
People's Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

University Larbi Tébessi - Tébessa

Faculty of Exact Sciences and Natural and Life Sciences

Department: Mathematics and Computer Science

Final thesis

For obtaining of the MASTER diploma

Domain: Mathematics and Computer Science

Field: Computer Science

Specialty: Systems and Multimedia

Presented by:

Daani Tahar

In front of the jury:

 Pr Amroune Mohammed Pr Larbi Tebessi University President

 Mr. Zebdi Abdelmoumen MAA Larbi Tebessi University Thesis Supervisor

 Dr. Abbes Faycel MCB Larbi Tebessi University Examiner

College year:

2023/2022

Segmentation Based Method For

Handwritten Connected Digits Using

Image Encryption Technique

2

Thank

First of all, I would like to express my gratitude to the editors of this dissertation, Mr. Zebdi

Abdelmoumen, for their patience, availability, and, above all, their sound advice. Their

understanding was particularly valuable, as it enabled us to make significant progress and

perform exceptionally well throughout these months.

I would also like to thank the members of the jury:

 Pr: Amroune Mohammed

 Dr: Abbes Faycel

I would also like to thank all the students with whom I have been happy to study during these

years of university.

I thank all the teachers that I have been able to meet and benefit from.

I would like to thank my colleagues in the Mathematics and Computer Science department and

all those who have helped me directly or indirectly in the realization and accomplishment of this

work.

3

 ملخص

يندرج هذا المشروع ضمن مجال تعلم العمق، وهو فرع من فروع الذكاء الاصطناعي الذي يركز على تطوير النماذج

الحاسوبية التي تتعلم وتتطور ذاتيًا من خلال البيانات. يهدف هذا المشروع إلى تحسين عملية التعرف على الأرقام باستخدام

 .تقنيات تعلم العمق

على الأرقام باستخدام تعلم العمق هامة ومتعددة. على سبيل المثال، يمكن استخدامها في تطبيقات التعرف تعتبر فوائد التعرف

على الخط اليدوي والتعرف على الأعداد في الصور وفهم المعلومات الرقمية الموجودة في الصور والوثائق. يمكن أيضًا

 .تعرف الأجهزة على الأرقام السرية أو الرموز المكونة من الأرقاماستخدامها في تحسين الأمان والتحقق من الهوية من خلال

، حيث تم تدريب النموذج باستخدام CNN (Convolutional Neural Network) في هذا المشروع، تم استخدام نموذج

 .التي تحتوي على صور للأرقام الفردية CVL مجموعة البيانات

م تقسيم سلسلة الأرقام إلى أجزاء فردية و تمرير هذه الاجزاء على نظام التعرف ثم تم استخدام طريقة تجزئة الصورة، حيث ت

المدرب. وأخيرًا، تم جمع الأرقام المتوقعة للحصول على الرقم CNN على الصور و ذلك لتنبأ بكل رقم باستخدام نموذج

 .الكامل للسلسلة

تحديد الحواف و النافذة المنزلقة و تابعنا النتائج المتحصل تمت عملية التجزئة باستخدام بعض الطرق المقترحة في عملنا مثل

 .عليها بعدها قمنا باجراء طريقة اخرى لتجزئة و هي دمج بين الطريقتين المقترحتين و ذلك لتحسين من جودة العملية

طريقة تعتمد على وبهدف زيادة جودة التجزئة، تم استخدام طريقة تشفير الصورة لتحسين عملية التجزئة حيث كانت هذه ال

تشفير البكسلات المكونة للصورة الخاصة بالأعداد المتصلة حيث تتكون لنا صورة جديدة و نطبق العملية على مجموعة

البيانات للارقام المتصلة الخاصة بنا لتتكون لنا مجموعة بيانات جديدة و بعدها نقوم بتطبيق نفس طرق التجزئة المقترحة و

 .ت تحسن او لانتابع النتائج اذا حقق

4

Abstract

This project falls within the field of deep learning, which is a branch of artificial intelligence that

focuses on developing computer models that learn and evolve autonomously through data. The

aim of this project is to improve the process of number recognition using deep learning

techniques.

The benefits of number recognition using deep learning are significant and varied. For example,

it can be used in applications such as handwriting recognition, number recognition in images,

understanding digital information present in images and documents. It can also be used to

enhance security and identity verification by devices recognizing secret numbers or numeric

codes.

In this project, a Convolutional Neural Network (CNN) model was used. The model was trained

using the CVL dataset, which contains images of individual numbers.

Then an image segmentation method was employed, where the number sequence was divided

into individual parts and passed through the image recognition system to predict each number

using the trained CNN model. Finally, the predicted numbers were combined to obtain the

complete number sequence.

The segmentation process was performed using several proposed methods in our work, such as

edge detection and sliding window. We evaluated the results and then applied another method,

which was a combination of the two proposed methods, to improve the quality of the process.

To enhance the quality of segmentation, an image encryption method was used. This method

aimed to improve the segmentation process by encrypting the pixels of the image corresponding

to the connected numbers. This resulted in a new image, and the process was applied to our

dataset of connected numbers, resulting in a new dataset. Then, the same proposed segmentation

methods were applied, and the results were evaluated for improvement.

5

Résumé

Ce projet fait partie du domaine de l'apprentissage en profondeur, une branche de l'intelligence

artificielle qui se concentre sur le développement de modèles informatiques capables d'apprendre

et de s'améliorer de manière autonome à partir des données. L'objectif de ce projet est

d'améliorer le processus de reconnaissance des chiffres en utilisant des techniques

d'apprentissage en profondeur.

Les avantages de la reconnaissance des chiffres grâce à l'apprentissage en profondeur sont

importants et variés. Par exemple, cela peut être utilisé dans des applications de reconnaissance

d'écriture manuscrite, de reconnaissance de chiffres dans des images, de compréhension des

informations numériques présentes dans des images et des documents. Cela peut également être

utilisé pour améliorer la sécurité et la vérification de l'identité en reconnaissant des numéros

secrets ou des codes composés de chiffres.

Dans ce projet, un modèle CNN (Convolutional Neural Network) a été utilisé. Le modèle a été

entraîné en utilisant l'ensemble de données CVL, qui contient des images de chiffres individuels.

Ensuite, une méthode de découpage d'image a été utilisée. La séquence de chiffres a été divisée

en parties individuelles, et ces parties ont été passées à un système de reconnaissance d'images

pour prédire chaque chiffre à l'aide du modèle CNN entraîné. Enfin, les chiffres prévus ont été

collectés pour obtenir le numéro complet de la séquence.

Le découpage a été effectué en utilisant certaines méthodes proposées dans notre travail, telles

que la détection des contours et la fenêtre glissante. Nous avons ensuite effectué une autre

méthode de découpage en combinant les deux méthodes proposées afin d'améliorer la qualité du

processus.

Dans le but d'améliorer la qualité du découpage, une méthode de codage d'image a été utilisée

pour améliorer le processus de découpage. Cette méthode était basée sur le codage des pixels

composant l'image des chiffres connectés, créant ainsi une nouvelle image. Nous avons appliqué

cette méthode à notre ensemble de données de chiffres connectés pour obtenir un nouvel

ensemble de données, puis nous avons appliqué les mêmes méthodes de découpage proposées et

suivi les résultats pour évaluer s'ils montraient une amélioration ou non.

6

Table of Contents

 3 .. ملخص

Abstract ... 4

Résumé .. 5

General Introduction ... 10

Chapter1: Theoretical concepts ... 12

1. Introduction: .. 13

2. Handwritten Digit Recognition: .. 13

3. Convolutional Neural Network: .. 14

4. CNN layers: ... 14

4.1. The Convolutional Layer: .. 14

2.4. The Pooling Layer .. 15

4.3. Activation Layer:.. 15

4.4. Fully Connected Layer: .. 15

5. Existing architecture: ... 16

5.1. VGGNet: .. 16

5.2. AlexNet: ... 17

5.3. ResNet: ... 17

6. CNN training methods: .. 18

6.1. Training from scratch: .. 18

6.2. Transfer learning: ... 18

7. Datasets:... 19

7.1. MNIST: .. 19

7.2. CVL: ... 20

7.3. ARDIS: ... 21

7

7.4. ORAND-CAR: ... 21

7.5. SVHN ... 22

8. Pre-processing: .. 23

8.1. Noise reduction: ... 23

2.4. Binarization: ... 23

8.3. Skeletonization: .. 24

8.4. Size normalization: ... 25

9. Segmentation: .. 25

9.1. Explicit segmentation ... 26

9.2. Implicit segmentation ... 26

10. Conclusion: .. 28

Chapter 2: State of the art ... 29

1. Introduction: .. 30

2. Related works: ... 30

2.1. Y. Lecun et al [25] 1998: ... 30

2.2. P. Sermanet et al [26] 2012: ... 30

2.3. A. Gattal et al [27] 2016: ... 31

2.4. U. R. Babu et al [28] 2016: .. 31

2.5. A. Khan et al [29]2017: .. 32

2.6. K. T. Islam et al [30] 2017: .. 32

2.7. A. Gattal et al [31] 2017: .. 32

2.8. Shujing Lyu et al [32] 2018: .. 33

2.9. Rabia KARAKAYA et al [33]2018: .. 33

2.10. R. Dey et al [34] 2020: ... 33

2.11. Amit Choudhary et al [35] 2020: .. 34

8

3. State of the art Summary: .. 35

4. Conclusion: .. 36

Chapter 3: Our approach ... 37

1. Introduction: .. 38

2. Training method: ... 38

3. Pre-processing: .. 39

4. Segmentation: .. 43

4.1. Sliding window: ... 43

2.4. Edge detection: ... 45

4.3. Sliding Window + Edge Detection Error! Bookmark not defined.

5. Proposed CNN architecture: .. 48

6. Dataset used: .. 50

6.1. Cvl Dataset ... 50

6.2. Mnist Dataset: .. 50

7. Conclusion: .. 52

Chapter 4: The experimental results ... 53

1. Introduction ... 54

2. Development Tools.. 54

2.1. Hardware Tools .. 54

2.2. Software Tools ... 54

Anaconda Distribution .. 54

Spyder IDE .. 54

Google colab ... 55

Python language .. 55

Data split: .. 55

9

3. Experimentations and Results: .. 57

3.1. Proposed CNN: .. 57

3.2. Segmentation: ... 57

3.2.1. Proposed system using Sliding window: .. 57

3.2.2. Proposed system using Edge detection:.. 61

3.2.3. Proposed system using Sliding window and Edge detection: 64

4. Comparison study: ... 68

Conclusion: ... 70

General Conclusion ... 71

Bibliography ... 74

10

General Introduction

Deep learning has emerged as a prominent field within the realm of artificial intelligence. It

focuses on the development of computer models that can autonomously learn from and improve

on data. Where is our project of deep learning In the domain of digit recognition, which holds

significant importance in various areas of research and practical implementation.

