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Abstract 

The compressibility of clayey soils is a crucial aspect of geotechnical engineering, 

particularly in Tebessa province where settlement issues are prevalent. This dissertation 

investigates soil compression indices using full factorial design (FFD) techniques 

embedded within the well-known design of experiment (DoE) methodology. Physical and 

mechanical data has been collected from the studied area, including geological and 

hydrogeological studies, theoretical frameworks, numerical simulation and advanced 

statistical methods. The study employs various statistical predictive tools to accurately 

define compression and recompression indices (Cc and Cs), as well as the 

overconsolidation ratio (OCR). Principal Component Analysis (PCA) and regression 

analysis distill complex data sets into meaningful insights. The DoE methodology, 

including FFD and Response Surface Methodology (RSM), facilitates systematic 

investigation and optimization of experimental conditions to obtain the best-fit predictive 

models with high correlation coefficients R of 0.85 up to 0.93 for all different obtained 

models, it is concluded from this investigation that the main input parameters Cc, Cs and 

OCR are dependent parameters yielded high correlation to Atterberg limits void ration and 

dry unit weight and initial vertical stress. For the validation step in this investigation, 

samples were prepared from the studied area and analyzed in a soil mechanics laboratory 

to obtain the target parameters for model dependency. The obtained results aligned 

accurately with those issue from models using the mentioned methodology. Numerical 

simulations using finite element analysis confirmed very close settlement results compared 

to those calculated using the predictive models for the compression indices of the studied 

soil. 

Keywords: Compressibility, Soil compression indices, Geotechnical data, OCR, 

optimization. 
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Résumé 

La compressibilité des sols argileux est un aspect crucial de l'ingénierie géotechnique, en 

particulier dans la province de Tébessa où les problèmes de tassement sont répandus. Cette 

thèse étudie les indices de compression du sol à l'aide de techniques de plan factoriel 

complet intégrées à la méthodologie bien connue du plan d'expérience. Des données 

physiques et mécaniques ont été collectées dans la zone étudiée, notamment des études 

géologiques et hydrogéologiques, des cadres théoriques, des simulations numériques et des 

méthodes statistiques avancées. L'étude utilise divers outils statistiques prédictifs pour 

définir avec précision les indices de compression et de recompression (Cc et Cs), ainsi que 

le taux de surconsolidation. L'analyse en composantes principales (ACP) et l'analyse de 

régression distillent des ensembles de données complexes en informations significatives. 

La méthodologie conception d'expériences, y compris la méthodologie plan factoriel 

complet et la méthodologie de surface de réponse, facilite l'investigation systématique et 

l'optimisation des conditions expérimentales pour obtenir les modèles prédictifs les mieux 

adaptés avec des coefficients de corrélation élevés R de 0,85 à 0,93 pour tous les différents 

modèles obtenus, conclut-on. Cette étude selon laquelle les principaux paramètres d'entrée 

Cc, Cs et OCR sont des paramètres dépendants a donné une forte corrélation avec les 

limites d'Atterberg, le taux de vides, le poids unitaire sec et la contrainte verticale initiale. 

Pour l'étape de validation de cette enquête, des échantillons ont été préparés dans la zone 

étudiée et analysés dans un laboratoire de mécanique des sols afin d'obtenir les paramètres 

cibles pour la dépendance au modèle. Les résultats obtenus s'alignent avec précision sur 

ceux issus des modèles utilisant la méthodologie mentionnée. Les simulations numériques 

par analyse par éléments finis ont confirmé des résultats de tassement très proches de ceux 

calculés à l'aide des modèles prédictifs des indices de compression du sol étudié. 

Mots clés : Compressibilité, Indices de compression du sol, Données géotechniques, OCR, 

optimisation. 
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 ملخص

ً في الهندسة الجيوتقنية، وخاصة في ولاية تبسة حيث تنتشر مشاكل  ً مهما تعُد قابلية انضغاط التربة الطينية جانبا

مؤشرات ضغط التربة باستخدام تقنيات التصميم العامل الكامل المدمجة ضمن االستقرار. تبحث هذه األطروحة في 

منهجية التصميم التجريبي المعروفة. تم جمع البيانات الفيزيائية والميكانيكية من المنطقة المدروسة، بما في ذلك 

ائية المتقدمة. تستخدم الدراسة الدراسات الجيولوجية والهيدرولوجية، األطر النظرية، المحاكاة العددية واألساليب اإلحص

بدقة، باإلضافة إلى نسبة (Cs)و (Cc) أدوات إحصائية تنبؤية متنوعة لتعريف مؤشرات االنضغاط وإعادة االنضغاط 

 .التراكب الزائد .تقوم تحليل المكونات الرئيسية والتحليل االنحداري بتبسيط مجموعات البيانات المعقدة إلى رؤى مفيدة

بما في ذلك ومنهجية استجابة السطح، التحقيق المنهجي وتحسين الظروف التجريبية للحصول على نماذج  تتيح منهجية ،

لجميع النماذج المختلفة التي تم الحصول عليها.  0.93و 0.85تنبؤية بأفضل مالءمة ومعامالت ارتباط عالية تتراوح بين 

ة المدروسة وتحليلها في مختبر ميكانيكا التربة للحصول في خطوة التحقق في هذا التحقيق، تم تحضير عينات من المنطق

على المعلمات المستهدفة لالعتماد على النموذج. تطابقت جميع التحقق بدقة مع النماذج التي تم الحصول عليها باستخدام 

بة جداً مقارنة بتلك المنهجية المذكورة. أكدت المحاكاة العددية باستخدام تحليل العناصر المحدودة نتائج االستقرار القري

 .المحسوبة باستخدام النماذج التنبؤية لمؤشرات االنضغاط للتربة المدروسة

 .، تحسينOCRقابلية الانضغاط، مؤشرات ضغط التربة، بيانات الجيوتكنيك،  :الكلمات المفتاحية
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General introduction 
 

Understanding the compressibility of sediments and deposits, such as clays and fine- 

grained soils, is a cornerstone of geotechnical engineering. Compressibility reflects the 

relationship between void ratio and effective stress due to loads transmitted from 

foundations. Given that settlement is heavily influenced by compressibility, accurately 

defining compression and recompression indices through oedometer tests is paramount. 

Despite their reliability, these tests are time-intensive, require undisturbed samples, and 

incur significant costs. In Tebessa province, settlement issues are prevalent, often causing 

significant structural damage or functional impairment due to differential settlements. This 

master’s dissertation aims to investigate compressibility in Tebessa area using a combined 

approaches that includes sample collection, laboratory testing, data collection, numerical  

modeling, and statistical analysis. 

 

Statistical methods are crucial in geotechnical investigations, aiding in data identification 

treatment, analysis, categorization and decision-making. In this study, statistical tools such 

as Principal Component Analysis (PCA) and regression analysis are employed to distill 

complex datasets into meaningful insights and establish relationships between variables  

affecting soil compression parameters especially those findings in literature that highly 

correlate to the chosen input parameter. The Design of Experiments (DoE) methodology is 

integral to this study, facilitating a systematic investigation of factors affecting soil 

compression parameters. By using factorial design and Response Surface Methodology 

(RSM), we efficiently explore interactions between multiple variables such as unit weights, 

void ratio, moisture content, Atterberg limits and fraction of fines and some others as input 

physical parameters simple to achieve in laboratory, related to output parameters such as  

compression indices and overconsolidation ratio. 

 

The Full Factorial Design (FFD) approach comprehensively examines all possible 

combinations of factors and their levels, providing a robust framework for identifying  

significant factors and their interactions, leading to a thorough understanding of soil 

compressibility. RSM is used to optimize experimental conditions and develop predictive 
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models, fitting a surface to the experimental data to identify optimal conditions for minimal 

soil compression and establish a prediction equation for future scenarios. 

 

Accurate data collection and treatment are fundamental to the success of this study. 

Geotechnical data regarding soil properties, environmental conditions, and loading 

scenarios are meticulously gathered and processed to ensure the reliability and validity of 

the results. The materials and methods section outlines the systematic approach taken in  

this research, covering the implementation of DoE, FFD, and RSM techniques, along with 

optimization and validation processes. The prediction equations derived from the 

experimental data are validated through simulation and settlement estimation, ensuring 

their practical applicability, where Finite Element Analysis (FEA) is utilized to simulate 

clayey soil behavior under different loading conditions, visualizing stress distribution and 

deformation patterns to complement empirical data. 

 

To accomplish this work, the dissertation has been meticulously structured into four  

comprehensive chapters, general introduction and conclusion as follows: 

 

 Chapter 1: Presents the theoretical foundations necessary for understanding soil  

compressibility phenomena, then covers advanced statistical methods, including  

Principal Component Analysis (PCA), the design of experiments (DoE) 

methodology, with a use the Full Factorial Design (FFD) and Response Surface  

Methodology (RSM) for optimizing experimental conditions and developing 

predictive models. 

 Chapter 2: This chapter provides an in-depth overview of the studied area, starting 

with a description of its geographical location and environmental setting. It then 

delves into the geological characteristics, including stratigraphy, hydrogeological,  

hydrological and climatic context. 

 Chapter 3: outlines the systematic approach to data collection and classification. 

It describes the procedures for gathering geotechnical data, including soil sampling 

and lab testing. The chapter details the classification of the collected data based on 

soil type and properties. Laboratory testing methods are comprehensively 
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discussed, with a focus on oedometer tests for determining soil compressibility and 

Atterberg limits for assessing soil plasticity. 

 Chapter 4: presents the results obtained from the analysis of the collected data. It 

includes detailed models and equations derived from statistical and numerical 

analyses, illustrating the relationships between various soil properties and their  

compression indices. The chapter also discusses the validation of these models 

using independent datasets and numerical simulations. The accuracy and reliability 

of the predictive models are evaluated through comparison with observed 

settlement and finite element analysis results. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Chapter I: 

Overview on Soil Compressibility 

and Parameter’s Predictive Tools. 



Chapter I Overview on Soil Compressibility and Parameter’s Predictive Tools 
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I.1. Introduction 

 
In the realm of geotechnical studies, the phenomena of consolidation and settlement 

pose significant challenges in ensuring the stability of structures built upon soils. 

Understanding the intricate processes of soil behavior under load is essential for engineers 

and researchers to devise effective solutions for mitigating potential risks associated with 

consolidation and settlement (Yune, C. Y., & Olgun, C. G. 2016). Over the years, 

researchers have turned to the power of statistical analysis and advanced programming 

techniques to delve deeper into these phenomena, offering insights that inform the design 

and implementation of robust engineering solutions (Naqvi, M. W. et al 2023). This 

introduction sets the stage to explore how research endeavors have harnessed the tools of 

statistics and programming to tackle the complexities of consolidation and settlement in 

geotechnical engineering. Through rigorous analysis and innovative computational 

methods, researchers have endeavored to enhance our understanding and management of 

these critical aspects, thereby contributing to the advancement and sustainability of 

infrastructure worldwide. 

I.2. Consolidation 

 
All soils are compressible, in that they undergo volume changes when they are 

subjected to changes in the stresses applied to them. The resulting compressions can be 

particularly large when the drainage is not impeded, but their magnitudes are of 

engineering significance only when reference is made to the deformations which are  

tolerable for a given type of structure. The magnitude and rate of the deformation depend 

on the type of soil and on the nature of the applied loads. The introduction of Terzaghi's 

consolidation theory (Terzaghi, 1923), is considered by many to be the birth of modern soil 

mechanics. Since then, a great number of contributions have been made. All of these have 

attempted to improve the capability of predicting the magnitude and rate of settlement and 

the rate of excess pore pressure dissipation by introducing more refined soil models and  

less restricted assumptions on the parameters describing these models (Naqvi, M. W. et al 

2023). The availability of electronic computing facilities has relatively recently created a 

boom in the application of numerical techniques, among which the finite element method 

has proved to be a most versatile and useful tool (Zienkiewicz, O. C., & Taylor, R. L. 
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2005). Methods to determine the relevant soil parameters in the laboratory and in the field 

have also been improved, although the progress in this respect has not kept pace with the 

analytical techniques. Most recently, attempts have also been made to employ probabilistic 

techniques, because one of the inherent difficulties in achieving more accurate predictions 

of the settlement process lies in the variability of the soil parameters. (Balasubramaniam, 

A. S., & Brenner, R. P. 1981). 

 

I.2.1. One dimensional consolidation test 

 
The one-dimensional consolidation test, called the Oedometer test, serves to determine 

various parameters including Cc, Cs, Ca, Cv, and mv (Budhu, M. 2010). Additionally, it 

allows for the calculation of hydraulic conductivity, kz, based on the gathered data. The 

apparatus and procedures for conducting the test are elaborated in XP P 94-090-1. In this 

test, a soil disk is contained within a rigid metal ring and positioned between two porous 

stones immersed in water within a cylindrical vessel, shown in Figure 1. A metal load  

platen mounted on top of the upper porous stone transmits the applied vertical stress  

(vertical total stress) to the soil sample. Both the platen and the upper porous stone can 

vertically displace within the ring as the soil settles under the applied stress. The ring 

containing the soil sample may be either secured to the vessel by a collar or left 

unrestrained. Incremental loads, including unloading sequences, are applied to the platen, 

and the settlement of the soil at fixed intervals under each load increment is gauged using  

a displacement gauge. Each load increment persists until soil settlement stabilizes and 

excess pore water pressure dissipates, typically within 24 hours for most soils but possibly 

longer for certain types like montmorillonite. Load increments are doubled, and the ratio 

of each increment to the previous one is termed the load increment ratio (LIR), traditionally 

set at LIR=1. To determine Cs, the soil sample undergoes unloading using a load decrement 

ratio of 2 relative to the current load. (Das, B. M., & Sobhan, K. 2012; Budhu, M. 2010). 
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Figure 1: (a) typical consolidation apparatus, (b) a fixed ring cell, (c) a floating ring cell. 

(Budhu, M. 2010). 

Upon completion of the Oedometer test, the apparatus is disassembled, and the water  

content of the sample is determined. It is advisable to reduce the pressure on the soil sample 

to a minimal level before disassembly. This precaution is necessary because complete  

removal of the final consolidation load can result in a negative excess pore water pressure 

equivalent to the final consolidation pressure. Such negative pressure may induce water 

influx into the soil, elevating its water content. Consequently, the calculated final void ratio 

derived from the ultimate water content would be inaccurate (Das, B. M., & Sobhan, K. 

2012; Been, K., & Sills, G. C. 1981). 

The data obtained from the one-dimensional consolidation test are as follows: 

 
1. Initial height of the soil, Ho, which is fixed by the height of the ring. 

 
2. Current height of the soil at various time intervals under each load (time–settlement). 

 
3. Water content at the beginning and at the end of the test, and the dry weight of the soil 

at the end of the test. 

Now have to use these data to determine Cc and Cs, because they are the 

coefficients with which this dissertation is concerned. Once the void ratio-pressure curve 
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(e-log(p)) plotted, the slope of the loading part is the Cc coefficient, while the slope of the 

unloading part is Cs. 

 

 

Figure 2: Cc and Cs indices. 

 

I.2.2. Compression and recompression indices discussion and prediction 

in literature 

The compression and recompression indexes are crucial parameters in geotechnical 

engineering, particularly in the analysis of soil behavior under various loads and 

conditions. The literature highlights the importance of accurately predicting these indexes 

to ensure the stability and safety of structures built on or in soil. 

I.2.2.1. Compression Index (Cc) 

 
- The compression index (Cc) is a measure of the compressibility of a soil under a given 

load. It is a critical parameter in predicting the settlement of structures on or in soil  

(Alzabeebee, S., & Al-Taie, A. 2022; Kim, Y. et al 2022; Erzin, Y. 2020; Kurnaz, T. F. et 

al 2016; Gunduz, Z., & Arman, H. 2007). 
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- The Cc is influenced by various soil properties, including the initial void ratio, liquid 

limit, natural water content, and plasticity index (Erzin, Y. 2020; Gunduz, Z., & Arman, 

H. 2007). 

- Researchers have employed various methods to predict the Cc, including regression 

analysis and robust optimization models. These methods have shown promise in improving 

the accuracy of predictions compared to traditional empirical formulas (Erzin, Y. 2020; 

Gunduz, Z., & Arman, H. 2007). 

I.2.2.2. Recompression Index (Cr) 

 
- The recompression index (Cr) is another important parameter that describes the soil's 

behavior during the recompression phase after a previous load has been removed. It is 

essential for understanding the long-term settlement behavior of structures (Alzabeebee, 

S., & Al-Taie, A. 2022; Kim, Y. et al 2022; Erzin, Y. 2020; Kurnaz, T. F. et al 2016; 

Gunduz, Z., & Arman, H. 2007). 

- The Cr is also influenced by soil properties, but its relationship with these properties is 

less well understood compared to  the Cc. This is  reflected in the lower correlation 

coefficients (R2) reported for Cr predictions using regressions (Kurnaz, T. F. et al 2016). 

- The literature suggests that the Cr is more challenging to predict accurately due to the 

complex interactions between soil properties and the recompression process (Kurnaz, T. F. 

et al 2016). 

I.2.2.3. Prediction and Modeling 

 
- Techniques like design of experiments, regression analysis, and principal component 

analysis could potentially be employed to explore the complex relationships between the 

input parameters and the compression/recompression indexes, and to identify the most  

influential factors (Long, T. 2023; Erzin, Y. 2020). 

