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Résumé

Le travail présenté dans ce mémoire est consacré a 1’étude de 1 “existence et la multiplicité de
solutions non triviales d “un probléme elliptique d’ordre quatre ( p-biharmonique).
Les résultats sont obtenus en utilisant la variété de Nehari et le principe variationnelle

d "Ekeland.

Mots-clés: Opérateur p-biharmonique, la variété de Nehari, le principe variationnel d’Ekeland.



Abstract

The work presented in this memory is devoted to the study of the existence and multiplicity
of nontrivial solutions for a fourth-order elliptic problem (p-biharmonic).
The results are obtained by using the Nehari manifold and Ekeland’s variational principle.

Keywords: p-biharmonic operator, Nehari manifold, Ekeland variational principle.
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Introduction

The topic of partial differential equations is one of the most important subjects since the
concept of calculus appeared in the correspondence of Leibniz and Lopital in 1695. Because
this topic has several important applications in the real world. Physics, financial, mechanics,
chemistry. And other several phenomena in several fields that can be studied as a equation
such as nuclear reactor dynamics, thermoelasticity, mechanical vibrations, biological tissues,
entropy, and diffusion.

In the last ten years, several authors have used a Nehari manifold to solve problems
involving sign-changing weight functions. We suggest you read [5, 14] for semilinear elliptic
equations, [4,15] for elliptic problems with nonlinear boundary conditions, [17] for problems
in RY, [7] for Kirchhoff type problems, and [4,15,16] for elliptic systems. Meanwhile, positive
solutions of semilinear biharmonic equations with Navier boundary on bounded domain
in RN are extensively studied, for example [1,18],and so on.There are a lot of papers about
solving nontrivial problems involving biharmonic or p-biharmonic equations [6,12,13,19]
and references therein, There are fewer solutions to p-biharmonic equations with Dirichlet
boundary conditions on bounded domains.In [8], the Kirchhoff function can be taken to be
the same everywhere, and it has been proven that there are infinitely many solutions to an
equation that is governed by the p(x) -polyharmonic operator.Under Dirichlet conditions, we
can solve problems by using variational methods.

Our interest in the work is related to The p-biharmonic operator A? which recently
attracted many researchers Looking for positive solutions, The main purpose of this study is
concerned with multiple solutions of the p-biharmonic equation involving concave-convex

nonlinearities and sign-changing weight function and the combined effect of concave and
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convex nonlinearities on the number of nontrivial solutions of the form

-2 r—2 .
AZu = |u|" " u+ Af(x) |u]""u in Q

v =Vu=0 on o2

Np

where Q is a bounded domain in RY,1 < r < p < ¢ < pi(ps = N2 if p < %, py = oo if

p>%),A>0and f:Q — Ris a continuous function which changes sign in Q.By means of

the Nehari manifold, we prove that there are at least two nontrivial solutions for the problem.

In the first chapter, we start by giving some basic notions, that concern the functional
framework necessary to obtain the results of the existence of solutions for the considered
problem.

In the second chapter, we present the critical point theory, Nehari manifold, and Ekeland’s
variational principle.

In the third chapter, we study the fourth-order elliptic problem by using the Nehari

manifold and the Ekeland’s variational principle.



CHAPTER

Preliminaries
Contents
O S 0 T T T 11
1.1.1 Holder inequality and L” completeness . . . .. ... ......... 12
1.2 WP (Q)SPACE v v v v v v i e ettt et e e e e e 12
1.3 Notionsonoperators. . . . . . . . v v vt ittt ittt 13
1.4 Weekderivative . . . . . . . v v ittt e e e e 14
1.5 Convergencecriteria . . . . . . . v vt i it e e e e 15




1.1 LP (Q2) space 11

In the first chapter, we begin by giving some basic notions, which concern the functional
framework necessary to obtain the results of the existence of solutions for the problem under

consideration.

1.1 LP(Q)) space

Let © be an open set of RY, equipped with the Lebesgue measure dz, and let p be a positive
real number. We denote by L! () the space of integrable functions on 2 with values on R, it

is provided with the norm

1 llorey = / f (@)d.

Definition 1.1 We define LP (2) the space of the class of all measurable functions f, defined on €,
for which

/ I (2)Pd < oo,
Q

equipped with the norm

1l ooy = [ [ |pdx}

Definition 1.2 We also define the space L™ (Q2) by

L Q) ={f:Q— R, fmeasurable , 3¢ > 0 ,so that |f (z)| < ¢ a.e on Q},

it will be equipped with the essential-sup norm

[fll ooy = esssup | f (x)] = inf{c, |f (z)] <c a.eon Q}.

e

We say that a function f : Q@ — R belongs to L} (Q) if f1, € L? (2) for any compact k C €.



1.2 Wm™P (Q) space 12

1.1.1 Holder inequality and L? completeness

If f € L?(Q) and g € L¥ () where the real numbers p and p’ satisfy 1 < p < oo and

5+ - = 1,we have Holder inequality:

/Q f (2)g (@)ldz < ( / |f<x>|pdx>; ( / |g<:c>|”’das)p .

