’ls/ lw| |Vw| dz dt.
D D

Hence, we get

2 (—Aw(z,t), (sAp)w) > 23/

(Ag) - |Vw|* dx dt — Cls/ lw| |Vw| dx dt.
D D

The last coefficient, noting 2(dyw)(9k0;w) = 9;(|0kw|?), and integration by parts (see appendix
Theorem4.1), we have

2(—Aw(z,1),2sVQ.Vw) 15y = 22 —0jw, 25(0;¢) .0jw)

£2(D)
7,k=1

= 2 Z (Okw, 250, [0;0.0;0]) 12y
jk 1

= 2 Z (Opw, 2s(0 akaJ<P>)L2(D)

7,k=1

(8kw 25 (0;0) (0:01)) (1)

= 45 /8kw )(0k0;) dx dt

jkl

+2s Z / 0jp) 205w (0 0jw)dx dt

7,k=1

= 482/8 (Okw)(0k0;) dx dt

jkl

+2s Z / 9;5¢) 0; (|| )dx dt.

7,k=1

= 432/8 (Okw)(0k0;) dx dt

7,k=1

—282/ 1) |0 dez dt.

7,k=1

2.1. Carleman estimates for the heat equation
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By note, we find that the maximum order terms w?and |Vw|® are s, and s, respectively, we have

1
3 (P Py 2 5 [ (VU196 - Vghutdua

+2s Z / Ojw(0kw) (OK0;) dx dt
D

7,k=1

—02/ s*wdxr dt — C’ls/ lw||Vw| dx dt
D D

v

53 / {V(IVp|?) - Volwidrdt + 2s Z / Ojw(0pw) (0k0;¢) dx dt
D s
—Cj / (s*w? — |Vw|) dz dt.
D

We used to write better the last inequality (see Appendix Proposition 4.1 [A.1])

1 1
s|Vw||w| < 532 w|* + 5 IVw|®.

Other terms are non-principal because they are a lower estimate.

Remark 2.1 :Estimates are specific to variables w? and |Vw|” .

The fourth step is to take s > 0 and large, and if ¢(x, ) satisfies {0;0;¢},, ;, is positive definite,

and Ja > 0, « a constant such that
V(Ve?) Ve >a onD .
Then there exist constants Cy > 0 and s > 0 such that

/ (s|Vwl* + 8 |w|?) do dt < 6’4/ fre**?dx dt,
D D

for all s > sp and all w € C§°(D), with w(z,t) = e**@Hy(x, t), we rewrite in terms of u, we find

/ (s Vaul? + s° |u|2) e**?dy dt < 04/ fre*?dx dt,
D D

for all s > sp and all u € C§°(D).

2.1. Carleman estimates for the heat equation
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2.2 Carleman estimates for a general of the second-order par-

abolic equation

Let D C () be a bounded domain whose boundary 0D composed a finite number of smooth
surfaces.

In this part, we will prove Carleman’s estimates in the general case of parabolic equations

using another technique that is different from the first case. First, we recognise the parabolic

equations in their general space. There are two types of parabolic equations :

p(z,t) O (x,t) — Z@ a;j(x,t) Oju (z,t)) Zbkxtaku(m t) —c(z,t)u(x,t) = f(z,t),
i,7=1 k=1

(2.8)

and

n

Oyu (z,t) Za” x,t) 0;0;u (z,t) — > by (x,t) Opu(x,t) —c(x,t)u(x,t) = f(z,t). (2.9)

i,7=1 k=1
With p (z,t) € C* (D), p>0on D, and by, b, ¢, ¢ € L® (D) ,1 < k < n, with
{ %-J et (b) @J = 5];2-, 1< ’l,] <n,
ZZj:l ai,j (33,t) 515] 2 51 Z?:l 512 (l’,t) € E 5 517 7€n € R.

Let us set

n

Lu(x,t) = Oy (x,t) Zaw (x,t) 0;0ju (z,t) — Zbk(x,t)aku(a:,t)—c(x,t)u(a:,t) in Q,

1,j=1 k=1
with
( Fij = %’ ai; € C'(Q) ai; € CT(Q), aiy=aj;, 1 <i,j <n,
ZZ]’:I ai,jfifj 2 01 Z?:l 5123 (l’,t) € @ ) 517 7£n € R: o1 > 0
b= (bt T 0 ) (2.10)
=5
\ b, c € ct (Q) ,
and we set
Lou (z,t) = O (x,t) — Za” (x,t) 0;0ju (z,t).
i,j=1
Theorem 2.1

2.2. Carleman estimates for a general of the second-order parabolic equation
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For u € H*'(Q), there exist three positive constants C, \, and s with s > s, such that Lu = f,

and satisfies :

1 n
/ {— <|8tu|2 + Z |81-8ju]2> + s\ |Vul® + 53)\4<p3u2} e*?dx dt < C/ |Lu|® e**%dz dt,
D | S¥ D

ij=1
(2.11)
where suppu € D, and verifies (2.10) .
Proof. To demonstrate the previous theorem, we first demonstrate the Carleman estimate for the
operator L. Since |Loul* < 2|Lul* + 23 _, |bkOpu + cul* in Q.
Let
Lou(z,t) = f in Q
with (2.10).
We set

Ou (z,t) — z": a;j (x,t) 0;0ju (x,t) = f

ij=1

= 0= > ai;(x,1) 00| u(w,t) = f. (2.12)

ij=1
We assume the weight function ¢ (z,t) in the form of e*¥, for A > 0. It is a good form to guarantee
the positivity of the coefficients of |w|*and |Vw| in estimatingHPwHiQ( D)-

On the other hand, let d € C? (D) ,and |Vd| # 0 on D, let us set

Y (z,t) =d(x)— Bt —1t) —co (2.13)

with ¢y € (0,7, and 3, ¢g > 0, such that

o (w,t) = VD, (2.14)
First, we assume that
ue Cy° (D).
We further set .
o(z,t) = Z aij (z,t) (0id) (z) (8;d) (z) (z,t) Q. (2.15)

i,j=1
Multiplying the equation (2.12) by e*#(**) we have

Oy — Z a;; (z,t) 0;0; e*# @ty (x,t) = fese@d),

3,j=1

2.2. Carleman estimates for a general of the second-order parabolic equation
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We denote
w(z,t) = e** @Dy (z,1)

[at - Z ai; (z, 1) @@] w(z,t) = fe @,

i,j=1

By multiplying the equation (2.16) respectively in e*#(**) and e~*¢(**) we find

e se@t) [at - Z a;; (z,t) &@-] e P@y(x,t) = fere®h,

ij=1

We define an operator P by
Puw (z,t) = e*?@) [, (e_s‘p(m’t)w(x, t)) .

