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Abstract

In this thesis, we will study some evolution problems that represent some physical phenomena
(Piezoelectric beam, Kirchho¤ beam) with some types of delay (for example, distributed delay,

neutral delay) acting on linear or nonlinear internal feedbacks. We will prove the well-posedness

(existence and uniqueness) of solutions to these systems by semigroup theory or by Faedo�

Galerkin method. With regard to the asymptotic behavior of the solutions, we will get the

exponential decay of solutions, which represents the rapid decrease of energy, by constructing

a Lyapunov functional using the multiplication method. Or we get the blow-up of solutions by

using Georgiev and Todorova�s method.

Keywords: Piezoelectric beam; Kirchho¤beam; Semigroup theory; Faedo�Galerkin method;
Time delay; Lyapunov functional; Exponential decay of solutions; Blow-up of solutions.
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Résumé

Dans cette thèse, nous étudierons des problèmes d�évolution qui représentent certains phénomènes

physiques (poutre piézoélectrique, poutre de Kirchho¤) avec certains types de retard (par ex-

emple, retard distribué, retard neutre) agissant sur des rétroactions internes linéaires ou non

linéaires. Nous démontrerons l�existence et l�unicité des solutions de ces systèmes par la théorie

des semi-groupes ou par la méthode Faedo�Galerkin. En ce qui concerne le comportement

asymptotique des solutions, nous obtiendrons la décroissance exponentielle des solutions, qui

représente la décroissance rapide de l�énergie, en construisant une fonctionnelle de Lyapunov

en utilisant la méthode de multiplication. Ou nous obtenons une explosion des solutions en

utilisant la méthode de Georgiev et Todorova.

Mots-clés: Poutre piézoélectrique; Poutre de Kirchho¤; Théorie des semi-groupes; Méthode
de Faedo-Galerkin; Temps de retard; Fonctionnelle de Lyapunov; Décroissance exponentielle

des solutions; Explosion des solutions.
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اىنيشظغطٍة،  اىؼاسظةاىتً تمثو بؼط اىظٌاىش اىفٍضٌائٍة ) ٌة مشامو اىتطٌساىسٌف نقًٌ بذساسة بؼط  فً ىزه الأغشًحة، 

ػيى ؼمو تش اىمحاٌذ( ٍاىتأخ أً ش اىمٌصعٍ)ػيى سبٍو اىمثاه، اىتأخ اىضمنً شٍ( مغ بؼط أنٌاع اىتأخ Kirchhoff مٍششٌف ػاسظة 

 شبونظشٌة نستخذً حسن ًظغ اىحيٌه ىيزه الأنظمة )ًجٌدىا ًتفشدىا( فٍما ٌخص  .سدًد اىفؼو اىذاخيٍة اىخطٍة أً غٍش اىخطٍة

تحصو ػيى الاظمحلاه الأسً فٍما ٌتؼيق باىسيٌك اىتقاسبً ىيحيٌه، فسن ً .Faedo-Galerkin قاىٍشمٍن-فاٌذً غشٌقةاىمجمٌػة أً 

أً نحصو  .شبـــعاى باستخذاً غشٌقةًرىل  Lyapunov ىٍابٌنٌف ةء داىالانخفاض اىسشٌغ ىيطاقة، من خلاه بنااىزي ٌمثو ىيحيٌه، 

 .Georgiev and Todorova  باستخذاً غشٌقة جٌسجٍٍف ًتٌدًسًفا اىحيٌه ػيى تفجٍش
 

 

 ؛مٌػةــــــو اىمجــــــــشٌة شبــــــنظ ؛Kirchhoff ٌفــــــــششــمٍ  ػاسظة ؛ةـــطٍــــظغيشـــاىن اىؼاسظة: المفتاحية الكلمات

 ؛ً ىيحيٌهــــاىتناقـص الأس ؛Lyapunov ٌفــابٌنــىًٍظٍفة  ؛تــــش اىٌقـــتأخٍ ؛Faedo-Galerkin ٍشمٍنــــــقاى ذًـــة فاٌـــغشٌق

 يٌه.ــإنفجاس اىح
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Introduction

I n physical phenomena and systems, time delay refers to the time interval between the occur-
rence of a speci�c event and the appearance of its e¤ect or a change in the system. In general,

time delay re�ects the time required for information transmission or change from one point to

another in a physical system and a¤ects response speed and event timing within the system. For

example, continuous combustion systems, including domestic and industrial burners, steam and

gas turbines and waste incinerators, are widely used in power generation and heating. There

are two major dynamics in a combustion system: �ame dynamics and acoustic wave dynamics.

They are coupled to form a loop, as shown in the next �gure. Due to wave propagation, there

is a delay in the wave dynamics. Delays also appear in the measurement and actuator units of

the system

Figure 1 : Dynamics in a combustion system
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Introduction 2

For more examples, we direct the reader to reference [103].

I n the context of mathematical problems, the term "delay" typically refers to a phenomenon

known as delay di¤erential equations (DDEs) or functional di¤erential equations (FDEs). It
is employed in mathematical models that assume a speci�ed behavior or phenomenon depends

on both the current and past states of a system [40]. For this reason, functional di¤erential

equations are more applicable than ordinary di¤erential equations (ODE). The simplest type

of functional di¤erential equations is of the form:

x0 (t) = g (t; x (t) ; x (t� r)) :

Delay di¤erential equations arise in various �elds of science and engineering, such as biology,

physics, economics, and control theory [1, 2, 3, 15, 82, 103]. Solving delay di¤erential equations

can be challenging due to the need to consider past values of the variables. Numerical methods,

such as the method of steps or various approximations, are often employed to approximate the

solutions to these equations. Additionally, stability analysis and the existence of solutions are

important aspects when dealing with delay di¤erential equations. Datko in [20] proved that

uniform asymptotic stability is not necessarily preserved under small perturbations of the delay

for in�nite dimensional problems with �nite lags. Also, Datko et al. [21] considered the equation

utt � uxx + 2aut + a2u = 0; 0 < x < 1; t > 0; (1)

with time delays in boundary feedback given by(
u (0; t) = 0;

ux (1; t) = �kut (1; t� ") ; t > 0:
(2)

By using some lemmas, an example was given that showed this time delay can destabilize the

system (1)-(2) which, in the absence of delays, is uniformly asymptotically stable. Xu et al. in

[97] were interested in studying the following wave system8>>>>>><>>>>>>:

wtt (x; t)� wxx (x; t) = 0;

w (0; t) = 0;

wx (1; t) = �k�wt (1; t)� k (1� �)wt (1; t� �) ;

w (x; 0) = w0 (x) ; wt (x; 0) = w1 (x)

wt (1; t� �) = f (t� �)

in (0; 1)� (0;1) ;
in (0;1) ;
t � 0;

t 2 (0; �) :

(3)

The following cases are proven:

� System (3) is exponentially stable if � > 1
2
:

� System (3) becomes unstable when � < 1
2
:

� If � = 1
2
and � 2 (0; 1) is rational, so the system is unstable.
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Introduction 3

� If � = 1
2
and � 2 (0; 1) is irrational, so the system (3) is asymptotically stable.

In [1] Agrawal et al. present a stability analysis of a single-degree-of-freedom system with

time-delayed feedback. And proved by numerical simulation that when the time delay is close to

its maximum allowable limit, signi�cant control degradation occurs or may lead to instability.

A compensation technique was also introduced by modeling time delay as transportation lag,

which ensures the stability of their controlled system. Nicaise and Pignotti [66] studied a

wave equation problem with a delay term in the boundary or internal feedbacks. In the case

�2 < �1, established the exponential stability of the solution. If �2 � �1, the authors showed the

existence of an explicit sequence of arbitrarily small delays that lead to the destabilization of the

system. Also, Nicaise and Pignotti in [67] considered the wave equation with the boundary or

internal distributed delay by introducing appropriate energy, and by proving some observability

inequalities, proved the exponential stability of the solution. For the internal distributed delay,

and in the case where some assumptions are not veri�ed, showed that this time delay leads to

instability. We direct the reader to the following references [19, 34, 69, 78, 86, 93] for more

results related to the instability of some systems due to the time delay.

I Stability of some systems with some types of delays
B ecause delay is the source of instability. In [16], the stability of solutions for a one-

dimensional model of a Rao-Nakra sandwich beam with Kelvin-Voigt damping and a time

delay was studied by Cabanillas et al. The well-posedness of the problem is established by

applying the Lumer-Phillips theorem. The exponential stability is then proven by utilizing the

Gearhart-Huang-Prüss� theorem. Feng and Raposo et al. in their search [28], considered in

(0;�) � (0;1) the Rao-Nakra sandwich beam equation with time-varying weight and time-

varying delay8><>:
�1h1utt � E1h1uxx � k (�u+ � + �wx) + �1 (t)ut + �2 (t)ut (t� � 1 (t)) = 0;

�3h3�tt � E3h3�xx + k (�u+ � + �wx) + ~�1 (t) �t + ~�2 (t) �t (t� � 2 (t)) = 0;

�hwtt + EIwxxxx � �k (�u+ � + �wx)x + �̂1 (t)wt + �̂2 (t)wt (t� � 3 (t)) = 0:

By utilizing the semigroup of the linear operator and employing the Kato variable norm tech-

nique, they demonstrated that the system is globally well-posed. When the coe¢ cients of delay

are small, they establish an exponential decay of the system by using the multiplier approach

(the �rst method to prove stability). In the last, they showed the inequality of internal observ-

ability and the equivalence between stabilization and observability (the second method to prove

stability). Feng and Almeida Junior et al. [30] were interested in the asymptotic behavior of the

following Bresse-Timoshenko type system with time-dependent delay terms acting on angular

rotation (
�1ytt � � (yx +  )x = 0; in ]0;�[� ]0;1[ ;
��2yttx � b xx + � (yx +  ) + �1 t + �2 t (t� � (t)) = 0:

Introduction



Introduction 4

Through the introduction of a suitable Lyapunov functional and irrespective of any relationship

between wave propagation velocities, exponential stability was proven under some assumptions.

Finally, this problem was studied again in the case of time-dependent delay and viscous damping

acting on vertical displacement, yielding the same results. Feng and Li [26] considered the

following nonlinear viscoelastic Kirchho¤ plate equation with a time delay term in the internal

feedback (
utt +�

2u� divF (ru)� � (t)
R t
0
g (t� s)�2u (s) ds+ �1 jutj

m�1 ut

+�2 jut (t� �)jm�1 ut (t� �) = 0; (x; t) 2 
� R+:

By using the energy perturbation method and under suitable assumptions, the general decay

of the solution for this problem was established. In the presence of delay feedback, Komornik

and Pignotti in [47] considered the Korteweg-de Vries-Burgers (KdV-Burgers) equation(
ut + uxxx � uxx + �0u+ �u (t� �) + uux = 0;

u (x; s) = u0 (x; s) ;

in R� (0;1) ;
in R� [�� ; 0] ;

together with its linear version, i.e. without the term uux. The well-posedness of the models

and exponential decay estimates were proven under appropriate conditions for the damping

coe¢ cients. Their arguments relied on a Lyapunov functional approach and semigroup the-

ory. Mpungu and Apalara [57] investigated a system of laminated beams that incorporates an

internal constant delay8><>:
�wtt +G ( � wx)x + �wt (t� �) = 0;

I� (3stt �  tt)�D (3sxx �  xx)�G ( � wx) = 0;

3I�stt � 3Dsxx + 3G ( � wx) + 4s+ 4�st = 0;

where (x; t) 2 (0; 1) � (0;1) : The dissipation through structural damping at the interface
was proven to be su¢ ciently strong to achieve exponential stabilization of the system under

suitable assumptions on coe¢ cients of wave propagation speed and delay feedback. In [9]

Almeida Júnior et al. considered a truncated version of the Bresse-Timoshenko equations with

delay and viscous damping acting on displacement(
�1ytt � k (yx +  )x + �1yt + �2yt (x; t� �) = 0; in ]0;�[� ]0;1[ ;
��2yttx � b xx + k (yx +  ) = 0; in ]0;�[� ]0;1[ ;

with the homogeneous boundary conditions of Dirichlet and the following initial conditions

y (x; 0) = y0 (x) ; yt (x; 0) = y1 (x) ;  (x; 0) =  0 (x) ; x 2 ]0;�[ ;

the same equations with delay and viscous damping acting on angular rotation, equipped with

the same previous conditions, were considered. Under certain assumptions and using the Lya-

punov functional technique, the exponential decay is obtained in both cases, regardless of any

Introduction



Introduction 5

relationship between the system�s coe¢ cients. Ouchenane and Zennir in [72] considered a one-

dimensional porous-elastic system that incorporates both memory and distributed delay terms

in the second equation with second sound. Although the delay is a source of instability, a

general decay result was demonstrated under some conditions on the relaxation function. In

[48] Khochemane et al. considered a one-dimensional porous-elastic system with distributed

delay acting in the second equation. Under some assumptions, the existence and uniqueness of

this system were proven by using semi-group theory (Hille-Yosida theorem). Also, exponential

stability is obtained by using the energy method. Douib et al. [22] by introducing a suitable

Lyaponov functional, proved exponential stability for a �exible structure with distributed delay

and fourier�s type heat conduction. The Bresse system with delay terms in the internal feed-

backs acting in the �rst, third equations and a distributed delay term in the second equation

was studied by Bouzettouta et al. [10] through some theories of semigroup, proved the global

existence of solution. Furthermore, the stability of solutions was studied using the multiplier

method. Fares Yazid et al. in their paper [102], studied a one-dimensional linear thermoelastic

(Cattaneo�s law) system of Timoshenko type with distributed delay term. Through an appro-

priate assumption between the weight of the damping and the weight of the delay and using

the energy method, exponential stability was proven without the usual assumption on the wave

speeds.
Among the types of functional di¤erential equations (FDEs), we �nd �Neutral Delay Dif-

ferential Equations�(NDDEs), where this type of equation relies on both past and present
values of the function, it also incorporates derivatives with delays [35, 40, 41, 42, 55]. We

provide the reader with some illustrative examples

[u (t)� au (t� �)]0 = f (t; u; u (t� s)) ;

u0 (t; x) = �u+ f (t; u; u0 (t� � ; x)) :

In fact, neutral delays are commonly applied in the study of vibrating masses attached to an

elastic bar and also in some variation problems, heat exchanges, electrodynamics, biological

sciences, population ecology, etc [40, 95]. While minor delays can lead to instability in some

systems, �large�neutral delays can stabilize certain systems. In fact, intentional incorporation of

neutral delays into a system is done at times to enhance its performance, structure, or stability

[89]. In [88], Tatar considered in [0; 1] � [0;1) the damped wave equation problem with the

inclusion of a neutral delay8><>:
utt � uxx + ut +

R t
0
h (t� s)utt (s) ds = 0;

(u; ut) (0; x) = (u0; u1) (x) :

u (t; 0) = 0; u (t; 1) = 0:

(4)

An exponential stability result of (4) was shown in some cases on the kernel h: Mpungu and

Apalara, in their research [58] proved the exponential stability of a laminated beam when a
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neutral delay is present. In [0; 1] � [0;1), the thermoelastic laminated system subjected to a

neutral delay was investigated by Seghour et al. [84]8>>>><>>>>:
�wtt +G ( � wx)x + Awt = 0;

I� (3stt �  tt)�G ( � wx)� (3s�  )xx + ��x = 0;

3I�

h
st +

R t
0
h (t� s) st (r) dr

i0
+ 3G ( � wx) + 4s� 3sxx = 0;

�t � ��xx + � (3s�  )tx = 0;

with the boundary and initial conditions8>>><>>>:
 = s = �x = wx = 0; in the case x = 0;

� = w = sx =  x = 0; in the case x = 1;

(w; ; s; �) (x; 0) = (w0;  0; s0; �0) ; x 2 [0; 1] ;
(wt;  t; st) (x; 0) = (w1;  1; s1) :

By employing the energy method with certain conditions on the kernel h and system parameters,

both exponential and polynomial stability were demonstrated. For further results concerning

neutral delay problems with the occurrence of delays in the second derivative (see [23, 51, 62, 87]

and the references therein).

I Blow-up of solution of some systems with some types of delays

A nonlinear wave equation with delay was examined by Ka�ni and Messaoudi in [44] and

demonstrated that the solution of this problem blows up in a �nite time under appropriate

conditions for the initial data, the nonlinear source term, the weights of delay, and the damping

term. Also, Ka�ni and Messaoudi in [46] examined the following delayed wave equation with a

logarithmic nonlinear source term

utt ��u+ �1ut + �2ut (t� �) = u jujp�2 ln jujk ; x 2 
 and t > 0;

under the conditions 8><>:
u (x; t) = 0; x 2 @
;
ut (x; t� �) = f0 (x; t� �) ; in (0; �) ;

u (x; 0) = u0 (x) ; ut (x; 0) = u1 (x) ; in 
:

The local existence result has been proven using semigroup theory. Furthermore, the blow-up

of solutions in �nite time with nonpositive initial energy is demonstrated. Yüksekkaya et al. in

their work [98] focused on the investigation of the higher-order Kirchho¤-type equation with a

delay term in a bounded domain. Firstly, the global existence of the solution was established.

Next, the decay of solutions was discussed using Nakao�s technique, considering both polynomial

and exponential decays. Additionally, they established the blow-up result for negative initial

energy under suitable conditions.
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Yüksekkaya and Pi̧skin in [100] considered the following nonlinear viscoelastic plate equation

with a distributed delay

utt+�
2u�

Z t

0

g (t� s)�2u (s) ds+�1ut+

Z �2

�1

j�2 (q)jut (t� q) dq = b jujp�2 u; x 2 
 and t > 0;

with the conditions 8><>:
u = @u

@�
= 0; x 2 @
;

ut (x;�t) = f0 (x; t) ; (x; t) 2 
� (0; � 2) ;
u (x; 0) = u0 (x) ; ut (x; 0) = u1 (x) ; in 
:

A blow-up of solutions was successfully obtained under some conditions. Fatima Zohra Mahdi

et al. [104] the focus of their paper is to investigate the initial boundary value problem for a

system of viscoelastic wave equations of Kirchho¤ type with a delay term in a bounded domain.

Under some suitable assumptions, the energy decay rate is proved by Nakao�s technique. In

addition, the blow up of solutions is obtained in di¤erent states on the initial energy.

I The concept of stability in dynamic systems

Dynamic systems, also known as dynamical systems, refer to mathematical models used to

describe and analyze the behavior of systems that evolve or change over time. These systems

can be found in various �elds, including physics, engineering, biology, economics, and social

sciences [74].
In the dynamic systems, understanding the behavior and properties of various states is of

utmost importance. Some concepts that play a fundamental role in analyzing system dynamics

are equilibrium, stability, asymptotic stability, instability, and system explosions. Stable equi-

librium points (also known as rest points or stationary points) are characterized by a system

that returns to its original state after experiencing small disturbances. In other words, if the

system is slightly displaced from equilibrium, it will eventually return to the same equilibrium

state.

Example 0.1 A typical example that illustrates this situation is the pendulum. Pendulums
with a rigid rod have two equilibrium points. One equilibrium point occurs when the rod is in

a vertical position, with the mass hanging downward, the other is when the mass is up.

Stability is the property of a system to maintain or return to equilibrium after experiencing

a disturbance. A stable system resists change and exhibits a tendency to restore its original

state. Stability is often evaluated by examining the system�s response to small perturbations

or deviations from the equilibrium point. If the system�s response damps out over time, it is

considered stable.

Introduction
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Example 0.2 As an illustrative example, considering the �rst equilibrium point of the pen-

dulum (when the rod is vertical and the mass is hanging downward) and assuming there is

no friction, a small push from this resting position will lead to sustained oscillations with a

bounded amplitude around the equilibrium. This implies that the �rst equilibrium point is

stable [43].

Asymptotic stability goes one step further than stability. It implies that a disturbed sys-
tem not only returns to equilibrium but also the solutions or trajectories starting nearby to

it converge (as time approaches in�nity) back to it. In other words, the system�s response

converges towards the equilibrium point, resulting in a progressively diminishing deviation.

Asymptotic stability is a desirable property as it guarantees long-term stability and resilience

to disturbances.

Example 0.3 Taking the pendulum example once more, if we introduce friction into the prob-
lem, will result in damped oscillations around the equilibrium point. Ultimately, the pendulum

will cease its oscillations and revert back to its resting position.

On the other hand, instability refers to a system�s inability to return to equilibrium after

a disturbance. Instead of converging towards a steady state, an unstable system exhibits an

ever-increasing deviation from the original state. Small perturbations can trigger signi�cant

changes, leading to unpredictable behavior and often resulting in chaotic or explosive dynamics.

Example 0.4 The second equilibrium point of the pendulum with friction, i.e., where the mass
is positioned upwards, is considered unstable. If it is slightly disturbed from its equilibrium

position, it does not return to that position.

System explosions occur when a system becomes highly unstable, leading to an exponential

growth of its variables or components. System explosions are undesirable and often indicate a

breakdown in the system�s structure or control mechanisms.
Understanding these concepts and their implications is crucial for engineers, scientists, and

analysts working with dynamic systems. By assessing equilibrium, stability, asymptotic stabil-

ity, instability, and the risk of system explosions, experts can design robust and reliable systems,

predict their behavior, and identify potential vulnerabilities or failure modes.

Introduction
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I Description and objective of the thesis

T he main goal of this thesis is to study the well-posedness and asymptotic behavior (expo-

nential decay and blow-up result) of solutions for some evolution problems with di¤erent types

of boundary conditions and delay terms. This work consists of �ve chapters:

� In Chapter 1, we focused on some mathematical principal concepts, some theorems and
lemmas on distributions, Lebesgue and Sobolev spaces, which we need in the proofs of

our next results.

� In Chapter 2, we study a one-dimensional system of piezoelectric beams with a dis-

tributed delay term. The existence of solutions has been obtained by using semigroup

theory. Also, by constructing a suitable Lyapunov functional, the exponential stability

result of the solution has been established independent of any conditions on the wave

speeds
�q

�
�
;
q

�
�

�
or any system parameters.

� In Chapter 3, we focus on a one-dimensional system of piezoelectric beams with dis-

tributed delay acting in the mechanical equation, where magnetic and thermal e¤ects

governed by Maxwell�s equations and Fourier�s law are taken into account. Using the

same methods and assumptions that we used in chapter 2, we prove exponential stability.

Finally, the results are compared to those of the electrostatic case (the magnetic e¤ects

are negligible).

� In Chapter 4, we will prove the global existence, uniqueness and exponential energy de-
cay of a one-dimensional system of fully dynamic and electrostatic or quasi-static piezo-

electric system with distributed delay of neutral type acting on mechanical equation

without adding any damping term. Under some assumptions and by using the classical

Faedo-Galerkin approximations along with some a priori estimates, we �rst prove the

global existence and uniqueness of the system. Next, using the energy method and con-

structing a Lyapunov functional we establish that this system is exponentially stable.

Our results are associated with speci�c assumptions only concerning the kernel h. In the

end, we get the same results in the case quasi-static or electrostatic system.

� In Chapter 5, we consider some problem of Kirchho¤ type with variable exponents

and time delay. Under suitable hypotheses, the blow-up of solutions is proved by using

Georgiev and Todorova�s method.

Introduction
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IMethodology

I n this thesis, we utilize the theory of semigroup to prove the existence and uniqueness (well-
posedness) of solutions related to our systems. Particularly, the Hille-Yosida theorem is a

fundamental and powerful tool to �nd the existence, uniqueness and regularity of the solutions

of a stationary di¤erential equation(
U 0(t) = AU(t); t 2 (0;1);

U (0) = U0;

where A : D(A) � H �! H and H generally called the energy space. Or we will adopt

Faedo-Galerkin method to show the existence of solutions.
For the stability results, we employ the multiplier technique to construct the Lyapunov

function L that is equivalent to the energy E of the solution. This implies the existence of two

positive constants, c1 and c2 such that

c1E (t) � L (t) � c2E (t) ; 8t � 0: (5)

For exponential stability, it is su¢ cient to establish that

L0 (t) � �cE (t) ; 8t 2 [0;+1[ : (6)

Where c > 0: By introducing the integral on (6) over the interval (0; t) and utilizing the

equivalence between the Lyapunov function and energy, as indicated in the inequality (5), we

reach the desired result of exponential stability (exponential decay of solutions or exponential

energy decay). In fact, the main di¢ culty lies in determining the appropriate Lyapunov function

that guarantees us a stability result.

