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ABSTRACT

In this thesis, we prove a number of single-valued and multi valued fixed
point theorems for different kinds of contractions in complex valued b-metric,
like-metric spaces, and b-metric like spaces. Furthermore, we unveil a new def-
inition for a class of metrics spaces,𝑏𝑣(𝜃) and we concentrate on the results of
the fixed points. In the end, we use the results obtained to look into whether
there is a solution to the integral equation of Fredholm and the local solution of
ordinary differential equations in 𝑏𝑣(𝜃).

Keywords: , b-metric like-space, Rational type contraction, cyclic-contractions,
Complex-valued b-metric space,metric like-space, Set valued analysis, Multival-
ued mapping, Fixed point, Common fixed point.
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RÉSUMÉ

Dans cette thèse, nous prouvons un certain nombre de théorèmes de point fixe à
valeur unique et à valeurs multiples pour différents types de contractions dans :
la métrique b à valeurs complexes, l’espace de type métrique et l’espace de type
b-métrique. De plus, nous introduisons une nouvelle définition pour une classe
d’espaces de métriques,𝑏𝑣(𝜃) et nous concentrons sur les résultats des Point fixe.
A la fin, nous utilisons les résultats obtenus pour étudier l’existence de la solu-
tion de l’équation intégrale de Fredholm et de la solution locale des Équations
différentielles ordinaires dans 𝑏𝑣(𝜃)

Mots-clés: espace similaire métrique, espace similaire b-métrique, contrac-
tions cycliques, point fixe commun, contraction de type rationnel, espace b-
métrique à valeurs complexes, analyse à valeurs définies, cartographie multi-
Valuée, fixe point.
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الملخص

ذاتالثابتةالنقطةنظرياتمنعددبإثباتقمناالأطروحة،هذهفي
الفضاءاتفيالتقلصاتمنمختلفةلأنواعالقيموالمتعددةالواحدةالقيمة

القيمةذاتوالفضاءاتالمترية،القيمةذاتوالفضاءاتالمترية،
الفضاءاتمنجديدةلفئةجديدًا​​تعريفًاقدمناذلك،علىعلاوةالمعقدة.
وفيهناك.الثابتةالنقاطنتائجبعضبتركيزوقمناالمترية 𝑏

𝑣
(θ)

مسائلحلولمعالوجدانيةلدراسةالمكتسبةالنتائجنستخدمالأخيرالقسم
عمليةأمثلةمعفريدهولمنوعمنالتكامليةالمعادلاتوالأوليةالقيمة

للنظريات.

ب-مترية،مماثلةمساحةمترية،مماثلةمساحةالمفتاحية:الكلمات
ب-متريةمساحةالنسبي،انكماشمشتركة،ثابتةنقطةدورية،تقلصات

الثابتة.نقطةالقيم،متعددتحليلالقيمة،محددتحليلمعقدة،قيمةذات
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NOTIONS

The following is a list of the most common notations, symbols, and abbrevi-
ations:

𝑁 : The set of natural numbers.

𝑅 : The set of real numbers.

C : The set of complex numbers.

𝐶([𝛼, 𝛽], 𝑌) : The set of continuous functions from [𝛼, 𝛽] to 𝑌

𝐻(𝑇, 𝑆) : The Hausdorff distance between 𝑇 and 𝑆.

𝑃(𝑌) : Family of non-empty subsets of 𝑌.

𝐶𝐿(𝑌) : The set of al lclosed subsets of 𝑌.

𝐶𝐵(𝑌) : set of all closed and bounded subsets of 𝑌.

𝑇 : 𝑌− → 𝑃(𝑋) : 𝑇 is a multivalued map from 𝑌 to𝑃(𝑋).
𝐷𝑜𝑚(𝑇) : The domain of 𝑇.

𝐺𝑟𝑎𝑝ℎ(𝑇) : The graph of 𝑇.

𝐼𝑚(𝑇) : The image of 𝑇

(𝑌, ≲ , 𝑑) : Complex valued metric space.

𝑏𝑣(𝑠) : polygonal 𝑏-metric space

𝑏𝑣(𝜃) : Extended polygonal 𝑏-metricspace
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Introduction

Fixed point theory has a rich history dating back to the late 19th century.
with pivotal contributions from mathematicians like Brouwer, Banach, and Kaku-
tani. The theory initially emerged as a tool to understand the existence and prop-
erties of solutions to equations and systems of equations. Over the decades,
it has evolved and diversified to include various extensions and applications
in many fields of science, such as engineering, physics, computer science, eco-
nomics and telecommunication optimization problems, making it a cornerstone
of mathematical analysis.[1],[2],[3],[4],[5],[6],[7],[8].

In the realm of single-valued mappings [9], fixed points hold a significant
place, particularly in metric spaces. Metric spaces provide the foundational
framework for understanding distance and convergence, and they play a fun-
damental role in the study of single-valued mappings. Beyond standard metric
spaces, developments have led to specialized spaces such as b-metric spaces.[10],
[11],[12],[13],rectangular b-metric space [14],[15],[16], extended b-metric space
[17],extended rectangular b-metric [18],[19], b-metric like space[20],[21],[22],[23]
,[24],[25],[26]), and complex metric spaces [27],[28],[29],[30][31], [32],[33],[34],[35],
[36],[37],[38],[39], , each offering unique perspectives and applications for fixed
point theory. Multivalued mappings introduce a fascinating dimension to fixed
point the- ory. These mappings can have multiple points, known as fixed sets,
which do not necessarily reduced to a single value. The study of fixed points
in multival- ued mappings are instrumental in solving problems involving non-
uniqueness and discontinuity, making it a valuable tool in mathematical anal-
ysis and opti- mization problems. [40],[41],[42],[43], [44],[45],[46],[47],[48]. The
journey of mul- tivalued fixed point theory began with the pioneering work of
Nadler [49], who The existence of multi-valued fixed points is established using
the following for- mula Hausdorff metric.

Fixed point theorems are a rich area of mathematical research, encompass-
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ing various types of contractions and their applications in diverse settings. One
of the most well-known is cyclic contraction mapping. It involves a set of maps
that satisfy the contraction condition within a specific cycle of mappings. Such
conditions are instrumental in modeling scenarios where entities interact se-
quentially, leading to cyclical dependencies. In particular, cyclic contraction
mappings are essential in addressing problems involving dynamic systems and
feedback loops.

Moreover, cyclical contractions extend beyond traditional metric spaces to
more complex spaces, such as metric-like spaces or partial metric spaces. These
versatile conditions enable the exploration of fixed points in settings where stan-
dard metric structures may not be applicable, offering novel approaches to solv-
ing equations and studying dynamic behaviors [50],[51],[52, 53, 54, 55, 56, 57, 58,
59, 60, 61],

Moving to quasicontractions, [62, 63], which generalize the classical contrac-
tion mapping concept. These maps exhibit a controlled, but not necessarily strict
contraction, leading to the Banach-Myhill-Nash Theorem. Contractive Condi-
tions, on the other hand, define what is appropriate in maps that ensure the
existence of fixed points, this is crucial to functional analysis. Hybrid contrac-
tions, such as Geraghty-type contractions, blend different con- traction concepts
and are highly applicable to solving real-world problems in economics and opti-
mization. Dass-Gupta-Jaggi Types of contractive mappings further generaliza-
tions, accommodating more extensive spaces, and non-standard metric struc-
tures. [64, 65, 66, 67]

In the realm of contractive type mappings and related fixed points, the land-
scape becomes increasingly diverse, with a multitude of theorems tailored to
distinct contexts and spaces. These theorems are invaluable. tools for address-
ing a wide range of mathematical problems and finding fixed points in various
applications, from functional analysis to dynamic systems, thus demonstrating
the remarkable depth and versatility of the fixed-point theory.

This thesis is divided into five chapters, as follows:

Chapter 1: We briefly discussed certain concepts related to metric spaces.
and multivalued analysis, with some examples. then define some types of con-
tractions, whether in single-valued or multi-valued maps.

Chapter 2: We present new fixed point findings on 𝛼
𝜓
𝐿 -rational-contraction

mappings in metric-like spaces, in addition to practical examples of theorems.
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Chapter 3: We offer or provide in complex-valued 𝑏-metric spaces certain
fixed point theorems of rational type contraction besides examples and concrete
illustrations of theorems.

Chapter 4: This chapter focuses on the common fixed point theorem for
multi-valued generalized contractive mappings.

Chapter 5: This chapter devotes some fixed point results in the new 𝑏𝑣(𝜃)-
metric spaces, as well as examples and applications for some Fredholm type
integral equations and initial value problems.
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1
Preliminaries

The notations, definitions, and initial properties used in this thesis are pre-
sented in this chapter.

In this section, we start with some definitions and ideas that will help us in
the talks that follow.

1.1 METRIC SPACES

We give some metric spaces definitions, characteristics, and examples.

Definition 1. Assume Υ be a non-empty set. A function 𝜗 : Υ × Υ −→ [0,+∞) such
that for every 𝑥¤ , 𝑦¤ , 𝑧 ∈ Υ, we have the following statement:

(a) 𝜗(𝑥¤ , 𝑦¤ ) = 0 ⇔ 𝑥¤ = 𝑦¤
(b) 𝜗(𝑥¤ , 𝑦¤ ) = 𝜗(𝑦¤ , 𝑥¤ )
(c) 𝜗(𝑥¤ , 𝑦¤ ) ≤ 𝜗(𝑥¤ , 𝑧) + 𝜗(𝑧, 𝑦¤ ).

the couple (Υ, 𝜗) is considered a metric space.

Definition 2. [81] AssumeΥ be non-empty set, 𝑠 ≥ 1 and the mapping𝜗 : Υ×Υ→[0;+∞),
satisfies:

(a) 𝜗 (𝑥¤ , 𝑦¤ ) = 0 if and only if 𝑥¤ = 𝑦¤ , 𝑓 𝑜𝑟 every 𝑥¤ , 𝑦¤ ∈ Υ

(b) 𝜗 (𝑥¤ , 𝑦¤ ) = 𝜗 (𝑦¤ , 𝑥¤ ) for 𝑒𝑣𝑒𝑟𝑦 x¤ , 𝑦¤ ∈ Υ

4



CHAPTER 1. PRELIMINARIES

(c) 𝜗 (𝑥¤ , 𝑦¤ ) ⩽ 𝑠 [𝜗 (𝑥¤ , 𝑧) + 𝜗 (𝑧, 𝑦¤ )] 𝑓 𝑜𝑟 every 𝑥¤ , 𝑦¤ , 𝑧 ∈ Υ,

then 𝜗 is considered a 𝑏-metric on Υ and the couple (Υ, 𝜗) is called a b-metric space
with coefficient 𝑠.

Definition 3. [17] Assume Υ be a non-empty set and 𝜃 : Υ×Υ → [1;∞) . A function
𝜗𝜃 : Υ×Υ → [0;∞) is considered an extended 𝑏-metric space if for every 𝑥¤ , 𝑦¤ , 𝑧 ∈ Υ,it
satisfies:
(𝜃1) 𝜗𝜃 (𝑥¤ , 𝑦¤ ) = 0 if and only if 𝑥¤ = 𝑦¤ , for every 𝑥¤ , 𝑦¤ ∈ Υ

(𝜃2) 𝜗𝜃 (𝑥¤ , 𝑦¤ ) = 𝜗𝜃 (𝑦¤ , 𝑥¤ ) for every 𝑥¤ , 𝑦¤ ∈ Υ

(𝜃3) 𝜗𝜃 (𝑥¤ , 𝑦¤ ) ⩽ 𝜃 (𝑥¤ , 𝑦¤ ) [𝜗 (𝑥¤ , 𝑧) + 𝜗 (𝑧, 𝑦¤ )].

Then the couple (Υ, 𝜗𝜃) is called extended 𝑏-metric space.

Remark 4. remark That a 𝑏-metric is a peculiar instance of the extended 𝑏-metric when
𝜃(𝑥¤ , 𝑦¤ ) = 𝑠, for 𝑠 ≥ 1.

Definition 5. [82] Assume Υ be non-empty set and the mapping 𝜗 : Υ×Υ → [0;+∞)
such that for every 𝑥¤ , 𝑦¤ ∈ Υ and all distinct point 𝑧, 𝑢 ∈ Υ\ {𝑥¤ , 𝑦¤ } satisfies:

(a) 𝜗 (𝑥¤ , 𝑦¤ ) = 0 if and only if 𝑥¤ , 𝑦¤ , for every 𝑥¤ = 𝑦¤ ∈ Υ

(b) 𝜗 (𝑥¤ , 𝑦¤ ) = 𝜗 (𝑦¤ , 𝑥¤ ) for every 𝑥¤ , 𝑦¤ ∈ Υ

(c)𝜗 (𝑥¤ , 𝑦¤ ) ⩽ 𝜗 (𝑥¤ , 𝑧) + 𝜗 (𝑧, 𝑢) + 𝜗 (𝑢, 𝑦¤ )

Thus, the couple (Υ, 𝜗) is referred to as a rectangular metric space, and 𝜗 is referred
to as a rectangular metric on Υ.

Definition 6. Assume Υ be non-empty set.and the mapping 𝜗 : Υ × Υ → [0;+∞)
such that for every 𝑥¤ , 𝑦¤ ∈ Υ and every discrete point 𝑧, 𝑢 ∈ Υ\ {𝑥¤ , 𝑦¤ } satisfies:

(a) 𝜗 (𝑥¤ , 𝑦¤ ) = 0 if and only if 𝑥¤ , 𝑦¤ , for every 𝑥¤ = 𝑦¤ ∈ Υ

(b) 𝜗 (𝑥¤ , 𝑦¤ ) = 𝜗 (𝑦¤ , 𝑥¤ ) for every 𝑥¤ , 𝑦¤ ∈ Υ

(c) There is a real number 𝑠 ⩾ 1 such that

𝜗 (𝑥¤ , 𝑦¤ ) ⩽ 𝑠 [𝜗 (𝑥¤ , 𝑧) + 𝜗 (𝑧, 𝑢) + 𝜗 (𝑢, 𝑦¤ )]

Thus, the couple (Υ, 𝜗) is referred to as a rectangular 𝑏-metric space with coefficient
𝑠, and 𝜗 is referred to as a rectangular 𝑏-metric on Υ.

Definition 7. [18] Assume Υ be a non-empty set and 𝜃 : Υ × Υ → [1;∞) .A func-
tion 𝜗𝜃 : Υ × Υ → [0;∞)such that for every 𝑥¤ , 𝑦¤ ∈ Υ and all distinct point 𝑧, 𝑢 ∈
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1.1. METRIC SPACES

Υ\ {𝑥¤ , 𝑦¤ }satisfies:
(𝜃1) 𝜗𝜃 (𝑥¤ , 𝑦¤ ) = 0 if and only if 𝑥¤ = 𝑦¤ , for all 𝑥¤ , 𝑦¤ ∈ Υ

(𝜃2) 𝜗𝜃 (𝑥¤ , 𝑦¤ ) = 𝜗𝜃 (𝑦¤ , 𝑥¤ )for every 𝑥¤ , 𝑦¤ ∈ Υ

(𝜃3) 𝜗𝜃 (𝑥¤ , 𝑦¤ ) ⩽ 𝜃 (𝑥¤ , 𝑦¤ ) [𝜗 (𝑥¤ , 𝑧) + 𝜗 (𝑧, 𝑢) + 𝜗 (𝑢, 𝑦¤ ) .]

Then 𝜗 is considered a extended rectangular 𝑏-metric on X and the couple (Υ, 𝜗) is
considered a extended rectangular 𝑏-metric space.

Definition 8. [88] Assume Υ be a non-empty set. A function 𝜗 : Υ × Υ −→ [0,+∞)
such that for every 𝑥¤ , 𝑦¤ ∈ Υ, we have the following assertions:

(a) 𝜗(𝑥¤ , 𝑦¤ ) = 0 =⇒ 𝑥¤ = 𝑦¤
(b) 𝜗(𝑥¤ , 𝑦¤ ) = 𝜗(𝑦¤ , 𝑥¤ )
(c) 𝜗(𝑥¤ , 𝑦¤ ) ≤ 𝜗(𝑥¤ , 𝑧) + 𝜗(𝑧, 𝑦¤ )

The couple (Υ, 𝜗) is considered a metric like-space. A metric-like 𝜗 on Υ meets
every metrics requirements, with the exception of 𝜗 (𝑥¤ , 𝑥¤ ) may be positive for some
𝑥¤ ∈ Υ

Definition 9. [87]Assume Υ be a non-empty set, 𝑠 ≥ 1 a fixed real number, A function
𝜗 : Υ×Υ −→ [0,+∞) a mapping. Then, (Υ, 𝜗) claims to be 𝑏-metric like space if, 𝑓 𝑜𝑟
every 𝑥¤ , 𝑦¤ ∈ Υ. The ensuing statements are true:

(a) 𝜗(𝑥¤ , 𝑦¤ ) = 0 =⇒ 𝑥¤ = 𝑦¤
(b) 𝜗(𝑥¤ , 𝑦¤ ) = 𝜗(𝑦¤ , 𝑥¤ )
(c) 𝜗(𝑥¤ , 𝑦¤ ) ≤ 𝑠 [𝜗(𝑥¤ , 𝑧) + 𝜗(𝑧, 𝑦¤ )]

Thus, a couple (Υ, 𝜗) is a 𝑏-metric-like space, and 𝜗 is a 𝑏-metric-like on Υ.

Assume C be the set of complex numbers and 𝑧1, 𝑧2 ∈ C. Define a partial
order ≲ on C as follows:

𝑧1 ≲ 𝑧2 if and only if 𝑅𝑒(𝑧1) ≤ 𝑅𝑒(𝑧2), 𝐼𝑚(𝑧1) ≤ 𝐼𝑚(𝑧2).
Thus 𝑧1 ≲ 𝑧2 if one of the following holds:

(𝑖) 𝑅𝑒(𝑧1) = 𝑅𝑒(𝑧2), 𝐼𝑚(𝑧1) = 𝐼𝑚(𝑧2);
(𝑖𝑖) 𝑅𝑒(𝑧1) < 𝑅𝑒(𝑧2), 𝐼𝑚(𝑧1) = 𝐼𝑚(𝑧2);
(𝑖𝑖𝑖) 𝑅𝑒(𝑧1) =𝑅𝑒(𝑧2), 𝐼𝑚(𝑧1) < 𝐼𝑚(𝑧2);

6



CHAPTER 1. PRELIMINARIES

(𝑖𝑣) 𝑅𝑒(𝑧1) < 𝑅𝑒(𝑧2), 𝐼𝑚(𝑧1) < 𝐼𝑚(𝑧2).
We will write 𝑧1 � 𝑧2 if 𝑧1 ≠ 𝑧2 and one of (𝑖𝑖), (𝑖𝑖𝑖), and (𝑖𝑣) is satisfied; also

we will write 𝑧1 ≺ 𝑧2 if only (𝑖𝑣) is satisfied.
Notice that 0 ≲ 𝑧1 � 𝑧2 =⇒ |𝑧1 | < |𝑧2 | and 𝑧1 ≲ 𝑧2, 𝑧2 ≺ 𝑧3 =⇒ 𝑧1 ≺ 𝑧3.
The following definition is recently introduced by Azam et al. [70].

Definition 10. Assume Υ be a non-empty set, A function 𝜗 : Υ × Υ −→ C is called
complex valued metric space if for every 𝑥¤ , 𝑦¤ , 𝑧 ∈ Υ, the following statements hold true:

(a) 𝜗(𝑥¤ , 𝑦¤ ) = 0 ⇐⇒ 𝑥¤ = 𝑦¤ ,
(b) 𝜗(𝑥¤ , 𝑦¤ ) = 𝜗(𝑦¤ , 𝑥¤ ),
(c) 𝜗(𝑥¤ , 𝑦¤ ) ≲ 𝜗(𝑥¤ , 𝑧) + 𝜗(𝑧, 𝑦¤ ).

We identify the couple (Υ, 𝜗) as complex valued metric space.

Example 11. [33] Assume Υ = C. Define the mapping 𝜗 : Υ × Υ → C by

𝜗 (𝑧1, 𝑧2) = exp (𝑖𝑘) |𝑧1 − 𝑧2 |2 ,

where 𝑘 ∈ [
0, 𝜋2

]
. Then (Υ, 𝜗) is a complex valued metric space.

Definition 12. [72]AssumeΥ be a non-empty set, 𝑠 ≥ 1 a fixed real number, A function
𝜗 : Υ × Υ −→ C is called complex valued 𝑏-metric space if for every 𝑥¤ , 𝑦¤ , 𝑧 ∈ Υ, the
following statements hold true:

(a) 𝜗(𝑥¤ , 𝑦¤ ) = 0 ⇐⇒ 𝑥¤ = 𝑦¤
(b) 𝜗(𝑥¤ , 𝑦¤ ) = 𝜗(𝑦¤ , 𝑥¤ )
(c) 𝜗(𝑥¤ , 𝑦¤ ) ≲ 𝑠 [𝜗(𝑥¤ , 𝑧) + 𝜗(𝑧, 𝑦¤ )]

The complex valued 𝑏-metric space is the couple (Υ, 𝜗).

Example 13. [72]Assume Υ = [0, 1] . Define the mapping 𝜗 : Υ × Υ → C by

𝜗 (𝑥¤ , 𝑦¤ ) = |𝑥¤ − 𝑦¤ |2 + 𝑖 |𝑥¤ − 𝑦¤ |2 ,

for every 𝑥¤ , 𝑦¤ ∈ Υ.Then, with 𝑠 = 2, (Υ, 𝜗) is a complex valued b-metric space.

7



1.1. METRIC SPACES

Definition 14. [87]Assume {𝑥¤ 𝑛} be a sequence with the coefficient 𝑠 in a 𝑏-metric-like
space (Υ, 𝜗) . Then:

(i) if lim𝑛→∞ 𝜗 (𝑥¤ 𝑛 , 𝑥¤ ) = 𝜗 (𝑥¤ , 𝑥¤ ) ,then the sequence {𝑥¤ 𝑛} is said to be convergent to
𝑥¤ .

(ii) if lim𝑛,𝑚→∞ 𝜗 (𝑥¤ 𝑛 , 𝑥¤𝑚) exists and is finite, then the sequence {𝑥¤ 𝑛} is said to be
𝜗-Cauchy in (Υ, 𝜗) .

One says that a 𝑏-metric-like space (Υ, 𝜗) is 𝜗-complete if for every 𝑑-Cauchy se-
quence {𝑥¤ 𝑛} inΥ there exists an 𝑥¤ ∈ Υ, such that lim𝑛,𝑚→∞ 𝜗 (𝑥¤ 𝑛 , 𝑥¤𝑚) = 𝜗 (𝑥¤ , 𝑥¤ )
= lim𝑛→∞ 𝜗 (𝑥¤ 𝑛 , 𝑥¤ ) .

Lemma 15. Assume that lim𝑛→∞ 𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1) = 0, for a sequence {𝑥¤ 𝑛} on a complete

𝑏-metric space (Υ, 𝜗) with 𝑠 ≥ 1 .

If lim𝑛,𝑚→∞ 𝜗 (𝑥¤ 𝑛 , 𝑥¤𝑚) ≠ 0, there exist 𝜀 > 0 and two sequences {𝑚𝑘}+∞𝑘=1 , {𝑛𝑘}+∞𝑘=1
of positive integers with 𝑛𝑘 > 𝑚𝑘 > 𝑘 such that

𝜗
(
𝑥¤ 𝑛𝑘 , 𝑥¤𝑚𝑘

) ≥ 𝜀, 𝜗
(
𝑥¤𝑚𝑘 , 𝑥¤ 𝑛𝑘−1

)
< 𝜀,

𝜀

𝑠2 ≤ lim
𝑘→∞

sup𝜗
(
𝑥¤ 𝑛𝑘−1, 𝑥¤𝑚𝑘−1

) ≤ 𝑠𝜀,

𝜀
𝑠

lim
𝑘→∞

sup𝜗
(
𝑥¤ 𝑛𝑘−1, 𝑥¤𝑚𝑘

) ≤ 𝜀,
𝜀

𝑠2 lim
𝑘→∞

sup𝜗
(
𝑥¤ 𝑛𝑘 , 𝑥¤𝑚𝑘−1

) ≤ 𝜀𝑠2

Definition 16. [92]Assume (Υ, 𝜗) be a 𝑏-metric-like space with the coefficient 𝑠, de-
noted as (Υ, 𝜗). A sequence {𝑥¤ 𝑛} is referred to as 0−𝑑−Cauchy sequence if lim𝑛,𝑚→∞ 𝜗 (𝑥¤ 𝑛 , 𝑥¤𝑚) =
0.
A space (Υ, 𝜗) is considered to be 0 − 𝜗−complete when it satisfies the condition that
every 0 − 𝜗−Cauchy sequence is complete.
The sequence within the set Υ eventually converges to a specific point 𝑥¤ , 𝑤ℎ𝑒𝑟𝑒𝑥¤
belongs to Υ satisfying the condition 𝜗 (𝑥¤ , 𝑥¤ ) = 0.