Hence
Puw (z,t) = fes?@b,

The operator P has the form:

Pw(z,t) = Ow — Z a;j (z,t) 0;0;w + 25\ Z a;; (0;d) Ojw

i,j=1 i,j=1

—2X2p%0w + s\ lpow + sApw Z a;;0;0;d — sApw (041))

i,j=1
From (2.17), we have
Pw(x,t) = GW(x’t)Lo (B_W(x’t) (z, t))
= escp(a:,t) Zal] .%'t 818] ( T (xt)w(xat»
| 7,7=1
= e |0, (e, 1) = 3 ay (000, (i, 1)
i 2,J=1
= @1 —J]
with
I =0, (e Dw(z,1))
and

J = Z a;j (x,t) 9,0; (e~ *"w(z, 1)) .

ij=1

(2.16)

(2.17)

2.2. Carleman estimates for a general of the second-order parabolic equation
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We simplify each part alone by integration by parts (see appendix Theorem4.1) and (2.13) and
(2.15), we put

I = 0 (e_s‘p(x’t)w(x, t))
= wo (efsw(x’t)) + e?@t g, (w(z,t))
= w(—se 000 (2,1)) + e "9, (w (z,1))

= ¢ N, (w(z,1)) — swe D (Dyp (2, 1))

= @D, (w(z,t)) — swe™*# @) (8te’\¢(’“"’t))

= e 2@y, (w(z,t)) — shwe 5P @t) (8]57,0 (z,1) eW(“’"’t))
x

I = @99, (w(z,t)) — shpwe @V (1),

since
9, @t) = N @D G (x,t).

The second part

n

R Y LA )

ij=1
= Z a;j (z,t) 0 [w(z, )06~ 1 =50 @D g (x, t)]

i,j=1

= Z a;;j (2,1) 0; [—shpw(x,t)e *?"D9;d () + e D0 w(x, t)]

ij=1
because
aje*sw(r,t) _ —se’s“’(x’t)(?jgo

= —semsel@tg M)

= —she @D MED G0 (1, 1)

= —s/\e_s‘P(x’t)e’\w(‘”’t)ﬁjd ()

= —shpe 9. (z).
Then

J = Z a;; (z,) 0; [—shpw(z,t)e 1 @09,d (z) + e *? "D (. t)]
ij=1
= —s\ Z a;j (z,t) 0; [pw(z, e #=D9.d (z)] + Z a;j (z,t)0; [e_s‘p(x’t)(?jw(m, t)].

1,7=1 3,j=1

2.2. Carleman estimates for a general of the second-order parabolic equation
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We denote
X, = w(z, t)e 5@t
Then

= —s\ Z a;; (z,t) 0; [X1Yh] + Z a;;(x,t)0; [ s“"(x’t)ajw(x,t)] .

4,j=1 3,j=1

We simplify the first term of J and find

0;[X1Y1] = Y10,X1 + X19.%1
= @0;d(x)0; (w(a:,t)efsw(r’t)) +w(@, e =, (pd;d (x))
= p0;d (x) [e# "0 0w(w, 1) + w(z, )dhe™ ] +w(z, )e?"
[00:0;d () + 0;d () Dyep)]
= 00,d (2) [ 00w (x, ) — sw(z, t)e D] + w(z, e P
[08:0;d (x) + 9;d (x) D, D]

= ©0;d (x) [e *?"NOw(x, 1) — shpw(x, t)e P Dd (z)] + w(x, t)e ")
[00;0;d (x) + X0;d (z) p0;d ()]

= e *?@N9d (2) Oiw(x, t) — shp*w(x, t)e *?@N0;d (x) d;d ()
+w(w, t)pe *?N0,0;d (2) + Apw(w, t)e @D ,d (x) 0;d (x) .

Then

J = —s) 2": a;,; (2,1) e ?00;d () (. 1) — sAp*w(x, t)e™?00;d (z) 0,d ()
+w(w, t) e @0 9,0,d (z) + Apw(z, t)e*@)9,d () O;d (z)

i,7=1
+ Z am (fL‘, t) & [G_Sw(x’t)ajW(SE, t)}
1,j=1

Zn: . —sApe™*?@D,d () Oyw(z, t) + s2N>?w(z, t)e *?@N9;d (v) Oid ()
= Q; ; \T
! — s w(w, t)pe*?@D9,0,d (x) — sN\*pw(w, t)e*#@Dg; d( ) 0id (x)

—l—Za” (z,t) [Ojw(z, t)Dse™ se@t) 4 e=se@5.0,0(x, t)]

zn: ; —s e *?@D,d () Oyw(z, t) + s2N2p%w(x, t)e **@N9,d (x) Oid ()
a; ; \T
by ’ —sdw(w, t)pe *?@D9,0,d (x) — s)\*pw(x, t)e*?@D g, d( ) 0pd ()

- Z sha;j (1) e @D diw(x, 1)0;d (x) + Z aij (z,t) e *? @090, (x,t)

4,7=1 2,7=1
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= —shpe @) Z a;; (x,t)0;d (v) Ow(z,t)
i,j=1
+52 N Q%w(x, t)e PN Y "y (2, 1) 0;d (z) 0id ()

3,j=1

—s\w(x, t)pe @D Z a;j (z,t) 0;0,d ()

ij=1

—s\2pw(x, t)e @ Z a;; (z,t) 0;d (z) 0;d (x)

1,j=1

- Z shagj (1) e @D 0w(x, 1)dyd () + Z a;j (x,t) e *?@N9,0,0(x,t).

i,j=1 hj=1

Therefore

Pw(z,t) = 0 (w(x,t)) — shpwo) (x,t) + sAp Z a;; (z,t) 0;d () Ow(x,t)

