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General Introduction 

The global consumption of electricity observed in recent decades is strongly linked to the 

development of industry and transmission. Natural gas, oil, coal, and uranium are examples of non-

renewable resources that are used to generate a significant portion of the world's electricity today. 

When compared to human regeneration rates, theirs is incredibly slow. As a result, there is a rather 

short-term non-zero danger of these resources running out [1]. 

However, there is a negative environmental impact associated with this kind of energy use. For 

hydrocarbons, like coal, substantial emissions of greenhouse gases are produced on a daily basis, 

contributing significantly to both increased pollution and climate change. The aforementioned fact 

compels us to progressively explore inventive methods to offset the energy shortfall and mitigate the 

adverse effects on the ecosystem. As a result, both energy providers and government agencies are 

calling for the development of non-polluting sources based on renewable energy [2]. 

We refer to solar energy as renewable energy. Earth receives breathtaking light energy from the sun. 

However, the issue lies in the fact that the shape energy takes on does not always correspond to its 

useful form. We need to employ energy conversion procedures because of this. Photovoltaic solar cells, 

for instance, use light energy from the sun to create electrical energy. 

Photovoltaic are promising because of their intrinsic qualities: their operating costs are very low ,their 

maintenance requirements are limited, they are reliable, quiet and relatively easy to install. Moreover, 

in some stand-alone applications, photovoltaic are very practical compared to other energy sources, 

especially in places that are difficult to access and uneconomical for the installation of traditional power 

lines [3]. 

Today, the necessity for a cheap, dependable power source in remote areas is what is driving the 

worldwide photovoltaic (PV) market. For a great deal of purposes, photovoltaic are only the most 

economical option. These applications include water pumping on farms, emergency call centers on 

campuses or universities, isolated systems serving cottages or remote households, utilities, and the 

military Motorways [4]. 

The objective of this thesis is to create an artificial neural network model which makes a prediction of 

the power produced by a photovoltaic system with a certain value of temperature and radiation, the 

objective of which is to develop photovoltaic (PV) systems. 

Artificial neural networks play a crucial role in photovoltaic (PV) systems, covering several aspects of 

their design, management and optimization. In particular, the prediction of the power produced by 

photovoltaic systems facilitates efficient energy management. Which helps to adjust consumption 
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according to planned production and maximize the use of available solar energy, allowing power grid 

operators to better balance supply and demand, thereby reducing the need for solar energy sources, 

Emergency energy helps plan energy supply and manage energy reserves, particularly for periods of 

low sunlight, facilitates the planning of investments and maintenance operations by predicting periods 

of maximum and minimum production [5]. 

This thesis is organized as follows:  

In the first chapter is devoted to the identification of dynamic systems we will see the identification 

methods including global optimization technique called Aliénor and the steps necessary for successful 

identification. 

In the second chapter, we present reminders on renewable energies and in particular photovoltaic 

systems and the components which makes them in general, including the types of photovoltaic cells 

and the advantages and disadvantages of a photovoltaic system. 

The third chapter focused on artificial neural networks and the results obtained from the program we 

created based on radial basis function (RBF). We explored the architecture of an artificial neural 

network, the types of these networks and we explored how to learn a neural artificial networks as well 

as its advantages and disadvantages. included the implementation and performance evaluation of the 

RBF model in identifying and predicting the behavior of a photovoltaic system under various 

conditions 

Finally, we close this work with a general conclusion which summarizes the results obtained and 

perspectives for the future continuity of this work. 
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Introduction 

The topic of identification of dynamic systems, has been at the core of modern control, following 

the fundamental works of Kalman. Realization Theory has been one of the major outcomes in this 

domain, with the possibility of identifying a dynamic system from an input-output relationship. The 

recent development of machine learning concepts has rejuvenated interest for identification [6].  

Identification is an experimental method that uses techniques and algorithms to manipulate 

experimental resources with the goal of modifying the model's parameters to make the model behave like 

the system. This chapter covers the fundamental ideas behind the parametric identification of dynamic 

systems as well as a number of frequently used identification techniques and how they are used [7]. 

I.1 Principle of identifying a dynamic systems 

Identifying a system entails putting forth a model structure based on the measurements acquired and 

figuring out its parameters. so that, when both systems are exposed to the same input.(the model's 

behavior corresponds to that of the real system)[8]. 

 

                               U(t)                                              Y(t) 

                                                                                                   +                              

                                                                                                   _               

                                                                                                    -   

 

Figure III.1 Schematic of  dynamic system 
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I.2 Identification steps                                                                                                                                               

To identify a dynamic systems, one must follow the identification steps illustrated in Figure (I.1). 

 

 

 

 

                                                                                                  

 

 

 

 

 

                                                             No 

                                                                                Yes 

 

 

Figure I.2 Identification steps 

I.2.1 Data Acquisition 

Comprehending a system's behavior in real time is crucial for an efficient identification. This entails 

selecting an entry acting as an excitation signal whose spectrum density can stimulate the system's overall 

dynamics to identify [9]. 

Among the excitation signals that can be injected as an input: 

 Constant signal. 

 Unit step signal. 

 Sinusoidal signal. 

 Rectangular signal. 

 Impulse signal. 

 Pseudo-random binary sequence "PRBS". 

 

I.2.1.1 Illustration of the importance of the excitation signal 

 

To illustrate the importance of the input signal for the system to be identified, consider a first-order 

system with a transfer function described by a static gain k = 1 and a time constant T = 8 seconds [10]. 

 

Choice of the model structure (Degree of numerator and denominator, 

Transfer function with or without delay 

) 

Choice of identification method 

Model validation 

Data Acquisition 

 

e < ε 

 

Validated model 
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Different types of input are injected into this process, as shown in Figure I.2: 

 

 

   

 

Figure I.3 Process representation 

 

The results obtained for each signal are represented in the table I.1: 

Table I.1 Parameters obtained for different input types 

signal Constant signal Unit step signal Rectangular signal Impulse signal PRBS 

Static gain K 1.0048 1.0033 0.9980 1.6826 1 

Time constant T 3.3098 7.6879 8.0671 4.4800 7.98 

 

 

Table I.1 displays the parameters K and T identified after exciting the system with a constant, a unit 

step, a rectangular input, an impulse, and a pseudo-random binary sequence (PRBS). The results indicate 

that the PRBS signal is the most effective, with identified parameters very close to the actual values. This 

highlights the importance of choosing an excitation signal rich in frequencies. 

 

I.2.2 Choice of the model structure 

 

Choosing the model structure, or the sequence in which to choose the transfer function's numerator 

and denominator, is the second stage in the identification process. This stage is implemented using data 

from a tangible experiment. A model structure can be selected by applying an impulse input to the real 

system under identification and analyzing the shape of the step response [11]. 

 

I.2.3 Choice of identification method 

 

Noise frequently tampers with the measured output when the excitation signals have low 

amplitudes. This kind of noise generates biases (errors in parameter estimation), and it is often 

challenging to accurately define it. As a result, each time, an assumption on its structure must be made 

before selecting a suitable estimation algorithm [12]. 

 

I.2.4 Model validation 

Verifying if the discovered model can accurately represent the real system is the last stage of the 

identification procedure. This is accomplished by setting a tolerance and computing the error between the 

Input G(s)  =
K

1 + 𝑇𝑠
 Output 
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identified system's response and the real system's response to the identical input. The model is deemed 

validated if the estimated error is smaller than the predetermined tolerance. If not, the identification 

procedure needs to be done over from the beginning [13]. 

I.3 Identification methods 

We have parametric method and non-parametric method. 

 These methods are classified by categories as they are represented in the table II.2: 

Table I.2 identification methods 

I.3.1 Numerical method  

Even if analytical approaches cannot precisely solve functions and equations found in theory or 

practice, we aim to find an approximate numerical solution that can be obtained in a finite number of 

processes. 

 As a result, we concentrate on numerical techniques based on the application of algorithms to 

precisely determine the parameters of our model following the graphical analysis [14].  

I.3.1.1 The application of the method of least squares 

To find the parameters, we must first start with the standard formulation of least squares, assuming 

that the calculated variable ŷ(x) is given by the following model: 

                          ŷ(x) = 𝜃1∅1 (x)+ 𝜃2∅2 (x) + ⋯ + 𝜃n∅n  (x)                                                                      (1.1) 

When: 

θ1, θ2, … θn: These are the parameters to be determined. 

∅1, ∅2 ...∅n: These are known functions. 

Parametric method Non-paremetric method 

1/Graphical method 

 Method based on time responses (Strejc and Broida). 

 Method for systems with integration. 

 Method for oscillatory systems. 

Method based on frequency responses. 

 

2/Numerical method 

 Method of least squares. 

 Recursive least squares method. 

Methods based on impulse responses . 
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x2, ..., xn: These are explanatory variables. 

n: The number of measurements. 

We seek to determine the model parameters such that the calculated values ŷ𝑖 from the variables xi 

are as close as possible to the measured values𝑦𝑖. When the precision is the same for all measurements, 

the parameters must satisfy the minimization of the following criteria: 

                                                 𝑗 (𝜃) = 
1

2
∑ 𝑒𝑖

2𝑁
𝑖=1  ,    𝑒𝑖 = 𝑦𝑖 -  ŷ𝑖                                                                     (1.2) 

The identified model is given in the form: 

                                𝐺 (Z) = 
b0+b1𝑍−1+⋯+bm 𝑍−𝑚

a0+a1𝑍−1+⋯+an 𝑍−𝑛
  = 

y(z) 

u(z)
                                                          (1.3) 

For a0 = 1, the corresponding difference equation will be: 

𝑦 (𝑧) + 𝑎1 y (𝑧) 𝑍−1 + 𝑎2 y (𝑧) 𝑍−2 +….+ 𝑎n y(z) 𝑍−𝑛 = 𝑏0 𝑢(𝑧)+ ⋯ + 𝑏m 𝑢(𝑧) 𝑍−𝑚                             (1.4) 

 𝑦 (𝑘) = −𝑎1 y(𝑘 − 1) – 𝑎2 y (𝑘 − 2) − ⋯ − 𝑎n  y(𝑘 − 𝑛) + 𝑏0 u(𝑘) + ⋯ + 𝑏m u(𝑘 − 𝑚)                           (1.5) 

𝑦( 𝑘 + 1) = −𝑎1 𝑦( 𝑘) – 𝑎2 𝑦( 𝑘 – 1) − ⋯ − 𝑎n 𝑦( 𝑘 – 𝑛 +1) + 𝑏0 𝑢( 𝑘 + 1) +….   …+ 𝑏m (𝑘 − 𝑚 + 1)   (1.6) 

We apply an input sequence {U(1), U(2), ... , U(N)} to the system and retrieve the corresponding 

measured variable sequence {y(1), y(2), ... , y(N)}. 