In the sequel, we give the following result to prove that certain Picard se-
quences are Cauchy see:[89, 90], and the definitions of known notions in exist-
ing literature as well as some known results.

Lemma 17. Assume {𝑥¤ 𝑛} denote a sequence in the 𝑏-metric-like space (Υ, 𝜗), coefficient
𝑠 must be greater than or equal to 1. such that

𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1) ≤ 𝑞𝜗 (𝑥¤ 𝑛−1, 𝑥¤ 𝑛)

8
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where q within the interval
[
0; 1

𝑠

)
, and 𝑛 ∈ 𝑁 , so we can conclude that {𝑥¤ 𝑛} is a 𝜗-

Cauchy sequence in (Υ, 𝜗) such that lim𝑛,𝑚→∞ 𝜗 (𝑥¤ 𝑛 , 𝑥¤𝑚) = 0

Remark 18. In the context of 𝑏-metric-like, it is important to acknowledge that the
aforementioned lemma remains applicable. Each value of 𝑞 within the range of [0,1) is
associated with a designated space, as referenced in [86].

Definition 19. Let (Υ, 𝜗) be 𝑏-metric space with complex values, as assumed in[72]
(𝑖) 𝐴𝑛 element 𝑥¤ in the set Υ is referred to as an interior point. Whenever there is a

value of 𝑟 greater than zero, the set 𝐴 is a subset of Υ,
such that 𝐵(𝑥¤ , 𝑟) = {Υ ∈ Υ : 𝜗(𝑥¤ , 𝑦¤ ) < 𝑟} ⊆ 𝐴.

(𝑖𝑖) 𝐴 point 𝑥¤ ∈ Υ is considered a limit point of a set 𝐴 whenever for every 0 < 𝑟 ∈ C,
𝐵(𝑥¤ , 𝑟) ∩ (𝐴 − {𝑥¤ }) ≠ 𝜙.

(𝑖𝑖𝑖) 𝐴 subset 𝐴 ⊆ Υ is considered an open set whenever each element of 𝐴 is an interior
point of a set 𝐴.

(𝑖𝑣) 𝐴 subset 𝐴 ⊆ Υ is called closed set whenever each limit point of 𝐴 belongs to 𝐴.

(𝑣) 𝐴 sub-basis for Hausdorff topology 𝜏 on Υ is a family
𝐹 = {𝐵(𝑥¤ , 𝑟) : 𝑥 ∈ Υ 𝑎𝑛𝑑 0 < 𝑟}.

Definition 20. [72]Assume (Υ, 𝜗) be a b-metric space with complex values, and As-
sume {𝑥¤ 𝑛} represent a sequence in Υ and 𝑥¤ ∈ Υ.

(𝑖) For every positive 𝑐 in the set 𝐶, there exists a corresponding 𝑁 ∈ N such
that for every 𝑛 > 𝑁 , 𝜗(𝑥¤ 𝑛 , 𝑥¤ ) < 𝑐, then {𝑥¤ 𝑛} is referred to as being The
sequence converges to 𝑥¤ . We denote this by lim𝑛→∞ 𝑥¤ 𝑛 = 𝑥¤ or {𝑥¤ 𝑛} → 𝑥¤ as
𝑛 → ∞.

(𝑖𝑖) If for every 𝑐 ∈ 𝐶, with 0 < 𝑐 there is 𝑁 ∈ N such that for every 𝑛 > 𝑁 ,
𝜗(𝑥¤ 𝑛 , 𝑥¤ 𝑛+𝑚) < 𝑐 where 𝑚 ∈ N, then{𝑥¤ 𝑛} is said to be Cauchy sequence.

(𝑖𝑖𝑖) If each Cauchy sequence within the set Υ converges within Υ,then The
space (Υ, 𝜗) ) 𝑖𝑠 often referred to as a complete complex-valued b-metric
space.

Lemma 21. [72]Consider a complex-valued b-metric space (Υ, 𝜗) and Let {𝑥¤ 𝑛} be a
given sequence in Υ. The convergence of {𝑥¤ 𝑛} to 𝑥¤ is characterized by the following
condition |𝜗(𝑥¤ 𝑛 , 𝑥¤ )| → 0 as 𝑛 → ∞.

9
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Lemma 22. [72] Assume (Υ, 𝜗) be a complex valued b-metric space, if we consider a
sequence {𝑥¤ 𝑛} in Υ. then it can be said that {𝑥¤ 𝑛} is the Cauchy sequence is defined if
and only if |𝜗(𝑥¤ 𝑛 , 𝑥¤ 𝑛+𝑚)| → 0 as 𝑛 → ∞ , where 𝑚 ∈ N.
Definition 23. [75]Assume {𝑥¤ 𝑛} defines a sequence in a 𝑏-metric space (Υ, 𝜗) with the
coefficient 𝑠. Hence, we have:

(𝑖) The convergence of the sequence {𝑥¤ 𝑛} 𝑡𝑜 x¤ is defined as follows: lim𝑛→∞ 𝜗 (𝑥¤ 𝑛 , 𝑥¤ )→ 0;

(𝑖𝑖) The sequence {𝑥¤ 𝑛} is considered to be Cauchy in (Υ, 𝜗) within the context of
lim𝑛,𝑚→∞ 𝜗 (𝑥¤ 𝑛 , 𝑥¤𝑚) → 0

(𝑖𝑖𝑖) One says that a 𝑏-metric space (Υ, 𝜗) is complete if for every Cauchy sequence
{𝑥¤ 𝑛} in Υ is convergent.

Definition 24. [80] Assume (Υ, 𝜗) be a complete b-metric space. In the sequel, we use
the following notations:

𝐶𝐵(𝑌) = {is defined as a non-empty closed and bounded subset of Υ},
𝜗(𝐴, 𝐵) = inf{𝜗(𝑎, 𝑏) : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵},
𝛿(𝐴, 𝐵) = sup{𝜗(𝑎, 𝐵) : 𝑎 ∈ 𝐴},
𝛿(𝐵, 𝐴) = sup{𝜗(𝑏, 𝐴) : 𝑏 ∈ 𝐵},
𝐻(𝐴, 𝐵) = max{𝛿(𝐴, 𝐵), 𝛿(𝐵, 𝐴)}.

The metric 𝜗, gives rise to the Hausdorff metric 𝐻, as can be observed.
Moving ahead, we define 𝐹(𝑇) as the collection of all fixed points of a multi-valued

mapping 𝑇, that is:
𝐹(𝑇) = {

𝑝 ∈ Υ : 𝑝 ∈ 𝑇𝑝
}

Definition 25. A fixed point of the multi-valued function is defined as a point 𝑥¤ 0 ∈ Υ,
where 𝑇 : Υ → 𝐶𝐵(𝑌) if 𝑥¤ 0 ∈ 𝑇𝑥¤ 0.

Lemma 26. Assume(Υ, 𝜗) be a b-metric space that is complete. For any 𝐴, 𝐵 and
𝐶 ∈ 𝐶𝐵(𝑌) and any 𝑥¤ , 𝑦¤ ∈ Υ, one has the following:

1 𝜗(𝑥¤ , 𝐵) ≤ 𝜗(𝑥¤ , 𝑏) ,for any 𝑏 ∈ 𝐵.
2 𝛿(𝐴, 𝐵) ≤ 𝐻(𝐴, 𝐵).
3 𝜗(𝑥¤ , 𝐵) ≤ 𝐻(𝐴, 𝐵), for any 𝑥¤ ∈ 𝐴.

10
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4 𝐻(𝐴, 𝐴) = 0.

5 𝐻(𝐴, 𝐵) = 𝐻(𝐵, 𝐴).
6 𝐻(𝐴, 𝐶) ≤ 𝑠[𝐻(𝐴, 𝐵) + 𝐻(𝐵, 𝐶)].
7 𝜗(𝑥¤ , 𝐴) ≤ 𝑠[𝜗(𝑥¤ , 𝑦¤ ) + 𝜗(𝑥¤ , 𝐴)].
8 𝜗(𝐴, 𝐵) ≤ 𝛿(𝐴, 𝐵).

Lemma 27. [75]Assume(Υ, 𝜗) be a complete b-metric space and Assume {𝑥¤ 𝑛} be a
sequence in Υ such that

𝜗 (𝑥¤ 𝑛+1, 𝑥¤ 𝑛+2) ≤ 𝜆𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1) , for every 𝑛 = 0, 1, 2, ...

where 0 ≤ 𝜆 < 1. Then {𝑥¤ 𝑛} is a Cauchy sequence in Υ.

1.2 VARIOUS TYPES OF CONTRACTIONS

Some types of contractions in single-valued and multi-valued maps are de-
fined in this section.

Definition 28. ([68]) A mapping 𝑇 : Υ → Υ where (Υ, 𝜗) is a metric space is said to
be weakly 𝐶-contractive or a weak 𝐶-contraction if for every 𝑥¤ , 𝑦¤ ∈ Υ,

(𝜗 (𝑇𝑥¤ , 𝑇𝑦¤ )) ≤ 1
2
[𝜗(𝑥¤ , 𝑇𝑦¤ + 𝜗(𝑦¤ , 𝑇𝑥¤ ) − 𝜓 [𝜗(𝑥¤ , 𝑇𝑦¤ ) + 𝜗(𝑦¤ , 𝑇𝑥¤ )] .

where 𝜓 ∈ [0,∞)2 → [0,∞) ,is a continuous mapping such that 𝜓 (𝑥¤ , 𝑦¤ ) = 0 if and
only if 𝑥¤ , 𝑦¤ = 0.

Denote Ω as the class of all function Ψ : [0;∞) → [0;∞), satisfying the fol-
lowing condition:

(1) Ψnon-decreasing and continuous;

11
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(2) lim𝑛→∞Ψ𝑛 (𝑡) = 0 for every 𝑡 > 0.

Definition 29. ,[89] Assume (Υ, 𝜗) be a 𝑏-metric-like space, 𝑝 ∈ 𝑁 , 𝐵1, 𝐵2, ..., 𝐵𝑝 be
𝜗-closed subsets of Υ, Υ = 𝐵1 ∪ ...∪ 𝐵𝑝 and 𝛼 : Υ×Υ→ [0;∞) be a mapping. We say
that 𝑇 : Υ = Υ → Υ is cyclic 𝛼Ψ

𝐿 -rational contractive mapping if :

(1) 𝑇 (𝐵𝑖) ⊆ 𝐵𝑖+1, 𝑖 = 1, 2, ..., 𝑝,where 𝐵𝑝+1 = 𝐵1;

(2) for any 𝑥¤ ∈ 𝐵𝑖 andΥ ∈ 𝐵𝑖+1, 𝑖 = 1, 2, ..., 𝑝,where 𝐵𝑝+1 = 𝐵1 and 𝛼 (𝑥¤ , 𝑇𝑥¤ ) 𝛼 (𝑦¤ , 𝑇𝑦¤ ) ≥
1, holds

(𝜗 (𝑇𝑥¤ , 𝑇𝑦¤ )) ≤ Ψ (𝑀 (𝑥¤ , 𝑦¤ )) − 𝐿𝑀 (𝑥¤ , 𝑦¤ ) (1)

Where Ψ ∈ Ω, 𝐿 ∈ (0; 1) and

𝑀𝑑(𝑥¤ , 𝑦¤ ) = max

{
𝜗 (𝑥¤ , 𝑦¤ ) , 𝜗(𝑥¤ ,𝑦¤ )2𝑠

𝜗(𝑥¤ ,𝑇𝑥¤ )𝜗(𝑦¤ ,𝑇𝑦¤ )
1+𝜗(𝑥¤ ,𝑦¤ ) , 𝜗(𝑦¤ ,𝑇𝑦¤ )[1+𝜗(𝑥¤ ,𝑇𝑥¤ )]1+𝜗(𝑥¤ ,𝑦¤ ) ,

𝜗(𝑥¤ ,𝑇𝑦¤ )+𝜗(𝑦¤ ,𝑇𝑥¤ )
4𝑠

}
.

Definition 30. ([91])AssumeΠ=
{
𝜙 : [0,+∞) → [0,+∞) : 𝜙 is increasing and continuous

}
and Ω = {𝜓 : [[0,+∞) → [0,+∞) : 𝜓 is increasing and lower semi-continuous}.
A triple

(
𝜙,𝜓, 𝑓

)
is said to be monotone if

𝑥¤ ≤ Υ implies 𝑓
(
𝜙 (𝑥¤ ) ,𝜓 (𝑥¤ )) ≤ 𝑓

(
𝜙 (Υ) ,𝜓 (Υ)) ,

for any 𝑥¤ , 𝑦¤ ∈ [0,+∞) .

Definition 31. ([91])Assume (Υ, 𝜗) be a metric-like space, 𝑝 ∈ N, 𝐵1, 𝐵2, ..., 𝐵𝑝 be
𝜗-closed subsets of Υ, Υ = 𝐵1 ∪ ... ∪ 𝐵𝑝 and 𝛼 : Υ × Υ → [0,+∞) be a mapping. We
say that 𝑇 : Υ → Υ is cyclic

(
𝛼, 𝑓 , 𝜙,𝜓

)
contractive mapping if:

𝑇
(
𝐵 𝑗

) ⊆ 𝐵 𝑗+1, for every 𝑗 = 1, 2, ..., 𝑝, where 𝐵𝑝 = 𝐵𝑝+1

for any 𝑥¤ ∈ 𝐵𝑖 andΥ ∈ 𝐵𝑖 , (𝑖 = 1, 2, ..., 𝑝) ,where 𝐵𝑖+1 = 𝐵1 and 𝛼 (𝑥¤ , 𝑇𝑥¤ ) 𝛼 (𝑦¤ , 𝑇𝑦¤ ) ≥
1
we have

𝜙 (𝜗 (𝑇𝑥¤ , 𝑇𝑦¤ )) ≤ 𝑓
(
𝜙 (𝑀𝑑 (𝑥¤ , 𝑦¤ )) ,𝜓 (𝑀𝑑 (𝑥¤ , 𝑦¤ ))) , (1.1)

12
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where 𝜙 ∈ Π,𝜓 ∈ Ω and 𝑓 ∈ 𝐶 such that the triple
(
𝜙,𝜓, 𝑓

)
is monotone and

𝑀𝑑 (𝑥¤ , 𝑦¤ ) =
𝑎𝜗 (𝑥¤ , 𝑦¤ ) + 𝑏𝜗 (𝑥¤ , 𝑇𝑥¤ ) + 𝑐𝜗 (𝑦¤ , 𝑇𝑦¤ ) + 𝑒 𝜗(𝑥¤ ,𝑇𝑦¤ )+𝜗(𝑦¤ ,𝑇𝑥¤ )2

𝑚
,

with 𝑎, 𝑏, 𝑐, 𝑒 ≥ 0 and 𝑎 + 𝑏 + 𝑐 + 2𝑒 = 𝑚 < 1.

Definition 32. Assume(Υ, 𝜗) be a complete b-metric space with coefficient 𝑠 ≥ 1, and
𝑇, 𝑆 : Υ → 𝐶𝐵 (Υ) be two mapping on Υ can be classified as generalized rational
contractive mappings if there exist the control functions 𝜙, 𝜑,𝜓 : Υ ×Υ → [0; 1) such
that:

𝐻 (𝑇𝑥¤ , 𝑆𝑦¤ ) ≤ 𝜙 (𝑥¤ , 𝑦¤ )𝜗 (𝑥¤ , 𝑦¤ ) + 𝜑 (𝑥¤ , 𝑦¤ ) [𝜗 (𝑥¤ , 𝑆𝑦¤ ) + 𝜗 (𝑦¤ , 𝑇𝑥¤ )] (1.2)

+𝜓 (𝑥¤ , 𝑦¤ ) 𝜗 (𝑥¤ , 𝑇𝑥¤ )𝜗 (𝑦¤ , 𝑇𝑦¤ )
1 + 𝜗 (𝑥¤ , 𝑆𝑦¤ ) + 𝜗 (𝑦¤ , 𝑇𝑥¤ ) + 𝜗 (𝑥¤ , 𝑦¤ ) ,

for every 𝑥¤ , 𝑦¤ ∈ Υ.

Definition 33. Assume Υ be a non-empty set. A mapping 𝑇 : Υ → Υ is said to be an
𝛼-admissible mapping if 𝛼(𝑥¤ , 𝑦¤ ) ≥ 1 implies
𝛼(𝑇𝑥¤ , 𝑇𝑦¤ ) ≥ 1, for every 𝑥¤ , 𝑦¤ ∈ Υ and 𝛼 : Υ × Υ → [0;∞) .
Further 𝑇 called 𝛼-continuous on Υ if lim𝑛→∞ 𝑥¤ 𝑛 = 𝑥¤ implies lim𝑛→∞ 𝑇𝑥¤ 𝑛 = 𝑇𝑥¤ for
any sequence {𝑥¤ 𝑛} for Υ which 𝛼(𝑥¤ 𝑛 , 𝑥¤ 𝑛+1) ≥ 1; 𝑛 ∈ 𝑁.

13



2
New fixed point results on

𝛼
𝜓
𝐿 -rational contraction mappings in

-metric-like spaces

This chapter will discuss our findings from([89]), which include new find-
ings on 𝛼

𝜓
𝐿 -rational contraction and cyclic 𝛼

𝜓
𝐿 -rational contractive mappings de-

fined in complete b-metric-like spaces. To demonstrate the applicability of our
theoretical findings, an example is provided.

2.1 FIXED POINT ON 𝛼
𝜓
𝐿 -RATIONAL CONTRACTION MAP-

PINGS IN -METRIC-LIKE SPACES

Theorem 34. Let (Υ, 𝜗) be a 𝜗 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 b−𝑚𝑒𝑡𝑟𝑖𝑐 like space and 𝛼 : Υ × Υ →
[0,+∞) be a mapping. Assume that 𝑇 : Υ → Υ is an 𝛼

𝜓
𝐿 -contractive mapping satisfy-

ing the following assertions:
(i) 𝑇 is an 𝛼-admissible mapping,
(ii) 𝛼 (𝑥¤ 0, 𝑇𝑥¤ 0) ≥ 1 for an element 𝑥¤ 0 in Υ,
(iii) 𝑇 is 𝛼-continuous, or;
(iv) if {𝑥¤ 𝑛} is a sequence in Υ such that 𝛼 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1) ≥ 1
for all 𝑛 ∈ N and 𝑥¤ 𝑛 → x¤ as n→+∞, then 𝛼 (𝑥¤ 𝑛 , 𝑇𝑥¤ 𝑛) ≥ 1.
Then 𝑇 admits a fixed point in Υ.
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𝜓
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Moreover, if
(v) 𝛼 (𝑥¤ , 𝑥¤ ) ≥ 1, whenever 𝑥¤ ∈ 𝐹𝑖𝑥 (𝑇), then 𝑇 admits a unique fixed point.

proof Let start with define the sequence 𝑥¤ 𝑛 = 𝑇𝑛𝑥¤ 0, where 𝑥¤ 0 is the given
point for which 𝛼 (𝑥¤ 0, 𝑇𝑥¤ 0) ≥ 1. Since 𝑇 is an 𝛼-admissible mapping, we get that

𝛼 (𝑥¤ 1, 𝑇𝑥¤ 1) = 𝛼 (𝑇𝑥¤ 0, 𝑇𝑇𝑥¤ 1) ≥ 1.

Continuing this process, we get 𝛼 (𝑥¤ 𝑛 , 𝑇𝑥¤ 𝑛) ≥ 1 for all 𝑛 ∈ N, and so,

𝛼 (𝑥¤ 𝑛 , 𝑇𝑥¤ 𝑛) 𝛼 (𝑥¤ 𝑛−1, 𝑇𝑥¤ 𝑛−1) ≥ 1, 𝑓 𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈ N.

If 𝑥¤ 𝑛 = 𝑥¤ 𝑛−1 for some 𝑛 ∈ N, 𝑥¤ 𝑛−1 is a fixed point of 𝑇.
Therefore, assume that 𝑥¤ 𝑛−1 ≠ 𝑥¤ 𝑛 for all 𝑛 ∈ N. Hence, we have that

𝜗 (𝑥¤ 𝑛−1, 𝑥¤ 𝑛) > 0, 𝑓 𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈ N.

In order to prove that the sequence {𝑥¤ 𝑛} is a 𝜗-Cauchy sequence, we have

Ψ (𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1)) ≤ Ψ (𝑀 (𝑥¤ 𝑛−1, 𝑥¤ 𝑛)) − 𝐿𝑀 (𝑥¤ 𝑛−1, 𝑥¤ 𝑛) (2.1)

where

𝑀 (𝑥¤ 𝑛−1, 𝑥¤ 𝑛) = max

{
𝜗 (𝑥¤ 𝑛−1, 𝑥¤ 𝑛) , 𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛) , 𝜗(𝑥¤ 𝑛−1 ,𝑥¤ 𝑛)𝜗(𝑥¤ 𝑛 ,𝑥¤ 𝑛+1)

1+𝜗(𝑥¤ 𝑛−1 ,𝑥¤ 𝑛) , 𝜗(𝑥¤ 𝑛 ,𝑥¤ 𝑛+1)[1+𝜗(𝑥¤ 𝑛−1 ,𝑥¤ 𝑛)]
1+𝜗(𝑥¤ 𝑛−1 ,𝑥¤ 𝑛) ,

𝜗(𝑥¤ 𝑛−1 ,𝑥¤ 𝑛+1)+𝜗(𝑥¤ 𝑛 ,𝑥¤ 𝑛+1)
4𝑠

}
≤ max

{
𝜗 (𝑥¤ 𝑛−1, 𝑥¤ 𝑛) , 𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1) , 3

4
𝜗 (𝑥¤ 𝑛−1, 𝑥¤ 𝑛) + 1

4
𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1)

}
≤ max {𝜗 (𝑥¤ 𝑛−1, 𝑥¤ 𝑛) , 𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1)} ,

Hence, we get

Ψ (𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1)) ≤ Ψ (max {𝜗 (𝑥¤ 𝑛−1, 𝑥¤ 𝑛) , 𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1)})−𝐿max {𝜗 (𝑥¤ 𝑛−1, 𝑥¤ 𝑛) , 𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1)} .

If

max {𝜗 (𝑥¤ 𝑛−1, 𝑥¤ 𝑛) , 𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1)} = 𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1) 𝑓 𝑜𝑟 𝑠𝑜𝑚𝑒 𝑛 ∈ N,
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we have

Ψ (𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1)) ≤ Ψ (𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1)) − 𝐿𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1)
0 ≤ −𝐿𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1) . (2.2)

Which contradiction.
Hence, we get

𝜗 (𝑥¤ 𝑛−1, 𝑥¤ 𝑛) ≥ 𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1) .
So, there exists

lim
𝑛→+∞𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1) = 𝜗𝑘 ≥ 0.

Assumeting 𝑛 → +∞ in (2.2) , we obtain that

lim
𝑛→+∞Ψ (𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1)) ≤ lim

𝑛→+∞ [Ψ (𝜗 (𝑥¤ 𝑛−1, 𝑥¤ 𝑛)) − 𝐿𝜗 (𝑥¤ 𝑛−1, 𝑥¤ 𝑛)]
Ψ (𝜗𝑘) ≤ Ψ (𝜗𝑘) − 𝐿𝜗𝑘 .

Thus
lim

𝑛→+∞𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1) = 0.

Now, if lim
𝑛,𝑚→+∞𝜗 (𝑥¤ 𝑛 , 𝑥¤𝑚) ≠ 0, we have sequences {𝑚𝑘} and {𝑛𝑘} such that

lim
𝑘→+∞

𝜗
(
𝑥¤ 𝑛𝑘 , 𝑥¤𝑚𝑘

)
= 𝜀 > 0.