1,7=1

—s* N p%w(z, 1) Z a;; (z,t) 0;d (z) 0;d (z) + shw(x, )¢ Z a;; (x,t) 0;0;d (x)

i,j=1 i,j=1

+s\ 2 pw(w, t) Z a;; (x,t) 0;d (z) 0id (z) + she Z a;; (x,t) Ow(x,t)0id ()

i,j=1 i,j=1

- Z Qj 5 (ZL’, t) aing((L’, t)

1,7=1

Note that 0;w(z,t)0;d (x) = 0;d (v) Ow(x,t) with (2.14), we have

Pw (z,t) = Ow — Z a;; (,t) 0;0w + 25\ Z a;; (0id) Ojw

1,7=1 3,j=1

—s* N2 %0w + s\ pow + sApw Z a;;0;0;d — s pw (0p1)) .
ij=1

As we said at the beginning, we will use a method different from the first case, but we will not
overlook the similarity that is in the decomposition of operator P, but the latter is not the same
and not the same transactions, but the decomposition is P, and P,, where P, is composed of
second-order and zeroth-order terms in =, and P, comprises first-order terms in ¢ and first-order
terms in z. Then, we calculate the norm in space?(D) and find an estimate for the following
workers [, (|Pow|? + 2 (Piw) (Pow)) dz dt.

2.2. Carleman estimates for a general of the second-order parabolic equation
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Therefore, we have
/ fre? @l dy dt = / |Pw(z,t)|? dz dt.
D D

First, we find estimation for ||Pw(z, t)||ig( p)by decomposition the operator P into the parts P
and P,with

1,j=1

Pg = 0tw + 2S>\g0 ZZ]’:I Qg5 (8zd) ij

and A = sA\?pow + sAgw szzl a;;0;0;d — shpw (Oph) = sX*pa (v,t; 5, \) with |a (z,t;5,\)] < C,
then

{ P==>"_ aij(7,t) 0;,0;w — s2N*p?ow + Aw

/D 229 @ 0 dz dt = || P + Powol|2apy

and we have
/ (|P2W|2 + 2 (Piw) (Pw)) dz dt < / fre?e@ D dy dt. (2.18)
D D

Also, we have

2

8tw + 2S>\g0 Z Qi ((%d) @w

/\Pgwlzdx dt = / dz dt
D D Py
1 & ’
2 / — (9tw + 28)\()0 Z Ay (@d) &»w dx dt
D 59 ij=1
by inequality|[A.2], and for any ¢ > 0,we obtain
1 Z ’
/ |Pyw|® dx dt > / — |Ow|? dz dt — 4/ s g Z a;j (0;d) Ow| dx dt
D D S¥ D i1
1
> 8/ — |Oyw|* dz dt — C’la/ sA2p |Vw|? dz dt,
D S¥ D
then
1
e/ — |Ow|* dz dt < 02/ | Pow|” da dt + Cla/ sA2p |Vw|? dz dt. (2.19)
D 8¢ D D

Moreover, for all large s > 0, we can give an estimation for 2 [, (Pyw) (Pow) dx dt with

2 (Prw, Paw)p2py = 2/ (Piw) (Pow) dx dt.
D

We simplify this part (Piw) (Pew), we have

2.2. Carleman estimates for a general of the second-order parabolic equation
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(Pw) (Pw) = — Z ai; (z,t) 0;0;w0hw — s N> ?ow (Ow) + Aw (Ow)
ij=1
—2s\p Z a;; (x,t) 0;0;w Z ag (Opd) Opw
ij=1 k=1

—253 30w Z a;j (0;d) Ojw + 25 ApAw Z a;; (0;d) Ojw.

3,j=1 3,j=1

After entering the integration, we find

/D (Pw) (Pw)dz dt = =Y /D ag; (1) (9;0;w) (Ow) d dt

ij=1
— Z / a;j (z,t) 0;0;w 25\ Z ag; (Oxd) Owdx dt
ij=17D k=1
— / s> N p*ow (Ow) dx dt — / 25 N 30w Z a;; (0id) Ojwdx dt
D D

ij=1

. /D (Aw) (Ow) dz dt + /D (Aw) 2sAp

Z Qi (0Zd) ajwda: dt

2,7=1

6
Z I,.
k=1

Now, applying the integration by parts, with v € C§° (D), a;; = a; ;, and assuming that A > 1

and s > 1 are sufficiently large, we reduce all the derivatives of w to w, d;w, d,w. We obtain the
estimation of [, k =1, ...,6.
The first term

L o= -3 /D ai; (2,1) (Bi0,w) (Do) i dt

ij=1

= Z /D [0;a;5 (x,t) (Ow) + aij (x, 1) 0; (Oyw)] Ojwdx dt

ij=1

= Z / 0;a;; (x,t) (Ow) Ojwdx dt + Z / a;; (z,t) (0;0w) Ojwdx dt
D D

i,j=1 i,j=1
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with ¢ = j and ¢ > j, we have

> i1 Jp Oiaij (x,t) (Ow) djwdz dt

L = N >y [p aii (2,1) (0;0,w) (Ow) d dt
+200 i Jp aij (2, 1) [0 (0i0w) + (Ow) (9;0iw)] da dt

Z/D(at%' (z,1)) (Oiw) (Ojw) dx dt

3,j=1

- 1
< Z /D@iaij (z,t) (Ow) Ojwdx dt| + 3

1,7=1

Here, we used

(Z /Dcm (x,t) (0;0w) (Qiw) dx dt + Z /Daij (x,1) [Ojw (i0ww) + (Qiw) (0;0w)] dx dt)

i>j=1
1 n
) Z/ (Oraij (w,1)) (Ow) (Ojw) d dt.
ij=17D
Then
D D

The second term

L = - Y /D 25 pag; (x,t) ag (,t) (Opd) (Ow) (8;0;w) dx dt

ij=1k,l=1

= 200 ) > /D ag (,t) ag (2, 1) (Opd) (Ow) (8;0,w) dx dt

ij=1k,l=1

— 2 /D S 3" A @) payau (9ud) (91) (9y0) e

i,j=1k,l=1

20 [ 3037 01 (o (04d) (90) () o

ij=1k,l=1

+23}‘/ Z Z (0i01w) (waijar (Opd)) (Ojw) dx dt.
D j=1ki1=1
We have
28}‘/ D0 A (0id) pasjag (0kd) (Ow) (0jw) d di
D!

i,j=1k,l=1

= 23)\2/ Z Z ¢ (aija0;doyd) (0,0;w) dx dt
D .

i.j=1k,l=1
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= 25)\2/g0
D

= 23)\2/@
D

where s > 0, A > 0.