Theorem 1.1 [3] The space LP (2) is Banach spaces if 1 < p < oo (complete normed space),

=

separable space if 1 < p < oo, and L? () is reflexive if and only if 1 < p < ooc.

1.2 W™P(Q) space

When a € N",we denote by |a| = oy + a5 + - - - @, the length of @ and we denote

0w = B2 - - O,

in all that follows 9“u (orD“u) denotes the weak derivative of a function u € Lj,, (Q).

Definition 1.3 [3]
We define the space W™P () ,m > 2 as following

WP (Q) ={u e LP (Q), such that Va € N", |a| < m, 0% € LP (), |a| < m},

equipped by the norm

1
||u||W"%P(Q) = (Z |aauip(9)) :

laj<m

Remark 1.1 For p = 2, it is customary to replace the notation W™? (Q) by H™ (Q).

Proposition 1.1 [11]
The space WP (Q) provided with the norm defined by
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/

Jun

(S 107ului)) " 1 < p < 00

Hu”wm,p(g) =

P _
|1g\12§ ||aauHLP(Q) D= 100,

is a Banach space, and for p € |1, oo|, this space is convex, so it is a reflexive space. The space H™ (£2).

endowed with the scalar product

(u,v) = Z (0%, 0°0) 2(q) »

laj<m

is a Hilbert space.

Corollary 1.1 (Poincare inequality)

Let ) be an open and bounded set of RY, Then there exists a constant C' (C (2, p)) such that

||u||LP(Q) < ||Vu||LP(Q) Vu e WH(Q),1 < p < +oo.

1.3 Notions on operators

Let (X, ||-||) be a real Banach space and let X’ be topological dual.

Definition 1.4 Let A: X — X', we say that :

 Continuous if | Az, — Az||y, — 0 when ||z, — x|, — 0.

» Compact if A(By) is relatively compact in X', where By denotes the ball unit in X.
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e Coercive if

(A(x), x)

im = +00.
zl|—+oo ||z||

Monotone if

(Au — Av,u —v) > 0,YVu,v € X with u # v.

Strictly monotone if

(Au — Av,u —v) > 0,Vu,v € X with u # v.

Bounded if the image by A of any bounded subset of X is a bounded subset of X'.

Semi-continuous

if u, — uwwhen n — oo implies Au,, — Au when n — oc.

Strongly continuous

if u, = u when n — oo implies Au,, — Au when n — oo.

1.4 Week derivative

Definition 1.5 [11](Directional derivative)
Let w be a part of a Banach space X and F : w — R a real valued function. If u € w and z € X we

have u + tz € w, we say that ' admits (at the point w) a derivative in the direction z if the limit

lim F(u+tz) — F(u)

t—0t t

, forallt > 0 small enough

exists. We will denote this limit F.(u). The Gateaux differential generalizes the idea of a directional

derivative.

Definition 1.6 [11](Gateaux derivative)
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Let w be a part of a Banach space X and F' : w — R. If u € w, we say that F' is Gateaux differen-

tiable in u, if there exists | € X' or F'(u+tz) for t > 0 small enough. The Gateaux differential is defined

Where F'(u) := 1.

Definition 1.7 [11] (Frechet derivative)
Let X be a Banach space, w an open space in X, and F' a function. If v € w, we say that F is

differentiable (or derivable) in w (in the sense of Frechet) if there exists | € X', such that:

Vo ew F(v) — F(u) = (l,v —u) + o(v — u).

If F is differentiable, | is unique and we denote by F'(u) := [. The set of differentiable functions
w — R will be denoted by C*(w, R).

1.5 Convergence criteria

Theorem 1.2 [3]( Lebesgue’s dominated convergence )

Let (f,,) be a sequence of functions in L' () that satisfy

* fu(x) = faeon,

e There is a function g € L*(Q) such that for all n,

|fu(@)] < g(x), a.e.on Q.

Then
fe LY Q) and || fn — fll,0 — 0.



1.5 Convergence criteria 16

Theorem 1.3 [11](Vitali’s convergence theorem)
Let fi, fa,- - - be LP-integrable function on some measure space, for 1 < p < oco. The sequence { f,, }

converges in LP to a measurable function f if and only if

* The sequence { fn} converges to f in measure.

* The functions {] fn‘p} are uniformly,integrable.

* For every e > 0, there exists a set E of finite measure, such that [,

ful? < e forall n.

Theorem 1.4 Let (f,,), . be a sequence in LP(Q) and f € LP(Q2) such that

Ifa = 1ll, = 0.

Then, there exist a subsequence ( f,, ), € Nand a function h € L?(S2) such that
* fu.(x) = f(x)a.eon,
* |fn. ()| < h(z)VE, a.e. on Q.