Assume 𝑢 = 𝑥¤ 𝑛𝑘 and 𝑣 = 𝑥¤𝑚𝑘 in (1) , we get

Ψ
(
𝜗

(
𝑥¤ 𝑛𝑘+1, 𝑥¤𝑚𝑘+1

) ) ≤ Ψ
(
𝑀

(
𝑥¤ 𝑛𝑘 , 𝑥¤𝑚𝑘

) ) − 𝐿𝑀 (
𝑥¤ 𝑛𝑘 , 𝑥¤𝑚𝑘

)
, (2.3)

where

𝑀
(
𝑥¤ 𝑛𝑘 , 𝑥¤𝑚𝑘

)
= max


𝜗

(
𝑥¤ 𝑛𝑘 , 𝑥¤𝑚𝑘

)
, 𝜗

(
𝑥¤𝑚𝑘 , 𝑥¤ 𝑛𝑘+1

)
,
𝜗(𝑥¤ 𝑛𝑘 ,𝑥¤𝑚𝑘 )𝜗(𝑥¤𝑚𝑘 ,𝑥¤𝑚𝑘+1)

1+𝜗(𝑥¤ 𝑛𝑘 ,𝑥¤ 𝑛𝑘+1) ,

𝜗(𝑥¤𝑚𝑘 ,𝑥¤𝑚𝑘+1)[1+𝜗(𝑥¤ 𝑛𝑘 ,𝑥¤ 𝑛𝑘+1)]
1+𝜗(𝑥¤ 𝑛𝑘 ,𝑥¤𝑚𝑘 ) ,

𝜗(𝑥¤ 𝑛𝑘 ,𝑥¤𝑚𝑘+1)+𝜗(𝑥¤𝑚𝑘 ,𝑥¤ 𝑛𝑘+1)
4𝑠


→ max

{
𝜀,

𝜀
2𝑠
, 0, 0, 𝜀

4𝑠

}
.
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So, as 𝑛 → +∞ in (3.9) , we have

Ψ (𝜀) ≤ Ψ (𝜀) − 𝐿𝜀,

which is paradoxical.

Thus, the sequence{𝑥¤ 𝑛} is a cauchy and

lim
𝑛,𝑚→+∞𝜗 (𝑥¤ 𝑛 , 𝑥¤𝑚) = 0.

This proves that a single point exists. 𝑥¤ ∗ ∈Υ such that

𝜗 (𝑥¤ ∗, 𝑥¤ ∗) = lim
𝑛→+∞𝜗 (𝑥¤ 𝑛 , 𝑥¤ ∗) = lim

𝑛,𝑚→+∞𝜗 (𝑥¤ 𝑛 , 𝑥¤𝑚) = 0.

We will now demonstrate that 𝑥¤ ∗ is fixed point of 𝑇 i.e., 𝑇𝑥¤ ∗ = 𝑥¤ ∗, so it’s evident
if 𝑇 is 𝛼-continuous.
Additionally, consider that for any sequence 𝑥¤ 𝑛 inΥ and for all 𝑛 ∈ N,if 𝛼 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1) ≥
1 and lim

𝑛→+∞ 𝑥¤ 𝑛 = 𝑥¤ ∗, then
𝛼 (𝑥¤ ∗, 𝑇𝑥¤ ∗) ≥ 1.

Assume 𝜗 (𝑥¤ ∗, 𝑇𝑥¤ ∗) > 0. Knowing

𝛼 (𝑥¤ 𝑛 , 𝑇𝑥¤ 𝑛) 𝛼 (𝑥¤ ∗, 𝑇𝑥¤ ∗) ≥ 1.

As per the specified contractual terms, we have

Ψ (𝜗 (𝑇𝑥¤ , 𝑇𝑥¤ ∗)) ≤ Ψ (𝑀 (𝑥¤ , 𝑥¤ ∗)) − 𝐿𝑀 (𝑥¤ , 𝑥¤ ∗) .

where

𝑀 (𝑥¤ , 𝑥¤ ∗) = max


𝜗 (𝑥¤ 𝑛 , 𝑥¤ ∗) , 𝜗 (𝑥¤ ∗, 𝑥¤ 𝑛+1) , 𝜗(𝑥¤ 𝑛 ,𝑥¤ ∗)𝜗(𝑥¤ ∗ ,𝑇𝑥¤ ∗)1+𝜗(𝑥¤ 𝑛 ,𝑥¤ 𝑛+1) ,

𝜗(𝑥¤ ∗ ,𝑇𝑥¤ ∗)[1+𝜗(𝑥¤ 𝑛 ,𝑥¤ 𝑛+1)]
1+𝜗(𝑥¤ 𝑛 ,𝑥¤ 𝑛+1) ,

𝜗(𝑥¤ 𝑛 ,𝑇𝑥¤ ∗)+𝜗(𝑥¤ ∗ ,𝑥¤ 𝑛+1)
4𝑠


≤ max


𝜗 (𝑥¤ 𝑛 , 𝑥¤ ∗) , 𝜗 (𝑥¤ ∗, 𝑥¤ 𝑛+1) , 𝜗(𝑥¤ 𝑛 ,𝑥¤ ∗)𝜗(𝑥¤ ∗ ,𝑇𝑥¤ ∗)1+𝜗(𝑥¤ 𝑛 ,𝑥¤ 𝑛+1) ,

𝜗 (𝑥¤ ∗, 𝑇𝑥¤ ∗) ,
𝑠[𝜗(𝑥¤ 𝑛 ,𝑥¤ ∗)+𝜗(𝑥¤ ∗ ,𝑇𝑥¤ ∗)]+𝜗(𝑥¤ ∗ ,𝑥¤ 𝑛+1)

4𝑠


→ max

{
0, 0, 0, 𝜗 (𝑥¤ ∗, 𝑇𝑥¤ ∗) , 𝜗 (𝑥¤ ∗, 𝑇𝑥¤ ∗)

4

}
= 𝜗 (𝑥¤ ∗, 𝑇𝑥¤ ∗) , as 𝑛 → +∞.
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Allowing the limit to 𝑛 → +∞, We obtain

Ψ (𝜗 (𝑥¤ ∗, 𝑇𝑥¤ ∗)) ≤ Ψ (𝜗 (𝑥¤ ∗, 𝑇𝑥¤ ∗)) − 𝐿𝜗 (𝑥¤ ∗, 𝑇𝑥¤ ∗) ,

which again is contradictory.
This implies that 𝜗 (𝑥¤ ∗, 𝑇𝑥¤ ∗) = 0, namely, we demonstrate that 𝑇𝑥¤ ∗ = 𝑥¤ ∗.
Lastly, to demonstrate the fixed point of the map 𝑇 is uniqueness, Let’s claim
that 𝜁, 𝜂 (𝜁 ≠ 𝜂) are two fixed point of 𝑇.
Then,we get 𝜗 (𝜁, 𝜂) > 0, 𝛼 (𝜁, 𝜁) ≥ 1, 𝛼 (𝜂, 𝜂) ≥ 1.
Moreover, since

𝛼 (𝜁, 𝜁) 𝛼 (𝜂, 𝜂) ≥ 1,

We acquire
Ψ (𝜗 (𝜁, 𝜂)) ≤ Ψ (𝑀 (𝜁, 𝜂)) − 𝐿𝑀 (𝜁, 𝜂) ,

in which

𝑀 (𝜁, 𝜂) = max


𝜗 (𝜁, 𝜂) , 𝜗(𝜂,𝜁)2𝑠 , 𝜗(𝜁,𝜂)𝜗(𝜂,𝜂)1+𝜗(𝜁,𝜁) ,

𝜗(𝜂,𝜂)[1+𝜗(𝜁,𝜁)]
1+𝜗(𝜁,𝜂) ,

𝜗(𝜁,𝜂)+𝜗(𝜂,𝜁)
4𝑠


= max

{
𝜗 (𝜁, 𝜂) , 𝜗 (𝜂, 𝜁)

2𝑠
, 0, 0,

𝜗 (𝜂, 𝜁)
2𝑠

}
= 𝜗 (𝜁, 𝜂) .

Thus
Ψ (𝜗 (𝜁, 𝜂)) ≤ Ψ (𝜗 (𝜁, 𝜂)) − 𝐿𝜗 (𝜁, 𝜂) ,

which is paradoxical.The proof is now complete.

Remark 35. It is noteworthy to observe that the case 𝑠 = 1 means that (Υ, 𝑑) is actually
a complete metric-like space and we get the results of [55].

2.2 EXAMPLE

Example 36. Given a constant 𝑠 = 4, Assume Υ = R be a 𝑏-metric-like space
Define the function 𝜗 : R2 →: [0,+∞) by .𝜗 (𝑥¤ , 𝑦¤ ) = (|𝑥¤ | + |𝑦¤ |)3 .
(Υ, 𝜗) is obviously a complete 𝑏-metric-like space. Assume that

𝐵1 = (−∞, 0] , 𝐵2 = [0,+∞)

18
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and
𝑌 = 𝐵1 ∪ 𝐵2.

Define 𝑇 : Υ →Υ and 𝜎 : Υ × Υ → [0,+∞) by

𝑇𝑥¤ =


𝑥¤ 2 if 𝑥¤ ∈ (−∞, 1)
− 𝑥

6 if 𝑥¤ ∈ [−1, 0]
− 𝑥¤2

7 if 𝑥¤ ∈ [0, 1]
−𝑥 if 𝑥¤ ∈ (1,+∞)

and 𝜎 (𝑥¤ , 𝑦¤ ) =
{

|𝑥¤ | + |𝑦¤ | + 1, if 𝑥¤ , 𝑦¤ ∈ [−1; 1]
0, otherwise.

Also, define Ψ : [0,+∞) → [0,+∞) by Ψ (𝑡) = 1
2 𝑡 and 𝐿 = 1

6 .Clearly, 𝑇 (𝐵1) ⊂ 𝐵2

and 𝑇 (𝐵2) ⊂ 𝐵1.

Assume 𝑥¤ ∈ 𝐵1, 𝑦 ∈ 𝐵2 and 𝜎 (𝑥¤ , 𝑇𝑥¤ ) 𝜎 (𝑦¤ , 𝑇𝑦¤ ) ≥ 1.If 𝑥¤ ∉ [−1, 1] or 𝑦 ∉ [−1, 1] , then
𝜎 (𝑥¤ , 𝑇𝑥¤ ) = 0 or 𝜎 (𝑦¤ , 𝑇𝑦¤ ) = 0.That is, 𝜎 (𝑥¤ , 𝑇𝑥¤ ) 𝜎 (𝑦¤ , 𝑇𝑦¤ ) = 0, which is a contradic-
tion. Hence 𝑥¤ ∈ 𝐵1 , 𝑦 ∈ 𝐵2 and 𝑥¤ , 𝑦¤ ∈ [−1, 1] .

This implies that 𝑥¤ ∈ [−1, 0] or 𝑦¤ ∈ [1, 0] .
Then,

Ψ (𝜗 (𝑇𝑥¤ , 𝑇𝑦¤ )) =
1
2

(����−𝑥¤6 ���� + ����−𝑦¤ 2

7

����)3

≤ 2

(����𝑥¤6 ����3 + ����𝑦¤ 2

7

����3)
≤ 1

3

(
|𝑥¤ |3 + ��𝑦¤ 2��3)

≤ 1
3

(
|𝑥¤ |3 + |𝑦¤ |3

)
, since 𝑦¤ ∈ [1, 0] .

≤ 1
3 (|𝑥¤ | + |𝑦¤ |)3

=
1
3
𝜗 (𝑥¤ , 𝑦¤ ) = Ψ (𝑀𝑑 (𝑥¤ , 𝑦¤ )) − 𝐿𝑀𝑑 (𝑥¤ , 𝑦¤ ) .

Consequently,𝑇 is a cyclic 𝛼𝜓
𝐿 -rational contractive mapping. It is evident that 𝜎 (0, 𝑇0) ≥

1 and so the condition (𝑖𝑖) of Theorem 34 is satisfied.
When 𝜎 (𝑥¤ , 𝑦) ≥ 1, it means that 𝑥¤ , 𝑦¤ ∈ [−1, 1], indicating that𝑇 is an 𝛼-admissible

mapping and 𝜎 (𝑇𝑥¤ , 𝑇𝑦¤ ) ≥ 1.
Consider {𝑥¤ 𝑛} as a sequence in Υ such that 𝜎 (𝑥¤ 𝑛 , 𝑇𝑥¤ 𝑛) ≥ 1 and 𝑥¤ 𝑛 → 𝑥¤ as 𝑛 →

+∞.
Hence, we have to have 𝑥¤ 𝑛 ∈ [−1, 1] and so, 𝑥¤ ∈ [−1, 1] , that is 𝑎 (𝑥¤ , 𝑇𝑥¤ ) ≥ 1. Thus,
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all of Theorem 34 requirements are met as result, and𝑇 has a fixed point 𝑥¤ = 0 ∈ 𝐵1∩𝐵2.
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3
Some fixed point theorems of rational

type contraction in complex valued
b-metric spaces

This chapter’s goals are to generalize certain findings from the previous lit-
erature and establish a common fixed-point theorem for rational-type contrac-
tions in the context of complex valued b-metric spaces. Lastly, we provide a
compelling illustration to back up our primary findings.

3.1 FIXED POINT THEOREMS OF RATIONAL TYPE CONTRAC-
TION IN COMPLEX VALUED B-METRIC SPACES

Theorem 37. Assume (Υ, 𝜗) be a complete complex valued 𝑏-metric space with a coef-
ficient 𝑠 ≥ 1, and 𝑇 : Υ → Υ be a mappings on Υ satisfying the condition

𝜗(𝑇𝑥¤ , 𝑇𝑦¤ ) ≲ 𝑎𝜗 (𝑥¤ , 𝑦¤ ) + 𝑏𝜗 (𝑥¤ , 𝑇𝑥¤ )𝜗 (𝑥¤ , 𝑇𝑦¤ ) + 𝜗 (𝑦¤ , 𝑇𝑦¤ )𝜗 (𝑦¤ , 𝑇𝑥¤ )
𝜗 (𝑥¤ , 𝑇𝑦¤ ) + 𝜗 (𝑦¤ , 𝑇𝑥¤ ) , (3.1)

for all, 𝑥¤ , 𝑦¤ in Υ and 𝑎, 𝑏 ≥ 0, 𝜗 (𝑥¤ , 𝑇𝑦¤ ) + 𝜗 (𝑦¤ , 𝑇𝑥¤ ) ≠ 0 with 𝑠 (𝑎 + 𝑏) < 1. Then 𝑇 a
unique fixed point.

Proof. Assume 𝑥¤ 0 ∈ Υ be an arbitary point in Υ. We define by induction a se-
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quence {𝑥¤ 𝑛} in Υ such that

𝑥¤ 2𝑛+1 = 𝑇𝑥¤ 2𝑛 , for all 𝑛 ∈ N.

Now, we show that the sequence {𝑥¤ 𝑛} is Cauchy:

𝜗 (𝑥¤ 2𝑛+1, 𝑥¤ 2𝑛+2) = 𝜗(𝑇𝑥¤ 2𝑛 , 𝑇𝑥¤ 2𝑛+1)
≲ 𝑎𝜗 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1)

+𝑏𝜗 (𝑥¤ 2𝑛 , 𝑇𝑥¤ 2𝑛)𝜗 (𝑥¤ 2𝑛 , 𝑇𝑥¤ 2𝑛+1) + 𝜗 (𝑥¤ 2𝑛+1, 𝑇𝑥¤ 2𝑛+1)𝜗 (𝑥¤ 2𝑛+1, 𝑇𝑥¤ 2𝑛)
𝜗 (𝑥¤ 2𝑛 , 𝑇𝑥¤ 2𝑛+1) + 𝜗 (𝑥¤ 2𝑛+1, 𝑇𝑥¤ 2𝑛)

= 𝑎𝜗 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1)
+𝑏𝜗 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1)𝜗 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+2) + 𝜗 (𝑥¤ 2𝑛+1, 𝑥¤ 2𝑛+2)𝜗 (𝑥¤ 2𝑛+1, 𝑥¤ 2𝑛+1)

𝜗 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+2) + 𝜗 (𝑥¤ 2𝑛+1, 𝑥¤ 2𝑛+1)
= (𝑎 + 𝑏)𝜗 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1) .

Thus
𝜗 (𝑥¤ 2𝑛+1, 𝑥¤ 2𝑛+2) ≲ (𝑎 + 𝑏)𝜗 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1) . (3.2)

By using lemma (22) thus implies

|𝜗 (𝑥¤ 2𝑛+1, 𝑥¤ 2𝑛+2)| ≤ |(𝑎 + 𝑏)𝜗 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1)|
≤ (𝑎 + 𝑏) |𝜗 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1)| .

Since 𝑎 + 𝑏 < 1,

|𝜗 (𝑥¤ 2𝑛+1, 𝑥¤ 2𝑛+2)| ≤ (𝑎 + 𝑏) |𝜗 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1)| . (3.3)

Thus for any 𝑛 ∈ N, we get

|𝜗 (𝑥¤ 2𝑛+1, 𝑥¤ 2𝑛+2)| ≤ (𝑎 + 𝑏) |𝜗 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1)| ≤ (𝑎 + 𝑏)2 |𝜗 (𝑥¤ 2𝑛−1, 𝑥¤ 2𝑛−2)| (3.4)

≤ ... ≤ (𝑎 + 𝑏)2𝑛+1 |𝜗 (𝑥¤ 1, 𝑥¤ 0)| .

Thus for any 𝑚 > 𝑛, 𝑚, 𝑛 ∈ N,
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|𝜗 (𝑥¤ 𝑛 , 𝑥¤𝑚)| ≤ 𝑠 |𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1)| + 𝑠 |𝜗 (𝑥¤ 𝑛+1, 𝑥¤𝑚)|
≤ 𝑠 |𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1)| + 𝑠2 |𝜗 (𝑥¤ 𝑛+1, 𝑥¤ 𝑛+2)| + 𝑠2 |𝜗 (𝑥¤ 𝑛+2, 𝑥¤𝑚)|
≤ 𝑠 |𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1)| + 𝑠2 |𝜗 (𝑥¤ 𝑛+1, 𝑥¤ 𝑛+2)| + 𝑠3 |𝜗 (𝑥¤ 𝑛+2, 𝑥¤ 𝑛+3)|

+𝑠3 |𝜗 (𝑥¤ 𝑛+3, 𝑥¤𝑚)|
≤ 𝑠 |𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1)| + 𝑠2 |𝜗 (𝑥¤ 𝑛+1, 𝑥¤ 𝑛+2)| + 𝑠3 |𝜗 (𝑥¤ 𝑛+2, 𝑥¤ 𝑛+3)|

+... + 𝑠𝑚−𝑛−1 |𝜗 (𝑥¤𝑚−2, 𝑥¤𝑚−1)| + 𝑠𝑚−𝑛 |𝜗 (𝑥¤𝑚−1, 𝑥¤𝑚)| .

By (3.4) , we have

|𝜗 (𝑥¤ 𝑛 , 𝑥¤𝑚)| ≤ 𝑠 (𝑎 + 𝑏)𝑛 |𝜗 (𝑥¤ 0, 𝑥¤ 1)| + 𝑠2 (𝑎 + 𝑏)𝑛+1 |𝜗 (𝑥¤ 0, 𝑥¤ 1)|
+𝑠3 (𝑎 + 𝑏)𝑛+2 |𝜗 (𝑥¤ 0, 𝑥¤ 1)| + ... + 𝑠𝑚−𝑛−1 (𝑎 + 𝑏)𝑚−2 |𝜗 (𝑥¤ 0, 𝑥¤ 1)|
+𝑠𝑚−𝑛 (𝑎 + 𝑏)𝑚−1 |𝜗 (𝑥¤ 0, 𝑥¤ 1)|

=
𝑚−𝑛∑
𝑖=1

𝑠 𝑖 (𝑎 + 𝑏)𝑖+𝑛−1 |𝜗 (𝑥¤ 0, 𝑥¤ 1)| .

Therefore,

|𝜗 (𝑥¤ 𝑛 , 𝑥¤𝑚)| ≤
𝑚−𝑛∑
𝑖=1

𝑠 𝑖+𝑛−1 (𝑎 + 𝑏)𝑖+𝑛−1 |𝜗 (𝑥¤ 0, 𝑥¤ 1)|

=
𝑚−1∑
𝑝=𝑛

𝑠𝑝 (𝑎 + 𝑏)𝑝 |𝜗 (𝑥¤ 0, 𝑥¤ 1)|

≤
∞∑
𝑝=𝑛

[𝑠 (𝑎 + 𝑏)]𝑝 |𝜗 (𝑥¤ 0, 𝑥¤ 1)| = [𝑠 (𝑎 + 𝑏)]𝑝
1 − 𝑠 (𝑎 + 𝑏) |𝜗 (𝑥¤ 0, 𝑥¤ 1)| ,

hence

|𝜗 (𝑥¤ 𝑛 , 𝑥¤𝑚)| ≤ [𝑠 (𝑎 + 𝑏)]𝑝
1 − 𝑠 (𝑎 + 𝑏) |𝜗 (𝑥¤ 0, 𝑥¤ 1)| → 0 as 𝑚, 𝑛 → ∞.

Thus {𝑥¤ 𝑛} is a Cauchy sequence in Υ. Since Υ is complete, there exists 𝑢 ∈ Υ

such that 𝑥¤ 𝑛 → 𝑢 as 𝑛 → ∞.
Assume not, then there exists 𝑧 ∈ Υ such that

|𝜗 (𝑢, 𝑇𝑢)| = |𝑧 | > 0. (3.5)
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Consequently, by applying the triangle inequality and (3.1), we find

𝑧 = 𝜗 (𝑢, 𝑇𝑢) ≲ 𝑠𝜗 (𝑢, 𝑥¤ 2𝑛+2) + 𝑠 |𝜗 (𝑥¤ 2𝑛+2, 𝑇𝑢)|
= 𝑠𝜗 (𝑢, 𝑥¤ 2𝑛+2) + 𝑠𝜗 (𝑇𝑢, 𝑇𝑥¤ 2𝑛+1)
≲ 𝑠𝜗 (𝑢, 𝑥¤ 2𝑛+2) + 𝑠𝑎𝜗 (𝑢, 𝑥¤ 2𝑛+1)

+𝑠𝑏𝜗 (𝑢, 𝑇𝑢)𝜗 (𝑢, 𝑇𝑥¤ 2𝑛+1) + 𝜗 (𝑥¤ 2𝑛+1, 𝑇𝑥¤ 2𝑛+1)𝜗 (𝑥¤ 2𝑛+1, 𝑇𝑢)
𝜗 (𝑢, 𝑇𝑥¤ 2𝑛+1) + 𝜗 (𝑥¤ 2𝑛+1, 𝑇𝑢)

= 𝑠𝜗 (𝑢, 𝑥¤ 2𝑛+2) + 𝑠𝑎𝜗 (𝑢, 𝑥¤ 2𝑛+1)
+𝑠𝑏𝜗 (𝑢, 𝑇𝑢)𝜗 (𝑢, 𝑥¤ 2𝑛+2) + 𝜗 (𝑥¤ 2𝑛+1, 𝑥¤ 2𝑛+2)𝜗 (𝑥¤ 2𝑛+1, 𝑇𝑢)

𝜗 (𝑢, 𝑥¤ 2𝑛+2) + 𝜗 (𝑥¤ 2𝑛+1, 𝑇𝑢) ,

it suggests that

|𝑧 | = |𝜗 (𝑢, 𝑇𝑢)|
≤ 𝑠 |𝜗 (𝑢, 𝑥¤ 2𝑛+2)| + 𝑠𝑎 |𝜗 (𝑢, 𝑥¤ 2𝑛+1)|

+𝑠𝑏 |𝜗 (𝑢, 𝑇𝑢)| |𝜗 (𝑢, 𝑥¤ 2𝑛+2)| + |𝜗 (𝑥¤ 2𝑛+1, 𝑥¤ 2𝑛+2)| |𝜗 (𝑥¤ 2𝑛+1, 𝑇𝑢)|
|𝜗 (𝑢, 𝑥¤ 2𝑛+2) + 𝜗 (𝑥¤ 2𝑛+1, 𝑇𝑢)| . (3.6)

Taking the limit of (3.6) as 𝑛 → ∞, we get that |𝑧 | = |𝜗(𝑢, 𝑇𝑢)| ≤ 0, a contra-
diction with (3.5). So|𝑧 | = 0. Hence

𝑇𝑢 = 𝑢.

To prove the uniqueness of common fixed, assume 𝑣 ∈ Υ be a different fixed
point of 𝑇 that is

𝑣 = 𝑇𝑣.

Then

𝜗 (𝑢, 𝑣) = 𝜗 (𝑇𝑢, 𝑇𝑣)
≲ 𝑎𝜗 (𝑢, 𝑣) + 𝑏𝜗 (𝑢, 𝑇𝑢)𝜗 (𝑢, 𝑇𝑣) + 𝜗 (𝑣, 𝑇𝑣)𝜗 (𝑣, 𝑇𝑢)

𝜗 (𝑢, 𝑇𝑣) + 𝜗 (𝑣, 𝑇𝑢)
= 𝑎𝜗 (𝑢, 𝑣) .