Similar to /;, we can estimate

> a;0dOw| da dt :i,j = k.l resp.
i,j=1

Z aij&»dajw dx dt Z 0

ij=1

25 /D 0 3 (00) (pauyan (9ua) (05) da de

i,j=1k,l=1

28}‘/ Z Z aijap (Ord) 0, (Oiw) (0;w) dx dt
D .

i,j=1k,l=1

s)\/ Z Z a;;arpp (Ord) 0 (Oiw) (Ojw) dx dt + s)\/ Z Z ¢ (aijarOkd) 0; (Ojwo;w) dx dt.
D D

i,j=1k,l=1

We put

And

i,j=1k,l=1

Xo = A [ 22001 2okg @i e (Ord) Oy (Ow) (Ojw) da dit
Yy = s\ [, Dot 2opimt P (aijariOkd) Oy (Oiw0jw) da dt.

Using the integration by party here too, we find

X2 _8)\/
D

ST aane (9ed) 8 (Ow) (jw) da dt

i,j=1k,=1

= —s)\2/ Z Z a;jarp (0id) (Okd) (Ojwojw) dx dt
D

i,j=1ki=1

= _S>\2/D i aijp [i ap (0,d) (8kd)] (Ojwojw) dx dt

ij=1 k=1

= —s)\z/ Zaijgoaaiwﬁjwdx dt
D

i,j=1

= —S)\2/ Yo Z a,-j(?iwajwdx dt.
D

ij=1

2.2. Carleman estimates for a general of the second-order parabolic equation
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Then

Y, = s)\/ ZZg@ (@ijarOkd) O (Ojwi;w) dx dt

1,j=1 k,l=1
= —s/\/ Z Z ©0; (@010, d) (O;wO;w) dx dt
i,0=1k,l=1
= —3/\/ Z Z@l (a;ja10kd) (O;wO;w) dx dt.
1,j=1 k,l=1

n

Xo+ Yy = —S>\2/ oo Z a;; (Ow) (Ojw) dx dt — S)\/ Z Z 0 (a;jax0kd) (Oiwd;w) dx dt.
D

Hence

v

ij=1 i,j=1kl=1

Z a;;0;d0;w

23)\2/
2,j=1

_3)‘2/ Yo Z a’Lj zw dSC dt — 5/\/ Z Z al awakl@k &wa )d$ dt

dx dt +23)\/ Z Z ©0; (a;jak (Okd)) (Ow) (Ojw) dx

1,j=1 k,l=1

i,j=1 1,j=1 k,l=1
n 2
—s)\2/ wo Z a;; (Ow) (Ojw) dz dt + 23)\2/ Z a;;0;d0w| dx dt
,j=1 D 1,j=1
—04/ sAg |Vw|* dz dt.
D
I > —053)\2/ oo Z agj (Ow) (W) dx dt — 04/ sAg |Vl dz dt. (2.21)

4,7=1

The third term

I3] = s> Npow (Ow) da dt‘

1
35 2)\2g0208t ) dx dt‘

I
u\w\o\

1
o (A\?0; () wdz dt + 3 / s2N\2p? (Op0) widx dt
D

|I5] < C’G/ N3 p%wtdz dt. (2.22)
D

2.2. Carleman estimates for a general of the second-order parabolic equation
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The fourth term

I, = —/ 25° 3 piow Z a;; (0id) Ojwdx dt
D ij=1

- _/ 3)\3326% (0:d) 0; (w?) da dt
i,7=1

— / WZ@ ) aijo (8id) dz dt

i,j=1
- /Ds‘?’)\3 Z 30 {\ (0;d) ¢} aijo (Oid) w?dx dt + /D 333 Z 9; (a;jo (0;d)) widx dt
i,j=1 i,j=1
I > / 353 NP owide dt — C / $SN3p3wida dt. (2.23)
D D
The fifth term

I
o\u\

s\ paw (Oyw) da dt‘

/ s>\2goa at )d:z; dt‘

© (0)) aw?dx dt—l—/

D

N | —

%0 (0ya) wdx dt‘

|I5] < C’g/ sA3pw?dx dt. (2.24)
D

The last term

(Aw) 25\ Z a;; (0id) Ojwdx dt

4,j=1

&
I
S~

sA2pa x 25 pw Z a;; (0id) Ojwdx dt

ij=1

I
S~

2a5°\?p? Z a;j (0;d) w (Ojw) dz dt

I
S~

ij=1
= / a52)\3g02 Z Qi <8Zd) 8]- (w2) dx dt
D ij=1
- / Z 9; (as®N*p*a;; (8;d)) widz dt
7,7=1

2.2. Carleman estimates for a general of the second-order parabolic equation



Chapter 2. Construction of Carleman estimates of parabolic PDEs

| 1] < Cg/ 2N Rwtda dt. (2.25)
D

Hence, by (2.20) — (2.25), we obtain

/ (Piw) (Pow) dx dt > 3/ s M3 owidr dt — / 200 Z a;; (Ow) (O;w) dz dt
D D 3,j=1
—Cy / sAg |Vw|? dz dt — Cyg / (s*N¢® + °A1p?) wda dt (2.26)
D D

—6’3/ \Vw| |Ow]| dzx dt.
D

Remark 2.2 To find an appropriate estimate, we use only our factories of w? and |Vw|>. The rest is

unimportant.

Consequently, from (2.26) , we get

3/ s*Mpdowidr dt — / s\2po Z a;; (Ow) (O;w) dz dt (2.27)
D

2,7=1

< / (Piw) (Pyw) dx dt + 6’4/ sA@ |Vw|? de dt
D D
+010/ (s N¢® + °AMp?) wida dt + 03/ |Vwl| |Oww]| dx dt.
D D

Hence by (2.18) — (2.19), we have for alle > 0

1
3/ s MNP o?widr dt — / s\2po Z a;; (Ow) (O;w) dz dt + 5/ — |Ow|* dx dt
D D S¥

2,j=1

< Cu / fre2se@dy dt + C4/ sAe |Vw|* dz dt + 015/ N2 |Vw|?de dt  (2.28)
D
+C1o/ (s° N9 + $2A1?) wida dt + 03/ |Vwl| |0ww| dz dt.
D D

As we said earlier in the note, we will take only w? and |Vw|® transactions plus |d,w|?, we also
must take the maximal order in s, A, .