- The development of accurate models for predicting the compression and recompression  

indexes is crucial for the design and analysis of structures in soil. Researchers have  

employed various approaches, including neural network and robust optimization models, 

to improve the accuracy of predictions (Erzin, Y. 2020; Kurnaz, T. F. et al 2016). 
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- These models have been shown to be effective in reducing the uncertainty associated with 

the measurements of input parameters and in improving the overall accuracy of predictions 

(Erzin, Y. 2020). 

- The literature highlights the need for further research in this area to better understand the 

relationships between soil properties and the compression and recompression indexes, as 

well as to develop more robust and accurate prediction models (Alzabeebee, S., & Al-Taie, 

A. 2022; Kim, Y. et al 2022; Erzin, Y. 2020; Kurnaz, T. F. et al 2016; Gunduz, Z., & 

Arman, H. 2007). 

Table 1: Empirical correlations for the compression ratio (Ameratunga, J., et al 2016). 
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Table 2: Empirical correlations for the recompression ratio (Ameratunga, J., et al 2016). 
 

 
I.3. Design of experiments 

 
Predicting soil properties accurately is inherently challenging due to the complex 

and heterogeneous nature of soil. Traditional empirical methods often lack the precision  

and efficiency required for reliable predictions, leading to uncertainties in design and 

construction processes (Kurmi, P. et al 2023). In recent years, there has been a growing 

interest in applying advanced statistical methodologies, particularly Design of Experiments 

(DOE), to enhance the accuracy and efficiency of soil property prediction in geotechnical  

engineering (Kumar, V. et al 2023). 

Design of Experiments offers a systematic approach for planning, conducting, and 

analyzing experiments to efficiently explore the effects of various factors on the response 

of interest. By strategically selecting experimental factors and levels, DOE enables 

researchers to optimize experimental designs, reduce the number of required experiments, 

and identify significant factors affecting the response variable (Kumar, V. et al 2023). 

When combined with sophisticated statistical software such as Design Expert, DOE 



Chapter I Overview on Soil Compressibility and Parameter’s Predictive Tools 

11 

 

 

 

becomes a powerful tool for predictive modeling and optimization in geotechnical 

engineering. 

I.3.1. Brief history of design experiments 

 
The history of Design of Experiments (DOE) can be traced back to the early 20th century, 

with significant contributions from pioneering statisticians and scientists who laid the 

foundation for modern experimental design methodologies. While the concept of 

experimentation dates back much further, the systematic approach to planning and 

analyzing experiments emerged during the early development of statistical theory. Sir  

Ronald A. Fisher (1890–1962): Fisher, a British statistician and geneticist, is often credited 

as the father of modern experimental design. In the 1920s and 1930s, Fisher developed the 

principles of randomized experiments and analysis of variance (ANOVA). His seminal 

works, including "The Design of Experiments" (1935), introduced revolutionary concepts 

such as randomization, replication, and factorial designs. Fisher's contributions laid the  

groundwork for DOE and established its fundamental principles. (Durakovic, B. 2017). 

Even though DOE tools are not new, their use in scientific domains such as product/process 

quality improvement, product optimization, and services has grown significantly during  

the last 20 years. Trainings and new, user-friendly statistical software packages, both 

commercial and non-commercial, made a major contribution to the expansion of DOE in 

this period's study. Figure 3 depicts the use of DOE worldwide and in a range of scientific 

fields between 1920 and 2018 (Durakovic, B. 2017). 
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Figure 3: DOE application in scientific research (Durakovic, B. 2017). 

Experimental design methods have been widely applied in a variety of disciplines. 

Experimentation may be viewed as part of the scientific process and one method for 

learning how systems or processes work. In general, learning is accomplished by a series 

of actions that include making conjectures about a process, conducting experiments to  

generate data from the process, and then using the information from the experiment to build 

new conjectures, which lead to new experiments, and so on. 

I.3.2. Main uses of DOE 

 
An experiment's design is a versatile instrument that can be applied in a variety of contexts 

to determine key input variables and the relationships between them and the outputs 

(response variable). Regression analysis is essentially what DOE is, and it may be applied 

in a variety of contexts (Telford, J. K. 2007) (Durakovic, B. 2017). The following design 

types are frequently utilized: 

 Comparison: This is one factor in multiple comparisons using t-test, Z-test or F-test 

to choose the best option. 
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 Variable Screening: These are typically two-level factorial designs designed to 

select from a number of important factors (variables) that influence the performance 

of a response (output). 

 System Optimization: Transfer functions can be used to optimize by moving the 

experiment to the optimal setting of the variables. In this way, the performance of 

the response can be improved. 

 Robust Design: Focus on reducing variation in a system or process (response) 

without eliminating its causes. The rugged design was developed by Dr. Genichi  

Taguchi, who made the system robust to noise (environmental factors and 

uncontrollable factors are considered noise). 

I.3.3. DOE techniques 

 
In this section some DOE techniques are presented and discussed. The list of the techniques 

considered is far from being complete since the aim of the section is just to introduce the  

reader into the topic showing the main techniques which are used in practice. 

I.3.3.1. Randomized complete block design 

 
Randomized Complete Block Design (RCBD) is a DOE technique based on blocking. In  

an experiment there are always several factors which can affect the outcome. Some of them 

cannot be controlled, thus they should be randomized while performing the experiment so 

that on average, their influence will hopefully be negligible. Some other are controllable  

(Emerson, R. W., & Cavazzuti, M. 2017). RCBD is useful when we are interested in 

focusing on one particular factor whose influence on the response variable is supposed to  

be more relevant. We refer to this parameter with the term primary factor, design factor,  

control factor, or treatment factor. The other factors are called nuisance factors or 

disturbance factors. Since we are interested in focusing our attention on the primary factor, 

it is of interest to use the blocking technique on the other factors, that is, keeping constant  

the values of the nuisance factors, a batch of experiments is performed where the primary 

factor assumes all its possible values. To complete the randomized block design such a  

batch of experiments is performed for every possible combination of the nuisance factors.  

Let us assume that in an experiment there are k controllable factors X1,... Xk and one of 
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them, Xk , is of primary importance. Let the number of levels of each factor be L1, L2,...,  

Lk . If n is the number of replications for each experiment, the overall number of 

experiments needed to complete a RCBD (sample size) is N = L1 · L2 · ... · Lk · n. In the 

following we will always consider n = 1. Let us assume: k = 2, L1 = 3, L2 = 4, X1 nuisance 

factor, X2 primary factor, thus N = 12. Let the three levels of X1 be A, B, and C, and the 

four levels of X2 be α, β, γ, and δ. The set of experiments for completing the RCBD DOE  

is shown in table 3. Other graphical examples are shown in figure 4. 

Table 3: Example of RCBD experimental design for k = 2, L1 = 3, L2 = 4, N = 12, 

nuisance factor X1, primary factor X2 (Emerson, R. W., & Cavazzuti, M. 2017). 

 

 

Figure 4: Examples of RCBD experimental design (Emerson, R. W., & Cavazzuti, M. 

2017). 
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I.3.3.2. Factorial design 

 
Numerous experiments entail exploring the impacts of multiple factors. Typically, factorial 

designs prove to be the most effective for such investigations. With a factorial design, every 

complete trial or replication (repetition of the entire experiment) of the experiment 

scrutinizes all conceivable combinations of the factor levels. For instance, if there are 'a' 

levels of factor A and 'b' levels of factor B, each replication encompasses all 'ab' treatment 

combinations. When factors are organized within a factorial design, they are commonly 

referred to as being crossed (Montgomery, D. C. 2017; Durakovic, B. 2017). 

The influence of a factor is defined as the change in response caused by changes in the 

level of the factor. This is often called the ‘main effect’ because it refers to the main factor 

of interest in the experiment. For example, consider the simple experiment in Figure 5.  

This is a two-factor experiment, with both design factors at two levels. We call these values 

"low" and "high" and label them "-" and "+" respectively. The main effect of factor A in 

this two-level design can be thought of as the difference between the mean response at low 

levels of A and the mean response at high levels of A (Montgomery, D. C. 2017), 

numerically, this is 

 
𝐴 = 

40 + 52 
 

 

2 

20 + 30 
− 

2 

 
= 21 

That is, increasing factor A from the low level to the high level causes an average response 

increase of 21 units. Similarly, the main effect of B is 

 
𝐵 = 

30 + 52 
 

 

2 

20 + 40 
− 

2 

 
= 11 

 

 
 

Figure 5: A two-factor factorial experiment, with the response (y) shown at the corners 

(Montgomery, D. C. 2017). 
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In certain experiments, we might observe that the variation in response between the levels 

of one factor isn't consistent across all levels of the other factors. In such instances, there 

exists an interaction between the factors. For instance, contemplate the two-factor factorial 

experiment depicted in Figure 6. At the low level of factor B (or B-), the effect of A is 

𝐴 = 50 − 20 = 30 
 

And at the high level of factor B (or B+), the A effect is 

 

𝐴 = 12 − 40 = −28 

 

 
Figure 6: A two-factor factorial experiment with interaction (Montgomery, D. C. 2017). 

 
Because the effect of A depends on the level chosen for factor B, we see that there is 

interaction between A and B. The magnitude of the interaction effect is the average 

difference in these two A effects, or AB = (-28 - 30)/2 = -29. Clearly, the interaction is 

large in this experiment. These ideas may be illustrated graphically. Figure 7-a plots the 

response data in Figure 5 against factor A for both levels of factor B. Note that the B- and 

B+ lines are approximately parallel, indicating a lack of interaction between factors A and 

B. Similarly, Figure 7-b plots the response data in Figure 6. Here we see that the B- and 

B+ lines are not parallel. This indicates an interaction between factors A and B 

(Montgomery, D. C. 2017; Durakovic, B. 2017). 
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Figure 7: a- A factorial experiment without interaction, b- A factorial experiment with 

interaction (Montgomery, D. C. 2017). 

Factorial experiments involving multiple factors (A, B, ..., K) and two levels ("low" and  

"high") can present challenges due to their complexity. As the number of factors increases, 

so does the number of possible combinations. For example, a 2-level design with 9 factors 

results in 512 combinations, imposing significant demands on experimentation and data  

analysis. Conducting experiments with multiple factors requires substantial resources, 

materials, and time, rendering them both time-consuming and expensive. Moreover, 

maintaining consistent experimental conditions across a large number of experiments poses 

an additional challenge in multiple factorial designs (Durakovic, B. 2017; Emerson, R. W., 

& Cavazzuti, M. 2017). 

To address the challenges associated with multiple factor factorial designs, various 

approaches can be considered, depending on the specific circumstances. These approaches 

may include Full Factorial Design 2𝑘 (which the used method in this dissertation and will 

be explained more lately) or Fractional Factorial Design 2𝑘−𝑝. Here, the number '2' denotes 

the number of levels, 'k' represents the number of factors, and 'p' signifies the fraction size 

of the full factorial employed (Durakovic, B. 2017; Emerson, R. W., & Cavazzuti, M. 

2017). 

I.3.3.3. Response surface methodology 

 
Response Surface Methodology (RSM) encompasses a set of mathematical and statistical 

tools tailored for modeling and analyzing problems where multiple variables influence a  

response of interest, with the aim of optimizing this response. For instance, consider a 
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problem where a geotechnical engineer aims to determine the optimal levels of (x1) and 

(x2) to minimize the yield (y) of a certain process (like settlement) (Montgomery, D. C. 

2017; Myers, R. H. et al 2016). In this case, the process yield is a function of the levels of 

x1 and x2, say 

𝑦 = 𝑓(𝑥1, 𝑥2) + 𝑐 
 

Where ‘c’ represents the noise or error observed in the response y. If we denote the  

expected response by E(y) = f(x1, x2) = ƞ, then the surface represented by 

ƞ = 𝑓(𝑥1, 𝑥2) 
 

Is called a response surface. 

 

 

Figure 8: A three-dimensional response surface showing the expected yield (ƞ) as a  

function of x1 and x2 (Montgomery, D. C. 2017). 

We usually represent the response surface graphically, such as in Figure 8, where ƞ is  

plotted versus the levels of x1 and x2. To help visualize the shape of a response surface, 

we often plot the contours of the response surface as shown in Figure 9. In the contour plot, 

lines of constant response are drawn in the x1, x2 plane. Each contour corresponds to a  

particular height of the response surface. 
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Figure 9: A contour plot of a response surface (Montgomery, D. C. 2017). 

 
In most RSM  problems, the form  of the relationship between the response and the 

independent variables is unknown. Thus, the first step in RSM is to find a suitable 

approximation for the true functional relationship between y and the set of independent  

variables. Usually, a low-order polynomial in some region of the independent variables is 

employed. If the response is well modeled by a linear function of the independent variables, 

then the approximating function is the ‘first-order model’ (Montgomery, D. C. 2017). 

𝑦 = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝑐 (1) 

 
If there is curvature in the system, then a polynomial of higher degree must be used, such 

as the ‘second-order model’ 

𝑦 = 𝛽0 + ∑𝑘 𝛽𝑖𝑥𝑖 + ∑𝑘 𝛽𝑖𝑖𝑥2𝑖 + 𝑐 (2) 
 

Almost all RSM problems use one or both of these models. Of course, it is unlikely that a  

polynomial model will be a reasonable approximation of the true functional relationship 

over the entire space of the independent variables, but for a relatively small region they 

usually work quite well (Montgomery, D. C. 2017; Myers, R. H. et al 2016). 

I.3.3.4. Taguchi (Robust Design) 

 
Robust parameter design (RPD) is an approach to product realization activities that focuses 

on choosing the levels of controllable factors (or parameters) in a process or a product to 
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achieve two objectives: (1) to ensure that the mean of the output response is at a desired 

level or target and (2) to ensure that the variability around this target value is as small as  

possible. When an RPD study is conducted on a process, it is usually called a ‘process  

robustness study’. The general RPD problem was developed by a Japanese engineer, 

Genichi Taguchi, and introduced in the United States in the 1980s (Emerson, R. W., & 

Cavazzuti, M. 2017). Taguchi proposed an approach to solving the RPD problem based on 

designed experiments and some novel methods for analysis of the resulting data. His 

philosophy and technical methods generated widespread interest among engineers and 

statisticians, and during the 1980s his methodology was used at many large corporations.  

These techniques generated controversy and debate in the statistical and engineering 

communities. The controversy was not about the basic RPD problem, which is an 

extremely important one, but rather about the experimental procedures and the data 

analysis methods that Taguchi advocated. Extensive analysis revealed that Taguchi’s 

technical methods were usually inefficient and, in many cases, ineffective. Consequently,  

a period of extensive research and development on new approaches to the RPD problem 

followed. From these efforts, response surface methodology (RSM) emerged as an 

approach to the RPD problem that not only allows us to employ Taguchi’s robust design  

concept but also provides a sounder and more efficient approach to design and analysis  

(Montgomery, D. C. 2017; Le, T. H., & Shin, S. 2018). 

An important aspect of Taguchi’s approach was his notion that certain types of variables 

cause variability in the important system response variables (Montgomery, D. C. 2017; 

Villa, A. et al 2012). 

Let us consider a problem with five parameters (k = 5), three of which are controllable (Kin 

= 3) and two uncontrollable (Kout = 2), and let us consider two-levels. Full factorial 

experimental designs for the inner and the outer arrays. Assume full factorial designs for 

simplicity, even though they are never taken into consideration by the Taguchi method. 

Therefore, we must perform a full 22 factorial design (outer array) for each sample of the 

23 inner array. We can graphically represent the situation as in Figure 10. 
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Figure 10: Example of Taguchi DOE for Kin = 3, Kout = 2, 23 full factorial inner array, 

22 full factorial outer array (Emerson, R. W., & Cavazzuti, M. 2017). 

Table 4: Taguchi designs synoptic table (Emerson, R. W., & Cavazzuti, M. 2017). 
 

The Taguchi orthogonal arrays, are individuated in the literature with the letter L, or LP 

for the four-level ones, followed by their sample size. Suggestions on which array to use 

depending on the number of parameters and on the numbers of levels, as summarized in  

Table 4. 
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I.4. Statistics uses 

 
Geotechnical engineering involves the analysis and design of structures built upon 

or within the ground. Soil and rock mechanics play a pivotal role in the stability and 

performance of such structures. Compression and swelling indexes are fundamental 

properties that govern the behavior of soils under load and environmental changes. 

Predicting these indexes accurately is essential for ensuring the safety and longevity of  

geotechnical projects. This part shows some statistical methods used for predicting soil  

properties, and contributing to advancements in geotechnical engineering practices. 

I.4.1. Principal component analysis 

 
Principal Component Analysis (PCA) stands as one of the cornerstone techniques in the 

field of multivariate statistics and data analysis. It is aiming to simplify the complexity of 

high-dimensional datasets while preserving essential information. Over the past century,  

PCA has emerged as a versatile tool with applications spanning across diverse disciplines, 

including but not limited to engineering. The proliferation of data in today's digital age has 

accentuated the need for effective methods to analyze and interpret complex datasets.  

Traditional statistical approaches often struggle to cope with the sheer volume and 

dimensionality of modern datasets, leading to computational inefficiencies and 

interpretation challenges. In this context, PCA offers a compelling solution by transforming 

high-dimensional data into a lower-dimensional space, where underlying patterns and 

structures can be more easily discerned. (Elhaik, E. 2022). 

I.4.1.1. Historical overview and basic concepts: The roots of PCA can be traced 

back to the early 20th century, with the pioneering work of Karl Pearson and Harold 

Hotelling in the field of multivariate statistics. Pearson introduced the concept of principal 

components in 1901 as a method for summarizing the variability in datasets with multiple 

variables. Hotelling further formalized PCA in the 1930s, laying the groundwork for its 

widespread adoption in statistical analysis and data science. 