Lemma 1.1 [3] (Fatou’s Lemma)

Let (f,,) a sequence of functions in L'(Q) that satisfy
e Foralln, f, >0,

o sup [ o < oo,

For almost all x € Q we set f(x) = liminff,(z) < +oo. Then f € L' () and

n—

/ﬂ f(z)dz < lim inf /Q Folx)da.

n—o0

Lemma 1.2 [2] (Brezis-Lieb).
Let 2 be an open bounded set in R™ and 1 < p < 400 , (fa) is sequence of measurable functions

such that f,, — f a.e. in LP(Q2), then

fe LX) and || fIl; = fall, = 1fn = fII; + o(1).
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Definition 1.8 [3]
Let f : D — Rand let xo € D. We say that f is lower semi-continuous function (l.s.c) at x, if for

every € > 0, there exist § > 0 such that

f(zo) — e < f(x) forall x € B(xy;6) N D.

Or equivalently
lim inf f(z) > f(x0).

Tr—xQ
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2.1 Critical point 19

2.1 Critical point

Definition 2.1 (Homogeneous function)
Let f be a function of n variables defined on a set S for which (txy,-- - ,tx,) € S whenever t > 0 and

(txy,--- ,tx,) € S Then f is homogeneous of degree k if

ftoy, - tay) =tFf(ay, -+ x,) forall (x1,--- ,x,) € S and all t > 0.

Definition 2.2 (Coercivity)

f is a coercive function if

l|z[| o0

Definition 2.3 (Critical point) [11]
A point (u,v) € E is critical for Jy if J\(u,v) = 0, otherwise (u,v) is regular. If J\(u,v) = c for

some critical point(u,v) € E of J\, the value c is critical, otherwise c is regular.
Let E be a Banach space, ® € C'(E, R) is a set of constraints:

N={veE: o) =0}

Definition 2.4 (Lagrange multiplier) [11]
we suppose that for all u € N, we have ®'(u) # 0. If J € C*(E,R) we say that ¢ € R is critical value

of J on N, if there exists u € N, and X € R such that

J(u) = cand J'(u) = A\ (u).
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The point w is a critical point of J on N and the real X is called the Lagrange multiplier for the critical
value c (or the critical point u).

When X is a functional space and the equation J'(u) = A®’(u) corresponds to a partial derivative
equation, we say that J'(u) = A®'(u) is the Euler-Lagrange equation (or the Euler’s equation) satisfied

by the critical point u on the constraint N.

Theorem 2.1 [11]
Let(E, ||.||) be a Banach space, Q2 an open in E and J : Q — R a differentiable function on 2 and
d € CY(Q,R") of components ®y,--- ,®,. Given a point in R", we set K = ®~'(a) which we

assume not empty, if at a point uy € K

and if moreover the differential ®'(ug) € L(E,R™) is surjective then there exist real numbers

A1, -+, Ay for which

J' (ug) = Z AP (ug).

2.2 Nehari Manifold

Nehari has introduced a variational method very useful in critical point theory and eventually
came to bear his name. He considered a boundary value problem for a certain nonlinear
second-order ordinary differential equation in an interval [a, b] and proved that it has a non-
trivial solution which may be obtained by constrained minimization. To describe Nehari’s
method in an abstract setting, let £ be a Banach space and J € C'(E,R) a functional. The
Frechet derivative of J at u, J'(u), is an element of the dual space E’. Suppose u # 0 is a

critical point of J, i.e.,J'(u) = 0. Then necessarily u is contained in the set

N={ue E\{0}: (J(u),u) =0}.
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So N is a natural constraint for the problem of finding nontrivial critical points of J(u) by

minimizing the energy functional J on the constraint N is called the Nehari manifold. Set

¢ = inf J(u).

neN

u € N Under appropriate conditions on J one hopes that c is attained at some uy € N and

that u is a critical point.

2.3 Ekeland’s variational principle

In general, it is not clear that a bounded and lower semi-continuous functional E actually
attains its infimum. The analytic function f(z) = arctan z, for example, neither attains its
infimum nor its supremum on the real line.

A variant due to Ekeland of Dirichlet’s principle, however, permits one to construct minimiz-
ing sequences for such functionals £ whose elements u,, each minimize a functional £,,, for

a sequence of functionals {E,,} converging locally uniformly to £.

Theorem 2.2 [10]
Let E be a reflexive Banach space with norm |||, and J : E — R is coercive and weakly lower

semi-continuous on E', that is, suppose the following conditions are fulfilled:

o J(u,v) = o0 as||(u,v)]| = oo, (u,v) € E.

* Forany (u,v) € E, any sequence (u,, v,) in E such that (u,,v,) — (u,v) weakly in E there
holds J(u,v) < liminfJ(u,,v,). Then J is bounded from below on E and attains its infimum
n—oo

in E such that
J(ug, vo) = 1%fJ.

Theorem 2.3 [9]

Let M be a complete metric space with metric d, and let J : M — RU{+o00} be lower semi-continuous,
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bounded from below, and # oo. Then for any €, § > 0, any uw € M with

oy
J(u) < 1]\n4fJ(u) +e,

there is an element v € M strictly minimizing the functional

Jo(w) < J(w) + %d(v,w).