Here, since the Cauchy-Schwarz inequality (see appendix Proposition4.1) implies that

1
[Vw||Ow| = - 0] (sAp)? [Vl
(sAp)?
1 1 ? 1 1\ 2
< = T latw\Q—l——((s)\(p)?) ]Vw|2
2 (8/\90)2 2
1
< il
g )\ ]@w| + s)\gp|VoJ|
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Then (2.28) becomes

/ 353\ pPow?dr dt — / s\ oo Z a;; (Ow) (Ojw) dz dt (2.29)
D D

ij=1

1
A D S¥

< Cn / fre2P@ 0 dy dt + Oy / shp |Vw|® dz dt + Che / sA\2p |Vw|* da dt
D D D
+C’10/ (33)\3<p3 + 82/\4(,02) Widz dt.
D

We will find other estimates of the first and second terms. Thus, we will execute
/ gpa Z a;; (Ow) (O;w) dz dt
7,7=1

by using of

/ (Piw + Poaw) x (sA?pow) dz dt.
D

We selected this factor (sA\*pow) to get |Vw|?. We multiply this equation

Oyw + 28\ Z a;; (0id) Ojw — Z a;; (x,t) ;0w — SN2 ow 4+ Aw = fe?

i,j=1 i,j=1

by (s)\zgpaw), we have

/ Ohw (s *pow) dz dt + / 25\ Z a;; (0;d) (Ojw) (sN*pow) dx dt (2.30)
D

i,5=1

—/ Z ai; (z,t) 00w | sA\*powdx dt — / SN Q30w dr dt
p \/ 55 D
+/ (Aw) (sX*pow) dz dt

D

5
Z J = / fe*? (s)\2gpaw) dx dt.
k=1 D

Now from w € CZ (D), and integration by parts (see appendix Theorem 4.1). Noting that |0;¢| =
A (0) p| < Ci3Ap and 0,0 = A (0;d) ¢, we find estimates of terms, respectively.

| 1] =

/ Ow (s)\2<paw) dx dt
D

2.2. Carleman estimates for a general of the second-order parabolic equation
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/ ls)\ngaat (w2) dx dt‘
D 2

/ 15)\3@00 (Op)) widw dt'
D 2

< 014/ s)\3g0w2dx dt. (2.3D)
D

And

| Jo| = / 2sAp Z a;; (0id) (Ojw) (S)\Zgoaw) dz dt
D

ij=1

— / 25\ (sA*pow) Z a;j (0;d) (Ojw) dz dt
D

4,j=1

= / s* N0 Z a;; (8;d) 9; (w?) dx dt
D

1,j=1

= —/ Z $*N2p%0; {caij (0id)} widx dt — / Z N {2X (9,d) ©*} oa;; (0id) wdx dt
D D

i,j=1 i,j=1

< 015/ 32)\4902w2dx dt. (2.32)
D

And

J3 = —/ s)\2g00w/ Zaij (x,t) 0;0jwdx dt
D D;

i,j=1

— —/ 3)\2/ Z [a;; (z,t) pow] 0;0;wdx dt
D D

ij=1
n

= / sA? Z 0; (aij (z,t) po) wojwdx dt + / sA? Z (a;; (z,t) podw) Ojwdx dt
D D

i,j=1 i,j=1

> / s\2po Z (a;j (z,t) Ow) Ojwdz dt — 016/ sA3o |Vw| |w| dz dt. (2.33)
D D

i,j=1
Next
Jy= — / SN 3o dx dt. (2.34)
D

And the last
|J5| = ‘/ (Aw) (sX*pow) da dt‘
D

= |(3)\2<paw) (s)\2<paw) dx dt|
= |32)\49020w2adx dt|
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< 017/ 32)\4902w2dm dt. (2.35)
D

Hence, by(2.31) — (2.35), we obtain

/ s\ oo Z (ai; (z,t) Ow) Ojwdz dt — / s*Mp3owidr dt
D

ij=1 D

< Clg/ |fes“” (s)\Qcpaw) ‘ dx dt + C’lg/ PN Rt de dt + C]_G/ s\ |Vw| |w| dz dt
D D D

< Cig / fre*edx dt + Cy / 2N ?wida dt + Coy / A V| dz dt. (2.36)
D D D
In the last inequality (see appendix Proposition4.1), we argue as follows by
s |Vu|lw] = sA%p|w| A |Vuw|
1 1
< SN W+ SN |Vl
2 2
we get
1
/ Ao |Vl lw| dz dt < 5/ SN2 |wl® + N V).
D D
Furthermore
1 1
‘fes“” (3)\2g00w)| < §f262s@dx dt + 582)\4@2(,02
1
< §f2625“’ + Chos* N w2,

Finally, we consider 2 x (2.36) + (2.29). Using (szzl i€ > 01y, 5?) and
oo = inf(, peq o (x,t) > 0, we obtain

/ SN P32 de dt — (090 — Cyse) / sA2p |Vw|? d dt (2.37)
D D

1 1
+ 5_@ / —]@wfdw dt + 5_@ / —]@w\zdx dt
)\ D SY )\ D S¥

< 018/ f2e**dx dt + 010/ (83)\3903 + 82)\4902) Widz dt
D D
+C’23/ (shg + %) Vw|® dz dt
D

Therefore, first choosing ¢ > 0 sufficiently small such that o0go; — Cy¢ > 0 and then taking A > 0
sufficiently large such that ¢ — % > 0.
By simplifying certain terms of (2.37), we get

/ SN wda dt + / sA2p |Vw|? dz dt (2.38)
D D

1
+ / — Qw’drdt < Co / fre®dzx dt.
D S¥ D
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Replacing w = ue®?, we have

1
/ (@ 0yul® + s\ |[Vul” + 53)\4g03u2) e2%dx dt < Coy / Fre® e dx dt. (2.39)
D D

Finally, we obtain an estimation of operator L, with
1
/ (— 0yul® + s\ |Vul|” + 53)\4<p3u2) e*?dy dt < 024/ fre*?dx dt.
D \S¥ D

Moreover, we have

Xn: al-jai@jw

ij=1

2
< Oys (|0w]” + 82X [Vw]? + s\ p'? + | fe)  inQ.