At its core, PCA seeks to identify the principal components (PCs) of a dataset, which are  

orthogonal linear combinations of the original variables (Jackson, J. E. 2005). The first 

principal component captures the maximum variance in the data, with subsequent 
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components capturing decreasing amounts of variance. Each principal component is a  

linear combination of the original variables, weighted by coefficients known as loadings  

(Jackson, J. E. 2005). 

I.4.1.2. Mathematical formulation: Mathematically, PCA can be formulated as an 

eigenvalue problem, where the objective is to find the eigenvectors and eigenvalues of the 

covariance matrix of the dataset. Let X be an n × p matrix representing the dataset, where 

n is the number of observations and p is the number of variables. The covariance matrix Σ  

is computed as Σ = (1/n) X^T X. The eigenvectors and eigenvalues of Σ are then calculated, 

and the principal components are derived from the eigenvectors. (Beattie, J. R., & 

Esmonde-White, F. W. 2021; Abdi, H., & Williams, L. 2010). Where eigenvectors are the 

directions in which the data exhibit the most variability. Each eigenvector corresponds to 

a principal component, while eigenvalues represent the amount of variance captured by 

each principal component. Larger eigenvalues correspond to principal components with 

greater variability. 

Geometrically, PCA can be visualized as a rotation of the original coordinate system to 

align with the directions of maximum variance in the data. The first principal component 

corresponds to the direction of maximum spread, while subsequent components capture 

orthogonal directions of decreasing variability. PCA effectively identifies a new set of axes 

(principal components) such that the data are maximally spread out along these axes, 

facilitating dimensionality reduction and visualization (Ivosev, G., 2008). 

I.4.1.3. Applications of PCA in geotechnical engineering: Principal 

Component Analysis (PCA) has found extensive applications across various domains, 

leveraging its capability to reduce data dimensionality, extract meaningful features, and 

uncover underlying patterns in complex datasets. It has diverse range of applications where 

PCA has demonstrated efficacy, spanning fields such as data compression, feature 

extraction, pattern recognition, financial analysis and a lot. Principal Component Analysis  

(PCA) offers several valuable applications in geotechnical engineering, aiding in the 

characterization of soil behavior, site investigation, risk assessment, and quality control, 

below are some key applications of PCA in geotechnical engineering: 
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a- Soil Characterization: PCA can be employed to analyze large datasets 

comprising soil properties such as grain size distribution, plasticity index, shear strength, 

permeability, and compressibility. By reducing the dimensionality of soil data, PCA 

facilitates the identification of dominant factors influencing soil behavior and 

classification. PCA aids in the interpretation of complex relationships between soil 

properties, enabling engineers to categorize soils into meaningful groups and predict their  

engineering behavior (Fox, G. A., & Metla, R. 2005). 

b- Risk Assessment: PCA assists in evaluating uncertainties and variability in soil  

parameters, which are critical for assessing the stability, settlement, and performance of 

engineering structures. By identifying key factors contributing to soil variability, PCA aids 

in quantifying risk levels associated with geotechnical hazards such as landslides, 

liquefaction, and slope instability. PCA-based risk assessment techniques inform decision- 

making processes by highlighting potential failure modes, design vulnerabilities, and 

mitigation strategies (Yu, J., et al 2021). 

c- Interpretation and Visualization: PCA enables the visualization of complex 

geotechnical datasets in reduced-dimensional spaces, facilitating data interpretation and 

communication. Scatter plots, biplots, and three-dimensional visualizations generated from 

PCA results provide insights into soil variability, correlations between parameters, and 

spatial patterns. Interpretation of PCA results helps engineers and stakeholders understand 

soil characteristics, site conditions, and geological processes, guiding decision-making and 

risk management efforts (Niedoba, T. 2014). 

I.4.2. Regressions 

 
Regression analysis serves as a foundational statistical technique that enables 

researchers, analysts, and practitioners to model and understand relationships between 

variables. With its roots tracing back to the early 19th century, regression analysis has 

evolved into a versatile tool widely used across various disciplines, including economics,  

finance, marketing, engineering, environmental science, healthcare, and social sciences.  

By quantifying the relationship between one or more predictor variables and a response 
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variable, regression analysis facilitates hypothesis testing, prediction, and decision-making 

based on empirical evidence. 

I.4.2.1. Historical overview and basic concepts: The origins of regression 

analysis can be traced back to the pioneering work of Sir Francis Galton in the late 19th 

century. Galton introduced the concept of regression to the mean while studying the 

heritability of traits in plants and animals. However, the formalization of regression 

analysis as a statistical technique is often attributed to Sir Francis Ysidro Edgeworth and 

Karl Pearson in the early 20th century. Since then, regression analysis has undergone  

significant development, with contributions from eminent statisticians such as Ronald 

Fisher, Jerzy Neyman, and Egon Pearson. 

Key concepts and terminology in regression analysis include: 

 

 Dependent Variable: The variable being predicted or explained by the independent 

variables. It is denoted as Y or the response variable. 

 Independent Variables: The variables used to predict or explain the variation in the 

dependent variable. They are denoted as X₁, X₂, ..., Xₚ or predictor variables. 

 Regression Equation: The mathematical relationship between the dependent and 

independent variables, typically represented as Y = β₀ + β₁X₁ + β₂X₂ + ... + βₚXₚ +  

ε, where β₀ is the intercept, β₁, β₂, ..., βₚ are the coefficients, and ε is the error term. 

 Coefficients: The regression coefficients (β₁, β₂, ..., βₚ) represent the change in the 

dependent variable for a one-unit change in the corresponding independent 

variable, holding other variables constant. 

 Residuals: The differences between the observed values of the dependent variable 

and the values predicted by the regression model. Residual analysis is essential for 

assessing model fit and identifying outliers or influential data points. 

I.4.2.2. Types of Regression Models: Regression analysis encompasses various 

types of models, including: 

 Simple Linear Regression: Involves a single independent variable and a linear 

relationship between the independent and dependent variables. 
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Figure 11: Simple linear regression model. (Zou, K. H. et al 2003). 

 

 Multiple Linear Regression: Incorporates multiple independent variables to model 

the relationship with the dependent variable. 

 

 
Figure 12: Multiple linear regression model. 
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 Polynomial Regression: Extends linear regression to capture nonlinear 

relationships by including polynomial terms of the independent variables. 

(Ostertagová, E. 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 13: Polynomial regression model. 

 

 Logistic Regression: Used for binary classification tasks, where the dependent 

variable is categorical (e.g., yes/no, success/failure, 0/1). (LaValley, M. P. 2008). 

 

Figure 14: Logistic regression model. 
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I.4.2.3. Applications of regression analysis in geotechnical engineering: 

Regression analysis finds several applications in geotechnical engineering, where it serves 

as a valuable tool for analyzing and modeling relationships between geotechnical 

parameters, predicting soil behavior, and guiding engineering decisions. Here are some key 

applications: 

Soil Property Prediction: Regression analysis is utilized to predict important soil  

properties based on easily measurable parameters such as grain size distribution, Atterberg 

limits, and soil composition (Berrah, Y. et al 2022). By developing regression models, 

engineers can estimate properties like shear strength, permeability, and compressibility, 

(As will be discussed in this dissertation), which are crucial for designing foundations,  

slopes, and retaining structures. 

Site Characterization: Geotechnical site investigation involves collecting data from 

various sources such as borehole logs, laboratory tests, and field observations. Regression 

analysis helps in integrating diverse datasets to characterize site conditions and subsurface 

properties. By modeling relationships between soil parameters and site characteristics,  

engineers can create predictive models to assess soil variability and identify potential  

geotechnical hazards (Fox, G. A., & Metla, R. 2005). 

Slope Stability Analysis: Regression analysis is employed to assess factors 

contributing to slope instability and predict slope behavior under different conditions. By 

correlating slope geometry, soil properties, groundwater levels, and external forces, 

engineers can develop regression models to evaluate slope stability, identify potential  

failure mechanisms, and design appropriate stabilization measures (Khan, M. I., & Wang, 

S. 2021; Benz, T., & Nordal, S. 2010). 

Ground Improvement Techniques: Regression analysis assists in evaluating the 

effectiveness of ground improvement techniques such as soil stabilization, compaction, and 

reinforcement. Engineers use regression models to quantify the relationship between 

treatment parameters (e.g., material properties, compaction energy) and improvements in 

soil strength and stability, aiding in the selection and optimization of ground improvement 

strategies. (Akan, R., Keskin, S. N., & Uzundurukan, S. 2015). 
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I.4.3. Finite element analysis 

 
In recent decades, computational methods have revolutionized the field of geotechnical 

engineering, offering sophisticated tools for analyzing and predicting soil behavior. Among 

these methods, Finite Element Analysis (FEA) has emerged as a powerful numerical  

technique for simulating the mechanical behavior of soils and structures interacting with  

soil media (Benz, T., & Nordal, S. 2010). FEA allows engineers to model complex soil- 

structure systems, simulate various loading scenarios, and predict the response of soil under 

different conditions with remarkable accuracy (Benz, T., & Nordal, S. 2010). 

Computational methods have revolutionized geotechnical engineering by providing 

powerful tools for simulating and analyzing complex soil-structure interactions. Finite 

Element Analysis (FEA), in particular, has gained prominence for its ability to model and 

predict soil behavior with high fidelity. By discretizing the soil domain into finite elements 

and applying appropriate constitutive models, FEA enables engineers to simulate a wide 

range of geotechnical problems, including settlement analysis (Which is the subject of this 

dissertation), slope stability assessment, and foundation design. Additionally, 

computational techniques such as finite difference methods, boundary element methods, 

and discrete element methods offer alternative approaches for studying soil mechanics and 

geotechnical phenomena. (Potts, D. M. et al 2001). 

I.4.3.1. Methodologies for Predicting Soil Properties using Finite Element 

Analysis (FEA) 

Predicting soil properties through Finite Element Analysis (FEA) involves a systematic 

approach that encompasses various methodologies tailored to the specific characteristics 

of the soil and the engineering problem at hand. This section outlines the key 

methodologies employed in predicting soil properties using FEA, including modeling 

approaches, boundary conditions and loading scenarios, and calibration and validation 

techniques (Tang, K., 2020). 

a- Modeling Approaches: FEA offers flexibility in modeling soil-structure systems, 

allowing engineers to represent complex geometries, material properties, and loading 

conditions. The choice of modeling approach depends on factors such as the scale of the 
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analysis, the level of detail required, and the computational resources available. Common 

modeling approaches in geotechnical engineering include: 

 Continuum Models: Ideal for macroscopic analysis of soil behavior, continuum 

models represent soil as a continuous medium characterized by material properties 

such as density, stiffness, and strength. Continuum models are suitable for 

simulating large-scale geotechnical problems such as slope stability analysis and 

embankment design. 

 Discrete Models: Discrete models represent soil as a collection of discrete particles 

or elements connected by interaction forces. Discrete element methods (DEM) and 

lattice-based models fall under this category and are often used to study granular 

materials, soil-structure interaction at the microscale, and particle-scale phenomena 

such as particle crushing and rearrangement. 

 Coupled Models: Coupled models integrate multiple physical phenomena such as 

soil deformation, groundwater flow, and heat transfer into a unified framework. 

These models enable the analysis of coupled processes such as consolidation, 

seepage, and thermal-mechanical interaction in geotechnical systems. 

b- Boundary Conditions and Loading Scenarios: The selection of appropriate boundary  

conditions and loading scenarios is crucial for accurately predicting soil properties using 

FEA. Boundary conditions define the constraints imposed on the soil-structure system, 

while loading scenarios specify the applied loads and their distribution. Common boundary 

conditions and loading scenarios in geotechnical FEA include: 

 Boundary Conditions: Fixed displacements, prescribed loads, symmetry 

conditions, and contact interfaces are examples of boundary conditions used to 

model interactions between soil and external structures or boundaries. 

 Loading Scenarios: Loading scenarios vary depending on the engineering problem 

and may include static loads (e.g., gravity, applied forces), dynamic loads (e.g., 

seismic excitation), thermal loads, and environmental loads (e.g., changes in pore 

water pressure, temperature variations). 
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c- Calibration and Validation Techniques: Calibration and validation of FEA models are 

essential steps in ensuring the accuracy and reliability of predicted soil properties. 

Calibration involves adjusting model parameters to match observed behavior or laboratory 

test results, while validation involves comparing model predictions with field 

measurements or independent experimental data. Common calibration and validation 

techniques include: 

 Parameter Sensitivity Analysis: Sensitivity analysis involves systematically 

varying model parameters to assess their influence on model predictions. 

Sensitivity analysis helps identify critical parameters and refine their values 

through calibration. 

 Comparative Analysis: Comparative analysis involves comparing FEA predictions 

with analytical solutions, empirical correlations, or benchmark case studies to  

validate model accuracy and identify discrepancies. 

 Field Monitoring and Instrumentation: Field monitoring programs involve 

installing sensors and instrumentation at project sites to measure soil behavior and 

validate FEA predictions. Field monitoring data provide valuable feedback for 

refining FEA models and improving their predictive capabilities. 

I.5. Conclusion 

 
In this chapter, we embarked on a journey to explore the comprehensive integration 

of statistical methodologies, including Principal Component Analysis (PCA), regression 

analysis, Finite Element Analysis (FEA), and Design of Experiments (DOE) using software 

like Design Expert, to solve problems in geotechnical engineering. Investigation into the 

fundamentals of each method is explained, recognizing their pivotal role in predicting the 

stability and safety of geotechnical engineering structures. Traditional methods of 

prediction, albeit valuable, were revealed to be limited in their capacity to capture the 

nuanced interactions between various soil properties and external factors. Hence, the  

integration of advanced statistical techniques emerged as a promising avenue for enhancing 

predictive accuracy and reliability. 
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We navigated through the landscape of statistical methodologies, recognizing PCA 

as a powerful tool for dimensionality reduction and variable selection. By distilling 

complex datasets into their essential components, PCA provided a streamlined framework 

for identifying key predictors influencing the obtained response. Leveraging regression 

analysis, then established robust models capable of quantifying the relationships between 

input parameters and output indexes. The flexibility of regression techniques, spanning 

from linear to nonlinear models, accommodated the intricacies of soil behavior with  

precision. 

The incorporation of Finite Element Analysis (FEA) enriched our predictive 

capabilities by enabling the simulation of soil deformation and stress distribution under 

diverse loading scenarios. FEA served as the bridge between statistical models and real- 

world applications, offering insights into the mechanical responses of soils and informing 

engineering decisions with empirical evidence. Furthermore, the integration of Design of 

Experiments (DOE) using software like Design Expert facilitated systematic exploration  

of the design space, optimizing experimental designs and refining predictive models. 
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II.1. Introduction 

 
The geological study of the region reveals areas mainly composed of clays and 

marls. Key formations include the Lower Maastrichtian with gray marls and marl- 

limestones, the Paleogene with clay and gypsum, the Pliocene with red clays, and alluvial  

formations with clays, silty clays, sand, and silt. Core drillings confirm the presence of 

fine-grained soils, such as clayey and marl-clay formations, at shallow depths. These soils, 

despite small-scale variations, are homogeneous regionally and prone to volume changes 

due to water content fluctuations or external loading, leading to ground instability. 

II.2. Overview 

 
Knowledge of the geology and hydrogeology of an area is indispensable for 

geotechnical engineering as it forms the bedrock for informed decision-making in the 

design and construction of projects. Geotechnical engineers investigate into the geological 

characteristics of the area, examining the composition, properties, and structural 

arrangement of rocks and soils. This comprehension is pivotal in determining many 

parameters, as different geological conditions directly affect factors such as bearing 

capacities, shear strength, and compressibility (Arjwech, R., 2020), which is our subject 

here. Furthermore, understanding the geological context aids in assessing the stability of  

slopes, predicting and mitigating landslide risks, and designing support systems for tunnels 

and excavations (Legget, R. F. 1979). Hydrogeological considerations are essential, 

especially for projects involving underground structures, as engineers need to manage 

groundwater movements effectively through dewatering systems (Smith, D. K. 2021). 

Overall, geotechnical engineers leverage their knowledge of geology and hydrogeology to 

address challenges, select appropriate construction materials, and ensure the safety, 

durability, and environmental sustainability of infrastructure projects. 

Emphasizing to the reader that, when encountering a geotechnical challenge, the 

primary and immediate consideration is directed towards the geological aspects. 

Recognizing the fundamental role of geology, the prioritization involves gaining a 

thorough understanding of the site's geological characteristics, including soil and rock 

composition, structural properties, and other relevant factors (Legget, R. F. 1979). This 
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emphasis on geology serves as the cornerstone for informed decision-making throughout 

the entire engineering process, influencing choices in overall project feasibility. 

II.3. Geographic location 

 
Tebessa is located in northeastern Algeria, positioned within the Tell Atlas 

Mountain range. It boasts a diverse geographical setting, encompassing mountains, 

plateaus, and a southern extension that reaches into the Sahara Desert. This strategic 

location contributes to a varied landscape, characterized by both scenic mountainous 

terrain and the arid expanses of the Sahara. With some altitudes ranging from 800m to 

1600m. 

The wilaya of Tebessa is limited by: 

 

 From the north by the wilaya of SOUK AHRAS. 

 The south by the wilaya of OUED SOUF. 

 The EAST via the ALGERIAN-TUNISIAN borders. 

 From the WEST by the two wilayas OUMELBOUAGHI and KHENCHELA. 
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II.4. Geology 

Figure 15: Geographic location of the studied area. 

 

Tebessa region is part of the indigenous North-Aurèsian (Aurès Nememcha) 

structure of the Saharan Atlas (Durozoy 1956; Blès 1969; Vila 1974; Kowalski et al. 1997). 