The unknown parameters are grouped in the following vector: 

                          𝜃 =[𝑎1 …  𝑎2 …  𝑏0 …  𝑏𝑚].                                                                            (1.7) 

By introducing the regression vector ∅ (k + 1) such that: 

         ∅ (𝑘 + 1) = [−𝑦 (𝑘) – (𝑘 – 1) … − 𝑦 (𝑘 − 𝑛 + 1) (𝑘 – 1) … (𝑘 − 𝑚 + 1)]                                      (1.8) 

The dynamic model is written in the form: 

                          y(𝑘 + 1) = ∅(𝑘 + 1) 𝜃                                                                        (1.9) 

In the least squares framework, the measurements y(k) ... y(k-n+1), u(k) ... u(k-m+1) are used to calculate 

(or predict) y(k+1): 

                                         ŷ(𝑘 + 1) = ∅(𝑘 + 1) 𝜃                                                                      (1.10)  

Considering the points from 1 to N, we have (assuming n > m for simplicity):                                          

𝑦(𝑛 + 1) = −𝑎1 𝑦(𝑛) − 𝑎2𝑦(𝑛 − 1) − ⋯− 𝑎𝑛𝑦(1) + 𝑏0𝑢(𝑛) + ⋯+ 𝑏𝑚 𝑢(𝑛 −  𝑚 +  1)           

  (1.11) 

 𝑦(𝑛 +  2) =  −𝑎1𝑦(𝑛 + 1) − 𝑎2 𝑦(𝑛) − ⋯ − 𝑎𝑛𝑦(2) + 𝑏0𝑢(𝑛 + 1)  + ⋯ + 𝑏𝑚𝑢(𝑛 − 𝑚 + 2)   (1.12)  
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     𝑦(𝑁) =  −𝑎1 𝑦(𝑁 − 1) − 𝑎2 𝑦(𝑁 − 2) − ⋯− 𝑎𝑛 𝑦(𝑁 − 1 − 𝑛) + 𝑏0𝑢(𝑁 + 1) + ⋯+ 𝑏𝑚𝑢(𝑛 − 𝑚)        

(1.13) 

[

𝑦(𝑛 + 1)

𝑦(𝑛 +  2)

𝑦(𝑁) 

]  = [

−𝑦(𝑛) − 𝑦(𝑛 − 1) −  𝑦(𝑛)… −  𝑦(1)    𝑢(𝑛)… … 𝑢(𝑛 −  𝑚 +  1)

−𝑦(𝑛 + 1) −  𝑦(𝑛)… −  𝑦(2)  …   𝑢(𝑛 + 2) … …𝑢(𝑛 −  𝑚 +  2)
… …            ……                       … ….                  … … …                    … .

− 𝑦(𝑁 − 1) –  𝑦(𝑁 − 2)  … . −𝑦(𝑁 − 1 − 𝑛) 𝑢(𝑁 + 1) …  𝑢(𝑛 − 𝑚)  

] ×  

[
 
 
 
 
 
 
 

𝑎1

𝑎2

            ⋮

           𝑎𝑛

         𝑏0

               ⋮

              𝑏𝑚

                      ]
 
 
 
 
 
 
 

                                                                                                                                                                                                                                       

(1.14) 

                                                                                𝑦𝑁= ∅N 𝜃N                                                                                                                      (1.15)                                                                              

                                                                         𝜃N   = [∅𝑁
𝑇 ∅N ]−1∅𝑁

𝑇 𝑦𝑁                                                                 (1.16) 

I.3.1.2 Recursive least squares methods 

 

If a new measurement is received when using the non-recursive least squares approach, the entire 

calculation has to be done over. For this reason, recursive techniques are employed, enabling the 

computation of the model's parameter vectors' new values at each new instant [15]. 

The estimation of the parameters at (N+1) can be computed using the following two vectors: 

 

                                             𝑦𝑁 =[Y(1) Y(2)     Y(N)]𝑇                                                       (1.17) 

                                            ∅𝑁 =[∅(1) ∅(2)     ∅(N)]𝑇                                                       (1.18) 

 

Using the non-recursive relation over a given duration N, we have: 

                                                 θ𝑁 = [∅𝑁
𝑇 ∅N ]−1 ∅𝑁

𝑇  𝑦𝑁                                                        (1.19) 

 

Thus, for a horizon of N+1 measurements, we will have the following relations: 

                                           θ𝑁+1= [∅𝑁+1
𝑇  ∅𝑁+1]

−1∅𝑁+1
𝑇 𝑌𝑁+1                                              (1.20) 

With: 

                                               Y(𝑁+1)   = [ y𝑁    y(N + 1) ]𝑇                                                (1.21)                           

                                              ∅(𝑁+1)   = [ ∅𝑁    ∅(N + 1) ]𝑇                                               (1.22) 

 

To simplify the writing, we introduce the matrix p(𝑁+1) as follows: 

                                                       𝑝𝑁+1 = [∅𝑁
𝑇  ∅𝑁+1]

−1                                                     (1.23) 

 

This gives: 
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                                                   𝑝𝑁+1
−1 = [∅𝑁

𝑇  ∅𝑇(N+1)][∅𝑁    ∅(N + 1)]𝑇  

                                                  =   ∅𝑁
𝑇 ∅𝑁+  ∅𝑇(N+1) ∅(N + 1)                                         (1.24)                                              

 

If we define: 

                                                              𝑝𝑁+1
−1 = ∅𝑁

𝑇 ∅𝑁                                                          (1.25) 

We will have the following relation: 

                                            [𝑝𝑁+1
−1 ]−1= [ 𝑝𝑁

−1 + ∅𝑇(N + 1)∅(N + 1)] −1                          (1.26) 

We get: 

                                                      𝑝𝑁+1=p𝑁 -  
p𝑁∅𝑇(N+1)∅(N+1)

1+∅(N+1)p𝑁∅𝑇(N+1)
                                       (1.27) 

 

For the calculation of θ𝑁+1 ,we have : 

 

θ𝑁+1= p𝑁+1[∅𝑁+1
𝑇 y(𝑁+1)]= p𝑁+1[∅𝑁

𝑇  ∅𝑇(N+1)][ 𝑦𝑁    y(N + 1)]𝑇 

                                = p𝑁+1[∅𝑁
𝑇 𝑦𝑁+∅𝑇(N + 1)y(N + 1)]                                                   (1.28) 

With 

                                                    ∅𝑁= p𝑁 ∅𝑁
𝑇  𝑦𝑁                                                                  (1.29) 

We can then write: 

                                                   𝑝𝑁
−1 θ𝑁 =  ∅𝑁

𝑇  𝑦𝑁                                                               (1.30)                    

Therefore: 

                         θ𝑁+1= p𝑁+1[𝑝𝑁
−1 θ𝑁 + ∅𝑇(N + 1)y(N + 1)]                                             (1.31) 

 

Replacing 𝑝𝑁
−1  with what we found previously, we will have: 

θ𝑁+1= p𝑁+1[𝑝𝑁+1
−1 − ∅𝑇(N + 1)∅(N + 1)] θ𝑁+∅𝑇(N + 1)y(N + 1) 

=θ𝑁 − p𝑁+1 ∅𝑇(N + 1)θ𝑁 + p𝑁+1∅
𝑇(N + 1)y(N + 1)θ𝑁 + p𝑁+1 ∅𝑇(N + 1)      

                   [𝑦(N + 1) − ∅𝑇(N + 1)θ𝑁 ]                                                                            (1.32) 

Therefore, we obtain the following relation: 

                           θ𝑁+1= θ𝑁 + k𝑁+1[y(N + 1) − ∅(N + 1) θ𝑁]                                          (1.33) 

Therefore: 

θ𝑁+1: New parameter estimation. 

θ𝑁: Previous parameter estimation. 

k𝑁+1: Adaptation gain. 
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with : 

                                           k𝑁+1 = p𝑁+1 ∅𝑇(N + 1)                                                          (1.34) 

y(N + 1): Prediction of the output at N+1. 

∅(N + 1) θ𝑁: Prediction of the outputs preceded. 

 

I.4 Identification and optimization using Intelligent Algorithms     

 

I.4.1 Particle Swarm Optimization(PSO) 

 

I.4.1.1Definition  

Particle Swarm Optimization (PSO) is a stochastic optimization method for non-linear functions, 

based on the reproduction of social behavior. PSO is a relatively recent algorithm in computational 

learning, introduced by James Kennedy and Russell Eberhart in 1995. It bears some resemblance to 

evolutionary computation[16]. 

 

 

Figure I.4 visual representation of PSO algorithm 

I.4.1.2 The origin of PSO 

The origin of this method comes from observations made during computer simulations of group 

flights of birds and schools of fish. These simulations highlighted the ability of individuals in a moving 

group to maintain an optimal distance between each other and to follow a global movement relative to the 

local movements of their neighbors [17]. 

 

I.4.1.3 Principle of Particle Swarm Optimization 

 

This social behavior, based on the analysis of the environment and the neighborhood, constitutes a 

method for finding an optimum by observing the trends of neighboring individuals. Each individual seeks 

to optimize their chances by following a trend moderated by their own experiences. Indeed, we can 

observe relatively complex dynamics of movement in these animals, even though individually each 
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individual has limited intelligence and only local knowledge of their situation in the swarm. An individual 

in the swarm only knows the position and speed of its closest neighbors. 

Therefore, each individual uses not only its own memory but also the local information about its 

closest neighbors to decide on its own movement [18]. 

 

I.4.1.4 Basic Principle of PSO 

 

In PSO, each individual in the population is called a “particle,” while the population is known as a 

swarm. It is important to note that a particle can benefit from the movements of other particles in the 

same population to adjust its position and velocity during the optimization process. Each individual uses 

the local information it can access about the movement of its nearest neighbors to decide on its own 

movement. Very simple rules such as stay close to other individuals, go in the same direction, and move 

at the same speed are sufficient to maintain the cohesion of the entire group [19]. 

At the start of the algorithm, a swarm is randomly distributed in the search space, with each particle 

also having a random velocity. Then, at each time step: 

 Each particle can evaluate the quality of its position and keep track of its best performance. 

 Each particle can query some of its neighbors and obtain from each of them their best performance. 