Recognizing and accurately interpreting numbers has numerous applications across different

fields. It plays a pivotal role in handwriting recognition, enabling the extraction of valuable

information from handwritten documents. Additionally, it aids in identity verification and

security systems by recognizing and validating numeric codes or secret numbers. Moreover, digit

recognition contributes to the analysis of digital images by enabling the extraction of numerical

data embedded within images or documents.

This thesis consists of four chapters, each covering essential aspects of the project. The first

chapter delves into the domain of handwritten digit recognition. It explores the challenges and

techniques employed to recognize and interpret handwritten numbers effectively.

The second chapter provides a comprehensive overview of the state-of-the-art approaches and

prior works in the field of digit recognition. It highlights the advancements, methodologies, and

breakthroughs that have been achieved thus far, setting the stage for the current research.

The third chapter focuses on the methods and techniques employed in this project. It discusses

the utilization of convolutional neural networks (CNN) as a powerful tool for image processing

11

and recognition. Additionally, it elaborates on the image segmentation techniques used to

partition digit images into individual components for accurate prediction.

In the fourth chapter, the experimental results obtained from the implemented methods are

presented and analyzed. The accuracy and performance of the developed model in recognizing

handwritten digits are evaluated and discussed.

Finally, the thesis concludes with a summary of the key findings, contributions, and implications

of the research. The conclusion provides a concise overview of the achieved results and their

significance in enhancing digit recognition through deep learning techniques.

Overall, this thesis aims to contribute to the field of digit recognition by leveraging the power of

deep learning and exploring novel methodologies to improve accuracy and efficiency in

recognizing handwritten digits.

12

Chapter1: Theoretical

concepts

13

1. Introduction:

Handwritten number recognition is a challenging task that has garnered significant attention in

the field of deep learning. The ability to accurately identify and interpret a sequence of

handwritten numbers has wide-ranging applications, including optical character recognition,

digitized document analysis, and automated data extraction. Deep learning techniques have

shown remarkable success in tackling this problem by leveraging the power of artificial neural

networks to learn complex patterns and features inherent in handwritten digits.

2. Handwritten Digit Recognition:

Handwritten digit recognition refers to the task of automatically identifying and classifying

handwritten digits. It is an important problem in computer vision and machine learning. Deep

learning techniques, specifically convolutional neural networks (CNNs), have greatly improved

the accuracy of handwritten digit recognition. [1]

Handwriting recognition systems can be categorized into two types: online and offline

recognition.

Online Handwriting Recognition:

Online handwriting recognition involves the real-time conversion of a user's handwritten input

on a tablet or smartphone. This process requires immediate recognition and interpretation of the

handwritten strokes as they are being drawn. It is considered more challenging compared to

offline recognition due to the need for real-time processing and interpretation. [2]

Offline Handwriting Recognition:

Offline handwriting recognition, on the other hand, is a comparatively easier process. It involves

the conversion of scanned images or digital representations of handwritten text into computer-

readable text. This recognition method does not require real-time processing as it operates on

pre-existing images or documents. The scanned or digitalized handwritten content is analyzed

and translated into text using machine learning algorithms. [2]

14

In summary, online handwriting recognition deals with the immediate interpretation of

handwritten input in real-time, while offline handwriting recognition focuses on the conversion

of scanned or digitalized handwritten text into computer-readable format. [2]

3. Convolutional Neural Network:

A Convolutional Neural Network (CNN) is a deep learning algorithm commonly used for image

analysis and computer vision tasks. It is designed to automatically learn and extract relevant

features from images through multiple layers of interconnected neurons. CNNs utilize

convolutional layers to apply filters and detect patterns in local regions of the input data,

followed by pooling layers to reduce spatial dimensions and increase computational efficiency.

The extracted features are then fed into fully connected layers for classification or regression [3].

4. CNN layers:

In a Convolutional Neural Network (CNN), the network architecture is composed of several

layers that perform different operations on the input data. These layers include:

4.1. The Convolutional Layer:

The convolutional layer is a key component of CNNs used in deep learning. It applies filters to

the input data, extracting features and patterns. It captures spatial hierarchies and local patterns,

enhancing the network's ability to learn meaningful representations. The output is passed through

activation functions to introduce non-linearities [4].

Figure 1: Convolution layer [5]

15

4.2. The Pooling Layer

The Pooling Layer is another important component of CNNs used in deep learning. It performs

down sampling by reducing the spatial dimensions of the input, effectively reducing the number

of parameters and computations in the network. It helps in extracting the most important features

and improving the network's robustness to variations in input. Common pooling operations

include max pooling and average pooling. [4]

Figure 2: pooling layer [5]

4.3. Activation Layer:

The Activation Layer, also known as the non-linear layer, is a fundamental component in

convolutional neural networks (CNNs). It introduces non-linearity into the network by applying

a mathematical function element-wise to the output of the previous layer. This allows the

network to learn complex, non-linear relationships between the input and output.

The Activation Layer is essential for enabling the network to model and capture non-linear

patterns and make more expressive representations of the data. Popular activation functions

include the Rectified Linear Unit (ReLU), sigmoid, and hyperbolic tangent (tanh) [4].

4.4. Fully Connected Layer:

The Fully Connected Layer, also known as the dense layer, is a type of layer commonly used in

neural networks, including convolutional neural networks (CNNs). In this layer, every neuron is

connected to every neuron in the previous layer, forming a fully connected graph. Each

connection is associated with a weight that determines the strength of the connection.

The Fully Connected Layer performs computations on the input data by applying matrix

multiplication between the input and the weights, followed by the application of a bias term and

16

an activation function. This process allows the network to learn complex relationships and make

predictions based on the learned features.

The Fully Connected Layer is typically used at the end of the network to transform the learned

features into a final output. It is commonly used for tasks such as classification or regression. [4]

5. Existing architecture:

There are several existing CNN architectures that have been developed and widely used in deep

learning applications. Here are some notable ones:

5.1. VGGNet:

VGGNet, or the Visual Geometry Group Network, is a convolutional neural network (CNN)

architecture introduced in 2014. It is characterized by its deep structure, consisting of 16 or 19

layers, all of which are convolutional layers, followed by fully connected layers. VGGNet

focuses on using small 3x3 filters throughout the network, which leads to better feature

representation. It achieved outstanding performance in the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) 2014. [6]

Figure 3: VGGNet architecture [7]

17

5.2. AlexNet:

Alex Net is a groundbreaking convolutional neural network (CNN) architecture introduced in

2012. It consists of eight layers, including five convolutional layers, three fully connected layers,

and employs techniques like ReLU activation, max-pooling, local response normalization, and

dropout regularization. Alex Net achieved significant advancements in image classification and

was trained on the ImageNet dataset. [8].

Figure 4: AlexNet architecture [9]

5.3. ResNet:

ResNet, short for Residual Network, is a widely used deep learning architecture that

revolutionized the field of image recognition. It introduced the concept of residual connections,

which allow the network to bypass and learn residual mappings. This enables the training of

extremely deep networks with improved gradient flow and reduced vanishing gradient problem.

18

ResNet has demonstrated outstanding performance on various computer vision tasks, surpassing

previous models in accuracy and achieving state-of-the-art results. [10]

Figure 5: ResNet architecture [11]

6. CNN training methods:

6.1. Training from scratch:

Training a model from scratch refers to training a deep learning model from randomly initialized

weights, without utilizing any pre-trained models or transfer learning. It involves training the

model on a specific dataset starting from the beginning, learning the representations and features

directly from the data.

6.2. Transfer learning:

Transfer learning refers to a technique in deep learning where a pre-trained model, which has

been trained on a large dataset, is used as a starting point for training a new model on a different

19

but related task or dataset. By leveraging the knowledge and learned features from the pre-

trained model, transfer learning can significantly speed up the training process and improve the

performance of the new model.

7. Datasets:

Datasets refer to collections of structured or unstructured data that are used for training and

evaluating machine learning models. They play a crucial role in the development and

advancement of various AI applications.

7.1. MNIST:

MNIST stands for "Modified National Institute of Standards and Technology." It is a well-

known dataset in the field of machine learning and computer vision. The dataset consists of a

collection of grayscale digital images representing hand-written numbers from 0 to 9 [12].

MNIST is typically composed of 60,000 images used for training and 10,000 images used for

validation and testing. The images are sized at 28x28 pixels and are converted into a digital

dataset with values ranging from 0 to 255, where white color represents a value of 0, and black

color represents a value of 255.

The MNIST dataset is widely used for developing and testing machine learning models in the

field of optical image classification. The main objective is to correctly identify and classify the

handwritten numbers in the images.

20

Figure 6: The MNIST dataset [13]

7.2. CVL:

The CVL Digit Strings dataset is a collection of digit strings extracted from the CVL Single

Digit dataset. It includes 10 different digit strings written by approximately 120 different writers.

This dataset contains a total of 1,262 training images.

The CVL Single Digit dataset, on the other hand, consists of 7,000 single digits, with 700 digits

per class. These single digits were extracted from the digit strings in the CVL Digit Strings

dataset. The CVL Single Digit dataset provides a focused collection of individual digits for

training and recognition purposes.