Moreover, we have

J(v) < J(u),d(u,v) <4.
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In this chapter, we are looking at multiple solutions to a p-biharmonic equation:

A2y = |u|T 2w+ N () u]"2u in Q
su = |ul f(z) |ul (3.1)
v =Vu=0 ondfd

Np

where 2 is a bounded domain in RY,1 <7 < p < ¢ < p5(ps = N2

if p < &, py = c0lif
p> %), A>0and f: Q — Ris a continuous function which changes sign in Q.

We know that the corresponding energy functional of problem (3.1) is
1 A
B = [ (8uPde = [ fufrde =2 [ gl da.
P Ja qJ0 rJa

where u € Wi"(Q2) with the norm |[u|| = ([, [Aul’ dz)7.and Jy is a C! functional and the
critical points of J, are the weak solutions of problem (3.1).

The following is the main result of this paper.

Theorem 3.1 There exists \g > 0 such that for each X\ € (0, o), problem (3.1) has at least two

nontrivial solutions.

3.1 Preliminaries

Throughout this section, we denote by S the best Sobolev constant for the embedding of

WP (Q) in LI(Q). We consider the Nehari minimization problem: for A > 0,
ax(Q) = inf {Jy(u) | u € Mx(Q)},

where

MA(Q) = {u € WFP(Q\ {0} | (J5(u),u) =0}

Define

hau) = (Jy(u),u) = IIUH”—/Q\Uqux—A/Qf(ﬂS) [ul” da.
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Then for u € M, (),

(YA (), u) IPHUHP—Q/Qlulqu—)\r/Qf(x) u|" da.

We may split M, (2) into three parts:

M) = {u e MA(Q) | (YA (u), u) >0},
MX(Q) = {u € MA(Q) | (¥ (), u) =0},

My () = {u € MA(Q) | (¢ (u), u) < 0}.

Now, we give the following lemmas.
Lemma 3.1 there exists \; > 0 such that for each X € (0, A1), M{(Q) = 0.

Proof We consider the following two cases.

Case (I). u € M () and [, f(2) |u|" dz = 0. We have

Jul” — / ul d = 0.
Q
Thus,

(W4 )y ) = pllull” — g / " dz = (p — q) [[ull” < 0,

and so u ¢ M3(Q).
Case (I).u € M () and [, f(z) Ju|" dz # 0.
suppose that M{(Q) # 0 for all A > 0. If u € M3(2), then we have

0 = (}(u),u) = plull” - ¢ / ul? d — Ar / f(@) |uf” de
— (=)l — (g~ 7) / Jul? d.
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Thus,
Jull? == [ fupt (62)
pP—=TJa
and
r o p q _ q—7p q
/\/ f(x) Ju|" dzx = ||u|” — / |ul|? dz = —/ |u|? dz. (3.3)
Q Q pP—=7Ja
Moreover,
q—Dp T
Ll = ull - [ ultde =X [ fe)ul do
p—r Q Q
S Ml e Nlullpe < M e ST [ull”
where ¢* = . This implies
q—r L
WMHM;@WMWSV”- (3.4)

Let I)\ . M)\(Q) — R
be given by

MW_K@”(E%%Ey%—&Aﬂ@MWm

where K(q,r) = (g%f)(p_’")q%ﬁ.Then I(u) = 0 for all u € M3(9). Indeed, from (3.2) and

q—r

(3.3) it follows that for u € M{ (), we have

szK@M(E%%Ey%—NAﬂ@wa

q—Try<e q—p
= Kq’r q—p — )/quff
(K= - 122) [
:O‘

(3.5)
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However, by(3.4),the Holder and sobolev inequality, for u € M3 (2),

lullf \ 77

B = Klan) () =M e Ll
Q

" ul® e
Z HUHL‘Z <K<q’ T)(Sr(q—p)-&-pq r(g—p)+pgq )qu - )\ HfHLq*

vl

T ]' —Tr
—lull, (KWW Jul " = A ||f||m)

qa—p

: R -
> ullze {K(q,r)wm’“[( I llpe 8] = A ||f||LQ*}'

—Tr
q—p q—7p

This implies that for ) sufficiently small we have I, (u) > 0 for all u € M3(£2), this contra-

dicts (3.5). Thus, we can conclude that there exists A\; > 0 such that for A € (0, A), M{(Q2) = 0.
Lemma 3.2 Ifu € M (Q),then [, f(x) |u|"dz > 0.

Proof For u € M (Q), we have

HW”i/mww—A/f@Hmwx:Q
Q Q

and

Hmw>q_r/hm¢p
p—=rJa
Thus,
/\/ f(@) |u|" de = ||u||p—/ |u|? dz > u/ |ul? dz > 0.
Q Q p—=TJa
This completes the proof.

By Lemma 3.1, for A € (0, A1), we write M, (Q) = M (Q) UM, (Q2) and define

ay () = ir+1f Ja(u), a, ()= inf Jy(u) .
ueMT () ueMy (Q)

The following lemma shows that the minimizers on M, (€2) are the critical points for J,.

We write (W;*(€2))* is the dual space of W ().

Lemma 3.3 For A € (0, \),if ug is a local minimizer for Jy on M,(2), then Ji(u) = 0 in

(Wo" ()"
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Proof If v, is a local minimizer for .J, on M,(f2) , then uy is a solution of the optimization
problem

minimize Jy(u) subject to y(u) = 0.