Hence, by (2.39) we find

2
1 n
/D % Z aijaiajw

ij=1

1
(5 1Bw|® + sA2p |Vw|® + 83)\3cp3w2) dz dt (2.40)

dx dt S 025/

D

+C26/ fzewdx dt.
D

for all large s > 0 and A > 0.

In the end, the estimation of L is

1 n
/ {— <|8tu|2 + Z |8i8ju|2> + A2 |Vul” + 83)\4<p3u2} e*Pdy dt < C’/ | Lul? e2**da dt.
D | 5¥ D

,j=1

where s is a large parameter. m

2.2. Carleman estimates for a general of the second-order parabolic equation
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Applications in the controllability of
parabolic PDEs
This chapter is devoted to the prove the null controllablility of some parabolic equations, this

is related to create observation inequality using the Carleman estimates already presented in

chapter 2.

Carleman
estimates

Controllability |

FIGURE 4: Objective of the
chapter

34



Chapter 3. Applications in the controllability of parabolic PDEs

3.1 Null controllability of linear heat equation with mixed bound-
ary conditions

Let Q C R", n > 1 be a bounded spatial domain with smooth boundary I" of class C? and let
T > 0. We denote @ = 2 x |0, T'[, and ¥ =T" x |0, T'[ where ¥, is a piece of the boundary ¥ and
Yo = ¥\X;. Consider the following parabolic equation:

Ou — Au+ apgu = hoxp +wy, inQ,

=0 on X,

N ! (3.1)
2, =0 on X,
u(z,0)=0 in Q,

with ap € L* (@), and w be an open and non-empty subset of ().
Where x,, denote the characteristic functions of w. Then problem (3.1)admits a unique solution u
that satisfies u € C([0, T]; L*(Q)) N L3(0, T; H}(2)) (see [17]).

Here’s a presentation for the sub-cylinder w x [0, T7.

FIGURE 5:The sub-cylinder w x [0, T

Theorem 3.1 Let u € V say defined in (3.3), then there exists a positive constant C' = C(Q;w; O; T ag)
such that

1 T
/—2|u|2dxdt§(] U |Lu|2da;dt+/ /|u|2dxdt], (3.2)
QP Q 0 w

3.1. Null controllability of linear heat equation with mixed boundary conditions
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where p € C*(Q) positive with - bounded.

This inequality is called observability inequality resulting from Carleman simplification estimates
(see[16]).

Carleman simplification estimates can be found in [[16], Corollary 3.5]. We will provide a little
glimpse of how to simplify before launching into the previous theorem proof.

The first step is to set L = 9; — A + agl, and its formal adjoint L* = —0; — A + agl, where [ is the
identity operator.

And this space within which we will work is as follows:

o Jv ov
V= {v € C* (@) such that: U]EI =5 . =0 and ™ . = O} . (3.3)
The second step is to take [[16], Proposition 3.3] in the following form, which represents the
Carleman estimate
283)\4/ ©3e™ 2 |ul? dadt + 432)\/ go@a—we_%” |u|? dydt (3.4)
Q b at (91/

—4$3>\3/ 0 |Vy|? 8—we’%” |u|® drydt — 432)\3/ ©? |Vy|? a—we’%” |u|® dydt
o v o v

—28)\/ goa—we_%"atu udvdt—4s)\/ gon/Je_QS"Vu@dydt
s, al/ Y1 (9V

+23)\/ @a—we’%” \Vul® dydt
» ov

T
< C (/ €72 Oy — Aul? dadt + 53)\4/ / 372 |u)? da:dt) .
Q 0 w

On the other hand, we have the second proposition [[16], Proposition 3.4]

L

=257 |12 drydt 3.5
Zf’ataye [ul” dy (3.5)

233)\4/ P2e7 2 |ul? dadt — 45°\
Q

+483/\3/ &3|V1/)|2%e_2sﬁ|u|2d7dt+4s2)\3/ ¢2|V¢|Qg—fe—m|uﬁdydt
22 E2

Ou

_0 5 - 5
—1-23)\/ % 4 20, ud”ydt—|—43)\/ oVe 2NV u—dydt
22

%e >N 8V

—25)\/ @%6_255 \Vu|? dydt
» 3V

T
< C </ e~ 2N |Opu — Al ddt + 83)\4/ / Pe 2 |ul? dxdt) .
Q 0 w

3.1. Null controllability of linear heat equation with mixed boundary conditions
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We collect the two results [(3.4) plus (3.5)], we obtain
253)\4/ (pPe 2 + GPe ) |u|? dudt
Q
M _ow  ~ON o) O o) 12
—4 2/\ 2 =2sp =~ _—2sp |\ TV —2sn d~dt
° /E (“Oate Tot” )aye ful” dy

—45°)\3 / (¢° [V e — 3* | V| e 27) 9% |u|® drydt

PO aV

2(%

_452)\3/2‘ (802672577 ¢2 72577) val ’ ‘ d dt
2

—28)\/ ((,06_2577 — @e_%ﬁ) 8—¢8tu udrydt
2, (9V
—45)\/ (@6725” — &67255) Vqu@d’ydt
b3l aV
+23)\/2 (e 2" — nge’QSE) 2_15 \Vul|? dvydt

< C’[/ (e + 72 |Qpu — Aul? dzdt
Q

T
+83)\4/ / (e 4 pe 2 u|? dzdt).
0 w

Now, it suffices to notice that ¢ = % and n = 7 on X. Then, we find 2 = =ple P 4 Poe 2,
Therefore
253)\4/ 20°e %" |u|? dadt
Q
T
< C[/ 2e~ 2 |9yu — Aul® dedt + 33)\4/ / 20”2 |u|? dadt]
Q 0 w
= 233)\4/ ©* |ul? dedt < C’[/ |Byu — Aul® dadt
Q Q
T
+83)\4/ / © u)? dzdt].
0 w
We take

/ 0w — Aul® dadt :/ | Lu|® dzdt
Q Q

T T
33)\4/ /903 |u|2dxdt:/ /g03 ul? dadt
0 w 0 w

3.1. Null controllability of linear heat equation with mixed boundary conditions
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233)\4/903|u|2d:1:dt:/g03|u|2dxdt,
Q Q

because s > sy > 0, and A > )y > 0.