 At each time step, each particle chooses the best of the best performances it is aware of, modifies its 

velocity based on this information and its own data, and moves accordingly. 

With the limited information it has, a particle must decide its next move, which is to decide its new 

velocity. To do this, it combines three pieces of information: 

 Its current velocity. 

 Its current best position. 

 The best performance (velocity and position) of its neighbors. 

 

I.4.1.5 Formulation  

 

The swarm of particles consists of n particles, and the position of each particle represents a solution in the 

search space. The particles change states according to the following three principles: 

 Maintain their inertia 

 Change state based on their most optimistic position 

 Change state according to the most optimistic position of the group 

The position of each particle is influenced by both its own most optimistic position during its movement 

(individual experience) and the most optimistic position of the particle in its vicinity (global experience) 

[20]. 
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I.4.2 The Biogeography-Based Optimization (BBO) algorithm 

 

The Biogeography-Based Optimization (BBO) algorithm, developed by Dan Simon in 2008, is 

inspired by studies on the spatial distribution of plant and animal species and the causes of their 

distribution and extinction. It deals with how species richness (number of species) is maintained in an 

island system that is subject to immigration and on which species go extinct. When an island cannot 

easily support the population of a species, members migrate to new islands and undergo speciation [21]. 

A good solution to the optimization problem is an island with a large number of species, which 

corresponds to an island with a low HSI. In the BBO algorithm, each habitat has its own rates of 

immigration and emigration representing the species coming to and leaving the island. These parameters 

are influenced by the number of species (S) on the island [22]. 

 

 

Figure I.5 Over view of the BBO algorithm 

 

I.4.2.1 Principle of the BBO algorithm 

 

BBO is an algorithm based on a population of individuals called islands (or habitats). Each island 

represents a possible solution to the problem to be solved. The fitness of each island is determined by its 

HSI (Habitat Suitability Index), which is a measure of the quality of a candidate solution. Each island is 

represented by Suitability Index Variables (SIVs). A high HSI of an island indicates good performance on 

the optimization problem, while a low HSI indicates poor performance [23]. 

The operation of BBO is based on migration and mutation. The initial population represents the 

search space, and it is generated randomly. The evaluation of the initial population leads to the migration 

of some individuals, and the offspring will be mutated. Migration creates a new set of individuals, and 
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mutation determines the proportion of the population that will be renewed at each generation. The best 

individuals found are preserved through elitism (selection). The new offspring replace the parents to form 

a new population [24]. 

 

I.4.3 Ant Colony Optimization 

  

Ant Colony Optimization (ACO), designed by Dorigo, is inspired, as its name suggests, by the 

behavior of ants when they search for food and optimize the path between their nest and the food found. 

Indeed, ants use their environment to communicate with each other, using a stigmergic mechanism 

whereby they deposit pheromones on the ground to indicate to other ants the path they have taken to 

reach the food. Thus, others can follow the pheromone trail to find the food source [25]. 

 

I.4.4 Artificial immune system  

 

The optimization by artificial immune systems (AIS) was born in the 1980s thanks to the work of 

Farmer, Packard, and Perelson. AIS mimics the functioning of the human immune system. Indeed, the 

latter aims to protect the body from external pathogens such as bacteria or viruses [26]. 

 

I.4.5 Genetic algorithms 

 

Genetic Algorithms (GA) are adaptive strategies and global optimization techniques. They are the 

first, most well-known, and most widely used among evolutionary methods. Genetic algorithms were 

originally developed in the 1960s at the University of Michigan by John Holland and his team, who 

conducted research on adaptive and robust systems. They were initially used with binary representations, 

where crossover and mutation operators play a major role. Genetic Algorithms form one of the main 

classes of Evolutionary Algorithms, proposed and developed by Holland. They are based on modern 

theories of natural evolution and use a combination of reproduction (crossover and mutation) and 

selection to generate individuals increasingly adapted to their environment, and therefore optimal 

solutions [27]. 

I.4.6 Fuzzy logic 

Fuzzy logic is an extension of conventional Boolean logic, and the fuzzy logic technique is a 

strategy based on these ideas. Rather than employing rigid binary values (true or false), it uses degrees of 

truth to handle imprecise or uncertain data. The following are some salient features of the fuzzy logic 

method [28]. 

 

I.4.6.1 Basic Principle 

 Degrees of Truth: Unlike classical logic where a statement is either true (1) or false (0), fuzzy logic 

allows for intermediate values between 0 and 1. 
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I.4.6.2 Main Components  

 Fuzzy Variables: These are variables whose values are not precise but rather defined by fuzzy sets. 

 Membership Functions: These define the degree to which a value belongs to a fuzzy set. 

 Fuzzy Rules: These are in the form of "if-then" statements and allow relationships between variables to 

be formulated. 

I.4.7 Artificial neuron network  

 

A neural network can be considered as a mathematical model of distributed processing, composed 

of several elements of non-linear computation (neurons), operating in parallel and connected to each other 

by weights [29]. Artificial neural networks are highly connected networks of elementary processors 

operating in parallel. Each elementary processor calculates a unique output based on the information it 

receives. Artificial neurons are often used in the form of networks that differ according to the type of 

connections between the neurons; around fifty types can be enumerated. Examples include the Rosenblatt 

perceptron, Hopfield networks, multi-layer perceptron, radial basis function … etc [30]. 

 

 

Figure I.6 Artificial neuron network 

 

In this thesis, we will use artificial neural networks to identify our dynamic system. In the third chapter, 

we will try to provide different types of artificial neural networks, the essential concepts to understand the 

architectures, the functioning, and the applications of artificial neural networks, as well as their learning 

methods. 
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Conclusion 

This chapter presents various methods for calculating the parameters of a dynamic behavior model. 

We have classified these methods into several categories: methods based on a step response, which do not 

yield highly precise results but provide information about the system's dynamics; least squares methods, 

which are not the best but can offer an analytical solution; and the model-based method, which directly 

achieves the identification objective. The model-based method is widely used in practice as the 

identification problem is formulated as an optimization problem, with the parameters to be identified 

using a global optimization technique called Aliénor. 
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Introduction  

Photovoltaic solar energy is produced by directly converting sunlight into electrical current 

through the use of cells that are usually made of silicon crystalline. In terms of industry and 

technology, this technology is still cutting edge. Non-toxic silica is a type of silicon, one of the most 

prevalent materials on Earth. By combining multiple cells in series or parallel, a photovoltaic 

generator (PVG) is created with a non-linear current-voltage characteristic, featuring a maximum 

power point. These days, generated electricity can be stored in batteries or used immediately to 

power a load [31]. 

The term "photovoltaic" comes from the Greek "photo," which means light, and the term 

"voltaic," which is derived from the name of the Italian physicist Alessandro Volta (1754–1827), 

who made important contributions to the understanding of electricity. Consequently, light electricity 

is what "photovoltaic" literally means. 

I I.1 Photovoltaic cells history 

The photovoltaic effect was initially noticed by scientists in the 1800s, which is when 

photovoltaic (PV) or solar cells got their start. But it wasn't until Bell Laboratories created the first 

useful silicon solar cell in 1954, with an efficiency of 4% to 6% [32]. 

PV cells were first mostly employed in space applications, such satellite power. Not until the 

oil crisis of the 1970s did interest in renewable energy, particularly solar power, begin to grow. As a 

result, PV cells are being used to generate power on land. 

The efficiency of photovoltaic cells has advanced significantly since the 1950s. While 

research cells have achieved efficiency of up to 47.1%, commercial PV cells can now attain up to 

22% to 23%. 

These days, PV cells are employed in many different fields, such as the transportation, 

commercial, and residential sectors. It is anticipated that the use of PV cells will continue to 

increase as costs come down and technology advances. 

II.2 Advantages and Disadvantages of solar energy                                                                                         

II.2.1 Advantages 

 Electricity generated is environmentally friendly and aligns with sustainable development 

principles 

 It is a renewable energy source as it is inexhaustible on a human scale. 

 It can be used in developing countries without access to an electrical grid.       

                                                 



Chapter II                                                                                                      Photovoltaic solar energy 
 

 

19 

II.2.2 Disadvantages 

 Current photovoltaic cells have limited efficiency (around 10% for most users), resulting in      

modest power output. 

 The market is specialized but growing.  

 Energy generation is restricted to daylight hours, while residential demand peaks at night.      

 Storing this energy is complex and costly with current battery technologies.                

 Lifespan typically ranges from 20 to 25 years, after which the crystallized silicon in the cells

degrades.             

 Costs are tied to peak power capacity.                                                                                                                                                   

II.3 The efficiency 

One of the standards for this kind of sensor's quality is its PV cell's efficiency. As a result, by 

setting an operational temperature, pressure, and kind of light spectrum, this measurement is 

performed in accordance with exact requirements. In order to be able to compare the various cell 

performances objectively, we are just discussing here the total efficiency of converting photons into 

electrons, translated by the electrical power delivered by the PV cells, compared to an illumination 

of 1000 W/m² [33]. 

The material used and the losses associated with the technique employed to create a cell 

determine the efficiency. Silicon (Si) is one of the most widely used materials and is inexpensive 

due to its different crystalline forms (monocrystalline, polycrystalline, or amorphous). 

PV panels with monocrystalline cells are the photovoltaic cells of the first generation. They 

are composed of high-purity silicon crystals. 

II.4 Electrical model of a photovoltaic cell 

The equivalent circuit of a solar cell in the dark is shown in Figure I.1 it is equivalent to a 

current generator 𝐼𝑝ℎ  that is linked to a diode in parallel. In this circuit, there are two parasitic 

resistances. These resistances affect the cell's I-V characteristics in a particular way: 

 The series resistance ( R𝑠) represents the contact and connection resistance.    

 The shunt resistance ( R𝑠ℎ) connected in parallel represents the leakage current.       