Remark 0.1 There are other types of stability, that we mention some of them

� Strong stabilization this means E (t) �!
t!1

0:

� Polynomial stabilization. For example E (t) � ct�m; c;m > 0; 8t > 0:

� Logarithmic stabilization. For example E (t) � c (log (t))�m ; c;m > 0; 8t > 0:

For the blow-up result, we employ the Georgiev-Todorova method [37], which is based on

searching for 0 < � < 1 and " > 0 in such a way that the functional

L (t) = [�E (t)]1�� + "

Z



utudx;

veri�es an inequality of the form

L0 (t) � �Lq (t) ; t � 0; q > 1:

Introduction
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This inequality will indeed lead to an explosion in �nite time.
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CHAPTER 1

Preliminaries

T he primary aim of this chapter is to introduce several fundamental mathematical concepts,

some theorems, de�nitions and lemmas on distributions, Lebesgue and Sobolev spaces that we

may need in the next chapters. These spaces are de�ned over an arbitrary domain 
 � Rn.

1.1 Spaces of test functions and distributions

De�nition 1.1 Let 
 � Rn, if u is a function de�ned on 
, we de�ne the support of u to be
the set

supp(u) = fx 2 
 : u (x) 6= 0g:

De�nition 1.2 Let 
 be a domain in Rn. For any nonnegative integer m; let Cm (
) represent
the vector space consisting of all functions � along with all their partial derivativesD�� of orders

j�j � m, are continuous on 
. So that � = (�1; :::; �n) 2 Nn and(
j�j = �1 + :::+ �n;

D�� = @j�j�
@x

�1
1 :::@x�nn

:

De�nition 1.3 We denote by D (Rn), or simply D, the set of in�nitely di¤erentiable functions
with bounded support

D = f' 2 C1 : supp ' is boundedg :

This set is called the base space, and its elements are called base functions (or test functions).

Note that D is an in�nite-dimensional vector space.

De�nition 1.4 We say that a sequence of functions ('k) 2 D converges in D to a function

' 2 D if:

12
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(i) All the supports of 'k are contained within the same compact set K.

(ii) For every j 2 N, 0 � j � m; the sequence of derivatives ('(j)k ) converges uniformly to

'(j) on K.

De�nition 1.5 A distribution T is de�ned as a linear continuous functional on D.

(i) A linear functional means that for any '1; '2 2 D and �; � 2 C, we have:

hT; �'1 + �'2i = � hT; '1i+ � hT; '2i :

Instead of linear functional, we also use the term linear form.

(ii) Continuity means that if the sequence ('k) converges in D to ', then hT; 'ki converges
in the usual sense to hT; 'i.

We also say that a linear functional on D de�nes a distribution if, for any sequence ('k) 2 D
that converges in D to zero, the sequence hT; 'ki converges in the usual sense to zero.

Proposition 1.1 A linear functional on D is a distribution if and only if, for every compact

K and for every function ' 2 D with supp ' � K, there exists a constant C > 0 and an integer

m such that:

jhT; 'ij � C
mX
j=0

sup
x2K

��'(j) (x)�� :
De�nition 1.6 The derivative T 0

of a distribution T is de�ned as the functional determined

by the relation

hT 0; 'i = �hT; '0i ; 8' 2 D

Example 1.1 The derivative of the Heaviside function, de�ned by

H (x) =

(
0 if x < 0;

1 if x > 0;

determines a distribution denoted H. The derivative of H(x) does not exist at the point

x = 0. But in the sense of distributions, we have for ' 2 D

hH 0; 'i = �hH;'0i = �
Z 1

0

'0 (x) dx = ' (0) = h�; 'i ;

because ' (+1) = 0. Therefore, H 0 = �.

1.1. Spaces of test functions and distributions
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1.2 Lebesgue and Sobolev Spaces

In this part, we introduce Lebesgue and Sobolev spaces of integer order and establish some of
their most important properties.

1.2.1 The Lp (
) spaces

De�nition 1.7 (The space Lp (
) [4]) Let 
 be a domain in Rn and let p be a positive
number. We denote by Lp (
) the class of all measurable functions u de�ned on 
 for whichZ




ju (x)jp dx <1: (1.1)

De�nition 1.8 (The Lp norm [4]) the functional k:kp de�ned by

kukp =
�Z




ju (x)jp dx
� 1

p

;

is a norm on Lp (
) provided 1 � p < 1. (It is not a norm for values of p in the range

0 < p < 1).

De�nition 1.9 (The space L1 (
)[4]) L1 (
) denotes the measurable real valued functions
that are essentially bounded (bounded except on a set of measure zero). For u 2 L1 (
), we

de�ne the norms

kuk1 = esssup
x2


ju (x)j = inf fM : � fx : u (x) > Mg = 0g ;

is a norm on L1 (
).

Theorem 1.1 ([4]) Lp (
) is a Banach space if 1 � p � 1.

Corollary 1.1 ([4]) L2 (
) is a Hilbert space with respect to the inner product given by:

hu; �i =
Z



u (x) � (x)dx:

Theorem 1.2 ([4]) Lp (
) is separable if 1 � p <1.

Theorem 1.3 (Density theorem [25]) D (
) = C10 (
) is dense in L
p (
) if 1 � p <1.

Theorem 1.4 ([4]) Lp (
) is re�exive if and only if 1 < p <1.

Theorem 1.5 (The Dominated Convergence theorem [4]) Let A � Rn be measurable,
and let ffjg be a sequence of measurable functions converging to a limit pointwise on A. If
there exists a function g 2 L1 (A) such that

jfj (x)j � g (x) ;

1.2. Lebesgue and Sobolev Spaces
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for every j and all x 2 A, then

lim
j!1

Z
A

fj (x) dx =

Z
A

lim
j!1

fj (x) dx:

Theorem 1.6 (Fubini�s theorem [4]) Let f be a measurable function on Rm+n and suppose
that at least one of the integrals

I1 =

Z
Rn+m

jf (x; y)j dxdy;

I2 =

Z
Rm

�Z
Rn
jf (x; y)j dx

�
dy;

I3 =

Z
Rn

�Z
Rm
jf (x; y)j dy

�
dx;

exists and is �nite. For I2, we mean by this that there is an integrable function g on Rn such
that g(y) is equal to the inner integral for almost all y, and similarly for I3. Then

(a) f(:; y) 2 L1 (Rn) for almost all y 2 Rm.

(b) f(x; :) 2 L1 (Rm) for almost all x 2 Rn:

(c)
R
Rm f(:; y)dy 2 L

1 (Rn) :

(d)
R
Rn f(x; :)dx 2 L

1 (Rm) :

(e) I1 = I2 = I3:

1.2.2 The Lp(0; T ;X) spaces

De�nition 1.10 Let �1 � a < b � +1 and X be a Banach space with the norm denoted

by k:kX . We de�ne the spaces Lp (a; b;X) ; 1 � p <1 and L1 (a; b;X) respectively, as follows

Lp (a; b;X) =

�
u : (a; b)! X measurable, where

Z b

a

ku (:)kPX dt < +1
�
;

and

L1 (a; b;X) =

(
u : (a; b)! X measurable, where ess sup

t2(a;b)
ku (:)kX < +1

)
:

The space Lp (a; b;X) is a Banach space with respect to the norm

kukLp(a;b;X) =

8><>:
�R b

a
ku (t)kPX dt

� 1
p
; if 1 � p <1;

ess sup
t2(a;b)

ku (t)kX ; if p =1:

Naturally, we have

Lp (a; b;Lp (
)) = Lp ((a; b)� 
) ; 1 � p � 1:

1.2. Lebesgue and Sobolev Spaces
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1.2.3 The Wm;p (
) spaces

De�nition 1.11 (Sobolev spaces [4]) For any positive integer m and 1 � p � 1 we con-

sider the vector space

Wm;p (
) �
�
u 2 LP (
) : D�u 2 LP (
) for 0 � j�j � m

	
;

where D�u represents the distributional or weak partial derivative. Equipped with the norm

jjujjm;p =

8><>:
�P

0�j�j�m kD�ukpp
� 1
p

if 1 � p <1;

max
0�j�j�m

kD�uk1 if p =1;
(1.2)

called Sobolev space over 
:

Theorem 1.7 ([4]) Wm;p (
) equipped with the norm (1.2) is a Banach space.

Lemma 1.1 ([4]) Let u 2 L1loc (
) satisfy
R


u (x)� (x) dx = 0 for every � in D (
). Then

u(x) = 0 a.e. in 
.

De�nition 1.12 (Compact sets [4]) A subset A of a normed space X is considered compact

if every sequence of points in A contains a subsequence converging inX to an element belonging

to A. This de�nition is equivalent to the compactness de�nition in a general topological space.

Remark 1.1 Compact sets are both closed and bounded. However, closed and bounded sets
may not necessarily be compact unless X is �nite dimensional.

De�nition 1.13 (precompact sets [4]) A set A in space X is de�ned as precompact if its

closure, denoted by �A is a compact set in the norm topology of X.

De�nition 1.14 A set A is termed weakly sequentially compact if each sequence in A has a

subsequence that weakly converges in X to a point belonging to the set A. The re�exivity of a

Banach space can be characterized in terms of this property.

De�nition 1.15 (Imbeddings) We say the normed spaceX is imbedded in the normed space

Y , and we write X ,! Y to designate this imbedding, if these conditions are satis�ed:

(i) X is a vector subspace of Y .

(ii) The operator I : X ! Y de�ned by Ix = x for all x 2 X is continuous.

Since I is linear, (ii) is equivalent to the following relationship

9M 0 > 0 : kIxkY �M 0 kxkX 8x 2 X:

We say that X is compactly imbedded in Y if the imbedding operator I is compact.

1.2. Lebesgue and Sobolev Spaces
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De�nition 1.16 (Closed operator [49]) Let X and Y are Banach spaces and D (T ) � X a

subspace. A linear operator T : D (T )! Y is called closed if, for each sequence fxngn � D (T )

check (
xn

X! x;

Txn
Y! y;

this imply x 2 D (T ) and Tx = y:

1.3 Some important inequalities

Theorem 1.8 (Hölder�s inequality [4]) Let 1 < p < 1 and let p0 denote the conjugate

exponent de�ned by

p0 =
p

p� 1 that is
1

p
+
1

p0
= 1;

which also satis�es 1 < p0 <1. If u 2 Lp (
) and � 2 Lp0 (
), then u� 2 L1 (
), andZ



ju (x) � (x)j dx � kukp k�kp0 :

Remark 1.2 Holder�s inequality for L2 (
) is just the well-known Cauchy-Schwarz inequality

jhu; �ij � kuk2 k�k2 :

Theorem 1.9 (Poincaré�s inequality[11]) Assuming I is a bounded interval, then there ex-
ists a constant C (which depends on the �nite length of I) such that

kukW 1;p(I) � C ku0kLp(I) 8u 2 W 1;p
0 (I) : (1.3)

Remark 1.3 Through (1.3) we conclude that on W 1;p
0 , the quantity

u0
Lp(I)

is a norm equi-

valent to the W 1;p (I) norm.

Theorem 1.10 (Young�s inequality [25]) Let 1 < p; q <1, 1
p
+ 1

q
= 1 and a; b > 0: Then

ab � ap

p
+
bq

q
:

Theorem 1.11 (Young�s inequality with " [25]) Let 1 < p; q < 1, 1
p
+ 1

q
= 1 and a; b >

0: Then for any " > 0;

ab � "ap + C (") bq;

where

C (") =
1

q ("p)
q
p

:

For p; q = 2, the inequality takes the form

ab � "a2 +
b2

4"
;

1.3. Some important inequalities
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Proof. Write

ab =
�
("p)

1
p a
� b

("p)
1
p

!
;

and apply Young�s inequality.

Lemma 1.2 (Gronwall inequality [105]) Let d1;d2 > 0 and f is a nonnegative integrable

function. If

f (t) � d1 + d2

Z t

0

f (s) ds;

then

f (t) � d1e
d2t for 0 � t � T:

1.4 Some results on the existence and uniqueness

In this section, our focus will be on providing basic de�nitions and presenting important results

related to the existence and uniqueness of solutions.

De�nition 1.17 Let H be a Hilbert space. A bilinear form ~a : H �H ! R is said to be

(i) continuous if

9c > 0 : j~a (u; �)j � c kukH k�kH 8u; � 2 H;

(ii) coercive if

9� > 0 : ~a (�; �) � � k�k2H 8� 2 H:

Lemma 1.3 (Lax-Milgram lemma [11]) Consider a bilinear form ~a(�;�) de�ned on a Hilbert
space H, which is equipped with the norm k�kH , and the following properties are satis�ed

i) ~a(�;�) is continuous and coercive.

ii) The mapping ~L : H ! R is linear continuous, i.e 92 > 0 such that
���~L (�)��� � 2 k�kH 8� 2

H:

Then there exists a unique element ~u 2 H such that

~a (~u; �) = ~L (�) 8� 2 H:

1.4. Some results on the existence and uniqueness
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1.4.1 Some theory of semi-groupe

De�nition 1.18 ([73]) Let X be a real or complex Banach space, and X� be its dul. We

denote the value x� 2 X� at x 2 X by hx�; xi or hx; x�i : For every x 2 X we de�ne the duality

set F (x) � X� by

F (x) =
�
x� 2 X� : hx�; xi = kxk2 = kx�k2

	
:

De�nition 1.19 ([73]) A linear operator A : D (A) � X ! X is dissipative if, for every

x 2 D (A) there exists x� 2 F (x) such that

Re hAx; x�i � 0:

Remark 1.4 ([92]) In the case in which X = H is a real Hilbert space with an inner product

h:; :iH , a linear operator A : D (A) � H ! H is dissipative if

hAx; xi � 0 8x 2 D (A) :

De�nition 1.20 ([11]) A linear operator A : D (A) � X ! X is said to be monotone if the

operator (�A) is dissipative, this property is expressed by

Re hAx; x�i � 0 8x 2 D (A) :

Remark 1.5 According to some authors, A is accretive or �A is dissipative is the same thing.

De�nition 1.21 ([92]) A collection fS(t)gt�0 of bounded linear operators in a Banach space
X into X is a semigroup of linear operators on X, or simply semigroup if:

(i) S (0) = I

(ii) S (t+ s) = S (t)S (s) for each t; s � 0:

If, in addition, it ful�lls the condition of continuity at t = 0;

lim
t!0

S (t) = I;

the semigroup is termed uniformly continuous.

De�nition 1.22 ([92]) The in�nitesimal generator of the semigroup of linear operators fS(t)gt�0
is the operator A : D (A) � X ! X; which is de�ned by

D (A) =

�
x 2 X : 9 lim

t!0

S (t)x� x

t

�
;

and

Ax = lim
t!0

S (t)x� x

t
:

1.4. Some results on the existence and uniqueness
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Remark 1.6 ([92]) If A : D (A) � X ! X is the in�nitesimal generator of a semigroup of

linear operators, then D(A) is a vector subspace of X and A is a linear operator that may be

unbounded.

Theorem 1.12 ([92]) A linear operator A : D (A) � X ! X is the generator of a uniformly

continuous semigroup if and only if the domain D(A) equals the space X and A is bounded.

De�nition 1.23 ([92]) A semigroup of linear operators fS(t)gt�0 is called a C0-semigroup, or
semigroup of class C0, if

lim
t!0

S(t)x = x 8x 2 X:

De�nition 1.24 A C0-semigroup fS(t)gt�0 is termed a C0-semigroup of contractions, or of
nonexpansive operators, if

kS (t)kL(X) � 1:

Where L (X) represents the set of all linear bounded operators from X to X.

Theorem 1.13 (Hille-Yosida [92]) The linear operator A : D (A) � X ! X is considered

as the in�nitesimal generator of a C0-semigroup of contractions if and only if

(i) A is densely de�ned and closed.

(ii) (0;1) � � (A) and for each � > 0

kR (�;A)kL(X) �
1

�
:

where � (A) denotes the resolvent set of the operator A and R (�;A) = (�I � A)�1 :

Theorem 1.14 (Lumer-Phillips [92]) Let A : D (A) � X ! X (D (A) dense subspace). A

generates a C0-semigroup of contractions on X if and only if

(i) A is dissipative.

(ii) There exists � > 0 such �I � A is surjective.

Moreover, if A generates a C0-semigroup of contractions, then �I � A is surjective for any

� > 0.

Theorem 1.15 (Hille�Yosida [11]) Let A be a maximal monotone operator. Then, given

any �0 2 D(A) there exists a unique function

� 2 C1 ([0;+1) ;H) \ C ([0;+1) ; D (A))

satisfying (
d�
dt
+ A� = 0 on [0;+1) ;

� (0) = �0:

Moreover k� (t)k � k�0k and
d�
dt
(t)
 = kA� (t)k � kA�0k 8t � 0:

1.4. Some results on the existence and uniqueness



Chapter 1. Preliminaries 21

1.4.2 Compactness Method

The method is based on three steps:

1) To apply the Faedo-Galerkin method, we select a set of suitable basis functions from

an appropriate Sobolev space. We then solve the approximate problems within a �nite-

dimensional space spanned by these �nite base functions. This approach often leads to

an initial value problem for nonlinear ordinary di¤erential equations. According to the

well-known local existence theorem for ordinary di¤erential equations, the local existence

of a solution to the approximate problem can be guaranteed.

2) Obtain the compactness estimates for the solution of the approximate problem. It also

turns out that the solution to the approximate problem globally exists.

3) By utilizing the obtained compactness estimates, it becomes possible to select a sub-

sequence from the solutions of the approximate problem obtained in the second step.

This subsequence is chosen in such a way that it converges to a solution of the original

problem.

For more explanation about this method, see [105] and references therein.

1.4. Some results on the existence and uniqueness



CHAPTER 2

Existence, uniqueness and exponential energy decay of piezoelectric system with magnetic

e¤ects and distributed delay time

2.1 Introduction

P iezoelectric materials such as barium titanate, quartz and rochelle salt exhibit the property

of transforming mechanical energy into electromagnetic energy (see [94]). The direct piezoelec-

tric e¤ect was initially demonstrated by the brothers Pierre and Jacques Curie, in 1880 [91],

where single crystal quartz was the �rst material used in early experiments with piezoelectricity.

These same materials, when subjected to an electric �eld, exhibit a phenomenon known as the

reverse piezoelectric e¤ect, which was discovered by Gabriel Lippmann in 1881 [91, 94]

Figure 2 :Direct and converse piezoelectric e¤ect

22
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Various sectors bene�t from the utilization of these piezoelectric materials in various industries,

including manufacturing, the medical device industry, telecommunications, and information

technology. Furthermore, piezoelectric beam refers to an elastic beam that is coated with a

piezoelectric material on both its upper and lower surfaces, while the edges are insulated to pre-

vent fringing e¤ects. The beam is also connected to an external electric circuit [59]. To operate

piezoelectric materials electrically, there are three fundamental methods: voltage, current, or

charge. For more detailed information on these methods, the reader is referred to the refer-

ences [31, 38]. When modeling piezoelectric systems, it is essential to consider three primary

e¤ects and their interrelationships: mechanical, electrical, and magnetic e¤ects. The mechan-

ical e¤ects are commonly represented using small displacement assumptions, such as Kirchho¤,

Euler-Bernoulli, or Mindlin-Timoshenko theories. References such as [14, 83] provide further

details on these modeling approaches. On the other hand, the incorporation of electrical and

magnetic e¤ects in piezoelectric systems can be achieved through three main approaches: elec-

trostatic, quasi-static, and fully dynamic methods. These approaches are discussed in detail

in references such as [54, 90] and the related literature. It is important to note that magnetic

e¤ects are not considered in the case of electrostatic and quasi-static approaches. In [59], Morris

and Özer employed a variational approach to derive the di¤erential equations and boundary

conditions that describe a single piezoelectric beam with magnetic e¤ects. By utilizing the Lag-

rangian and Hamilton�s principle, setting the variation of admissible displacements f�; w; 'g of
� to zero and assuming that the beam is clamped at x = 0 and left free at x = �, two distinct

sets of equations are obtained. These equations correspond to stretching and bending, respect-

ively, with associated boundary conditions. They ignored the bending equation in favor of

studying the stretching equations because the bending equation is completely decoupled from

the stretching equations given as follows(
��tt � ��xx + �'xx = 0;

�'tt � �'xx + ��xx = 0;
(2.1)

with the boundary and initial conditions(
� (0) = ' (0) = ��x (�)� �'x (�) = 0; �'x (�)� ��x (�) = �V (t)

h
;

(�; '; �t; 't) (0) = (�
0; '0; �1; '1) ;

(2.2)

where � = �1 + 
2� and the parameters �; �; �; ; � and � represent respectively the length

of the beam, the mass density, elastic sti¤ness, piezoelectric coe¢ cient, magnetic permeability

and water resistance coe¢ cient. Finally, by using only an electrical feedback controller V (t) =

k't (�), they demonstrate that the closed-loop system is strongly stable in the energy space. In

[77] in the case V (t) = 0; exponential stability has been demonstrated for piezoelectric beams

with magnetic e¤ects by incorporating damping ��t into the �rst equation by Ramos et al., and

employing the �nite di¤erence method, they computed a numerical energy associated with their

2.1. Introduction
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system. The numerical simulations involved using speci�c values of �; �; �; ; � and �. In a

recent study [7], Akil and Soufyane et al. investigated a one-dimensional piezoelectric system

with partial viscous dampings and established the existence and uniqueness of a solution under

Lorenz gauge conditions. The strong stability was obtained by applying the general criteria

of Arendt-Batty. Finally, exponential stability is proven to be obtainable by controlling the

stretching of the center-line of the beam in the x-direction. In [8] A�lal et al. considered a

one-dimensional dissipative system of piezoelectric beams with a magnetic e¤ect and localized

damping. The authors proved that the semigroup S (t) = eAt associated with their system

is exponentially stable. A Multi-dimensional nonlinear piezoelectric beam with viscoelastic

in�nite memory has been studied by [106] et al. by using semigroup theories and the Banach

�xed-point theorem, the well-posedness of this nonlinear coupled system was demonstrated.

Also, the exponential decay is established by the energy estimation method. We refer the reader

to [56, 60, 61, 70, 79, 101] and the references therein for more results related to piezoelectric

systems (in the absence of delay terms). Ramos et al. [76], demonstrated the exponential

stability of a system of piezoelectric beams with delayed(
��tt � ��xx + �'xx + �1�t + �2�t (x; t� �) = 0;

�'tt � �'xx + ��xx = 0;

in ]0;�[� ]0;+1[ ;
in ]0;�[� ]0;+1[ ;

with the boundary and initial conditions8>>>>>><>>>>>>:

� (0; t) = ��x (�; t)� �'x (�; t) = 0;

' (0; t) = 'x (�; t)� �x (�; t) = 0;

�t (x; t� �) = f0 (x; t� �) ;

� (x; 0) = �0 (x) ; �t (x; 0) = �1 (x) ;

' (x; 0) = '0 (x) ; 't (x; 0) = '1 (x) ;

t � 0;
t � 0;
(x; t) 2 ]0;�[� ]0; � [
x 2 ]0;�[ ;
x 2 (0;�) ;

(2.3)

where �2�t (x; t� �) is the time of delay on vertical displacement, � > 0 is the respective retard-

ation time. The authors proved this stability under the condition �1 > �2. Recently, Kong et al.