It is important to note that the validation set, which has the same size as the training set, consists

of different writers. The validation set is primarily used for parameter estimation and validation,

rather than supervised training. This ensures that the models are evaluated on unseen data,

enhancing the reliability of the validation results.

21

In summary, the CVL Digit Strings dataset contains digit strings written by various writers,

while the CVL Single Digit dataset is derived from these strings and consists of individual digits.

Both datasets play a crucial role in training and evaluating models for handwritten digit

recognition [14].

Figure 7: cvl dataset [14]

7.3. ARDIS:

This is a new image-based handwritten historical digit dataset named ARDIS (Arkiv Digital

Sweden). The images in ARDIS dataset are extracted from 15.000 Swedish church records

which were written by different priests with various handwriting styles in the nineteenth and

twentieth centuries. The constructed dataset consists of three single digit datasets and one digit

strings dataset. The digit strings dataset includes 10.000 samples in Red-Green-Blue (RGB) color

space, whereas, the other datasets contain 7.600 single digit images in different color spaces [15].

Figure 8: ARDIS dataset [15]

7.4. ORAND-CAR:

The ORAND-CAR-2014 dataset refers to the "Optical Recognition of Arabic Numerals for Cars

- 2014" dataset. It is a specific dataset focused on Arabic digit recognition specifically in the

context of car license plates.

The ORAND-CAR-2014 dataset contains images of Arabic digits captured from car license

plates. It includes various images representing different Arabic numerals (0-9) found on license

22

plates. The dataset is annotated, meaning that it provides labels or ground truth for the Arabic

digits present in the images [16].

Figure 9: ORAND-CAR dataset [16]

7.5. SVHN

Street View House Numbers (SVHN) is a digit classification benchmark dataset that contains

600,000 32×32 RGB images of printed digits (from 0 to 9) cropped from pictures of house

number plates. The cropped images are centered in the digit of interest, but nearby digits and

other distractors are kept in the image. SVHN has three sets: training, testing sets and an extra set

with 530,000 images that are less difficult and can be used for helping with the training process

[17].

Figure 10: SVHN dataset [17]

23

8. Pre-processing:

Pre-processing plays a crucial role in the field of Handwritten Document Recognition as it serves

as the initial and fundamental step. Its primary purpose is to optimize the performance of

recognition algorithms by addressing various objectives.

The main goals of pre-processing include noise reduction in handwritten data, error correction,

and extraction of essential information from the representative form. By performing these tasks,

the pre-processing stage aims to enhance the quality of the input data before it is fed into the

recognition system [18].

The impact of pre-processing on the overall recognition performance should not be

underestimated. As there are multiple steps involved in achieving successful recognition, it is

important to highlight some of these steps:

8.1. Noise reduction:

In order to enhance discrimination, noise reduction techniques such as dropping, smoothing, and

correction of outliers with significant angular variations are employed, as outlined in the paper

referenced as [19]. The primary objective is to minimize noise interference to the maximum

extent possible.

Figure 11: Noise Reduction

8.2. Binarization:

The process of Binarization involves converting a grayscale image, which consists of 0 to 255

gray levels, into a binary image with only two values, black (0) and white (1). The success of

Handwritten Document Recognition heavily relies on the effectiveness of the binarization

24

technique. A high-quality binarized image can significantly improve accuracy compared to the

original image, as it helps eliminate the noise present in the original image [20].

Figure 12: Binarization

8.3. Skeletonization:

Skeletonization, also referred to as thinning, holds great significance as a crucial step in the pre-

processing stage. It plays a vital role in various applications such as Optical Character

Recognition and writer identification.

The skeletonization process serves multiple purposes, including reducing and compacting the

image size while preserving the overall shape of the object. It achieves this by identifying a

median axis, which consists of pixels that have equal distances from the surrounding border

pixels [21].

The utilization of skeletal representation offers several advantages:

 It provides an effective approach to represent the structural relationships between

different components of the model.

 It finds wide application in systems designed for recognizing characters, words,

signatures, and imprints.

By employing skeletonization, the pre-processed data becomes more compact, while retaining

essential shape information and enabling subsequent recognition algorithms to focus on the

structural characteristics of the objects of interest.

25

Figure 13: Skeletonization

8.4. Size normalization:

In order to facilitate the recognition stage in character recognition, it is essential to normalize the

size of the digits using sampling techniques. Size normalization serves as a significant pre-

processing technique in this context.

However, the selection of an appropriate size is a crucial consideration. If the size is too small,

there is a risk of losing important information. On the other hand, if the size is too large, it may

result in slower processing during the recognition stage [22].

Finding the optimal balance in size normalization is vital to ensure that the normalized digits

retain the necessary details for accurate recognition while maintaining efficiency in the

subsequent recognition algorithms.

Figure 14: Size normalization

9. Segmentation:

The segmentation stage is a critical step in handwriting digit recognition. It involves dividing a

handwritten document into individual digits or character components, which are then analyzed

26

and recognized separately. Proper segmentation is essential to ensure accurate recognition of

each digit.

One approach to segmentation in handwriting digit recognition is based on connected component

analysis. This method identifies and separates individual components based on their connectivity

and spatial relationships. Various algorithms and techniques have been proposed for

segmentation, such as contour-based segmentation, region-growing segmentation, or stroke-

based segmentation [23].

There are two main categories of segmentation:

 Explicit segmentation

 Implicit segmentation

9.1. Explicit segmentation

Explicit segmentation refers to the process of dividing an entity or a dataset into distinct and

well-defined segments based on predefined criteria or characteristics. This segmentation

approach relies on explicit information or features to determine the boundaries between

segments. For example, in image analysis, explicit segmentation involves manually drawing

outlines or regions of interest around specific objects or areas within the image [24].

 Local minima of the upper contour.

 Spaces between characters or sub words.

 The most likely intersection points by an analysis of the components in the word.

9.2. Implicit segmentation

Implicit segmentation, involves dividing an entity or dataset into segments without relying on

explicit criteria or predefined features. It leverages patterns, relationships, or underlying

structures within the data itself to identify meaningful segments. Implicit segmentation

techniques often utilize statistical algorithms, machine learning, or clustering algorithms to

discover patterns and group similar data points together [24].

 The advantage of this segmentation is that the information is localized by the models of

the letters and the validation is done by its models. There will be no segmentation error

27

and finally we get around Sayre's dilemma because by knowing the letters, we do not

generate segmentation error.

 The shortcomings of this segmentation come from the fact that the searching space for

the limits is greatly increased and the problem is reduced to a problem of searching for

areas where these limits are found.

Unlike explicit segmentation, implicit segmentation does not require prior knowledge or explicit

labeling of segments. Instead, it relies on the inherent properties of the data to reveal underlying

segments. This approach can be useful when dealing with large datasets or complex data where

manually defining explicit criteria for segmentation is challenging or impractical [24].

Both explicit and implicit segmentation have their advantages and applications depending on the

specific context and requirements. Explicit segmentation provides precise control over segment

boundaries, making it suitable for tasks where specific regions of interest need to be delineated.

Implicit segmentation, on the other hand, allows for the discovery of hidden patterns and

structures within the data, enabling unsupervised learning and exploratory analysis [24].

28

10. Conclusion:

In conclusion, the first chapter of the study focused on the utilization of convolutional neural

networks (CNNs) in recognizing handwritten numbers through deep learning. The significance

of this task was highlighted, and the role of deep learning in achieving precise outcomes was

discussed. The architecture of CNNs, encompassing convolutional, pooling, activation, and fully

connected layers, was elucidated. The effectiveness of CNNs in classifying and recognizing

handwritten numbers was demonstrated through the utilization of extensive data sets.

Furthermore, prominent data sets in this domain were mentioned. The chapter also covered

image pre-processing techniques and various methods and categories of segmentation. This

chapter establishes the foundation for subsequent chapters, which will delve into specific

techniques and experimental results pertinent to the project.

29

Chapter 2: State of the

art

30

1. Introduction:

Recent advancements in handwritten digit recognition have led to the development of state-of-

the-art techniques. These techniques leverage deep learning, particularly convolutional neural

networks (CNNs), to achieve highly accurate and efficient classification of handwritten digits.

State-of-the-art approaches utilize large-scale datasets to benchmark performance and compare

different models. This chapter explores the current state of the art in handwritten digit

recognition, highlighting key techniques, architectures, and datasets used to achieve superior

results. Understanding the current state of the art provides valuable insights and inspiration for

further advancements in this field.

2. Related works:

2.1. Y. Lecun et al [25] 1998:

The researchers [25] presented a model in this project for recognizing handwritten digits using

deep learning techniques.

The well-known MNIST dataset was used in this study, which consists of 60,000 training images

and 10,000 test images. A deep neural network with three layers was employed to recognize the

handwritten digits.

The results of the study yielded excellent accuracy in recognizing handwritten digits. A test

accuracy of 99.05% was achieved, making this model one of the best models for handwritten

digit recognition at that time. This work demonstrated that the use of deep neural networks can

be effective in improving the accuracy of recognizing handwritten digits.

2.2. P. Sermanet et al [26] 2012:

In this project [26], they utilized convolutional neural networks (ConvNets) to classify digits

found in real-world house numbers. ConvNets are neural networks that employ a hierarchical

feature learning structure inspired by biological systems. Unlike many conventional vision

approaches that require manual design, ConvNets have the ability to automatically learn a

distinct set of features specifically optimized for a given task.

31

To enhance the traditional ConvNet architecture, they incorporated the learning of multi-stage

features and employed Lp pooling. This resulted in a significant improvement in accuracy,

achieving a new state-of-the-art performance of 95.10% on the SVHN dataset, which represents

a 48% reduction in error. Additionally, they conducted an analysis to evaluate the advantages of

different pooling methods and the utilization of multi-stage features within ConvNets.