Hence, by the theory of lagrange multipliers, there exists ¢ € R such that

T (o) = 0 9 (ug) in (WP (Q))".

Thus,

<J£<U0)a u) = 0 <¢&(U0)7U0> . (3.6)

Since ug € M (2), so (J4(ug), ug) = 0. Moreover, since M3 (2) = 0, so (¥} (uo), ug) # 0 and
by (3.6) 8 = 0. This completes the proof.

For u € WZ7(Q),we write

e ()

Then we have the following lemma.

p—r p(r—q)

Lemma3.4 Let ¢* = 4 and hy = (P=) v (T£)S o ||f||;ql* . Then for each u € Wy (Q)\{0}
and A € (0, \2), we have
(i) There is a unique ¢~ = t~(u) > tmax > 0 such that t7u € M () and Jy\(t7u) =

maxsy,,.. J(tu);
(ii) t~(u) is a continuous function for nonzero u;
(i) M5 (2) = {u e WEP@\0} | gyt~ () = 1}

(iv) If [, f(x)|u|" dz > 0, then there is a unique 0 < t* = ¢¥(u) < tyax such thatttu € M} (Q)

and Jy(tTu) = ming<y<i- Ji(tw).
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Proof (i) Fix u € W;?(Q)\{0}, let
s(t):t”_’“Hqu—tq_T/ W|fdz fort >0,
Q
We have s(0) =0, s(t) — —oo as t — 400 and s(t) achieves its maximum at ¢,,,y.
moreover,
(v =) llul” ) » ( (0 —r)|jul” )/ ;
S(tmax) = ul|” — ul? dx (3.7)
N ey M ey it AL
r a(p—r)
ot L=l e (e =) [Juf e
— " [(—2 ) )
(g r) Jo lul* dz (q—7)(Jq lul® dx)=r
T Y Y = v =1 I A 11 K
= | =0 - = | (e

Case(l). [, f(x) |u|" dz < 0.
There is a unique t~ > tyax such that s(t7) = A [, f(z) |u|" dz and §'(t) < 0.

Now

)l — ) [ ol
=y (<p =Pl = = e | \urqu)

= (7)) <0,
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and

(J3(tw), t’u>

= Pl = @ [ Jultdz = A [ fo) ul ds
— (s(t) - )\/Qf(x) \uy”dx) —0.

Thus,t~u € M; (2).moreover,since for ¢ > tax,

d
() = ||u||p—tq—1/|uchz;c—tr—u/f(x) uf dz =0 foronlyt=t,
Q Q

and
2

d
WJ,\(tu) <0 fort=1t"

Therefore, J)(t u) = max;>y,,, Ji(tu).
Case (II). [, f(x) |u|" dz > 0.
By(3.7) and

5(0) =0< A/ f@) [ul” de < M|l o S™ lull

v D= q—p,, 1 e
< lull (q 7,) ( )(Sq) E
< $(tmax) for)\ € (0, \2),

there are unique ¢* and ¢~ such that 0 < ¢+ <t < 17,

) = [ F@)lul dr = s(t7),

and

sty >0>s(t).

We have tTu € M{(Q), t7u € M (Q), and Jy\(t7u) > Jy(tu) > Jy(tTu) for each t € [tT,¢7]

and J,(tTu) < Jy(tu) for each t € [0,¢*]. Thus
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JA(t7u) = max Jy(tu), Jy(tTu) = min Jy(tu).

tztmax 0<t<t—

(ii) By the uniqueness of ¢~ (u) and the external property of t~(u) , we have that ¢t~ (u) is a
continuous function of u # 0.

(iii) For v € M (2), let v = . By part (i) , there is unique ¢~ (v) > 0 such that
t(v)v € M;(Q), that is t (55) e € M (Q). Since u € My (), we have ¢~ (p ) = 1,

which implies

M; (Q) C {u € W2\ (0} | () 1} .

ol Tl

Conversely,let u € W3 (Q)\{0} such that ¢t~ (%) = 1,then

Jull 7 {lell

u u

t‘(m)m e M, (Q).
Thus,
M (Q) = { € WENO} | () = 1} .

(iv) By Case (II) of part (i).

By f : © — R is continuous function which changes sign in Q , we have © = {z € Q |

f(z) > 0} is a open set in RY. Consider the following p-biharmonic equation:

Ay = [ul" %y in©
(3.8)
u=Vu=0 on 00.

Associated with (3.8), we consider the energy functional

1 1
K(u) = Z;/ |Aul? dox — 5/ lu|? dx,
Q Q
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and the minimization problem
/() = inf {K(u) [ u e N(O)},

where N(0) = {u € Wg?(©)\{0} | (K'(u),u) = 0} . Now we prove that problem (3.8) has a

nontrivial solution wy such that K (wy) = 5(0) > 0.