The geological map (Figure 16) at a scale of 1/100000 shows the distribution and structure 

of the different lithologies in the region. It is primarily composed of: 

- A Triassic diapiric formation dislocating overlying formations at the level of Djebel 

Djebissa. 

- Carbonate formations represented by significant layers of marly limestone and marl of  

Cretaceous to Tertiary age. Some of these formations can be observed at the edges of  

Tebessa plain. 
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- An unconformity of important Mio-Plio-Quaternary alluvial deposits, overlying the 

previous formations and thus forms the filling of the depression, currently the plain. This 

formation is observable especially at the foothills of rugged reliefs. (Figure 17). 

 

Figure 16: Geological map shows the distribution of different soil and rock formations in 

Tebessa region (extracted from the geological map, ANRH 2009) 

 

 
Figure 17: Schematic section of the geological formations of Tebessa region. 
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II.4.1. Lithostratigraphy of Tebessa region 

 
The study of the stratigraphy of Tebessa region (Figure 18) is essentially based on the 

research work of several authors (Dubourdieu, 1949, 1956; Durozoy, 1956; Blés and 

Fleury 1970 and Vila J. M 1980 and 1994). 

 

Figure 18: Synthetic stratigraphic column of the Tebessa region (Dubourdieu, 1956). 

 

II.4.1.1. Secondary 

 

II.4.1.1.1. Trias: The oldest known lands in the «diapir zone» of the Tebessa region. 

Belong to the Triassic. The Triassic outcrops in this region have since always been the 

subject of a Triassic. Special attention, due to their importance for exploration of mining 
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and oilfields. In North Eastern Algeria and Tunisia, the many diapirs are in Trias. However, 

the presence of salt is often confirmed at depth. (Bouzenoune, 1993). 

In Tebessa region, the Triassic outcrops in the form of an extrusion and generally occupies 

the heart of anticlinal structures, with reefs at its apex in the Aptian and Albian (Masse and 

Chikhi-Aouimeur, 1982). These Triassic bodies have variable dimensions in the form of 

elliptical sections sometimes very stretched, on a strip-oriented NE-SW for approximately 

80 km. The most outcrops the most important are those of Djebissa, Ouenza, Boukhadra,  

Mesloula, Boujaber, Hameimat North, Hameimat South and many other massifs. 

II.4.1.1.2. Lower and middle Cretaceous 

 

II.4.1.1.2.1. Aptien: It is formed by Orbitolines limestone banks, often brecciated at 

dolomitic or calcic cement. In the southern part of the Djebel Belkfif, these limestones are 

encompassed in the diapiric Triassic, with a thickness exceeding 100 m. 

II.4.1.1.2.2. Albien: It outcrops near Djebel Bouroumane where it is formed by 

limestone banks thick browns over a thickness of 90 m. These bases form a large part of  

the slopes averages of the western slope of Bouroumane. This floor is not located in the 

study area, perhaps because of the accentuated diapirism during this period, however  

according to the last article by Villa J-M. (2001) there is near Djebel Belkfif. 

II.4.1.1.2.3. Vraconian: It is well developed in the Bouroumane area and there are 

probably deep in the Hammamet ditch. This floor is characterized by a set of limestones  

and grayish calcareous marls in platelets, containing imprints of Ammonites. 

II.4.1.1.3. Upper Cretaceous 

 

II.4.1.1.3.1. Cenomanian: It crops out in the northwest part of the Hammamet ditch 

to the east of Djebel Essen, in the form of blue-violet marls intercalated with lumachelles. 

II.4.1.1.3.2. Turonian: It is subdivided into two parts, the Lower Turonian and the 

Upper Turonian. The base of the Lower Turonian is represented by grayish marls and 

limestones, of which the thickness is around 60 m. The top of the Lower Turonian is 

represented by beige limestones which constitute the cliffs of Djebel Essen; Djebel Belkfif, 
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kef Daheche, Djebel Tella (Ozmor Range). The Upper Turonian presents itself in gray 

marls, alternating with green marls with a thickness of approximately 150 m. 

II.4.1.1.3.3. Emscherian: It is a thick and monotonous series of marls gray or green, 

containing in its upper part levels of lumachellic limestone over a thickness of 250 m. 

II.4.1.1.3.4. Campanian: The Campanian (lower and upper) is characterized by a 

series of gray marls having a thickness of 200 m. The Middle Campanian present in the  

relief a new cornice between those of the Turonian and the Maastrichtian, it passes 

noticeably to the marly formations which make the passage between upper Campanian and 

Maastrichtian lower. 

II.4.1.1.3.5. Maastrichtian: The lower Maastrichtian is represented by scree at the 

foot of the landforms. The Upper Maastrichtian is a powerful formation of massive white 

limestones well-bedded containing numerous Inocerames imprints. Their thickness is of 

the order from 80 to 100 m, but reaches 200 m southwest of Youkous (Hammamet). 

II.4.1.2. Tertiary 

 

II.4.1.2.1. Paleocene: Its base presents marls similar to that of the upper Maastrichtian, 

which is intercalated with phosphate layers towards the upper levels. 

II.4.1.2.2. Eocene: Limestones with flint and others with nummulites characterize the 

lower and middle Eocene, near perimeters of the Tebessa region. Their thickness is 200  

meters. 

II.4.1.2.3. Miocene: Lower and middle Miocene deposits rest transgressive on the 

ancient formations (Albian-Senonian and even the Triassic). 

At their base, the Miocene formations include conglomerates containing elements of varied 

limestone, gray flint, ferruginous pebbles and elements borrowed from the Triassic, 

testifying to diapiric activity (Bouzenoune, 1993) 

II.4.1.3. Quaternary: The Quaternary deposits are of continental origin and are 

distributed in the lower parts of the reliefs and cover large areas (current plains and valleys). 
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They are made up of limestone crusts, scree silt, pebbles and pudding. The thickness of the 

quaternary varies between 10 and 30 m (Dubourdieu, 1956). Lithological formations that  

can be distinguished are the current formations. 

The current and recent formations: 

 
- Current Scree: They exist at the foot of all the large limestone reliefs, but they are 

confused, most of the time, with ancient scree. 

- Travertines: They are deposited by the sources of Tebessa and Tenoukla. 

 
- Current alluvium: They only rarely exist because, as a very general rule, valleys intersect 

the formations on which they flow. On the edges of the plain, they affect the appearance of 

torrential deposits. 

- Recent silts: they are developed especially in the large valley of Wadi Kebir. In the Merdja 

of Tebessa, alluvial gypsum deposits are the subject of local exploitation. 

- Limestone crusts: These are superficial deposits due to the evaporation of water loaded 

with limestone developed especially on old stony alluvium. 

II.4.2. Tectonic and structural description: 

 
Structurally, the territory in question occupies two geotectonic regions which differ by the 

age of their folded base and by the particularity of their structure (Figure 19). 

These are Hypercinian platforms (North and center of the territory) and Antecambrian 

platforms (South) divided by the North Atlas fault (Saharan Flexure). 

The territory of the Tebessa region is covered by large structures synclinals and anticlinals 

in NE-SW direction. These structures are clearly visible in particularly on the Cheria  

plateau and at Dj Dyr. 

In the El Ma-Labiod area, deeper structures are covered by the Continental Miocene, they 

are therefore before the Miocene and the distension phase that caused the collapse of the 

Tebessa-Morsott plain which is much further north behind Bekkaria. 
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Considering the terrain on Morsott's map, it is difficult to determine the age wrinkling; the 

only tertiary deposits, subsequent to the Eocene emergence, sublittoral attributed to the 

Tortonian are located at the heart of the Dj Dyr syncline, where they overcome without  

apparent unconformity the Lower Lutetian limestones. However, east of El Kouif, between 

the limit of the sheet and the Tunisian border, the same sands from the lower Miocene lie 

unconformably on Eocene limestones or Paleocene marls. 

 

 
Figure 19: Tectonic sketch of the Tebessa region (Kowalski et al. 1997). 

 
On the other hand, according to Dubourdieu. G (1949-1951; 1956 and 1959) further 

north (Boukhadra and Dj Ouenza sheets, as well as Dj Mesloula), the Miocene is discordant 

on all the terms of the Cretaceous series (Tebessa sheet) we also note, the discordant  

Miocene on Cretaceous terms. The folding of the region is therefore post-Lutetian. Lower 

and earlier than the Miocene and is undoubtedly responsible for the emergence of the 

region in the Middle Eocene (Dubourdieu, 1959). 
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A large NE-SW direction accident seems to cut and detach the plain of Tebessa, 

this is a reverse fault. The SE compartment overlaps the NW compartment, this is clearly 

visible at Dj Chemela between Morsott -Tebessa. 

The SW continuation of this accident seems to drown in depth under the anticline 

by Cheria. On the edge of the plateau, it mainly affects the Turonian and does not appear 

pass upwards to the Maastrichtian limestone. This stacking of structures towards the depth 

is organized with a reduction in the radius of curvature and beyond a certain depth by the 

formation of a fault especially when the levels become competent at the level of the 

Turonian limestones. Towards the top, this accident is absorbed in the marls of Coniacian, 

Santonian and Lower Campanian. This is how the Maastrichtian of Cheria is not affected. 

The axis of the large structures has a dip towards the SW, the highest point of the 

region is located to the SW of the Dj Dyr syncline with 1472 m. 

The summits of the limestone reliefs at altitudes of 1000 to 1500m represent the 

witnesses of an ancient erosion surface, almost flat, but slightly left, culminating at the 

southern tip of Dj Dyr (from this point it slopes steadily towards the north and 

perpendicular to this direction, towards the N-W and the S-W). 

This erosion surface, practically not deformed, is posterior to the folding and in 

particular to the continental post-lower Miocene tangential compressions: The sandy or 

conglomeratic formations of this level constitute, in fact, some summits of the same 

altitudes as those of the older surrounding formations which determine this surface. It also 

predates the formation of the Morsott ditch. Which clearly intersects with it. 

II.5. Hydrogeology 

 
Hydrogeology constitutes a very important tool for the knowledge of the elements 

allowing the definition of the characteristics of an aquifer; On the basis of maps and 

geological sections combined with the stratigraphic columns of the drillings carried out  

across the region, their depths, the altitude, and the measurement of piezometric levels,  

hydrogeological sections and piezometric maps were established in order to understand the 

mechanism of circulation of groundwater in the different aquifer systems and determine 
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the direction of water flow and thus define the existing relationships between the different 

systems. 

II.5.1. General description 

 
According to the work of (Djabri, 1987 and Rouabhia, 2004 and 2009); the aquifer system 

of the Tebessa plain is essentially formed by an alluvial mantle of Quaternary age; 

composed of limestone pebbles with a thickness varying between 10 and 400 m. The 

limestones of Turonians, Maestrichtians and Campanians constituting the reliefs on the 

North-East and South of the plain, also form important aquifers. (Hemaili, 2020). 

 

 
Figure 20: Hydrogeological section across Tebessa plain. (Hemaili, 2020). 

 

II.5.2. Boundary conditions maps 

 
Figure 21 represents a summary of previous work (Djabri, 1987; Ghuerieb, 2011), which  

represents the boundary conditions characterizing the aquifer system of part from the 

studied area. The direction of flow of groundwater follows that of Oued El-Kebir which 

plays the role of drainage axis of the surface aquifer on a South-East North-West axis, the 

aquifer is characterized by a limit at incoming flow to the East, North and South-East. An 

outflow limit is located to the West. To the south, the eastern limit of inflow which 



Chapter II Geological, hydrogeological and climatic conditions 

44 

 

 

 

constitutes the most important limit in terms of recharge of the aquifer, because in this part 

the aquifer is in direct contact with the carbonate formations which also represents another 

system neighboring aquifer. 

 

 

Figure 21: Map of boundary conditions of the study area (Hemaili, 2020). 

 
As for the other studied area, the general flow in East-West direction, part of this water 

converges towards Oued El-Kebir, which plays the role of drainage axis of the surface 

water table. The limestone formations located on the edges are cracked, thus ensuring 

recharge of the water table. 

The water table is supplied via the north and south edges. To the east the aquifer is slightly 

recharged (Triassic), while to the west a partial recharge exists via the Turonian limestones. 

(Figure 22). 
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Figure 22: Map of boundary conditions of the study area (Djabri, 1987). 

 

II.5.3. Piezometry 

 
Piezometry is the measurement of depth of the surface of the groundwater table. This level 

is measured using an electrical probe. When the probe reaches the level of the air/water  

interface, electrical contact is established between two metal rods, triggering a sound and  

light signal. 

II.5.3.1. Inventory of water points 

 
It will be based on the readings carried out on the 36 domestic wells (Figure 23). The 

measurements a campaign was carried out during the month of March 2020. 

The water points sampled for the establishment of piezometric maps are distributed as on  

the inventory map, they were dug according to the means available and which generally 

have no protection against surface water. 
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Figure 23: The inventory map of wells on the plain (Bekkaria-Tebessa-Hammamet- 

Morsott) (Fathi, B., & Smail, B. 2021). 

II.5.3.2. Establishment of a piezometric map 

 
Knowledge of the piezometric state by establishing the piezometric map for the plain in  

space is of great importance in the context of this study. For this reason, we carried out a  

piezometric campaign, in March 2020. 
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Figure 24: piezometric map (Fathi, B., & Smail, B. 2021). 

 
The measurement of piezometric levels of 37 wells at the level of the Tebessa plain 

majority of wells are imperfect structures, distributed irregularly throughout the plain and 

which are largely used for irrigation and domestic needs; water depth in the wells is from 

1.6 to 49.73m. 

The piezometric map figure 24 allows to visualize a general flow from the South-South- 

East towards Ain Chabro wadi and then towards the North (Morsott) which confirms the 

direction of flow known in the region. A rapid flow noted in the South-South-East part 

with a hydraulic gradient estimated at 0.03 and in the South-East part a flow from a 

direction towards the North which can be explained by a lateral supply by the limestones 

of Maastrichtian of Hammamet with a less significant hydraulic gradient. 
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- Bekkaria zone: the curves are tight, and their spacing is considerable, with current lines 

in an East-West direction; which translates an area accumulation and drainage by Oued El- 

Kebir. The supply of this area comes from the edges of the plain. 

- Tebessa zone: the piezometric curves are regularly spaced reflecting a zone of 

accumulation and drainage by El-Kebir wadi. 

- Ain Chabro zone: the curves become spaced out and reflecting a groundwater 

accumulation zone. 

II.6. Climatic 

 

II.6.1. Climate type 

 
Algeria, due to its geographical situation, is divided into three distinct climatic zones 

(figure 25), the first with a Mediterranean climate in the north, the second with a semi-arid 

climate towards the interior of the country (high plateaus), and finally an arid climate  

characterizing the vast Sahara. 

 

The study region of Tebessa is part of the semi-arid domain, known for hot and dry 

summers and cold and humid winters. Thus, these widely varying hydroclimatic 

parameters greatly influence the swelling-shrinkage phenomenon of the clay formations on 

the surface. 
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Figure 25: Simplified map of the climatic zones of Eastern Algeria (Based on Côte M., 

1998). 

 

II.6.2. Precipitations 

 
The distribution of precipitation in time and space conditions the shape of the flows and 

the contributions to the water tables. Table 5 gives an overview of the distribution of  

monthly precipitation at Tebessa during the period (1972/2012). 

 

Table 5: Average monthly precipitation (mm) at Tebessa (1972/2012). 

 

Month S O N D J F M A M J J A 

Precipitations 40.7 36.1 33.3 28.5 26.4 26.9 44.1 32.7 38.8 26.8 13.1 29.4 

 
 

We note that the month of March and the month of September are the rainiest, reaching 

44.1mm and 40.7mm respectively. Note that the rains in the summer season are 

exceptionally torrential and stormy and can in one or two days reach the average for the 

entire month. These summer rains, when they precipitate suddenly, have a notable erosive 
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effect on the interception surfaces (impact of drops of water on the ground which receives 

them) and cause a temperature difference and increase the humidity level in a way that  

cannot be neglected in a study which concerns the phenomenon of compressibility. 

The analysis of the curve of interannual variations of precipitation over a period of 

40 years (1972/2012) (Figure 26), shows that the year 1972 is the wettest with 634.7  

mm/year, on the other hand the year 1997 is the driest with 207.4 mm/year. Note that the 

average annual rainfall module is around 376.9 mm/year. 

 

 

Figure 26: Interannual variation of precipitation at the Tébessa station (1972/2012). 

 

Table 6 summarizes the wet years exceeding the average annual rainfall module. It is very 

remarkable that the wet and dry periods are very far apart, a characteristic element of semi- 

arid climates, thereby accentuating the swelling-shrinkage phenomenon. 

Table 6: Wet years during the period (1972-2012). 

 
 

Wet years 

1972 1973 1976 1977 1980 1990 1991 1992 1996 1999 

2000 2003 2004 2005 2006 2007 2008 2010 2011  
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II.6.2. Temperatures 
 

Temperature is a determining factor of the climate which allows the calculation of the water 

balance and specifies periods of drought where the phenomenon of clay shrinkage is to be 

feared. 

 

Table 7 and Figure 27 represent the monthly average temperature distribution. The month  

of January is the coldest with an average monthly temperature of 6.65°c, but the hottest  

month is July with an average monthly temperature of 26.28°c. This considerable thermal 

difference is characteristic of a semi-arid climate and is responsible for the thermoclasty of 

surface rocks and soils. For clays, the increase in temperature is responsible for the 

desiccation in a polygonal shape on the dehydrated surface. 

 

Table 7: Température moyenne mensuelle 1972/2012. 
 