2.3. A. Gattal et al [27] 2016:

This research work [27] illustrates the effective utilization of a combination of oriented Basic

Image Features (oBIFs) and background concavity features to enhance the performance of

isolated digit recognition systems. The features are extracted without size normalization from

both the entire image and various regions of the image by employing a uniform grid sampling

approach. Classification is performed using a one-against-all support vector machine (SVM)

classifier. The experimental study is conducted on the standard CVL single digit database.

Through a series of evaluations using different feature configurations and combinations, the

proposed approach achieves high recognition rates, which are then compared to the state-of-the-

art methods in the field.

2.4. U. R. Babu et al [28] 2016:

This research paper [28] introduces a novel approach for off-line handwritten digit recognition

that relies on structural features, eliminating the need for thinning operations and size

normalization techniques. Four different types of structural features are employed in this study,

namely the number of holes, water reservoirs in four directions, maximum profile distances in

four directions, and fill-hole density. These features are utilized for digit recognition, and the

effectiveness of the system heavily relies on the selection of features. The primary objective of

this paper is to present efficient and reliable techniques for recognizing handwritten digits. The

Euclidean minimum distance criterion is employed to determine minimum distances, and a k-

nearest neighbor classifier is used for digit classification. The MNIST database is utilized for

both training and testing the system. A total of 5000 numeral images are tested, achieving a

recognition rate of 96.94%.

32

2.5. A. Khan et al [29]2017:

In the study [29] , a novel approach called Multiple-Cell Size (MCS) is proposed for efficient

classification of Handwritten Digits using Histogram of Oriented Gradient (HOG) features and a

Support Vector Machine (SVM) based classifier. The effectiveness of the HOG-based technique

highly depends on the selection of cell size during feature extraction. To address this, the MCS

approach is introduced to perform HOG analysis and compute the corresponding features. The

system is evaluated on the Benchmark MNIST Digit Database, which contains handwritten

digits, achieving an impressive classification accuracy of 99.36% using an Independent Test set

strategy. Cross-Validation analysis is also conducted using the 10-Fold Cross-Validation

strategy, resulting in a 10-Fold classification accuracy of 99.26%. Notably, the proposed system

outperforms existing techniques that rely on complex procedures, as it achieves comparable or

even better results while utilizing simpler operations in both the Feature Space and the Classifier

Space. The Confusion Matrix and Receiver Operating Characteristics (ROC) plots of the system

demonstrate the superior performance of the novel MCS HOG and SVM based digit

classification system.

2.6. K. T. Islam et al [30] 2017:

In this research [30], we developed a multi-layer fully connected neural network with a single

hidden layer to achieve handwritten digit recognition. The testing phase was carried out using the

widely available MNIST handwritten database. For training purposes, we extracted 28,000 digit

images from the MNIST database, while 14,000 digit images were reserved for testing. The

performance of our multi-layer artificial neural network resulted in an impressive accuracy of

99.60% during the testing phase.

2.7. A. Gattal et al [31] 2017:

The objective of the research [31] is to propose a segmentation and recognition system for

handwritten digit strings of unknown length. The system combines multiple explicit

segmentation methods based on the configuration link between digits. Specifically, three

segmentation methods, namely histogram of the vertical projection, contour analysis, and sliding

window Radon transform, are integrated. To analyze and determine the acceptance or rejection

of each segmented digit image, a recognition and verification module employing support vector

machine classifiers is utilized. Additionally, the proposed system includes various submodules to

33

enhance its robustness. Experimental results obtained from the benchmark dataset demonstrate

the effectiveness of the proposed system in segmenting handwritten digit strings without prior

knowledge of their length, showcasing its superiority compared to state-of-the-art methods.

2.8. Shujing Lyu et al [32] 2018:

This research [32] introduces a novel CNN-based architecture designed specifically for

recognizing handwritten digit sequences. The study was conducted using two datasets: CVL and

ORAND-CAR. The results of the proposed approach yielded an accuracy of 42.69% on the CVL

dataset, while achieving 92.2% and 94.02% accuracy on the ORAND-CAR-A and ORAND-

CAR-B datasets, respectively.

2.9. Rabia KARAKAYA et al [33]2018:

As technology continues to play an increasingly prominent role in our daily lives, algorithms

have become integral components that streamline tasks and reduce workloads. Machine learning

algorithms, in particular, have been steadily improving by emulating human behaviors.

Handwriting recognition systems are notable examples of this progress. In this study [33], the

process of handwriting digit recognition was conducted using various algorithms with different

working methods. These algorithms include Support Vector Machine (SVM), Decision Tree,

Random Forest, Artificial Neural Networks (ANN), K-Nearest Neighbor (KNN), and K-Means

Algorithm. The operational principles of the handwriting digit recognition process were

examined, and the effectiveness of different algorithms on the same database was evaluated. A

comprehensive report was generated by comparing the accuracy achieved by each algorithm.

2.10. R. Dey et al [34] 2020:

In this study [34], a novel technique is proposed for recognizing offline handwritten digit images,

utilizing a string edit distance algorithm. The recognition system aims to construct a string

representation for each digit and then predicts the digit class by comparing the test string with the

existing strings from the training set. The similarity between the test string and the training

strings is determined by calculating the edit distance, with lower distances indicating higher

similarity. To evaluate the robustness of the proposed system, various digit databases are

utilized, including mixed datasets designed specifically for validation purposes. The system is

34

trained on one dataset and tested on another, demonstrating its ability to generalize across

different datasets. The robustness of the system is validated using four different types of datasets,

showcasing its excellent performance. Additionally, experiments are conducted where the

recognition system is trained with a limited number of samples from a specific dataset, but tested

using a large number of samples from a different dataset. The results of these experiments are

presented in tabular and visual formats, highlighting the performance and effectiveness of the

proposed system.

2.11. Amit Choudhary et al [35] 2020:

The main goal of this study [35] is to attain a high level of accuracy using a pure CNN

architecture without resorting to ensemble architectures. The use of ensemble architectures

typically comes with added computational costs and testing complexity. Therefore, the proposed

CNN architecture aims to achieve even better accuracy than ensemble architectures while also

reducing operational complexity and costs.

Furthermore, we introduce an effective combination of learning parameters in the design of the

CNN, which allows us to establish a new record in accurately classifying MNIST handwritten

digits. Through extensive experimentation, we successfully achieved a remarkable recognition

accuracy of 99.87% on the MNIST dataset.

35

3. State of the art Summary:

For illustration purposes, the following figure briefly summarizes all the works mentioned in this

chapter.

 study approach dataset Data type accuracy

1 Gattal et al. SVM NSTRING SD19 offline 96.91%

2 R. Dey et al. matching MNIST+ARDIS Offline + online 72.70%

3 Shujing Lyu et al. CNN
ORAND-CAR-A

offline
92.20%

ORAND-CAR-B 94.02%

4 P. Sermanet et al. ConvNets SVHN Online + offline 95.10%

Table 1: State of the art Summary (String)

 study approach dataset Data type accuracy

1 A. Khan et al. HOG + SVM MNIST offline 99.36%

2 Gattal et al. oBIFs + SVM CVL offline 95.21%

3 U. R. Babu et al. KNN MNIST offline 96.94%.

4 R. Dey et al. matching MNIST Offline + online 96.83%

5 K. T. Islam et al. CNN MNIST offline 99.60%

6
Rabia karakaya et

al.

SVM

MNIST offline

90.00%

Decision tree 87.00%

Random forest 97.00%

ANN 97.00%

KNN 98.00%

KM 98.00%

7 Shujing Lyu et al. CNN CVL offline 42.69%

8 A.Choudhary et al. CNN MNIST offline 99.87%

9 Y. Lecun et al. CNN MNIST offline 99.05%

Table 2: State of the art Summary (digit)

36

4. Conclusion:

In this chapter, we dedicated our efforts to conducting an extensive review of the most up-to-date

research in the field, up until the year of writing this dissertation (2023). Our goal was to

thoroughly examine the datasets that were utilized in previous studies, the methodologies that

were employed, and the outcomes that were achieved by each of these studies. To ensure a

comprehensive overview, we compiled a summary table that encompasses all the papers that

were cited in this chapter. This table serves as a valuable resource, providing a consolidated

reference of the key findings and contributions of each study mentioned. By presenting this

summary, we aim to provide readers with a holistic understanding of the existing body of work

and establish the context for our own research endeavors in subsequent chapters.

Moving forward to the next chapter, we will explain our own approach in detail. We will discuss

the training methodology, the datasets we utilized, and the preprocessing and augmentation

techniques applied to the data. Additionally, we will present the models we employed to address

the research questions. This will offer a clear understanding of our research methodology and

pave the way for the subsequent chapters.

37

Chapter 3: Our

approach

38

1. Introduction:

In this chapter, we discuss the techniques, dataset, models, and processing methods used in the

project. It includes a review of the dataset used, an explanation of the developed models, and an

illustration of the data processing methods. The technical details and tools used to achieve the

project's specific objectives are documented.

2. Training method:

In order to create a program capable of recognizing a sequence of handwritten numbers with an

unknown length, we followed a systematic approach outlined in a diagram. The diagram

illustrates the step-by-step process we followed to achieve the desired outcome:

Prediction

25000

Recognition and decision

CNN model (proposed)

Pre-processing

Size normalization Noise reduction Binarization Skeletonization

Segmentation

Sliding window edge detection Sliding window + edge detection

Pre-processing

Size normalization Noise reduction Binarization Skeletonization RSA encryption (proposed)

39

In this chapter, we will delve into the development of a system capable of recognizing a String of

digits with an unknown length. This work involved three crucial stages, with some stages

occasionally being combined. We will discuss and explain each of these stages in detail,

highlighting their significance in achieving the desired objective.

3. Pre-processing:

As discussed in the first chapter, pre-processing plays a vital role in the field of handwritten

document recognition as it serves as the initial and fundamental step. The main objective of pre-

processing is to enhance the performance of recognition algorithms by addressing specific

targets.