[50], employed the Kato variable norm technique to demonstrate that the system of magnetic

e¤ected piezoelectric beams with time-dependent weights and time-varying delay is well-posed.

Furthermore, the application of the multiplier technique allowed them to obtain exponential

stability. Finally, the equivalence between stabilization and observability was proven by im-

posing certain conditions on the time-varying delay term and time-dependent weights. In [85],

Soufyane et al. extended the previously mentioned recent �nding in [50]. Their investigation

focused on stability, using several lemmas. Feng and Özer in [29] considered the following fully

2.1. Introduction
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dynamic and electrostatic or quasi-static models with clamped-free boundary8>>>>>>>>>>><>>>>>>>>>>>:

��tt � ��xx + �'xx + c1�t + a1�t (t� �) = 0;

�'tt � �'xx + ��xx + c2't + a2't (t� �) = 0;

� (0; t) = ' (0; t) = 0;

(��x � �'x) (�; t) = �b1�t (�; t)� a1�t (�; t� �) ;

('x � �x) (�; t) = �b2't (�; t)� a2't (�; t� �) ;

(�; �t; '; 't) (x; 0) = (�0; �1; '0; '1) (x) ;

(�t; 't) (�; t� �) = (f0; g0) (�; t� �) ;

(x; t) 2 (0;�)� R+;

t 2 R+;
x 2 (0;�) ;
t 2 (0; �) ;8>>>>>><>>>>>>:

��tt � �1�xx + c1�t + a1�t (t� �) = 0;

� (0; t) = 0;

�1�x (�; t) = �b1�t (�; t)� a1�t (�; t� �) ;

(�; �t) (x; 0) = (�0; �1) (x) ;

�t (x; t� �) = f0 (x; t� �) ;

(x; t) 2 (0;�)� R+;

t 2 R+

x 2 (0;�)
t 2 (0; �) :

Their study is noteworthy as it focused on investigating boundary feedback controllers and

their interactions with both internally and boundary distributed delay feedback controllers (i.e.

b1; b2 6= 0 and c1 = c2 = 0). The well-posedness of these models was determined using semigroup

theory. In each model, the exponential stability has been proven through the Lyapunov theory

by satisfying some conditions.

2.2 Problem statement

I n the present chapter, we are concerned one dimensional piezoelectric beams with distributed
delay terms, which has the form8>>>>>>>><>>>>>>>>:

��tt � ��xx + �'xx + �1�t +
R �2
�1
� (}) �t (x; t� }) d} = 0;

�'tt � �'xx + ��xx = 0;

� (0; t) = �x (�; t) = ' (0; t) = 'x (�; t) = 0;

� (x; 0) = �0 (x) ; �t (x; 0) = �1 (x) ;

' (x; 0) = '0 (x) ; 't (x; 0) = '1 (x) ;

�t (x;�t) = f0 (x; t) ;

in (0;�)� (0;1) ;

t 2 (0;1) ;
x 2 (0;�) ;

(x; t) 2 (0;�)� (0; � 2) ;
(2.4)

where � 1, � 2; �1 are positive numbers and � : [� 1; � 2]! R is a bounded function satisfying the
following assumption Z �2

�1

j� (})j d} � �1: (2.5)

2.2. Problem statement
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2.3 Existence, uniqueness

In this section, we will show the existence and uniqueness of solutions for (2.4) through the

application of semigroup theory.
Following the method used in [67], we introduce the new variable.

Y (x; �; t; }) = �t (x; t� �}) ; x 2 (0;�) ; � 2 (0; 1) ; } 2 (� 1; � 2) ; t � 0:

Therefore, we achieve

}Yt (x; �; t; }) + Y� (x; �; t; }) = 0:

The problem (2.4), take the form8><>:
��tt � ��xx + �'xx + �1�t +

R �2
�1
� (})Y (x; 1; t; }) d} = 0;

�'tt � �'xx + ��xx = 0;

}Yt (x; �; t; }) + Y� (x; �; t; }) = 0;
(2.6)

with the following conditions8>>>>>><>>>>>>:

� (0; t) = ��x (�; t)� �'x (�; t) = 0; t � 0;
' (0; t) = 'x (�; t)� �x (�; t) = 0;

� (x; 0) = �0 (x) ; �t (x; 0) = �1 (x) ; 8x 2 (0;�) ;
' (x; 0) = '0 (x) ; 't (x; 0) = '1 (x) ;

Y (x; �; 0; }) = f0 (x; �; }) ; x 2 (0;�) ; � 2 (0; 1) ; } 2 (0; � 2) :

By using the following notations

�t = u; 't = q and U = (�; u; '; q; Y )T ;

@tU = (�t; ut; 't; qt; Yt)
T ;

therefore, the problem (2.6) can be represented as follows(
@tU = AU;

U (0) = U0 = (�0; �1; '0; '1; f0) ;
(2.7)

where the operator A : D(A) � H ! H is de�ned by

AU :=

0BBBBBB@
�t

�
�
�xx � �1

�
�t � �

�
'xx � 1

�

R �2
�1
� (})Y (x; 1; t; }) d}

't
��

�
�xx +

�
�
'xx

� 1
}Y�

1CCCCCCA ; (2.8)

2.3. Existence, uniqueness
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we consider the following spaces

Ĥ1 (0;�) =
�
� 2 H1 (0;�) : � (0) = 0

	
;

Ĥ2 (0;�) = H2 (0;�) \ Ĥ1 (0;�) ;

and we de�ne the previous Hilbert space H as

H := Ĥ1 (0;�)� L2 (0;�)� Ĥ1 (0;�)� L2 (0;�)� L2 ((0;�)� (0; 1)� (� 1; � 2)) :

We de�ne the inner product on H as follows

hU; ~UiH = �

Z �

0

�t~�tdx+ �

Z �

0

't~'tdx+ �1

Z �

0

�x~�xdx+ �

Z �

0

(�x � 'x) (~�x � ~'x) dx

+

Z �

0

Z �2

�1

} j� (})j
Z 1

0

Y (x; �; t; }) ~Y (x; �; t; }) d�d}dx;

= �

Z �

0

�t~�tdx+ �

Z �

0

't~'tdx� �

Z �

0

�x~'xdx� �

Z �

0

~�x'xdx+ �

Z �

0

�x~�xdx

+ �

Z �

0

'x~'xdx+

Z �

0

Z �2

�1

} j� (})j
Z 1

0

Y (x; �; t; }) ~Y (x; �; t; }) d�d}dx: (2.9)

Now, we de�ned the previous domain of operator A as follows

D (A) :=
n
(�; �t; '; 't; Y ) 2 Ĥ2 (0;�)� Ĥ1 (0;�)� Ĥ2 (0;�)� Ĥ1 (0;�)

�L2 ((0;�)� (0; 1)� (� 1; � 2)) : �x (�) = 'x (�) = 0g :
(2.10)

D(A) is clearly dense in H.

Theorem 2.1 Let U0 2 H, then problem (2.7) admits a unique solution U 2 C (R+; H).
Moreover, if U0 2 D (A) then U 2 C (R+; D(A)) \ C1 (R+; H) :

Proof. Our initial step is to show that the operator A is dissipative.
Let U = (�; �t; '; 't; Y )

T 2 D (A), by employing the inner product de�ned earlier, we get

hAU;UiH =
*
0BBBBBB@

�t
�
�
�xx � �1

�
�t � �

�
'xx � 1

�

R �2
�1
� (})Y (x; 1; t; }) d}

't
��

�
�xx +

�
�
'xx

� 1
}Y�

1CCCCCCA ;

0BBBBBB@
�

�t

'

't
Y

1CCCCCCA
+

H

: (2.11)

2.3. Existence, uniqueness
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After integrating by parts and taking the boundary conditions into account, we obtain

hAU;UiH = �

Z �

0

�
�

�
�xx �

�1
�
�t �

�

�
'xx �

1

�

Z �2

�1

� (})Y (x; 1; t; }) d}
�
�tdx

+ �

Z �

0

�
��
�
�xx +

�

�
'xx

�
'tdx� �

Z �

0

�tx'xdx� �

Z �

0

'tx�xdx

+ �

Z �

0

�tx�xdx+ �

Z �

0

'tx'xdx

�
Z �

0

Z �2

�1

j� (})j
Z 1

0

Y� (x; �; t; })Y (x; �; t; }) d�d}dx

= ��1
Z �

0

�2tdx�
Z �

0

�t

Z �2

�1

� (})Y (x; 1; t; }) d}dx

�
Z �

0

Z �2

�1

j� (})j
Z 1

0

Y� (x; �; t; })Y (x; �; t; }) d�d}dx: (2.12)

Additionally, by integrating with respect to �, we �ndZ �

0

Z �2

�1

j� (})j
Z 1

0

Y� (x; �; t; })Y (x; �; t; }) d�d}dx =
1

2

Z �

0

Z �2

�1

j� (})jY 2 (x; 1; t; }) d}dx

� 1
2

Z �2

�1

j� (})j d}
Z �

0

�2tdx; (2.13)

applying Young�s inequality, we �nd

�
Z �

0

�t

Z �2

�1

� (})Y (x; 1; t; }) d}dx

� 1

2

Z �

0

�2tdx

Z �2

�1

j� (})j d}+ 1
2

Z �

0

Z �2

�1

j� (})jY 2 (x; 1; t; }) d}dx; (2.14)

by (2.13)-(2.14) and condition (2.5) we obtain

hAU;UiH � �
�
�1 �

Z �2

�1

j� (})j d}
�Z �

0

�2tdx:

Hence, we get that A is a dissipative operator.
We will now prove the surjectivity of the operator (I � A).
GivenM = (g1; g2; g3; g4; g5)

T 2 H, we demonstrate that there exists a unique U = (�; u; '; q; Y )T 2
D (A) so that

(I � A)U =M; (2.15)

i.e 0BBBBBB@
�

u

'

q

Y

1CCCCCCA�
0BBBBBB@

u
�
�
�xx � �1

�
u� �

�
'xx � 1

�

R �2
�1
� (})Y (x; 1; t; }) d}

q

��
�
�xx +

�
�
'xx

� 1
}Y�

1CCCCCCA =

0BBBBBB@
g1

g2

g3

g4

g5

1CCCCCCA ; (2.16)

2.3. Existence, uniqueness



Chapter 2. Existence, uniqueness and exponential energy decay of piezoelectric system
with magnetic e¤ects and distributed delay time 29

then, by (2.16), we get8>>>>>><>>>>>>:

� � u = g1;

�u� ��xx + �1u+ �'xx +
R �2
�1
� (})Y (x; 1; t; }) d} = �g2;

'� q = g3;

�q + ��xx � �'xx = �g4;

Y + 1
}Y� = g5:

(2.17)

Also, by using (2.17), we have (
u = � � g1;

q = '� g3;
(2.18)

as

Y (x; 0; t; }) = u (x; t) = �t (x; t) ; for x 2 (0;�) ; } 2 (� 1; � 2) ; t � 0;

and by (2.17)5 we get

Y (x; �; t; }) +
1

}
Y� (x; �; t; }) = g5 (x; �; }) ; (2.19)

that implies

Y (x; �; t; }) = }e�}�
Z �

0

g5 (x; � ; }) e}�d� + ue�}�; (2.20)

in particular

Y (x; 1; t; }) = }e�}
Z 1

0

g5 (x; � ; }) e}�d� + ue�}: (2.21)

Now by using (2.18)-(2.21) in the other equations for (2.17); we obtain

� (� � g1)� ��xx + �1 (� � g1) + �'xx +

Z �2

�1

� (}) }e�}
Z 1

0

g5 (x; � ; }) e}�d�d}

+(� � g1)

Z �2

�1

� (}) e�}d} = �g2;

� ('� g3) + ��xx � �'xx = �g4; (2.22)

then we get 8><>:
���xx + �'xx +$1� = Q1 2 L2 (0;�) ;

��xx � �'xx + �' = Q2 2 L2 (0;�) ;
(2.23)

where

$1 = (�1 + �) +

Z �2

�1

� (}) e�}d};

Q1 = $1g1 + �g2 �
Z �2

�1

� (}) }e�}
Z 1

0

g5 (x; � ; }) e}�d�d};

Q2 = � (g4 + g3) : (2.24)

2.3. Existence, uniqueness
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Multiplying (2.23)1, (2.23)2 respectively by ~�; ~' 2 Ĥ1 (0;�), and integrating by parts together

with the boundary conditions, we have8><>:
�
R �
0
�x~�xdx� �

R �
0
'x~�xdx+$1

R �
0
�~�dx =

R �
0
Q1~�dx;

��
R �
0
�x~'xdx+ �

R �
0
'x~'xdx+ �

R �
0
'~'dx =

R �
0
Q2~'dx;

(2.25)

consequently, problem (2.25) is equivalent to the problem

a ((�; ') ; (~�; ~')) = b (~�; ~') : (2.26)

Where
a :
�
Ĥ1 (0;�)� Ĥ1 (0;�)

�2
! R is the bilinear form given by

a ((�; ') ; (~�; ~')) = �

Z �

0

�x~�xdx+ �

Z �

0

'x~'xdx� �

Z �

0

'x~�xdx� �

Z �

0

�x~'xdx

+$1

Z �

0

�~�dx+ �

Z �

0

'~'dx; (2.27)

b : Ĥ1 (0;�)� Ĥ1 (0;�)! R is the linear form given by

b (~�; ~') =

Z �

0

Q1~�dx+

Z �

0

Q2~'dx: (2.28)

Now, for ~H := Ĥ1 (0;�)� Ĥ1 (0;�) equipped by this norm

k(�; ')k ~H =
 ��x � �

�
'x

�2
2

+ k�k22 + k'k
2
2 + k'xk

2
2

! 1
2

: (2.29)

Proving the continuity of both the bilinear form a and the linear form b is simple. Moreover,

we have

a ((�; ') ; (�; ')) = �

Z �

0

�
�x �

�

�
'x

�2
dx+

 
� � (�)

2

�

!Z �

0

'2xdx+$1

Z �

0

�2dx

+�

Z �

0

'2dx � m̂ k(�; ')k2~H ; (2.30)

where

m̂ = min

 
�;

 
� � (�)

2

�

!
; $1; �

!
: (2.31)

For all $1 � 0 thus a is coercive, by using the Lax-Milgram theorem, we can conclude that the
system (2.26) has a unique solution

(�; ') 2 Ĥ1 (0;�)� Ĥ1 (0;�) :

2.3. Existence, uniqueness
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Substituting �; ' in (2.18), we obtain

(u; q) 2 Ĥ1 (0;�)� Ĥ1 (0;�) ;

also by substituting u in (2.20) and (2.17)5 we get

Y; Y� 2 L2 ((0;�)� (0; 1)� (� 1; � 2)) ;

and by (2.23) we get

�xx =
$1

�1
� +

�

�1
'� 1

�1
Q1 �



�1
Q2 2 L2 (0;�) =) � 2 H2 (0;�) =) ' 2 H2 (0;�) ; (2.32)

also (2.25)1 implies

���xx + �'xx +$1� = Q1; in the distribution sense: (2.33)

Multiplying (2.33) by ~� 2 Ĥ1 (0;�) and using integration by parts, we get by using (2.25)1 again

���x (�) ~� (�) + �'x (�) ~� (�) = 0 8~� 2 Ĥ1 (0;�) ;

we choose

~� (x) =
x

�
; (2.34)

then we obtain

�'x (�) = ��x (�) ; (2.35)

also (2.25)2; implies

��xx � �'xx + �' = Q2; in the distribution sense. (2.36)

Multiplying (2.36) by ~' 2 Ĥ1 (0;�) and using integration by parts we get by using (2.25)2 again

��x (�) ~' (�)� �'x (�) ~' (�) = 0; 8~' 2 Ĥ1 (0;�) ;

we choose

~' (x) =
x

�
;

then we obtain

��x (�)� �'x (�) = 0; (2.37)

using (2.35) in (2.37), then we get

�x (�) = 'x (�) = 0; (2.38)

then, by (2.32) and (2.38) we obtain

�; ' 2 Ĥ2 (0;�) : 'x (�) = �x (�) = 0;

then the operator (I � A) is surjective.
Therefore, A is a maximal dissipative operator, and by applying the Hille-Yosida theorem,

we get the desired result.
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2.4 Exponential stability

In this section, we present and demonstrate the technical lemmas necessary for establishing the

proof of our stability result.

Lemma 2.1 Let (�; '; Y ) represent a solution to (2.6); then the expression of energy E(t) is
de�ned as follows

E (t) =
1

2

Z �

0

�
��2t + �'2t + �1�

2
x + � (�x � 'x)

2 +

Z 1

0

Z �2

�1

} j� (})jY 2 (x; �; t; }) d}d�
�
dx;

(2.39)

and satis�es
d

dt
E (t) � �

�
�1 �

Z �2

�1

j� (})j d}
�Z �

0

�2tdx: (2.40)

Proof. Multiplying (2.6)1; (2.6)2 by �t; 't respectively, and integrating over the interval

(0;�) ; we get

�
d

2dt

Z �

0

�2tdx+ �
d

2dt

Z �

0

'2tdx+ �1
d

2dt

Z �

0

�2xdx

+�

Z �

0

(�x � 'x) �xtdx� �

Z �

0

(�x � 'x)'xtdx

+�1

Z �

0

�2tdx+

Z �

0

�t

Z �2

�1

� (})Y (x; 1; t; }) d}dx = 0; (2.41)

by (2.41); we �nd

�
d

2dt

Z �

0

�2tdx+ �
d

2dt

Z �

0

'2tdx+
1

2

d

dt

Z �

0

� (�x � 'x)
2 dx

+ �1
d

2dt

Z �

0

�2xdx+ �1

Z �

0

�2tdx+

Z �

0

�t

Z �2

�1

� (})Y (x; 1; t; }) d}dx = 0: (2.42)

After multiplying (2.6)3 by j� (})jY (x; �; t; }) and integration over (0;�)� (0; 1)� (� 1; � 2) with
respect to x; � and }, we obtainZ �

0

Z 1

0

Z �2

�1

} j� (})jY (x; �; t; })Yt (x; �; t; }) d}d�dx

+

Z �

0

Z 1

0

Z �2

�1

j� (})jY (x; �; t; })Y� (x; �; t; }) d}d�dx = 0; (2.43)

then we have

d

2dt

Z �

0

Z 1

0

Z �2

�1

} j� (})jY 2 (x; �; t; }) d}d�dx

+
1

2

Z �

0

Z 1

0

d

d�

Z �2

�1

j� (})jY 2 (x; �; t; }) d}d�dx = 0; (2.44)
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as

1

2

Z �

0

Z 1

0

d

d�

Z �2

�1

j� (})jY 2 (x; �; t; }) d}d�dx =
1

2

Z �

0

Z �2

�1

j� (})jY 2 (x; 1; t; }) d}dx

� 1
2

Z �

0

Z �2

�1

j� (})j �2td}dx; (2.45)

then we obtain

1

2

d

dt

Z �

0

�
��2t + �'2t + �1�

2
x + � (�x � 'x)

2 +

Z 1

0

Z �2

�1

} j� (})jY 2 (x; �; t; }) d}d�
�
dx

+�1

Z �

0

�2tdx+

Z �

0

�t

Z �2

�1

� (})Y (x; 1; t; }) d}dx

+
1

2

Z �

0

Z �2

�1

j� (})jY 2 (x; 1; t; }) d}dx� 1
2

Z �

0

Z �2

�1

j� (})j �2td}dx = 0; (2.46)

Since �1 = �� 2� > 0; we get

d

dt
E (t) = ��1

Z �

0

�2tdx�
Z �

0

�t

Z �2

�1

� (})Y (x; 1; t; }) d}dx

� 1
2

Z �

0

Z �2

�1

j� (})jY 2 (x; 1; t; }) d}dx+
1

2

Z �2

�1

j� (})j d}
Z �

0

�2tdx; (2.47)

using Young�s inequality, we obtain

�
Z �

0

�t

Z �2

�1

� (})Y (x; 1; t; }) d}dx �
Z �

0

Z �2

�1

j�tj j� (})j
1
2 j� (})j

1
2 jY (x; 1; t; })j d}dx

� 1

2

Z �

0

�2tdx

Z �2

�1

j� (})j d}

+
1

2

Z �

0

Z �2

�1

j� (})jY 2 (x; 1; t; }) d}dx; (2.48)

then we have by using (2.47)-(2.48)

d

dt
E (t) � �

�
�1 �

Z �2

�1

j� (})j d}
�Z �

0

�2tdx;

also, by using (2.5); we obtain
d

dt
E (t) � 0:

Lemma 2.2 Let (�; '; Y ) represent a solution to (2.6), then the �rst functional

I1 (t) = �

Z �

0

�t�dx+ �

Z �

0

't�dx+
�1
2

Z �

0

�2dx; 8t � 0;
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satis�es for some positive constant "1

I 01 (t) � �
�1
2

Z �

0

�2xdx+

 
�+

(�)2

4"1

!Z �

0

�2tdx+ "1

Z �

0

'2tdx

+
c0�1
2�1

Z �

0

Z �2

�1

j� (})jY 2 (x; 1; t; }) d}dx: (2.49)

Proof. By integrating equation (2.6)1 multiplied by � over the interval (0;�) with respect to
x, we arrive at the following expression

d

dt
�

Z �

0

�t�dx� �

Z �

0

�2tdx+ �1

Z �

0

�2xdx+ 

Z �

0

(�'xx � ��xx) �dx

+
d

dt

�1
2

Z �

0

�2dx+

Z �

0

�

Z �2

�1

� (})Y (x; 1; t; }) d} = 0; (2.50)

also by using the equation (2.6)2, we get

d

dt
�

Z �

0

�t�dx� �

Z �

0

�2tdx+ �1

Z �

0

�2xdx+ �

Z �

0

'tt�dx

+
d

dt

�1
2

Z �

0

�2dx+

Z �

0

�

Z �2

�1

� (})Y (x; 1; t; }) d}dx = 0; (2.51)

(2.51), satis�es the equation

d

dt

�
�

Z �

0

�t�dx+ �

Z �

0

't�dx+
�1
2

Z �

0

�2dx

�
=

�

Z �

0

�2tdx� �1

Z �

0

�2xdx+ �

Z �

0

't�tdx�
Z �

0

�

Z �2

�1

� (})Y (x; 1; t; }) d}dx: (2.52)

When applying Cauchy-Schwarz, Young�s, and Poincaré�s inequalities, the following inequality

holds for any "1 > 0

�

Z �

0

't�tdx � "1

Z �

0

'2tdx+
(�)2

4"1

Z �

0

�2tdx; (2.53)

�
Z �

0

�

Z �2

�1

� (})Y (x; 1; t; }) d}dx

� �1
2

Z �

0

�2xdx+
c0�1
2�1

Z �

0

Z �2

�1

j� (})jY 2 (x; 1; t; }) d}dx; (2.54)

by using (2.53)-(2.54) in (2.52) we get (2.49).

Lemma 2.3 Let (�; '; Y ) represent a solution to (2.6), then the functional

I2 (t) = �

Z �

0

't'dx+ �

Z �

0

�t�dx;
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its derivative satis�es

I 02 (t) � ��
Z �

0

(�x � 'x)
2 dx� �1

4

Z �

0

�2xdx+

�
�+

c0�
2
1

2�1

�Z �

0

�2tdx+ �

Z �

0

'2tdx

+
c0�1
�1

Z �

0

Z �2

�1

j� (})jY 2 (x; 1; t; }) d}dx: (2.55)

Proof. By di¤erentiating I2 (t) and using (2.6)1; (2.6)2; we have

I 02 (t) = �

Z �

0

'2tdx+ �

Z �

0

'tt'dx+ �

Z �

0

�2tdx+ �

Z �

0

�tt�dx

= �

Z �

0

'2tdx� �

Z �

0

(�x � 'x)
2 dx+ �

Z �

0

�2tdx

� �1

Z �

0

�2xdx� �1

Z �

0

�t�dx�
Z �

0

�

Z �2

�1

� (})Y (x; 1; t; }) d}dx; (2.56)

employing Cauchy-Schwarz, Young�s, and Poincaré�s inequalities, we get

��1
Z �

0

�t�dx �
�1
2

Z �

0

�2xdx+
c0�

2
1

2�1

Z �

0

�2tdx; (2.57)

and Z �

0

�

Z �2

�1

� (})Y (x; 1; t; }) d}dx

� �1
4

Z �

0

�2xdx+
c0�1
�1

Z �

0

Z �2

�1

j� (})jY 2 (x; 1; t; }) d}dx: (2.58)

By using (2.57)-(2.58) in (2.56) we get (2.55).