Months Sep Oct Nov Dec Jan Feb Mar Apr May Jun jul Aug 

T°C 21.53 17.14 11.10 7.88 6.65 7.82 10.47 13.41 18.62 23.43 26.28 25.55 

 

 

Figure 27: Monthly temperature distribution 1972/2012. 

 

II.7. Conclusion 
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The overview of the different geological formations of the studied region has allowed for  

the identification of areas where the main formations are clays and marls, based on a  

lithostratigraphic description of the existing ages in the region. Among these formations, 

we note: the Lower Maastrichtian, mainly composed of gray marls and marl-limestones; 

the Paleogene, which features clay and gypsum formations; the Pliocene, characterized by 

the abundance of red clays; and the alluvial formations marked by the presence of clays, 

silty clays, sand and silt deposits. 

Thus, the consultation of maps and geological cross-sections derived from core drillings 

carried out in the studied region confirms the existence of fine-grained soil, clayey and 

marl-clay formations at shallow depths. Despite their heterogeneity on a metric scale, they 

can be considered homogeneous on the scale of the study region. The degradation of clay 

and marl formations directly produces fine plastic soils, which are prone to volume changes 

due to changes in their water content or due to external loading. This mechanism can cause 

ground instability problems in the short or long term. 

Hydrogeological and climatic study has highlighted the contribution of 

precipitation to surface watercourses and groundwater, especially during the months of  

January, February, and March. During months with below-average rainfall, the water 

supply is compensated by an increase in humidity. When potential evapotranspiration 

depletes all surface and subsurface water reserves (easily usable reserves), soil fined grain 

compression comes into play, especially during the summer period. During this dry period, 

the reduction in volume of clayey and silty soils, coupled with loading and external 

charges, leads to the formation of characteristic polygonal-shaped desiccation cracks. This 

underscores the soil's susceptibility to deformation under loading conditions. 
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III.1. Introduction 

 
The identification and characterization of soils play a fundamental role in 

geotechnical engineering, providing crucial insights into their properties and behavior  

under various loading and environmental conditions (Razmyar, A., & Eslami, A. 2017). In 

the context of the Tebessa region, where diverse geological formations and environmental 

factors influence soil composition, understanding the characteristics of local soils is 

paramount for informed decision-making in geotechnical engineering projects. This 

chapter focuses on the comprehensive investigation and characterization of soils sampled 

from the Tebessa region. And samples taken from the studied area to conduct a series of  

laboratory tests, including Oedometer tests, Atterberg limits analysis, and other 

geotechnical tests, to elucidate their engineering properties and behavior. By conducting 

these tests, we aim to establish a robust understanding of soil composition, density,  

moisture content and compressibility characteristics prevalent in the studied area. This 

study will contribute to the development of accurate geotechnical models and also will  

used in validation of the obtained models and equations in the next chapter. 

III.2. Presentation of geotechnical soil data in the studied region 

 
For the determination of geotechnical properties of soils related to soil 

compression-recompression phenomenon in the study area, it is possible to identify the 

compressibility by determining a number of simple geotechnical parameters that are related 

to the compressibility character of the soils and are determined, for the most part, during  

the preliminary reconnaissance phase. Thus, we can suspect the compression and 

recompression characters of a soil through particularly interesting tests: We cite in 

particular the identification tests (Atterberg limits, particle size analysis, methylene blue  

value and hydrometer analysis) and mechanical tests (Oedometer swelling test and 

Oedometric compressibility test). 

At this stage of recognition, classifications available in the literature can be used to 

qualitatively identify the soils studied. In this chapter we will present the geotechnical  

identification and characterization of the soils of the studied region, as well as the 

application of different indirect methods based on the available data. 
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III.2.1. Implementation of boreholes 

 
For all geotechnical studies, soil studies are obtained from core boreholes, carried out in 

the area under study. In our case, more than 110 boreholes, with a depth ranging from 2 to 

20 m were used (Figure 28), other samples were recovered from excavations and 

excavations. The necessary data were sorted and selected to facilitate their exploitation. 

They are spread over an area of about 100km2 on four sectors (Route El-kouif, El-Merdja, 

Route de Constantine and the center of the city) where the thickness of the clay and marl  

layers is important; these formations can reach 200m thick according to (Durozoy. Gy 

1948; Bles J.L, Fleury J.J 1970), the geological nature of the majority of the formations 

can be described as marly clays and greyish marl to greenish gypsum with little 

compactness. 

The physical and mechanical properties measured for the studied sites are: 

 
- Sieving and hydrometer analysis according to NF P94-056 and NFP94-057 respectively, 

 
- Atterberg limits (liquidity limits and plasticity index) according to NFP94-051; 

 
- Natural water content according to NF P94-050; 

 
- Dry volume weight according to NF P94-053; 

 
- Methylene blue value NF P 94-068; 

 
- Compression pressure at the Oedometer according to XP P 94-090-1; 

 
- Oedometer swelling pressure according to XP P 94-091. 
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Figure 28: Implementation of boreholes in the studied area. 
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Figure 29: Logs of representative surveys taken in the study area (LTPE). 

Physical, mechanical and chemical tests are conducted on all samples. Table 8 below 

summarize all the results: 

Table 8: Synthesis of soil geotechnical characteristics of the study area. 
 

Symbol Description Values / classification 

γd (kN/m3) Dry unit weight 10,1 - 19,5 

𝑤 (%) Water content % 8.43 - 46,2 

𝐹𝑓 (%) <80µm Fine friction < 0,08mm 29.64 – 99 

Fc (%) <0,02 Fine friction < 0,02mm 26,64 – 56,16 
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LL (%) Liquid limit 28 – 150 

PI (%) Plasticity index % 11 – 85 

A Activity (Ip / < fraction 0,02µm) 0,4 – 2,13 

VBS Methylene blue value 2,2 – 10,84 (g/100g de sol sec) 

Cc Compression index 0,044 - 0,582 

Cs Swelling index 0,023 - 0,307 

Pc (kPa) Preconsolidation pressure 37,5 – 270 

Ps (kPa) Swelling pressure 60 – 670 

CaCo3 (%) Percentage of Calcium Carbonate 68,1 - 1,53 

Gypse (%) Gypsum percentage 60,86 - 1,51 

 

 

III.3. Identification and classification of the soils studied 

 
In the field of geotechnics, clay soil is considered to be a loose material, the largest 

proportion of which consists of elements smaller than 2 µm. these elements are mostly  

made of clay minerals, the few remaining are not clay such as carbonates, feldspars, quartz, 

etc. the proportion and nature of clay minerals largely characterize the mechanical 

behaviour of the soil and the extent of water exchange. 

The classification systems (USCS, LPC or GTR) detail more precisely the 

characteristics of a clay soil. For example, in LPC clay soils correspond to the fine soil  

classes of more than 50% element less than 80µm with a portion of organic matter (OM). 

III.3.1. Granulometry of the studied soils (grain size) 

 
Grain size is the description of the solid or skeleton phase of the soil; it aims to determine  

the percentage of different granular fractions according to their size to allow a classification 

of soils and provide an order of magnitude of some of these properties. The grain size is 

very simple to implement; sieving is used for the fraction > 0.08mm. If more than 50% of 

the soil have grain dimensions>0.08 mm, the soil is said to be coarse. If more than 50% of 

the soil is of fraction <0.08mm, they are classified as fine soils and are classified according 

to their plastic behavior. 

Several classifications are used to identify soils according to their grain sizes. In 

this study the LPC and GTR classification were adopted to classify soil in the region. 
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The LPC classification (Laboratoire des Ponts et Chaussées) is based on the USCS 

classification (United States). On the one hand it uses particle size analysis for coarse  

matrix soils and on the other hand on the Atterberg limits for fine matrix soils. According 

to this classification (Figure 30), Tebessa clay corresponds to very plastic clays (At in 

French, CH in English) and medium plastic clays (Ap in French, CI in English). 

 

Figure 30: LPC classification of fine soils, the gray dot identifies the clay of the study 

area. 

The GTR classification (Guide des Terrassement Routier) according to the standard (NF P 

11-300) which replaces the RTR, used in particular in earthworks and embankments, the 

classification is based on two synoptic tables (Figure 31 and Table 9) is aimed at 

characterizing not only the granulometric nature of a soil but also its sensitivity to water  

and its natural water state. 
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Figure 31: GTR soil classification with Dmax <50mm. Source: NF P 11-300. 

 
According to the GTR classification Tebessa clay is of class A3, corresponds to clays and  

marly clays, very plastic silts and A4 corresponds to very plastic clays and marly clays. 

There is agreement between the LPC soil geotechnical classification (based on USCS) and 

the GTR classification. Soil behaviour indicates that both classifications are most relevant. 

These soils are also visually described as marly clays, silty clays and marls (Figure 29). 

Table 9: Fine Soil Classification (GTR) Standard NF P 11 – 300. 
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III.3.2. Atterberg limits 

 
The liquidity limit LL and the plasticity index PI are used to determine not only the plastic 

nature of the soils but also gives an idea of their swelling potential using the Casagrande 

abacus. The exploitation of the test results gives a point cloud following the Casagrande 

abacus (Figure 30, Figure 32) following the transfer of the limit values of liquidity LL and 

the plasticity index Ip. This abacus gives a soil called clay of medium to high plasticity. 
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Figure 32: Projection of measurements of (LL and PI) soils studied on Casagrande 

abacus. 

III.4. Tests and results 

 
Soil samples were gathered and analyzed in a specific laboratory to obtain their 

physical and index properties. Key parameters like Cc and Cs underwent testing via  

Oedometer tests. Subsequently, the data underwent statistical scrutiny utilizing the 

principles of Design of Experiments (DOE). Various screening designs, including two- 

level full factorial design, and also central composite design (CCD) was employed for 

process optimization using Response Surface Methodology (RSM), demonstrating the core 

principles and applications of DOE. Equations were formulated to predict the compression 

and recompression indexes Cc and Cs based on soil index properties, which are relatively 

simple to assess in the laboratory. The impact of each parameter on compressibility was 

examined through extensive literature review. By identifying factors influencing 

compressibility and fitting equations to optimize responses via maximization or 

minimization functions in the full factorial and RSM methods, attained superior models  

compared to existing published ones. 
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After obtaining these equations for the Cc and Cs coefficients, we need to verify 

them, by taking samples from the studied area and performing all the necessary tests, in  

order to test the equations, and compare the results obtained from the tests with the results 

obtained from the equations. 

The equations obtained after treating previous collected data with the design expert 

software carry the following parameters: (Water content w (%,) dry unit weight (kN/m3), 

degree of saturation (%), liquid limit LL, fine friction Ff, void ratio e0), so we need to 

perform the tests to get these parameters. Two sample of fine-grained soil collected from 

the studied area (Figures 33 and 34). 

 

Figure 33: Sample 1 location (UTM: zone 32, easting 416801, and northing 3916741). 
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Figure 34: Sample 2 location (UTM: zone 32, easting 415225, and northing 3920853). 

a- Water content: 

NFP 94-050 might refer to a specific method or standard used for measuring the water 

content of soil samples in geotechnical engineering. Typically, the water content of soil is 

determined by comparing the initial and final weights of a soil sample before and after  

drying it to remove all the water. This method is often referred to as the oven-drying 

method. 

Here's a basic outline of how the NFP 94-050 method might work: 

 
1. Obtain a representative soil sample from the site. 

2. Weigh the sample accurately (initial weight). 

3. Place the sample in an oven at a specified temperature (usually around 105°C to 

110°C) for a specified duration (typically 24 hours). 

4. After drying, weigh the sample again (final weight). 

5. Calculate the water content using the formula: Water Content (%) = [(Initial Weight 

- Final Weight) / Final Weight] * 100. 
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Table 10: Water content results. 

 

N° Samples 1 2 

 I II I II 

P.H Tare (g) 55.41 66.98 67.74 63.13 54.40 61.85 48.56 51.16 

P.S Tare (g) 50.83 60.37 61 57.39 50.33 57 44.85 47.37 

P. Tare (g) 23.10 21.63 21.17 23.29 23.66 24.66 24.05 25.04 

P. Water (g) 4.58 6.61 6.74 5.74 4.07 4.85 3.71 3.79 

P. Dry soil (g) 27.73 40.52 39.83 34.10 27.27 32.34 23.80 28.66 

Water content 

(%) 

16.51 16.31 16.92 15.18 14.92 14.99 15.58 13.22 

Water content 

(%) 

16.41 16.05 14.95 14.4 

 

 

b- Unit weight: 

 
NFP 94-053 likely refers specifically for determining the unit weight of soil. Unit weight,  

also known as density, is a critical parameter in soil mechanics and geotechnical 

engineering as it influences soil behavior. 

The unit weight of soil can be determined using various methods, including laboratory tests 

and in-situ measurements. NFP 94-053 could specify a particular laboratory test method 

for measuring the unit weight of soil samples. 

NFP 94-053, the method likely involves measuring the weight and volume of a soil sample 

to calculate its unit weight. Here's a general outline of how such a method might work: 

1. Sample Preparation: Obtain a representative soil sample from the site and prepare 

it for testing. This may involve removing large particles, rocks, or organic materials 

and ensuring the sample is adequately compacted. 

2. Weight Measurement: Weigh the soil sample accurately using a laboratory balance 

(weight of the sample without and with paraffin, also sample weight in the water  

using hydrostatic balance). 

3. Volume Measurement: Measure the volumes (gross, paraffin and net volume). 
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4. Calculate Unit Weight: Calculate the unit weight (density), Calculation method 

below the table 11. 

 

Figure 35: Paraffined and weighed samples. 

 
Table 11: Unit weight results. 

 

N° Samples 1 2 

 I II I II 

P.H Paraffin (g) 624.50 142.94 181.72 341.69 

Wet weight (g) 608.22 137.58 174.63 333.77 

Paraffin weight 16.28 5.36 7.09 7.92 

weight of soil in 

water (g) 

308.64 68.61 84.39 167.31 

Gross volume (cm3) 315.86 74.33 93.33 174.38 

Paraffin volume 

(cm3) 

18.5 6.1 8.05 9 

Net volume (cm3) 297.36 68.23 85.28 165.38 
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Wet unit weight 

(t/m3) 

1.99 2 2.07 2.08 

Water content (%) 16.41 16.05 14.95 14.4 

Dry unit weight 

(t/m3) 

1.71 1.72 1.81 1.82 

 

 

𝐺𝑟𝑜𝑠𝑠 𝑣𝑜𝑙𝑢𝑚𝑒 = 𝑊𝑒𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 𝑤𝑖𝑡ℎ 𝑝𝑎𝑟𝑎𝑓𝑓𝑖𝑛 − 𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑠𝑜𝑖𝑙 𝑖𝑛 𝑤𝑎𝑡𝑒𝑟 
 

 

𝑃𝑎𝑟𝑎𝑓𝑓𝑖𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 = 
𝑃𝑎𝑟𝑎𝑓𝑓𝑖𝑛 𝑤𝑒𝑖𝑔ℎ𝑡 

0.88 
 

𝑁𝑒𝑡 𝑣𝑜𝑙𝑢𝑚𝑒 = 𝐺𝑟𝑜𝑠𝑠 𝑣𝑜𝑙𝑢𝑚𝑒 − 𝑃𝑎𝑟𝑎𝑓𝑓𝑖𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 
 

 

𝑊𝑒𝑡 𝑢𝑛𝑖𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 = 
𝑊𝑒𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 

 
 

𝑁𝑒𝑡 𝑣𝑜𝑙𝑢𝑚𝑒 
 

 

𝐷𝑟𝑦 𝑢𝑛𝑖𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 = 
𝑊𝑒𝑡 𝑢𝑛𝑖𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 

 
 

𝑊𝑎𝑡𝑒𝑟 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 + 100 

 

∗ 100 

 

c- Atterberg limits (Liquid limit): 

 
In geotechnical engineering, the Atterberg limits refer to specific water content thresholds  

that define the consistency and behavior of fine-grained soils, particularly clays. The 

Atterberg limits are determined through standardized laboratory tests according to specific 

procedures outlined in standards like NFP 94-051. 

Liquid Limit (LL) is the water content at which a soil transitions from a liquid to a plastic 

state. This transition is determined using the Casagrande method or a cone penetrometer  

test, where the soil is progressively mixed with water until it just begins to flow along a  

groove. The water content at this point is the liquid limit. The liquid limit helps classify 

soils for engineering purposes and provides insight into their behavior under different  

moisture conditions. 

Determining the liquid limit of a soil sample in the laboratory involves following a  

standardized procedure to identify the water content at which the soil transitions from a 
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liquid to a plastic state. The test is typically conducted using the Casagrande method. Here 

are the key steps involved in determining the liquid limit: 

1. Preparation of Sample: Take a representative soil sample (typically passing through 

a 0.4mm sieve) and air-dry it if necessary. Break down any aggregates to ensure 

uniformity. Mix the soil sample thoroughly with distilled water to form a uniform 

paste. The moisture content of the sample should initially be above the expected 

liquid limit. 

 

Figure 36: Washing the samples through a 0.4mm sieve. 

 
2. Setting up the Casagrande Apparatus: Set up the liquid limit device (Casagrande 

apparatus) on a flat, stable surface. Ensure that the cup can be raised and dropped 

smoothly. 

3. Preparation of Test Portions: Take a portion of the moist soil sample and place it in 

the cup of the Casagrande apparatus. Level and smooth the soil surface. 
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Figure 37: portion of the moist soil sample in the cup of the Casagrande. 

4. Grooving Process: Use the grooving tool to create a groove in the soil sample. The 

groove should be made by lowering the cup through a standardized distance and 

then cutting a groove with a standardized tool. 