Throughout our experimental study, we utilized various pre-processing techniques, including

Size normalization, Noise reduction, and Binarization, which were previously defined in the first

chapter. These techniques were consistently applied with fixed values to a string of handwritten

digits images.

In the pre-processing stage, the size of the image was maintained without alteration to preserve

all the features present in the image for subsequent operations. Noise reduction was then applied

to improve the clarity of the digits in the image. Following that, the image was converted to a

binary system, where black color represented 0 and white color represented 1. This conversion

facilitated the Skeletonization process, which was discussed in the first chapter and aimed to

compress the image while preserving its fundamental shape, thereby aiding in the subsequent

fragmentation stage.

Binarization:

Figure 15: Binarization

40

Noise reduction:

Figure 16: Noise reduction

Skeletonization:

Figure 17: Skeletonization

We suggested a procedure where we utilized the RSA encryption algorithm to encrypt the pixel

values in the image. This encryption process altered the format of each pixel, aiming to enhance

the accuracy of image segmentation. It is important to note that this method involves applying

the encryption algorithm to the original image, rather than the modified version. This approach

ensures the preservation of the overall shape and any distinctive features that may be specific to

the original image.

Figure 18: RSA encryption algorithm

In the subsequent pre-processing stage, which followed the segmentation stage, similar settings

were employed as in the initial stage. However, in the resizing step, the image containing the

string of digits was divided into individual images, each containing a single digit, with a size of

41

28 * 28. This size was chosen because the CNN model used in the study was trained on a dataset

consisting of images with one digit per image, all sized at 28 * 28.

Size normalization:

Figure 19: Size normalization

Binarization:

Figure 20: Binarization

Noise reduction:

Figure 21: Noise reduction

42

Skeletonization:

Figure 22: Skeletonization

For the purpose of improving the Handwritten Connected Digits segmentation process, we

proposed a method of encoding image pixels, making it an encrypted image, passing it on the

segmentation methods that were suggested, and comparing the given results with the previous

results.

Benefits:

Data simplification: The Binarization process converts the image into a binary image (black and

white), thereby simplifying the data and reducing the complexity of the image. This can facilitate

subsequent processing operations and image analysis.

Noise reduction: The Noise reduction process aims to remove noise, extra points, or

unnecessary elements from the image. This contributes to improving the image quality and

eliminating any noise that may negatively affect subsequent processing operations.

Structure analysis: The Skeletonization process reduces the overall structure of the image into a

set of connected thin lines. This can help in identifying and understanding the general structure

of the image, which is useful in shape recognition or object identification in the image.

Drawbacks:

Loss of details: The Binarization and Skeletonization processes may lead to the loss of some

fine details in the image since it is converted into a binary image. This means that some

important details in the image that might be crucial for subsequent processing may be ignored.

43

Undesirable effects: The Noise reduction process may sometimes have undesirable effects on

the image. Important details may be removed along with the noise, which can affect the accuracy

of subsequent processing.

4. Segmentation:

4.1. Sliding window:

Sliding window segmentation is a technique used in handwriting digit recognition to extract

individual digits from an image. The primary goal is to divide the input image into smaller

regions, known as windows, and classify the content within each window as a digit or non-digit

[36].

Edge detection SW + ED Sliding window

CNN model

decision

44

The process begins by applying a sliding window over the input image. The sliding window is a

rectangular region that moves across the image in a systematic manner. It starts from a specified

position, usually the top-left corner, and moves horizontally with a defined stride (step size).

As the sliding window moves, it extracts the content within the window. In the case of

handwriting digit recognition, this content corresponds to a small region of the image that

potentially contains a single digit. The size of the sliding window is typically set to match the

expected size of the digits in the image.

After extracting the content within each window, a classification algorithm is applied to

determine whether the content represents a digit or a non-digit. This classification step aims to

differentiate between handwritten digits and other elements in the image, such as background

noise or irrelevant markings.

Once the content within each window is classified, a thresholding step is often applied to make a

final decision. This thresholding step sets a confidence threshold or probability value, above

which the content is considered a digit and below which it is considered a non-digit. The specific

threshold value can be determined based on the desired level of accuracy and false-positive and

false-negative rates.

The sliding window segmentation process continues until the entire image has been covered,

generating a set of smaller regions containing individual digits. These segmented digit regions

can then be further processed and recognized using additional techniques.

Overall, sliding window segmentation is a widely used technique in handwriting digit

recognition as it allows for the extraction of individual digits from an image by systematically

analyzing smaller regions and classifying their content.

45

Figure 23: Sliding window

We experimented with various configurations of the sliding window method to determine the

most effective settings for our system. We monitored the performance of different settings and

eventually found the ideal ones that we used for our study. These settings involve using a

window of equal height as each image, which was determined based on the image's height prior

to segmentation. For the width, we set it to 12 pixels. These settings proved to be the most

optimal and yielded positive results in our research.

4.2. Edge detection:

Edge detection is a fundamental technique employed in handwritten digit recognition for

segmentation purposes. Its primary objective is to identify and locate the boundaries or edges of

the digits within an input image. By utilizing edge detection, the distinct edges separating the

digits from the background or adjacent elements can be identified [37].

46

The process of edge detection involves analyzing the variations in intensity or color within the

image. Various edge detection algorithms, such as the canny edge detector, Sobel operator, or

roberts operator, can be employed to accomplish this task.

Once the edges are detected, they form an edge map or binary image, where the edges are

represented as white pixels, while the rest of the image is black. This edge map emphasizes the

boundaries between different regions within the image, including the boundaries of the

handwritten digits.

The segmented edge map is then utilized to extract individual regions or components

corresponding to the digits. Connected component analysis or contour-based methods can be

employed for this purpose. Connected component analysis groups adjacent edge pixels together

to form regions, while contour-based methods trace the contours of the connected edge pixels.

After segmenting the individual regions corresponding to the digits, additional processing

techniques can be applied to refine and separate the digit regions. This may involve bounding

box detection, where rectangular boundaries are determined around each digit, or region

growing, where the segmented regions are expanded based on certain criteria such as intensity or

color similarity.

The segmented and refined digit regions can then be passed on to subsequent recognition and

classification algorithms. utilize the extracted digit regions to accurately recognize and interpret

the digits. The improved accuracy of the handwritten digit recognition system is achieved by

effectively extracting the digit boundaries through the application of edge detection, thereby

providing more reliable input for the subsequent recognition algorithms.

47

Figure 24: Edge detection

4.3. Edge Detection + Sliding Window

To enhance our image segmentation system, we have integrated various previous techniques into

a unified system. This system primarily focuses on detecting edges. In cases where the edges of

the numbers appear connected, we employ a sliding window approach, as depicted in the

provided image.

48

Figure 25: Edge Detection + Sliding Window

5. Proposed CNN architecture:

We have developed a modified CNN model based on AlexNet specifically designed to handle

small-sized input images. Our model is tailored for grayscale images with a resolution of 28x28

pixels and a single channel (28,28,1).

The architecture consists of the following key layers:

 Input Layer: The initial layer takes input images of size 28x28 with a single channel.

 Convolutional Layers: Two consecutive convolutional layers with a kernel size of (5,5)

and an activation function of ReLU. Both layers have 32 filters to extract relevant

features from the input images.

49

 MaxPooling Layer: A max pooling layer with a pool size of (2,2) is used to down

sample the feature maps, reducing their spatial dimensions by half.

 Dropout Layer: To prevent overfitting, we have added a dropout layer with a rate of

0.25 after the max pooling layer. This layer randomly drops out 25% of the neurons

during training.

 Additional Convolutional Layers: Following the dropout layer, we have duplicated the

previous convolutional layers. However, in this duplication, we have adjusted the kernel

size to (3, 3) and increased the number of filters to 64.

Overall, our modified CNN model effectively handles the small input image size by utilizing a

combination of convolutional layers, max pooling, and dropout regularization. By adapting the

architecture from AlexNet, we ensure that our model can effectively extract relevant features

from the handwritten digit images, leading to accurate recognition and classification results.

Below is the summary table for the given model:

Layer (Type) Output Shape Param #

Img_Input (Inputlayer) (None, 28, 28, 1) 0

Layer_1 (Conv2D) (None, 28, 28, 32) 832

Layer_3 (Conv2D) (None, 28, 28, 32) 25632

Layer_2 (Maxpooling2d) (None, 14, 14, 32) 0

Dropout_1 (Dropout) (None, 14, 14, 32) 0

Layer_4 (Conv2D) (None, 14, 14, 64) 18496

Layer_5 (Conv2D) (None, 14, 14, 64) 36928

Layer_6 (Maxpooling2d) (None, 7, 7, 64) 0

Dropout_2 (Dropout) (None, 7, 7, 64) 0

Flatten (Flatten) (None, 3136) 0

Layer_7 (Dense) (None, 256) 803072

Dropout_3 (Dropout) (None, 256) 0

dense (Dense) (None, 10) 2570

Total params: 887,530 Trainable params: 887,530 Non-trainable params: 0

Table 3: CNN architecture used

50

6. Dataset used:

6.1. Cvl Dataset

The CVL Digit Strings dataset is a collection of digit strings extracted from the CVL Single

Digit dataset. It includes 10 different digit strings written by approximately 120 different writers.

This dataset contains a total of 1,262 training images.

The CVL Single Digit dataset, on the other hand, consists of 7,000 single digits, with 700 digits

per class. These single digits were extracted from the digit strings in the CVL Digit Strings

dataset. The CVL Single Digit dataset provides a focused collection of individual digits for

training and recognition purposes.

It is important to note that the validation set, which has the same size as the training set, consists

of different writers. The validation set is primarily used for parameter estimation and validation,

rather than supervised training. This ensures that the models are evaluated on unseen data,

enhancing the reliability of the validation results.

In summary, the CVL Digit Strings dataset contains digit strings written by various writers,

while the CVL Single Digit dataset is derived from these strings and consists of individual digits.

Both datasets play a crucial role in training and evaluating models for handwritten digit

recognition [14].