Lemma 3.5 For any u € W (©)\{0} there exists a unique t(u) > 0 such that t(u)u € N(©). The

maximum of K (tu) for t > 0 is achieved at t = t(u), The function

Wg’p(@)\{O} — (0,400) : u — t(u),

is continuous and the map u — t(u)u defines a homeomorphism of the unit sphere of Wy (©)

with N (O©).

Proof Letu € W;7(0)\{0} be fixed and define the function g(t) := K (tu) on [0, c0).Clearly

we have

g(t) = 0&tue N(O) (3.9)

o ulf = tqp/ lul? dz.
Q

It is easy to verify that g(0) = 0, g(t) > 0 fort > 0 small and ¢g(¢t) < 0 fort > 0
large. Therefore maxy ;) g(t) is achieved at a unique ¢ = t¢(u) such that ¢’ (¢ (v)) = 0 and
t(u)u € N(©). To prove the continuity of ¢ (u) , assume that u,, — u in W3*(©)\{0}. It is easy
to verify that {¢ (u,)} is bounded. If a subsequence of {t (u,)} converges to ty, it follows from
(3.9) that ty =t (u) , But then ¢ (u,,) — t (u) . Finally the continuous map from the unit sphere
of WiP(©) to N(O), u — t (u) u, is inverse to the retraction u — ol

Define
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c = inf  maxK(tu),
ueW; P (©)\{0} *20

: = inf K(~(t
¢ = inf max (y(tu)),

where I' := { € C([0, 1], W5P(0)) : 7(0) = 0, K ((1)) < 0} .
Lemma 3.6 3(©) = ¢, = ¢ > 0and cis a critical value of K.

Proof The lemma 3.5 implies that 3(0) = ¢;. Since K (tu) < 0 for u € Wy (©)\{0} and ¢
large, we obtain ¢ < ¢;. The manifold N (©) separates W;*(0) into two components. The
component containing the origin also contains a small ball around the origin. Moreover
K(u) > 0 for all v in this component, because (K'(tu),u) > 0 for all 0 < ¢ < t(u). Thus every
v € T has to cross N(©) and 5(0) < c. Since the embedding W, ?(0) — L%(0) is compact, it
is easy to prove that ¢ > 0 is a critical value of K and w, a nontrivial solution corresponding

toc.
With the help of lemma 3.6, we have the following result.

Lemma 3.7 (i) There exists t > 0 such that

ax(Q) < af (Q) < %fp@(@) <0

(i) Jy is coercive and bounded below on M (Q2) for all X € (0, L=2].

q—r

Proof (i) Let wy be a nontrivial solution of problem (3.8) such that K (wy) = (©) > 0. Then

/Q F() o da = /@ F(2) | dr > 0.

Set t = t*(wp) as defined by Lemma 3.4(iv). Hence twy, € M} (Q) and
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~ 1P t4 A"
N —/|Aw0|pdx——/\w0\qu— /f(a:) wol” da

1
— ]_)— /|Aw0|pdm—|— /|w0|qda:

< Ttpﬁ( )<O

This yields

() < af (@) < —LPB(O) <0

(ii) For u € M»(Q2), we have [, |Aul"dz = [, |u|"dz + [, f(x) |u|" dz. Then by the Holder

and Young inequality

Ta(u) = %/ﬂmuv’m—xq ) Jul” da

> u/|Au|de_Aq‘7"
pPqg Jao qr
1

Z [(¢ = p) = Mg = )] lul” — A

ST ull”
(g=7r)p—r)
qpr

(/10 S7) 7=

Thus J, is coercive on M, (€2) and

i) 2 M= g sy,

forall A € (0, Z=2].

3.2 Proof of the main result

For the proof of theorem, we need the following lemmas.

Lemma 3.8 For u € M,(Q), there exist ¢ > 0 and a differentiable function & : B(0,¢) C WoP(Q) —
R such that £(0) = 1, the function £(v)(u — v) € My (2) and
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p [y |Auf~? AuAvdx —q fo | A" P wvdr — v [, f(2) [u] " uodz

(£'(0),v) = p—r) JolAuf dz — (¢ —7) [, |u]" dx ’

(3.10)

forall v € WiP(Q).

Proof For u € M,(Q), define a function F': R x W;” — R by

Fu(§w) = (L(§(u—w)), §(u—w
/|A U—w |pdx—§q/|u—w|qu—fr /f ) Ju— w|" dz.

Then F,(1,0) = (J5(u),u) = 0 and

d F.(1,0) = p/ |Aul? dx — q/ |u|? dz — 7“)\/ f(@)|u|" dz
dg Q 0 Q

= (p—r)/QIAu\”da:—(q—r)/Qyu\qu;Ao.

According to the implicit function theorem, there exists ¢ > 0 and a differentiable function

€: B(0,e) C WP(Q) — Rtsuch that £(0) = 1 and

p [y |Auf~? AuAvdx —q fo | A" P wvdr — v [, f(2) [u] " uvdz

<€/(0)7U> —r fQ |Au|p de — (g —r fQ ]u|qu ’

F.(&(v),v) =0 forallv € B(0;¢),

which is equivalent to

(&) (u—=)),&(v)(u—v)) =0  forallve B(0;e),

thatis {(v)(u — v) € M, (Q2).