 

Figure 38: Grooving the Portion in the cup of the Casagrande. 
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5. Lift and drop the cup by turning crank at the rate of two revolutions per second until 

the two halves of soil cake come in contact with each other, and record the number 

of blows, N. 

6. Take a representative portion of soil from the cup (portion from each side) for 

moisture content determination. 

 

Figure 39: Determination of moisture content 

 
7. Repeat the test with different moisture contents at least to get three points. 

 
Table 12: Liquid limit results for sample 1. 

 

tests 1 2 3 

N° of blows 33 24 15 

Total wet weight (g) 35 37 32.04 37.69 38.25 31.89 

Total dry weight (g) 31.02 32.32 28.13 33.55 31.99 27.76 

Tare weight (g) 24.61 24.82 22.29 27.33 23.23 22.04 

Water weight (g) 3.98 4.68 3.91 4.14 6.26 4.13 

Dry soil weight (g) 6.41 7.5 5.84 6.22 8.76 5.72 

Water content (%) 62.1 62.4 66.95 66.55 71.46 72.2 

Water content (%) 62.25 66.75 71.83 
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Table 13: Liquid limit results for sample 2. 

 

tests 1 2 3 

N° of blows 35 27 18 

Total wet weight (g) 33.5 35.3 33 36 37.5 33.9 

Total dry weight (g) 29 31 28.13 31.55 31.4 28.6 

Tare weight (g) 22.3 23.42 20.8 26.33 21.53 20.6 

Water weight (g) 4.5 4.3 4.87 4.45 6.1 5.3 

Dry soil weight (g) 7.69 7.15 7.33 5.22 8.87 8.05 

Water content (%) 58.5 60.1 64 62.2 67.3 65.9 

Water content (%) 59.3 63.1 66.6 

 

 
 

 

Figure 40: Liquid limit for sample 1 (LL= 66.2). 
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Figure 41: Liquid limit for sample 2 (LL= 63.8). 
 

d- Oedometer test: 

 
The NFP 94-090-1 standard in geotechnical engineering likely pertains to Oedometer tests, 

which are commonly used to determine the consolidation properties of soils. Consolidation 

refers to the process by which soil particles rearrange themselves under an applied load,  

resulting in a decrease in volume. Oedometer tests are crucial for assessing the 

compressibility and settlement characteristics of soils, which are essential considerations 

in the design of foundations and other geotechnical structures. 

Here’s an outline of how Oedometer tests typically work, based on the NFP 94-090-1 

standard: 

1. Sample Preparation: Obtain undisturbed or disturbed soil samples from the field at 

the desired depth. The samples are carefully handled to minimize disturbance. 

2. Sample Trimming: Trim the soil sample to the desired dimensions using cutting 

tools to fit into the Oedometer test apparatus. For undisturbed samples, special care 

is taken to maintain the natural structure and fabric of the soil. 
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Figure 42: Sample trimming. 

 
3. Sample Saturation: Fully saturate the soil sample with water to ensure that it is  

completely saturated before testing. This may involve immersion in water or 

vacuum saturation techniques to remove entrapped air. 

 

Figure 43: Sample saturation. 
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4. Assembly of Oedometer Apparatus: Set up the Oedometer test apparatus, which  

typically consists of a loading frame with a loading platform, a porous stone or 

membrane to distribute the load uniformly, and a dial gauge or displacement  

transducer to measure vertical displacement. 

 

 
Figure 44: Set the loading frame with a loading platform. 

 
5. Loading: Place the saturated soil sample into the Oedometer cell and apply a 

vertical load incrementally using the loading frame. The load is typically applied in 

stages to allow for the measurement of settlement at each stage. 
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Figure 45: The loads are applied using air pressure via a computer. 

 
6. Settlement Measurements: Measure the vertical settlement of the soil sample at  

regular time intervals or load increments using the dial gauge or displacement 

transducer. The settlement data are recorded and used to plot a settlement-time 

curve. 

7. Data Analysis: Analyze the settlement-time curve to determine the consolidation 

characteristics of the soil, including the compression index (Cc) and recompression 

index (Cs), and the preconsolidation pressure (σp). These parameters are essential  

for predicting settlement and estimating the time required for consolidation to occur 

under different loading conditions. 

Table 14: Oedometer test results for sample 1. 

 

P. Kg/cm2 P. kPa Settlement Δh 

(mm) 

Specimen height 

Hi – Δh (mm) 

Void ratio 

e0 

0 0 0 19 0.646 

0.25 24.5 0.19 18.81 0.630 

0.5 49 0.29 18.71 0.621 
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1 98 0.48 18.16 0.610 

2 196 1.08 17.92 0.575 

4 392 1.49 17.51 0.517 

2 196 1.12 17.88 0.545 

1 98 0.61 18.39 0.574 

4 392 1.4 17.6 0.540 

8 784.5 1.9 17.1 0.475 

16 1569 2.42 16.58 0.365 

8 784.5 2.05 16.95 0.39 

4 392 1.65 17.35 0.43 

 

 

Table 15: Oedometer test results for sample 2. 

 

P. Kg/cm2 P. kPa Settlement Δh 

(mm) 

Specimen height 

Hi – Δh (mm) 

Void ratio 

e0 

0 0 0 19 0.87 

0.25 24.5 0.19 18.81 0.85 

0.5 49 0.29 18.71 0.835 

1 98 0.48 18.16 0.815 

2 196 1.08 17.92 0.767 

4 392 1.49 17.51 0.705 

2 196 1.12 17.88 0.735 

1 98 0.61 18.39 0.777 

4 392 1.4 17.6 0.713 

8 784.5 1.9 17.1 0.646 

16 1569 2.42 16.58 0.51 

8 784.5 2.05 16.95 0.54 

4 392 1.65 17.35 0.586 
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Figure 46: e - log(P) curve for sample 1. 
 

Figure 47: e - log(P) curve for sample 2. 
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Table 16: Needed results of all tests. 

 

Sample N° 1 2 

Dry unit weight (kN/m3) 16.47 17.75 

Wet unit weight (kN/m3) 19.49 20.35 

Sat unit weight (kN/m3) 20.32 22.31 

Water content (%) 16.23 14.66 

Degree of saturation (%) 74.5 68.5 

Fine friction (%) 90 88 

Liquid limit (%) 66.2 63.8 

Void ratio 0.646 0.87 

Pressure in field -P0- (kPa) 35 40 

Compression index –Cc- 0.282 0.371 

Recompression index –Cs- 0.107 0.126 

Preconsolidation pressure -Pc- (kPa) 120 160 

Overconsolidation ratio -OCR- 3.43 4 

 

 

Where: 

 
- Sample 1: 

 

 

𝐶𝑐 = − 
Δe 

 
 

𝑃2 
𝑃1

)
 

0.365 − 0.54 
= − = 0.282 

log (1569/392) 

 

 

𝐶𝑠 = 
Δe 

 
 

𝑃2 
𝑃1

)
 

0.43 − 0.365 
= = 0.107 

log (1569/392) 

 

OCR = Pc/P0 = 120/35 = 3.43 

 

- Sample 2: 
 

 

𝐶𝑐 = − 
Δe 

 
 

𝑃2 
𝑃1

)
 

0.51 − 0.7 
= − = 0.371 

log (1569/500) 

log ( 

log ( 

log ( 
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𝐶𝑠 = 
Δe 

 
 

𝑃2 
𝑃1

)
 

0.586 − 0.51 
= = 0.126 

log (1569/392) 

 

OCR = Pc/P0 = 160/40 = 4 

 

III.5. Conclusion 

 
In conclusion, the comprehensive investigation and characterization of soils in the  

Tebessa region presented in this chapter are crucial for informing geotechnical engineering 

projects in the area. By conducting a series of laboratory tests, including Oedometer tests,  

Atterberg limits analysis, and other geotechnical tests, we have gained insights into the 

engineering properties and behavior of local soils under various conditions. The 

implementation of over 110 boreholes, along with additional samples from excavations, 

has provided a robust dataset for analysis. 

Through the identification and classification of soils using methods such as LPC 

and GTR classifications, we have elucidated the granulometry and plasticity of the soils in 

the study area. The Atterberg limits, including liquidity limit (LL) and plasticity index (PI), 

have been instrumental in understanding soil plasticity and swelling potential. The obtained 

soil geotechnical characteristics, including compression and swelling indexes, 

preconsolidation pressure, and swelling pressure, offer valuable insights into soil behavior. 

Furthermore, the application of statistical analysis techniques, such as Design of 

Experiments (DOE) and Response Surface Methodology (RSM), has facilitated the 

formulation of predictive equations for compression and recompression indexes (Cc and 

Cs). These equations, based on soil index properties, provide a means to optimize 

geotechnical models and better understand soil compressibility. 

Moving forward, validation of these equations through field tests and comparison  

with laboratory results will be essential to ensure their accuracy and reliability. Overall,  

this study contributes to the development of accurate geotechnical models and enhances  

our understanding of soil behavior in the Tebessa region, thereby facilitating informed 

decision-making in geotechnical engineering projects. 
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IV.1. Introduction 

 
The essence of scientific inquiry lies in its structured approach to unraveling the mysteries 

of the natural world. At the heart of this approach lies the design of experiments, a meticulous 

framework that orchestrates targeted changes to input variables while meticulously measuring their 

effects on the response variable. This methodology, applicable across both physical processes and 

computer simulation models, stands as a beacon of efficiency, enabling researchers to extract  

maximal information while minimizing data collection efforts. 

Against the backdrop of 190 meticulously collected soil samples from diverse locales 

within the Tebessa province, our research endeavors to elucidate the intricate relationships 

between these indices and a plethora of soil physical parameters. From the dry and wet unit weight 

to the degree of saturation, from the moisture content to the preconsolidation pressure, each 

parameter serves as a vital piece in the intricate puzzle of soil compressibility. 

In tandem with our experimental endeavors, we navigate the terrain of optimization, 

seeking to identify optimal process conditions that maximize our desired outcomes. With a keen 

eye on overconsolidation ratio and preconsolidation pressure, we strive to unravel the complex  

web of interactions that underpin soil behavior. 

Through meticulous experimentation, rigorous analysis, and a steadfast commitment to 

scientific inquiry, our study endeavors to shed light on the enigmatic realm of soil compressibility. 

By unraveling the intricate relationships between input parameters and response variables, we pave 

the way for enhanced engineering practices and sustainable infrastructure development, thus 

leaving an indelible mark on the landscape of geotechnical engineering. 

IV.2. Materials and methods 

 

IV.2.1. Principal component analysis 

 
Principal component analysis is performed to obtain a small number of linear combinations of the 

variables that account for most of the variability in the data. From the table of eigenvalues given 

in Table 17-a and the scree plot in Figure 48, we can see that there are two components with 

eigenvalues greater than or equal to 1.0, which together account for 66.75% of the variability in  

the original data. The first and second principal components are the result of the linear combination 
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of the 12 studied variables, and both explain 50.51% and 16.24% of the variance respectively. For 

the other components, as shown in Table 17-b, the values in bold for each variable correspond to 

the factor for which the cosine squared is greatest. 

Table 17-a: Eigenvalue table and accumulated proportion of principal component analysis of 190 

data samples. 

 

 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 

Eigenvalue 6.06 1.94 1.32 1.09 0.84 0.36 0.14 0.08 0.07 0.03 0.02 0.002 

Variability 
(%) 

 

50.51 
 

16.23 
 

11.07 
 

9.15 
 

7.03 
 

3.01 
 

1.2 
 

0.67 
 

0.59 
 

0.25 
 

0.22 
 

0.02 

Cumulative 
% 

 

50.51 
 

66.75 
 

77.82 
 

86.98 
 

94.01 
 

97.02 
 

98.23 
 

98.9 
 

99.5 
 

99.75 
 

99.98 
 

100.00 

 
 

Table 17-b: Squared cosines of the variables. 
 

 F1 F2 F3 F4 F5 

γd (kN/m3) 0.795 0.001 0.135 0.028 0.010 

γh (kN/m3) 0.781 0.043 0.017 0.113 0.004 

w % 0.578 0.050 0.322 0.027 0.012 

Sr % 0.078 0.294 0.215 0.385 0.005 

Ff % 0.019 0.213 0.061 0.084 0.611 

LL % 0.710 0.050 0.117 0.093 0.009 

PI% 0.585 0.040 0.162 0.126 0.024 

e0 0.843 0.004 0.101 0.010 0.004 

Pc (Kg/cm2) 0.003 0.707 0.011 0.077 0.013 

Cc 0.872 0.018 0.011 0.012 0.012 

Cs 0.792 0.000 0.099 0.034 0.014 

  OCR  0.006  0.529  0.076  0.111  0.127   

 

 
Table 18: Factor loadings correlations between variables and factors. 

 

 F1 F2 F3 F4 F5 

γd (kN/m3) -0.891 -0.036 -0.368 0.168 -0.100 

γh (kN/m3) -0.884 -0.207 -0.129 0.336 -0.060 

w % 0.760 -0.225 0.568 0.163 0.109 

Sr % -0.279 -0.542 0.464 0.620 0.071 

Ff % 0.137 0.461 -0.247 0.289 0.781 

LL % 0.843 -0.223 -0.342 0.304 -0.095 

PI% 0.765 -0.199 -0.402 0.355 -0.154 

e0 0.918 0.067 0.318 -0.101 0.065 

Pc (Kg/cm2) -0.054 0.841 0.104 0.278 -0.115 
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Cc 

 
0.934 

 
0.133 

 
-0.107 

 
-0.108 

 
-0.109 

Cs 0.890 -0.004 -0.315 0.183 -0.118 

  OCR  -0.075  0.727  0.276  0.334  -0.357   
 

 

According to the circle of correlation and factor loadings (Figure 49, Table 18) the variables with  

a negative contribution are respectively the factors F1, F2 (γd, γh (kN/m3), Sr %, Pc (Kg/cm2),  

and OCR), the other factors represented by (w %, Ff %, LL %, PI%, e0, Cc, Cs) have a positive  

contribution in this analysis, it is important to note the strong correlation between the two index 

parameters (LL, PI), as well as the good correlation between (Cc, Cs and e0), is because these  

methods take into account neither the position of the points in space, nor the degrees of similarity 

between the parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 48: Scree plot of the data. 

Scree plot 

7 100 

6 

80 

5 

60 
4 
 

 
3 

40 

2 

20 

1 
 

 
0 0 

F1  F2   F3   F4   F5   F6   F7   F8   F9  F10    F11    F12 

axis 

E
ig

en
v
al

u
e

 

C
u
m

u
la

ti
v
e
 v

ar
ia

b
il

it
y

 (
%

) 



Chapter IV Experimental design and data analysis in predictive modeling 

81 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 49: The variables circle of correlation. 

 
The results of the principal component analysis use ten soil parameters of twelve. They 

show strong correlation on the first principal axes, which absorb around 66.75 % of the total 

variance. The PCA enabled the best correlated parameters to be grouped as the first group, made  

up of Cc, Cs, e0 and Atterberg limits on positive F1 F2 axis, and the second group composed unit 

weights, preconsolidation pressure have negative contribution or affection on the studied 

phenomena as second group, the last group is presented by the fine fraction and saturation degree  

as shown on figure 49. 

IV.2.2. Design of experiments 

 
An experimental design is a series of tests that make targeted changes to the input variables of a  

system or process and measure the effects on the response variable. Experimental design applies 

to both physical processes and computer simulation models. Experimental design is an effective 

tool for maximizing the amount of information obtained from a study while minimizing the amount 

of data to be collected. Factorial designs examine the effects of many different factors by varying 

them simultaneously, rather than just one factor at a time. Factorial designs allow estimation of 

Variables (axes F1 and F2: 66.75 %) 
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sensitivity to each factor and to the combined effect of two or more factors other factors. 

Experimental design methods have been successfully used in many studies in various fields to  

maximize the amount of information with the minimum number of computer simulation runs. In 

the competitive world of testing and evaluation, an efficient method for testing many factors is  

needed. (Telford, J. K. 2007). 

Experimental design methods investigate how common conditions can be varied using 

empirical processes to increase the likelihood of detecting significant changes in response. In this 

way, more knowledge about the behavior of the process of interest can be obtained. In order for  

the experimental design method to be effective, it is important that the experiment is well designed, 

whether it is to identify the main cause of a change in the response for any of the following reasons, 

or to find the experimental condition variable that reaches an extreme value or the response of 

interest to compare different observations of the controlled variable levels of response, or to obtain 

statistical mathematical models that allow predictions of future responses. 

This work consists in studying the compressibility of soils based on compression index Cc 

and recompression index Cs used in settlement measuring of fine-grained soils. Therefore, Cc and 

Cs are linked to soil physical parameters as input parameters that may directly or indirectly affect  

the process of the compression and recompression indexes as output parameters, the different input 

parameters taken in this treatment are (dry and wet unit weight γd (kN/m3), γh (kN/m3), water  

content w (%), degree of saturation Sr, fine fraction Ff (%), liquid limit LL (%), plasticity index 

PI (%), initial void ratio e0 and preconsolidation pressure Pc (kg/cm2)). 

IV.2.2.1. Input and output parameters 

 
The purpose of this study was to estimate the compression index (Cc) and recompression 

index (Cs) as a function of basic soil properties, since its determination is relatively simple. 190 

samples will be collected from different locations in Tebessa province to study their geotechnical  

parameters. All data sets were analyzed descriptively using classical statistics, the minimum and 

maximum values were determined, and the mean and standard deviation were calculated as shown 

in table 19. 