Figure 26: cvl dataset [14]

6.2. Mnist Dataset:

MNIST stands for "Modified National Institute of Standards and Technology." It is a well-

known dataset in the field of machine learning and computer vision. The dataset consists of a

collection of grayscale digital images representing hand-written numbers from 0 to 9 [12].

51

MNIST is typically composed of 60,000 images used for training and 10,000 images used for

validation and testing. The images are sized at 28x28 pixels and are converted into a digital

dataset with values ranging from 0 to 255, where white color represents a value of 0, and black

color represents a value of 255.

The MNIST dataset is widely used for developing and testing machine learning models in the

field of optical image classification. The main objective is to correctly identify and classify the

handwritten numbers in the images.

Figure 27: The MNIST dataset [13]

52

7. Conclusion:

This chapter focuses on the recognition of handwritten numbers. It highlights the significance of

preprocessing techniques, such as normalization and noise removal, in improving accuracy.

Different segmentation techniques like sliding window and edge detection are discussed, along

with their pros and cons in number recognition. An adapted CNN architecture based on AlexNet

is proposed for recognizing handwritten digits, with detailed explanations of the modifications

made to enhance its performance. The training and testing were conducted using standard

numeric datasets. The next chapter will present the experimental results, demonstrating how well

the trained CNN model accurately recognizes handwritten digits. These results will be carefully

analyzed to evaluate the effectiveness of the proposed techniques and their suitability for the

segmentation process.

53

Chapter 4: The

experimental results

54

1. Introduction

In the preceding chapter, we outlined the overall architecture of the system and provided a

comprehensive breakdown of each stage and step involved in the process. In this chapter, we

focus on discussing the tools utilized in the development of our work, alongside showcasing the

empirical results that have been achieved.

2. Development Tools

2.1. Hardware Tools

This program was created in a type of HP laptop with the following specifications:

• Processor: AMD Ryzen 3 2200U/2.50 GHz

• Installed memory (RAM): 12.0GB.

• System type: 64-bit operating system.

• Operating system: Windows 10 pro.

2.2. Software Tools

Anaconda Distribution

The Anaconda Distribution, an open-source platform, provides the most straightforward

approach for conducting Python-based data science and machine learning tasks on Linux,

Windows, and Mac OS X. Trusted by more than 11 million users globally, it has become the

industry norm for development, testing, and training processes on a single machine. [38].

Spyder IDE

Spyder is a Python-based scientific environment that is freely available and open source. It has

been specifically developed by and for scientists, engineers, and data analysts. This software

offers a distinctive blend of powerful features, including advanced editing, analysis, debugging,

and profiling tools typically found in comprehensive development environments. Additionally, it

provides data exploration, interactive execution, deep inspection, and visually appealing

visualization capabilities commonly associated with scientific packages [39].

55

Google colab

Colaboratory, or "Colab" for convenience, is a product developed by Google Research. It offers

users the ability to write and execute Python code directly from their web browser. It serves as an

excellent platform for individuals interested in machine learning, data analysis, and educational

purposes. Colab functions as a hosted Jupyter notebook service, eliminating the need for any

setup or configuration. Furthermore, it provides users with free access to computational

resources, including GPUs, enhancing the overall computing experience [40].

Python language

The utilized version is 3.9. Python is a programming language known for its simplicity and

power, making it easy to learn and use. It offers efficient high-level data structures and employs

a straightforward yet effective approach to object-oriented programming. Python's elegant

syntax, dynamic typing, and interpreted nature make it a versatile language suitable for scripting

and rapid application development across various domains and platforms [41].

Data split:

In this study, we divided the data into two sections for different purposes. The first section was

used for training a CNN model, while the second section was utilized to apply the segmentation

methods proposed in this research.

For the training phase of the CNN model, we used the cvl and mnist data sets together where we

had 10 classes, each class consisting of 5700 samples that were used for training, and 4178

samples for testing, the set's size 24*24. In addition, we introduced a new class, Number 11,

which contains parts of number models that represent undesirable patterns.

56

Figure 28: Single digit dataset used

The second section focused on the application of segmentation methods. It comprised the CVL

string digits dataset, which consisted of a series of numbers in each image. This section was

solely dedicated to the application of segmentation methods and their evaluation.

Figure 29: Cvl string digits dataset used [14]

57

3. Experimentations and Results:

In this section, we will systematically examine and discuss the various findings derived from our

methodology, as presented in the previous chapter. Each finding will be presented in a step-by-

step manner, accompanied by thorough explanations and justifications.

3.1. Proposed CNN:

As stated earlier, we initially trained the CNN model by combining the CVL and MNIST

datasets. The outcomes of this training process yielded favorable results, which are illustrated in

the table below:

The proposed CNN model

Accuracy Loss Val accuracy Val loss

CVL+MNIST

Datasets
98.42% 05.38% 97.81% 07.74%

Table 4: The proposed CNN model results

According to the table, the model trained on this combined dataset achieved remarkably high

performance. It exhibited an accuracy of 98.42% and a low loss of 05.38%. These results were

crucial as we relied on this well-performing model for predicting the numbers obtained through

the segmentation process.

3.2. Segmentation:

In this section, we will introduce the segmentation methods proposed in this study and

demonstrate their efficacy in the segmentation process by accurately predicting segmented

numbers. We will present the final results, including the number of instances where the

prediction was entirely correct, the number of instances where there was an error in a single

digit, and the number of instances where errors occurred in two digits (resulting in a different

number being predicted).

3.2.1. Proposed system using Sliding window:

The segmentation process, utilizing the sliding window technique as explained in Chapter 3, was

conducted in three stages.

58

In the first stage, we applied the sliding window to the original image, employing the pre-

processing methods discussed in the third chapter, except for skeletonization.

In the second stage, the sliding window was applied to an image that had undergone pre-

processing, including the skeletonization process. Here, the image was further processed with

skeletonization, which aids in capturing the essential structure of the digits.

Lastly, in the third stage, we applied the sliding window to the image that had been subjected to

an encryption method. The outcomes of this segmentation process are presented in the table,

showcasing the results obtained from each stage.

 the first stage the second stage the third stage

String digits CP OM TM T CP OM TM T CP OM TM T

0 0 91 42 0 0 9 42 0 0 0 42

9 4 1 42 0 0 2 42 0 0 0 42

0 0 0 42 0 0 9 42 0 0 0 42

0 9 6 42 0 0 4 42 0 0 0 42

0 9 0 42 0 0 0 42 0 0 0 42

0 9 4 42 0 0 9 42 0 0 0 42

9 5 7 42 0 3 6 42 0 0 0 42

59

0 0 4 42 0 0 0 42 0 0 0 42

0 9 2 42 0 0 0 42 0 0 0 42

9 9 5 42 0 0 0 42 0 0 0 42

0 3 90 42 0 0 2 42 0 0 0 42

0 9 3 42 0 0 0 42 0 0 0 42

0 4 2 42 0 0 9 42 0 0 0 42

40 3 0 42 9 9 9 42 0 0 0 42

0 3 2 42 0 0 4 42 0 0 0 42

4 4 6 42 0 0 2 42 0 0 0 42

0 0 4 42 0 9 0 42 0 0 0 42

3 5 92 42 0 4 5 42 0 0 0 42

60

0 0 2 42 0 9 4 42 0 0 0 42

0 9 5 42 0 0 9 42 0 0 0 42

0 9 7 42 0 0 0 42 0 0 0 42

3 2 94 42 0 9 97 42 0 0 0 42

0 0 0 42 0 0 0 42 0 0 0 42

0 0 2 42 0 0 0 42 0 0 0 42

Table 5: Sliding window result

CP: correct prediction.

OM: one mistake.

TM: two mistakes.

Note: The outcome achieved represents the most favorable outcome among a series of conducted

experiments. In each trial, we altered the width of the sliding window while maintaining the

length equal to that of the original image. The window size that yielded the optimal results was

determined to be 8.

The table displays the outcomes of our initial experiment. As previously mentioned, the

experiment consisted of three stages. Due to the time and resource requirements, we applied the

experiment to 24 images for each number.

61

During the first stage, we implemented the segmentation process on the original image, resulting

in satisfactory to commendable outcomes. Our evaluation of the segmentation process

effectiveness was based on three values. It is worth noting that the second and third values,

which correspond to cases where one or two elements were predicted incorrectly, yielded

average results.

Moving on to the second stage, we applied the segmentation process to an image that underwent

skeletalization. Unfortunately, the results of this experiment were poor, with no accurate

predictions. However, the cases where there was an error in one or two components were

minimal.

In the third stage, which we proposed, we utilized segmentation methods on an image and

applied the RSA encryption algorithm. Regrettably, the results were disappointing, with no

correct predictions observed in any of the three cases.

3.2.2. Proposed system using Edge detection:

The segmentation process, utilizing the Edge detection technique as explained in Chapter 3, was

conducted in three stages.

In the first stage, we applied the Edge detection to the original image, employing the pre-

processing methods discussed in the third chapter, except for skeletonization.

In the second stage, the Edge detection was applied to an image that had undergone pre-

processing, including the skeletonization process. Here, the image was further processed with

skeletonization, which aids in capturing the essential structure of the digits.