Similarity, we have
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Lemma 3.9 For each u € M, (R2), there exist ¢ > 0 and a differentiable function £~ : B(0;€) C
WZP(Q) — RY such that € (0) = 1,the function £~ (v)(u — v) € M (Q) and

g |AuP™? AuAvdz — ¢ o lul"% wvdz — X Jo (@) lu|""% wvdx
(p—r) JolAulP dz — (¢ —7) [, |u|* dx ’

((€)(0),v) (3.11)
forall v € WiP(Q).

Proof similar to the proof in Lemma 3.8, there exist ¢ > 0 and a differentiable function
£ : B(0;€) € WSP(Q) — Rt such that £(0) = 1and ¢ (v)(u—v) € Mx(Q) forallv € B(0;¢).
Since
AW, = (p =) [ulf = =) [ Jul'de <0,
Q

Thus by the continuity of the function ¢, and £~ , we have

(WA (& () (u =), & () (u—v)) = (p—7) H€(v)(u—v)Hp—(q—'r’)/Qlﬁ(v)(u—v)|qd:c <0.

If € sufficiently small, this implies that £~ (v)(u —v) € M, ().
Proposition 3.1 Let Ao = inf{A1, Ao, 2}, for A € (0, Ao).

(i) There exists a minimizing sequence {u, } C M,(Q2) such that
J,\(un) = Oé,\(Q) + 0(1),
Ji(un) = o(1),  for (WP(Q)";
(ii) There exists a minimizing sequence {u, } C M, (Q)such that

Sa(un) = () + o(1),

J(wn) = o(1),  for (Wy™(Q))".
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Proof (i) By Lemma 3.7(ii) and the Ekeland variational principle [10], there exists a minimiz-
ing sequence {u, } C M,(f2) such that
1
J,\(un) < CK)\(Q) + E, (312)

and

1
Ia(uy) < Jy(w) + - |lw — uy,|| foreachw € M,(Q). (3.13)

By taking n enough large, from Lemma 3.7(i), we have

I = (= Dl = (2 =2 [ 1) ] da (3.14)
< ozA(Q)jLl < Pge) <0
This implies
Il 8" loll 2 [ o) ol o> ST 5(0), G19)

Consequently u,, # 0 and putting together (3.14),(3.15) and the Holder inequality, we

obtain

gp—r)
ol = [Mq =) T &

5(6)] : (3.16)

and

3

p—

D1 ST} . (3.17)

Now we show that

H‘]//\(UH)H(WOQW(Q))* — 0 as n — oQ.

Applying Lemma 3.8 with u,, to obtain the function &,: B(0;¢,) C Wi?(Q) — R* for some
€, > 0, such that &, (w)(u, — w) € Mx(Q). Choose 0 < p < €,. Letu € WJP(Q) withu = 0

and let w, = . We set 1, = &,(w,)(u,, — w,). Since 1, € M,(€2), we deduce from (3.13) that

fluall*
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1
‘]/\(np) — N(un) > 0 ||77p — Uy ,

and by the mean value theorem, we have
/ 1
(A Can) 1y = 1) + 0l = )} > == [y = ]|

Thus,

(I\(un), =wp) + (En(wp) = 1) (S (un), (un — w,)) = —% 115 = unll + ollln, = unl)).  (3.18)

From &, (w,)(u, — w,) € M»(Q2) and (3.18) it follows that

= () 7 )+ (€0l) = 1) () = 0. (= ) = =3 1 =l + o = ).

Thus,
n _1 / / 1 - Un
<J§\(Un), HZH> : s (w/;)) i (S3(un) = JN(0p), (un — wp)) + n_p 7o — unll + o, — H)
(3.19)
Since
170 — wnl| < [&alwp) = 1 [unll + £ [&n(wp)],

and

- [&nlwp) — 1 ,

e AUl

If we let p — 0 in (3.19) for a fixed n, then by (3.17) we can find a constant C' > 0,

independent of p, such that

) u\ _C ,
(). 7)< S+ g o)

n

We are done once we show that [|£],(0)| is uniformly bounded in n. By (3.10),(3.17) and

Holder inequality, we have
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b vl

< for some b > 0.
[(p = 1) Jo |Aunl do — (g —7) [q [un|" dz]

We only need to show that

\<p—r>/Q|Aun|pdx—(q—m/gwdx

> c, (3.20)

for some ¢ > 0 and n large enough. We argue by contradiction. Assume that there exists a

subsequence {u,} such that

(p—r) /Q |Au, P dz — (g — 1) /Q [un|? dx = o(1). (3.21)

Combining (3.21) with (3.16), we can find a suitable constant d > 0 such that

/ \u,|?dx > d  for n sufficiently large. (3.22)
Q

In addition (3.21), and the fact {u,, } C M,(2) also give

)\/f(x) | da: = Hun||p—/|un\qczx> lun|? > ﬂ/ ¢ da > 0,
Q Q pP—TrJa

and
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1

fiall < (A=) 1l 57) "+ ot (3.23)
This implies
Uy) = r M)ﬂ_)\ ) |u,|" dr
B = Kan) (et ) = [ 5@ o (324)
= Yl P B up|?dr + 0
= (K@ E=05 = 122 [uftao+ o)
= o(1).