  A diode in parallel that models the PN junction. 
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Figure II.1 Electrical equivalent diagram of the PV cell with one diode 

The Kirchhoff's law allows us to write the following relation: 

                            I 𝑝ℎ=  I 𝑑 +  I 𝑅𝑠ℎ + 𝐼    so   𝐼 =  I 𝑝ℎ −  I 𝑑  −  I 𝑅𝑠ℎ                                                (2.1) 

The resulting expression for the current-voltage characteristic after all calculations is: 

                                   𝐼 =  I 𝑝ℎ −  I 𝑠𝑎𝑡 [𝑒
v +(I∗Rs) 

nVt −1] −
V+(I∗ R𝑠 ) 

 R𝑠ℎ
                                                        (2.2) 

The expressions for  I 𝑝ℎ (the photocurrent) and I 𝑠𝑎𝑡 (the diode saturation current) are given by: 

 

                                     I 𝑝ℎ = [ I 𝑠𝑐 + ( k𝑖 ∗ (𝑇 − 273))] ∗ 
𝐺

1000
                                                         (2.3) 

                            I 𝑠𝑎𝑡 = ( I 𝑠𝑐  ∗𝑒
 v𝑐0 

nVt  − 1) ∗(
𝑇

298
 ) 3 ∗  𝑒

q∗ E 𝑔∗( 
1

298
−

1
𝑇

)

n.K                                                 (2.4) 

                                                                                                                                

When: 

 I 𝑝ℎ: Photocurrent produced.                                                                                                                                       

 I 𝑠𝑎𝑡 : Diode saturation current.                                                                                                                                         

 R𝑠,  R𝑠ℎ : The series resistance and the shunt resistance, respectively.  

K: Boltzmann constant (1.3806488 ∗ 10−23 J/k).                                                                                                              

Q: Electron charge (1.6∗ 10−19  C ).                                                                                                                    

 v𝑡= 
𝑘𝑡

𝑞
  Thermal voltage at temperature T.                                                                                                                    

 k𝑖 : Constant.                                                                                                                                                                        

n: Ideality factor of the junction.                                                                                                                                         

T: Effective cell temperature in Kelvin.                                                                                                                       

 E𝑔: Energy gap (for crystalline silicon is equal to 1.12 eV).                                                                                               

G: radiation W/m². 
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II.5 Electrical characteristics of a photovoltaic cell 

These parameters can be determined from current-voltage curves or from the characteristic equation.  

The most common ones are as follows: 

II.5.1 Short circuit current (Isc) 

       When this current is present, there is no voltage across the PV generator or cell. This 

current equals the photocurrent  I𝑝ℎ in the perfect condition, which has infinite shunt resistance and 

zero series resistance. Otherwise, by setting the voltage (V) to zero in the  I𝑣 equation, we 

obtain[34]: 

                                            I𝑠𝑐 =  I𝑝ℎ −  I𝑠𝑎𝑡 𝑒
q( I𝑠𝑐 ∗ R𝑠ℎ )

nKT
 
 − 1 − 

( I𝑠𝑐 ∗ R𝑠 )

 R𝑠ℎ
                                           (2.5) 

 For most cells (whose series resistance is low), we can neglect the term. 

[ I𝑠𝑎𝑡 𝑒
q(𝐼 ∗ R𝑠 )

nKT
 
 − 1] in front of  I𝑝ℎ. The approximate expression of the short-circuit current and then: 

                                                     I𝑠𝑐 ≅ 
 I𝑝ℎ

1+
 R𝑠

 R𝑠ℎ

                                                                               (2.6) 

II.5.2 Open circuit voltage (𝑣𝑐0) 

         This is the voltage 𝑣𝑐0 at which the current supplied by the photovoltaic generator is zero (it is 

the maximum voltage of a solar cell or photovoltaic generator). 

                                                                                                                                                     (2.7)  

In the ideal case, its value is slightly less than: 

                                                   𝑣𝑐0 =  v𝑡 𝐿𝑛 
 I𝑝ℎ

 I𝑠𝑎𝑡
+ 1                                                                 (2.8) 

II.5.3 PV cell power 

          Under fixed ambient operating conditions (irradiation, temperature, ambient air circulation 

speed, etc.), the electrical power P (W) available to terminals of a PV cell is: 

                                                          P= VI                                                                                  (2.9) 

P (w): Power supplied by the PV cell.                                                                                                      

V (V): Voltage measured across the PV cell.                                                                                              

I (A): Intensity delivered by the PV cell [35]. 
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II.5.4 Maximum power of a PV cell 

          For an ideal solar cell, the maximum power  p𝑚𝑎𝑥 would therefore correspond to the open-

circuit voltage  v𝑐0 multiplied by the short-circuit current I𝑠𝑐: 

                                                            p𝑚𝑎𝑥 =  v𝑐0 I𝑠𝑐                                                                (2.10) 

 p𝑚𝑎𝑥  (W): The power supplied by the PV cell.                                                                                        

 v𝑐0 (V): The open circuit voltage measured across the PV cell.                                                                                

 I𝑠𝑐 (A): The short-circuit intensity delivered by the PV cell. 

The PV cell's characteristic curve is more "rounded"  Figure II.2. The voltage at the maximum 

power point  vp𝑚𝑎𝑥 is lower than the circuit voltage open ( v𝑐0), and the supplied current  Ip𝑚𝑎𝑥 is 

lower than the short circuit current ( I𝑠𝑐) at the same voltage. The power at this moment is expressed 

as follows: 

                                           p𝑚𝑎𝑥 =  v𝑝𝑚𝑎𝑥  I𝑝𝑚𝑎𝑥                                                                      (2.11) 

 

Figure II.2 maximum power point MPP 

  II.5.5 The fill factor 

The fill factor (FF), sometimes referred to as the curve factor or fill factor, is the product of 

the open-circuit voltage  v𝑐0 and the short-circuit current I𝑠𝑐 . Put another way, it's the maximum 

power that an ideal cell can provide. The cell's quality is indicated by the fill factor. the closer it is 

to unity, the more efficient the cell is. For effective cells, it usually hovers around 0.7 and drops 

with temperature. It is described as follows and represents the impact of losses brought on by the 

two parasitic resistances,  R𝑠 and  R𝑠ℎ[36]: 

 

                                                  𝐹𝐹 = 
 p𝑚𝑎𝑥

 v𝑐0 I𝑠𝑐
= 

 v𝑚𝑎𝑥 I𝑚𝑎𝑥

 v𝑐0 I𝑠𝑐
                                                     (2.12) 
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II.6 The photovoltaic module 

To produce more power, solar cells are assembled to form a module Figure I.3. Series 

connections of several cells increase the voltage for the same current, while paralleling increases the 

current while maintaining the tension. These cells are protected from humidity by encapsulation in a 

polymer EVA (ethylene-vinyl-acetate) shown (II.3) and protected on the front surface of a glass, 

hardened with high transmission and good mechanical resistance. 

  

 

Figure II.3 Photovoltaic Module 

 

II.6.1 Characteristics of a Photovoltaic module 

 Peak power, Pc, represents the maximum electrical power that a module can provide under 

standard conditions (25°C and an irradiance of 1000 W/m²). 

 Short-circuit current,  I𝑠𝑐., is the current delivered by a module in short-circuit conditions under 

full sunlight. 

 Optimum operating point, (𝑈𝑚, 𝐼𝑚), is reached when the peak power is maximum under full 

sunlight.  𝑃𝑚 =𝑈𝑚 ∗ 𝐼𝑚. 

 Efficiency is the ratio of the optimal electrical power to the incident radiation power. 

 Fill factor is the ratio between the optimal power 𝑃𝑚 and the maximum power that the cell can 

have:  v𝑐0 ∗  I𝑠𝑐. 
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II.7 From the cell to the photovoltaic generator 

The electrical power produced by an industrialized cell is very low, typically ranging from 1 

to 3 watts with a voltage of less than one volt. 

Due to its low voltage, a single cell is insufficient to function as a standalone PV generator. 

Cells are sold as photovoltaic modules in order to raise the voltage. The majority of module 

producers connect 36 cells in series. 

Currently the power of a module is from a few peak watts to a few tens of peak watts. To 

obtain higher powers, it is necessary to associate modules in series-parallel to have a PV generator. 

[37]. 

II.8 Operating principle of a photovoltaic installation 

The principle of operation of a photovoltaic solar installation is relatively simple: it involves 

converting sunlight into electricity. This process is based on a physical phenomenon called the 

photovoltaic effect. The photovoltaic effect occurs when a photon is absorbed in a material made up 

of doped p-type (positive) and n-type (negative) semiconductors, forming a p-n (or n-p) junction. 

Due to this doping, an electric field is permanently present in the material. When an incident photon 

interacts with the electrons of the material, it transfers its energy to the electron, freeing it from its 

valence band and subjecting it to the intrinsic electric field. Under the influence of this field, the 

electron migrates towards the upper surface, leaving behind a hole that migrates in the opposite 

direction. Electrodes placed on the upper and lower surfaces allow the electrons to be collected and 

to perform electrical work to reach the hole on the front surface [38]. 

A photovoltaic cell is made up of one of these materials, typically silicon, and designed in 

such a way that the emitted electrons are collected to form an electric current. The cells are 

assembled to create a current that is sufficiently high to be used. This assembly of cells is called a 

photovoltaic module or, more commonly, a solar panel. 

II.9 Types of photovoltaic solar cells 

There are different types of photovoltaic solar cells, and each type has its own efficiency and  

cost. Solar cells can be divided into three groups, based on the base material used:          

 Monocrystalline cells         

 Polycrystalline cells        
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 Thin-film cells                                                                                                                                                                                                                                                                                                      

 II.9.1 Monocrystalline cells 

Ultra-pure silicon is melted to form silicon blocks. The whole crystalline structure is aligned 

uniformly in a monocrystalline. After that, the silicon block is cut into wafers, which are usually 

200 mm to 300 mm thick. In order to optimize the solar module's surface area, circular cells are 

divided into square elements. 152 mm is the typical side length of these cells. Doping, applying 

contact surfaces, and adding an anti-reflection layer are all steps in the production process[39]. 

Industrially produced monocrystalline cells have an efficiency ranging from 15% to 18%, 

making them the most efficient cells currently available. However, their production requires more 

energy and time compared to polycrystalline cells. Despite their high efficiency, monocrystalline 

cells have some drawbacks: 

 The production process is laborious, challenging, and therefore costly.        

 A significant amount of energy is needed to obtain a pure crystal.      

 The payback period for the energy investment is long (up to 7 years). 

 

 

 

FigureII.4 Monocrystalline solar cell 

 

 II.9.2 Polycrystalline cells  

The base material is ultra-pure silicon, which is melted. However, for the production of 

polycrystalline solar cells, monocristals are not grown, but the molten silicon is cooled down in a 

controlled manner in a square mold. During the cooling process, the crystals orient themselves 

irregularly, forming the typical shimmering surface of polycrystalline solar cells. The square silicon 
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blocks are cut into wafers 200 to 300 mm thick. Applying contact surfaces, doping, and the anti-

reflection layer finish the production process. The solar cell's characteristic blue surface is caused 

by the anti-reflection layer because blue light absorbs more light than it reflects.  