Lemma 2.4 Let (�; '; Y ) satisfy system (2.6) then the functional

I3 (t) = �

Z �

0

�t (� � ') dx+ �

Z �

0

't (� � ') dx;

satis�es for any "2; "3; "4 > 0

I 03 (t) � �
�

2

Z �

0

'2tdx+ ("2 + "3c0 + "4c0)

Z �

0

(�x � 'x)
2 dx

+

�
�21
4"3

+ � +
{2

2�

�Z �

0

�2tdx

+
�21
4"2

Z �

0

�2xdx+
�1
4"4

Z �

0

Z �2

�1

j� (})jY 2 (x; 1; t; }) d}dx: (2.59)
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Proof. By di¤erentiating I3 (t) and using (2.6)1; (2.6)2 then we have

I 03 (t) = ��
Z �

0

'2tdx� �1

Z �

0

�x (�x � 'x) dx� �1

Z �

0

�t (� � ') dx

�
Z �

0

(� � ')

Z �2

�1

� (})Y (x; 1; t; }) d}dx+ �

Z �

0

�2tdx

+
�
2�� �

�| {z }
{

Z �

0

�t'tdx; (2.60)

by using Cauchy-Schwarz, Young�s, and Poincaré�s inequalities, we obtain

��1
Z �

0

�x (�x � 'x) dx � "2

Z �

0

(�x � 'x)
2 dx+

�21
4"2

Z �

0

�2xdx; 8"2 > 0; (2.61)

and

��1
Z �

0

�t (� � ') dx � "3c0

Z �

0

(�x � 'x)
2 dx+

�21
4"3

Z �

0

�2tdx; 8"3 > 0; (2.62)

�
Z �

0

(� � ')

Z �2

�1

� (})Y (x; 1; t; }) d}dx � "4c0

Z �

0

(�x � 'x)
2 dx

+
�1
4"4

Z �

0

Z �2

�1

j� (})jY 2 (x; 1; t; }) d}dx; 8"4 > 0; (2.63)

and

{
Z �

0

�t'tdx �
�

2

Z �

0

'2tdx+
{2

2�

Z �

0

�2tdx: (2.64)

By using (2.61)-(2.62)-(2.63)-(2.64) in (2.60) we get (2.59).

Lemma 2.5 Let (�; '; Y ) satisfy system (2.6), then the functional

I4 (t) :=

Z �

0

Z 1

0

Z �2

�1

}e�}� j� (})jY 2 (x; �; t; }) d}d�dx;

satis�es

I 04 (t) � �e��2
Z �

0

Z �2

�1

j� (})jY 2 (x; 1; t; }) d}dx+ �1

Z �

0

�2tdx

� e��2
Z �

0

Z 1

0

Z �2

�1

} j� (})jY 2 (x; �; t; }) d}d�dx:
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Proof. By di¤erentiating I4 (t) and using (2.6)3; then we have

I 04 (t) = �2
Z �

0

Z 1

0

Z �2

�1

e�}� j� (})jY (x; �; t; })Y� (x; �; t; }) d}d�dx

= �
Z �

0

Z 1

0

Z �2

�1

j� (})j d
d�

�
e�}�Y 2 (x; �; t; })

�
d}d�dx

�
Z �

0

Z 1

0

Z �2

�1

}e�}� j� (})jY 2 (x; �; t; }) d}d�dx

= �
Z �

0

Z �2

�1

e�} j� (})jY 2 (x; 1; t; }) d}dx+
Z �2

�1

j� (})j d}
Z �

0

�2tdx

�
Z �

0

Z 1

0

Z �2

�1

}e�}� j� (})jY 2 (x; �; t; }) d}d�dx;

by using the following relation e�} � e�}� � 1, 8 0 � � � 1; we get

I
0

4 (t) � �
Z �

0

Z �2

�1

e�} j� (})jY 2 (x; 1; t; }) d}dx+
Z �2

�1

j� (})j d}
Z �

0

�2tdx

�
Z �

0

Z 1

0

Z �2

�1

}e�} j� (})jY 2 (x; �; t; }) d}d�dx:

Since
�
�e�}

�0
= e�} � 0; we conclude that �e�} � �e��2 ; 8} 2 (� 1; � 2) ; then we get

I 04 (t) � �e��2
Z �

0

Z �2

�1

j� (})jY 2 (x; 1; t; }) d}dx+ �1

Z �

0

�2tdx

� e��2
Z �

0

Z 1

0

Z �2

�1

} j� (})jY 2 (x; �; t; }) d}d�dx:

Now, for a large enough N , the Lyapunov functional is de�ned as follows

L (t) = NE (t) +N1I1 (t) +N2I2 (t) +N3I3 (t) +N4I4 (t) ;

where N1; N2; N3 and N4 are positive constants, to be chosen later.

Theorem 2.2 Let (�; '; Y ) satisfy system (2.6); then there exist two positive constants c1; c2 >
0 that satisfy

c1E (t) � L (t) � c2E (t) ; 8t � 0: (2.65)

Proof. Let

= (t) = L (t)�NE (t) = N1I1 (t) +N2I2 (t) +N3I3 (t) +N4I4 (t) ; (2.66)
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j= (t)j = jL (t)�NE (t)j

� N1

�
�

Z �

0

j�t�j dx+ �

Z �

0

j't�j dx+
�1
2

Z �

0

�2dx

�
+N2

�
�

Z �

0

j't'j dx+ �

Z �

0

j�t�j dx
�

+N3

�
�

Z �

0

j�t (� � ')j dx+ �

Z �

0

j't (� � ')j dx
�

+N4

Z �

0

Z 1

0

Z �2

�1

}e�}� j� (})jY 2 (x; �; t; }) d}d�dx; (2.67)

using Poincaré�s and Young�s inequalities in (2.67), we �nd for any " > 0

j= (t)j �
�
N1�

2

4"
+N2�

2"+
N3�

2

4"

�
| {z }

�1

Z �

0

�2tdx

+

 
N1
(�)2

4"
+N2

�2

4"
+N3

(�)2

4"

!
| {z }

�2

Z �

0

'2tdx

+
�
N1

�
2"c0 +

c0�1
2

�
+N2

�
2"2c0 +

c0
4"

��
| {z }

�3

Z �

0

�2xdx

+ (2N2"c0 + 2N3"c0)| {z }
�4

Z �

0

(�x � 'x)
2 dx

+N4

Z �

0

Z 1

0

Z �2

�1

} j� (})jY 2 (x; �; t; }) d}d�dx;

then

j= (t)j � CE (t) ;

where

C = max

�
2

�
�1;
2

�
�2;

2

�1
�3;
2

�
�4; 2N4

�
;

then we obtain

(�C +N)| {z }
c1

E (t) � L (t) � (C +N)| {z }
c2

E (t) :

Theorem 2.3 Let (�; '; Y ) satis�es system (2.6); then there exist two positive constants k and
�, such that

E (t) � ke��t; 8t � 0: (2.68)
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Proof. Using the previous lemmas, we get

L0 (t) = NE 0 (t) +N1I
0
1 (t) +N2I

0
2 (t) +N3I

0
3 (t) +N4I

0
4 (t) :

This leads to

L
0
(t) � �

 
N

�
�1 �

Z �2

�1

j� (})j d}
�
�N1

 
�+

(�)2

4"1

!
�N2

�
�+

c0�
2
1

2�1

�
�N3

�
�21
4"3

+ � +
{2

2�

�
�N4�1

�Z �

0

�2tdx

�
�
�N3

2
�N1"1 �N2�

�Z �

0

'2tdx�
�
N1�1
2

+
N2�1
4

�N3
�21
4"2

�Z �

0

�2xdx

� (N2� � (N3"2 +N3"3c0 +N3"4c0))

Z �

0

(�x � 'x)
2 dx

�N4e
��2
Z �

0

Z 1

0

Z �2

�1

} j� (})jY 2 (x; �; t; }) d}d�dx

�
�
N4e

��2 � N3�1
4"4

�N2
c0�1
�1

�N1
c0�1
2�1

�Z �

0

Z �2

�1

j� (})jY 2 (x; 1; t; }) d}dx;

we choose the following values

"1 =
1

N1
; "2 = "3 = "4 =

1

N3
;

we get

L
0
(t) � �

 
N

�
�1 �

Z �2

�1

j� (})j d}
�
�N1

 
�+

N1 (�)
2

4

!
�N2

�
�+

c0�
2
1

2�1

�
�N3

�
N3�

2
1

4
+ � +

{2

2�

�
�N4�1

�Z �

0

�2tdx

�
�
�N3

2
� 1�N2�

�Z �

0

'2tdx�
�
N1�1
2

� �21
4
N2
3

�Z �

0

�2xdx

� (N2� � (1 + 2c0))
Z �

0

(�x � 'x)
2 dx

�N4e
��2
Z �

0

Z 1

0

Z �2

�1

} j� (})jY 2 (x; �; t; }) d}d�dx

�
�
N4e

��2 � N2
3�1
4

�N2
c0�1
�1

�N1
c0�1
2�1

�Z �

0

Z �2

�1

j� (})jY 2 (x; 1; t; }) d}dx: (2.69)

First, in (2.69), we choose N2 until it becomes

N2� � (1 + 2c0) > 0:
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We also choose N3 until it becomes

�N3

2
� 1�N2� > 0:

Now, we choose N1 large enough so that

N1�1
2

� �21
4
N2
3 > 0:

We also choose N4 large enough so that

N4e
��2 � N2

3�1
4

�N2
c0�1
�1

�N1
c0�1
2�1

> 0:

Finally, we choose a very large N so that 
N

�
�1 �

Z �2

�1

j� (})j d}
�
�N1

 
�+

(�)2

4
N1

!
�N2

�
�+

c0�
2
1

2�1

�
�N3

�
N3�

2
1

4
+ � +

{2

2�

�
�N4�1

�
> 0:

As

�
�
N4e

��2 � N2
3�1
4

�N2
c0�1
�1

�N1
c0�1
2�1

�Z �

0

Z �2

�1

j� (})jY 2 (x; 1; t; }) d}dx � 0;

then we get

L0 (t) � �mE (t) ;

by (2.65) we get

L0 (t) � �m
c2
L (t) ;

this implies

L (t) � L (0) e
�m
c2
t
;

using (2.65) again, we obtain (2.68).

2.4. Exponential stability



CHAPTER 3

Existence, uniqueness and exponential energy decay of piezoelectric system with thermal

e¤ect and distributed delay time in the presence or absence of magnetic e¤ects

3.1 Introduction

F ourier�s law, also known as the law of heat conduction, is a fundamental principle in the �eld

of thermal conduction. It states that the rate of heat transfer through a material is proportional

to the negative gradient in temperature and to the area, at right angles to that gradient, through

which the heat �ows. This law can be stated in two equivalent forms: the integral form, which

looks at the amount of energy �owing into or out of a body as a whole, and the di¤erential form,

which looks at the �ow rates or �uxes of energy locally. The di¤erential form of Fourier�s law is

given by the equation q = �kr�, where q is the heat �ux, k is the thermal conductivity of the
material, and r� is the temperature gradient. The integral form of Fourier�s law is given by the
equation Q = �kA(d�=dx), where Q is the amount of heat transferred per unit time, A is an

oriented surface area element, and d�=dx is the temperature gradient. To solve Fourier�s law,

the relationship of geometry, temperature di¤erence, and thermal conductivity of the material

is derived. Joseph Fourier �rst introduced this law in 1822 and concluded that "the heat �ux

resulting from thermal conduction is proportional to the magnitude of the temperature gradient

and opposite to it in sign [68]. Thermoelastic damping is a source of intrinsic material damping

due to the thermoelasticity present in almost all materials. As the name thermoelastic suggests,

it describes the coupling between the elastic �eld in the structure caused by deformation and the

temperature �eld. The earliest study of thermoelastic damping can be found in Zener�s classical

work, [107] in 1937/1938, which studied thermoelastic damping in beams undergoing �exural

vibrations. Messaoudi et al.[65] studied piezoelectric beams with thermal and magnetic e¤ects

in the presence of a nonlinear damping term acting on the mechanical equation. A general

decay result of the solution was shown, from which the exponential and polynomial decay are

41
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only special cases. Keddi and al. [53] by using semigroup theory, studied the well-posedness of

a linear thermoelastic Timoshenko system free of a second spectrum where the heat conduction

is given by Cattaneo�s law. The asymptotic stability of this system was also proven. Finally,

they further clari�ed their theoretical results through some numerical tests. A�lal et al. [8]

considered the thermoelastic Timoshenko system with past history, where the thermal e¤ects

are given by Cattaneo and Fourier laws. By using the energy method in Fourier space to build

appropriate Lyapunov functionals, it was obtained that both systems, have the same rate of

decay (1 + t)�
1
4 : Rivera et al. [81] in their paper, by using semigroup theory, demonstrated

the lack of exponential stability (the wave speeds are di¤erent) of linear Timoshenko systems

coupled with heat conduction given by Fourier law.

3.2 Problem statement

Based on the following points:

� Since the model of piezoelectric beams with magnetic e¤ects is proven to not be ex-
actly observable/exponentially stabilizable in the energy space for all choices of material

parameters. Additionally, achieving strong stability is not possible for many material

parameter values [71].

� Since the time delay can destabilize the systems.

� Since many authors have proven the lack of exponential stability for some systems coupled
with heat equation governed by Fourier�s law.

In the present chapter, we consider the following fully dynamic piezoelectric beams with

thermal e¤ects8>>><>>>:
��tt � ��xx + �'xx + ��x + �1�t

+
R �2
�1
� (}) �t (x; t� }) d} = 0;

�'tt � �'xx + ��xx = 0;

c�t � ��xx + ��tx = 0;

(x; t) 2 (0;�)� (0;1) ;
(3.1)

8>>>>>>>><>>>>>>>>:

� (0; t) = ��x (�; t)� �'x (�; t) = 0;

' (0; t) = 'x (�; t)� �x (�; t) = 0;

� (0; t) = � (�; t) = 0;

� (x; 0) = �0 (x) ; �t (x; 0) = �1 (x) ; ' (x; 0) = '0 (x) ;

't (x; 0) = '1 (x) ; � (x; 0) = �0 (x) ;

�t (x;�t) = f0 (x;�t) ;

t � 0;

x 2 (0;�)

t 2 (0; � 2) ;

(3.2)

where c; � and � are positive physical constants (see [32, 59]).

3.2. Problem statement
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The important question we ask here is whether the linear damping is strong enough to achieve
exponential stability (rapid decrease in the energy) in the presence of magnetic and thermal

e¤ects with distributed delay.

3.3 Existence, uniqueness

In this section, we will establish the existence and uniqueness of solutions for system (3.1)- (3.2)

by employing semigroup theory. As stated in the work [67], we introduce the new variable

Y (x; �; t; }) = �t (x; t� �}) ; x 2 (0;�) ; � 2 (0; 1) ; } 2 (� 1; � 2) ; t > 0:

Then, we �nd the new equivalent problem8>>>>>><>>>>>>:

��tt � ��xx + �'xx + ��x + �1�t

+
R �2
�1
� (})Y (x; 1; t; }) d} = 0;

�'tt � �'xx + ��xx = 0;

c�t � ��xx + ��tx = 0;

}Yt (x; �; t; }) + Y� (x; �; t; }) = 0;

(x; t) 2 (0;�)� (0;1) ;

(�; }) 2 (0; 1)� (� 1; � 2) ;

(3.3)

with the following initial and boundary conditions:8>>>>>>>><>>>>>>>>:

� (0; t) = ��x (�; t)� �'x (�; t) = 0;

' (0; t) = 'x (�; t)� �x (�; t) = 0;

� (0; t) = � (�; t) = 0;

� (x; 0) = �0 (x) ; �t (x; 0) = �1 (x) ; ' (x; 0) = '0 (x) ;

't (x; 0) = '1 (x) ; � (x; 0) = �0 (x) ;

Y (x; �; 0; }) = f0 (x; �; }) :

t � 0;

x 2 (0;�)

(�; }) 2 (0; 1)� (0; � 2) :

(3.4)

By using the following notations

�t = u; 't = q; and V = (�; u; '; q; �; Y )T ;

@tV = (�t; ut; 't; qt; �t; Yt)
T ;

therefore, the problem (3.3)-(3.4) can be reformulated as(
@tV = BV;

V (0) = V0 = (�0; �1; '0; '1; �0; f0) ;
(3.5)

where the operator B : D(B) � H1 ! H1 is de�ned by

BV :=

0BBBBBBBB@

�t
�
�
�xx � �

�
'xx � �

�
�x � �1

�
�t � 1

�

R �2
�1
� (})Y (x; 1; t; }) d}

't
�
�
'xx � �

�
�xx

�
c
�xx � �

c
�tx

� 1
}Y�

1CCCCCCCCA
: (3.6)
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We consider the following spaces

Ĥ1 (0;�) =
�
� 2 H1 (0;�) : � (0) = 0

	
;

~H2 (0;�) =
�
� 2 H2 (0;�) : �x (�) = 0

	
:

Furthermore, we de�ne the aforementioned Hilbert space H1 as follows:

H1 := Ĥ1 (0;�)� L2 (0;�)� Ĥ1 (0;�)� L2 (0;�)� L2 (0;�)� L2 ((0;�)� (0; 1)� (� 1; � 2)) :

The inner product on H1 is de�ned as follows:D
V; ~V

E
= �

Z �

0

�t~�tdx+ �

Z �

0

't~'tdx� �

Z �

0

�x~'xdx� �

Z �

0

~�x'xdx

+�

Z �

0

�x~�xdx+ �

Z �

0

'x~'xdx+ c

Z �

0

�~�dx

+

Z �

0

Z �2

�1

} j� (})j
Z 1

0

Y (x; �; t; }) ~Y (x; �; t; }) d�d}dx: (3.7)

Now, we de�ned the previous domain of operator B as

D (B) :=
n
(�; �t; '; 't; �; Y ) 2 ~H2 (0;�) \ Ĥ1 (0;�)� Ĥ1 (0;�)� ~H2 (0;�) \ Ĥ1 (0;�)

�Ĥ1 (0;�)�H2 (0;�) \H1
0 (0;�)� L2 ((0;�)� (0; 1)� (� 1; � 2))

o
:

(3.8)

Clearly, D (B) is dense in H1.

Theorem 3.1 Let V0 2 D (B). Then, the problem mentioned (3.3)-(3.4) has a unique solution
V 2 C (R+; D(B)) \ C1 (R+; H1).

Proof. Firstly, we establish the dissipativity of the operator B.
Let V = (�; �t; '; 't; �; Y )

T 2 D (B). By utilizing the previous inner product, we get:

hBV; V iH1 =
*
0BBBBBBBB@

�t
�
�
�xx � �

�
'xx � �

�
�x � �1

�
�t � 1

�

R �2
�1
� (})Y (x; 1; t; }) d}

't
�
�
'xx � �

�
�xx

�
c
�xx � �

c
�tx

� 1
}Y�

1CCCCCCCCA
;

0BBBBBBBB@

�

�t

'

't
�

Y

1CCCCCCCCA
+

H1

:

(3.9)

By integrating by parts and taking into account the boundary conditions, we obtain:

hBV; V iH1 = ��1
Z �

0

�2tdx� �

Z �

0

�2xdx�
Z �

0

�t

Z �2

�1

� (})Y (x; 1; t; }) d}dx

�
Z �

0

Z �2

�1

j� (})j
Z 1

0

Y� (x; �; t; })Y (x; �; t; }) d�d}dx; (3.10)
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also, by integrating with respect to �, we �nd

�
Z �

0

Z �2

�1

j� (})j
Z 1

0

Y� (x; �; t; })Y (x; �; t; }) d�d}dx = �
1

2

Z �

0

Z �2

�1

j� (})jY 2 (x; 1; t; }) d}dx

+
1

2

Z �2

�1

j� (})j d}
Z �

0

�2tdx; (3.11)

by applying Young�s and Cauchy-Schwarz inequalities, we get

�
Z �

0

�t

Z �2

�1

� (})Y (x; 1; t; }) d}dx

� 1

2

Z �

0

�2tdx

Z �2

�1

j� (})j d}+ 1
2

Z �

0

Z �2

�1

j� (})jY 2 (x; 1; t; }) d}dx; (3.12)

by (3.11), (3.12), we obtain

hBV; V iH1 � �
�
�1 �

Z �2

�1

j� (})j d}
�Z �

0

�2tdx� �

Z �

0

�2xdx:

Consequently, throught the condition (2.5), we conclude that B is a dissipative operator. Next,

we will proceed to prove that the operator (I �B) is surjective. GivenM1 = (g1; g2; g3; g4; g5; g6)
T 2

H1, we show that there exists a unique V = (�; u; '; q; �; Y )
T 2 D (B) such that

(I �B)V =M1; (3.13)

this implies 8>>>>>>>><>>>>>>>>:

� � u = g1;

�u� ��xx + �'xx + �1u+ ��x +
R �2
�1
� (})Y (x; 1; t; }) d} = �g2;

'� q = g3;

�q � �'xx + ��xx = �g4;

c� � ��xx + �ux = cg5;

Y + 1
}Y� = g6:

(3.14)

Using (3.14)1 and (3.14)3, we have (
u = � � g1;

q = '� g3:
(3.15)

Because

Y (x; 0; t; }) = �t (x; t) = u (x; t) ; for x 2 (0;�) ; } 2 (� 1; � 2) ; t � 0;

and according to equation (3.14)6, we obtain

Y (x; �; t; }) = }e�}�
Z �

0

g6 (x; � ; }) e}�d� + ue�}�; (3.16)
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in particular

Y (x; 1; t; }) = }e�}
Z 1

0

g6 (x; � ; }) e}�d� + ue�}: (3.17)

Now, by using (3.15)-(3.17) in the remaining equations for (3.14); we get8>>>>>><>>>>>>:

���xx + �'xx + ��x +$1� = Q1 2 L2 (0;�) ;

��xx � �'xx + �' = Q2 2 L2 (0;�) ;

c� � ��xx + ��x = Q3 2 L2 (0;�) :

(3.18)

Where

$1 = (�1 + �) +

Z �2

�1

� (}) e�}d};

Q1 = $1g1 + �g2 �
Z �2

�1

� (}) }e�}
Z 1

0

g6 (x; � ; }) e}�d�d};

Q2 = � (g4 + g3) ;

Q3 = cg5 + �g1x: (3.19)

Multiplying (3.18)1, (3.18)2; (3.18)3 respectively by ~�; ~' 2 Ĥ1 (0;�) and ~� 2 H1
0 (0;�), and

using integration by parts while considering the boundary conditions, we �nd8>>>>>><>>>>>>:

�
R �
0
�x~�xdx� �

R �
0
'x~�xdx+ �

R �
0
�x~�dx+$1

R �
0
�~�dx =

R �
0
Q1~�dx;

��
R �
0
�x~'xdx+ �

R �
0
'x~'xdx+ �

R �
0
'~'dx =

R �
0
Q2~'dx;

c
R �
0
�~�dx+ �

R �
0
�x~�xdx� �

R �
0
�~�xdx =

R �
0
Q3~�dx:

(3.20)

Consequently, problem (3.20) is equivalent to the following variational problem

a1

�
(�; '; �) ;

�
~�; ~'; ~�

��
= b1

�
~�; ~'; ~�

�
: (3.21)

Where a1 :
h
Ĥ1 (0;�)� Ĥ1 (0;�)�H1

0 (0;�)
i2
! R is the bilinear form de�ned as follows

a1

�
(�; '; �) ;

�
~�; ~'; ~�

��
= �

Z �

0

�x~�xdx+ �

Z �

0

'x~'xdx� �

Z �

0

'x~�xdx� �

Z �

0

�x~'xdx

+$1

Z �

0

�~�dx+ �

Z �

0

'~'dx+ �

Z �

0

�x~�dx+ c

Z �

0

�~�dx

+�

Z �

0

�x~�xdx� �

Z �

0

�~�xdx; (3.22)
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b1 : Ĥ
1 (0;�)� Ĥ1 (0;�)�H1

0 (0;�)! R is the linear form given by

b1

�
~�; ~'; ~�

�
=

Z �

0

Q1~�dx+

Z �

0

Q2~'dx+

Z �

0

Q3~�dx: (3.23)

Now, for ~H1 := Ĥ1 (0;�)� Ĥ1 (0;�)�H1
0 (0;�) equipped with this norm

k(�; '; �)k ~H1 =
 ��x � �

�
'x

�2
2

+ k�k22 + k'k
2
2 + k'xk

2
2 + k�k

2
2 + k�xk

2
2

! 1
2

: (3.24)

The continuity of the bilinear form a1 and the linear form b1 can be easily established. Addi-

tionally, we have

a1 ((�; '; �) ; (�; '; �)) = �

Z �

0

�
�x �

�

�
'x

�2
dx+

 
� � (�)

2

�

!Z �

0

'2xdx+$1

Z �

0

�2dx

+ �

Z �

0

'2dx+ c

Z �

0

�2dx+ �

Z �

0

�2xdx � m̂ k(�; '; �)k2~H1 ; (3.25)

where

m̂ = min

 
�;

 
� � (�)

2

�

!
; $1; �; c; �

!
: (3.26)

For all $1 � 0 the bilinear form a1 is coercive. Therefore, by applying the Lax-Milgram

theorem, it follows that the system (3.21) possesses a unique solution

(�; '; �) 2 Ĥ1 (0;�)� Ĥ1 (0;�)�H1
0 (0;�) :

Therefore, through (3.15), we �nd

(u; q) 2 Ĥ1 (0;�)� Ĥ1 (0;�) ;

also, by substituting u in (3.16) and (3.14)6; we obtain

Y; Y� 2 L2 ((0;�)� (0; 1)� (� 1; � 2)) :

We consider the following cases (~�; 0; 0) ; (0; ~'; 0) ;
�
0; 0; ~�

�
and we apply the derivative in the

distribution sense, we �nd that the unique solution (�; '; �) satis�es (3.18).
Now using (3.18)1 and (3.18)2, we get

�xx =
$1

�1
� +

�

�1
'+

�

�1
�x �

1

�1
Q1 �



�1
Q2 2 L2 (0;�) =) � 2 H2 (0;�) =) ' 2 H2 (0;�) :

(3.27)

Multiplying (3.18)1 by the function ~� 2 Ĥ1 (0;�) and applying integration by parts, we obtain

by using (3.20)1

���x (�) ~� (�) + �'x (�) ~� (�) = 0 8~� 2 Ĥ1 (0;�) ;
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we select

~� (x) =
x

�
; (3.28)

then we get

�'x (�) = ��x (�) : (3.29)

Multiplying (3.18)2 by ~' 2 Ĥ1 (0;�) and using integration by parts, we �nd by using (3.20)2

��x (�) ~' (�)� �'x (�) ~' (�) = 0; 8~' 2 Ĥ1 (0;�) ;

we choose

~' (x) =
x

�
;

then we get

��x (�)� �'x (�) = 0; (3.30)

by utilizing equation (3.29) in equation (3.30), we obtain

�x (�) = 'x (�) = 0: (3.31)

Through the results we obtained in (3.27) and (3.31), we have

�; ' 2 Ĥ2 (0;�) ;

and by (3.18)3; we obtain

�xx = �
1

�
(Q3 � c� � ��x) 2 L2 (0;�) :

Consequentially, the operator (I �B) is surjective.
Hence, B is a maximal dissipative operator, then we can utilize the Hille-Yosida theorem and

get the well-posedness result of a solution for the problem (3.5).

3.4 Exponential stability

In this section, we will state and provide the proofs of the necessary technical lemmas that are

required for establishing the proof of our stability result.

Lemma 3.1 Let (�; '; �; Y ) be a solution of (3.3)-(3.4); in that case, the expression of energy
E(t) de�ned as follows

E (t) =
1

2

Z �

0

�
��2t + �'2t + �1�

2
x + � (�x � 'x)

2 + c�2

+

Z 1

0

Z �2

�1

} j� (})jY 2 (x; �; t; }) d}d�
�
dx; (3.32)

and satis�es
d

dt
E (t) � �

�
�1 �

Z �2

�1

j� (})j d}
�Z �

0

�2tdx� �

Z �

0

�2xdx: (3.33)
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Proof. Multiplying the �rst equation of (3.3) by �t; the second equation by 't and the third
by �; integrating over the interval (0;�) ; with respect to x; we get

�
d

2dt

Z �

0

�2tdx+ �
d

2dt

Z �

0

'2tdx+
1

2

d

dt

Z �

0

� (�x � 'x)
2 dx

+ �1
d

2dt

Z �

0

�2xdx+ c
d

2dt

Z �

0

�2dx+ �

Z �

0

�2xdx+ �1

Z �

0

�2tdx

+

Z �

0

�t

Z �2

�1

� (})Y (x; 1; t; }) d}dx = 0: (3.34)

Next, multiplying equation (3.3)4 by j� (})jY (x; �; t; }) and integrating over (0;�) � (0; 1) �
(� 1; � 2) with respect to x; � and }, we �ndZ �

0

Z 1

0

Z �2

�1

} j� (})jY (x; �; t; })Yt (x; �; t; }) d}d�dx

+

Z �

0

Z 1

0

Z �2

�1

j� (})jY (x; �; t; })Y� (x; �; t; }) d}d�dx = 0; (3.35)

then we obtain

d

2dt

Z �

0

Z 1

0

Z �2

�1

} j� (})jY 2 (x; �; t; }) d}d�dx

+
1

2

Z �

0

Z 1

0

d

d�

Z �2

�1

j� (})jY 2 (x; �; t; }) d}d�dx = 0; (3.36)

because

1

2

Z �

0

Z 1

0

d

d�

Z �2

�1

j� (})jY 2 (x; �; t; }) d}d�dx =
1

2

Z �

0

Z �2

�1

j� (})jY 2 (x; 1; t; }) d}dx

� 1
2

Z �

0

Z �2

�1

j� (})j �2td}dx; (3.37)

we have

1

2

d

dt

Z �

0

�
��2t + �'2t + �1�

2
x + � (�x � 'x)

2 + c�2

+

Z 1

0

Z �2

�1

} j� (})jY 2 (x; �; t; }) d}d�
�
dx = � �

Z �

0

�2xdx� �1

Z �

0

�2tdx

�
Z �

0

�t

Z �2

�1

� (})Y (x; 1; t; }) d}dx� 1
2

Z �

0

Z �2

�1

j� (})jY 2 (x; 1; t; }) d}dx

+
1

2

Z �2

�1

j� (})j d}
Z �

0

�2tdx: (3.38)
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By applying Young�s and Cauchy-Schwarz inequalities, we obtain

�
Z �

0

�t

Z �2

�1

� (})Y (x; 1; t; }) d}dx �
Z �

0

Z �2

�1

j�tj j� (})j
1
2 j� (})j

1
2 jY (x; 1; t; })j d}dx

� 1

2

Z �

0

�2tdx

Z �2

�1

j� (})j d}

+
1

2

Z �

0

Z �2

�1

j� (})jY 2 (x; 1; t; }) d}dx; (3.39)

by employing the inequality (3.39) in (3.38), we get

d

dt
E (t) � �

�
�1 �

Z �2

�1

j� (})j d}
�Z �

0

�2tdx� �

Z �

0

�2xdx;

also, by using (2.5); we obtain
d

dt
E (t) � 0:

Lemma 3.2 Let (�; '; �; Y ) satis�es (3.3)-(3.4) then the functional

I1 (t) = �

Z �

0

�t�dx+ �

Z �

0

't�dx+
�1
2

Z �

0

�2dx; 8t � 0;

satis�es for any positive constant "1

I 01 (t) � �
�1
2

Z �

0

�2xdx+

 
�+

(�)2

4"1

!Z �

0

�2tdx+ "1

Z �

0

'2tdx

+
�2c0
�1

Z �

0

�2xdx+
c0�1
�1

Z �

0

Z �2

�1

j� (})jY 2 (x; 1; t; }) d}dx: (3.40)

Proof. By multiplying equation (3.3)1 by � and integrating with respect to x in (0;�), we get

d

dt
�

Z �

0

�t�dx� �

Z �

0

�2tdx+ �1

Z �

0

�2xdx+ 

Z �

0

(�'xx � ��xx) �dx

+ �

Z �

0

�x�dx+
d

dt

�1
2

Z �

0

�2dx+

Z �

0

�

Z �2

�1

� (})Y (x; 1; t; }) d}dx = 0: (3.41)

Furthermore, by employing equation (3.3)2, we obtain

d

dt
�

Z �

0

�t�dx� �

Z �

0

�2tdx+ �1

Z �

0

�2xdx+ �

Z �

0

'tt�dx

+ �

Z �

0

�x�dx+
d

dt

�1
2

Z �

0

�2dx+

Z �

0

�

Z �2

�1

� (})Y (x; 1; t; }) d}dx = 0; (3.42)
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(3.42), can be written as follows

d

dt

�
�

Z �

0

�t�dx+ �

Z �

0

't�dx+
�1
2

Z �

0

�2dx

�
=

�

Z �

0

�2tdx� �1

Z �

0

�2xdx+ �

Z �

0

't�tdx� �

Z �

0

�x�dx�
Z �

0

�

Z �2

�1

� (})Y (x; 1; t; }) d}dx:

(3.43)

By utilizing Young�s, Poincaré�s and Cauchy-Schwarz inequalities, we obtain the following res-

ults for any "1 > 0

�

Z �

0

't�tdx � "1

Z �

0

'2tdx+
(�)2

4"1

Z �

0

�2tdx; (3.44)

�
Z �

0

�

Z �2

�1

� (})Y (x; 1; t; }) d}dx

� �1
4

Z �

0

�2xdx+
c0�1
�1

Z �

0

Z �2

�1

j� (})jY 2 (x; 1; t; }) d}dx; (3.45)

��
Z �

0

�x�dx �
�1
4

Z �

0

�2xdx+
�2c0
�1

Z �

0

�2xdx; (3.46)

by using (3.44), (3.45) and (3.46) in (3.43), we get (3.40).

Lemma 3.3 Let (�; '; �; Y ) be the solution of system (3.3)-(3.4) then the functional

I2 (t) = �

Z �

0

't'dx+ �

Z �

0

�t�dx;

satis�es

I 02 (t) � ��
Z �

0

(�x � 'x)
2 dx+ �

Z �

0

'2tdx+

�
�+

c0�
2
1

2�1

�Z �

0

�2tdx

+
�2c0
�1

Z �

0

�2xdx+
c0�1
�1

Z �

0

Z �2

�1

j� (})jY 2 (x; 1; t; }) d}dx: (3.47)

Proof. By multiplying the �rst equation of (3.3) by �; we obtain

�
d

dt

Z �

0

�t�dx� �

Z �

0

�2tdx+ �1

Z �

0

�2xdx� �

Z �

0

'x�xdx+ �

Z �

0

�x�dx

+�1

Z �

0

�t�dx+

Z �

0

�

Z �2

�1

� (})Y (x; 1; t; }) d}dx+ 2�

Z �

0

�2xdx = 0: (3.48)

Furthermore, by multiplying equation (3.3)2 by '; we obtain

�
d

dt

Z �

0

't'dx� �

Z �

0

'2tdx+ �

Z �

0

'2xdx� �

Z �

0

�x'xdx = 0; (3.49)
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adding (3.48) to (3.49) gives us8><>:
I 02 (t) = �

R �
0
'2tdx� �

R �
0
(�x � 'x)

2 dx+ �
R �
0
�2tdx

��1
R �
0
�2xdx� �

R �
0
�x�dx� �1

R �
0
�t�dx

�
R �
0
�
R �2
�1
� (})Y (x; 1; t; }) d}dx:

(3.50)

By using Young�s, Poincaré�s and Cauchy-Schwarz inequalities, we obtain

��1
Z �

0

�t�dx �
�1
2

Z �

0

�2xdx+
c0�

2
1

2�1

Z �

0

�2tdx; (3.51)

��
Z �

0

�x�dx �
�1
4

Z �

0

�2xdx+
�2c0
�1

Z �

0

�2xdx; (3.52)

and

�
Z �

0

�

Z �2

�1

� (})Y (x; 1; t; }) d}dx

� �1
4

Z �

0

�2xdx+
c0�1
�1

Z �

0

Z �2

�1

j� (})jY 2 (x; 1; t; }) d}dx: (3.53)

By utilizing (3.51), (3.52) and (3.53) in (3.50), we get (3.47).

Lemma 3.4 Let (�; '; �; Y ) satis�es (3.3)-(3.4) then the functional

I3 (t) = �

Z �

0

�t (� � ') dx+ �

Z �

0

't (� � ') dx;

satis�es for any "2; "3; "4; "5 > 0

d

dt
I3 (t) � ��

2

Z �

0

'2tdx+ ("2 + "3c0 + "4c0 + "5c0)

Z �

0

(�x � 'x)
2 dx

+

�
� +

�21
4"3

+
{2

2�

�Z �

0

�2tdx+
�21
4"2

Z �

0

�2xdx

+
�2

4"5

Z �

0

�2xdx+
�1
4"4

Z �

0

Z �2

�1

j� (})jY 2 (x; 1; t; }) d}dx: (3.54)

Proof. By multiplying the �rst equation of (3.3) by �; the second by �'; we obtain

�
d

dt

Z �

0

�t�dx = �

Z �

0

�2tdx� �

Z �

0

�2xdx+ 2�

Z �

0

'x�xdx

��
Z �

0

�x�dx� �1

Z �

0

�t�dx

�
Z �

0

�

Z �2

�1

� (})Y (x; 1; t; }) d}dx; (3.55)
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�� d
dt

Z �

0

't'dx = ��
Z �

0

'2tdx+ �

Z �

0

'2xdx� 2�

Z �

0

�x'xdx; (3.56)

again, by multiplying the �rst equation of (3.3) by �'; the second by 2�; we get

� �
d

dt

Z �

0

�t'dx = ��
Z �

0

�t'tdx+ �

Z �

0

�x'xdx� �

Z �

0

'2xdx

+�

Z �

0

�x'dx+ �1

Z �

0

�t'dx

+

Z �

0

'

Z �2

�1

� (})Y (x; 1; t; }) d}dx; (3.57)

�2
d

dt

Z �

0

't�dx = �2
Z �

0

't�tdx� 2�

Z �

0

'x�xdx+ 3�

Z �

0

�2xdx: (3.58)

By summing (3.55), (3.56), (3.57) and (3.58) together, we get

d

dt
I3 (t) = ��

Z �

0

'2tdx� �1

Z �

0

�x (�x � 'x) dx� �1

Z �

0

�t (� � ') dx

+ �

Z �

0

�2tdx+
�
2�� �

�| {z }
{

Z �

0

�t'tdx� �

Z �

0

�x (� � ') dx

�
Z �

0

(� � ')

Z �2

�1

� (})Y (x; 1; t; }) d}dx; (3.59)

by utilizing Young�s, Poincaré�s, and Cauchy-Schwarz inequalities, we get

��1
Z �

0

�x (�x � 'x) dx � "2

Z �

0

(�x � 'x)
2 dx+

�21
4"2

Z �

0

�2xdx; 8"2 > 0; (3.60)

and

��1
Z �

0

�t (� � ') dx � "3c0

Z �

0

(�x � 'x)
2 dx+

�21
4"3

Z �

0

�2tdx; 8"3 > 0; (3.61)

�
Z �

0

(� � ')

Z �2

�1

� (})Y (x; 1; t; }) d}dx � "4c0

Z �

0

(�x � 'x)
2 dx

+
�1
4"4

Z �

0

Z �2

�1

j� (})jY 2 (x; 1; t; }) d}dx; 8"4 > 0; (3.62)

{
Z �

0

�t'tdx �
�

2

Z �

0

'2tdx+
{2

2�

Z �

0

�2tdx: (3.63)

��
Z �

0

�x (� � ') dx � "5c0

Z �

0

(�x � 'x)
2 dx+

�2

4"5

Z �

0

�2xdx: (3.64)

Using the inequalities (3.60) to (3.64) in the relationship (3.59), we �nd (3.54).
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Lemma 3.5 Let (�; '; �; Y ) be a solution of system (3.3)-(3.4) then the functional

I4 (t) :=

Z �

0

Z 1

0

Z �2

�1

}e�}� j� (})jY 2 (x; �; t; }) d}d�dx; (3.65)

satis�es

I 04 (t) � �e��2
Z �

0

Z �2

�1

j� (})jY 2 (x; 1; t; }) d}dx+ �1

Z �

0

�2tdx

� e��2
Z �

0

Z 1

0

Z �2

�1

} j� (})jY 2 (x; �; t; }) d}d�dx: (3.66)

Proof. By multiplying the fourth equation of (3.3) by e�}� j� (})jY (x; �; t; }) ; we have

}e�}� j� (})jY (x; �; t; })Yt (x; �; t; }) + e�}� j� (})jY (x; �; t; })Y� (x; �; t; }) = 0; (3.67)

by integrating with respect to x; � and } over (0;�)� (0; 1)� (� 1; � 2) in (3.67); we get

d

dt

Z �

0

Z 1

0

Z �2

�1

}e�}� j� (})jY 2 (x; �; t; }) d}d�dx

+2

Z �

0

Z 1

0

Z �2

�1

e�}� j� (})jY (x; �; t; })Y� (x; �; t; }) d}d�dx = 0; (3.68)

so we �nd

d

dt
I4 (t) = �

Z �

0

Z �2

�1

e�} j� (})jY 2 (x; 1; t; }) d}dx+
Z �2

�1

j� (})j d}
Z �

0

�2tdx

�
Z �

0

Z 1

0

Z �2

�1

}e�}� j� (})jY 2 (x; �; t; }) d}d�dx; (3.69)

by using the following relation e�} � e�}� � 1, 8 0 � � � 1; we get

d

dt
I4 (t) � �

Z �

0

Z �2

�1

e�} j� (})jY 2 (x; 1; t; }) d}dx+
Z �2

�1

j� (})j d}
Z �

0

�2tdx

�
Z �

0

Z 1

0

Z �2

�1

}e�} j� (})jY 2 (x; �; t; }) d}d�dx: (3.70)

Since
�
�e�}

�0
= e�} � 0; we conclude that �e�} � �e��2 ; 8} 2 (� 1; � 2) ; then we obtain

directly (3.66).
Now, we de�ne the Lyapunov functional as follows

L (t) = NE (t) +N1I1 (t) +N2I2 (t) +N3I3 (t) +N4I4 (t) ;

where N; N1; N2; N3; N4 are positive constants to be determined later.
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Theorem 3.2 Let (�; '; �; Y ) be the solution of system (3.3)-(3.4): Then there exist two pos-

itive constants c1; c2 > 0 satis�es

c1E (t) � L (t) � c2E (t) ; 8t � 0: (3.71)

Proof. Let

= (t) = L (t)�NE (t) =
i=4X
i=1

NiIi (t) ; (3.72)

then

j= (t)j = jL (t)�NE (t)j

� N1

�
�

Z �

0

j�t�j dx+ �

Z �

0

j't�j dx+
�1
2

Z �

0

�2dx

�
+N2

�
�

Z �

0

j't'j dx+ �

Z �

0

j�t�j dx
�

+N3

�
�

Z �

0

j�t (� � ')j dx+ �

Z �

0

j't (� � ')j dx
�

+N4

Z �

0

Z 1

0

Z �2

�1

}e�}� j� (})jY 2 (x; �; t; }) d}d�dx: (3.73)

By utilizing Young�s and Poincaré�s inequalities in (3.73), we obtain the following inequality

for any " > 0:

j= (t)j �
�
N1�

2

4"
+N2�

2"+
N3�

2

4"

�
| {z }

�1

Z �

0

�2tdx

+

 
N1
(�)2

4"
+N2

�2

4"
+N3

(�)2

4"

!
| {z }

�2

Z �

0

'2tdx

+
�
N1

�
2"c0 +

c0�1
2

�
+N2

�
2"2c0 +

c0
4"

��
| {z }

�3

Z �

0

�2xdx

+ (2N2"c0 + 2N3"c0)| {z }
�4

Z �

0

(�x � 'x)
2 dx

+N4

Z �

0

Z 1

0

Z �2

�1

} j� (})jY 2 (x; �; t; }) d}d�dx;

for each constant value of "; there is a positive constant C such that

j= (t)j � CE (t) ;
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where

C = max

�
2

�
�1;
2

�
�2;

2

�1
�3;
2

�
�4; 2N4

�
;

then we obtain

(�C +N)| {z }
c1

E (t) � L (t) � (C +N)| {z }
c2

E (t) :

Theorem 3.3 Let (�; '; �; Y ) be a solution of system (3.3)-(3.4). Then there exist two positive
constants k and �, such that the following inequality is satis�ed

E (t) � ke��t; 8t � 0: (3.74)

Proof. By utilizing the previous lemmas, we get the following result

L
0
(t) � �

 
N

�
�1 �

Z �2

�1

j� (})j d}
�
�N1

 
�+

(�)2

4"1

!
�N2

�
�+

c0�
2
1

2�1

�
�N3

�
� +

�21
4"3

+
{2

2�

�
�N4�1

�Z �

0

�2tdx

�
�
N3

�

2
�N1"1 �N2�

�Z �

0

'2tdx�
�
N1

�1
2
�N3

�21
4"2

�Z �

0

�2xdx

� (N2� �N3 ("2 + "3c0 + "4c0 + "5c0))

Z �

0

(�x � 'x)
2 dx

�
�
N��N1

�2c0
�1

�N2
�2c0
�1

�N3
�2

4"5

�Z �

0

�2xdx

�
�
N4e

��2 �N1
c0�1
�1

�N2
c0�1
�1

�N3
�1
4"4

�Z �

0

Z �2

�1

j� (})jY 2 (x; 1; t; }) d}dx

�N4e
��2
Z �

0

Z 1

0

Z �2

�1

} j� (})jY 2 (x; �; t; }) d}d�dx:

We select the following values as follows

"1 =
1

N1
; "2 = "3 = "4 = "5 =

1

N3
;
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we get

L
0
(t) � �

 
N

�
�1 �

Z �2

�1

j� (})j d}
�
�N1

 
�+

N1 (�)
2

4

!
�N2

�
�+

c0�
2
1

2�1

�
�N3

�
� +

N3�
2
1

4
+
{2

2�

�
�N4�1

�Z �

0

�2tdx

�
�
N3

�

2
� 1�N2�

�Z �

0

'2tdx�
�
N1

�1
2
�N2

3

�21
4

�Z �

0

�2xdx

� (N2� � (1 + 3c0))
Z �

0

(�x � 'x)
2 dx

�
�
N��N1

�2c0
�1

�N2
�2c0
�1

�N2
3

�2

4

�Z �

0

�2xdx

�
�
N4e

��2 �N1
c0�1
�1

�N2
c0�1
�1

�N2
3

�1
4

�Z �

0

Z �2

�1

j� (})jY 2 (x; 1; t; }) d}dx

�N4e
��2
Z �

0

Z 1

0

Z �2

�1

} j� (})jY 2 (x; �; t; }) d}d�dx: (3.75)

We select N2 as the �rst option in (3.75) until it becomes

N2� � (1 + 3c0) > 0:

We also choose N3 until it becomes

�N3

2
�N2� > 1:

Now, we select N1 to be su¢ ciently large such that

N1
�1
2
�N2

3

�21
4
> 0:

Additionally, we choose N4 large enough so that

N4e
��2 �N1

c0�1
�1

�N2
c0�1
�1

�N2
3

�1
4
> 0:

Lastly, we choose an exceptionally large value for N in order to ensure that 
N

�
�1 �

Z �2

�1

j� (})j d}
�
�N1

 
�+

N1 (�)
2

4

!
�N2

�
�+

c0�
2
1

2�1

�
�N3

�
� +

N3�
2
1

4
+
{2

2�

�
�N4�1

�
> 0:

And �
N��N1

�2c0
�1

�N2
�2c0
�1

�N2
3

�2

4

�
> 0:
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Since

�
�
N4e

��2 � N2
3�1
4

�N2
c0�1
�1

�N1
c0�1
2�1

�Z �

0

Z �2

�1

j� (})jY 2 (x; 1; t; }) d}dx � 0:

By employing Poincaré�s inequality, we obtain

L0 (t) � �mE (t) :

By (3.71), we �nd

L0 (t) � �m
c2
L (t) : (3.76)

By integrating (3.76) over the interval (0; t) ; we get

L (t) � L (0) e
�m
c2
t
:

When we use (3.71) once more, we get (3.74).