Then .
/gos |u|® dzdt < C’/ ]Lu\2da:dt+/ /903 |u|® dzdt.
Q Q 0 w

In the third step, we will prove the theorem (3.1).
At the beginning of the work, we start by finding the adjoint equation of the equation in the
system (3.1) by ¢(x,t) we find this equation now

—0iq — Aq + apqg = hoxp +wx, inQ,

=0 on X,
. ! (3.6)
5 0 on 22,
q(z,T)=0 in Q,
or
L*q = hoxo + wx, in Q. 3.7)

In our case, we write the weak formulation of the following equation (3.7), by multiplying the

previous equation in the function v € V, and integrating on (), we obtain

T T
/ / L¥q-v dedt = / / (hoxo +wyx,) v dxdt in Q. (3.8)
0o Ja o Ja

This is all for proof of the controllability property by condition
q(z, T)=0 ,inw. 3.9)

Using integration by parts and the Green formula in (3.8), we have

T T T
/ / (—0ig — Aq+ apq ) v dzdt = / / hoxov dzdt + / /wxwv dxdt
0 Q 0 Q 0 w

T T T T T
/ /—atqu:ﬁdt—/ /Aquxdt—i—/ /aoqumdt:/ /hoXOU dmdt+/ /wv dxdt
o Ja 0o Ja o Ja o Ja 0 Ju
T T T
/ /q@tvdxdt—/ /qudxdt+/ /agqu:pdt—/q(x, T)v(x, T)dxdt
0o Ja 0o Ja 0o Ja Q
T T
:/ /hOXoU dwdt—l—/ /wv dzdt.
0 Q 0 w
Then

T T T
/ / q (0w — Av + agv )dmdt—/ q(z, T)v(z, T)dxdt :/ /hOXOU dmdtJr/ /wv dxdt
o Ja Q o Ja 0o Ju

3.1. Null controllability of linear heat equation with mixed boundary conditions
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T T T
/ / q(0r— A +ap)v dedt — / q(z, TYv(z, T)dxdt = / /hoxov da:dt—i—/ /wv dxdt
o Jo Q o Ja 0 Ju

T T T
/ / qLv dxdt — / q(z, v (z, T)dxdt = / /hoXoU d:cdt—i—/ /wv dxdt.
0o Ja Q 0o Jao 0 Ju

We assume that ¢ = Lu, and w = —u),, with u € V, we obtain

T T T
/ / LulLv dxdt —I—/ /uxwv dxdt — / q(z, T)v(z, T)dzdt = / / hov dxdt.
o Jo 0 Ju Q 0o Jao

We further set . .
a(u, v) = / / LulLv dxdt +/ /uxwv dxdt,
0 Q 0 w

T
[(v) = / / hoxov dxdt.
o Jo

Our null controllability problem becomes

and

a(u, v)— / q(x, T)v(x, T)dxdt =1(v) forallvinV. (3.10)
Q

We consider the following subspace V' to be a Hilbert space for the scalar product a(u; v) and the
associated norm

v —|vlly = Va(v;v),
and V' be the completion of V.

Remark 3.1 We can precise the structure of the elements of V, let L7(Q) be the weighted Hilbert
space defined by

LAQ) = {v € L*(Q) such that /
Q

1
1 9 2
Il = ( ] 5 ofast)

This shows that V' is embedded continuously because of the inequality (3.2) we have

1
— |U|2dl‘dt},
p

endowed with the norm

3C>0: ||v||L/%(Q) < C|y for every v € V. (3.11)

3.1. Null controllability of linear heat equation with mixed boundary conditions
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By the boundedness of pig on @, we also see that L*(Q) is continuously embedded in L2(Q).

L;(Q)

FIGURE 6: V is embedded continuously in L2(Q)

We apply the Lax-Milgram Theorem(see Appendix Theorem3.5) in the form (3.10), we get
1. Yu,veV ,3M>0:]a(u, v)] <M lully, vl

T
la (u, v)] = LuLU dxdt+/ /uv da:dt'
= LuLU dxdt| + e, dmdt‘
— <Cauch shwartz ‘uHV HUHV

With . .
(u, V), = / / LulLv dxdt +/ /uv dxdt
0 Q 0 w

the inner product in space V. Then a (u, v) is continu and M = 1.

2. YueV,3a>0:la(u, u)|>alul?
T
(Lu)? dmdt+/ /u2 dxdt‘
0 w

0 Q
T T
= / / | Lu|® dwdt—l—/ /W dxdt.
0 Q 0 w

We have the norm in space V' in the form below

T T
HM@Z/‘/UM2Mﬁ+/£/MQMM
0 Q 0 w

3.1. Null controllability of linear heat equation with mixed boundary conditions

la(u, w)| =
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Then a (u, u) is coercive.

Therefore, based on theorem (3.2) (Carleman estimates) and characteristic (3.11), the condition
of continuity and coercivity is an investigator, with / (v) is continuous linear form. Based on the
Lax-Milgram theorem, equation (3.10) accepts a weak solution.

Finally, equation (3.1) is null controllable by the Carleman estimate.

3.2 Null controllability of linear heat equation with Dirichlet

boundary conditions and distributed controls

Let 2 € R", n > 1 is a bounded domain with smooth boundary T" of class C?. Let us consider
the simplest case of the linear heat equation with Dirichlet boundary conditions and distributed
controls:

Oy —Ay=vxp InQ=Qx]0, T,

y=0 on X = 0N x 10, T, (3.12)

y(z,0) =1° in Q.
For O C () is a nonempty open subset, y,is the characteristic function of O, and T is a given
positive time. We assume that the initial state 3° is given in L?(Q) and try to find a control
v € L*(O x (0,T)) such that the associated state y = y(z,t) possesses a desired behaviour at time
t="T.

System (3.12) has a unique weak solution y (see [7])satisfy

y € L*(0,T; Hy(Q2)) N C°([0,T7; L*(92))

that depends continuously on 3° and v.