The efficiency of polycrystalline solar cells ranges from 13% to 16%.Polycrystalline cells are 

characterized by[40]:    

 Lower production cost.                

 Requires less energy.        

 Efficiency of 13% and up to 20% in the lab.                                                                                                                                

 

 

 

Figure II.5 Polycrystalline solar cell 

II.9.3 Thin-film cells (Amorphous) 

Originating from Greek, "amorphous" implies "without form." Elements with irregularly 

shaped atoms are referred to as amorphous in physics. Atoms are referred to as crystals if their 

structure is organized.  

A supporting medium, like glass, is coated with silicon to create amorphous solar cells. At 

that point, the silicon's thickness ranges from 0.5 to 2 μm. As a result, not only is a very small 

amount of silicon necessary, but carving silicon blocks by hand is also not required. Amorphous 

solar cells have an efficiency of only 6% to 8%. 
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Figure II.6 Thin-film solar cell 

II.9.4 High efficiency multi-junction cells 

Nowadays, most inorganic photovoltaic cells consist of a simple PN junction. In this junction, 

only photons with energy equal to or greater than the material's energie gap (denoted as Eg in V) 

can create electron-hole pairs. In other words, the photovoltaic response of a single-junction cell is 

limited to the energy of the photon. Only the portion of the solar spectrum with photon energy 

greater than the material's absorption gap is useful, so lower-energy photons are not usable. 

Moreover, even if the photon energy is sufficient, the probability of interacting with an electron is 

low. Thus, most photons pass through the material without transferring their energy. A well-known 

technological solution to limit these losses is to use multilevel systems, stacking junctions with 

decreasing energy gaps. This approach allows for the exploitation of almost the entire solar 

spectrum with very high conversion efficiencies [41]. 

 

Figure II.7 High efficiency multi-junction solar cell 
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II.9.5 Other cell types 

There are other types of photovoltaic technologies currently on the market or under study, the 

main ones being: 

 II.9.5.1 Flexible cells 

Based on a production process similar to that of thin-film technologies, these cells are made 

by depositing an active material layer onto a thin plastic substrate, making them flexible. This opens 

up a range of applications, particularly for building integration (roofing) and domestic applications. 

II.9.5.2 Concentrated photovoltaic 

Certain cells are engineered to function under concentrated sunlight. These cells are 

positioned within a collector that concentrates sunlight onto them using a lens. The objective is to 

minimize the use of semiconductor photovoltaic material while maximizing sunlight utilization. 

Their efficiency typically falls between 20% and 30%. 

II.10 Photovoltaic cell association 

II.10.1 Serial association 

In a grouping of Ns cells in series, the resulting characteristic of the grouping is obtained by 

adding the elementary voltages of each cell, while the current crossing cells remains the same. 

Figure I.8 shows the resulting characteristic ( I𝑠𝑐𝑐,  v𝑠𝑐0) with:  

                                                      I𝑠𝑐𝑐 =  I𝑠𝑐 and  v𝑠𝑐0 = 𝑛𝑠∗  v𝑐0                                       (2.13)                                      

            

 

Figure II.8 serial association of PV cells 

II.10.2 Parallel association 

In a group of Np cells in parallel, the cells are subject to the same voltage and the resulting 

characteristic of the grouping is obtained by the addition of the currents.                                                                                                                     

Figure I.9 shows the resulting characteristic ( I𝑝𝑠𝑐,  v𝑝𝑐0) With: 
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                                                        I𝑝𝑠𝑐 =  n𝑝 ∗  I𝑠𝑐 𝑒𝑡  v𝑝𝑐0 =  v𝑐0                     (2.14) 

 

Figure II.9 parallel association of PV cells 

II.11 Behavior of a photovoltaic generator 

A photovoltaic generator's behavior can be affected by a number of factors, including 

temperature variations throughout the array, uneven irradiation, and cell design. These differences 

may result in imbalances that compromise the generator's dependability and performance [42]. 

II.11.1 Influence of sunlight 

A decrease in sunlight leads to a reduction in the creation of electron-hole pairs, resulting in a 

current change in darkness. The current of the solar panel is equal to the difference between the 

photocurrent and the dark diode current. As sunlight decreases, there is a proportional decrease in 

the solar current 𝐼𝑠𝑐accompanied by a very slight decrease in voltage 𝑣𝑐0 leading to a shift of the 

solar panel’s 𝑃𝑚𝑎𝑥  point towards lower powers [43]. 

The following graphs represent I(V) and P(V) curves for different operating irradiations of the 

PV module at constant temperature: 
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Figure II.10 Influence of sunlight in characteristic I=f (V) 

 

Figure II.11 Influence of sunlight in characteristic P=f (V) 
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It is clear that the value of the short-circuit current is directly proportional to the intensity of the 

radiation. However, the open-circuit voltage does not vary in the same proportions but remains 

almost identical even at low irradiance. 

This implies that:     

 The optimal power of the cell (𝑝𝑚𝑎𝑥) is practically proportional to the irradiance.                                                                                                                                                                                                                

II.11.2 Influence of temperature 

We observe that the current delivered by each cell depends on the internal temperature of the 

PN junction that makes up the PV cell. Considering the warming of a PV module from 0°C to 75°C, 

and assuming that the rear temperature of each cell is close to the PN junction temperature, the 

temperature's influence can be considered. It is noted that the open-circuit voltage decreases as the 

temperature increases. Consequently, there is a loss of available power at the PV module    

terminals [44]. 

The following graphs represent I(V) and P(V) curves for different operating temperatures of 

the PV module at constant irradiation: 

 

 

Figure II.12 Influence of temperature in characteristic I=f (V) 
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Figure II.13 Influence of temperature in characteristic P=f (V) 

 

We observe that temperature has a negligible influence on the value of the short-circuit 

current. However, the open-circuit voltage decreases significantly as the temperature increases. 

 The variation in site temperature must be considered while constructing an installation. It is 

significant to note that for every degree above 25°C that the cell temperature rises, the panel's 

power drops by about 0.5%. 

II.12. Application of photovoltaic systems 

 Solar air conditioning 

The term "solar air conditioning" describes a group of techniques used to cool a building 

primarily by sun energy. Solar heat collected by solar thermal collectors or the electrical energy 

generated by photovoltaic panels can be used for air conditioning. 

 Hybrid electrification (photovoltaic-wind) 

Two renewable energy sources wind and photovoltaic are combined and used in this hybrid 

system to produce electricity. 
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A solar subsystem with an AC/DC converter is part of the hybrid system, enabling it to 

continuously track the maximum power point. Wind energy is transformed into electricity using a 

wind turbine. A DC bus is connected to both energy sources. Batteries provide for storage. An 

inverter is used to link the load to be powered, which can be either direct or alternating [45]. 

 Photovoltaic pumping 

To be brought to the surface, groundwater needs to be pumped. Therefore, the need for a 

pump and thus a reliable source of energy such as photovoltaic is necessary. 

 Seawater desalination 

One of the solutions to address the lack of drinking water is desalination plants. It is a process 

that removes salt from salty or brackish water to make it potable. 

II.13 off grid photovoltaic system: 

A PV system is a complete set of PV equipment for converting sunlight into electricity. The 

PV generator, the battery, the regulator, the converter, and the load are typically its five primary 

elements. 

II.13.1 The photovoltaic panel 

The group of interconnected photovoltaic cells forms the PV module or panel, which is 

responsible for capturing sunlight and converting it into electricity. 

II.13.2 The regulator (charge controller) 

The regulators are put in place with the aim of ensuring longevity of the system. Storage, 

therefore minimizing the installation cost.                                                                                                                            

Indeed, a regulator is responsible for:         

 Controlling the overcharging and discharging of the battery.    

 Ensure optimization of the system from an energy point of view where it constitutes an energy 

transfer node between module, storage and use [46].                                                                                                                                                        

To function, a regulator needs an indicator which informs it about the state of charge of the 

batteries. It must maintain the state of charge of the batteries between two thresholds: a high 

threshold and another bottom. The choice of thresholds depends on the characteristics of the 

batteries and the conditions of use.   

A regulator is defined by:  

 Amperage in Ampere.  

 Voltage in Volt. 
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II.13.3 The solar battery 

Its job is to store the current generated by the panel so that the system can function 

independently. Its lifespan is defined by the number of charge-discharge cycles. It is characterized 

by:                                           

 Amperage in ampere-hours (Ah).      

 Voltage in volts. 

II.13.4 The energy converter (inverter) 

It converts the direct current generated by solar panels into alternating current and output 

voltage (12 V, 24 V... 48 V) to 220 V. Its characteristics include the output voltage in volts and the 

nominal power in watts. 

II.13.5 Load  

It encompasses all of the functions performed by different gadgets linked to the solar energy 

system. Given the energy efficiency requirements of photovoltaic systems, it is crucial to define the 

criteria on which the choice of loads to be used will be based: continuous or alternative load [47]. 

Conclusion  

In this chapter, we presented the principle of converting solar energy into electrical energy using 

photovoltaic cells, the main characteristics and technologies of the components of a PV generator, 

as well as the different configurations of photovoltaic systems and their applications. 
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 Introduction 

The development of artificial neural networks stems from a desire to understand and mimic 

the capabilities of the human brain. Intelligence, learning, memorization, massive parallel 

processing of information, and flexibility are all qualities attributed to the brain, sought after for the 

synthesis of various intelligent and complex artificial systems [48].  

The concept of artificial neural networks originated in the 1940s, drawing an analogy with the 

human nervous system. These networks are built upon the neural function, as neurons are 

recognized as the cellular components responsible for information processing in the brain. 

III.1 History of Artificial Neural Networks 

The first modeling of a neuron dates back to 1943. It was presented by McCulloch and Pitts. 

The interconnection of these neurons allows for the calculation of several logical functions. In 1949, 

Hebb proposed the first mechanism for the evolution of connections, called (by analogy to 

biological systems) synapses. The combination of these two methods allowed Rosenblatt in 1958 to 

describe the first operational model of neural networks: the perceptron. This is capable of learning 

to calculate a large number of Boolean functions, but not all of them. Its theoretical limitations were 

highlighted by Minsky and Papert in 1969. Since 1985, new mathematical models have allowed 

these limitations to be overcome, giving rise to the multilayer networks that we will study in more 

detail [49].  