3.5 Exponential energy decay when the magnetic e¤ects

are neglected

By neglecting the magnetic e¤ects, we can achieve the electrostatic and quasi-static cases. For

a beam of a length � and thickness h, we consider the system of stretching motion subjected

to a distributed delay term coupled with the parabolic equation governed by Fourier�s law8>>>>>>>><>>>>>>>>:

��tt � �1�xx + ��x + �1�t

+
R �2
�1
� (}) �t (x; t� }) d} = 0;

c�t � ��xx + ��tx = 0;

� (0; t) = �x (�; t) = � (0; t) = � (�; t) = 0;

(�; �t; �) (x; 0) = (�0; �1; �0) (x)

�t (x;�t) = f0 (x;�t) ;

in (0;�)� (0;1) ;

t � 0;
x 2 (0;�)
t 2 (0; � 2) :

(3.77)

As in [67], we introduce the new variable

Y (x; �; t; }) = �t (x; t� �}) ; x 2 (0;�) ; � 2 (0; 1) ; } 2 (� 1; � 2) ; t � 0;

then we get

}Yt (x; �; t; }) + Y� (x; �; t; }) = 0; x 2 (0;�) ; � 2 (0; 1) ; } 2 (� 1; � 2) ; t � 0:

Consequently, the problem (3.77) rewritten as follows8>>><>>>:
��tt � �1�xx + ��x + �1�t

+
R �2
�1
� (})Y (x; 1; t; }) d} = 0;

c�t � ��xx + ��tx = 0;

}Yt (x; �; t; }) + Y� (x; �; t; }) = 0;

(x; t) 2 (0;�)� (0;1) ;

(�; }) 2 (0; 1)� (� 1; � 2) ;

(3.78)
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with the given initial and boundary conditions8><>:
� (0; t) = �x (�; t) = � (0; t) = � (�; t) = 0;

(�; �t; �) (x; 0) = (�0; �1; �0) (x)

Y (x; �; 0; }) = f0 (x; �; }) :

t � 0;
x 2 (0;�)

(�; }) 2 (0; 1)� (0; � 2) :
(3.79)

Moreover, the energy associated with the system is expressed as follows

~E (t) =
1

2

Z �

0

�
��2t + �1�

2
x + c�2 +

Z 1

0

Z �2

�1

} j� (})jY 2 (x; �; t; }) d}d�
�
dx; (3.80)

and satis�es

d

dt
~E (t) � �

�
�1 �

Z �2

�1

j� (})j d}
�Z �

0

�2tdx� �

Z �

0

�2xdx 8t � 0: (3.81)

We now demonstrate that the system (3.78)-(3.79) is exponentially stable.

Lemma 3.6 Let (�; �; Y ) be a solution of the system (3.78)-(3.79). Then the functional de�ned
as follows

~K1 (t) = �

Z �

0

�t�dx+
�1
2

Z �

0

�2dx 8t � 0; (3.82)

satis�es

~K 0
1 (t) � ��1

2

Z �

0

�2xdx+ �

Z �

0

�2tdx+
�2c0
�1

Z �

0

�2xdx

+
c0�1
�1

Z �

0

Z �2

�1

j� (})jY 2 (x; 1; t; }) d}dx: (3.83)

Proof. By multiplying equation (3.78)1 by � and integrating with respect to x in (0;�), we
get the following expression

�
d

dt

Z �

0

�t�dx� �

Z �

0

�2tdx+ �1

Z �

0

�2xdx+ �

Z �

0

�x�dx+ �1
d

2dt

Z �

0

�2dx

+

Z �

0

�

Z �2

�1

� (})Y (x; 1; t; }) d}dx = 0; (3.84)

(3.84), satis�es the equation

d

dt

�
�

Z �

0

�t�dx+
�1
2

Z �

0

�2dx

�
=

�

Z �

0

�2tdx� �1

Z �

0

�2xdx� �

Z �

0

�x�dx�
Z �

0

�

Z �2

�1

� (})Y (x; 1; t; }) d}dx; (3.85)
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by utilizing Young�s, Poincaré�s and Cauchy-Schwarz inequalities, we obtain

�
Z �

0

�

Z �2

�1

� (})Y (x; 1; t; }) d}dx

� �1
4

Z �

0

�2xdx+
c0�1
�1

Z �

0

Z �2

�1

j� (})jY 2 (x; 1; t; }) d}dx; (3.86)

��
Z �

0

�x�dx �
�1
4

Z �

0

�2xdx+
�2c0
�1

Z �

0

�2xdx: (3.87)

Using the inequalities (3.86) and (3.87) in (3.85), we �nd (3.83).
We de�ne the Lyapunov functional as follows

~L (t) = ~N ~E (t) + ~K1 (t) + ~N4I4 (t) : (3.88)

As stated in the theorem (3.2), it is evident that there exist two positive constants ~c1 and ~c2 > 0

that satisfy

~c1 ~E (t) � ~L (t) � ~c2 ~E (t) ; 8t � 0: (3.89)

Theorem 3.4 Let (�; �; Y ) solution of system (3.78)-(3.79); then there are two positive con-

stants ~k and ~�, such that
~E (t) � ~ke�~�t; 8t � 0: (3.90)

Proof. Di¤erentiating ~L (t) and exploiting (3.66)-(3.81)-(3.83), we get

~L0 (t) � �
�
~N

�
�1 �

Z �2

�1

j� (})j d}
�
� ~N4�1 � �

�Z �

0

�2tdx�
�1
2

Z �

0

�2xdx

�
�
~N�� �2c0

�1

�Z �

0

�2xdx� ~N4e
��2
Z �

0

Z 1

0

Z �2

�1

} j� (})jY 2 (x; �; t; }) d}d�dx

�
�
~N4e

��2 � c0�1
�1

�Z �

0

Z �2

�1

j� (})jY 2 (x; 1; t; }) d}dx: (3.91)

We select ~N4 so that �
~N4e

��2 � c0�1
�1

�
> 0:

Furthermore, we choose ~N big enough so that�
~N

�
�1 �

Z �2

�1

j� (})j d}
�
� ~N4�1 � �

�
> 0:

And �
~N�� �2c0

�1

�
> 0:

Using the equivalence between energy and the Lyapunov functional, we have completed the

proof.
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CHAPTER 4

Global well-posedness and asymptotic stability of piezoelectric system with neutral delay

time in the presence or absence of magnetic e¤ects

4.1 Presentation of the problem

I n the investigations of piezoelectric beams, it is consistently observed that in studies of these
beams with di¤erent types of boundary and distributed delays, there is a relationship between

the coe¢ cient of the delay term and the coe¢ cient of the damping term. The question posed

here is whether certain types of delays can lead to the stability of piezoelectric beams without

any conditions between delay and damping coe¢ cients or when the damping is disregarded.
In the present chapter, we consider the following initial boundary value problem for fully

dynamic piezoelectric beams (the magnetic e¤ects are not negligible) subject to a neutral delay.

The system is written as8>>>>>>>>><>>>>>>>>>:

�
�
�t +

R t
0
h (t� s) �t (s) ds

�0
� ��xx + �'xx = 0;

�'tt � �'xx + ��xx = 0;

� (0; t) = ��x (�; t)� �'x (�; t) = 0;

' (0; t) = 'x (�; t)� �x (�; t) = 0;

� (x; 0) = �0 (x) ; �t (x; 0) = �1 (x) ;

' (x; 0) = '0 (x) ; 't (x; 0) = '1 (x) ;

in (0;�)� (0;1) ;

t � 0;

x 2 (0;�) ;

(4.1)

the initial data �0, '0; �1, '1 belong to an appropriate functional space, and the neutral delay

is de�ned by the convolution term involving the kernel h.
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4.2 Preliminaries

In this section, we introduce our assumptions regarding the kernel h and present some results

that are essential for the subsequent sections.

The assumptions concerning the kernel h are as follows:

(H1) The kernel h is a nonnegative function that is continuously di¤erentiable and meets the

following conditions:

8t � 0 h0 (t) � 0; �h =

Z 1

0

h (s) ds <1;

(H2) exp (&:)h (:) 2 L1 (R+) for any & > 0:

Lemma 4.1 ([84]) For any function � 2 C1 (R+;L2 (0;�)) and any h 2 C1 [0;1) ; we haveZ �

0

� (t)

�Z t

0

h (t� s) �t (s) ds

�
dx (4.2)

= �1
2
(h0��) (t) + 1

2

d

dt

Z t

0

h (t� s) k� (s)k2 ds

+
h (t)

2
k�k2 � h (t)

Z �

0

� (0) � (t) dx; 8t � 0:

Where

(h��) (t) =
Z t

0

h (t� s) k � (t)� � (s) k2ds; 8t � 0; (4.3)

and kk represents the norm in L2 (0;�) :

Theorem 4.1 (Aubin-Lions-Simon [12] (Page 102)) Let B0 � B1 � B2 represent three

Banach spaces. We assume that

1) The embedding of B1 into B2 is continuous.

2) The embedding of B0 into B1 is compact.

Let p and r be real numbers such that 1 � p; r � +1. For any T > 0, we de�ne the space

Ep;r as:

Ep;r =

�
� 2 Lp (]0; T [ ; B0) ;

d�

dt
2 Lr (]0; T [ ; B2)

�
:

We have the following properties:

1) The compactness of the embedding of Ep;r in Lp(]0; T [; B1) is guaranteed when p is �nite.

2) In the case where p = 1 and r > 1, the embedding of Ep;r in C0([0; T ]; B1) remains

compact.

4.2. Preliminaries
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Remark 2.1 Note that because

�

�Z t

0

h (t� s) �t (s) ds

�0
= �h (t) �t (0) + �

Z t

0

h (s) �tt (t� s) ds:

Then our problem (4.1) can be written as follows8>>>>>>>><>>>>>>>>:

��tt � ��xx + �'xx + �h (t) �t (0) + �
R t
0
h (s) �tt (t� s) ds = 0;

�'tt � �'xx + ��xx = 0;

� (0; t) = ��x (�; t)� �'x (�; t) = 0;

' (0; t) = 'x (�; t)� �x (�; t) = 0;

� (x; 0) = �0 (x) ; �t (x; 0) = �1 (x) ;

' (x; 0) = '0 (x) ; 't (x; 0) = '1 (x) ;

in (0;�)� (0;1) ;

t � 0;

x 2 (0;�) ;

4.3 Global well-posedness

In this section, our aim is to establish the global well posedness of a solution for the system

mentioned in reference (4.1). To achieve this, we employ the classical Faedo-Galerkin method.

For more details about this method, we refer the reader to see [13, 17, 18, 39, 75]

Theorem 4.2 Let (�0; �1; '0; '1) 2 H =
h
Ĥ1 (0;�)� L2 (0;�)

i2
: Then the system (4.1) pos-

sesses a unique global strong solution and satis�es

�; ' 2 C
�
R+; ~H2 (0;�) \ Ĥ1 (0;�)

�
\ C2

�
R+; Ĥ1 (0;�)

�
: (4.4)

Proof. To prove this theorem, we will utilize the following four main steps

� Step 1: Approximate Problem

Let f�jgj�1 be an orthogonal basis of ~H2 (0;�) \ Ĥ1 (0;�) and L2 (0;�). For any n � 1, let

Mn = span f�1; �2; :::; �ng ;

if the initial data (�0; �1; '0; '1) 2 H; we aim to �nd functions ynj ; Rnj in the space C2 [0; T ] ; such
that the following approximations hold:(

�n (x; t) =
Pj=n

j=1 y
n
j (t) �j (x) ;

'n (x; t) =
Pj=n

j=1 R
n
j (t) �j (x) ;

and satis�es the following approximate system8<: ��ntt + �
�R t

0
h (t� s) �nt (s) ds

�0
� ��nxx + �'nxx = 0;

�'ntt � �'nxx + ��nxx = 0;
(4.5)
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with the initial conditions: (
(�n; �nt) (x; 0) = (�

n
0 ; �

n
1 ) (x) ;�

'n; 'nt

�
(x; 0) = ('n0 ; '

n
1 ) (x) ;

(4.6)

which satis�es 8>>><>>>:
�n0 converges strongly to �0 in Ĥ

1 (0;�) ;

�n1 converges strongly to �1in L
2 (0;�) ;

'n0 converges strongly to '0 in Ĥ
1 (0;�) ;

'n1 converges strongly to '1 in L
2 (0;�) :

(4.7)

By using (4.5), we get8>>><>>>:
� h�ntt; �kiL2(0;�) + �

��R t
0
h (t� s) �nt (s) ds

�0
; �k

�
L2(0;�)

�� h�nxx; �kiL2(0;�) + � h'nxx; �kiL2(0;�) = 0;
� h'ntt; �kiL2(0;�) � � h'nxx; �kiL2(0;�) + � h�nxx; �kiL2(0;�) = 0;

(4.8)

using the Caratheodory theorem for standard ordinary di¤erential equations theory, system

(4.8) has a solutions
�
ynj ; R

n
j

�
j=1;n

2 (C2 [0; tn))2 : The �rst estimate below will guarantee that
tn = T; for any given T > 0.

� Step 2: A priori estimate

In this section, we will get two a priori estimates that are necessary to extend these solutions,

as well as in the later part (Passage to limit).
A priori estimate I
For any n � 1, following integration by parts with respect to x on the interval (0;�) in

equation (4.8); we obtain:8>><>>:
�
R �
0
�ntt�kdx+ �

R �
0
�k

�R t
0
h (t� s) �nt (s) ds

�0
dx+ �

R �
0
�nx�kxdx

��
R �
0
'nx�kxdx = 0;

�
R �
0
'ntt�kdx+ �

R �
0
'nx�kxdx� �

R �
0
�nx�kxdx = 0; 8k = 1; ::; n:

(4.9)

Multiplying (4.9)1 by (ynk )
0 ; (4.9)2 by (Rnk)

0 and using integration by parts, we get8>><>>:
�
R �
0
�ntt�ntdx+ �

R �
0
�nt

�R t
0
h (t� s) �nt (s) ds

�0
dx+ �

R �
0
�nx�nxtdx

��
R �
0
'nx�nxtdx = 0;

�
R �
0
'ntt'ntdx+ �

R �
0
'nx'nxtdx� �

R �
0
�nx'nxtdx = 0;

(4.10)

as �Z t

0

h (t� s) �nt (s) ds

�0

= h (t) �nt (0) +

Z t

0

h (s) �ntt (t� s) ds

= h (t) �nt (0) +

Z t

0

h (t� s) �ntt (s) ds: (4.11)
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By utilizing Lemma (4.1), we obtain:

�

Z �

0

�nt

Z t

0

h (t� s) �ntt (s) dsdx = ��
2
(h0��nt) (t) +

�

2

d

dt

Z t

0

h (t� s) k�nt (s)k2 ds

+
�h (t)

2
k�ntk2 � �h (t)

Z t

0

�nt (t) �nt (0) dx: (4.12)

By employing (4.11), (4.12) in the system (4.10), we get

�

2

d

dt

Z �

0

�2ntdx�
�

2
(h0��nt) (t) +

�

2

d

dt

Z t

0

h (t� s) k�nt (s)k2 ds

+
�h (t)

2
k�ntk2 +

�

2

d

dt

Z �

0

�2nxdx � �
d

dt

Z �

0

'nx�nxdx

+
�

2

d

dt

Z �

0

'2ntdx+
�

2

d

dt

Z �

0

'2nxdx = 0; (4.13)

it follows that,

1

2

d

dt

Z �

0

�
��2nt + �'2nt + �1�

2
nx + � (�nx � 'nx)

2� dx+ �

2

d

dt

Z t

0

h (t� s) k�nt (s)k2 ds

� �

2
(h0��nt) (t) +

�h (t)

2
k�ntk2 = 0; (4.14)

from (4.14), we deduce that

d

dt
En (t) =

�

2
(h0��nt) (t)�

�h (t)

2
k�ntk2 ;

where

En (t) =
1

2

Z �

0

�
��2nt + �'2nt + �1�

2
nx + � (�nx � 'nx)

2� dx+ �

2

Z t

0

h (t� s) k�nt (s)k2 ds:

By employing (4.7) and the assumptions of (H1) associated with the kernel h, it is possible to

�nd a positive constant ~C that does not depend on n such that

En (t) � En (0) � ~C: (4.15)

From the relationship (4.15), we obtainZ �

0

�2ntdx+

Z �

0

'2ntdx+

Z �

0

�2nxdx+

Z �

0

(�nx � 'nx)
2 dx

+

Z t

0

h (t� s) k�nt (s)k2 ds � C; (4.16)

through (4.16), we can deduce that tn = T for every T > 0:

A priori estimate II
Because
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1.

�n (x; t) =

j=nX
j=1

�j (x) y
n
j (t) ;

'n (x; t) =

j=nX
j=1

�j (x)R
n
j (t) ;

2.
�
ynj ; R

n
j

�
j=1;::;n

2 (C2 [0; T ])2

3. (�j)j�1 � H1 (0;�) ,! C (0;�) ; ( continuous embedding ) :

So, we can deduce that

�n; 'n 2 C2
�
0; T ; ~H2 (0;�) \ Ĥ1 (0;�)

�
; (4.17)

where X = C2
�
0; T ; ~H2 (0;�) \ Ĥ1 (0;�)

�
; is a Banach space equipped with the norm

k�nkX = sup
t2[0;T ]

k�n (:; t)kH2(0;�) + sup
t2[0;T ]

k�nt (:; t)kH2(0;�) + sup
t2[0;T ]

k�ntt (:; t)kH2(0;�) ; (4.18)

using (4.17)-(4.18), we getZ �

0

�
�2n + �2nxx + '2n + '2nx + '2nxx

�
dx <1; 8t 2 [0; T ] : (4.19)

� Step 3: Passage to limit

By utilizing equations (4.16)-(4.19), we conclude that

(�n)n2N� is a bounded sequence in the space L1
�
0; T ; ~H2 (0;�) \ Ĥ1 (0;�)

�
;

(�nt)n2N� is a bounded sequence in the space L1
�
0; T ; L2 (0;�)

�
; (4.20)

('n)n2N� is a bounded sequence in the space L1
�
0; T ; ~H2 (0;�) \ Ĥ1 (0;�)

�
;

('nt)n2N� is a bounded sequence in the space L1
�
0; T ; L2 (0;�)

�
: (4.21)

By employing Aubin�Lions�Simon theorem (4.1), as

1. The space Ĥ1 (0;�) is continuously embedded in L2 (0;�).

2. The embedding of ~H2 (0;�) \ Ĥ1 (0;�) into Ĥ1 (0;�) is compact.
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Chapter 4. Global well-posedness and asymptotic stability of piezoelectric system with
neutral delay time in the presence or absence of magnetic e¤ects 67

Consequently, we can infer that the embedding E1;1 in C(0; T ; Ĥ1 (0;�)) is compact. Where

E1;1 =
n
�n= �n 2 L1

�
0; T ; ~H2 (0;�) \ Ĥ1 (0;�)

�
;

�nt =
d�n
dt

2 L1
�
0; T ; L2 (0;�)

�
; n � 1

�
:

Note that by referencing (4.20), we get (�n)n�1 bounded in E1;1: Consequently, there exists a

subsequence (�m)m�1 of (�n)n�1 such that

�m
m!1! � strongly in W = C(0; T ; Ĥ1 (0;�)); (4.22)

since

�mxx (x; t) = ��m (x; t) ; (4.23)

using (4.22) and closed operator de�nition, we deduce the following result:

�m
m!1! � strongly in C(0; T ; ~H2 (0;�) \ Ĥ1 (0;�)):

by using (4.17), (4.22), in addition to applying the dominated convergence theorem and closed

operator de�nition, we can derive the following result:

k�mt � �tkW =

 ddt�m � �t


W

m!1! 0;

this implies

�mt
m!1! �t strongly in C(0; T ; Ĥ1 (0;�)); (4.24)

(4.22), (4.24) implies that

�m
m!1! � strongly in C1(0; T ; Ĥ1 (0;�)) 8T > 0: (4.25)

Once again, using (4.17), (4.24), the dominated convergence theorem and closed operator de�n-

ition, we get

k�mtt � �ttkW =

 d2dt2�m � �tt


W

m!1! 0;

this means that

�mtt
m!1! �tt strongly in C(0; T ; Ĥ1 (0;�)); (4.26)

through (4.25), (4.26); we obtain the following result:

�m
m!1! � strongly in C2(0; T ; Ĥ1 (0;�)):

We apply the same proof technique to ('n)n�1 : By passing to the limit in (4.6)-(4.9), we get

that the problem (4.1) accepts a strong solution that satis�es (4.4).
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� Step 4: Uniqueness of solution

Assume that (~�; ~') and (�; ') are two global solutions of (4.1), then the pair (#; !) =

(� � ~�; '� ~') satis�es8>>>>>>>>><>>>>>>>>>:

�
�
#t +

R t
0
h (t� s)#t (s) ds

�0
� �#xx + �!xx = 0;

�!tt � �!xx + �#xx = 0;

# (0; t) = �#x (�; t)� �!x (�; t) = 0;

! (0; t) = !x (�; t)� #x (�; t) = 0;

(#; #t) (x; 0) = 0;

(!; !t) (x; 0) = 0;

in (0;�)� (0;1) ;

t � 0;

x 2 (0;�) ;

(4.27)

multiplying (4.27)1 by #t; (4.27)2 by !t and integrating over the interval (0;�), we get as the

steps witch used in a priori estimate I

d

2dt

Z �

0

�
�#2t + �!2t + �1#

2
x + � (#x � !x)

2� dx+ �

2

d

dt

Z t

0

h (t� s) k#t (s)k2 ds

� �

2
(h0�#t) (t) +

�h (t)

2
k#tk2 = 0; (4.28)

by using the assumptions of (H1) associated with the kernel h, we obtain

d

dt
�E (t) =

�

2
(h0�#t) (t)�

�

2
h (t) k#tk2 � 0 8t � 0;

this implies that
�E (t) � 0;

where

�E (t) =
1

2

Z �

0

�#2t + �!2t + �1#
2
x + � (#x � !x)

2 dx+
�

2

Z t

0

h (t� s)
#2t ds: (4.29)

We get directly

(#; !) = (0; 0) :

Then, there exists only one global strong solution to the problem (4.1).