In the first step, statistical tests are performed to obtain a general overview and to examine 

parameters known to be related to compression and recompression coefficients (Cc, Cs). These 
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variables were selected as independent variables: dry and wet weight (γd, γh), moisture content  

(w), degree of saturation (Sr), fines (Ff) (% < 80 µm), plasticity index (PI), liquid limit (LL), void 

content (e0) and preconsolidation pressure (Pc). 

Table 19: Summary statistics of the collected data set. 

 

 

Variable 

 

Observations 
Obs. without 
missing data 

 

Minimum 

 

Maximum 

 

Mean 

γd (kN/m) 190 190 10.100 19.500 15.739 

γh (kN/m) 190 190 14.700 21.070 19.002 

w % 190 190 8.430 46.200 21.503 

Sr % 190 190 55.000 100.000 82.741 

Ff % 190 190 29.640 99.000 85.059 

LL % 190 190 28.000 150.000 62.575 

PI % 190 190 11.000 85.000 39.487 

e0 190 190 0.355 1.616 0.711 

Pc (kg/cm) 190 190 0.220 3.100 1.352 

Cc 190 190 0.044 0.582 0.256 

Cs 190 190 0.023 0.307 0.089 

OCR 190 190    

 

 
The experiment was conducted simultaneously with nine factors at two levels (i.e., low level and  

high level). These two levels were chosen to cover the practical range of the parameters considered 

(Table 20). 

Table 20: Factors for response study. 
 

 

Factor Name Units Low 

Level 

High 

Level 

A γd kN/m3 10.10 19.5 
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B 

 
γh 

 
kN/m3 

 
14.70 

 
21.07 

C w % 8.43 46.20 

D Sr % 55.00 100.00 

E Ff % 29.64 99.00 

F LL % 28.00 150.00 

G PI % 11.00 85.00 

H e0  0.35 1.61 

I Pc Kg/cm2 0.22 3.1 

 

 

Factorial designs find broad application in experiments encompassing multiple factors, facilitating 

the examination of their collective influence on a response variable. This method constitutes a 

versatile array of statistical techniques utilized in scientific experiment design. When employing  

factorial designs, researchers can effectively explore the impact of diverse factors on one or more 

response variables. Each factor is typically treated as an independent variable and investigated 

across various discrete subdivisions or levels, representing distinct values within a predetermined  

range tailored to the specific requirements of each experiment. (Shahabadi, S. M. S., & Reyhani, 

A. 2014). 

The response surface methodology RSM in DOE techniques is used for machining 

processes and relate to the determination of response surface based on the general equation.  

(Myers, R. H. et al 2016). 

𝑦 = 𝐴0 + 𝐴1𝑥1 + ⋯ + 𝐴𝑘𝑥𝑘 + 𝐴12𝑥1𝑥2 + 𝐴13𝑥1𝑥3 + 𝐴11𝑥12 + 𝐴𝑘𝑘𝑥𝑘2 (1) 

 
Where A0, Ai, Aij are respectively interaction, linear, quadratic and intercept coefficients, and xi  

are input independent variables. Continuous factors affect the quantitative response which is 

analyzed by response surface methodology (RSM). 

IV.3. DOE and data implementation 

 
The number of runs needed for the full factorial DOE where the two levels of factors 

variation are considered. Factors are the variables that you believe may affect the outcome of your 

experiment. Each factor should have different levels. Using the design expert software, input the 
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factors, their levels, and the responses you want to measure. Then, select the option for a full 

factorial design, Figure 50. 

 

 

Figure 50: Definition of different parameters in full factorial design. 

 
For response surface methodology RSM, central composite design is chosen and CCD- 

Rotatable was selected, in which standard error remains the same at all the points which are  

equidistant from the center of the region. Figure 51. 

 
 

Figure 51: Definition of different parameters in RSM. 
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CCD is composed of a core factorial that forms a cube with sides that are two coded units in 

length, from −1 to +1. The distance out of the cube, designated as distance “Alpha” and measured 

in terms of coded factor levels. The upper and lower limits parameters, their units and levels are  

put with respect to all chosen parameters. 

IV.4. Results and discussion 

 

IV.4.1. Full factorial design 

 
One thing about factorial design, it’s quite unique in such a way that you need to select the factors 

before proceeding to ANOVA, the reason for this is that when you want to create ANOVA table,  

you need to have what we call the sum replication within the design, in order to calculate the F 

ratio. In this case the most effect factors (the significant terms) are selected from the plot (Figures 

52 and 53). 

 

Figure 52: Select the most effect factors for compression index. 
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Figure 53: Select the most effect factors for recompression index. 

 
Also, the Pareto chart is used to select the effects (Figures 54 and 55), the effects that cross the red 

line (Bonferroni limit) are significant, but those below the black line (t-value limit) are not 

significant. As for those falling between the two lines, selecting them depends on experience,  

without forgetting that whatever effect is selected affects the ANOVA, and ANOVA essentially  

builds the model obtained later. 
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Figure 54: Pareto chart for Cc. Figure 55: Pareto chart for Cs. 

 
Once the effects selected only then ANOVA will be available, tables 21 and 22 show that all  

models are depending on the effects selected before, which each term is significant according to 

p-value (by default p-value < 0.05 indicate model terms are significant). 

Table 21: Results of ANOVA model for compression index. 

 
Source Sum of 

Squares 
df Mean 

Square 
F- 

value 
p- 

value 
 

Model 1.02 5 0.2043 556.44 < 
0.0001 

Significant 

A- γd 0.0793 1 0.0793 215.99 < 
0.0001 

 

C-w 0.0689 1 0.0689 187.68 < 
0.0001 

 

D-Sr 0.0338 1 0.0338 92.03 < 
0.0001 

 

F-LL 0.1235 1 0.1235 336.36 < 
0.0001 

 

H-e0 0.0615 1 0.0615 167.64 < 
0.0001 

 

Residual 0.0675 184 0.0004    
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Lack of 
Fit 

0.0593 126 0.0005 3.30 < 
0.0001 

Significant 

Pure Error 0.0083 58 0.0001    

Cor Total 1.09 189     

 

 

Table 22: Results of ANOVA model for recompression index. 

 

Source Sum of 
Squares 

df Mean 
Square 

F- 
value 

p- 
value 

 

Model 0.2790 5 0.0558 393.54 < 
0.0001 

Significant 

A- γd 0.0035 1 0. 0035 24.60 < 
0.0001 

 

C-w 0.0064 1 0. 0064 45.28 < 
0.0001 

 

D-Sr 0.0032 1 0. 0032 22.88 < 
0.0001 

 

F-LL 0.1229 1 0. 1229 867.10 < 
0.0001 

 

H-e0 0.0062 1 0. 0062 43.67 < 
0.0001 

 

Residual 0.0261 184 0.0001    

Lack of 
Fit 

0.0246 126 0.0002 7.84 < 
0.0001 

Significant 

Pure Error 0.0014 58 0.0000    

Cor Total 0.3051 189     

 
 

The models also significant, based on the obtained results the ANOVA will make a regression line 

(prediction), the analysis of the experimental data was performed to identify statistical significance 

of the input parameters, on the measured responses the results are summarized in Tables 23 and  

24. 

Table 23: Regression statistics for compression index. 

 

Std. Dev. 0.0192 R² 0.9380 

Mean 0.2573 Adjusted R² 0.9363 

C.V. % 7.45 Predicted R² 0.9321 

  Adeq Precision 133.8012 
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The Predicted R² of 0. 9321 is in reasonable agreement with the Adjusted R² of 0.9363; i.e. the 

difference is less than 0.2, Adeq Precision measures the signal to noise ratio. A ratio greater than 

4 is desirable. The model ratio of 133.8012 indicates an adequate signal. This model can be used 

to navigate the design space. 

Table 24: Regression statistics for recompression index. 

 

Std. Dev. 0.0119 R² 0.9145 

Mean 0.0890 Adjusted R² 0.9122 

C.V. % 13.38 Predicted R² 0.9075 

  Adeq Precision 117.3554 

 
 

The Predicted R² of 0.9075 is in reasonable agreement with the Adjusted R² of 0.9122; i.e. the 

difference is less than 0.2, Adeq Precision measures the signal to noise ratio. A ratio greater than 

4 is desirable. The model ratio of 117.355 indicates an adequate signal. This model can be used to 

navigate the design space. 

These statistics would give the final equations in terms of actual factors: 

 
𝐶𝑐 = 0.627 − 0.05𝛾𝑑 − 0.029𝑤 + 0.0053𝑆𝑟 + 0.0018𝐿𝐿 + 0.65𝑒0 (2) 

 
𝐶𝑠 = 0.042 − 0.01𝛾𝑑 − 0.009𝑤 + 0.0017𝑆𝑟 + 0.0018𝐿𝐿 + 0.21𝑒0 (3) 

 
The equations in terms of actual factors can be used to make predictions about the response for 

given levels of each factor. Here, the levels should be specified in the original units for each factor. 

These equations should not be used to determine the relative impact of each factor because the  

coefficients are scaled to accommodate the units of each factor and the intercept is not at the center 

of the design space. 

To assess the effectiveness of the adopted model, it's essential to examine if the predicted 

response points align randomly with the actual values along the 45° line, as illustrated in Figures 

56 and 57. 

Such alignment indicates the adequacy of the proposed model and suggests no apparent  

violation of the assumptions regarding independence or constant variance. 
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Figure 56: Predicted response versus actual for compression index. 
 

Figure 57: Predicted response versus actual for recompression index. 
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The following 3D figures depict the response surfaces illustrating the relationship between 

the compressibility index (Cc) and various factors: γd (kN/m³) and w (%), liquid limit (%) and e₀, 

these figures numbered 58 and 59. Also the swelling index (Cs) and various factors: γd (kN/m³) 

and w (%), liquid limit (%) and e₀, these figures numbered 60 and 61. These figures demonstrate  

the interaction between two process variables as a function of factors. 

 

 

Figure 58: Response surface 3D representing the compressibility index (Cc) vs dry unit weight γd 

and water content w. 
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Figure 59: Response surface 3D representing the compressibility index (Cc) vs liquid limit LL 

and the void ratio e0. 

 

Figure 60: Response surface 3D representing the swelling index (Cs) vs dry unit weight and void 

ratio e0. 
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Figure 61: Response surface 3D representing the swelling index (Cs) vs saturation degree Sr and 

water content w. 

IV.4.2. Response surface methodology 

 
Starting with numerical analysis of the responses, Design-Expert offers an extensive range of 

response transformations. At this juncture, Design-Expert employs linear, two-factor interaction 

(2FI), quadratic, and cubic polynomials to fit the response. The central composite matrix, by  

design, offers a limited number of unique design points, making it insufficient to ascertain all terms 

in the cubic model. Tables 25 and 26 represent the best process order for each response. 

Table 25: Model fit summary for Cc. 

 
Source Model 

p-value 

Lack of Fit 

p-value 

Adjusted R² Predicted R²  

Linear < 0.0001 < 0.0003 0.9532 0.94.87  

2FI 0.3396 < 0.0002 0.9541 0.9035  

Quadratic 0.0005 < 0.0024 0.9604 0.8712 Suggested 
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 Cubic < 0.0024 0.9753 Aliased  

 

 

Table 26: Model fit summary for Cs. 

 

Source Model 

p-value 

Lack of Fit 

p-value 

Adjusted R² Predicted R²  

Linear < 0.0001 < 0.0001 0.9323 0.9272 Suggested 

2FI 0.0192 < 0.0001 0.9402 0.8470 Suggested 

Quadratic 0.0621 < 0.0001 0.9433 0.8058  

Cubic < 0.0001  0.9845  Aliased 

 
 

For each term source (linear, etc.), assess the probability (Prob > F) to determine if it is below the 

chosen statistical significance level, typically 0.05. So far, Design-Expert highlights the quadratic 

model as the most favorable for Cc, but linear and 2FI model as the most favorable for Cs (bold  

highlighting indicates significance). While these terms hold significance, incorporating cubic order 

terms wouldn't notably enhance the fit. Even if significant, the cubic terms would be aliased and 

wouldn't contribute meaningfully to modeling. The Lack of Fit Tests pane can be adjusted to  

explore alternative suggested models by conducting lack of fit tests across various model orders. 

The ANOVA results are employed to assess the impact of the constructed RSM model and 

its statistically significant terms. The ANOVA analysis is conducted by testing the hypothesis of 

equal variance, typically at a confidence level of 95% or a significance level of 0.05. ANOVA is 

frequently utilized to summarize the significance test of the regression model and to assess the  

significance of individual model coefficients. The summary statistics for the models are presented 

in Tables 27 and 28. 

Table 27: ANOVA for response surface quadratic model for compressibility index. 

 

Source Sum of 
Squares 

df Mean 
Square 

F- 
value 

p- 
value 

 

Model 0.9875 4 0.2469 450.75 < 
0.0001 

Significant 

A- γd 0.0459 1 0.0459 83.72 < 
0.0001 
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C-w 0.1185 1 0.1185 216.41 < 
0.0001 

 

F-LL 0.1293 1 0.1293 236.02 < 
0.0001 

 

H-e0 0.0327 1 0.0327 59.77 < 
0.0001 

 

Residual 0.1013 185 0.0005    

Lack of 
Fit 

0.0931 127 0.0007 5.14 < 
0.0001 

Significant 

Pure Error 0.0083 58 0.0001    

Cor Total 1.09 189     

 

 

Table 28: ANOVA for response surface quadratic model for recompression index. 

 
Source Sum of 

Squares 
df Mean 

Square 
F- 

value 
p- 

value 
 

Model 0.2757 4 0.0689 434.78 < 
0.0001 

Significant 

A- γd 0.0010 1 0. 0010 6.11 0.0143  

C-w 0.0103 1 0. 0103 65.26 < 
0.0001 

 

F-LL 0.1249 1 0. 1249 787.59 < 
0.0001 

 

H-e0 0.0036 1 0. 0036 22.59 < 
0.0001 

 

Residual 0.0293 185 0.0002    

Lack of 
Fit 

0.0279 127 0.0002 8.80 < 
0.0001 

Significant 

Pure Error 0.0014 58 0.0000    

Cor Total 0.3051 189     

 
 

To achieve this objective, the F-values in the ANOVA table are computed by dividing the mean 

square of the factor by the mean square of the residual. These values are then compared to the F- 

values from the Fisher distribution, which are suggested for a significance level of 0.05. In the 

Fisher distribution, the F-values are determined based on the degrees of freedom of the associated 

factors and residuals, along with the chosen significance level. The contribution of each parameter 

in enhancing the UCS performance of the mixture in the constructed RSM model is assessed by 

dividing the F-value of each parameter by the sum of F-values of all parameters. 
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The experimental data analysis aimed to determine the statistical significance of various 

physical parameters: dry unit weight (𝜌d) in kN/m³, wet unit weight (𝜌h) in kN/m³, water content 

(𝐰) in %, fine fraction (Ff) in %, Liquidity limits (WL) in %, plasticity index (IP) in %, void ratio 

(e0), Saturation degree (Sr) in %, on the measured response compressibility index (Cc). The model 

was constructed with a confidence level of 95%, and the findings are presented in Tables 29 and  

30. 

Table 29: Regression statistics for recompression index. 

 

Std. Dev. 0.0234 R² 0.9069 

Mean 0.2573 Adjusted R² 0.9049 

C.V. % 9.10 Predicted R² 0.9012 

  Adeq Precision 106.1962 

 
 

Table 30: Regression statistics for recompression index. 

 

Std. Dev. 0.0126 R² 0.9049 

Mean 0.0890 Adjusted R² 0.9022 

C.V. % 14.15 Predicted R² 0.9001 

  Adeq Precision 124.0219 

For the analyzed studies, the final equations in terms of actual factors were determined, 

which present the compressibility index (Cc) and swelling index from the input factors: 

𝐶𝑐 = 0.65 − 0.03𝛾𝑑 − 0.009𝑤 + 0.002𝐿𝐿 + 0.29𝑒0 (4) 

 
𝐶𝑠 = 0.048 − 0.004𝛾𝑑 − 0.003𝑤 + 0.002𝐿𝐿 + 0.075𝑒0 (5) 

 
The equations expressed in terms of actual factors are suitable for predicting the response for  

specific levels of each factor. It's important to note that the levels should be defined in the original 

units for each factor. However, these equations should not be utilized to assess the relative impact 

of each factor. This is because the coefficients are scaled to accommodate the units of each factor, 

and the intercept is not positioned at the center of the design space. 
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To assess the adequacy of the adopted model, it's essential to examine if the predicted 

response points versus the actual values exhibit random scattering along the 45° line, as depicted 

in Figures 62 and 63. Such a pattern indicates that the proposed model is fitting well, and there are 

no apparent violations of the assumptions of independence or constant variance. 

 

Figure 62: Predicted response versus actual for compression index. 
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Figure 63: Predicted response versus actual for recompression index. 

 
Figure 64 and 65 showcase 3D plots representing the response surfaces, elucidating the  

correlation between the compressibility index (Cc) and several factors: γd (kN/m³) and w (%), LL 

(%) and e₀. Similarly, Figures 66 and 67 exhibit the swelling index (Cs) in relation to various 

factors: LL (%) and w (%), LL (%) and e₀. These figures effectively illustrate the interaction  

between two process variables as influenced by the factors under consideration. 
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Figure 64: Response surface 3D representing the compressibility index (Cc) vs dry unit weight γd 

and water content w. 

 

 

Figure 65: Response surface 3D representing the compressibility index (Cc) vs liquid limit LL 

and void ratio e0. 
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Figure 66: Response surface 3D representing the swelling index (Cs) vs water content w and 

liquid limit LL. 