III.2 Biological neuron 

Neurons, numbering in the hundreds of billions, are the basic cells of the central nervous 

system. Each neuron receives nerve impulses through its dendrites (receptors), integrates them to 

form a new nerve impulse, and transmits it to a neighboring neuron via its axon (transmitter),as 

shown in Figure III.1:  

 

 

 

 

Figure III.1 Biological neuron 
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A neuron is a cell that can transmit information to other neurons through its various 

connections (synapses). The human brain is the best model of an extremely fast multifunctional 

machine [50].  

III.2.1 Features of biological neuron 

 Receiving signals from neighboring neurons.                                                                                                  

 Integrating these signals.                                                                                                                              

 Generating a nerve impulse (nerve message).                                                                                            

 Conducting it.                                                                                                                                    

 Transmitting it to another neuron capable of receiving it. 

II.2.2 Structure of biological neuron                                                                                                                                   

A neuron consists of three parts:   

 Dendrites: receive messages.    

 Cell body: generates the action potential (response).   

 Axon: transmits the signal to the next cells.     

 Synapse: allows cells to communicate with each other, and also plays a role in modulating 

signals that pass through the nervous system. 

III.3 Formal neuron 

In an artificial neural network, each neuron is a basic processor Figure III.2 It receives a 

variable number of inputs from upstream neurons. Each of these inputs is associated with a weight 

representing the strength of the connection. The neuron has a single output, which then branches out 

to feed a variable number of downstream neurons [51]. 

 

 

 

 

 

Figure III.2 Biological neuron / artificial neuron matching 
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In summary, a formal neuron simply computes a weighted sum of its inputs, adds a threshold 

to this sum, and passes the result through a transfer function to obtain its output. 

                                                 S = ∑ 𝑤𝑖. 𝑥𝑖 + 𝑏𝑖
𝑛
𝑖=1                                                             (3.1) 

                                                          y = f(S)                                                                      (3.2) 

With: 

𝑥𝑖: Components of the input vector. 

𝑤𝑖.: Components of the synaptic weight vector. 

𝑏𝑖: Bias. 

S: Weighted sum, also called potentials. 

f: Activation function. 

y: Neuron output. 

Various functions can be used as the transfer function of a neuron, as shown in Table III.1 

The most commonly used ones are the "threshold," "linear," "sigmoid," and "hyperbolic tangent" 

functions. 

Table III.1 transfer functions 

Name input/output Relation Icon matlab function 

Hard limit Y=0    𝑠 < 0 

Y=1    𝑠 ≥ 0 
 

hardlim 

Symmetrical hard limit Y= -1  𝑠 < 0 

Y=1   𝑠 ≥ 0 
 

 

hardlims 

Linear Y = s 

 

purelin 

 

Saturating linear 

Y=0   𝑠 < 0 

Y=s  0≤ 𝑠 ≤ 1 

Y=1  s> 1 
 

 

stalin 
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Symmetric saturating linear 

Y= -1  𝑠 < 0 

Y=s   ≤ 𝑠 ≤ 1 

Y=1  s > 1 

 

 

 

stalins 

Positive linear Y=0    𝑠 < 0 

Y=S    𝑠 ≥ 0 
 

poslin 

Log-sigmoid Y= 
1

1+𝑒−𝑆
 

 

logsig 

Hyperbolic tangent sigmoid 
Y=

𝑒𝑆−𝑒−𝑆

𝑒𝑆+𝑒−𝑆
 

 

tansig 

competitive Y=1   neuron with max S 

Y=0 all auther neurons 
 

compet 

 

III.4 Artificial Neural Networks 

The layer of an artificial neural network refers to a group of neurons that operate in parallel 

and are typically all connected to the same inputs. These networks consist of various layers, such as 

input layers, hidden layers, and output layers. Each layer plays a specific role in processing 

information within the neural network. 

 Input Layer: This is the first layer of the network. Each neuron in this layer represents an input 

feature and directly receives the input values. 

 Hidden Layers: These are intermediate layers between the input layer and the output layer. 

They do not directly receive the input data or produce the final output of the network. They 

perform nonlinear transformations of the data to learn useful representations. 

 Output Layer: This is the last layer of the network. It produces the final output of the network 

after the data has been transformed by the hidden layers. 
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III.5 Neural Network Architectures 

III.5.1 Static networks 

 In a static neural network, one (or more) algebraic function of its inputs is realized by 

composing the functions performed by each of its neurons. In such a network, the flow of 

information travels from the inputs to the outputs without feedback. 

In static neural networks, time is not a factor in their functionality. If inputs remain constant, 

so do outputs. The computation time for each neuron's function is negligible, allowing it to be 

considered instantaneous. This is why static networks are often referred to as "static networks". 

III.5.2 Dynamic networks 

Unlike static neural networks, whose connection graph is acyclic, dynamic neural networks 

can have arbitrary connection topologies, including loops that feedback one or more outputs to the 

inputs. 

III.5.3 A convolutional neural network (CNN)  

Convolutional neural networks are widely used tools for deep learning. They are particularly 

well-suited for images as inputs, although they are also used for other applications such as text, 

signals, and other continuous responses. They differ from other types of neurons in several ways. 

III.6 Neural Networks Classification 

III.6.1 MLP 

The most popular artificial neural network is the Multilayer Perceptron (MLP), which was 

developed by Werbos and Rumelhart. It represents the most common and simplest model of a non-

linear network. In an MLP network, neurons are grouped into layers, with the first and last layers 

called the input layer and output layer, respectively. Between these two layers, there can be one or 

more hidden layers. 

The training of an MLP is done with a supervised method using the backpropagation 

algorithm. The backpropagation algorithm adjusts the synaptic coefficients of the network in the 

opposite direction of the gradient of the error criterion JN, using only input/output data. Indeed, the 

error at the output of the network results in incorrect values for several synaptic weights. Thus, the 

main objective of a learning algorithm is to assign credit for each synaptic weight in the network 

and correct its value. The backpropagation algorithm achieves this by propagating errors from the 

output to the input through the network [52]. 
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III.6.2 Hopfield Network 

John Hopfield presented the network's architecture and explained how computational skills 

may be developed in a paper titled "Neural network and physical system with emergent collective 

computation abilities," which was published in 1982. He provided an example of an associative 

memory that his network can use. Separable, and the output is limited to either 0 or 1[53]. 

He claims that the system looks for stable states, or attractor states, within its state space. As 

nearby states get closer to a stable condition, mistakes can be fixed and incomplete data can be 

filled in. 

III.6.3 The single-layer perceptron 

The most basic type of neural network, the single-layer perceptron simulates visual 

experience. Retinal cells, decision cells, and association cells make up its three primary 

components. This network employs an all-or-nothing activation function (0 or 1). With the 

perceptron, learning can be accomplished by a variety of previously established techniques. The 

association and decision cells are separated by a single layer of tunable weights. The uses of the 

perceptron are restricted. It can only be used for classifications in which the variables are separable 

linearly. Secondly, the result can only be one of two values: 0 or 1[54]. 

III.6.4 Jordan network 

The oldest recurrent network is the Jordan network. Its goal is to carry out a series of actions 

in response to a task that the user provides. The task doesn't change while the sequence is being 

executed, but the network has to know where it is in the series. In order to accomplish its duty, it 

needs a context memory, which is represented by a layer known as the context layer[55]. 

III.6.5 The Kohonen network 

The Kohonen network, also known as the Kohonen Self-Organizing Map (SOM). This map 

makes it possible to depict in a limited number of dimensions the structure seen in high-dimensional 

data. It is a very helpful preprocessing method that makes the representation space smaller. In 

essence, the topological map is made up of an output neuron competitive layer. A layer of input 

neurons feeds these neurons. The map's learning rule is unsupervised [56]. 
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Figure III.3 Architecture of kohnen network 

 

The three neighborhood types shown in Figure III.4 are linear, rectangular, and triangular 

neighborhoods, which are frequently utilized for Kohonen maps. 

 

(a)                            (b)                            (c) 

Figure III.4 Three types of neighborhoods: (a) linear, (b) rectangular, (c) triangular 

III.6.6 Elman network 

Elman introduced the Elman network in 1990, as shown in the following graphic. The Jordan 

network and this network are extremely similar. 

The difference between Jordan and Elman models lies simply in the connection that gives the 

network its recurrent nature: in Elman's ANN, the loop is located at the hidden layer level, whereas 

it is between the output layer and the hidden layer in Jordan's ANN [57]. 

III.6.7 Radial Basis Function (RBF) Networks 

After MLPs, RBF networks are arguably the most popular kind of neural networks. RBF 

networks and MLPs share numerous similarities. Initially, all of the neurons are fully connected to 

the units in the following layer, and they also have forward unidirectional connections. They are 

unlooped neural networks as a result. 
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They also have the same structure as Multilayer Perceptron. The RBF network is a three-layer 

network, with an input layer, one hidden layers composed of kernel functions, and an output layer, 

whose neurons are typically driven by linear activation functions[58]. 

Because of its architecture, this network primarily employs the competitive and error 

corrective learning rules. It may use a learning technique that simultaneously incorporates 

supervised and unsupervised learning. Compared to the Multilayer Perceptron, this network 

performs as well as or better. 

Furthermore, their faster and simpler learning make them tools of choice for several types of 

applications, including classification and function approximation. However, this network has not 

been as extensively researched as the Multilayer Perceptron.  

Function approximation is one of the most common uses of artificial neural networks. The 

general framework of the approximation problem is as follows: assuming the existence of a 

relationship between several variables (the inputs) and an output variable. Since this relationship is 

unknown, we try to construct an approximator (black box) between these inputs and this output. To 

achieve these different steps, we try to use radial basis function (RBF) networks. These networks 

are capable of providing a local representation of space through basis functions (this is the 

particularity of RBF networks), whose influence is restricted to a certain area of space. Several 

radial functions can be used, but the most common is a Gaussian-like function. Linear combinations 

of Gaussian functions have been used since the 1960s to build interpolations or function 

approximations. RBF models are related to many other approaches are used in pattern recognition 

as well as in the study of function approximation [59]. 

Layered RBF networks can be used in the case of function classification problems and are 

capable of approximating any non-linear continuous function with any degree of precision.                          

                                                 ŷ= ∑ 𝑒
(−

v2 

σ 2
) 𝑙

𝑖=1                                                                       (3.3)                                                            

                                   𝑣𝑗(𝑥) = ‖𝑐𝑗 − 𝑥‖=√∑ (𝑥𝑖 − 𝑐𝑗𝑖)2𝑛
𝑖=−1                                                (3.4)                            

V(x) is the distance between the centers of the neurons and their input vectors. 