However, by (3.22), (3.23) and A € (0, \y),

p

I a—p ) )
)7 =l

=
T i -
el HunHLq (q,?”) Sr(qu)erq || Hr(qu)erq - ||f”Lq*
P u P

s 1 -7
— (KWW el = A Hme)

q—p

r
unHLq

r 1 i q
> Jlulll, {K<q,r>wm—r[<

- T
q—p q—p

V1l S5 — A ||f||m} ,

This contradicts (3.24). We get

The proof is compleat.

(ii) Similar to the proof of (i), we may prove (ii).
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Now, we establish the existence of a local minimum for J, on M} ().

Theorem 3.2 Let )\ as in Proposition 3.1, then for A € (0, \), the functional J\ has a minimizer

ug € M7 () and il satisfies
(D) Ja(ug) = ax(2) = a3 () ;
(ii) ug is a nontrivial solution of problem (3.1);
(iii) Ja(ug) —0asA—0.

Proof Let {u,} C M,(f2) is a minimizing sequence for J, on M,(£2) such that

Ia(un) = ax(2) + o(1),

Ji(u,) = o(1),  for (WZP(Q))*.

Then by Lemma 3.7 and the compact imbedding theorem, there exists a subsequence {u,}

and uj € W;?(Q) such that

u, — ug weaklyin WP(Q),

u, — ug strongly in L),

and

u, — ug stronglyin L"(9). (3.25)

We firstly show that [, f(x) [ug| dz # 0.If not, by (3.25) we can conclude that
[ 5@ ] e #0,

and

/f(x) |un|"dz — 0 as n — co.
Q
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/|Aun|pdx:/|un|qd$+o(1)
Q Q

Thus,

1 1 A
T(y) = /|Aun\pdx——/\un\qu—;/Qf(x) " d

1
=(-—- /|un|qu+0

P

1 q
= (= —= d — oo,
( q/‘uo‘ X as n (0.0}

this contradicts Jy(u,) — a\(Q) < 0 as n — oco.In particular, uf € M7 () is a nontrivial
solution of problem (3.1) and J)(ug) > a,(2). We now prove that u, — ug strongly in

W;?(Q). Supposing the contrary, then |ug || < hm mf ||un|| and so

Jaf "= [ o= x| fa) s " o

< liminf(Huan—/ |un|qu—)\/f(x) fup|” dar) = 0,

this contradicts uj € M, (Q2).In fact, if uf € M (), by Lemma 3.4, there are unique ¢ and

tosuch that tfug € M{(Q) and t5ug € M, (Q2), we have t§ < t; = 1.Since

d . d d?
EJA(t §)=0 an dzj(touo) 0,

there exists t§ < ¢ < t; such that Jy(tJugd) < Jx(tug). By

Ia(tgug) < a(tug) < Ia(tgug) = Ja(ug),
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which is a contradiction. By Lemma 3.3, we know that u is a nontrivial solution.

Moreover, by Lemma 3.7,

0> nuf) = A= gy,

it is clear that Jy(ul) — 0as A — 0.
Next, we establish the existence of a local minimum for J, on M} (12).

Theorem 3.3 Let )\ as in Proposition 3.1, then for A € (0, \y), the functional J\ has a minimizer

u, € M, (Q) and it satisfies
(i) I(ug) = ax ();
(ii) ug is a nontrivial solution of problem(3.1).
Proof Let {u,} is a minimizing sequence for .J, on M; (£2) such that

Sa(un) = () + o(1),

Ji(un) = o(1),  for (WeP(Q))*.

Then by Proposition 3.1 (ii) and the compact imbedding theorem, there exists a subse-

quence {u,} and v, € M (€2) such that

u, — uy weaklyin WZP(Q),

un, — uy stronglyin L7(Q),

and

u, = u, stronglyin L"(Q). (3.26)

We now prove that u,, — ug strongly in W;* (). Supposing the contrary, then
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|ug || < lim inf |ju,|| and so
n—o0
s 1P = [ Jug]?do = A [ @) o] da
Q Q
< timint(ua " = [ Junldo = A [ @) o] dx) =0,
this contradicts u; € M (Q). Hence u,, — ug strongly in W (£2). This implies
Ia(un) = Ia(ug) = o, (2)  as asn — oo.

By Lemma 3.3, we know that u, is a nontrivial solution.

Combing with Theorem 3.2 and Theorem 3.3, for problem (3.1) there exist two nontrivial
solution ug and u, such that uf € M} (Q), uy € M, (). Since M7 (2) N M5 (Q) = 0, this

shows that uj and u, are different.



Conclusion

In this memory, we have studied the existence and multiplicity of solutions for a fourth-order
elliptic problem, using variational techniques, exactly the Nehari manifold method and
Ekeland’s variational principle under homogenous boundary conditions.

The results obtained in this work can be generalized with other operators and different

nonlinearities, in critical and sub-critical cases.
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