4.4 Exponential stability

In this section, we will present and demonstrate the technical lemmas required to demonstrate

our stability theorem.
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Lemma 4.2 Let (�; ') satis�es (4.1); then the expression of energy E(t) is given by the

following

E (t) =
1

2

Z �

0

�
��2t + �'2t + �1�

2
x + � (�x � 'x)

2 + �

Z t

0

h (t� s) (�t (s))
2 ds

�
dx; (4.30)

and satis�es
d

dt
E (t) =

�

2
(h0��t) (t)�

�h (t)

2
k�tk2 : (4.31)

Proof. When we multiply equation (4.1)1 by �t and equation (4.1)2 by 't, and integrate both
equations over the interval (0;�) with respect to x, we get the following result:

�

Z �

0

�tt�tdx+ �

Z �

0

�t

�Z t

0

h (t� s) �t (s) ds

�0
dx� �

Z �

0

�xx�tdx

+ �

Z �

0

'xx�tdx = 0;

�

Z �

0

'tt'tdx� �

Z �

0

't'xxdx+ �

Z �

0

't�xxdx = 0; (4.32)

by (4.32); we obtain

�
d

2dt

Z �

0

�2tdx+ �

Z �

0

�t

�Z t

0

h (t� s) �t (s) ds

�0
dx+ �

Z �

0

�x�txdx� �

Z �

0

'x�txdx

+ �
d

2dt

Z �

0

'2tdx+ �

Z �

0

'tx'xdx� �

Z �

0

'tx�xdx = 0; (4.33)

as �Z t

0

h (t� s) �t (s) ds

�0
=

�Z t

0

h (s) �t (t� s) ds

�0
= h (t) �t (0) +

Z t

0

h (t� s) �tt (s) ds:

Then

�

Z �

0

�t

�Z t

0

h (t� s) �t (s) ds

�0
dx = �h (t)

Z �

0

�t�1dx+ �

Z �

0

�t

Z t

0

h (t� s) �tt (s) dsdx;

(4.34)

using Lemma (4.1), we get

�

Z �

0

�t

Z t

0

h (t� s) �tt (s) dsdx = �
�

2
(h0��t) (t) +

�

2

d

dt

Z t

0

h (t� s)

Z �

0

(�t (s))
2 dxds

+
�h (t)

2
k�tk2 � �h (t)

Z t

0

�t�t (0) dx; (4.35)

then

�

Z �

0

�t

�Z t

0

h (t� s) �t (s) ds

�0
dx =

�

2

d

dt

Z t

0

h (t� s)

Z �

0

(�t (s))
2 dxds

� �

2
(h0��t) (t) +

�h (t)

2
k�tk2 ; (4.36)
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then by using (4.36) in (4.33), we obtain

1

2

d

dt

Z �

0

�
��2t + �'2t + �1�

2
x + � (�x � 'x)

2� dx+ �

2

d

dt

Z t

0

Z �

0

h (t� s) (�t (s))
2 dxds

�
�

2
(h0��t) (t) +

�h (t)

2
k�tk2 = 0: (4.37)

Fubini�s theorem allows us to conclude the following:Z �

0

Z t

0

h (t� s) (�t (s))
2 dsdx =

Z t

0

Z �

0

h (t� s) (�t (s))
2 dxds 8t � 0; (4.38)

then, (4.37) takes the following form

1

2

d

dt

Z �

0

�
��2t + �'2t + �1�

2
x + � (�x � 'x)

2 + �

Z t

0

h (t� s) (�t (s))
2 ds

�
dx

�
�

2
(h0��t) (t) +

�h (t)

2
k�tk2 = 0: (4.39)

Utilizing assumptions (H1), we arrive at

E (t) =
1

2

Z �

0

�
��2t + �'2t + �1�

2
x + � (�x � 'x)

2 + �

Z t

0

h (t� s) (�t (s))
2 ds

�
dx;

and
d

dt
E (t) =

�

2
(h0��t) (t)�

�h (t)

2
k�tk2 � �

�h (t)

2
k�tk2 � 0:

Lemma 4.3 Let (�; ') be a solution of the system described in (4.1). Then the functional M1

is de�ned as follows

M1 (t) = �

Z �

0

�

�
�t +

Z t

0

h (t� s) �t (s) ds

�
dx+ �

Z �

0

't�dx; 8t � 0; (4.40)

satis�es the following identity

M 0
1 (t) � ��1

Z �

0

�2xdx+

 
�+

(�)2

4"0
+

�2

4"1

!Z �

0

�2tdx+ "0

Z �

0

'2tdx

+ "1�h

Z �

0

Z t

0

h (t� s) (�t (s))
2 dsdx; 8 "0; "1 > 0: (4.41)

Proof. By di¤erentiating M1 (t) ; and employing equations (4.1)1; (4.1)2; then we have, after

integrating by parts taking into account the boundary conditions of (4.1)

M 0
1 (t) = �

Z �

0

�2tdx+ �

Z �

0

�t

Z t

0

h (t� s) �t (s) dsdx� �1

Z �

0

�2xdx+ �

Z �

0

't�tdx; (4.42)
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through the application of Cauchy-Schwarz and Young�s inequalities, we get

�

Z �

0

't�tdx � "0

Z �

0

'2tdx+
(�)2

4"0

Z �

0

�2tdx 8"0 > 0; (4.43)

�

Z �

0

�t

Z t

0

h (t� s) �t (s) dsdx � "1�h

Z �

0

Z t

0

h (t� s) (�t (s))
2 dsdx

+
�2

4"1

Z �

0

�2tdx 8"1 > 0; (4.44)

by using (4.43)-(4.44) in (4.42), we get (4.41).

Lemma 4.4 Let (�; ') be a solution of the system described in (4.1). Then the functional M2

is de�ned as follows

M2 (t) = �

Z �

0

't'dx+ �

Z �

0

�
�t +

Z t

0

h (t� s) �t (s) ds

�
�dx; (4.45)

satis�es

M 0
2 (t) � ��

Z �

0

(�x � 'x)
2 dx+ �

Z �

0

'2tdx+

�
�+

�2

2

�Z �

0

�2tdx

+
�h

2

Z �

0

Z t

0

h (t� s) (�t (s))
2 dsdx: (4.46)

Proof. By di¤erentiating M2 (t) and utilizing equations (4.1)1 and (4.1)2; we obtain

M 0
2 (t) = �

Z �

0

'2tdx+ �

Z �

0

''xxdx� �

Z �

0

�xx'dx+ �

Z �

0

�2tdx

+ �

Z �

0

�t

Z t

0

h (t� s) �t (s) dsdx+ �

Z �

0

�xx�dx

� �

Z �

0

'xx�dx; (4.47)

by using (4.47), we get

M 0
2 (t) = �

Z �

0

'2tdx� �

Z �

0

(�x � 'x)
2 dx� �1

Z �

0

�2xdx+ �

Z �

0

�2tdx

+ �

Z �

0

�t

Z t

0

h (t� s) �t (s) dsdx: (4.48)

Utilizing Cauchy-Schwarz and Young�s inequalities, we can deduce the following:

�

Z �

0

�t

Z t

0

h (t� s) �t (s) dsdx �
�h

2

Z �

0

Z t

0

h (t� s) (�t (s))
2 dsdx+

�2

2

Z �

0

�2tdx; (4.49)

using (4.49) in (4.48), we get (4.46).
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Lemma 4.5 Let (�; ') be a solution of the system referred to in (4.1). Then the functional

M3 is de�ned as follows

M3 (t) = �

Z �

0

�
�t +

Z t

0

h (t� s) �t (s) ds

�
(� � ') dx+ �

Z �

0

't (� � ') dx; (4.50)

satis�es, for any "4 > 0

M 0
3 (t) � �

�

2

Z �

0

'2tdx+

 
� +

(�)2

2
+
�2

�

!Z �

0

�2tdx+ "4

Z �

0

(�x � 'x)
2 dx

+

��h
2
+
�2�h

�

�Z �

0

Z t

0

h (t� s) (�t (s))
2 dsdx+

�21
4"4

Z �

0

�2xdx; (4.51)

where � = (2�� �) :

Proof. By di¤erentiating M3 (t) ; and using (4.1)1; (4.1)2; then we get

M 0
3 (t) = ��

Z �

0

'2tdx+ �

Z �

0

�2tdx+ �

Z �

0

�t

Z t

0

h (t� s) �t (s) dsdx

� �

Z �

0

't

Z t

0

h (t� s) �t (s) dsdx� �1

Z �

0

�x (�x � 'x) dx

+
�
2�� �

�| {z }
�

Z �

0

't�tdx; (4.52)

by applying Cauchy-Schwarz and Young�s inequalities, we can infer that

�

Z �

0

't�tdx �
�

4

Z �

0

'2tdx+
�2

�

Z �

0

�2tdx; (4.53)

and

��
Z �

0

't

Z t

0

h (t� s) �t (s) dsdx �
�

4

Z �

0

'2tdx+
�2�h

�

Z �

0

Z t

0

h (t� s) (�t (s))
2 dsdx; (4.54)

�

Z �

0

�t

Z t

0

h (t� s) �t (s) dsdx �
�h

2

Z �

0

Z t

0

h (t� s) (�t (s))
2 dsdx

+
(�)2

2

Z �

0

�2tdx; (4.55)

��1
Z �

0

�x (�x � 'x) dx � "4

Z �

0

(�x � 'x)
2 dx+

�21
4"4

Z �

0

�2xdx 8"4 > 0; (4.56)

using (4.53)-(4.54)-(4.55)-(4.56) in (4.52), we get (4.51).
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Lemma 4.6 Let (�; ') be a solution of the system mentioned in (4.1). Then the functional

M4 is given by the following relation:

M4 (t) := e�&t
Z �

0

�Z t

0

e&s ~H1 (t� s) (�t (s))
2 ds

�
dx; (4.57)

its derivative is

M 0
4 (t) = �&M4 (t) + ~H1 (0)

Z �

0

�2t (s) dx�
Z �

0

Z t

0

h (t� s) (�t (s))
2 dsdx; 8& > 0; (4.58)

where ~H1 (t) =
R1
t
e&sh (s) ds:

Proof. By di¤erentiating M4 (t) ; we directly get (4.58).
Now, for a su¢ ciently large N , we de�ne the Lyapunov functional as follows:

L (t) = NE (t) +N1M1 (t) +M2 (t) +N2M3 (t) +N3M4 (t) ; (4.59)

where N; N1; N2; and N3 are positive constants, which will be determined later.

Theorem 4.3 Let (�; ') be a solution of the system (4.1):Then there exist two positive con-

stants c1 and c2 > 0 which ful�ll the following

c1 (E (t) +M4 (t)) � L (t) � c2 (E (t) +M4 (t)) ; 8t � 0: (4.60)

Proof. Let

= (t) = L (t)�NE (t)�N3M4 (t) = N1M1 (t) +M2 (t) +N2M3 (t) ; (4.61)

then

j= (t)j � N1

�
�

Z �

0

j��tj dx+ �

Z �

0

����� Z t

0

h (t� s) �t (s) ds

���� dx+ �

Z �

0

j't�j dx
�

+

�
�

Z �

0

j't'j dx+ �

Z �

0

j�t�j dx+ �

Z �

0

����� Z t

0

h (t� s) �t (s) ds

���� dx�
+N2

�
�

Z �

0

j�t (� � ')j dx+ �

Z �

0

����Z t

0

h (t� s) �t (s) ds (� � ')

���� dx
+�

Z �

0

j't (� � ')j dx
�
: (4.62)
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By employing Young�s, Cauchy-Schwarz, and Poincaré�s inequalities, we get 8" > 0:

j= (t)j �
�
N1

�2

4"
+
�2

4"
+N2

�2

4"

�Z �

0

�2tdx

+

 
N1
(�)2

4"
+
�2

4"
+N2

(�)2

4"

!Z �

0

'2tdx

+
�
3N1"c0 + 2

2"c0 + 2"c0
� Z �

0

�2xdx

+ (2"c0 + 3N2"c0)

Z �

0

(�x � 'x)
2 dx

+

�
N1

�2�h

4"
+
�2�h

4"
+N2

�2�h

4"

�Z �

0

Z t

0

h (t� s) (�t (s))
2 dsdx;

Here, c0 represents the constant in Poincaré�s inequality. Then, we get

j= (t)j � mE (t) ; (4.63)

therefore

(N �m)E (t) +N3M4 (t) � L (t) � (N +m)E (t) +N3M4 (t) ; (4.64)

then we get (4.60), with

c1 = min ((N �m) ; N3) c2 = max ((N +m) ; N3) :

Theorem 4.4 Let (�; ') be a solution of the system (4.1); then there exists a positive constant
1 > 0 such that

L0 (t) � �1 (E (t) +M4 (t)) : (4.65)

Proof. di¤erentiating L (t) and utilizing (4.31)-(4.41)-(4.46)-(4.51)-(4.58), we obtain

L0 (t) � �
 
N
�h (t)
2

�N1

 
�+

(�)2

4"0
+

�2

4"1

!
�
�
�+

�2

2

�
�N3 ~H1 (0)

�N2

 
� +

(�)2

2
+
�2

�

!!Z �

0

�2tdx�
�
N2

�

2
� ��N1"0

�Z �

0

'2tdx

�
�
�1N1 �N2

�21
4"4

�Z �

0

�2xdx� (� �N2"4)

Z �

0

(�x � 'x)
2 dx

�
�
N3 �

�h

2
�N2

��h
2
+
�2�h

�

�
�N1"1�h

�Z �

0

Z t

0

h (t� s) (�t (s))
2 dsdx

� &N3M4 (t) : (4.66)
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First in (4.66), we choose N2 large enough so that

N2
�

2
� � > 0:

Since N2 is �xed, we choose "4 small such that

�1 = � �N2"4 > 0:

Next, we choose N1 su¢ ciently large to satisfy the relationship

�2 = �1N1 �N2
�21
4"4

> 0:

Once N1 is �xed, we pick "0 small enough so that

�3 = N2
�

2
� ��N1"0 > 0:

Also, we choose N3 large enough such that

N3 �
�h

2
�N2

��h
2
+
�2�h

�

�
> 0:

Now, we choose "1 su¢ ciently small such that until it becomes

�4 = N3 �
�h

2
�N2

��h
2
+
�2�h

�

�
�N1"1�h > 0:

Finally, we choose N large enough (even larger such that the relationship (4.60) remains valid)

so that  
N
�h (t)
2

�N1

 
�+

(�)2

4"0
+

�2

4"1

!
�
�
�+

�2

2

�
�N3 ~H1 (0)

�N2

 
� +

(�)2

2
+
�2

�

!!
> min (�1; �2; �3; �4) 8t � 0:

Then we obtain

L0 (t) � �1 (E (t) +M4 (t)) :

Theorem 4.5 Let (�; ') be the solution of system (4.1) with the conditions (H1) and (H2)

satis�ed. Then there exist two positive constants s and �, such that

E (t) � se��t; 8t � 0: (4.67)

Proof. By utilizing equations (4.60) and (4.65), we obtain:

L0 (t) � �1
c2
L (t) ;

then, we �nd

c1 (E (t) +M4 (t)) � e
� 1
c2
t
:L (0) :

Because M4 (t) is positive. The proof is complete.

4.4. Exponential stability
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4.5 Exponential energy decay of quasi-static / electro-

static piezoelectric beams (the magnetic e¤ects are

negligible) subject to a neutral delay

For a length � and thickness h beam, in this case the stretching motion subject to a neutral

delay is described as follows:8>><>>:
�
�
�t +

R t
0
h (t� s) �t (s) ds

�0
� �1�xx = 0;

� (0; t) = �x (�; t) = 0;

� (x; 0) = �0 (x) ; �t (x; 0) = �1 (x) ;

in (0;�)� (0;1) ;
t � 0;
x 2 (0;�) :

(4.68)

Furthermore, the system�s energy is given by the following expression

~E (t) =
1

2

Z �

0

�
��2t + �1�

2
x + �

Z t

0

h (t� s) �2t (s) ds

�
dx; (4.69)

and it satis�es
d

dt
~E (t) =

�

2
(h0��t) (t)�

�h (t)

2
k�tk2 8t � 0: (4.70)

Now, we will proceed to prove the exponential stability of the system.

Lemma 4.7 Let � is a solution to the system referred to in (4.68). Then, the functional

~M1 (t) = �

Z �

0

�

�
�t +

Z t

0

h (t� s) �t (s) ds

�
dx 8t � 0; (4.71)

satis�es

~M 0
1 (t) � ��1

Z �

0

�2xdx+

�
�+

�2

4~"1

�Z �

0

�2tdx

+~"1�h

Z �

0

Z t

0

h (t� s) (�t (s))
2 dsdx; 8 ~"1 > 0: (4.72)

Proof. By di¤erentiating ~M1 (t) and utilizing (4.68); then we have

~M 0
1 (t) = ��1

Z �

0

�2xdx+ �

Z �

0

�2tdx+ �

Z �

0

�t

Z t

0

h (t� s) �t (s) dsdx; (4.73)

through Cauchy-Schwarz and Young�s inequalities, we get

�

Z �

0

�t

Z t

0

h (t� s) �t (s) dsdx � ~"1�h
Z �

0

Z t

0

h (t� s) (�t (s))
2 dsdx

+
�2

4~"1

Z �

0

�2tdx 8~"1 > 0: (4.74)
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By employing (4.74) in (4.73), we obtain (4.72).
Now, for a ~N su¢ ciently large, we de�ne the Lyapunov functional as follows:

~L (t) = ~N ~E (t) + ~M1 (t) +M4 (t) : (4.75)

It is clear, as stated in the theorem (4.3), that there exist two positive constants ~d1; ~d2 > 0

satisfying
~d1

�
~E (t) +M4 (t)

�
� ~L (t) � ~d2

�
~E (t) +M4 (t)

�
; 8t � 0: (4.76)

Theorem 4.6 If � is a solution of the system (4.68); then there exist positive constant ~1 > 0

ful�lls this inequality
~L0 (t) � �~1

�
~E (t) +M4 (t)

�
: (4.77)

Proof. Di¤erentiating ~L (t) and exploiting (4.58)-(4.70)-(4.72), we get

~L0 (t) � �
 
~N�h (t)
2

� ~H1 (0)�
�
�+

�2

4~"1

�!Z �

0

�2tdx

��1
Z �

0

�2xdx�
�
1� ~"1�h

� Z �

0

Z t

0

k (t� s) �2t (s) dsdx

�&M4 (t) ; (4.78)

we choose ~"1 small enough so that

1� ~"1�h > 0:

Also, we choose ~N big enough so that 
~N�h (t)
2

� ~H1 (0)�
�
�+

�2

4~"1

�!
> min

��
1� ~"1�h

�
; �1
�

8t � 0:

Now, by using (4.76) and (4.77), we obtain

~L0 (t) � �~1
~c2
~L (t) ;

this implies

~c1

�
~E (t) +M4 (t)

�
� e

� ~1
~c2
t
: ~L (0) ; (4.79)

also, using the fact that M4 (t) is positive, we obtain

~E (t) � e
� ~1
~c2
t
~L (0)
~c1

: (4.80)

In other words, the energy we de�ned in (4.69) which is related to the system (4.68), exponen-

tially decreasing.
Now, we give a simple example of the kernel h that satis�es the following hypotheses: (H1)�

(H2)

4.5. Exponential energy decay of quasi-static / electrostatic piezoelectric beams (the
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Example 4.1 For any & > 0; let h be the function de�ned as follows

h : R+ ! R+
t ! e�2&t:

1. It is clear that the function h is nonnegative and continuously di¤erentiable.

2. 8t � 0 h0 (t) = �2&e�2&t � 0; �h =
R1
0
h (t) dt =

R1
0
e�2&tdt =

�
� 1
2&
e�&t

�1
0
<1.

3.
R1
0
e&th (t) dt =

R1
0
e�&tdt =

�
�1
&
e�&t

�1
0
<1; this implies that e&th 2 L1 (R+) :

Conclusion and open problem: In this chapter, a one-dimensional system of piezoelec-

tric beams has been considered in the presence of a distributed delay of neutral type added

to the �rst equation. Our main goal in this research is to determine the asymptotic beha-

vior (stability or instability) of this system without adding any damping term. Under some

appropriate assumptions on the kernel of the neutral delay term, we proved the global well-

posedness of the system by using the classical Faedo-Galerkin method. Furthermore, based on

the energy method, which depends on constructing a suitable Lyapunov functional, we showed

that, despite delays are known to be of a destructive nature in the general case, this system

is exponentially stable without any relationship between the system parameters. Finally, we

obtained the same results in the electrostatic case.

It is an interesting open problem to study the stability or instability of the following system8>>>>>>>><>>>>>>>>:

��tt � ��xx + �'xx + �
R t
0
h (s) �tt (t� s) ds = 0;

�'tt � �'xx + ��xx = 0;

� (0; t) = ��x (�; t)� �'x (�; t) = 0;

' (0; t) = 'x (�; t)� �x (�; t) = 0;

� (x; 0) = �0 (x) ; �t (x; 0) = �1 (x) ;

' (x; 0) = '0 (x) ; 't (x; 0) = '1 (x) :

in (0;�)� (0;1) ;

t � 0;

x 2 (0;�) ;

That is to say, the same problem that we studied, but in the absence of the next term

�h (t) �t (0).

4.5. Exponential energy decay of quasi-static / electrostatic piezoelectric beams (the
magnetic e¤ects are negligible) subject to a neutral delay



CHAPTER 5

Finite time blow up of solutions for a Kirchho¤ beam equation with delay and variable

exponent

5.1 Introduction

Lebesgue spaces with variable exponents, often referred to as variable exponent Lebesgue
spaces are an extension of the classical Lebesgue spaces where the exponent is vary. The prob-

lems with variable exponents arise in many branches of the sciences, such as electrorheological

�uids, nonlinear elasticity theory, and image processing (see [24, 80]). In 1883, Kirchho¤ [52]

�rst proposed the following wave equation problem which represents the nonlinear vibration of

an elastic string

�h
@2u

@2t
�
 
p0 +

Eh

2�

Z �

0

�
du

dx

�2
dx

!
@2u

@x2
= 0; 0 < x < �; t � 0;

where � represents the mass density of the string, E is the Young coe¢ cient, h represents the

cross-sectional area of the stretched string, p0 represents the initial axial tension, � represents

the length of the string, and u = u (x; t) is the transverse displacement in space x and time t.

The expansion model of the equation in higher dimensional space is as follows:

utt �M

�Z



jruj2 dx
�
�u = f (x; u) ; x 2 
 � Rn;

where, u denotes the vibration displacement of the string, f (x; u) denotes the external force.

Woinowsky-Krieger [96], the author �rst introduced the one-dimensional nonlinear equation of

vibration of beams, which is given by

utt (x; t) + �uxxxx (x; t)�
�
� + 

Z �

0

u2xdx

�
uxx (x; t) = 0;

79
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where , �, � are positive physical constants. Guo, Bao-Zhu and Guo, Wei [36] considered the

following Kirchho¤-type nonlinear beam8>>>>>>><>>>>>>>:

ytt (x; t) + yxxxx (x; t)� F
�R �

0
y2x (x; t) dx

�
yxx (x; t) = 0;

y (0; t) = yx (0; t) = yxx (�; t) = 0; t � 0;
yxxx (�; t)� F

�R �
0
y2x (x; t) dx

�
yx (�; t) = u (t) ; t � 0;

y (x; 0) = y0 (x) ; yt (x; 0) = y1 (x) ;

yout (t) = yt (�; t) ;

where yout (t) denotes the measured signal of the system at time t: The existence and uniqueness

of the classical solution of the problem are justi�ed by Galerkin approximation, and by the

energy multiplier method, they proved the exponential stability that is dependent on initial

data. In [26] a nonlinear viscoelastic Kirchho¤ plate equation that incorporated a time delay

term in the internal feedback is considered by Feng and Li. Under the appropriate assumptions,

the energy perturbation method was employed to establish the general rates of energy decay

for this problem. Feng in [27] studied the following plate equation with a time delay and a

memory term in the internal feedback

utt +�
2u�M

�
kruk2

�
�u+

Z t

0

g (t� s)�u (s) ds+ �1ut (x; t) + �2ut (x; t� �) + f (u) = 0;

by employing the Faedo-Galerkin approximations that depend on some energy estimates. global

existence and uniqueness of the problem were established. Moreover, under suitable assump-

tions and by using energy method managed to prove the general decay result of the solution.