Since 𝑎 < 1, we have 𝜗 (𝑢, 𝑣) = 0

Consequently, we demonstrated that 𝑇 have a single common fixed point in
Υ. □
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3.2 COMMON FIXED POINT THEOREMS OF RATIONAL TYPE
CONTRACTION IN COMPLEX VALUED B-METRIC SPACES

Theorem 38. Assume(Υ, 𝜗) be a complete complex valued b-metric space with a coef-
ficient 𝑠 ≥ 1, and 𝑇, 𝑆 : Υ → Υ be two mappings on Υ satisfying the condition

𝜗(𝑇𝑥¤ , 𝑆𝑦¤ ) ≲ 𝑎𝜗 (𝑥¤ , 𝑦¤ ) + 𝑏𝜗 (𝑥¤ , 𝑇𝑥¤ )𝜗 (𝑥¤ , 𝑆𝑦¤ ) + 𝜗 (𝑦¤ , 𝑆𝑦¤ )𝜗 (𝑦¤ , 𝑇𝑥¤ )
𝜗 (𝑥¤ , 𝑆𝑦¤ ) + 𝜗 (𝑦¤ , 𝑇𝑥¤ ) , (3.7)

for all, 𝑥¤ , 𝑦¤ in Υ and 𝑎, 𝑏 ≥ 0, 𝜗 (𝑥¤ , 𝑆𝑦¤ ) + 𝜗 (𝑦¤ , 𝑇𝑥¤ ) ≠ 0 with 𝑠 (𝑎 + 𝑏) < 1. Then 𝑇
and 𝑆 have a unique common fixed point.

Proof. Assume 𝑥¤ 0 ∈ Υ be an arbitrary point in Υ. We define by induction a se-
quence {𝑥¤ 𝑛} in Υ such that

𝑥¤ 2𝑛+1 = 𝑇𝑥¤ 2𝑛 ,

𝑥¤ 2𝑛+2 = 𝑆𝑥¤ 2𝑛+1, for all 𝑛 ∈ N.

By putting 𝑛 = 2𝑘, with 𝑥 = 𝑥¤ 2𝑘 and Υ = 𝑥¤ 2𝑘+1 we get

𝜗 (𝑥¤ 2𝑘+1, 𝑥¤ 2𝑘+2) = 𝜗(𝑇𝑥¤ 2𝑘 , 𝑆𝑥¤ 2𝑘+1)
≲ 𝑎𝜗 (𝑥¤ 2𝑘 , 𝑥¤ 2𝑘+1) + 𝑏𝜗 (𝑥¤ 2𝑘 , 𝑇𝑥¤ 2𝑘)𝜗 (𝑥¤ 2𝑘 , 𝑆𝑥¤ 2𝑘+1) + 𝜗 (𝑥¤ 2𝑘+1, 𝑆𝑥¤ 2𝑘+1)𝜗 (𝑥¤ 2𝑘+1, 𝑇𝑥¤ 2𝑘)

𝜗 (𝑥¤ 2𝑘 , 𝑆𝑥¤ 2𝑘+1) + 𝜗 (𝑥¤ 2𝑘+1, 𝑇𝑥¤ 2𝑘)
= 𝑎𝜗 (𝑥¤ 2𝑘 , 𝑥¤ 2𝑘+1) + 𝑏𝜗 (𝑥¤ 2𝑘 , 𝑥¤ 2𝑘+1)𝜗 (𝑥¤ 2𝑘 , 𝑥¤ 2𝑘+2) + 𝜗 (𝑥¤ 2𝑘+1, 𝑥¤ 2𝑘+2)𝜗 (𝑥¤ 2𝑘+1, 𝑥¤ 2𝑘+1)

𝜗 (𝑥¤ 2𝑘 , 𝑥¤ 2𝑘+2) + 𝜗 (𝑥¤ 2𝑘+1, 𝑥¤ 2𝑘+1)
= (𝑎 + 𝑏)𝜗 (𝑥¤ 2𝑘 , 𝑥¤ 2𝑘+1) .

Thus
𝜗 (𝑥¤ 2𝑘+1, 𝑥¤ 2𝑘+2) ≲ (𝑎 + 𝑏)𝜗 (𝑥¤ 2𝑘 , 𝑥¤ 2𝑘+1) . (3.8)

If 𝑥¤ 𝑛 = 𝑥¤ 𝑛+1 for some 𝑛, with 𝑛 = 2𝑘 then from (3.8) ,we have𝜗 (𝑥¤ 2𝑘+1, 𝑥¤ 2𝑘+2) =
0. So that 𝑥¤ 2𝑘+1 = 𝑥¤ 2𝑘+2.

For 𝑛 = 2𝑘 + 1, utilizing the same justifications as in the case 𝑛 = 2𝑘, we get
the same result.

Continuing in this way we can show that 𝑥¤ 2𝑘−1 = 𝑥¤ 2𝑘 = 𝑥¤ 2𝑘+1 = ....

Hence {𝑥¤ 𝑛} is a Cauchy sequence.
Now assume that 𝑥¤ 2𝑘 ≠ 𝑥¤ 2𝑘+1 for all 𝑛 ∈ N.
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Firstly, we want to show that

𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1) ≲ (𝑎 + 𝑏)𝜗 (𝑥¤ 𝑛−1, 𝑥¤ 𝑛) , for all 𝑛 ∈ N. (3.9)

We need to think about two situations.

Case 1. 𝑛 = 2𝑘 + 1, 𝑘 ∈ N.
From (3.8) we have

𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1) ≲ (𝑎 + 𝑏)𝜗 (𝑥¤ 𝑛−1, 𝑥¤ 𝑛) , 𝑛 = 2𝑘 + 1, 𝑘 ∈ N. (3.10)

Case 2. 𝑛 = 2𝑘, 𝑘 ∈ N.
From (3.8) we have

𝜗 (𝑥¤ 𝑛+1, 𝑥¤ 𝑛+2) ≲ (𝑎 + 𝑏)𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1) (3.11)

≲ 𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1) ≲ (𝑎 + 𝑏)𝜗 (𝑥¤ 𝑛−1, 𝑥¤ 𝑛) , 𝑛 = 2𝑘, 𝑘 ∈ N.

So from (3.10) , (3.11) We determine that

𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1) ≲ (𝑎 + 𝑏)𝜗 (𝑥¤ 𝑛−1, 𝑥¤ 𝑛) , for all 𝑛 ∈ N.

We thus arrive at that (3.9) holds.

Here, we demonstrate that the sequence {𝑥¤ 𝑛} is a Cauchy sequence.

By using lemma (22) and (3.8) thus implies

|𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1)| ≤ |(𝑎 + 𝑏)𝜗 (𝑥¤ 𝑛−1, 𝑥¤ 𝑛)|
≤ (𝑎 + 𝑏) |𝜗 (𝑥¤ 𝑛−1, 𝑥¤ 𝑛)| .

Since 𝑎 + 𝑏 < 1,

|𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1)| ≤ (𝑎 + 𝑏) |𝜗 (𝑥¤ 𝑛−1, 𝑥¤ 𝑛)| . (3.12)

Thus for any 𝑚 > 𝑛, 𝑚, 𝑛 ∈ N,
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|𝜗 (𝑥¤ 𝑛 , 𝑥¤𝑚)| ≤ 𝑠 |𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1)| + 𝑠 |𝜗 (𝑥¤ 𝑛+1, 𝑥¤𝑚)|
≤ 𝑠 |𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1)| + 𝑠2 |𝜗 (𝑥¤ 𝑛+1, 𝑥¤ 𝑛+2)| + 𝑠2 |𝜗 (𝑥¤ 𝑛+2, 𝑥¤𝑚)|
≤ 𝑠 |𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1)| + 𝑠2 |𝜗 (𝑥¤ 𝑛+1, 𝑥¤ 𝑛+2)| + 𝑠3 |𝜗 (𝑥¤ 𝑛+2, 𝑥¤ 𝑛+3)|

+𝑠3 |𝜗 (𝑥¤ 𝑛+3, 𝑥¤𝑚)|
≤ 𝑠 |𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1)| + 𝑠2 |𝜗 (𝑥¤ 𝑛+1, 𝑥¤ 𝑛+2)| + 𝑠3 |𝜗 (𝑥¤ 𝑛+2, 𝑥¤ 𝑛+3)|

+... + 𝑠𝑚−𝑛−1 |𝜗 (𝑥¤𝑚−2, 𝑥¤𝑚−1)| + 𝑠𝑚−𝑛 |𝜗 (𝑥¤𝑚−1, 𝑥¤𝑚)| .

By (3.12) , we get

|𝜗 (𝑥¤ 𝑛 , 𝑥¤𝑚)| ≤ 𝑠 (𝑎 + 𝑏)𝑛 |𝜗 (𝑥¤ 0, 𝑥¤ 1)| + 𝑠2 (𝑎 + 𝑏)𝑛+1 |𝜗 (𝑥¤ 0, 𝑥¤ 1)|
+𝑠3 (𝑎 + 𝑏)𝑛+2 |𝜗 (𝑥¤ 0, 𝑥¤ 1)| + ... + 𝑠𝑚−𝑛−1 (𝑎 + 𝑏)𝑚−2 |𝜗 (𝑥¤ 0, 𝑥¤ 1)|
+𝑠𝑚−𝑛 (𝑎 + 𝑏)𝑚−1 |𝜗 (𝑥¤ 0, 𝑥¤ 1)|

=
𝑚−𝑛∑
𝑖=1

𝑠 𝑖 (𝑎 + 𝑏)𝑖+𝑛−1 |𝜗 (𝑥¤ 0, 𝑥¤ 1)| .

Therefore,

|𝜗 (𝑥¤ 𝑛 , 𝑥¤𝑚)| ≤
𝑚−𝑛∑
𝑖=1

𝑠 𝑖+𝑛−1 (𝑎 + 𝑏)𝑖+𝑛−1 |𝜗 (𝑥¤ 0, 𝑥¤ 1)|

=
𝑚−1∑
𝑝=𝑛

𝑠𝑝 (𝑎 + 𝑏)𝑝 |𝜗 (𝑥¤ 0, 𝑥¤ 1)|

≤
∞∑
𝑝=𝑛

[𝑠 (𝑎 + 𝑏)]𝑝 |𝜗 (𝑥¤ 0, 𝑥¤ 1)| = [𝑠 (𝑎 + 𝑏)]𝑝
1 − 𝑠 (𝑎 + 𝑏) |𝜗 (𝑥¤ 0, 𝑥¤ 1)| .

and hence

|𝜗 (𝑥¤ 𝑛 , 𝑥¤𝑚)| ≤ [𝑠 (𝑎 + 𝑏)]𝑝
1 − 𝑠 (𝑎 + 𝑏) |𝜗 (𝑥¤ 0, 𝑥¤ 1)| → 0 as 𝑚, 𝑛 → ∞.

Thus {𝑥¤ 𝑛}is a Cauchy sequence in Υ. Since Υ is complete, there exists some
𝑢 ∈ Υ such that 𝑥¤ 𝑛 → 𝑢 as 𝑛 → ∞.
Assume not, then there exists 𝑧 ∈ Υ such that

|𝜗 (𝑢, 𝑇𝑢)| = |𝑧 | > 0. (3.13)
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So by using the triangular inequality and (3.7), we receive

𝑧 = 𝜗 (𝑢, 𝑇𝑢) ≲ 𝑠𝜗 (𝑢, 𝑥¤ 2𝑛+2) + 𝑠 |𝜗 (𝑥¤ 2𝑛+2, 𝑇𝑢)|
= 𝑠𝜗 (𝑢, 𝑥¤ 2𝑛+2) + 𝑠𝜗 (𝑇𝑢, 𝑆𝑥¤ 2𝑛+1)
≲ 𝑠𝜗 (𝑢, 𝑥¤ 2𝑛+2) + 𝑠𝑎𝜗 (𝑢, 𝑥¤ 2𝑛+1)

+𝑠𝑏𝜗 (𝑢, 𝑇𝑢)𝜗 (𝑢, 𝑆𝑥¤ 2𝑛+1) + 𝜗 (𝑥¤ 2𝑛+1, 𝑆𝑥¤ 2𝑛+1)𝜗 (𝑥¤ 2𝑛+1, 𝑇𝑢)
𝜗 (𝑢, 𝑆𝑥¤ 2𝑛+1) + 𝜗 (𝑥¤ 2𝑛+1, 𝑇𝑢)

= 𝑠𝜗 (𝑢, 𝑥¤ 2𝑛+2) + 𝑠𝑎𝜗 (𝑢, 𝑥¤ 2𝑛+1)
+𝑠𝑏𝜗 (𝑢, 𝑇𝑢)𝜗 (𝑢, 𝑥¤ 2𝑛+2) + 𝜗 (𝑥¤ 2𝑛+1, 𝑥¤ 2𝑛+2)𝜗 (𝑥¤ 2𝑛+1, 𝑇𝑢)

𝜗 (𝑢, 𝑥¤ 2𝑛+2) + 𝜗 (𝑥¤ 2𝑛+1, 𝑇𝑢) ,

which implies that

|𝑧 | = |𝜗 (𝑢, 𝑇𝑢)|
≤ 𝑠 |𝜗 (𝑢, 𝑥¤ 2𝑛+2)| + 𝑠𝑎 |𝜗 (𝑢, 𝑥¤ 2𝑛+1)|

+𝑠𝑏 |𝜗 (𝑢, 𝑇𝑢)| |𝜗 (𝑢, 𝑥¤ 2𝑛+2)| + |𝜗 (𝑥¤ 2𝑛+1, 𝑥¤ 2𝑛+2)| |𝜗 (𝑥¤ 2𝑛+1, 𝑇𝑢)|
|𝜗 (𝑢, 𝑥¤ 2𝑛+2) + 𝜗 (𝑥¤ 2𝑛+1, 𝑇𝑢)| .(3.14)

Exceeding the limit of (3.14) as 𝑛 → ∞, we get that|𝑧 | = |𝜗(𝑢, 𝑇𝑢)| ≤ 0, a
contradiction with (3.13). So |𝑧 | = 0. Hence 𝑇𝑢 = 𝑢, Similarly, one can also show
that 𝑆𝑢 = 𝑢.

To prove the uniqueness of common fixed, Assume 𝑣 ∈ Υ be a different com-
mon fixed point of 𝑆 and 𝑇 that is

𝑣 = 𝑇𝑣 = 𝑆𝑣.

Then

𝜗 (𝑢, 𝑣) = 𝜗 (𝑇𝑢, 𝑆𝑣)
≲ 𝑎𝜗 (𝑢, 𝑣) + 𝑏𝜗 (𝑢, 𝑇𝑢)𝜗 (𝑢, 𝑆𝑣) + 𝜗 (𝑣, 𝑆𝑣)𝜗 (𝑣, 𝑇𝑢)

𝜗 (𝑢, 𝑆𝑣) + 𝜗 (𝑣, 𝑇𝑢)
= 𝑎𝜗 (𝑢, 𝑣) .

Since 𝑎 < 1, we have
𝜗 (𝑢, 𝑣) = 0.

As such, we established that there is only one common fixed point for 𝑇 and
𝑆 in Υ.

□
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3.3 COMMON FIXED POINT THEOREMS OF CYCLIC RATIO-
NAL TYPE CONTRACTION IN COMPLEX VALUED B-METRIC
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Theorem 39. Assume (Υ, 𝜗) be a complete complex valued b-metric space with a coef-
ficient 𝑠 ≥ 1, and 𝑇, 𝑆 : Υ → Υ be two mappings on Υ satisfying the condition

𝜗(𝑇𝑥¤ , 𝑆𝑦¤ ) ≲ 𝑎𝜗 (𝑥¤ , 𝑦¤ ) + 𝑏𝜗 (𝑦¤ , 𝑆𝑦¤ ) [1 + 𝜗 (𝑥¤ , 𝑇𝑥¤ )]
1 + 𝜗 (𝑥¤ , 𝑦¤ ) + 𝑐 𝜗 (𝑦¤ , 𝑆𝑦¤ ) + 𝜗 (𝑦¤ , 𝑇𝑥¤ )

1 + 𝜗 (𝑦¤ , 𝑆𝑦¤ )𝜗 (𝑦¤ , 𝑇𝑥¤ ) ,
(3.15)

for all, 𝑥¤ , 𝑦¤ in Υ and 𝑎, 𝑏, 𝑐 ≥ 0, and 𝑠 (𝑎 + 𝑏 + 𝑐) < 1. Then 𝑇 and 𝑆 have a unique
common fixed point.

Proof. Assume 𝑥¤ 0 ∈ Υ be an arbitrary point in Υ.We define by induction a se-
quence {𝑥¤ 𝑛} in Υ such that

𝑥¤ 2𝑛+1 = 𝑇𝑥¤ 2𝑛 ,

𝑥¤ 2𝑛+2 = 𝑆𝑥¤ 2𝑛+1, for all 𝑛 ∈ N.

By putting 𝑛 = 2𝑘, with 𝑥 = 𝑥¤ 2𝑘 and Υ = 𝑥¤ 2𝑘+1 we get

𝜗 (𝑥¤ 2𝑘+1, 𝑥¤ 2𝑘+2) = 𝜗(𝑇𝑥¤ 2𝑘 , 𝑆𝑥¤ 2𝑘+1)
≲ 𝑎𝜗 (𝑥¤ 2𝑘 , 𝑥¤ 2𝑘+1) + 𝑏𝜗 (𝑥¤ 2𝑘+1, 𝑆𝑥¤ 2𝑘+1) [1 + 𝜗 (𝑥¤ 2𝑘 , 𝑇𝑥¤ 2𝑘)]

1 + 𝜗 (𝑥¤ 2𝑘 , 𝑥¤ 2𝑘+1)
+𝑐 𝜗 (𝑥¤ 2𝑘+1, 𝑆𝑥¤ 2𝑘+1) + 𝜗 (𝑥¤ 2𝑘+1, 𝑇𝑥¤ 2𝑘)

1 + 𝜗 (𝑥¤ 2𝑘+1, 𝑆𝑥¤ 2𝑘+1)𝜗 (𝑥¤ 2𝑘+1, 𝑇𝑥¤ 2𝑘)
= 𝑎𝜗 (𝑥¤ 2𝑘 , 𝑥¤ 2𝑘+1) + 𝑏𝜗 (𝑥¤ 2𝑘+1, 𝑥¤ 2𝑘+2) [1 + 𝜗 (𝑥¤ 2𝑘 , 𝑥¤ 2𝑘+1)]

1 + 𝜗 (𝑥¤ 2𝑘 , 𝑥¤ 2𝑘+1)
+𝑐 𝜗 (𝑥¤ 2𝑘+1, 𝑥¤ 2𝑘+2) + 𝜗 (𝑥¤ 2𝑘+1, 𝑥¤ 2𝑘+1)

1 + 𝜗 (𝑥¤ 2𝑘+1, 𝑥¤ 2𝑘+2)𝜗 (𝑥¤ 2𝑘+1, 𝑥¤ 2𝑘+1)
= 𝑎𝜗 (𝑥¤ 2𝑘 , 𝑥¤ 2𝑘+1) + 𝑏𝜗 (𝑥¤ 2𝑘+1, 𝑥¤ 2𝑘+2) + 𝑐𝜗 (𝑥¤ 2𝑘+1, 𝑥¤ 2𝑘+2) .

Thus
𝜗 (𝑥¤ 2𝑘+1, 𝑥¤ 2𝑘+2) ≲ 𝑎

1 − (𝑏 + 𝑐)𝜗 (𝑥¤ 2𝑘 , 𝑥¤ 2𝑘+1) . (3.16)

If 𝑥¤ 𝑛 = 𝑥¤ 𝑛+1 for some 𝑛, with 𝑛 = 2𝑘 then from (3.16) ,we have𝜗 (𝑥¤ 2𝑘+1, 𝑥¤ 2𝑘+2) =
0. So that 𝑥¤ 2𝑘+1 = 𝑥¤ 2𝑘+2.
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For 𝑛 = 2𝑘 + 1, by using the same arguments as in the case 𝑛 = 2𝑘, we get
the same resulat.

Continuing in this way we can show that 𝑥¤ 2𝑘−1 = 𝑥¤ 2𝑘 = 𝑥¤ 2𝑘+1 = ....

Hence {𝑥¤ 𝑛} is a Cauchy sequence.
Now assume that 𝑥¤ 2𝑘 ≠ 𝑥¤ 2𝑘+1 for all 𝑛 ∈ N.
Firstly we want to show that

𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1) ≲ 𝑎
1 − (𝑏 + 𝑐)𝜗 (𝑥¤ 𝑛−1, 𝑥¤ 𝑛) , for all 𝑛 ∈ N. (3.17)

There are two cases which we have to consider.
Case 1. 𝑛 = 2𝑘 + 1, 𝑘 ∈ N.
From (3.16) we have

𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1) ≲ 𝑎
1 − (𝑏 + 𝑐)𝜗 (𝑥¤ 𝑛−1, 𝑥¤ 𝑛) , 𝑛 = 2𝑘 + 1, 𝑘 ∈ N. (3.18)

Case 2. 𝑛 = 2𝑘, 𝑘 ∈ N.
From (3.16) we have

𝜗 (𝑥¤ 𝑛+1, 𝑥¤ 𝑛+2) ≲ 𝑎
1 − (𝑏 + 𝑐)𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1) ≲ 𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1)

≲
𝑎

1 − (𝑏 + 𝑐)𝜗 (𝑥¤ 𝑛−1, 𝑥¤ 𝑛) , 𝑛 = 2𝑘, 𝑘 ∈ N (3.19)

So from (3.18) , (3.19) we conclude that

𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1) ≲ 𝑎
1 − (𝑏 + 𝑐)𝜗 (𝑥¤ 𝑛−1, 𝑥¤ 𝑛) , for all 𝑛 ∈ N

Thus we obtain that (3.17) holds.
Now, we show that the sequence {𝑥¤ 𝑛} is a Cauchy sequence.
By using lemma (22) and (3.17) thus implies

|𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1)| ≤
����( 𝑎

1 − (𝑏 + 𝑐)
)
𝜗 (𝑥¤ 𝑛−1, 𝑥¤ 𝑛)

����
≤

(
𝑎

1 − (𝑏 + 𝑐)
)
|𝜗 (𝑥¤ 𝑛−1, 𝑥¤ 𝑛)| .

Since 𝑎 + 𝑏 < 1,
|𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1)| ≤ ℎ |𝜗 (𝑥¤ 𝑛−1, 𝑥¤ 𝑛)| . (3.20)
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Where ℎ = 𝑎
1−(𝑏+𝑐) <

1
𝑠 ≤ 1, because 𝑠 (𝑎 + 𝑏 + 𝑐) < 1.

Thus for any 𝑚 > 𝑛.𝑚, 𝑛 ∈ N,

|𝜗 (𝑥¤ 𝑛 , 𝑥¤𝑚)| ≤ 𝑠 |𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1)| + 𝑠 |𝜗 (𝑥¤ 𝑛+1, 𝑥¤𝑚)|
≤ 𝑠 |𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1)| + 𝑠2 |𝜗 (𝑥¤ 𝑛+1, 𝑥¤ 𝑛+2)| + 𝑠2 |𝜗 (𝑥¤ 𝑛+2, 𝑥¤𝑚)|
≤ 𝑠 |𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1)| + 𝑠2 |𝜗 (𝑥¤ 𝑛+1, 𝑥¤ 𝑛+2)| + 𝑠3 |𝜗 (𝑥¤ 𝑛+2, 𝑥¤ 𝑛+3)|

+𝑠3 |𝜗 (𝑥¤ 𝑛+3, 𝑥¤𝑚)|
≤ 𝑠 |𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1)| + 𝑠2 |𝜗 (𝑥¤ 𝑛+1, 𝑥¤ 𝑛+2)| + 𝑠3 |𝜗 (𝑥¤ 𝑛+2, 𝑥¤ 𝑛+3)|

+... + 𝑠𝑚−𝑛−1 |𝜗 (𝑥¤𝑚−2, 𝑥¤𝑚−1)| + 𝑠𝑚−𝑛 |𝜗 (𝑥¤𝑚−1, 𝑥¤𝑚)| .