Lastly, in the third stage, we applied the Edge detection to the image that had been subjected to

an encryption method. The outcomes of this segmentation process are presented in the table,

showcasing the results obtained from each stage.

 the first stage the second stage the third stage

String digits CP OM TM T CP OM TM T CP OM TM T

91 42 42 100 0 0 0 100 0 0 0 100

62

96 47 92 100 0 0 0 100 0 0 0 100

0 0 2 100 0 0 0 100 0 0 0 100

99 46 49 100 0 0 0 100 0 0 0 100

93 95 40 100 0 0 0 100 0 0 0 100

99 93 49 100 0 0 0 100 0 0 0 100

92 96 91 100 0 0 0 100 0 3 92 100

99 44 45 100 0 0 0 100 0 0 0 100

97 97 47 100 0 0 0 100 0 0 0 100

92 95 97 100 0 0 0 100 0 0 0 100

97 40 96 100 0 0 0 100 0 0 0 100

1 47 43 100 0 0 0 100 0 0 0 100

63

45 92 92 100 0 0 0 100 0 0 0 100

94 46 49 100 0 0 0 100 0 0 0 100

97 92 30 100 0 0 0 100 0 0 0 100

92 92 46 100 0 0 0 100 0 0 0 100

99 40 91 100 0 0 0 100 0 0 0 100

92 34 97 100 0 0 0 100 0 0 0 100

2 92 43 100 0 0 0 100 0 0 0 100

42 36 37 179 0 0 0 179 0 0 0 179

99 96 92 100 0 0 0 100 0 0 0 100

42 91 91 100 0 0 0 100 0 0 0 100

0 0 9 100 0 0 0 100 0 0 0 100

97 30 94 100 0 0 0 100 0 0 0 100

64

Table 6: Edge detection result

CP: correct prediction.

OM: one mistake.

TM: two mistakes.

The table presents the findings of our second experiment. As previously mentioned, the

experiment consisted of three stages. Due to the time and resource-intensive nature of the

method, we applied the experiment to 100 images for each number.

During the first stage, we implemented the segmentation process on the original image. The

results obtained ranged from good to excellent. Our evaluation of the segmentation process relied

on three values. Firstly, we measured the accuracy of correctly predicting the image, which

yielded predominantly positive and excellent outcomes. Additionally, we considered two values

that represented cases where the prediction incorrectly identified one or two elements within

each number. In these cases as well, the results were excellent.

Contrary to our expectations, the second and third stages, involving the skeletonization process

and the RSA encryption algorithm, respectively, did not yield improved results. Instead, the

outcomes were entirely negative. None of the three values showed completely accurate

predictions.

3.2.3. Proposed system using Sliding window and Edge detection:

The segmentation process involved the utilization of the edge detection technique along with the

proposed sliding window method. This process was conducted in two stages, as the

structureization stage was found to be ineffective in a previous study when combined with edge

detection.

In the first stage, we applied the edge detection technique and the sliding window to the original

image. Pre-processing methods discussed in the third chapter, excluding skeletonization, were

employed during this stage.

65

In the second stage, the edge detection technique and the sliding window were applied to the

image that had undergone an encryption method. This stage involved processing the image after

applying an encryption technique.

The results of the segmentation process for each stage are presented in the table, illustrating the

obtained outcomes.

 the first stage the second stage

String digits CP OM TM T CP OM TM T

91 42 42 100 0 0 0 100

96 47 91 100 0 0 0 100

0 0 2 100 0 0 0 100

99 47 40 100 0 0 0 100

93 95 40 100 0 0 0 100

99 93 49 100 0 0 0 100

92 97 92 100 0 0 0 100

99 44 46 100 0 0 0 100

66

97 97 47 100 0 0 0 100

92 95 97 100 0 0 0 100

97 40 92 100 0 0 0 100

1 47 43 100 0 0 0 100

45 92 92 100 0 0 0 100

94 46 42 100 0 0 0 100

97 92 30 100 0 0 0 100

92 92 46 100 0 0 0 100

99 40 91 100 0 0 0 100

92 34 97 100 0 0 0 100

2 92 43 100 0 0 0 100

42 37 37 179 0 0 0 179

67

99 96 92 100 0 0 0 100

42 40 92 100 0 0 0 100

0 0 9 100 0 0 0 100

97 30 94 100 0 0 0 100

Table 7: Sliding window and Edge detection result

CP: correct prediction.

OM: one mistake.

TM: two mistakes.

Note: The outcome achieved represents the most favorable outcome among a series of conducted

experiments. In each trial, we altered the width of the sliding window while maintaining the

length equal to that of the original image. The window size that yielded the optimal results was

determined to be 9.

The table displays the outcomes of our third experiment in this study. As previously stated, the

experiment was conducted in two phases. We conducted the experiment on 100 images for each

number due to the time and resources required for this method.

During the first phase, when we applied the segmentation process to the original image, we

observed an enhancement in the quality of segmentation, and the number of accurately predicted

cases increased compared to the previous two experiments.

However, the results of the second phase were extremely disappointing, as none of the cases

were predicted correctly.

68

4. Comparison study:

In this section, we will present a comprehensive table that combines the results obtained from

each stage and case. This table will display the total sums of the results previously discussed in

detail in the preceding section.

Total

Correct

Predictions

Total One

Mistake

Predictions

Total Two

Mistakes

Predictions

Total

Connected

Digits

recognition

rate

Sliding

Window

Case

1
Original Picture 31 41 141 576 36.97%

Case

2
Skeletonization 1 9 52 576 10.76%

Case

3

Encryption

Algorithm
0 0 0 576 0%

Edge

detection

Case

1
Original Picture 341 465 476 2479 51.71%

Case

2
Skeletonization 0 0 0 2479 0%

Case

3

Encryption

Algorithm
0 3 14 2479 00.68%

 Edge

Detection +

Sliding

Window

Case

1
Original Picture 341 469 480 2479 52.03%

Case

2

Encryption

Algorithm
0 0 0 2479 0%

Table 8: Comparison of technologies

In the provided table, we present the overall outcomes for each stage and scenario, where some

outcomes were satisfactory while others were disappointing. Based on the table, it is evident that

utilizing Skeletonization and Encryption Algorithm did not contribute significantly to our work.

In fact, their results were not helpful but rather underwhelming. Conversely, employing the

original image yielded positive results as it preserved the essential characteristics of the numbers

and played a vital role in identifying the numbers within an image.

69

Moreover, the adoption of the sliding window technique produced weak results. We concluded

that the effectiveness of the sliding window heavily relies on the capabilities of the utilized deep

learning model and its classification ability to accurately recognize and differentiate between

numbers and unwanted elements.

On the other hand, the implementation of Edge detection technology exhibited positive

outcomes. However, it faced a limitation when dealing with connected numbers, where

handwritten numbers are merged together. Some connected numbers were correctly recognized,

while others were identified as individual numbers, disregarding their original composition of

interconnected numbers. To address this limitation, we proposed the final experiment.

The combination of the two techniques proved to be a crucial element in this study as it

improved the segmentation process. Nonetheless, as mentioned earlier, the sliding window

technique necessitates a robust deep learning model and an effective classifier to achieve more

precise and accurate outcomes.

70

Conclusion:

In conclusion, the results achieved from the model for handwritten digit recognition and the

explored segmentation methods have been presented in this chapter. A comprehensive analysis

of the obtained results and the techniques implemented to improve the segmentation process has

been provided. The successful outcomes in certain scenarios have demonstrated the effectiveness

of the segmentation techniques utilized, fulfilling the main objective of this thesis. Furthermore,

the comparison of different scenarios and approaches has allowed for a deeper understanding of

their respective strengths and weaknesses. Overall, this chapter has contributed valuable insights

into the performance and limitations of segmentation methods for handwritten digit recognition.

71

General Conclusion

Handwritten Connected Digits Recognition is a significant and extensive field with notable

contributions. In this thesis, our focus was on developing a Segmentation Based Method for

Handwritten Connected Digits using Image Encryption Technique. We delved into the domain of

handwritten digit recognition and deep learning, discussing well-known CNN models and the

datasets commonly employed in this field. We also explored various preprocessing methods and

segmentation techniques.

To provide a comprehensive overview of the field until the time of writing this thesis (2023), we

conducted an extensive review of recent studies. We examined the datasets, methodologies, and

results achieved by each study, summarizing all the relevant papers in a table.

Our research encompassed different aspects of handwritten number recognition. We investigated

training methods, preprocessing techniques, and various segmentation approaches such as sliding

window and edge detection. We also proposed a modified CNN architecture based on AlexNet

specifically designed for this task and utilized relevant datasets.

We divided the data into two parts for different purposes. The first section was used for training

the CNN model, consisting of 10 classes with 5700 samples each for training and 4178 samples

for testing. Additionally, we introduced a new class, Number 11, containing parts of number

models representing undesirable patterns.

The second section focused on applying and evaluating segmentation methods. It comprised a

CVL series number dataset consisting of a series of numbers in each image.

We trained the CNN model using the combined CVL and MNIST datasets, achieving

exceptional performance. The trained model exhibited an accuracy of 98.42% and a low loss of

05.38%. These results were crucial as we relied on this well-performing model for predicting

numbers obtained through the segmentation process.

We then presented and demonstrated the effectiveness of suggested segmentation methods in

accurately predicting segmentednumbers.

72

The experimental study was conducted in three stages for the first two experiments and two

stages for the third experiment. The segmentation process was performed using the sliding

window technique and edge detection. In the first stage, segmentation methods were applied to

the original image, utilizing the discussed preprocessing methods except for the skeleton

technique.

In the second stage, segmentation methods were applied to preprocessed images, including the

skeletonization process. The skeletonization helped capture the basic structure of the figures.

Lastly, in the third stage, segmentation methods were applied to images that underwent an

encoding method.

The obtained results varied, with some being satisfactory and others disappointing. We found

that the use of the skeleton algorithm and encryption did not significantly contribute to our work

and even produced unsatisfactory results. Conversely, using the original image yielded positive

outcomes as it preserved the essential characteristics of the numbers and played a crucial role in

their identification.

The sliding window technique produced poor results, highlighting its dependency on the

capabilities of the deep learning model and its classification ability to accurately recognize and

differentiate between undesirable numbers and items.

On the other hand, the application of edge detection showed positive results, but it faced

limitations when dealing with cursive numbers where handwritten numbers were connected.

Some connected numbers were correctly recognized, while others were misidentified as odd

numbers regardless of their original configuration. To address this limitation, we proposed a final

experiment.

We found that the combination of both methods was a critical component of this study as it

improved the segmentation process. However, as mentioned earlier, the sliding window

technique requires a powerful deep learning model and an efficient classifier to achieve more

precise and accurate results.