                                                       σ = 
𝑣

√2𝑠
                                                                             (3.5) 

σ: The standard deviation. 
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III.7 How to choose your architecture 

A number of factors need to be taken into account in order to select the best architecture for a 

given application, including: 

 The nature of the data to be processed (dynamic, static). 

 Available hardware and/or software resources for implementing the network. 

 The intended function (diagnostic, prediction, recognition etc). 

 Learning times that correspond to the amount of time required prior to beginning the decision-

making process and treating the network as an expert. 

 The work necessary to get the datasets ready for testing and training. 

 Temporal constraints generally associated with real-time applications (certain types of neural 

networks, such as the "Boltzmann machine," requiring random draws and an indefinite number 

of calculation cycles before stabilizing the output result, present more constraints than other 

networks for real-time use).  

III.8  Network design steps 

To build a neural network, the first step is not to choose the type of network but to carefully 

select the training, testing, and validation datasets. Only then does the choice of network type come 

into play. To clarify the process, here are the key steps that should guide the creation of a neural 

network, chronologically: 

 III.8.1 Determination of the inputs/outputs of the neural network 

For any model design, the selection of inputs must consider two essential points:  

 The intrinsic dimension of the input vector should be as small as possible. In other words, the 

input representation should be as compact as possible while retaining essentially the same 

amount of information. Additionally, it's important to ensure that the different inputs are 

independent [60]. 

 All information presented in the inputs should be relevant to the quantity being modeled. 

Therefore, they must have a real influence on the output value. 

III.8.2 Selection and preparation of the samples 

The process of developing a neural network always begins with the selection and preparation 

of data samples. As in data analysis cases, this step is crucial and will help the designer determine 

the most appropriate type of network to solve the problem. The way the sample is presented 



Chaptre III                                                                                 Artificial neural networks and Results  
 

 

45 

conditions: the type of network, the number of input cells, the number of output cells, and how to 

conduct learning, testing, and validation (Bishop, 1995).  

III.8.3 Elaboration of the network structure 

The structure of the network depends closely on the type of samples. It is necessary to first 

choose the type of network: a standard perceptron, a Hopfield network, a basic function network, a 

Time-Delay Neural Network (TDNN), a Kohonen network, an ARTMAP. 

III.8.4 Learning 

Learning is a numerical optimization problem. It consists of calculating the optimal weights 

of the different connections using a sample. The most commonly used method is backpropagation, 

which is generally more economical in terms of the number of arithmetic operations required to 

evaluate the gradient : input values are entered into the input cells, and based on the error obtained 

at the output (the delta), the weights assigned to the connections are corrected[61]. 

It is a cycle that is repeated until the network's error curve is increasing (care must be taken 

not to over train a neural network, which will then become less efficient). There are other learning 

methods such as Quick Prop, for example. But the most commonly used method is still 

backpropagation. 

III.8.5 Validation and Testing 

Once the network is trained, it is important to conduct tests to verify that it reacts correctly. 

There are several methods for validation, such as cross-validation, bootstrapping, etc. However, for 

testing purposes, in the general case, a portion of the sample is simply set aside from the training 

sample and kept for out-of-sample testing. It can be required to change the design of the network or 

the training set if the network's performance is not up to par. 

III.9 Type of learning 

III.9.1 Supervised learning 

In this type of learning, we have a set of examples (called the training set) which are pairs of 

(input, desired output). For each example, we present an input to the network, calculate an output, 

and compare it with the desired output, which gives us the error made by the network. Using this 

error, we adjust the weights of the network, then calculate the new error, and so on until the error is 

below a chosen threshold [62].  
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III.9.2 Unsupervised learning 

There are cases where we do not have information about the classes in the training set. This 

lack of knowledge can have several causes, such as a lack of information about the data or the 

volume of information being too large to be labeled manually. It is in these cases that unsupervised 

learning is useful. 

Unsupervised learning is the only type of learning that can explain learning in the biological 

system. This training process maps a given class of input vectors that share a common property to a 

particular output. However, initially, we cannot know the corresponding output for a class of input 

vectors. 

Unsupervised learning is a different technique where no output variable is determined. The 

network categorizes the input variables on its own.  

Unsupervised learning is generally applied to recurrent networks. It is well suited for 

modeling complex data (images, sounds, etc.), where the rules governing the behavior of the system 

to be modeled by neural networks are less precise. There are several rules for supervised learning: 

supervised learning with the perceptron rule and learning with radial basis function (RBF) 

networks[63].  

III.9.3 Reinforcement learning  

Reinforcement learning is a technique similar to supervised learning, but instead of providing 

desired results to the network, it is given a grade (or score) that measures the network's performance 

after a few iterations. In other words, supervised learning requires a supervisor to dictate to the 

network which action is correct in a given situation. However, in reinforcement learning, the 

network does not have a supervisor; it interacts with the environment, which provides quantitative 

feedback on the values of its actions. Reinforcement learning helps overcome some of the 

limitations of supervised learning. It is a form of supervised learning, but with a scalar satisfaction 

index instead of a vector error signal. This type of learning is inspired by the work in experimental 

psychology by Thorndike (1911)[64]. 

The two properties, "trial and error search" and "long-term reward," are the two most 

important characteristics of reinforcement learning. 
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III.10 Learning rules 

III.10.1 Hebb's law 

Based on the results of neurobiological observation experiments: 

Neurons that fire together wire together. The synaptic weights of neurons whose activities are 

synchronized are higher. When two connected units are operational at the same time, the strength of 

the connection increases. 

The following equations can be used to model Hebb's law: 

 

Figure III.5 Architecture of a Hopfield structure 

 

                                                𝑤𝑖𝑗(𝑡 + 1) = 𝑤𝑖𝑗(𝑡) + ∆𝑤𝑖𝑗                                              (3.6)                                           

Such as: 

                                                         ∆𝑤𝑖𝑗 = 𝜀 . 𝑥𝑖  . 𝑥𝑗                                                        (3.7)                                            

   𝑥𝑗: Output value of neuron j. 

   𝑥𝑖  : Output value of neuron i. 

  𝜀 : A positive constant representing the learning rate (epsilon) or decayed. 

III.10.2 Widrow-Hoff's Adaline Law (Delta Rule) 

It calculates the difference between the output value and the desired value to adjust the 

synaptic weights. It uses an error function, called "the mean squared error," based on the differences 

used for weight adjustment. 
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This law is also a modified version of Hebb's law. It uses the principle of error correction, 

which guides certain neural network learning algorithms. 

                                                            E= 𝑑𝑖−𝑥𝑗                                                           (3.8)                                                 

If the output is less than the desired response, for example, the weight of the connection 

should be increased, assuming that unit j is excitable (equal to 1). This rule can be expressed as 

follows:  

                                                    ∆𝑤𝑖𝑗 = 𝜀 (𝑑𝑖 − 𝑥𝑖 )𝑥𝑗                                                 (3.9)                                               

With: 

 𝑥𝑖 :Output and  𝑥𝑗 input. 

 𝑑𝑖 : Desired response by the human expert. 

III.10.3 Cascade correlation rule 

A learning method called the cascade correlation algorithm adds hidden neurons to the 

network piecemeal until their positive effects become negligible. The two steps that this rule 

follows are as follows: 

 Training without Hidden Layer: Initially, a traditional learning technique is used to train the 

system without a hidden layer. 

 Training Additional Neurons: Next, in order to lower the network's residual error, a limited 

number of extra neurons are trained. These neurons' weights are adjusted by the learning rule 

that is applied. The neuron that performs the best is chosen and added to the network. To give 

the network time to adjust to the new resource, step 1 is repeated. 

 This method seeks to progressively construct a network structure that can effectively represent 

intricate relationships in the data [65]. 

III.10.4 Backpropagation rule 

Invented by Rumelhart, Hinton, and Williams in 1986, this rule is used to adjust the weights 

from the input layer to the hidden layer. It can also be seen as a generalization of the delta rule for 

nonlinear activation functions and for multilayer networks. The weights in the neural network are 

initially set to random values. Then, a dataset is considered, which serves as a training sample. Each 
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sample has target values that the neural network should reach when presented with the same  

sample [66]. 

III.11 Application 

 Actually, there are applications for neural networks in a number of fields, including computer 

science, electronics, hydrology, neuroscience, and cognitive science. Neural network research 

holds great potential for artificial intelligence, with applications across various domains. 

 Industry: neural networks are used for quality control, defect detection, correlation between 

data provided by multiple sensors, and analysis of signatures or handwriting. 

 Finance: Credit attribution, investment selection, and forecasting and modeling of market 

movements (exchange rates, currency values, etc.). 

 Information technology and telecommunications: data compression, picture, audio, and noise 

recognition patterns. 

 Environment: Resource management, chemical analysis, resource forecasting and modeling, 

meteorological and hydrological forecasts [67]. 

III.12 The advantages and disadvantages of neural networks 

III.12.1 Advantages 

 Robustness to noisy data: Neural networks can effectively handle noisy and incomplete data, 

making them suitable for real-world environments where data may be imprecise. 

 Simulation of diverse behaviors: Neural networks can model a wide variety of complex 

behaviors, making them useful in many application domains. 

 Fault tolerance: Neural networks can often continue functioning even in the presence of failures 

or damage to some neurons, thanks to their ability to self-organize and compensate for damage. 

 Automatic weight calculation: Once configured and trained, neural networks can automatically 

calculate the weights of connections, simplifying the use of the network in practical 

applications. 

 Generalization: Neural networks can generalize from training data to make predictions or 

classifications on new data they have never seen before[68]. 
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III.12.2 Disadvantages 

 Opacity of results: As they do not provide easily interpretable explanations for their decisions, 

unlike decision tree methods. 

 Long training time: Training a neural network can be computationally intensive and time-

consuming, especially for large or complex networks. 

 Complex representation: Understanding the internal workings and representations learned by a 

neural network can be challenging due to its complex structure. 

 Long learning period: It may take a significant amount of time to train a neural network to 

achieve satisfactory performance, especially for complex tasks or large datasets. 

 Risk of local minima: During training, neural networks can get stuck in suboptimal solutions 

called local minima, which can hinder their ability to learn the best model. 

 Difficulty in explaining results: Neural networks can produce accurate results, but explaining 

how and why they make certain predictions or classifications can be challenging without prior 

knowledge or understanding of the network's inner workings. 

III.13 Simulation results 

MPPT algorithms are crucial in photovoltaic applications because the MPP of a solar panel 

fluctuates with the solar irradiation and temperature, Since the maximum available energy of solar 

arrays continuously changes with the atmospheric conditions, a real-time maximum power-point 

tracker is the indispensable part of the PV system. Proposed maximum power point tracking 

(MPPT) schemes in the technical literature can be divided into three different categories [69]: 

 Direct methods. 