By (3.20) , we get

|𝜗 (𝑥¤ 𝑛 , 𝑥¤𝑚)| ≤ 𝑠 (ℎ)𝑛 |𝜗 (𝑥¤ 0, 𝑥¤ 1)| + 𝑠2 (ℎ)𝑛+1 |𝜗 (𝑥¤ 0, 𝑥¤ 1)|
+𝑠3 (ℎ)𝑛+2 |𝜗 (𝑥¤ 0, 𝑥¤ 1)| + ... + 𝑠𝑚−𝑛−1 (ℎ)𝑚−2 |𝜗 (𝑥¤ 0, 𝑥¤ 1)|
+𝑠𝑚−𝑛 (ℎ)𝑚−1 |𝜗 (𝑥¤ 0, 𝑥¤ 1)|

=
𝑚−𝑛∑
𝑖=1

𝑠 𝑖 (ℎ)𝑖+𝑛−1 |𝜗 (𝑥¤ 0, 𝑥¤ 1)| .

Therefore,

|𝜗 (𝑥¤ 𝑛 , 𝑥¤𝑚)| ≤
𝑚−𝑛∑
𝑖=1

𝑠 𝑖+𝑛−1 (ℎ)𝑖+𝑛−1 |𝜗 (𝑥¤ 0, 𝑥¤ 1)|

=
𝑚−1∑
𝑝=𝑛

𝑠𝑝 (ℎ)𝑝 |𝜗 (𝑥¤ 0, 𝑥¤ 1)|

≤
∞∑
𝑝=𝑛

[𝑠 (ℎ)]𝑝 |𝜗 (𝑥¤ 0, 𝑥¤ 1)| = [𝑠 (ℎ)]𝑝
1 − 𝑠 (ℎ) |𝜗 (𝑥¤ 0, 𝑥¤ 1)| ,

and hence

|𝜗 (𝑥¤ 𝑛 , 𝑥¤𝑚)| ≤ [𝑠 (ℎ)]𝑝
1 − 𝑠 (ℎ) |𝜗 (𝑥¤ 0, 𝑥¤ 1)| → 0 as 𝑚, 𝑛 → ∞.

Thus {𝑥¤ 𝑛}is a Cauchy sequence in Υ. Since Υ is complete, there exists some
𝑢 ∈ Υ such that 𝑥¤ 𝑛 → 𝑢 as 𝑛 → ∞.
Assume not, then there exists 𝑧 ∈ Υ such that
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|𝜗 (𝑢, 𝑇𝑢)| = |𝑧 | > 0. (3.21)

So by using the triangular inequality and (3.15), we receive

𝑧 = 𝜗 (𝑢, 𝑇𝑢) ≲ 𝑠𝜗 (𝑢, 𝑥¤ 2𝑛+2) + 𝑠 |𝜗 (𝑥¤ 2𝑛+2, 𝑇𝑢)|
= 𝑠𝜗 (𝑢, 𝑥¤ 2𝑛+2) + 𝑠𝜗 (𝑇𝑢, 𝑆𝑥¤ 2𝑛+1)
≲ 𝑠𝜗 (𝑢, 𝑥¤ 2𝑛+2) + 𝑠𝑎𝜗 (𝑢, 𝑥¤ 2𝑛+1)

+𝑠𝑏𝜗 (𝑥¤ 2𝑛+1, 𝑆𝑥¤ 2𝑛+1) [1 + 𝜗 (𝑢, 𝑇𝑢)]
1 + 𝜗 (𝑢, 𝑥¤ 2𝑛+1) + 𝑠𝑐 𝜗 (𝑥¤ 2𝑛+1, 𝑆𝑥¤ 2𝑛+1) + 𝜗 (𝑥¤ 2𝑛+1, 𝑇𝑢)

1 + 𝜗 (𝑥¤ 2𝑛+1, 𝑆𝑥¤ 2𝑛+1)𝜗 (𝑥¤ 2𝑛+1, 𝑇𝑢) ,

which implies that

|𝑧 | = |𝜗 (𝑢, 𝑇𝑢)|
≤ 𝑠 |𝜗 (𝑢, 𝑥¤ 2𝑛+2)| + 𝑠𝑎 |𝜗 (𝑢, 𝑥¤ 2𝑛+1)|

+𝑠𝑏 |𝜗 (𝑥¤ 2𝑛+1, 𝑆𝑥¤ 2𝑛+1)| |1 + 𝜗 (𝑢, 𝑇𝑢)|
|1 + 𝜗 (𝑢, 𝑥¤ 2𝑛+1)|

+𝑠𝑐 |𝜗 (𝑥¤ 2𝑛+1, 𝑆𝑥¤ 2𝑛+1)| + |𝜗 (𝑥¤ 2𝑛+1, 𝑇𝑢)|
|1 + 𝜗 (𝑥¤ 2𝑛+1, 𝑆𝑥¤ 2𝑛+1)𝜗 (𝑥¤ 2𝑛+1, 𝑇𝑢)| (3.22)

Taking the limit of (3.22) as 𝑛 → ∞, we get that |𝑧 | = |𝜗(𝑢, 𝑇𝑢)| ≤ 𝑠𝑐 |𝜗(𝑢, 𝑇𝑢)|,
a contradiction since 𝑠𝑐 < 1. So|𝑧 | = 0. Hence 𝑇𝑢 = 𝑢.

Similarly, we get

|𝜗(𝑢, 𝑆𝑢)| ≤ 𝑠 (𝑏 + 𝑐) |𝜗(𝑢, 𝑆𝑢)| .

Since 𝑠 (𝑏 + 𝑐) < 1, |𝜗(𝑢, 𝑆𝑢)| = 0 thus 𝑆𝑢 = 𝑢.

To prove the uniqueness of common fixed, Assume 𝑣 ∈ Υ be another com-
mon fixed point of 𝑆 and 𝑇 that is

𝑣 = 𝑇𝑣 = 𝑆𝑣.

Then

𝜗 (𝑢, 𝑣) = 𝜗 (𝑇𝑢, 𝑆𝑣)
≲ 𝑎𝜗 (𝑢, 𝑣) + 𝑏𝜗 (𝑣, 𝑆𝑣) [1 + 𝜗 (𝑢, 𝑇𝑢)]

1 + 𝜗 (𝑢, 𝑣) + 𝑐 𝜗 (𝑣, 𝑆𝑣) + 𝜗 (𝑣, 𝑇𝑢)
1 + 𝜗 (𝑣, 𝑆𝑣)𝜗 (𝑣, 𝑇𝑢) ,

= (𝑎 + 𝑐)𝜗 (𝑢, 𝑣) .
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Since 0 < 𝑎 + 𝑐 < 1, we have 𝜗 (𝑢, 𝑣) = 0.
Thus, we proved that 𝑇 and 𝑆 have a unique common fixed point in Υ. This

completes the proof.
□

3.4 EXAMPLE

The following example illustrates the result of 37.

Example 40. Assume Υ = [0, 1] . Define the mapping 𝜗 : Υ × Υ → C by

𝜗 (𝑥¤ , 𝑦¤ ) = 3
{|𝑥¤ − 𝑦¤ |3 + 𝑖 |𝑥¤ − 𝑦¤ |3} ,

for all 𝑥¤ , 𝑦¤ ∈ Υ. Then (Υ, 𝜗) is a complex valued b-metric space with 𝑠 = 4

To verify that (Υ, 𝜗) is a complete complex valued b-metric space with 𝑠 = 4,
it is enough to verify the triangular inequality condition:

1
3
𝜗 (𝑥¤ , 𝑦¤ ) = |𝑥¤ − 𝑦¤ |3 + 𝑖 |𝑥¤ − 𝑦¤ |3

= |𝑥¤ − 𝑦¤ + 𝑧 − 𝑧 |3 + 𝑖 |𝑥¤ − 𝑦¤ + 𝑧 − 𝑧 |3
≼ 22

(
|𝑥¤ − 𝑧 |3 + |𝑧 − 𝑦¤ |3

)
+ 𝑖22

(
|𝑥¤ − 𝑧 |3 + |𝑧 − 𝑦¤ |3

)
≼ 4

[(
|𝑥¤ − 𝑧 |3 + 𝑖 |𝑥¤ − 𝑧 |3

)
+

(
|𝑧 − 𝑦¤ |3 + 𝑖 |𝑧 − 𝑦¤ |3

)]
= 4 [𝜗 (𝑥¤ , 𝑧) + 𝜗 (𝑧, 𝑦¤ )] .

Therefore 𝑠 = 4.
Now, define 𝑇 : Υ → Υ as 𝑇𝑥¤ = 𝑥

4 ,𝑇𝑦¤ = 𝑦¤
4 ,for all 𝑥¤ , 𝑦¤ ∈ Υ. Then

𝜗 (𝑇𝑥¤ , 𝑇𝑦¤ ) = 𝜗

(
𝑥¤
4
,
𝑦¤
4

)
1
3
𝜗 (𝑇𝑥¤ , 𝑇𝑦¤ ) =

{���𝑥4 − 𝑦
4

���3 + 𝑖 ����𝑥¤4 − 𝑦¤
4

����3}
=

1
4

{|𝑥¤ − 𝑦¤ |3 + 𝑖 |𝑥¤ − 𝑦¤ |3}
𝜗 (𝑇𝑥¤ , 𝑇𝑦¤ ) =

3
4
𝜗 (𝑥¤ , 𝑦¤ ) ,
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3.4. EXAMPLE

Under the condition (3.1) , we have

𝜗(𝑇𝑥¤ , 𝑇𝑦¤ ) ≲
1
3
𝜗

(
𝑥¤
4
,
𝑦¤
4

)
+ 1

4

𝜗
(
𝑥¤ , 𝑥¤4

)
𝜗

(
𝑥¤ , 𝑦¤4

)
+ 𝜗

(
𝑦¤ , 𝑦4

)
𝜗

(
𝑦¤ , 𝑥4

)
𝜗

(
𝑥¤ , 𝑦4

) + 𝜗
(
𝑦¤ , 𝑥4

) .

Then
𝑠 (𝑎 + 𝑏) = 4

(1
4
.
1
3

)
=

1
3
< 1.

It is easily and clearly verified that the map 𝑇 satisfies contractive condition
(3.1) of Theorem 37 with the coefficients 𝑠 = 4, 𝑎 = 1

3 and 𝑏 = 1
4 .
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4
Common fixed point theorem for

multi-valued generalized contractive
mappings

The common fixed point theorem for multi-valued generalized contractive

mappings, including control functions of two variables, is the main goal of this
chapter.

4.1 COMMON FIXED POINT THEOREM FOR MULTI-VALUED
GENERALIZED CONTRACTIVE MAPPINGS

Theorem 41. Assume(Υ, 𝜗) be a complete b-metric space with coefficient 𝑠 ≥ 1, and
𝑇, 𝑆 : Υ → 𝐶𝐵 (Υ) be generalized rational contractive mappings on Υ satisfying the
following conditions:

(𝑎) 𝜙 (𝑆𝑇𝑥¤ , 𝑦¤ )≤ 𝜙 (𝑥¤ , 𝑦¤ ) and 𝜙 (𝑥¤ , 𝑆𝑇𝑦¤ ) ≤ 𝜙 (𝑥¤ , 𝑦¤ )
𝜑 (𝑆𝑇𝑥¤ , 𝑦¤ ) ≤ 𝜑 (𝑥¤ , 𝑦¤ ) and 𝜑 (𝑥¤ , 𝑆𝑇𝑦¤ ) ≤ 𝜑 (𝑥¤ , 𝑦¤ )
𝜓 (𝑆𝑇𝑥¤ , 𝑦¤ ) ≤ 𝜓 (𝑥¤ , 𝑦¤ ) and 𝜓 (𝑥¤ , 𝑆𝑇𝑦¤ ) ≤ 𝜓 (𝑥¤ , 𝑦¤ )

(𝑏) 𝜙 (𝑥¤ , 𝑦¤ ) + 2𝑠𝜑 (𝑥¤ , 𝑦¤ ) + 𝑠𝜓 (𝑥¤ , 𝑦¤ ) ≺ 1.
then 𝑇 and 𝑆 have a unique common fixed point.
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4.1. COMMON FIXED POINT THEOREM FOR MULTI-VALUED GENERALIZED
CONTRACTIVE MAPPINGS

Proof. Assume 𝑥¤ 0 ∈ Υ be an arbitrary point in Υ.We define by induction a se-
quence {𝑥¤ 𝑛} in Υ such that

𝑥¤ 2𝑛+1 = 𝑇𝑥¤ 2𝑛 ,

𝑥¤ 2𝑛+2 = 𝑆𝑥¤ 2𝑛+1, for all 𝑛 ∈ 𝑁.

Now by (1.2), we have

𝜗 (𝑇𝑥¤ 2𝑛 , 𝑆𝑥¤ 2𝑛+1) ≤ 𝐻 (𝑇𝑥¤ 2𝑛 , 𝑆𝑥¤ 2𝑛+1) ≤ 𝜙 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1)𝐷 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1) (4.1)

+𝜑 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1) [𝐷 (𝑥¤ 2𝑛 , 𝑆𝑥¤ 2𝑛+1) + 𝐷 (𝑥¤ 2𝑛+1, 𝑇𝑥¤ 2𝑛)]
+𝜓 (𝑥¤ 2𝑛 , 𝑦¤ ) 𝐷 (𝑥¤ 2𝑛 , 𝑇𝑥¤ 2𝑛)𝜗 (𝑥¤ 2𝑛+1, 𝑇𝑥¤ 2𝑛+1)

1 + 𝜗 (𝑥¤ 2𝑛 , 𝑆𝑥¤ 2𝑛+1) + 𝐷 (𝑥¤ 2𝑛+1, 𝑇𝑥¤ 2𝑛) + 𝜗 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1)
≤ 𝜙 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1)𝐷 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1)

+𝜑 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1) [𝐷 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+2) + 𝐷 (𝑥¤ 2𝑛+1, 𝑥¤ 2𝑛+1)]
+𝜓 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1) 𝐷 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1)𝜗 (𝑥¤ 2𝑛+1, 𝑥¤ 2𝑛+2)

1 + 𝜗 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+2) + 𝐷 (𝑥¤ 2𝑛+1, 𝑥¤ 2𝑛+1) + 𝜗 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1)
≤ 𝜙 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1)𝐷 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1) + 𝜑 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1) [𝐷 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+2)]

+𝜓 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1) 𝐷 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1)𝜗 (𝑥¤ 2𝑛+1, 𝑥¤ 2𝑛+2)
1 + 𝜗 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+2) + 𝜗 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1)

≤ 𝜙 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1)𝐷 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1)
+𝑠𝜑 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1) [𝐷 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1) + 𝐷 (𝑥¤ 2𝑛+1, 𝑥¤ 2𝑛+2)]
+𝑠𝜓 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1) 𝐷 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1)𝜗 (𝑥¤ 2𝑛+1, 𝑥¤ 2𝑛+2)

𝑠 + 𝜗 (𝑥¤ 2𝑛+1, 𝑥¤ 2𝑛+2)
≤ 𝜙 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1)𝐷 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1) + 𝑠𝜑 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1)𝐷 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1)

+𝑠𝜑 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1)𝜗 (𝑥¤ 2𝑛+1, 𝑥¤ 2𝑛+2) + 𝑠𝜓 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1)𝐷 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1) .

Proposition 1 yields the following conclusion:

𝜗 (𝑥¤ 2𝑛+1, 𝑥¤ 2𝑛+2) ≤ 𝜙 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1)𝐷 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1) + 𝑠𝜑 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1)𝐷 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1)

+𝑠𝜑 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1)𝐷 (𝑥¤ 2𝑛+1, 𝑥¤ 2𝑛+2) + 𝑠𝜓 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1)𝐷 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1)
≤ 𝜙 (𝑥¤ 0, 𝑥¤ 2𝑛+1)𝐷 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1) + 𝑠𝜑 (𝑥¤ 0, 𝑥¤ 2𝑛+1)𝐷 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1)

+𝑠𝜑 (𝑥¤ 0, 𝑥¤ 2𝑛+1)𝐷 (𝑥¤ 2𝑛+1, 𝑥¤ 2𝑛+2) + 𝑠𝜓 (𝑥¤ 0, 𝑥¤ 2𝑛+1)𝐷 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1)
≤ 𝜙 (𝑥¤ 0, 𝑥¤ 1)𝐷 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1) + 𝑠𝜑 (𝑥¤ 0, 𝑥¤ 1)𝐷 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1)
+𝑠𝜑 (𝑥¤ 0, 𝑥¤ 1)𝜗 (𝑥¤ 2𝑛+1, 𝑥¤ 2𝑛+2) + 𝑠𝜓 (𝑥¤ 0, 𝑥¤ 1)𝐷 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1)
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,

which implies that

𝜗 (𝑥¤ 2𝑛+1, 𝑥¤ 2𝑛+2) ≤ 𝜆𝐷 (𝑥¤ 2𝑛 , 𝑥¤ 2𝑛+1) . (4.2)

Where 𝜆 = 𝜙(𝑥¤0 ,𝑥¤1)+𝑠𝜑(𝑥¤0 ,𝑥¤1)+𝑠𝜓(𝑥¤0 ,𝑥¤1)
1−𝑠𝜑(𝑥¤0 ,𝑥¤1) ∈ [0; 1) .

A similar computation verifies that

𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1) ≤ 𝜆𝐷 (𝑥¤ 𝑛 , 𝑥¤ 𝑛−1) . (4.3)

Hence, by Lemma , we obtain that {𝑥¤ 𝑛} ,is a Cauchy sequence in (Υ, 𝜗) .By
completeness of (Υ, 𝜗) there exists 𝑢 ∈ Υ such that lim𝑛→∞ 𝑥¤ 𝑛 = 𝑢.

Now, we show that 𝑢 is a fixed point of 𝑇. From (1.2), we have

𝜗 (𝑢, 𝑇𝑢) ≤ 𝑠 [𝜗 (𝑢, 𝑆𝑥¤ 2𝑛+1) + 𝐻 (𝑆𝑥¤ 2𝑛+1, 𝑇𝑢)] ≤

𝑠

©­­­­­­­«

𝜗 (𝑢, 𝑆𝑥¤ 2𝑛+1) + 𝜙 (𝑢, 𝑥¤ 2𝑛+1)𝜗 (𝑢, 𝑥¤ 2𝑛+1)

+𝜑 (𝑢, 𝑥¤ 2𝑛+1) [𝜗 (𝑢, 𝑆𝑥¤ 2𝑛+1) + 𝜗 (𝑥¤ 2𝑛+1, 𝑇𝑢)]
+𝜓 (𝑢, 𝑥¤ 2𝑛+1) 𝜗(𝑢,𝑇𝑢)𝜗(𝑥¤2𝑛+1 ,𝑆𝑥¤2𝑛+1)

1+𝜗(𝑢,𝑆𝑥¤2𝑛+1)+𝜗(𝑥¤2𝑛+1 ,𝑇𝑢)+𝜗(𝑢,𝑥¤2𝑛+1)

ª®®®®®®®¬
≤ 𝑠

©­­­­­­­«

𝜗 (𝑢, 𝑥¤ 2𝑛+2) + 𝜙 (𝑢, 𝑥¤ 2𝑛+1)𝜗 (𝑢, 𝑥¤ 2𝑛+1)

+𝜑 (𝑢, 𝑥¤ 2𝑛+1) [𝜗 (𝑢, 𝑥¤ 2𝑛+2) + 𝜗 (𝑥¤ 2𝑛+1, 𝑇𝑢)]
+𝜓 (𝑢, 𝑥¤ 2𝑛+1) 𝜗(𝑢,𝑇𝑢)𝜗(𝑥¤2𝑛+1 ,𝑥¤2𝑛+2)

1+𝜗(𝑢,𝑥¤2𝑛+2)+𝜗(𝑥¤2𝑛+1 ,𝑇𝑢)+𝜗(𝑢,𝑥¤2𝑛+1)

ª®®®®®®®¬
≤ 𝑠

©­­­­­­­«

𝜗 (𝑢, 𝑥¤ 2𝑛+2) + 𝜙 (𝑢, 𝑥¤ 1)𝜗 (𝑢, 𝑥¤ 2𝑛+1)

+𝜑 (𝑢, 𝑥¤ 1) [𝜗 (𝑢, 𝑥¤ 2𝑛+2) + 𝜗 (𝑥¤ 2𝑛+1, 𝑇𝑢)]
+𝜓 (𝑢, 𝑥¤ 1) 𝜗(𝑢,𝑇𝑢)𝜗(𝑥¤2𝑛+1 ,𝑥¤2𝑛+2)

1+𝜗(𝑢,𝑥¤2𝑛+2)+𝜗(𝑥¤2𝑛+1 ,𝑇𝑢)+𝜗(𝑢,𝑥¤2𝑛+1)

ª®®®®®®®¬
.
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Taking the limit as 𝑛 → ∞, we get

𝜗 (𝑢, 𝑇𝑢) ≤ 𝑠

(
𝜗 (𝑢, 𝑢) + 𝜙 (𝑢, 𝑥¤ 1)𝜗 (𝑢, 𝑢) + 𝜑 (𝑢, 𝑥¤ 1) [𝜗 (𝑢, 𝑢) + 𝜗 (𝑢, 𝑇𝑢)]

+𝜓 (𝑢, 𝑥¤ 1) 𝜗(𝑢,𝑇𝑢)𝜗(𝑢,𝑢)
1+𝜗(𝑢,𝑢)+𝜗(𝑢,𝑇𝑢)+𝜗(𝑢,𝑢)

)
≤ 𝑠𝜑 (𝑢, 𝑥¤ 1)𝜗 (𝑢, 𝑇𝑢)
≤ [

𝜙 (𝑢, 𝑥¤ 1) + 2𝑠𝜑 (𝑢, 𝑥¤ 1) + 𝑠𝜓 (𝑢, 𝑥¤ 1)
]
𝜗 (𝑢, 𝑇𝑢)

< 𝜗 (𝑢, 𝑇𝑢) .

which is a contradiction. Thus, 𝑢 is a fixed point of 𝑇. Similarly, we can also
show that 𝑢¤ is a fixed point of 𝑆, by using

𝜗 (𝑢, 𝑆𝑢) ≤ 𝑠 [𝜗 (𝑢, 𝑥¤ 2𝑛+1) + 𝐻 (𝑥¤ 2𝑛+1, 𝑆𝑢)] . (4.4)

Now, we prove that 𝑢 is a unique.We assume that there exists another com-
mon fixed 𝑥¤ ∗ of 𝑇 and 𝑆, i.e.,

𝑥¤ ∗ ∈ 𝐹 (𝑇) ∩ 𝐹 (𝑆) .

where 𝑥¤ ∗ ≠ 𝑥¤ .Now, from (1.2), we have

𝜗 (𝑥¤ , 𝑥¤ ∗) = 𝜗 (𝑇𝑥¤ , 𝑆𝑥¤ ∗) ≤ 𝐻 (𝑇𝑥¤ , 𝑆𝑥¤ ∗)
≤ 𝜙 (𝑥¤ , 𝑥¤ ∗)𝜗 (𝑥¤ , 𝑥¤ ∗) + 𝜑 (𝑥¤ , 𝑥¤ ∗) [𝜗 (𝑥¤ , 𝑆𝑥¤ ∗) + 𝜗 (𝑥¤ ∗, 𝑇𝑥¤ )] (4.5)

+𝜓 (𝑥¤ , 𝑥¤ ∗) 𝜗 (𝑥¤ , 𝑇𝑥¤ )𝜗 (𝑥¤ ∗, 𝑇𝑥¤ ∗)
1 + 𝜗 (𝑥¤ , 𝑆𝑥¤ ∗) + 𝜗 (𝑥¤ ∗, 𝑇𝑥¤ ) + 𝜗 (𝑥¤ , 𝑥¤ ∗)

=
[
𝜙 (𝑥¤ , 𝑥¤ ∗) + 2𝜙 (𝑥¤ , 𝑥¤ ∗)] 𝜗 (𝑥¤ , 𝑥¤ ∗)

≤ [
𝜙 (𝑥¤ , 𝑥¤ ∗) + 2𝑠𝜙 (𝑥¤ , 𝑥¤ ∗)] 𝜗 (𝑥¤ , 𝑥¤ ∗) .

Since 𝜙 (𝑥¤ , 𝑥¤ ∗) + 2𝑠𝜙 (𝑥¤ , 𝑥¤ ∗) < 1, we have

𝜗 (𝑥¤ , 𝑥¤ ∗) = 0. (4.6)

Thus, 𝑥¤ = 𝑥¤ ∗. □

Corollary 42. [73]Assume(Υ, 𝜗) be a complete b-metric space with coefficient 𝑠 ≥ 1,
and 𝑇 : Υ → 𝐶𝐵 (Υ).