73

Given the vast scope of this field, our work serves as a proposal based on the results presented in

this thesis. To fully leverage this work, we suggest the use of a powerful deep learning model

and an effective classifier to achieve even more accurate results.

74

Bibliography

[1] "LeCun, Y., Cortes, C. and Burges, C.J.C. (1998) The MNIST Database of Handwritten

Digits. New York, USA. http://yann.lecun.com/exdb/mnist/".

[2] A. B. A. H. Y. Shinde, "Handwriting Recognition on Filled-in Forms Using CNN. In:

Singh, S.K., Roy, P., Raman, B., Nagabhushan, P. (eds) Computer Vision and Image

Processing.," CVIP 2020. Communications in Computer and Information Science, vol 1376.

Springer, Singapore. https://doi.org/10.1007/978-981-16-1086-8_9.

[3] "LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.".

[4] "Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning.".

[5] "[Online]. https://epynn.net/Pooling.html," [Online].

[6] "Simonyan, K., & Zisserman, A. (2014). Very Deep Convolutional Networks for Large-

Scale Image Recognition.".

[7] "Choi, Hyungeun & Ryu, Seunghyoung & Kim, Hongseok. (2018). Short-Term Load

Forecasting based on ResNet and LSTM. 1-6. 10.1109/SmartGridComm.2018.8587554.".

[8] "Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep

Convolutional Neural Networks. Advances in Neural Information Processing Systems".

[9] [Online]. Available:

https://en.wikipedia.org/wiki/AlexNet#/media/File:Comparison_image_neural_networks.sv

g.

[10

]

"He, K., et al. (2016). Deep Residual Learning for Image Recognition.".

75

[11

]

"Choi, Hyungeun & Ryu, Seunghyoung & Kim, Hongseok. (2018). Short-Term Load

Forecasting based on ResNet and LSTM. 1-6. 10.1109/SmartGridComm.2018.8587554.".

[12

]

"Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied to

document recognition." Proceedings of the IEEE, 86(11):2278-2324, November 1998.".

[13

]

"Aslam, Muhammad. (2020). A robust CNN model for handwritten digits recognition and

classification. 10.1109/AEECA49918.2020.9213530.".

[14

]

"Markus Diem, Stefan Fiel, Angelika Garz, Manuel Keglevic, Florian Kleber and Robert

Sablatnig, ICDAR 2013 Competition on Handwritten Digit Recognition (HDRC 2013), In

Proc. of the 12th Int. Conference on Document Analysis and Recognition (ICDAR) 2013,

pp.".

[15

]

"Huseyin Kusetogullari, Amir Yavariabdi, Abbas Cheddad, Håkan Grahn and Johan Hall,

2019, "ARDIS: A Swedish Historical Handwritten Digit Dataset," Neural Computing and

Applications, Springer. DOI: 10.1007/s00521-019-04163-3".

[16

]

"Markus Diem, Stefan Fiel, Florian Kleber, Robert Sablatnig, Jose M. Saavedra, David

Contreras, Juan Manuel Barrios, Luiz S. Oliveira. ICFHR 2014 Competition on Handwritten

Digit String Recognition in Challenging Datasets (HDSRC 2014). In Proceedings of th".

[17

]

"Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, Andrew Y. Ng

Reading Digits in Natural Images with Unsupervised Feature Learning NIPS Workshop on

Deep Learning and Unsupervised Feature Learning 2011.".

[18

]

".J, Pradeep & Srinivasan, E. & Himavathi, S.. (2011). Diagonal Based Feature Extraction

for Handwritten Alphabets Recognition System Using Neural Network. International

Journal of Computer Applications. 8. 364-368. 10.1109/ICECTECH.2011.5941921.".

[19

]

"V. Shanthi,Noise Reduction and Pre-processing techniques in Handwritten Character

Recognition using Neural Networks Magesh Kasthuri, EnathurKanchipuramPublished

2014".

76

[20

]

"M. Sezgin, B. Sankur, “Survey over image thresholding techniques and quantitative

performance evaluation”, Journal of Electronic Imaging 13 (1) (2004) 146–168.".

[21

]

"M. Zaiz Faouzi, Les Supports Vecteurs Machines (SVM) pour la reconnaissance des

caractères manuscrits arabes, Université Mohamed Khider-BISKRA, pp.15 ,15/07/2010.".

[22

]

"Chun Lei He, Ping Zhang, Jianxiong Dong, Ching Y. Suen, Tien D. Bui,The Role of Size

Normalization on the Recognition Rate of Handwritten Numerals.".

[23

]

"Nawaz, S., & Kaur, A. (2019). A Survey on Handwritten Digit Recognition Techniques.

Journal of Artificial Intelligence and Soft Computing Research, 9(3), 213-228.".

[24

]

"Amjad Rehman, Dzulkifli Mohamad and Ghazali Sulong,Implicit Vs Explicit based Script

Segmentation and Recognition: A Performance Comparison on Benchmark.".

[25

]

"Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to

document recognition," in Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, Nov.

1998, doi: 10.1109/5.726791.".

[26

]

"P. Sermanet, S. Chintala and Y. LeCun, "Convolutional neural networks applied to house

numbers digit classification," Proceedings of the 21st International Conference on Pattern

Recognition (ICPR2012), Tsukuba, Japan, 2012, pp. 3288-3291.".

[27

]

"A. Gattal, C. Djeddi, Y. Chibani and I. Siddiqi, "Isolated Handwritten Digit Recognition

Using oBIFs and Background Features," 2016 12th IAPR Workshop on Document Analysis

Systems (DAS), Santorini, Greece, 2016, pp. 305-310, doi: 10.1109/DAS.2016.10.".

[28

]

"U. R. Babu, Y. Venkateswarlu and A. K. Chintha, "Handwritten Digit Recognition Using

K-Nearest Neighbour Classifier," 2014 World Congress on Computing and Communication

Technologies, Trichirappalli, India, 2014, pp. 60-65, doi: 10.1109/WCCCT.2014.7.".

[29

]

"A. Khan, MCS HOG Features and SVM Based Handwritten Digit Recognition System

Hamayun, Faculty of Computer Studies, Arab Open University, Industrial Ardiya, Kuwait".

77

[30

]

"K. T. Islam, G. Mujtaba, R. G. Raj and H. F. Nweke, "Handwritten digits recognition with

artificial neural network," 2017 International Conference on Engineering Technology and

Technopreneurship (ICE2T), Kuala Lumpur, Malaysia, 2017, pp. 1-4, doi: 10.1109".

[31

]

"Gattal, A., Chibani, Y. & Hadjadji, B. Segmentation and recognition system for unknown-

length handwritten digit strings. Pattern Anal Applic 20, 307–323 (2017).

https://doi.org/10.1007/s10044-017-0607-x".

[32

]

"Shujing Lyu, Yue Lu, Hongjian Zhan, Handwritten Digit String Recognition using

Convolutional Neural Network, 2018.".

[33

]

"Rabia KARAKAYA, Serap KAZAN; (2021), Handwritten Digit Recognition Using

Machine Learning . Sakarya University Journal of Science, 25(1), 65-71, DOI:

https://doi.org/10.16984/saufenbilder.801684".

[34

]

"R. Dey, R. C. Balabantaray and J. Piri, "A Robust Handwritten Digit Recognition System

Based on Sliding window with Edit distance," 2020 IEEE International Conference on

Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India,

20".

[35

]

"Amit Choudhary, Anand Nayyar, Saurabh Singh and Byungun Yoon Savita Ahlawat,

Improved Handwritten Digit Recognition Using Convolutional Neural Networks (CNN),

Received: 25 May 2020; Accepted: 9 June 2020; Published: 12 June 2020.".

[36

]

B. K. S. C. Rajib Ghosh, "Handwritten Digit Recognition using Sliding Window

Technique".International Journal of Advanced Research in Computer Science and Software

Engineering..

[37

]

"Dutta, Monish & Roy, Pritha & Datta, Sunanda & Nath, Asoke & Student, M. (2015). A

New Method for Recognition of Handwritten Characters Using Edge Detection,

Segmentation and Pattern Matching.".

[38 [Online]. Available: https://docs.anaconda.com/free/anaconda/index.html.

78

]

[39

]

[Online]. Available: https://docs.spyder-ide.org/current/index.html.

[40

]

"https://research.google.com/colaboratory/faq.html," [Online].

[41

]

[Online]. Available: https://docs.python.org/3/.

79

Table of Figure and Table:

Figure 1: Convolution layer [5] .. 14

Figure 2: pooling layer [6] .. 15

Figure 3: VGGNet architecture [8] ... 16

Figure 4: AlexNet architecture [10] .. 17

Figure 5: ResNet architecture [12] .. 18

Figure 6: The MNIST dataset [14].. 20

Figure 7: cvl dataset [16] .. 21

Figure 8: ARDIS dataset [17] ... 21

Figure 9: ORAND-CAR dataset [18] ... 22

Figure 10: SVHN dataset [19] .. 22

Figure 11: Noise Reduction .. 23

Figure 12: Binarization ... 24

Figure 13: Skeletonization .. 25

Figure 14: Size normalization ... 25

Figure 15: Binarization ... 39

Figure 16: Noise reduction.. 40

Figure 17: Skeletonization .. 40

Figure 18: Size normalization ... 41

Figure 19: Binarization ... 41

Figure 20: Noise reduction.. 41

Figure 21: Skeletonization .. 42

Figure 22: Sliding window.. 45

Figure 23: Edge detection [43] ... 47

Figure 24: cvl dataset [16] .. 50

Figure 25: The MNIST dataset [14].. 51

Figure 26: Single digit dataset used .. 56

Figure 27: Cvl string digits dataset used [16] .. 56

80

81

Table 1: State of the art Summary .. 35

Table 2: CNN architecture used ... Error! Bookmark not defined.

Table 3: The proposed CNN model results... 57

Table 4: Sliding window result ... 60

Table 5: Edge detection result .. 64

Table 6: Sliding window and Edge detection result ... 67