 Artificial intelligence methods. 

 Indirect methods. 

In the direct methods, which are also known as true seeking methods, the MPP is searched by 

continuously perturbing the operating point of the PV array .Under this category, Perturb and 

Observe (P&O) [70]. Artificial intelligence and indirect methods have been proposed to improve 

the dynamic performance of MPP tracking. Concentrating on nonlinear characteristics of the PV 

arrays, the artificial intelligence methods. Provide a fast, and yet, computationally demanding 

solution for the MPPT problem as shown in the following Figure III.6: 
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Figure III.6 Proposed ANN structure for MPPT 

The indirect methods are based on extracting the MPP of the array from its output 

characteristics [71]. 

 

Table III.2 Electrical parametrs of the BP SX 150S PV array at 25°C,1000W/m² 

Electrical characteristics Value 

Maximum Power ( mppP ) 150 W 

Voltage at mppP ( mppV ) 34.5 V 

Current at mppP ( mppI ) 4.35 A 

Short-circuit current( scI ) 4.75 A 

Open-circuit voltage( ocV ) 43.5 V 

Temperature coefficient of scI  (0.065 0.015)%/°C 

Temperature coefficient of ocV  -(160 20)mV/°C 

Number of cells series ( SN ) 72 

 

Irradiance

maxP

eTemperatur

Inputs
1layerHidden

Outputs
2layerHidden
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Figure III.7 Characteristic of PV ,P=f(V). 

 

FigureIII.8  Characteristic of PV,I=f(V). 
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In our proposed design, we incorporate a two-layer radial basis function (RBF) neural network 

technique that predicts the PV array voltage at which maximum power is attainable. These networks 

develop a non-linear relationship between the input and output, with a hidden layer that functions 

with preferences similar to those of neurons in our brain. The hidden layer in our model is an RBF 

neural network. The input parameters are T (temperature) and E (radiation). 

III.13.1 Learning step 

The size of the input training matrix reaches 360 by 2 Inputs which ensure high accuracy of the 

model.The simulated model characteristics are shown in Table III.3. 

 

Table III.3 Architecture of RBF Model  

Model 
                       Output 

Structure             

MPP 

 

 

 

 

RBF 

 

Number of hidden layers 1 

Algorithm Least square 

Number of Neurons  40 

Activation function Gaussian 

Adjusted Gain 150 

Dataset 360 

Training time (S) 3.37(s) 

Number of iterations 40 

MSE 1.5302𝑒-004 
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Figure III.9 Training Data 

                        

Figure III.10 Training Error MSE = 1.5302e-004 
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III.13.2 Validation step 

Now we verify that the neuronal network model after learning are actually able to predict the 

desired output for values given at the entry which are not used in the learning. We always should 

compare the true output of the networks with the model of the PV for comparisons using mean 

square error (MSE). For this we study three cases. 

This section interprets the results obtained from the identification of a photovoltaic system using a 

Radial Basis Function (RBF) neural network. The analysis focuses on the performance of the RBF 

model in terms of Maximum Power Point Tracking (MPPT). 

This analysis concentrates on three specific cases: 

 The radiation varies, and the temperature is constant. 

 The temperature varies, and the radiation is constant. 

  Both radiation and temperature vary. 

In each case, there are several tests, and each scenario has a graph presenting the errors values.  
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Case 01 : the irradiation varies and the temperature is constant. 

 200w/𝑚2 ≤ E ≤ 1000w/𝑚2and T = 25°C

      

…………Figure III.11 ’O’ Neural Model and ’+’ PV Array MPPT for T = 25°C 

 

Figure III.12 MSE= 0.0014 
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 150w/𝑚2 ≤ E ≤ 950w/𝑚2and T = 60°C 

 

Figure III.13 ’O’Neural Model and’+’ PV Array MPPT for T = 60°C 

 

Figure III.14 MSE= 3.5143e-005 
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Case 02: The temperature varies and the irradiation is constant. 

 20°C ≤ T ≤ 60°C and E=1000w/𝑚2 

 

Figure III.15 ’O’Neural Model and’+’ PV Array MPPT for E=1000w/𝒎𝟐 

 

Figure III.16 MSE= 0.0142 
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 20°C ≤ T ≤ 70°C and E=600w/𝑚2 

 

Figure III.17 ’O’Neural Model and’+’ PV Array MPPT for E=600w/𝒎𝟐 

 

Figure III.18 MSE=2.6195e-004 
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 23°C ≤ T ≤ 72°C and E=500w/𝑚2 

 

Figure III.19 ’O’Neural Model and’+’ PV Array MPPT for E=500w/𝒎𝟐 

 

 Figure III.20 MSE=5.2089e-005 
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Case 03: The temperature varies and the irradiation varies too. 

 0°C ≤ T ≤ 60°C and 100w/𝑚2 ≤ E ≤ 700w/m² 

 

Figure III.21 ’O’Neural Model and’+’ PV Array MPPT for T and E varie 

 

Figure III.22 MSE=8.7042e-005 
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 0°C ≤ T ≤ 48°C and 100w/𝑚2 ≤ E ≤ 700w/m² 

 

Figure III.23 ’O’Neural Model and’+’ PV Array MPPT for T and E varie 

 

Figure III.24 MSE=7.7643e-005 
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III.13.3 Results Interpretation 

In order to show the validation of the presented RBF model, three comparisons between the PV and 

our RBF model, corresponding to the following cases have been made and obtained results are 

discussed. 

 Case 01: The radiation varies, and the temperature is constant. 

The MPP of RBF model and our Real PV system are represented in Figures [11,13], 

respectively. Random combinations of values of (𝐸, 𝑇)  are taken that have not been used in 

training. The horizontal axis represents the index of the sample points from 1 to 9. The percentage 

errors between the desired outputs calculated from PV and the outputs of RBF Model are presented 

in Figures [12,14]. The absolute value of percentage error in MPP is less than 0.04 % for RBF. 

 Case 02: The temperature varies, and the radiation is constant. 

 

The MPP of RBF model and our Real PV system of are represented in Figures [15,17,19], 

respectively. Random combinations of values of (𝐸, 𝑇) are taken that have not been used in training. 

The horizontal axis represents the index of the sample points from 1 to 9,1 to 6 and 1 to 8 

respectively. The percentage errors between the desired outputs calculated from PV and the outputs 

of RBF Model are presented in Figures [16,18,20]. The absolute value of percentage error in MPP is 

less than 0.03 % for RBF. 

 

 Case 03: Both radiation and temperature vary 

 

In this difficult case the MPP of RBF model and our Real PV system of are represented in 

Figures [21,23], respectively. Random combinations of values of (𝐸, 𝑇) are taken that have not been 

used in training. The horizontal axis represents the index of the sample points from 0 to 50. The 

percentage errors between the desired outputs calculated from PV and the outputs of RBF Model are 

presented in Figures [22, 24]. The absolute value of percentage error in MPP is less than 0.04% for 

RBF. 

In our results by testing the errors between the real model of PV and our desired one with all 

possible cases of variation of the irradiation and the temperature, it can be seen that the applied 

RBF is capable to predict the MPPT of the PV panel for any set of input values (E,T) within their 

defined domain of variations with performance reached 95.98 % as presented in all figures  without 

any aditional Metaheuristic technique or renforcement ,compared to all cited references and 

technics results . 
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Conclusion 

In this chapter, we began with a historical overview of the origins of neural networks and their 

development up to the present day. Then, we discussed the architectures of neural networks, 

covering both static and dynamic networks. Following this, we addressed the classification of 

neural networks. We also delved into the considerations for choosing an architecture and moved on 

to the steps involved in designing a neural network. Before concluding with the advantages and 

disadvantages, we explored the types of learning and their rules, as well as their applications. 
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General conclusion 

The efficiency, stability and reliability of a photovoltaic energy are considered major factors for 

establishing this energy resource on the market. In this work, common maximum power point 

tracking technique, based on artificial neural network using the RBF (Radial basis function) has been 

proposed for a grid-connected PV system to maximize the output power of a PV array. The aim has 

also been improving the stability and reliability of a PV power conversion, with a certain value of 

temperature and radiation.  

We began this thesis with identification of dynamic systems we explored methods for 

identifying and understanding the complex behavior of a dynamic system. Among these methods, 

we examined Least Squares, Recursive Least Squares, Particle swarm optimization, fuzzy logic as 

well as the steps necessary for successful identification. 

We then presented the photovoltaic systems and their main characteristics, their different main 

components. Then we presented the different parameters and equations allowing the design of a 

photovoltaic installation for a specific site. 

The last part of our work addresses an in-depth study about artificial neural networks, we simulated 

a code that predicts the power produced by a photovoltaic system. 

The output power of the photovoltaic generator (GPV) depends on several climatic factors, 

such as irradiation and temperature. However, real-time tracking of the optimum operating point 

(MPP) is required to optimize system performance. In this work, we studied an intelligent modeling 

neural network to extract the maximum power from the PV Array. The simulation results 

demonstrated that our RBF network learned well, confirming this by the test values which gave 

very approximate power values or almost equal to the real power values produced by the solar 

panels. The characteristics of the PV were taken from electrical parameters of the BP SX 150S for 

learning the network.  

In this thesis, MPPT identifier has been developed to improve the average tracking efficiency, 

increase the stability and enhance the reliability of a grid-connected PV system. However, there are 

other challenges that need further solutions, if investing in this type of energy resource is to become 

more attractive, some suggestions being as follows: 

 Enhanced tracking efficiency of a PV system under rapidly changing atmospheric conditions 

has been demonstrated in this current work. It would prove beneficial to improve the PV system 

performance under a partial shading condition. This condition happens when there is a shading, 
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which can be caused by tree shadow or dust, i.e. on part of the PV array. In this case, the PV 

array will generate several MPPs. Hence, the total generating efficiency of the installed PV 

array decreases. To solve this issue, an MPPT controller based on the PSO algorithm could be 

used. 

 A fault situation is considered one of the major challenges facing large-scale PV systems when 

connected to the grid. This issue can cause a dynamic stability problem with voltage rise. 

However, disconnection of faulty units could cause the system to malfunction. To address this 

issue, advanced active control and advanced reactive control would need to be employed. 

Finally the main recommendation that can be made for the future investigation, is the 

implementation of a physical model for the artificial neural network MPPT technique using 

microcontrollers and testing it on a real PV Array. 
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