In [99] Yüksekkaya and Pi̧skin under suitable conditions, established the growth of the solution

of the delayed Kirchho¤-type viscoelastic equation

utt �M
�
kruk2

�
�u+

Z t

0

u (t� q)�u (q) dq + �1ut +

Z �2

�1

j�2 (q)jut (t� q) dq = b jujp�2 u;

where b > 0; p > 2 and M (s) = 1 + s: Ka�ni and Messaoudi [46] considered the following

delay wave equation, incorporating a logarithmic nonlinear source term8>>><>>>:
utt ��u+ �1ut + �2ut(x; t� �) = ujujp�2 ln jujk ; x 2 
; t > 0

u (x; t) = 0; x 2 @

ut(x; t� �) = f0(x; t� �); t 2 (0; �)
u (x; 0) = u0 (x) ; ut (x; 0) = u1 (x) ; x 2 
;

(5.1)

under the assumption j�2j � �1, the local well-posedness was established using semigroup

theory and proved a �nite time blow up result. Also, Ka�ni and Messaoudi in [45] took care of

the study of the nonlinear wave equation

utt ��u+ �1ut jutj
m(x)�2 + �2ut (t� �) jutjm(x)�2 (t� �) = b jujp(x)�2 u; (5.2)

5.1. Introduction
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in the absence of the source term, this means b = 0, proved a decay result, while in the presence

of the source term (b 6= 0), they proved a global nonexistence result. Recently, in [33] Jorge
Ferreira et al. extended the work of Ka�ni and Messaoudi [45] in the absence of the source

term b jujp(x)�2 u (this means b = 0) to the following Kirchho¤ beam problem

utt +�
2u�M

�
kruk22

�
�u+ �1ut (x; t) jutj

m(x)�2 (x; t) +

�2ut (x; t� �) jutjm(x)�2 (x; t� �) = 0;

they proved the exponential and polynomial stability results based on Komornik�s inequality.

Based on the paper [33] we consider the next problem8>>>>>>>><>>>>>>>>:

$tt +�
2$ �M

�
kr$k22

�
�$ + �1$t (x; t) j$tjm(x)�2 (x; t)

+�2$t (x; t� �) j$tjm(x)�2 (x; t� �) = b$ j$jp(x)�2 ;
$ (x; t) = �$ = 0;

$ (x; 0) = $0 (x) ;

$t (x; 0) = $1 (x) ;

$t (x; t� �) = f0 (x; t� �) ;

in 
� [0;1) ;
in @
� [0;1) ;

in 
;

in 
;

in 
� (0; �) :

(5.3)

Where 
 is a bounded domain in Rn with a smooth boundary @
. � > 0 is a time delay term,
�1 is a positive constant, �2 is a real number it satis�es

j�2j < �1: (5.4)

M is a positive C1-function given by the relation

M (s) = 1 + s;

for s � 0; and  > 0. The exponents m(:) and p(:) are given continuous functions on �
 and

satisfy

2 � m� � m (x) � m+ � p� � p (x) � p+ � 2 (n� 1)
n� 2 n � 3; (5.5)

where

m� = ess inf
x2


m (x) ; m+ = ess sup
x2


m (x) ;

p� = ess inf
x2


p (x) ; and p+ = ess sup
x2


p (x) :

5.2 Preliminaries

We de�ne the variable-exponent in Lebesgue space with a variable exponent p(:) by

Lp(:) (
) =

�
$ : 
! R measurable in 
 :

Z



j$jp(:) dx <1
�
;

5.2. Preliminaries
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and the Luxemburg-type norm by

k$kp(:) = inf
�
� > 0 :

Z



���$
�

���p(x) dx � 1� :
Equipped with this norm, the space Lp(:) (
) is a Banach space [5].
Now, we proceed to de�ne the variable-exponent Sobolev space

W 1;p(:) (
) =
�
$ 2 Lp(:) (
) : jr$j exists and jr$j 2 Lp(:) (
)

	
;

the Sobolev space with a variable exponent with respect to the norm

k$k1;p(:) = k$kp(:) + kr$kp(:) ;

constitutes a Banach space. The space W 1;p(:)
0 (
) is de�ned as the closure of C10 (
) in

W 1;p(:) (
). For $ 2 W 1;p(:)
0 (
), we can de�ne an equivalent norm

k$k1;p(:) = kr$kp(:) :

We also suppose that p(:); m(:) satisfy the log-Holder continuity condition:

jq (x)� q (y)j � � A

log jx� yj ; for a.e. x; y 2 
 with jx� yj < �; (5.6)

where A > 0 and 0 < � < 1:

Lemma 5.1 ([6]) If P : �
! [1;1) is continuous, and

2 � p� � p (x) � p+ � 2n

n� 2 ; n � 3;

then the embedding H1
0 (
) ,! Lp(:) (
) is continuous.

Lemma 5.2 (Poincaré inequality [6]) Let 
 be a bounded domain of Rn and suppose p(:) satis�es
(5.6). Then

9C > 0 : k$kp(:) � C kr$kp(:) for all $ 2 W 1;p(:)
0 (
) ;

where C = C (p�; p+; j
j) > 0:

Lemma 5.3 ([24]) If p : 
 ! [1;1) is a measurable function and p+ < 1, then C10 (
) is
dense in Lp(:) (
) :

Lemma 5.4 (Hölder�s Inequality [24]) Let p; q; s � 1 be measurable functions de�ned on


 such that
1

s (y)
=

1

p (y)
+

1

q (y)
for a.e. y 2 
;

if f 2 Lp(:) (
) and g 2 Lq(:) (
) ; then fg 2 Ls(:) (
) and

kfgks(:) � 2 kfkp(:) kgkq(:) :

5.2. Preliminaries
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Lemma 5.5 (Unit Ball Property [24]) Let p be a measurable function on 
. Then

kfkp(:) � 1 if and only if %p(:) (f) � 1;

where

%p(:) (f) =

Z



jf (x)jp(x) dx:

Lemma 5.6 ([6]) If p � 1 is a measurable function on 
. then

min
n
k$kp

�

p(:) ; k$k
p+

p(:)

o
� %p(:) ($) � max

n
k$kp

�

p(:) ; k$k
p+

p(:)

o
;

for a.e. x 2 
 and for any $ 2 Lp(:) (
) :

5.3 Existence of solutions

As in [66] we introduce the new variable

z (x; �; t) = $t (x; t� ��) x 2 
; � 2 (0; 1) ; t > 0:

Subsequently, the problem (5.3) can be expressed as:8>>>>>>>>>>><>>>>>>>>>>>:

$tt +�
2$ �M

�
kr$k22

�
�$ + �1$t (x; t) j$tjm(x)�2 (x; t)

+�2z (x; 1; t) jz (x; 1; t)j
m(x)�2 = b$ j$jp(x)�2 ;

�zt (x; �; t) + z� (x; �; t) = 0;

$ (x; t) = �$ = 0;

$ (x; 0) = $0 (x) ;

$t (x; 0) = $1 (x) ;

z (x; �; 0) = f0 (x;���) ;

in 
� [0;1) ;

x 2 
; � 2 (0; 1) ; t > 0
in @
� [0;1) ;

in 
;

in 
;

in 
� (0; 1) :
(5.7)

Similar to the research conducted by Ka�ni and Messaoudi [46], we can write the following

de�nition:

De�nition 5.1 Fix T > 0. We call ($; z) a strong solution of (5.7) if

$ 2 W 2;1 �(0; T ) ; L2 (
)� \W 1;1 �(0; T ) ; H1
0 (
)

�
\ L1

�
(0; T ) ; H2 (
) \H1

0 (
)
�
;

$t 2 Lm(:) (
� (0; T )) ;
z 2 W 1;1 �[0; 1]� (0; T ) ; L2 (
)� \ L1 �[0; 1] ; Lm(:) (
� (0; T ))� ;

and ($; z) satis�es (5.7) in the following senseZ



$tt�dx+

Z



�2$�dx�M
�
kr$k22

� Z



�$�dx+ �1

Z



$t (x; t) j$tjm(x)�2 (x; t) �dx

+�2

Z



z (x; 1; t) jz (x; 1; t)jm(x)�2 �dx = b

Z



$ j$jp(x)�2 �dx;
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and

�

Z



zt (x; �; t)wdx+

Z



z� (x; �; t)wdx = 0;

for a.e. t 2 [0; T ) and for (�; w) 2 H2
0 (
) \ L2(
):

5.4 Global nonexistence

Lemma 5.7 The energy function E, given by

E (t) =

�
1

2
k$tk22 +

1

2
k�$k22 +

1

2
kr$k22 +

1

2 ( + 1)
kr$k2(+1)2

�b
Z



1

p (x)
j$jp(x) dx+

Z



Z 1

0

1

m (x)
� (x) jz (x; �; t)jm(x) d�dx

�
: (5.8)

Its derivative achieves the following

E 0 (t) � �C0
�Z




j$tjm(x) (x; t) dx+
Z



jz (x; 1; t)jm(x) dx
�
; (5.9)

where � is a continuous function satisfying

� j�2j (m (x)� 1) < � (x) < � (�1m (x)� j�2j) x 2 �
: (5.10)

Proof. By multiplying equation (5.7)1 by $t and integrating over 
, we obtain

d

2dt

Z



$2
tdx+

Z



�2$$tdx+
�
1 + kr$k22

� d

2dt

Z



(r$)2 dx+ �1

Z



j$tjm(x) (x; t) dx

+�2

Z



$tz (x; 1; t) jz (x; 1; t)jm(x)�2 dx = b

Z



$t$ j$jp(x)�2 dx: (5.11)

Through (5.11), we �nd

d

2dt

�
k$tk22 + k�$k

2
2 + kr$k

2
2 +

1

( + 1)
kr$k2(+1)2

�
� b

d

dt

Z



1

p (x)
j$jp(x) dx

= ��1
Z



j$tjm(x) (x; t) dx� �2

Z



$t jz (x; 1; t)jm(x)�1 dx: (5.12)

Now multiplying (5.7)2 by 1
�
� (x) jzjm(x)�2 z and integrating over 
� (0; 1), we get

d

dt

Z



Z 1

0

1

m (x)
� (x) jz (x; �; t)jm(x) d�dx = �1

�

Z



� (x)

m (x)
jz (x; 1; t)jm(x) dx

+
1

�

Z



� (x)

m (x)
j$tjm(x) dx; (5.13)
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summing (5.12) and (5.13) side to side we directly get

d

2dt
k$tk22 +

d

2dt
k�$k22 +

d

2dt
kr$k22 +

1

2 ( + 1)

d

dt
kr$k2(+1)2

�b d
dt

Z



1

p (x)
j$jp(x) dx+ d

dt

Z



Z 1

0

1

m (x)
� (x) jz (x; �; t)jm(x) d�dx =

��1
Z



j$tjm(x) (x; t) dx+
1

�

Z



� (x)

m (x)
j$tjm(x) dx�

1

�

Z



� (x)

m (x)
jz (x; 1; t)jm(x) dx

��2
Z



$t jz (x; 1; t)jm(x)�1 dx: (5.14)

Employing Young�s inequality with p = m (x) and q = m(x)
m(x)�1 ; we �nd

��2
Z



$t jz (x; 1; t)jm(x)�1 dx � j�2j
Z



j$tjm(x)

m (x)
dx+ j�2j

Z



m (x)� 1
m (x)

jz (x; 1; t)jm(x) dx:

(5.15)

Substituting (5.15) into relation (5.14), we get

E 0 (t) � �
Z



�
�1 �

�
j�2j
m (x)

+
� (x)

�m (x)

��
j$tjm(x) (x; t) dx

�
Z



�
� (x)

�m (x)
� j�2j

m (x)� 1
m (x)

�
jz (x; 1; t)jm(x) dx: (5.16)

We de�ne C0 = min
�
min
x2�


f1 (x) ;min
x2�


f2 (x)

�
; where

f1 (x) =

�
�1 �

�
j�2j
m (x)

+
� (x)

�m (x)

��
;

f2 (x) =

�
� (x)

�m (x)
� j�2j

m (x)� 1
m (x)

�
:

Using condition (5.10), the proof is �nished.
Global nonexistence result. We assume that E (0) < 0: Also, we put

H (t) = �E (t) ; (5.17)

through (5.9), we get

H 0 (t) = �E 0 (t) � 0: (5.18)

This implies that

0 < H (0) � H (t) � b

Z



j$jp(x)

p (x)
dx � b

p�
% ($) ; (5.19)

where

% ($) = %p(:) ($) =

Z



j$jp(x) dx:

We state without proof the following technical lemmas and corollaries (see [63] for the proofs).
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Lemma 5.8 Suppose that condition (5.5) holds. Then there exists C > 1 depending on 
 only,

such that

%
s
p� ($) � C

�
kr$ (t)k22 + % ($)

�
;

8$ 2 H1
0 (
) and 2 � s � p�:

Corollary 5.1 Let the assumptions of Lemma (5.8) hold. Then

k$ksp� � C

 
jH (t)j+ k$tk22 + k$k

p�

p� +

Z



Z 1

0

� (x) jz (x; �; t)jm(x)

m (x)
d�dx

!
;

8$ 2 H1
0 (
) and 2 � s � p�.

Lemma 5.9 Assuming the conditions of Lemma (5.8) hold and ($; z) be a strong solution of

(5.7). Then

% ($) � C k$ (t)kp
�

p� :

Lemma 5.10 Let the assumptions of Lemma (5.8) hold and ($; z) be a strong solution of
(5.7). Then Z




j$jm(x) dx � C

�
%
m�
p� ($) + %

m+

p� ($)

�
:

Theorem 5.1 Assuming that (5.5) and (5.6) are satis�ed. Assume further E(0) < 0. Then

the solution of (5.7) blows up in �nite time.

Proof. We de�ne
L (t) := H1�� (t) + "

Z



$$tdx; (5.20)

for a su¢ ciently small " that will be determined later and

0 < � � min
�
p� � 2
2p�

;
p� �m+

p� (m+ � 1)

�
: (5.21)

Performing a straightforward di¤erentiation of L(t), we obtain

L0 (t) : = (1� �)H 0 (t)H�� (t) + "

Z



$2
tdx+ "

Z



$$ttdx

: = (1� �)H 0 (t)H�� (t) + "

Z



$2
tdx

+b"

Z



j$jp(x) dx� " k�$k22 � " kr$k22 � " kr$k2(+1)2

�"
Z



�1$t$ j$tjm(x)�2 dx� "

Z



�2$z (x; 1; t) jz (x; 1; t)j
m(x)�2 dx: (5.22)
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Utilizing the de�nition of H(t) and considering 0 < a < 1, we deduce

"p� (1� a)H (t) +
"p� (1� a)

2
k$tk22 +

"p� (1� a)

2
k�$k22

+
"p� (1� a)

2
kr$k22 +

"p� (1� a)

2 ( + 1)
kr$k2(+1)2

+"p� (1� a)

Z



Z 1

0

1

m (x)
� (x) jz (x; �; t)jm(x) d�dx

� (1� a) "b

Z



j$jp(x) dx: (5.23)

So, we get

L0 (t) : � C0 (1� �)H�� (t)

�Z



j$tjm(x) (x; t) dx+
Z



jz (x; 1; t)jm(x) dx
�

+"

�
p� (1� a) + 2

2

�Z



$2
tdx+ "p� (1� a)H (t)

+"

�
p� (1� a)� 2

2

�
k�$k22 + "

�
p� (1� a)� 2

2

�
kr$k22

+"

�
p� (1� a)� 2 ( + 1)

2 ( + 1)

�
kr$k2(+1)2 + ab"

Z



j$jp(x) dx

+"p� (1� a)

Z



Z 1

0

� (x) jz (x; �; t)jm(x)

m (x)
d�dx

�"
Z



�1$t$ j$tjm(x)�2 dx� "

Z



�2$z (x; 1; t) jz (x; 1; t)j
m(x)�2 dx: (5.24)

By employing Young�s inequality, we �nd for �1 > 0

"�1

Z



j$j j$tjm(x)�1 dx � "�1

Z



1

m (x)
�
m(x)
1 j$jm(x) dx

+"�1

Z



m (x)� 1
m (x)

�
� m(x)
m(x)�1

1 j$tjm(x) dx: (5.25)

And from it, we �nd

"�1

Z



j$j j$tjm(x)�1 dx � "�1
1

m�

Z



�
m(x)
1 j$jm(x) dx+ "�1

m+ � 1
m+

Z



�
� m(x)
m(x)�1

1 j$tjm(x) dx;
(5.26)

and

"

Z



�2 j$j jz (x; 1; t)j
m(x)�1 dx � " j�2j

�
1

m�

Z



�
m(x)
1 j$jm(x) dx+

m+ � 1
m+

Z



�
� m(x)
m(x)�1

1 jz (x; 1; t)jm(x) dx
�
: (5.27)
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As in [64], estimates (5.26) and (5.27) remain valid even if �1 is time-dependent. Hence, by

choosing �1 such that

�
� m(x)
m(x)�1

1 = kH�� (t) ;

this, implies

�
m(x)
1 = k1�m(x)H�(m(x)�1) (t) ;

for a su¢ ciently large k � 1 to be speci�ed later, we getZ



�
� m(x)
m(x)�1

1 j$tjm(x) dx = kH�� (t)

Z



j$tjm(x) dx; (5.28)

Z



�
� m(x)
m(x)�1

1 jz (x; 1; t)jm(x) dx = kH�� (t)

Z



jz (x; 1; t)jm(x) dx; (5.29)

Z



�
m(x)
1 j$jm(x) dx =

Z



k1�m(x)H��(1�m(x)) (t) j$jm(x) dx

� k1�m
�
H�(m+�1) (t)

Z



j$jm(x) dx: (5.30)

Utilizing (5.19) and Lemma (5.10), we get

H�(m+�1)
Z



j$jm(x) dx � ~C

�
%
m�
p� +�(m+�1) ($) + %

m+

p� +�(m+�1) ($)

�
: (5.31)

Therefore, according to Lemma (5.8) yields

H�(m+�1)
Z



j$jm(x) dx � ~K
�
kr$ (t)k22 + % ($)

�
; (5.32)

"�1

Z



$ j$tjm(x)�1 (x; t) dx � "�1

"
~Kk1�m

�

m�

�
kr$ (t)k22 + % ($)

�
+
(m+ � 1)
m+

kH�� (t)

Z



j$tjm(x) dx
�
;

and

"

Z



�2$ jz (x; 1; t)j
m(x)�1 dx � " j�2j

"
~Kk1�m

�

m�

�
kr$ (t)k22 + % ($)

�
+
(m+ � 1)
m+

kH�� (t)

Z



jz (x; 1; t)jm(x) dx
�
;
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this implies that by using (5.24)

L0 (t) : � (1� �)H�� (t)

�
C0 � "

(m+ � 1) k�1
m+ (1� �)

�Z



j$tjm(x) (x; t) dx

+(1� �)H�� (t)

�
C0 � "

(m+ � 1) k j�2j
m+ (1� �)

�Z



jz (x; 1; t)jm(x) dx

+"p� (1� a)H (t) + "
p� (1� a)� 2

2
k�$k22 + "

p� (1� a) + 2

2
k$tk22

+"

�
p� (1� a)

2 ( + 1)
� 1
�
kr$k2(+1)2 + "

 
ab� �1

~Kk1�m
�

m� � j�2j
~Kk1�m

�

m�

!
% ($)

+"

 
p� (1� a)� 2

2
� �1

~Kk1�m
�

m� � j�2j
~Kk1�m

�

m�

!
kr$k22

+"p� (1� a)

Z



Z 1

0

1

m (x)
� (x) jz (x; �; t)jm(x) d�dx: (5.33)

At this point, we select a small enough such that

p� (1� a)� 2
2

> 0:

And
p� (1� a)

2 ( + 1)
� 1 > 0:

And k su¢ ciently large so that

ab� �1
~K

m�km��1 � j�2j
~K

m�km��1 > 0:

and
p� (1� a)� 2

2
� �1

~K

m�km��1 � j�2j
~K

km��1m� > 0:

After determining the values of a and k, we then select " to be su¢ ciently small such that

C0 � "
(m+ � 1) k�1
m+ (1� �)

> 0:

And

C0 � "
(m+ � 1) k j�2j
m+ (1� �)

> 0:

And

L (0) := H1�� (0) + "

Z



$0 (x)$1 (x) dx > 0:

Thus, (5.33) takes the form

L0 (t) : � ~C0

h
H (t) + k�$k22 + k$tk22 + kr$k

2(+1)
2 + % ($) + kr$k22

+

Z



Z 1

0

1

m (x)
� (x) jz (x; �; t)jm(x) d�dx

�
: (5.34a)

5.4. Global nonexistence



Chapter 5. Finite time blow up of solutions for a Kirchho¤ beam equation with delay
and variable exponent 90

Next, our objective is to demonstrate the existence of constants � and �, both greater than

zero, such that

L0 (t) > �L� (t) ;

by using Holder�s and Young�s inequalities, we have

k$k2 =
�Z




$2dx

� 1
2

�
"�Z




�
$2
� p�

2 dx

� 2
p�
�Z




1dx

�1� 2
p�
# 1
2

� c k$kp� : (5.35)

And ����Z



$$tdx

���� � k$tk2 k$k2 � c k$tk2 k$kp� ;

then ����Z



$$tdx

���� 1
1��

� c k$tk
1

1��
2 k$k

1
1��
p� � c

�
k$tk

�
1��
2 + k$k

�
1��
p�

�
;

where
1

�
+
1

�
= 1:

We take � = 2 (1� �) ; which implies by (5.21)

s =
�

1� �
=

2

1� 2� � p�;

then we obtain ����Z



$$tdx

���� 1
1��

� c
h
k$tk22 + k$k

s
p�

i
:

Corollary (5.1) gives����Z



$$tdx

���� 1
1��

� ~c
"
H (t) + k$tk22 + k$k

p�

p� +

Z



Z 1

0

� (x) jz (x; �; t)jm(x)

m (x)
d�dx

#
:

Also by lemma (5.9), we obtain����Z



$$tdx

���� 1
1��

� ~c
"
H (t) + k$tk22 + % ($) +

Z



Z 1

0

� (x) jz (x; �; t)jm(x)

m (x)
d�dx

#
:
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Subsequently,

L
1

1�� (t) : =

�
H1�� (t) + "

Z



$$tdx

� 1
1��

� 2
�

1��

"
H (t) +

����Z



$$tdx

���� 1
1��
#

� ~c

"
H (t) + k$tk22 + % ($) +

Z



Z 1

0

� (x) jz (x; �; t)jm(x)

m (x)
d�dx

#
� ~c

h
H (t) + k�$k22 + k$tk22 + kr$k

2(+1)
2 + kr$k22 + % ($)

+

Z



Z 1

0

� (x) jz (x; �; t)jm(x)

m (x)
d�dx

#
: (5.36)

Based on (5.34a) and (5.36), we �nd

L0 (t) � �L
1

1�� (t) : (5.37)

By integrating (5.37) over (0; t); we obtain

L
�

��1 (t) � 1

L�
�

��1 (0)� � �
1��t

:

Hence, the solution blows up in a �nite time T �, such that

T � =
1� �

��L
�

��1 (0)
;

the proof is completed.
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