Theorem 3.2 The observability inequality to the equation (3.12) is

le Oy < [ [ ol duat (319
Ox(0,T)

with C' > 0 constant.

The formula (3.13) implies the null controllability of equation (3.12).

Proof. see [7]. m

The observability inequality consequence by simplification the Carleman estimate say defined in
(3.14) where p is bounded.

The goal is to find the observability inequality for equation (3.12)from Carleman estimates, but in

this case, the observability inequality implies the null controllability of (3.12).

3.2. Null controllability of linear heat equation with Dirichlet boundary conditions and distributed
controls
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Before everything, we will prove that the null controllability of (3.12)is for every y° € L?*(f2), and
control v € L*(O, (0, T)), we find the null controllability with condition y(7') = 0 in Q from

Carleman estimates (see [7] ), and those estimates are in the following form:

// p2|gp|2dmdt§0// p? | dadt, (3.14)
Ox(0,T) Ox(0,T)

where p = p (z, t) is a continuous and strictly positive weight function, and C' > 0.
Therefore, we put the adjoint of the equation (3.12) with the function ¢ = ¢ (z, ¢) with ©° € L*(Q)

—0ip— Ap =0 inQ,
=0 on Y, (3.15)
y(z,T) = ° in Q.

In this case, we build a sequence of controls v. € L*(O, (0, T)) with ¢ > 0 that provides the
approximate controllability of (3.12) with

Hye (T)HL2(Q) <e. (3.16)

Let us introduce the functional J., use equation (3.12) and multiply with ¢ and integrate by @,

//(@y—Ay) goda:dt:// veXpdrdt,
Q Ox[0, T]

by the Green formula and integration by parts, we obtain

//y(@gp—Agp) dxdt—i—/ ygp\Ude—// VX pdrdt.
Q ) ox[0, T

By equations (3.15) and (3.16); we have
/ ygo|§ de = // v pdrdt
Q Ox[0, T

/Q W (T) o (T) — y(0)p (0)]dv = / /@ ot
=0

// Ucpxodxdt—i—/yoga 0)dz =
Ox[0, T] Q

Then, we add this value ¢ [, ¢°dz that represents

e/gpodm—l—// Ugoxodxdt—l—/yogo (0)dz =0
Q ox[0, ] Q

we get

3.2. Null controllability of linear heat equation with Dirichlet boundary conditions and distributed
controls
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we put vxp = @

5/¢de+// g02dxdt+/y0g0 (0)dz =0
0 Ox[0, TJ Q

1
Je (¢°) = = // O*dxdt + 5/ @dz + (2(0),4°) oy | > (3.17)
2 Ox[0, T Q ()

for every ¢° € L?(2). Here, ¢ is the solution of (3.15) associated with the initial condition °.

Thus

Using (3.12), it is not difficult to check that .J is strictly convex, continuous, and coercive in L*((2),
so it possesses a unique minimum ° € L?(2), whose associated solution is denoted by ¢,. Let us
the control v. = ¢, X, and denote by y. the solution of (3.12) associated towv..

Let y; = y(7') be the final state of the solution to (3.12) with vanishing control.

We are now making a derivative of .J. with the derivate of Gataux in the direction ¢,, we obtain

// p.pdrdt + € < ) + ((’0 (0), yO)L2(Q) =0, (3.18)
ox[0, T ||<Pe||L2(Q) 12(9)

for ¢° = ¢ using (3.18) and (3.13) we obtain ||ve|| ;> () < VC 19°[| 12y Where C'is the observability
constant of (3.13).
Since systems(3.12)and (3.15) are in duality, we have

/ / pepdrdt = (Yo, ©°) 1) + (£(0),9°) 12q)
Ox[0, T]

which combined with (3.17)yields (3.16).
Here we calculate the limit when ¢ tends to zero. Since the sequence {v.} is bounded in L?(O,
(0, T)), it has a weak convergence with v € L?(O, (0, T')). Then

y. — y weakly in L*(0,T; Hy(Q)) N C°([0, T]; L*(£2)), (3.19)

where y is the solution of(3.12)with control. In particular, this gives weak convergence for
{y-} (t € [0;T]) in L? (2), so we have y(T') = 0.
Finally, the system (3.12) is null controllable, and your observability inequality is the form (3.13).

3.2. Null controllability of linear heat equation with Dirichlet boundary conditions and distributed
controls
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Chapter 4
Appendix

Proposition 4.1 (Cauchy inequality)

Let a, b be any real numbers and p, ¢ are real numbers connected by the relationship Il) + é = 1.

Then, we have the Cauchy-Schwarz inequality

ab < = (a® + 7). (A1)

N | —

and X
o+ B > 5 laf” =[5 (A.2)

Theorem 4.1 (Integration by parts)

Let  C R"™ be a bounded smooth domain and » denotes the outward normal unit vector to 0.

Let v and v be any two differentiable functions of variable, we have

/ vVudr = / uv - vdl — / Vv - udz. (A.3)
Q o0 Q

Theorem 4.2 (Green Formula )

Let  C R"™ be a bounded smooth domain and v denotes the outward normal unit vector to 0f).

And ¢,y be real functions of class C* (Q2), we have

/ VApdr = Y0, pdl" — / V- Vidz. (A4)
Q 0 Q
Theorem 4.3 (Cartesian Decomposition)

Let H be a Hilbert space and let 7' € H.Then there are unique self-adjoint operators, 7., 7 such
that
T=T,+T., (A.5)
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with _
T, = —; , symetrique part of T, (A.6)
and
T—-T* .
T— = 5 , antsymetrique part of 7. (A.7)
Theorem 4.4 (The Lax-Milgram Theorem)
Let H be a Hilbert space with the scalar product (-,-) and norm ||.||. Let a: H x H — R be a

bilinear form in H. Assume that there exist two constants M < oo, o > 0 such that:
1. |a(u, v)| < M ||u| ||v] forall (u,v) € H x H (continuity);
2. |a(u, u)| > a|lu)? for all u € H (coercivity);

and [/ (v) continuous linear form i.e |l (v)| < C'||v||,v € H,C > 0.
Then, Vf € H* (the dual space of H), there exists v € H unique, such that a(u,v) = (f,v) for all
u € H.
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