If there exists a control function 𝜙 : Υ × Υ → [0; 𝐼] such that:

• 𝜙 (𝑇𝑥¤ , 𝑦¤ ) ≤ 𝜙 (𝑥¤ , 𝑦¤ ) and 𝜙 (𝑥¤ , 𝑆𝑦¤ ) ≤ 𝜙 (𝑥¤ , 𝑦¤ ) ;
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• 𝜙 (𝑥¤ , 𝑦¤ ) < 1;

• 𝜗 (𝑇𝑥¤ , 𝑇𝑦¤ ) ≤ 𝜙 (𝑥¤ , 𝑦¤ )𝜗 (𝑥¤ , 𝑦¤ );

then 𝑇 has a unique fixed point.

4.2 APPLICATION

In this segment, we showcase a typical instance of utilizing fixed point tech-
niques to examine the existence of solutions in integral equations. To sum up,
we present an overview of the background and notation utilized in this context.

Assume Υ = 𝐶 ([0; 𝐼] ;𝑅) be the set of real continuous functions defined on
[0; 𝐼], where 𝐼 > 0, and Assume 𝑑 : Υ × Υ → [0,∞) be given by

𝜗 (𝑥¤ , 𝑦¤ ) = 𝑥¤ 0<𝑡<𝐼 |𝑥¤ (𝑡) − 𝑦¤ (𝑡)|𝑚 ,

for all 𝑥¤ , 𝑦¤ ∈ Υ. Then(Υ, 𝜗) is a complete 𝑏-metric space.
Consider the integral equation

𝑥¤ (𝑡) = 𝑝 (𝑡) + 𝜆

∫ 𝐼

0
𝑓 (𝑡 , 𝑠)𝐾 (𝑠, 𝑥¤ (𝑠)) for 𝑡 , 𝑠 ∈ [𝑎, 𝑏] . (4.7)

Where𝜆 is a constant, 𝐾 : [0; 𝐼]×𝑅 → 𝑅 and 𝑝 (𝑡) : [0; 𝐼] → 𝑅 are two continuous
functions and 𝑓 : [0; 𝐼]× [0; 𝐼] → [0,∞) is a function such that 𝑓 (𝑥¤ , .) ∈ 𝐿1 ([0; 𝐼])
for all 𝑡 ∈ [0; 𝐼] .
Consider the operator 𝑇 : Υ → Υ defined by

𝑇 (𝑥¤ ) (𝑡) = 𝑝 (𝑡) + 𝜆

∫ 𝐼

0
𝑓 (𝑡 , 𝑠)𝐾 (𝑠, 𝑥¤ (𝑠)) .

Then we prove the following existence result.

Theorem 43. Assume Υ = 𝐶 ([0; 𝐼] ;𝑅) .Assume that:

• there exists a continuous function 𝜙 : Υ × Υ → [0; 𝐼] such that
𝜙 (𝑇𝑥¤ , 𝑦¤ ) ≤ 𝜙 (𝑥¤ , 𝑦¤ ) and 𝜙 (𝑥¤ , 𝑆𝑦¤ ) ≤ 𝜙 (𝑥¤ , 𝑦¤ )
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• there exist 𝑥¤ (𝑡 , 𝑠) : Υ × Υ → [0,∞) and 𝛼 : Υ × Υ → [0,∞) such that if
𝛼 (𝑡 , 𝑠) ≥ 1 for 𝑥¤ , 𝑦¤ ∈ Υ, then, for every 𝑠 ∈ [0; 𝐼] and some 𝜆 > 0 one has

|𝐾 (𝑠, 𝑥 (𝑠)) − 𝐾 (𝑠, 𝑦¤ (𝑠))| ≤ 𝜙 (𝑥¤ , 𝑦¤ ) 1
𝑚 𝑥 (𝑡 , 𝑠) (|𝑥¤ (𝑠) − 𝑦¤ (𝑠)|) ,



∫ 𝐼

0
𝑓 (𝑡 , 𝑠) 𝑥¤ (𝑡 , 𝑠)





∞ ≤ 1
𝜆
,

for all 𝑡 , 𝑠 ∈ [0, 𝐼] . Then the integral equation has a unique solution.

Proof. Define 𝑇 : Υ × Υ → Υ by 𝑇𝑥¤ (𝑡) = ∫ 𝐼
0 𝐾 (𝑠, 𝑥¤ (𝑠)) 𝑑𝑠 for 𝑡 , 𝑠 ∈ [0, 𝐼]. So Υ is

fixed point of 𝑇 if and only if its a unique solution of the integral equation. So
for all 𝑥¤ , 𝑦¤ ∈ Υ we have

𝜗 (𝑇𝑥¤ , 𝑇𝑦¤ ) = |𝑇𝑥¤ − 𝑇𝑦¤ |𝑚 ≤
(����𝜆∫ 𝐼

0
𝑓 (𝑡 , 𝑠)𝐾 (𝑠, 𝑥¤ (𝑠)) 𝑑𝑠 − 𝜆

∫ 𝐼

0
𝑓 (𝑡 , 𝑠)𝐾 (𝑠, 𝑦¤ (𝑠)) 𝑑𝑠

����)𝑚
≤

(����𝜆∫ 𝐼

0
𝑓 (𝑡 , 𝑠) [𝐾 (𝑠, 𝑥¤ (𝑠)) − 𝐾 (𝑠, 𝑦¤ (𝑠))] 𝑑𝑠

����)𝑚
≤

(
𝜆

∫ 𝐼

0
𝑓 (𝑡 , 𝑠) [|𝐾 (𝑠, 𝑥¤ (𝑠))| 𝑑𝑠 − |𝐾 (𝑠, 𝑦¤ (𝑠))|] 𝑑𝑠

)𝑚
≤

(
𝜆

∫ 𝐼

0
𝑓 (𝑡 , 𝑠)𝜙 (𝑥¤ , 𝑦¤ ) 1

𝑚 𝑥¤ (𝑡 , 𝑠) (|𝑥¤ (𝑠) − 𝑦¤ (𝑠)|) 𝑑𝑠
)𝑚

≤
(∫ 𝐼

0
𝜙 (𝑥¤ , 𝑦¤ ) 1

𝑚 (|𝑥¤ (𝑠) − 𝑦¤ (𝑠)|) 𝑑𝑠
)𝑚

= 𝜙 (𝑥¤ , 𝑦¤ )𝜗 (𝑥¤ , 𝑦¤ ) .

Hence, all the assumptions of Corollary 1 are satisfied, and 𝑇 has a unique
fixed point in Υ Which is a solution of the integral equation . □
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5
Some fixed point results in the new

𝑏𝑣(𝜃)-metric spaces with applications

As a generalization of metric space, rectangular metric space, and b-metric

space, rectangular 𝑏-metric space, polygonal metric space, and 𝑏𝑣(𝑠)-metric space,we
provide the new idea of extended polygonal b-metric space, also known as 𝑏𝑣(𝑠)-
metric space. Furthermore,

We prove several fixed point findings under Banach’s contraction condition.
for 𝑏𝑣(𝜃)-metrics spaces.

5.1 NEW DEFINITIONS AND PROPRIETIES

Definition 44. Assume Υ be a non empty set, 𝜃 : Υ × Υ −→ [1,+∞) is any function
and 𝑣 ∈ 𝑁 is a fixed integer. The mapping 𝜗𝜃 : Υ×Υ −→ [1,+∞) is called an extended
𝑏𝑣(𝜃)-metric function if for all 𝑥¤ , 𝑦¤ ∈ Υ and for all distinct points 𝑥¤ 1, 𝑥¤ 2, · · · , 𝑥¤ 𝑣−1, 𝑥¤ 𝑣 ∈
Υ \ {𝑥¤ , 𝑦¤ }, it satisfies the following assertions

(𝜃1) 𝜗𝜃(𝑥¤ , 𝑦¤ ) = 0 if and only if 𝑥¤ = 𝑦¤
(𝜃2) 𝜗𝜃(𝑥¤ , 𝑦¤ ) = 𝜗𝜃(𝑦, 𝑥¤
(𝜃3) 𝜗𝜃(𝑥¤ , 𝑦¤ ) ≤ 𝜃(𝑥¤ , 𝑦¤ ) [𝜗𝜃(𝑥¤ , 𝑥¤ 1) + 𝜗𝜃(𝑥¤ 1, 𝑥¤ 2) · · · + 𝜗𝜃(𝑥¤ 𝑣−1, 𝑥¤ 𝑣) + 𝜗𝜃(𝑥¤ 𝑣 , 𝑦¤ )]

Then, the pair (Υ, 𝜗𝜃) is called extended polygonal 𝑏-metric space of order 𝑣 or simply
extended 𝑏𝑣(𝜃)-metric space.
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Remark 45. It is obvious that both the class of the 𝑏𝑣(𝑠)-metric spaces and extended
𝑏-metric spaces are special cases of the extended 𝑏𝑣(𝜃)-metric spaces for 𝜃 ≡ 𝑠 > 1 and
𝑣 = 1, respectively. This shows that this type of generalized metric spaces contains all
previous spaces exposed in section. It is worth noting that the work in some of generalized
spaces is essentially harder.

Assume us expose some examples of this type of new spaces.

Example 46. Assume Υ = 𝐹 (𝐸,C) be the set of complex-valued function defined on
the non empty set 𝐸 and 𝑞 ≥ 2 is a fixed positive integer. Define 𝜃 : Υ × Υ −→ [1,∞)
and 𝜗𝜃 : Υ × Υ −→ [0,∞) as follows

𝜃(𝑥¤ , 𝑦¤ ) = (𝑣 + 1)𝑞−1 + |𝑥¤ | + |𝑦¤ | and 𝜗𝜃(𝑥¤ , 𝑦¤ ) = |𝑥¤ − 𝑦¤ )|𝑞 .

Then, the pair (Υ, 𝜗𝜃) is an extended polygonal 𝑏-metric space of order 𝑣, where 𝑣 is any
fixed positive integer.

Proof. Observe that the assertions (𝜃1)-(𝜃2) are obviously fulfilled. Furthermore,
we have

𝜗𝜃(𝑥¤ , 𝑦¤ ) = |𝑥¤ − 𝑦¤ )|𝑞 = |𝑥¤ − 𝑥¤ 1 + 𝑥¤ 1 − 𝑥¤ 2 + · · · + 𝑥¤ 𝑣−1 − 𝑥¤ 𝑣 + 𝑥¤ 𝑣 − 𝑦¤ |𝑞
𝜗𝜃(𝑥¤ , 𝑦¤ ) ≤ (|𝑥¤ − 𝑥¤ 1 | + |𝑥¤ 1 − 𝑥¤ 2 | + · · · + |𝑥¤ 𝑣 − 𝑦¤ |)𝑞
𝜗𝜃(𝑥¤ , 𝑦¤ ) ≤ (𝑣 + 1)𝑞−1 (|𝑥¤ − 𝑥¤ 1 |𝑞 + |𝑥¤ 1 − 𝑥¤ 2 |𝑞 + · · · + |𝑥¤ 𝑣 − 𝑦¤ |𝑞 )
𝜗𝜃(𝑥¤ , 𝑦¤ ) ≤

(
(𝑣 + 1)𝑞−1 − 1

) (|𝑥¤ − 𝑥¤ 1 |𝑞 + |𝑥¤ 1 − 𝑥¤ 2 |𝑞 + · · · + |𝑥¤ 𝑣 − 𝑦¤ |𝑞 )
+ |𝑥¤ − 𝑥¤ 1 |𝑞 + |𝑥¤ 1 − 𝑥¤ 2 |𝑞 + · · · + |𝑥¤ 𝑣 − 𝑦¤ |𝑞 .

On the other hand, we have

|𝑥¤ − 𝑥¤ 1 |𝑞+|𝑥¤ 1 − 𝑥¤ 2 |𝑞+· · ·+|𝑥¤ 𝑣 − 𝑦¤ |𝑞 ≤ (1 + |𝑥¤ | + |Υ|) (|𝑥¤ − 𝑥¤ 1 |𝑞 + |𝑥¤ 1 − 𝑥¤ 2 |𝑞 + · · · + |𝑥¤ 𝑣 − 𝑦¤ |𝑞 ) .
Consequently, we get the assertion (𝜃3) as follows

𝜗𝜃(𝑥¤ , 𝑦¤ ) ≤
(
(𝑣 + 1)𝑞−1 − 1

) (|𝑥¤ − 𝑥¤ 1 |𝑞 + |𝑥¤ 1 − 𝑥¤ 2 |𝑞 + · · · + |𝑥¤ 𝑣 − 𝑦¤ |𝑞 )
+ (1 + |𝑥¤ | + |Υ|) (|𝑥¤ − 𝑥¤ 1 |𝑞 + |𝑥¤ 1 − 𝑥¤ 2 |𝑞 + · · · + |𝑥¤ 𝑣 − 𝑦¤ |𝑞 )

𝜗𝜃(𝑥¤ , 𝑦¤ ) ≤
(
(𝑣 + 1)𝑞−1 + |𝑥¤ | + |𝑦¤ |

) (|𝑥¤ − 𝑥¤ 1 |𝑞 + |𝑥¤ 1 − 𝑥¤ 2 |𝑞 + · · · + |𝑥¤ 𝑣 − 𝑦¤ |𝑞 )
𝜗𝜃(𝑥¤ , 𝑦¤ ) ≤ 𝜃(𝑥¤ , 𝑦¤ ) (𝜗(𝑥¤ , 𝑥¤ 1) + 𝜗(𝑥¤ 1, 𝑥¤ 2) + · · · + 𝜗(𝑥¤ 𝑣 , 𝑦¤ )) .
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Hence, the desired result is obtained. □

Example 47. Assume Υ = 𝑍. Define the functions 𝜃 : Υ × Υ −→ [1,∞) and 𝜗𝜃 :
Υ × Υ −→ [0,∞) as follows

𝜃(𝑥¤ , 𝑦¤ ) =
{

(2𝑣 + 2)𝑝−1 |𝑥¤ 𝑝−𝑦¤ 𝑝 |
|𝑥¤−𝑦¤ )| , if 𝑥¤ ≠ 𝑦¤ ;

1, if 𝑥¤ = 𝑦¤

and 𝜗𝜃(𝑥¤ , 𝑦¤ ) = |𝑥¤ − 𝑦¤ )|𝑝 with 𝑝 is an odd fixed integer. Then, (Υ, 𝜗𝜃) is an extended
𝑏𝑣(𝜃)-metric space for 𝑣 ≥ 1 is any fixed integer.

Proof. It is obvious that (𝜃1) and (𝜃2) are satisfied. Assume us checking the as-
sertion (𝜃3). For this, we need to prove the following inequality |𝑎 + 𝑏 |𝑝+1 ≤
|𝑎 + 𝑏 |𝑝 |𝑎𝑝 + 𝑏𝑝 | for all 𝑎, 𝑏 ∈ R such that 𝑎 = 0 or |𝑎 | ≥ 1 and 𝑏 = 0 or |𝑏 | ≥ 1.
It is obvious that for 𝑎 = 0 or 𝑏 = 0, the inequality is satisfied as an equality.
Assume |𝑎 | ≥ 1 and |𝑏 | ≥ 1. Then, we get the desired result

|𝑎 + 𝑏 |𝑝+1 =
|𝑎 + 𝑏 |𝑝+1

|𝑎𝑝 + 𝑏𝑝 | |𝑎𝑝 + 𝑏𝑝 | ≤ |𝑎 + 𝑏 |𝑝+1

|𝑎 + 𝑏 | |𝑎𝑝 + 𝑏𝑝 | = |𝑎 + 𝑏 |𝑝 |𝑎𝑝 + 𝑏𝑝 | .

For all 𝑥¤ , 𝑦¤ ∈ Υ and for a fixed integer 𝑣 ≥ 1, Assume us setting 𝑎 = 𝑥¤ + 𝑣∑
𝑖=1
𝑥¤ 𝑖

and 𝑏 = −𝑦¤ − 𝑣∑
𝑖=1
𝑥¤ 𝑖 . Then, by denoting 𝜛 =

𝑣∑
𝑖=1
𝑥¤ 𝑖 , we get

|𝑥¤ − 𝑦¤ )|𝑝+1 = |𝑥¤ + 𝜛 − 𝑦¤ − 𝜛 |𝑝+1 ≤ |𝑥¤ + 𝜛 − 𝑦¤ − 𝜛 |𝑝 ��(𝑥¤ + 𝜛)𝑝 + (−𝑦¤ − 𝜛)𝑝 ��
|𝑥¤ − 𝑦¤ )|𝑝+1 = |𝑥¤ − 𝑥¤ 1 + 𝑥¤ 1 − 𝑥¤ 2 + · · · + 𝑥¤ 𝑣 − 𝑦¤ |𝑝

��(𝑥¤ + 𝜛)𝑝 + (−1)𝑝 (𝑦 + 𝜛)𝑝 �� .
Using Jameson inequality, we obtain

|𝑥¤ − 𝑦¤ )|𝑝+1 ≤ (𝑣 + 1)𝑝−1 (|𝑥¤ − 𝑥¤ 1 |𝑝 + |𝑥¤ 1 − 𝑥¤ 2 |𝑝 · · · + |𝑥¤ 𝑣 − 𝑦¤ |𝑝 ) × ��2𝑝−1 (𝑥¤ 𝑝 + 𝜛𝑝 − 𝑦¤ 𝑝 − 𝜛𝑝)��
= (𝑣 + 1)𝑝−1 2𝑝−1 (|𝑥¤ − 𝑥¤ 1 |𝑝 + |𝑥¤ 1 − 𝑥¤ 2 |𝑝 · · · + |𝑥¤ 𝑣 − 𝑦¤ |𝑝 ) |𝑥¤ 𝑝 − 𝑦¤ 𝑝 | .

It follows from the latter inequality

𝜗𝜃(𝑥¤ , 𝑦¤ ) ≤ |𝑥¤ − 𝑦¤ )|𝑝 ≤
[
(𝑣 + 1)𝑝−1 2𝑝−1 |𝑥¤ 𝑝 − 𝑦¤ 𝑝 |

|𝑥¤ − 𝑦¤ )|
] (|𝑥¤ − 𝑥¤ 1 |𝑝 + |𝑥¤ 1 − 𝑥¤ 2 |𝑝 · · · + |𝑥¤ 𝑣 − 𝑦¤ |𝑝 )

𝜗𝜃(𝑥¤ , 𝑦¤ ) ≤
[
(2𝑣 + 2)𝑝−1 |𝑥¤ 𝑝 − 𝑦¤ 𝑝 |

|𝑥¤ − 𝑦¤ )|
] (|𝑥¤ − 𝑥¤ 1 |𝑝 + |𝑥¤ 1 − 𝑥¤ 2 |𝑝 · · · + |𝑥¤ 𝑣 − 𝑦¤ |𝑝 )

𝜗𝜃(𝑥¤ , 𝑦¤ ) = 𝜃(𝑥¤ , 𝑦¤ ) (𝑑(𝑥¤ , 𝑥¤ 1) + 𝜗(𝑥¤ 1 − 𝑥¤ 2) + · · · 𝜗(𝑥¤ 𝑣−1, 𝑥¤ 𝑣) + 𝜗(𝑥¤ 𝑣 , 𝑦¤ )) .
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where 𝜃(𝑥¤ , 𝑦¤ ) = (2𝑣 + 2)𝑝−1 |𝑥¤ 𝑝−𝑦¤ 𝑝 |
|𝑥¤−𝑦¤ )| > 1. Hence, (𝜃3) is satisfied. The proof is

achieved. □

Remark 48. If we consider 𝜗𝜃(𝑥¤ , 𝑦¤ ) = |𝑥¤ − 𝑦¤ )|𝑝 with 𝑝 is an even fixed integer, then
by following the same procedure, we can show that (Υ, 𝜗𝜃) is a 𝑏𝑣(𝜃)-metric space with

𝜃(𝑥¤ , 𝑦¤ ) =
{

(2𝑣 + 2)𝑝−1 |𝑥¤ 𝑝+𝑦¤ 𝑝 |
|𝑥¤−𝑦¤ )| , if 𝑥¤ ≠ 𝑦¤ ;

1, if 𝑥¤ = 𝑦.

We state now a fixed point theorem in these generalized 𝑏𝑣(𝜃)-metric spaces
which extends [85, Theorem 2.1] with a direct, short and different proof than
that given by Mitrovic and Radenovic for theorem 2.1 in [85].

5.2 FIXED POINT IN THE NEW 𝑏𝑣(𝜃)-METRIC SPACES

In these generalized 𝑏𝑣(𝜃)-metric spaces, we now prove a fixed point theorem
that extends [85, Theorem 2.1]. Our proof is direct, concise, and distinct from
the one provided by Mitrovic and Radenovic for theorem 2.1 in [85].

Theorem 49. Assume (Υ, 𝜗𝜃) be a complete extended 𝑏𝑣(𝜃)-metric space so that 𝜗𝜃 is
a continuous functional. Assume us consider the mapping 𝑇 : Υ −→ Υ satisfying the
following Banach contraction inequality

𝜗𝜃(𝑇𝑥¤ , 𝑇𝑦¤ ) ≤ 𝜆𝜗𝜃(𝑥¤ , 𝑦¤ ) for all 𝑥¤ , 𝑦¤ ∈ 𝑋. (5.1)

where 𝜆 ∈ [0, 1) is a fixed real number,and 𝑀 ∈.Z+. Assume that for each 𝑥¤ 0, we have

𝜃(𝑥¤ 𝑛 , 𝑥¤𝑚) < 𝑀.

where the sequence {𝑥¤ 𝑛}∞𝑛=0 = {𝑇𝑛𝑥¤ 0}∞𝑛=0. Then, 𝑇 has a unique fixed point.

Proof. Assume 𝑥¤ 0 ∈ Υ be arbitrary.∃𝑘 ∈ N such that 𝜆𝑘𝑀 < 1.Define the se-
quence {𝑥¤ 𝑛} by 𝑥¤ 𝑛+1 = 𝑆𝑥¤ 𝑛 for all 𝑛 ∈ Z+.Where 𝑆 = 𝑇 𝑘 .We get

𝜗𝜃(𝑆𝑥¤ , 𝑆𝑦) ≤ 𝜆𝑘 𝜗𝜃(𝑥¤ , 𝑦¤ ) for all 𝑥¤ , 𝑦¤ ∈ 𝑋.

Assume us prove that {𝑥¤ 𝑛} is Cauchy sequence inΥ. If 𝑥¤ 𝑛 = 𝑥¤ 𝑛+1 for some 𝑛,then
𝑥¤ 𝑛 is a fixed point of 𝑆. Now assume that 𝑥¤ 𝑛 ≠ 𝑥¤ 𝑛+1 for all 𝑛 ∈ Z+ and in order to
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simplify the expository,Assume setting 𝜗 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1) = 𝜗𝜃𝑛 and 𝜃 (𝑥¤ 𝑛 , 𝑥¤𝑚) = 𝜃𝑛,𝑚 .
From (7) ,we get

𝜗𝜃 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1) = 𝜗𝜃 (𝑆𝑥¤ 𝑛−1, 𝑆𝑥¤ 𝑛) ≤ 𝜆𝑘𝜗𝜃 (𝑥¤ 𝑛−1, 𝑥¤ 𝑛)
𝜗𝜃𝑛 ≤ 𝜆𝑘𝜗𝜃𝑛−1 .

Repeating this process, we obtain

𝜗𝜃𝑛 ≤ 𝜆𝑘𝑛𝜗𝜃0 . (8)

For the sequence {𝑥¤ 𝑛},we consider 𝜗𝜃 (𝑥¤ 𝑛 , 𝑥¤𝑚) such that 𝑚 = 𝑛 + 𝑝𝑞 + 1 where
𝑞 ∈ 𝑁 . Assume denoteΘ𝑛,𝑚 = 𝜗

𝑞−1
𝑗=0𝜃𝑛+𝑗𝑝,𝑚 .

Using (𝜃2)-(𝜃3) and (8) ,we derive by induction and since 𝜃(𝑥¤ 𝑛 , 𝑥¤𝑚) < 𝑀 :

𝜗𝜃 (𝑥¤ 𝑛 , 𝑥¤𝑚) ≤ 𝜃𝑛,𝑚
(
𝜗𝜃𝑛 + 𝜗𝜃𝑛+1 + 𝜗𝜃𝑛+2 + ... + 𝜗𝜃𝑛+𝑝−1 + 𝜗𝜃

(
𝑥¤ 𝑛+𝑝 , 𝑥¤𝑚 ) )

≤ 𝜃𝑛,𝑚
(
𝜆𝑘𝑛𝜗𝜃0 + 𝜆𝑘𝑛+1𝜗𝜃0 + 𝜆𝑘𝑛+2𝜗𝜃0 + ... + 𝜆𝑘𝑛+𝑝−1𝜗𝜃0

)
+ 𝜃𝑛,𝑚 × 𝜃𝑛+𝑝,𝑚

(
𝜗𝜃𝑛+𝑝 + 𝜗𝜃𝑛+𝑝+1 + 𝜗𝜃𝑛+𝑝+2 + ... + 𝜗𝜃𝑛+2𝑝−1 + 𝜗

(
𝑥¤ 𝑛+2𝑝 , 𝑥¤𝑚 ) )

.

.

𝜗𝜃 (𝑥¤ 𝑛 , 𝑥¤𝑚) ≤ 𝜃𝑛,𝑚
(
𝜆𝑛𝑘𝜗𝜃0 + 𝜆(𝑛+1)𝑘𝜗𝜃0 + 𝜆(𝑛+2)𝑘𝜗𝜃0 + ... + 𝜆(𝑛+𝑝−1)𝑘𝜗𝜃0

)
+

𝜃𝑛,𝑚 × 𝜃𝑛+𝑝,𝑚
(
𝜆(𝑛+𝑝)𝑘𝜗𝜃0 + 𝜆(𝑛+𝑝+1)𝑘𝜗𝜃0 + 𝜆(𝑛+𝑝+2)𝑘𝜗𝜃0 + ... + 𝜆(𝑛+2𝑝−1)𝑘𝜗𝜃0

)
+

+ ... + 𝜗𝜃0𝜗
𝑞−1
𝑗=0𝜃𝑛+𝑗𝑝,𝑚 .𝜆

𝑛𝑘
∑𝑝

𝑗=0
𝜆((𝑞−1)𝑝+𝑗)𝑘

𝜗 (𝑥¤ 𝑛 , 𝑥¤𝑚) ≤ 𝜗𝜃0


𝜃𝑛,𝑚

(
𝜆𝑛𝑘

(
1−𝜆𝑘𝑝
1−𝜆𝑘

))
+ 𝜃𝑛,𝑚 × 𝜃𝑛+𝑝,𝑚

(
𝜆(𝑛+𝑝)𝑘

(
1−𝜆𝑘𝑝
1−𝜆𝑘

))
+... + Θ𝑛,𝑚

(
𝜆(𝑛+(𝑞−1)𝑝)𝑘

(
1−𝜆(𝑝+1)𝑘

1−𝜆𝑘
)) 

≤ 𝜆𝑘𝑛𝜗𝜃0

(
1 − 𝜆(𝑝+1)𝑘

1 − 𝜆𝑘

) [𝑖=𝑞−1∑
𝑖=0

𝜆𝑖𝑝𝑘𝜗
𝑗=𝑖+1
𝑗=1 𝜃𝑛+(𝑗−1)𝑝,𝑚

]
Taking the limits in both sides of the latter inequality,obtain

lim
𝑛;𝑚→∞𝜗𝜃 (𝑥¤ 𝑛 , 𝑥¤𝑚) ≤ lim

𝑛;𝑚→∞𝜆𝑘𝑛𝜗𝜃0

(
1 − 𝜆(𝑝+1)𝑘

1 − 𝜆𝑘

) [𝑖=𝑞−1∑
𝑖=0

𝜆𝑖𝑝𝑘𝜗
𝑗=𝑖+1
𝑗=1 𝜃𝑛+(𝑗−1)𝑝,𝑚

]
.
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We note that the series
𝑖=𝑞−1∑
𝑖=0

𝜆𝑖𝑝𝑘𝜗
𝑗=𝑖+1
𝑗=1 𝜃𝑛+(𝑗−1)𝑝,𝑚 with positive terms converges

according to the ratio test. Indeed,by putting 𝑈𝑖 ,𝑚 = 𝜆𝑖𝑝𝑘𝜗
𝑗=𝑖+1
𝑗=1 𝜃𝑛+(𝑗−1)𝑝,𝑚 , we

get

𝑈𝑖+1,𝑚

𝑈𝑖 ,𝑚
=

𝜆(𝑖+1)𝑝𝜃𝑛,𝑚 × 𝜃𝑛+𝑝,𝑚 × ....𝜃𝑛+𝑖𝑝,𝑚 × 𝜃𝑛+(𝑖+1)𝑝,𝑚
𝜆𝑖𝑝𝜃𝑛,𝑚 × 𝜃𝑛+𝑝,𝑚 × ....𝜃𝑛+𝑖𝑝,𝑚 = 𝜆𝑝𝑘𝜃𝑛+𝑖𝑝,𝑚 ,

since, 𝜆𝑘𝜃 (𝑥¤ 𝑛 , 𝑥¤𝑚) < 1 . Hence lim
𝑛,𝑚→∞𝜗𝜃 (𝑥¤ 𝑛 , 𝑥¤𝑚) = 0 and consequently {𝑥¤ 𝑛}

is Cauchy sequence. Since, we deal with a complete space, it follows that there
exists 𝑢 ∈ Υ such that lim

𝑛−→∞ 𝑥¤ 𝑛 = 𝑢.

We now prove that 𝑢 is a fixed point of 𝑆,so it’s a fixed point for 𝑇. Indeed,
for any 𝑛 ∈ Z+, we have :

𝜗𝜃 (𝑆𝑢, 𝑢) ≤ 𝜃 (𝑆𝑢, 𝑢) [𝜗𝜃 (𝑢, 𝑥¤ 𝑛) + 𝜗𝜃 (𝑥¤ 𝑛 , 𝑥¤ 𝑛+1) + ... + 𝜗𝜃
(
𝑥¤ 𝑛+𝑝−2, 𝑥¤ 𝑛+𝑝−1

) + 𝜗𝜃
(
𝑥¤ 𝑛+𝑝−1, 𝑆𝑢

) ]
≤ 𝜃 (𝑆𝑢, 𝑢) [𝜗𝜃 (𝑢, 𝑥¤ 𝑛) + 𝜗𝜃𝑛 + 𝜗𝜃𝑛+1 + 𝜗𝜃𝑛+2 + ... + 𝜗𝜃𝑛+𝑝−2 + 𝜗𝜃

(
𝑆𝑥¤ 𝑛+𝑝−2, 𝑆𝑢

) ]
≤ 𝜃 (𝑆𝑢, 𝑢) [𝜗𝜃 (𝑢, 𝑥¤ 𝑛) + 𝜗𝜃𝑛 + 𝜗𝜃𝑛+1 + 𝜗𝜃𝑛+2 + ... + 𝜆𝑘𝜃

(
𝑥¤ 𝑛+𝑝−2, 𝑢

)
𝜗𝜃

(
𝑥¤ 𝑛+𝑝−2, 𝑢

) ]
.

By letting 𝑛 −→ ∞ we get 𝜗 (𝑆𝑢, 𝑢) ≤ 0. Since 𝜗 (𝑆𝑢, 𝑢) ≥ 0, it follows that
𝜗 (𝑆𝑢, 𝑢) = 0. This shows that 𝑆𝑢 = 𝑢 ,i.e. 𝑢 is a fixed point of 𝑆. it remains to
prove the uniqueness, by the usual way. For this, Assume 𝑣 be another fixed
point of 𝑆. According to (1) we have

𝜗𝜃 (𝑢, 𝑣) = 𝜗𝜃 (𝑆𝑢, 𝑆𝑣) ≤ 𝜆𝑘𝜃 (𝑢, 𝑣)𝜗𝜃 (𝑢, 𝑣) < 𝜗𝜃 (𝑢, 𝑣) ,

Therefore, we derive 𝜗𝜃 (𝑢, 𝑣) = 0,i.e., 𝑢 = 𝑣,and consequently there is a unique
fixed point for 𝑆,(𝑖.𝑒. unique fixed point for 𝑇) . □

Remark 50. This theorem extends many other results obtained under the same contrac-
tion condition in some specific generalized metric spaces. For example:

• If 𝜃(𝑥¤ , 𝑦¤ ) = 1 and 𝑣 arbitrary positive integer, we obtain the first part of [82,
Theorem 2.2] in polygon metric spaces.

• If 𝜃(𝑥¤ , 𝑦¤ ) = 𝑠 > 1 and 𝑣 = 1, we obtain for 𝑏-metric spaces.

• If 𝜃(𝑥¤ , 𝑦¤ ) = 𝑠 > 1 and 𝑣 = 2, we obtain [84, Theorem 2.1] in rectangular 𝑏-metric
spaces.

• If 𝜃(𝑥¤ , 𝑦¤ ) = 𝑠 > 1 and 𝑣 arbitrary positive integer, we obtain [85, Theorem 2.1]
for 𝑏𝑣(𝑠)-metric spaces.
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Example 51. Assume us consider 𝑥¤ =
[
0, 𝜋

2

]
, the functions 𝜗𝜃 : Υ × Υ −→ 𝑅+ and

𝜃 : Υ × Υ −→ [1,+∞[ defined for all 𝑥¤ , 𝑦¤ ∈ Υ as follows

𝜗𝜃(𝑥¤ , 𝑦¤ ) = |𝑥¤ − 𝑦¤ )|𝑝 for a fixed integer 𝑝 ≥ 2.

𝜃(𝑥¤ , 𝑦¤ ) = (𝑣 + 1)𝑝−1 + |𝑥¤ − 𝑦¤ )| , with 𝑣 ≥ 2 is every fixed integer.

By Jameson’s inequality, we obtain

𝜗𝜃(𝑥¤ , 𝑦¤ ) = |𝑥¤ − 𝑦¤ )|𝑝 = |𝑥¤ − 𝑥¤ 1 + 𝑥¤ 1 − 𝑥¤ 2 + · · · + 𝑥¤ 𝑣 − 𝑦¤ |𝑝
𝜗𝜃(𝑥¤ , 𝑦¤ ) ≤ [|𝑥¤ − 𝑥¤ 1 | + |𝑥¤ 1 − 𝑥¤ 2 | + · · · + |𝑥¤ 𝑣 − 𝑦¤ |]𝑝
𝜗𝜃(𝑥¤ , 𝑦¤ ) ≤ (𝑣 + 1)𝑝−1 [|𝑥¤ − 𝑥¤ 1 |𝑝 + |𝑥¤ 1 − 𝑥¤ 2 |𝑝 + · · · + |𝑥¤ 𝑣 − 𝑦¤ |𝑝

]
𝜗𝜃(𝑥¤ , 𝑦¤ ) ≤

(
(𝑣 + 1)𝑝−1 + |𝑥¤ − 𝑦¤ )|

) [|𝑥¤ − 𝑥¤ 1 |𝑝 + |𝑥¤ 1 − 𝑥¤ 2 |𝑝 + · · · + |𝑥¤ 𝑣 − 𝑦¤ |𝑝
]

𝜗𝜃(𝑥¤ , 𝑦¤ ) = 𝜃(𝑥¤ , 𝑦¤ ) [𝜗(𝑥¤ , 𝑥¤ 1) + 𝜗(𝑥¤ 1, 𝑥¤ 2) + · · · + 𝜗(𝑥¤ 𝑣 , 𝑦¤ )] .

It is worth noting that the pair (Υ, 𝜗𝜃) is a complete 𝑏𝜃(𝑣)-metric space. Assume us
denote

𝛾 = min
(

2
𝜋
,
𝑝𝑣
√
(𝑣 + 1)1−𝑝

)
< 1,

and consider the family of mapping𝑇𝛿 defined by𝑇𝛿𝑥¤ = sin(𝛿𝑥¤ with 𝛿 ∈ ]0, 𝛾[ .Observe
that

𝛿 <
𝑝𝑣
√
(𝑣 + 1)1−𝑝 ⇐⇒ (𝑣 + 1)𝑝−1 < 𝛿−𝑝𝑣 .

Now Assume us prove that 𝑇𝛿 is a contraction with respect to the metric 𝜗𝜃 with con-
traction coefficient 𝜆 = 𝛿𝑝 < 1. Indeed, from Lagrange mean value theorem, we have

𝜗𝜃(𝑇𝛿𝑥¤ , 𝑇𝛿𝑦) = |𝑇𝛿𝑥¤ − 𝑇𝛿Υ|𝑝 = |sin(𝛿𝑥¤ − sin(𝛿𝑦)|𝑝 ≤ 𝛿𝑝 |𝑥¤ − 𝑦¤ )|𝑝 = 𝛿𝑝𝜗𝜃(𝑥¤ , 𝑦¤ ).

On the other hand, Assume us consider the sequence {𝑥¤ 𝑛}∞𝑛=0 = {𝑇𝑛𝑥¤ }∞𝑛=0 in Υ starting
from every 𝑥¤ ∈ Υ. We have 𝑥¤ 𝑛 ≥ 0 and 𝑥¤ 𝑛 − 𝑥¤ 𝑛−1 = sin 𝑥¤ 𝑛−1 − 𝑥¤ 𝑛 ≤ 0, for ever 𝑛 ∈ 𝑁 ,
and consequently the sequence is decreasing. It follows that the sequence {𝑥¤ 𝑛}∞𝑛=0 =

{𝑇𝑛𝑥¤ }∞𝑛=0 is convergent in the complete usual metric space (Υ, 𝜗), where the distance
𝜗(𝑥¤ , 𝑦¤ ) = |𝑥¤ − 𝑦¤ )| for all (𝑥¤ , 𝑦¤ ) ∈ 𝑦¤ 2. Therefore, for all 0 < 𝛿 < 𝛾, we get :

lim
𝑛,𝑚−→∞𝜃(𝑥¤ 𝑛 , 𝑥¤𝑚) = lim

𝑛,𝑚−→∞

(
(𝑣 + 1)𝑝−1 + |𝑥¤ 𝑛 − 𝑥¤𝑚 |

)
lim

𝑛,𝑚−→∞𝜃(𝑥¤ 𝑛 , 𝑥¤𝑚) = (𝑣 + 1)𝑝−1 < 𝛿−𝑝𝑣 = 1
𝛿𝑝𝑣

=
1

(𝛿𝑝)𝑣 =
1
𝜆𝑣

·
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It follows that for 𝛿 ∈ ]0, 𝛾[, all conditions of theorem 49 are satisfied. Hence, for every
𝛿 ∈ ]0, 𝛾[, there exists a unique fixed point for the mapping 𝑇𝛿. This fixed point is
obviously 𝑥¤ = 0.

Example 52. Assume Υ = [−1, 1]. Define 𝜗𝜃 : Υ × Υ −→ 𝑅+ and 𝜃 : Υ × Υ −→
[1,+∞[, for all 𝑥¤ , 𝑦¤ ∈ Υ as 𝜗𝜃(𝑥¤ , 𝑦¤ ) = |𝑥¤ − 𝑦¤ )|3 and 𝜃(𝑥¤ , 𝑦¤ ) = 9 + |𝑥¤ | + |𝑦¤ |. Using
Jameson’s inequality, we get

𝜗𝜃(𝑥¤ , 𝑦¤ ) = |𝑥¤ − 𝑦¤ )|3 = |𝑥¤ − 𝑥¤ 1 + 𝑥¤ 1 − 𝑥¤ 2 + 𝑥¤ 2 − 𝑦¤ |3 ≤ 9 [|𝑥¤ − 𝑥¤ 1 | + |𝑥¤ 1 − 𝑥¤ 2 | + |𝑥¤ 2 − 𝑦¤ |]3
𝜗𝜃(𝑥¤ , 𝑦¤ ) ≤ (9 + |𝑥¤ | + |𝑦¤ |) [|𝑥¤ − 𝑥¤ 1 | + |𝑥¤ 1 − 𝑥¤ 2 | + |𝑥¤ 2 − 𝑦¤ |]3
𝜗𝜃(𝑥¤ , 𝑦¤ ) = 𝜃(𝑥¤ , 𝑦¤ ) [𝜗(𝑥¤ , 𝑥¤ 1) + 𝜗(𝑥¤ 1, 𝑥¤ 2) + 𝜗(𝑥¤ 2, 𝑦¤ )] .

Then, (𝑥¤ , 𝜗𝜃) is complete 𝑏𝑣(𝜃)-metric space with 𝑣 = 2. Consider the mapping 𝑇 :

Υ −→ Υ such that 𝑇𝑥¤ = 𝑥¤ 3

6
for every 𝑥¤ ∈ Υ. Then, we get

𝜗𝜃(𝑇𝑥¤ , 𝑇𝑦¤ ) = |𝑇𝑥¤ − 𝑇𝑦¤ |3 =

����𝑥¤ 3

6
− 𝑦¤ 3

6

����3 =
1
63

��𝑥¤ 3 − 𝑦¤ 3��3 =
1
63

��𝑥¤ 2 + 𝑥𝑦 + 𝑦¤ 2��3 |𝑥¤ − 𝑦¤ )|3
𝜗𝜃(𝑇𝑥¤ , 𝑇𝑦¤ ) ≤ 1

8 |𝑥¤ − 𝑦¤ )|3 =
1
8
𝜗𝜃(𝑥¤ , 𝑦¤ ).

This shows that the contraction condition (5.1) holds with 𝜆 =
1
8
< 1. We also easily

seen that 𝑇𝑛𝑥¤ = 𝑥¤ 3𝑛

64×3𝑛−2 for all 𝑛 ≥ 2 and 𝑥¤ ∈ 𝑥¤ = [−1, 1]. Thus, we obtain

lim
𝑛,𝑚−→∞𝜃 (𝑇𝑛𝑥¤ , 𝑇𝑚𝑥¤ ) = lim

𝑛,𝑚−→∞ (9 + |𝑇𝑛𝑥¤ | + |𝑇𝑚𝑥¤ |)

lim
𝑛,𝑚−→∞𝜃 (𝑇𝑛𝑥¤ , 𝑇𝑚𝑥¤ ) = lim

𝑛,𝑚−→∞

(
9 + |𝑥¤ |3𝑛

64×3𝑛−2 + |𝑥¤ |3𝑚
64×3𝑚−2

)
lim

𝑛,𝑚−→∞𝜃 (𝑇𝑛𝑥¤ , 𝑇𝑚𝑥¤ ) = 9 < 64 =
1
𝜆2 =

1
𝜆𝑣

·

Consequently, all conditions of theorem 49 are fulfilled. Therefore, the mapping 𝑇 has a
unique fixed point in Υ = [−1, 1].

5.3 EVALUATION OF THE ORDER OF CONVERGENCE TO THE
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FIXED POINT IN THE GENERALIZED 𝑏𝑣(𝑠)-METRIC SPACES

In the following theorem, we give an evaluation of the order of convergence
to the fixed point in the generalized 𝑏𝑣(𝑠)-metric spaces which is not considered
by Mitrovic and Radenovic in [85]. Notice that the first part of theorem 53 is ex-
actly the full statement of [85, Theorem 2.1] and a direct consequence of theorem
49.

Theorem 53. Assume (Υ, 𝜗) be a complete 𝑏𝑣(𝑠)-metric space with coefficient 𝑠 > 1
and 𝑇 : Υ −→ Υ be a mapping satisfying the following contraction inequality

𝜗(𝑇𝑥¤ , 𝑇𝑦¤ ) ≤ 𝜆𝜗(𝑥¤ , 𝑦¤ ) (5.2)

for all 𝑥¤ , 𝑦¤ ∈ Υ, where 𝜆 ∈ [0, 1) is a fixed real number. Then, 𝑇 has a unique fixed
point 𝜁. Moreover, if 𝑠𝜆𝑣 < 1, the error of approximation of the unique fixed point 𝜁 by
the convergent sequence {𝑥¤ 𝑛} = {𝑇𝑛𝑥¤ 0}, from the start point 𝑥¤ 0 ∈ Υ is given as follows

𝜗(𝑥¤ 𝑛 , 𝜁) ≤ 𝑠𝜆𝑛 (1 − 𝜆𝑣)
(1 − 𝜆) (1 − 𝑠𝜆𝑣)𝜗(𝑥¤ 1, 𝑥¤ 0) ≤ 𝑠𝜆𝑛𝜗(𝑥¤ 1, 𝑥¤ 0)

(1 − 𝜆) (1 − 𝑠𝜆𝑣) , (5.3)

for all 𝑛 ∈ 𝑍+.

Proof. The existence of the fixed point 𝜁 of 𝑇 is ensured by the previous theorem
49 or by theorem 2.1 in [85] as a particular case of theorem 49 for 𝜃(𝑥¤ , 𝑦¤ ) = 𝑠 ≥ 1
for all 𝑥¤ , 𝑦¤ ∈ Υ. Assume 𝑥¤ 0 ∈ Υ be arbitrary and define the sequence {𝑥¤ 𝑛} given
by 𝑥¤ 𝑛+1 = 𝑇𝑥¤ 𝑛 for all 𝑛 ∈ Z+. If 𝑥¤ 𝑛+1 = 𝑥¤ 𝑛 for some integer 𝑛, then 𝜁 = 𝑥¤ 𝑛 and
𝜗(𝑥¤ 𝑛 , 𝜁) = 0 verifies the inequality (5.3). Assume us assume that 𝑥¤ 𝑛 ≠ 𝑥¤ 𝑛+1 for
all 𝑛 ∈ Z+ and setting 𝜗𝑛 = 𝜗(𝑥¤ 𝑛 , 𝑥¤ 𝑛+1). From (5.2), we get

𝜗(𝑥¤ 𝑛 , 𝑥¤ 𝑛+1) = 𝜗(𝑇𝑥¤ 𝑛−1, 𝑇𝑥¤ 𝑛) ≤ 𝜆𝑑(𝑥¤ 𝑛−1, 𝑥¤ 𝑛), i.e. 𝜗𝑛 ≤ 𝜆𝜗𝑛−1.

By induction, we obtain
𝜗𝑛 ≤ 𝜆𝑛𝜗0. (5.4)

For the sequence {𝑥¤ 𝑛}, Assume us consider 𝜗(𝑥¤ 𝑛 , 𝑥¤𝑚) such that𝑚−1 = 𝑛+𝑣𝑞+𝑝,
where 𝑞 ∈ N and 𝑝 ∈ 0, 𝑛 − 1. Using the contraction inequality (5.4) and from
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(5.2), we obtain by induction

𝜗(𝑥¤ 𝑛 , 𝑥¤𝑚) ≤ 𝑠 [𝜗(𝑥¤ 𝑛 , 𝑥¤ 𝑛+1) + 𝜗(𝑥¤ 𝑛+1, 𝑥¤ 𝑛+2) + · · · + 𝜗(𝑥¤ 𝑛+𝑣−1, 𝑥¤ 𝑛+𝑣) + 𝜗(𝑥¤ 𝑛+𝑣 , 𝑥¤𝑚)]

𝜗(𝑥¤ 𝑛 , 𝑥¤𝑚) ≤ 𝑠
𝑣−1∑
𝑖=0

𝜗𝑛+𝑖 + 𝑠2

[
𝑣−1∑
𝑖=0

𝜗𝑛+𝑣+𝑖 + 𝜗(𝑥¤ 𝑛+2𝑣 , 𝑥¤𝑚)
]

𝜗(𝑥¤ 𝑛 , 𝑥¤𝑚) ≤ 𝑠
𝑣−1∑
𝑖=0

𝜗𝑛+𝑖 + 𝑠2
𝑣−1∑
𝑖=0

𝜗𝑛+𝑣+𝑖 + 𝑠3

[
𝑣−1∑
𝑖=0

𝜗𝑛+2𝑣+𝑖 + 𝜗(𝑥¤ 𝑛+3𝑣 , 𝑥¤𝑚)
]

𝜗(𝑥¤ 𝑛 , 𝑥¤𝑚) ≤ 𝑠
𝑣−1∑
𝑖=0

𝜗𝑛+𝑖 + · · · + 𝑠𝑞−1
𝑣−1∑
𝑖=0

𝜗𝑛+(𝑞−2)𝑣+𝑖 + 𝑠𝑞
[
𝑣−1∑
𝑖=0

𝜗𝑛+(𝑞−1)𝑣+𝑖 + 𝜗(𝑥¤ 𝑛+𝑞𝑣 , 𝑥¤𝑚)
]

𝜗(𝑥¤ 𝑛 , 𝑥¤𝑚) ≤
𝑞−1∑
𝑘=1

𝑠𝑘
𝑣−1∑
𝑖=0

𝜗𝑛+(𝑘−1)𝑣+𝑖 + 𝑠𝑞
𝑣−1∑
𝑖=0

𝜗𝑛+(𝑞−1)𝑣+𝑖 + 𝑠𝑞𝜗(𝑥¤ 𝑛+𝑣𝑞 , 𝑥¤𝑚)

𝜗(𝑥¤ 𝑛 , 𝑥¤𝑚) ≤
𝑞−1∑
𝑘=1

𝑠𝑘
𝑣−1∑
𝑖=0

𝜆𝑛+(𝑘−1)𝑣+𝑖𝜗0 + 𝑠𝑞
𝑣−1∑
𝑖=0

𝜆𝑛+(𝑞−1)𝑣+𝑖𝜗0 + 𝑠𝑞𝜆𝑛+𝑞𝑣𝜗(𝑥¤ 0, 𝑥¤ 𝑝)

𝜗(𝑥¤ 𝑛 , 𝑥¤𝑚) ≤ 𝜗0

𝑞∑
𝑘=1

𝑠𝑘
𝑣−1∑
𝑖=0

𝜆𝑛+(𝑘−1)𝑣+𝑖 + (𝑠𝜆𝑣)𝑞 𝜆𝑛𝜗(𝑥¤ 0, 𝑥¤ 𝑝)

𝜗(𝑥¤ 𝑛 , 𝑥¤𝑚) ≤ 𝜗0

(
1 − 𝜆𝑣

1 − 𝜆

)
𝜆𝑛𝑠

𝑞∑
𝑘=1

(𝑠𝜆𝑣)(𝑘−1) + (𝑠𝜆𝑣)𝑞 𝜆𝑛𝜗(𝑥¤ 0, 𝑥¤ 𝑝)

𝜗(𝑥¤ 𝑛 , 𝑥¤𝑚) ≤ 𝑠𝜗0𝜆
𝑛
(
1 − 𝜆𝑣

1 − 𝜆

) (
1 − (𝑠𝜆𝑣)𝑞

1 − 𝑠𝜆𝑣
)
+ (𝑠𝜆𝑣)𝑞 𝜆𝑛𝜗(𝑥¤ 0, 𝑥¤ 𝑝). (5.5)

Now one can observe that when 𝑛 is fixed and 𝑚 tends to infinity, it follows
that 𝑞 tends also to infinity. Hence, by making 𝑚 tend towards infinity in the
inequality (5.5), the estimate (5.3) follows immediately. □

Example 54. Assume Υ = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒 , 𝑓 } and consider the generalized metric 𝑑 :
Υ × Υ −→−→ 𝑅+ defined for every 𝑥¤ ∈ Υ as follows

𝜗(𝑎, 𝑏) = 5

𝜗(𝑎, 𝑐) = 𝜗(𝑎, 𝑑) = 𝜗(𝑎, 𝑒) = 𝜗(𝑏, 𝑐) = 𝜗(𝑏, 𝑑) = 𝜗(𝑏, 𝑒) = 𝜗(𝑐, 𝑑) = 𝜗(𝑐, 𝑒) = 𝜗(𝑑, 𝑒) = 1

𝜗(𝑎, 𝑓 ) = 𝜗(𝑏, 𝑓 ) = 𝜗(𝑐, 𝑓 ) = 𝜗(𝑑, 𝑓 ) = 𝜗(𝑒 , 𝑓 ) = 6

Assume us consider 𝑇 : Υ −→ Υ the mapping defined as follows

𝑇𝑥¤ =
{
𝑐, if 𝑥¤ ∈ {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} ,
𝑎, if 𝑥¤ = 𝑓 .
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Then, (Υ, 𝜗) is an hexagonal metric space (𝑏𝑣(𝑠)-metric space for 𝑣 = 4 and 𝑠 = 1).
Moreover, for all 𝑥¤ , 𝑦¤ ∈ Υ, we have

𝜗 (𝑇𝑥¤ , 𝑇𝑦¤ ) ≤ 1
6
𝜗(𝑥¤ , 𝑦¤ ).

It follows that 𝑇 verifies the Banach contraction condition of theorem 53. Therefore,
according to theorem 53, the mapping 𝑇 has a unique fixed point, which is clearly 𝑥¤ = 𝑐.
It is worth noting that (Υ, 𝜗) is not a metric space or a rectangular metric space. Indeed,
we have

5 = 𝜗(𝑎, 𝑏) > 𝜗(𝑎, 𝑐)+𝜗(𝑐, 𝑑)+𝜗(𝑑, 𝑒)+𝜗(𝑒 , 𝑏) = 1+1+1+1 = 4 > 𝜗(𝑎, 𝑐)+𝜗(𝑐, 𝑑)+𝜗(𝑑, 𝑏) = 3.

Now state for the extended 𝑏𝑣(𝜃)-metric space, another variant fixed point
result which is analogue to fixed point theorem obtained by Hicks and Rhoades
[83] and extended recently by [11] for extended 𝑏1(𝜃)-metric spaces. Before this,
we need the following definition given in [11] and corrected here, since there is
a simple mistake of notation in the statement as it is presented in the previous
mentioned paper [11, Definition 6].

Definition 55. ([11]) Assume 𝑇 : Υ −→ Υ and for some 𝑥¤ 0 ∈ Υ, Assume 𝑂(𝑥¤ 0) ={
𝑥¤ 0, 𝑇𝑥¤ 0, 𝑇2𝑥¤ 0, · · ·

}
be the orbit of 𝑥¤ 0. A function 𝐺 : Υ −→ 𝑅 is said to be 𝑇-

orbitally lower semi-continuous at 𝜉 ∈ Υ if {𝑥¤ 𝑛} ⊂ 𝑂(𝑥¤ 0) and 𝑥¤ 𝑛 −→ 𝜉 implies
𝐺(𝜉) ≤ lim inf

𝑛−→∞ 𝐺(𝑥¤ 𝑛).

Now we are ready to state our result.

Theorem 56. Assume (Υ, 𝜗𝜃) be a complete extended 𝑏𝑣(𝜃)-metric space so that 𝜗𝜃 is
a continuous functional. Assume us consider the mapping 𝑇 : Υ −→ 𝑇 and assume
there exists 𝑥¤ 0 ∈ Υ such that

𝜗𝜃(𝑇2𝑧, 𝑇𝑧) ≤ 𝜆𝜗𝜃(𝑇𝑧, 𝑧) for ever 𝑧 ∈ O(𝑥¤ 0), (5.6)

where 𝜆 ∈ [0, 1) be a fixed real number such that

lim
𝑛,𝑚−→∞𝜃(𝑇𝑛𝑥¤ 0, 𝑇𝑚𝑥¤ 0) < 1

𝜆𝑣
·

Then, lim
𝑛−→∞𝑇

𝑛𝑥¤ 0 = 𝜁 ∈ 𝑋. Moreover, 𝜁 is a fixed point if and only if 𝐺(𝑥¤ = 𝜗𝜃(𝑇𝑥¤ , 𝑥¤
is 𝑇-orbitally lower semi continuous at 𝜁.
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Proof. For 𝑥¤ 0 ∈ Υ, Assume us consider the sequence {𝑥¤ 𝑛} such that 𝑥¤ 𝑛+1 = 𝑇𝑥¤ 𝑛
for all 𝑛 ∈ Z+. Following the same procedure as in the proof of the previous
theorem 49, we derive that {𝑥¤ 𝑛} is a Cauchy sequence. Since (𝑥¤ , 𝜗𝜃) is a complete
space, it follows that 𝑇𝑛 −→ 𝜁 ∈ Υ. On the other hand, by successively applying
inequality (5.6) for 𝑧 = 𝑥¤ 0 ∈ O(𝑥¤ 0), we get for all 𝑛 ∈ N

𝜗𝜃(𝑇𝑛+1𝑧, 𝑇𝑛𝑧) ≤ 𝜆𝜗𝜃(𝑇𝑛𝑥¤ 0, 𝑇𝑛−1𝑥¤ 0) ≤ · · · ≤ 𝜆𝑛𝜗𝜃(𝑥¤ 1, 𝑥¤ 0).

Now Assume us consider the function 𝐺 : 𝑥¤ −→ R+ defined by 𝐺(𝑥¤ = 𝜗𝜃(𝑇𝑥¤ , 𝑥¤
and assume that 𝜁 is a fixed point of 𝑇 such that lim

𝑛−→∞ 𝑥¤ 𝑛 = 𝜁 with 𝑥¤ 𝑛 ∈ O(𝑥¤ 0).
Since lim inf

𝑛−→∞ 𝜗𝜃(𝑇𝑛+1𝑥¤ 0, 𝑇𝑛𝑥¤ 0) ≥ 0, then we get

𝐺(𝜁) = 𝜗𝜃(𝑇𝜁, 𝜁) = 0 ≤ lim inf
𝑛−→∞ 𝐺(𝑥¤ 𝑛).

Conversely, assume that the function 𝐺 is 𝑇-orbitally lower semi continuous at
𝜁. Then, we have

𝜗𝜃(𝑇𝜁, 𝜁) = 𝐺(𝜁) ≤ lim inf
𝑛−→∞ 𝐺(𝑥¤ 𝑛) = lim inf

𝑛−→∞ 𝜗𝜃(𝑇𝑛+1𝑥¤ 0, 𝑇𝑛𝑥¤ 0)
≤ lim inf

𝑛−→∞ 𝜆𝑛𝜗𝜃(𝑥¤ 1, 𝑥¤ 0) = 0.

Hence, 𝜗𝜃(𝑇𝜁, 𝜁) = 0 ⇐⇒ 𝑇𝜁 = 𝜁, which shows that 𝜁 is a fixed point of 𝑇. □

Remark 57. If 𝜃(𝑥¤ , 𝑦¤ ) = 1 is a constant function, then theorem 56 corresponds to [83,
Theorem 1]. Furthermore, when we deal with the extended 𝑏-metric space, i.e. 𝑣 = 1,
then theorem 56 reduces to the main result of Kamran et al [11, Theorem 3]. It follows
that theorem 56 extends and generalizes [83, Theorem 1] and [11, Theorem 3] for more
general spaces.

Example 58. Consider the same 𝑏𝑣(𝜃)-metric space (Υ, 𝜗𝜃) given in example 51 and
we also define the same family of mapping 𝑇𝛿𝑥¤ = sin(𝛿𝑥¤ for all 𝑥¤ ∈ 𝑌 =

[
0, 𝜋

2

]
, with

the parameter 𝛿 ∈ ]0, 𝛾[, where 𝛾 = min
(

2
𝜋
, 𝑝𝑣
√
(𝑣 + 1)1−𝑝

)
. Assume us check the

contraction condition (5.6) of theorem 56. In fact, according to Lagrange mean value
theorem, for all 𝑥¤ ∈ Υ, we get

𝜗𝜃(𝑇2
𝛿 𝑥¤ , 𝑇𝛿𝑥¤ =

��𝑇2
𝛿 𝑥¤ − 𝑇𝛿𝑥¤

��𝑝 = |sin(𝛿 sin(𝛿𝑥¤ ) − sin(𝛿𝑥¤ |𝑝
≤ |𝛿 sin(𝛿𝑥¤ − 𝛿𝑥¤ |𝑝 = 𝛿𝑝 |sin(𝛿𝑥¤ − 𝑥¤ |𝑝 = 𝛿𝑝𝜗𝜃(𝑇𝑥¤ , 𝑥¤ ).
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Consequently, for every 𝛿 ∈ ]0, 𝛾[, there exists a fixed point for the function𝑇𝛿. However,
and unlike theorem 49, theorem 56 does not allows us to deduce the uniqueness of the
fixed point for the mapping 𝑇 on Υ =

[
0, 𝜋

2

]
.

5.4 APPLICATION

In this section, we derive the conditions under which we can ensure either the
existence of a solution of the Fredholm integral equation or a local solution of the
ordinary differential equations in the 𝑏𝑣(𝜃)-metrics spaces and in particular for
the 𝑏𝑣(𝑠)-metric spaces. First, consider the following Fredholm integral equation
given as follows:

𝑥¤ (𝑡) =
∫ 𝑏

𝑎
𝐾(𝑡 , 𝑢, 𝑥¤ (𝑢))𝑑𝑢 + ℎ(𝑡) for 𝑡 , 𝑢 ∈ [𝑎, 𝑏], (5.7)

where 𝐾, ℎ ∈ 𝐶 ([𝑎, 𝑏], (0,∞)). Assume us define the function 𝜗 : Υ × Υ −→
[0,∞) by

𝜗(𝑥¤ , 𝑦¤ ) = sup
𝑡∈[𝑎,𝑏]

|𝑥¤ (𝑡) − 𝑦¤ (𝑡)|𝑛 , for 𝑛 ≥ 3 is a fixed integer.

Consequently, the pair (Υ, 𝜗) is a complete 𝑏𝑣(𝑠)-metric space with 𝑣 = 𝑛 and
𝑠 = 𝑛𝑛−1 > 1. Applying either theorem 49 with 𝜃(𝑥¤ , 𝑦¤ ) = 𝑠 = 𝑛𝑛−1 > 1 for
𝑥¤ , 𝑦¤ ∈ 𝑋 or theorem 53 with 𝑠 = 𝑛𝑛−1 > 1, we obtain the following result.

Theorem 59. Assume that for all 𝑥¤ , 𝑦¤ ∈ Υ and 𝛼 > 1 a fixed real number, we have

|𝐾(𝑡 , 𝑢, 𝑥¤ (𝑢)) − 𝐾(𝑡 , 𝑢, 𝑦¤ (𝑢))| ≤ 1
𝛼(𝑏 − 𝑎) |𝑥¤ (𝑢) − 𝑦¤ (𝑢)| , (5.8)

for all 𝑡 , 𝑢 ∈ [𝑎, 𝑏]. Then, the integral equation (5.7) has a unique solution.

Proof. First, we define the mapping 𝑇 : Υ −→ Υ as follows: for all 𝑡 ∈ [𝑎, 𝑏]

𝑇𝑥¤ (𝑡) =
∫ 𝑏

𝑎
𝐾(𝑡 , 𝑢, 𝑥¤ (𝑢)𝑑𝑢 + ℎ(𝑡).

Then, 𝑥 is a fixed point of 𝑇 if and only if it is a solution of the integral equation
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(5.7). On the other side, for all 𝑥¤ , 𝑦¤ ∈ [𝑎, 𝑏], we have

|𝑇𝑥¤ (𝑡) − 𝑇𝑦¤ (𝑡)|𝑛 ≤
(∫ 𝑏

𝑎
|𝐾(𝑡 , 𝑢, 𝑥¤ (𝑢)) − 𝐾(𝑡 , 𝑢, 𝑦¤ (𝑢))| 𝑑𝑢

)𝑛
≤

(
1

𝛼(𝑏 − 𝑎) |𝑥¤ (𝑢) − 𝑦¤ (𝑢)| 𝑑𝑢
)𝑛

≤ 1
(𝛼(𝑏 − 𝑎))𝑛 sup

𝑡∈[𝑎,𝑏]
|𝑥¤ (𝑢) − 𝑦¤ (𝑢)|𝑛

(∫ 𝑏

𝑎
𝑑𝑢

)𝑛
≤ 1

𝛼𝑛
𝜗(𝑥¤ , 𝑦¤ ).

By putting 𝜆 = 1
𝛼𝑛 ∈ [0, 1), it follows either from theorem 49 or theorem 53 that

𝑇 has a unique solution. □

Remark 60. It is worth noting that if 𝛼(𝑏 − 𝑎) < 1, then the kernel 𝐾(𝑡 , 𝑠 , 𝑥¤ (𝑠)) is
not necessarily a contraction function with respect to the variable 𝑥. In this case, the
condition (5.8) is weaker than the usual working condition of contraction used in many
papers (see e.g. [11]).

Now Assume us define the metric 𝜗𝜃 : Υ × Υ −→ [0,∞) given by

𝜗𝜃(𝑥¤ , 𝑦¤ ) = sup
𝑡∈[𝑎,𝑏]

|𝑥¤ (𝑡) − 𝑦¤ (𝑡)|𝑛 for 𝑛 ≥ 2 is a fixed integer.

We also consider the function 𝜃 : Υ × Υ −→ [1,∞) defined as follows:

𝜃(𝑥¤ , 𝑦¤ ) = sup
𝑡∈[𝑎,𝑏]

(
𝑛𝑛−1 + |𝑥¤ | + |𝑦¤ |) for all 𝑥¤ , 𝑦¤ ∈ 𝑥¤ and 𝑛 ≥ 2.

Then, (Υ, 𝜗𝜃) is a complete extended polygonal 𝑏-metric space (𝑏𝑣(𝜃)-metric
space for 𝑣 = 𝑛). Hence the following result derives from theorem 56.

Theorem 61. Assume that for all 𝑥¤ , 𝑦¤ ∈ Υ and 𝛼 > 1 a fixed real number, we have

|𝐾(𝑡 , 𝑢, 𝑇𝑥¤ (𝑢)) − 𝐾(𝑡 , 𝑢, 𝑥¤ (𝑢))| ≤ 1
𝛼(𝑏 − 𝑎) |𝑇𝑥¤ (𝑢) − 𝑥¤ (𝑢)| for ever 𝑢, 𝑡 ∈ [𝑎, 𝑏] and 𝑥¤ ∈ 𝑋.

Then, the integral equation (5.7) has at least one solution.

54



CHAPTER 5. SOME FIXED POINT RESULTS IN THE NEW 𝑏𝑣(𝜃)-METRIC SPACES WITH

APPLICATIONS

Proof. We have

��𝑇2𝑥¤ (𝑡) − 𝑇𝑥¤ (𝑡)��𝑛 = |𝑇(𝑇𝑥¤ (𝑡)) − 𝑇𝑥¤ (𝑡)|𝑛 ≤
(∫ 𝑏

𝑎
|𝐾(𝑡 , 𝑢, 𝑇𝑥¤ (𝑢)) − 𝐾(𝑡 , 𝑢, 𝑥¤ (𝑢))| 𝑑𝑢

)𝑛
≤

(∫ 𝑏

𝑎

(
1

𝛼(𝑏 − 𝑎)
)
|𝑥¤ (𝑢) − 𝑦¤ (𝑢)| 𝑑𝑢

)𝑛
≤

(
1

𝛼(𝑏 − 𝑎)
)𝑛

sup
𝑡∈[𝑎,𝑏]

|𝑥¤ (𝑡) − 𝑦¤ (𝑡)|𝑛
(∫ 𝑏

𝑎
𝑑𝑢

)𝑛
≤ 1

𝛼𝑛
sup
𝑡∈[𝑎,𝑏]

|𝑥¤ (𝑡) − 𝑦¤ (𝑡)|𝑛

≤ 1
𝛼𝑛

𝜗𝜃(𝑥¤ , 𝑦¤ ).

By putting 𝜆 = 1
𝛼𝑛 ∈ [0, 1), it follows from theorem 56 that 𝑇 has a solution. □

The same observation of remark 60 may be done.

Now, we apply theorem 56 for the resolution of the differential equation of
first order 𝑥¤ = 𝑓 (𝑡 , 𝑥¤ ), where 𝑓 : 𝐷 = 𝑅 × 𝐸 −→ 𝐸 are bounded mapping, i.e., it
maps bounded sets in 𝐷 to bounded sets in 𝐸, where 𝐸 ⊂ 𝑅. More precisely, we
seek sufficient conditions for the existence of local solutions 𝑥¤ ∈ 𝐶1 (𝐼 , 𝐸), where
𝐼 ⊂ 𝐸 an interval such that 𝑥¤ (𝑡0) = 𝑥¤ 0 where 𝑡0 ∈ 𝐼. By integrating both sides,
any function 𝑥 satisfying the differential equation must also satisfy the integral
equation

𝑥¤ (𝑡) = 𝑥¤ 0 +
∫ 𝑡

𝑡0
𝑓 (𝑢, 𝑥¤ (𝑢))𝑑𝑢. (5.9)

Assume us define the mapping 𝑇 : Υ −→ Υ as follows: 𝑇𝑥¤ (𝑡) = ∫ 𝑡
𝑡0
𝑓 (𝑢, 𝑥¤ (𝑢))𝑑𝑢

for all 𝑡 ∈ 𝐼. Then, 𝑥 is a fixed point of 𝑇 if and only if it is a solution of the
integral equation (5.9). For this, we use the same previous metric 𝜗𝜃(𝑥¤ , 𝑦¤ ) =

sup
𝑡∈[𝑎,𝑏]

|𝑥¤ (𝑡) − 𝑦¤ (𝑡)|𝑛 for 𝑛 ≥ 2 and the function 𝜃 : Υ × Υ −→ [1,∞) defined as

follows: 𝜃(𝑥¤ , 𝑦¤ ) = sup
𝑡∈[𝑎,𝑏]

(
𝑛𝑛−1 + |𝑥¤ | + |𝑦¤ |) for all 𝑥¤ , 𝑦¤ ∈ Υ, where Υ = 𝐶1 (R, 𝐸)

is the set of all differentiable functions on some interval 𝐽 of 𝑅. So we shall use
theorem 56 to establish existence of local solution of this initial value problem.

Theorem 62. Assume 𝑥¤ ∈ Υ be the constant function such that 𝑥¤ (𝑡) = 𝑥¤ 0 for all 𝑡 ∈ 𝑅
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5.4. APPLICATION

and Assume us consider the following initial value problem{
𝑥¤ = 𝑓 (𝑡 , 𝑥¤ )
𝑥¤ (𝑡0) = 𝑥¤ 0.

(5.10)

Where 𝑓 : 𝐷 = 𝑅 × 𝐸 −→ 𝐸 are bounded mapping and 𝐸 ⊂ 𝑅. Assume that for every
function 𝜑 ∈ Υ such that 𝜑(𝑡0) = 𝑥¤ 0, we have

| 𝑓 (𝑡 , 𝑇𝜑(𝑢)) − 𝑓 (𝑡 , 𝜑(𝑢))| ≤ 𝜆 |𝑇𝜑(𝑢) − 𝜑(𝑢)| for every 𝑡 , 𝑢 ∈ 𝐼

where 𝜆 < 1 is a real positive constant and 𝐼 some interval such that 𝑡0 ∈ 𝐼. Then, the
problem (5.10) has at least a solution on some interval 𝐽 ⊆ 𝐼 containing 𝑡0.

Proof. For all 𝜑 ∈ Υ such that 𝜑(𝑡0) = 𝑥¤ 0, we have

��𝑇2𝜑(𝑡) − 𝑇𝜑(𝑡)��𝑛 ≤
(∫ 𝑡

𝑡0
| 𝑓 (𝑢, 𝑇𝜑(𝑢)) − 𝑓 (𝑢, 𝜑(𝑢))| 𝑑𝑢

)𝑛
≤

(∫ 𝑡

𝑡0
𝜆 |𝑇𝜑(𝑢) − 𝜑(𝑢)| 𝑑𝑢

)𝑛
≤ (𝜆(𝑡 − 𝑡0))𝑛 sup

𝑢∈𝐼
|𝑇𝜑(𝑢) − 𝜑(𝑢)|𝑛 .

Hence, 𝜗𝜃(𝑇2𝜑, 𝑇𝜑) ≤ (𝜆(𝑡 − 𝑡0))𝑛 𝜗𝜃(𝑇𝜑, 𝜑) for 𝑛 ≥ 2 a fixed integer. In order
to apply theorem 56, we must have (𝜆(𝑡 − 𝑡0))𝑛 < 1, which leads us to impose
the requirement 𝑡 ∈ ]

𝑡0 − 𝜆−1, 𝑡0 + 𝜆−1 [. From theorem 56, we conclude that the
integral equation have a solution 𝑥¤ ∈ 𝑋 on the interval 𝐽 =

]
𝑡0 − 𝜆−1, 𝑡0 + 𝜆−1 [.

This proves that the initial value problem admits a local solution on the interval
𝐽. □

Remark 63. It is clear that if we impose the well known Cauchy-lipschitz condition for
the function 𝑓 with respect to the metric 𝜗, then we can use similarly either theorem 49
for 𝜃(𝑥¤ , 𝑦¤ ) = 𝑠 = 𝑛𝑛−1 or theorem 53 for 𝑠 = 𝑛𝑛−1 to establish the existence and the
uniqueness of a local solution of the initial value problem (5.9) in the polygonal 𝑏-metric
space.
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Conclusion and perspectives

5.5 CONCLUSION

The study of single-valued and multi-valued fixed points for various types
of contractions in different classes of metric spaces are the focus of this thesis.
In addition to our newly developed class of metrics spaces, 𝑏𝑣(𝑠) and 𝑏𝑣(𝜃), fur-
nished with numerous examples. We have examined the existence of an integral
inclusion’s solution as an application, such as initial value issues, voletra, type
and Fredholm type integral equations.

5.6 PERSPECTIVES

We’ll examine the following problems as examples in the future:

• We will try to apply the obtained results to study the existence of a fixed
point in complex valued polygonal metric spaces

• We intend to explore alternative pairings of the different contractions in
order to enhance our findings and discover fresh ones.
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