 

Figure 67: Response surface 3D representing the swelling index (Cs) vs liquid limit LL and void 

ratio e0. 
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IV.4.3. Optimisation 

 
The experimental approach for exploring the parameter space of the process or independent 

variables involves employing FFD or RSM as a practical statistical modeling technique to establish 

a suitable approximating relationship. This relationship delineates the compressibility index (Cc)  

and swelling index (Cs) as the outputs responses and various input variables, including dry unit  

weight γd (kN/m³), wet unit weight γh (kN/m³), water content w (%), fine fraction Ff (%), Liquidity 

limits WL (%), plasticity index IP (%), void ratio e0, Saturation degree Sr (%) and preconsolidation 

pressure Pc (kg/cm2). Optimization methods are then utilized to determine the values of the 

process variables that yield desirable responses. These methods identify points on the quadratic  

and linear response surface, whether they represent the surface's minimum or maximum. In this 

case, a straightforward method involves visual inspection, wherein the surfaces are analyzed to  

identify the design space that optimizes the entire range of response studies. 

Randomly selecting a set of initial conditions to start the search for desirable outcomes can yield 

varying results. Conducting multiple cycles enhances the likelihood of discovering multiple local  

optimums, some of which may possess greater desirability than others. 

The ramp display integrates individual graphs to facilitate interpretation, as depicted in Figures 68 

and 69. Each ramp features a colored dot representing the factor setting or responses prediction for 

a particular solution. The height of the dot indicates its level of desirability. 

The below optimal solutions denote the formulation that effectively maximizes the compressibility 

and swelling coefficients, reaching the target value of 0.594 and 0.307, also minimizes the  

coefficients to 0.034 and 0.02. Simultaneously, it identifies the point with minimal error 

transmitted to the responses. Consequently, these process conditions should exemplify robustness 

against slight variations in factor parameters. 
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Figure 68: Maximization of the responses. 

 

Figure 69: Minimization of the responses. 
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Notable observation when comparing the maximized and minimized solutions is that there are  

slight changes observed in all the parameters. However, it is evident that the void ratio (e0) and 

liquid limit (LL %) exhibit opposing contributions to the compressibility and swelling indexes. 

IV.4.4. Overconsolidation ration and preconsolidation pressure predicting 

 
Although the equations for the Cc and Cs coefficients have been found, this is not enough, because 

the calculation of soil settlement does not depend only on these two coefficients, but 

overconsolidation (OCR) and preconsolidation pressure (Pc) must also be known. Therefore, the 

relationship must be found between one of the remaining coeficients and the inputs parameters. 

The experiment was conducted simultaneously with nine factors at two levels which the taken 

response is OCR. These two levels were chosen to cover the practical range of the parameters  

considered (Table 31). 

Table 31: Factors for response study. 
 

 

Factor Name Units Low 

Level 

High 

Level 

A γd kN/m3 10.10 19.5 

B γh kN/m3 14.70 21.07 

C w % 8.43 46.20 

D Sr % 55.00 100.00 

E Ff % 29.64 99.00 

F LL % 28.00 150.00 

G PI % 11.00 85.00 

H e0  0.35 1.61 

I P0 kPa 17.65 203.96 

 

 

Starting with numerical analysis of the responses, Design-Expert offers an extensive range of 

response transformations. At this juncture, Design-Expert employs linear, two-factor interaction 
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(2FI), quadratic, and cubic polynomials to fit the response. As you can see, in table 32 the 

suggested models are linear and quadratic. 

Table 32: Model fit summary for Cc. 

 

Source Model 

p-value 

Lack of Fit 

p-value 

Adjusted R² Predicted R²  

Linear < 0.0001 0.2497 0.8671 0.8521 Suggested 

2FI 0.3735 0.2512 0.8296 0.7144  

Quadratic 0.0002 0.2716 0.8551 0.8299 Suggested 

Cubic 0.2534 0.2998 0.9571  Aliased 

 
 

The ANOVA results are employed to assess the impact of the constructed model and its 

statistically significant terms. The ANOVA analysis is conducted by testing the hypothesis of 

equal variance, typically at a confidence level of 95% or a significance level of 0.05. ANOVA is 

frequently utilized to summarize the significance test of the regression model and to assess the  

significance of individual model coefficients. The summary statistics for the models are presented 

in Tables 33 and 34. 

Table 33: ANOVA for response surface quadratic model for OCR. 

 

Source Sum of 
Squares 

df Mean 
Square 

F- 
value 

p- 
value 

 

Model 169.07 4 42.27 163.69 < 
0.0001 

Significant 

C- w 8.28 1 8.28 32.06 < 
0.0001 

 

G-P0 147.16 1 147.16 569.9 < 
0.0001 

 

EF 15.47 1 15.47 59.9 < 
0.0001 

 

EH 12.97 1 12.97 50.21 < 
0.0001 

 

Residual 48.55 188 0.2582    

Lack of 
Fit 

48.53 187 0.2595 12.97 0.2184 Not 
Significant 

Pure Error 0.02 1 0.02    

Cor Total 217.61 192     
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Table 34: Regression statistics for OCR. 

 

Std. Dev. 0.5082 R² 0.8475 

Mean 2.05 Adjusted R² 0.8344 

C.V. % 24.75 Predicted R² 0.8298 

  Adeq Precision 61.88 

 
 

For the analyzed studies, the final equation in terms of actual factors was determined, which 

present the overconsolidation ratio OCR from the input factors: 

𝑂𝐶𝑅 = 4.8 − 0.07 ∗ 𝑤 − 0.027𝑃0 − 0.0002 ∗ 𝐹𝑓 ∗ 𝐿𝐿 + 0.03 ∗ 𝐹𝑓 ∗ 𝑒0 (6) 

 
The equations expressed in terms of actual factors are suitable for predicting the response for 

specific levels of each factor. It's important to note that the levels should be defined in the original 

units for each factor. However, these equations should not be utilized to assess the relative impact 

of each factor. This is because the coefficients are scaled to accommodate the units of each factor, 

and the intercept is not positioned at the center of the design space. 

To assess the adequacy of the adopted model, it's essential to examine if the predicted 

response points versus the actual values exhibit random scattering along the 45° line, as depicted 

in Figure 70. Such a pattern indicates that the proposed model is fitting well, and there are no 

apparent violations of the assumptions of independence or constant variance. 
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Figure 70: Predicted response versus actual for OCR. 

 
Figure 71 and 72 showcase 3D plots representing the response surfaces, elucidating the  

correlation between the overconsolidation ratio (OCR) and several factors: Ff (%) and LL (%), e0 

and Ff (%). These figures effectively illustrate the interaction between two process variables as  

influenced by the factors under consideration. 
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Figure 71: Response surface 3D representing the OCR vs liquid limit LL and fine friction Ff. 
 

Figure 72: Response surface 3D representing the OCR vs fine friction Ff and void ratio e0. 
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IV.4.5. Validation of the equations 

 
Focus on the validation of the derived equations for compression, swelling indexes and 

overconsolidation ratio through a comprehensive comparison with experimental results obtained 

from laboratory tests and numerical simulations performed using PLAXIS 3D software. The 

primary objective is to ensure the reliability and accuracy of the proposed equations by comparing 

them with empirical data and advanced computational models. Initially, we will outline the 

experimental procedures and results, followed by a detailed application of the equations to these 

experimental conditions. Subsequently, numerical simulations will be conducted using PLAXIS 

3D, replicating the laboratory test scenarios to generate theoretical predictions. Finally, a 

comparative analysis will be presented, highlighting the consistency and discrepancies among the 

laboratory tests, analytical equations, and numerical simulations. 

After using equations (2) and (3) from compression and recompression indexes and equation (6)  

for overconsolidation ratio, the obtained results are in table 35. 

Table 35: Obtained results from the equations 

 

Sample N° 1 2 

Compression index –Cc- 0.267 0.358 

Recompression index –Cs- 0.113 0.136 

Overconsolidation ratio -OCR- 3.27 3.87 

Preconsolidation pressure -Pc- (kPa) 114.45 154.8 

 
 

Where: 

 
- Sample 1: 

 

Cc = 0.627-0.05*16.47-0.029*16.23+0.0053*74.5+0.0018*66.2+0.65*0.646 = 0.267 

Cs = 0.042-0.01*16.47-0.009*16.23+0.0017*74.5+0.0018*66.2+0.21*0.646 = 0.113 

OCR = 4.8-0.07*16.23-0.027*35-0.0002*90*66.2+0.03*90*0.646 = 3.27 

Pc = OCR * P0 = 3.27 * 35 = 114.5 kPa 

 
- Sample 2: 
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Cc = 0.627-0.05*17.75-0.029*14.66+0.0053*68.5+0.0018*63.8+0.65*0.87 = 0.358 

Cs = 0.042-0.01*17.75-0.009*14.66+0.0017*68.5+0.0018*63.8+0.21*0.87 = 0.136 

OCR = 4.8-0.07*14.66-0.027*40-0.0002*88*63.8+0.03*88*0.87 = 3.87 

Pc = OCR * P0 = 3.87 * 40 = 154.8 kPa 

 
Table 36: Comparison between calculated and predicted results. 

 

 Cc Cs OCR Pc 

 Calc Pred Calc Pred Calc Pred Calc Pred 

Sample 1 0.282 0.267 0.107 0.113 3.43 3.27 120 114.5 

Sample 2 0.371 0.358 0.126 0.136 4 3.87 160 154.8 

 
 

There is only a slight difference between the two results, as the difference does not exceed 5 

percent (±5). 

IV.4.5.1. Settlement calculation 

 
Since both samples are OCC, we suppose that ∆𝑃=150 kPa, which is will be the second condition 

because P0+ΔP>Pc, so the settlement will be: 

(Cs. H) 
S = 

Pc 
log( ) + 

(Cc. H) 
 

 log( 
P0 + ∆P 

) 
(1 + e) P0 (1 + e) Pc 

 

Where, H is the layer’s thickness, and e is the initiale void ratio. 

 

After using the settlement equation with the calculated and predicted parameters, the settlement 

results is presented in table 37. 

Table 37: Settlement results. 

 

N° Sample 1 Sample 2 

Settlement with calculated parameters (cm) 13.3 10.6 

Settlement with predicted parameters (cm) 13.8 11.3 
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The difference in settlement is a few millimeters, and this is considered negligible. 

 

IV.4.5.2. Plaxis Modeling 

 
PLAXIS 3D is a sophisticated and powerful software tool, widely used in geotechnical engineering 

for the analysis of soil mechanics and much more. It provides advanced capabilities for simulating 

the behavior of soil structures under various conditions, including static and dynamic loading,  

excavation and many. 

IV.4.5.2.1. Data Introduction 

 
The geometry is 2 meters of the layer thickness and vertical load applied on a surface 8*8 meter 

(The average social housing is set at 63.5 m2 plus or minus 1.5%). 

IV.4.5.2.1.1. The geometric model 

 
Before everything, we need to look at the general settings and we choose what is consistent with  

the case studied. (Figure 73). 
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Figure 73: General settings. 

 
So, as you can see the previous figure, I will try to embody what exists in reality (what we described 

in data introduction part) in all its details, and you can see it on Figure 74. 

 

 

 
Figure 74: The geometric model. 
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IV.4.5.2.1.2. Material properties 

 
The layer is modeled with soft soil model. The behavior is considered drained. The properties of 

the soil are taken from table 13 (Chapter 3). 
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Figure 75: Material properties of the soil. 
 

 

 
 

Figure 76: Model of adding material properties. 

 
Now surface load is applied on the soil layer. 
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Figure 77: Surface load ΔP = 150kPa. 
 

 
 

 

Figure 78: Surface load applied. 

 
IV.4.5.2.2. Mesh Generation 

 
The mesh is generated with a global coarseness set to medium. A local refinement is made. The 

result of the mesh generation is plotted in Figure 79. 
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IV.4.5.2.3. Phasing 

Figure 79: Mesh generation. 

 

The analysis is composed of one calculation phase, which is applying the surface load on the soil 

layer 

Phase 1: 

 
1. Select plastic calculation in the general tab sheet. 

 

2. Select the staged construction of the sheet from the settings tab. 

 

3. Activate the surface load. 

 

Note: you can add one more phase which can be consolidation phase and give it a specific time. 

 

 All the previous steps are also applied for the sample 2. 

 

IV.4.5.2.4. Output 

 
The following results obtained after the calculation stage: 
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Figure 80: Vertical displacement Uz = 13.54cm for sample 1. 
 
 

Figure 81: Vertical displacement Uz = 10.32cm for sample 2. 
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IV.4.5.2.5. Curves 
 

Figure 82: Vertical displacement curve for sample 1. 
 

Figure 83: Vertical displacement curve for sample 2. 

After modeling and simulating the case, the final settlement results is in table 38. Which represent 

various obtained results. 
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IV.4.6. Results interpretation 

The study aimed to develop predictive equations for compression index, recompression index, and 

overconsolidation ratio using a dataset treated with Design of Experiments (DOE) software. To 

validate these equations, several tests were conducted on two samples from the studied area. The 

settlement was calculated for both cases. Additionally, a 3D Plaxis simulation was performed to 

further evaluate the settlement predictions. This interpretation discusses the results from the 

predictive equations, the experimental tests, and the Plaxis simulation, highlighting the consistency 

and reliability of the predictive models. 

IV.4.6.1. Predictive Equations and Validation 

 
Using the DOE software, equations were formulated to predict the compression index, 

recompression index, and overconsolidation ratio. These equations are essential for understanding 

the soil behavior under various load conditions and are critical in geotechnical engineering for  

predicting settlement. 

To validate these equations, laboratory tests were performed on two samples from the study area.  

The experimental results for the compression index, recompression index, and overconsolidation  

ratio were compared with the values predicted by the equations. The comparison showed a high 

degree of correlation, indicating that the predictive models accurately represent the soil behavior. 

IV.4.6.2. Settlement Analysis 

 
Settlement calculations were performed based on both the predictive equations and the 

experimental test results. The settlements derived from the predictive models were consistent with 

those obtained from the laboratory tests, further validating the reliability of the predictive 

equations. 

IV.4.6.3. Plaxis Simulation 

 
To provide an additional layer of validation, a 3D Plaxis simulation was conducted. The Plaxis 

model simulated the same conditions and parameters as those used in the laboratory tests and 

predictive equations. The settlement results from the Plaxis simulation closely matched the 

settlements calculated from both the predictive equations and the experimental tests. 
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IV.4.6.4. Comparison of Results 

 
The comparison between the results from the predictive equations, experimental tests, and 3D  

Plaxis simulation revealed the following: 

- Compression Index: The predicted compression index values were very close to those 

obtained from the experimental tests and the Plaxis simulation. This consistency indicates that the 

predictive model for the compression index is robust and reliable. 

- Recompression Index: Similar to the compression index, the recompression index values 

predicted by the equations matched well with the experimental and simulation results, 

demonstrating the accuracy of the predictive model. 

- Overconsolidation Ratio: The predictive model for the overconsolidation ratio showed 

excellent agreement with the experimental results and the Plaxis simulation, confirming its 

validity. 

- Settlement: The settlement calculations from all three approaches (predictive equations, 

experimental tests, and Plaxis simulation) were in close agreement, providing strong evidence that 

the predictive equations are capable of accurately estimating settlement. 

Table 38: Finale settlement results. 

 

N° Sample 1 Sample 2 

Settlement with calculated parameters (cm) 13.3 10.6 

Settlement with predicted parameters (cm) 13.8 11.3 

Settlement with 3D Plaxis 13.5 10.3 

 
IV.5. Conclusion 

 
In this study, Design of Experiments (DOE) has been utilized for the development and 

optimization of the compressibility index (Cc), recompression index (Cs) and overconsolidation 

ratio (OCR) as outputs process function. This involved employing a matrix consisting of various 

input parameters, including dry unit weight (γd) in kN/m³, wet unit weight (γh) in kN/m³, water 
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content (w) in percentage, saturation degree (Sr) in percentage, fine fraction (Ff) in percentage,  

Liquidity limits (LL) in percentage, plasticity index (PI) in percentage, initial void ratio (e0),  

preconsolidation pressure (Pc) in kg/cm2 and pressure in field P0 in kPa. For this geotechnical  

hazards case study, focusing on an important output parameters, can help engineers to calculate  

the settlement of fine-grained soil. Additionally, the DOE enables the establishment of various 

correlations among the input parameters. These correlations are easily derived from laboratory 

tests, aiding in understanding their effects on the response parameter. 

The study successfully developed and validated predictive equations for the compression 

index, recompression index, and overconsolidation ratio. The close agreement between the results 

from the predictive models, experimental tests, and 3D Plaxis simulation indicates that the 

equations are reliable and accurate for predicting soil behavior in the studied area. This validation 

confirms that the predictive equations can be confidently used in geotechnical engineering 

applications to estimate settlement and other critical parameters, providing a valuable tool for  

future projects in similar soil conditio 
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General conclusion 

 
This study investigated the compressibility of clayey soils in Tebessa province, focusing on  

understanding soil behavior and its implications for engineering projects. Through empirical 

testing, statistical analysis, and numerical modeling, valuable insights were gained into soil 

properties and compression indices evaluation. Various tests were conducted to measure physical  

and mechanical soil properties such as dry and wet unit weights, water content, degree of 

saturation, Atterberg limits, fine fraction, void ratio, preconsolidation pressures, compression 

index (Cc), swelling or recompression index (Cs), overconsolidation ratio (OCR); providing  

essential data for understanding soil behavior under different conditions. Statistical methods 

embedded under the design of experiment methodology such as Full Factorial Design (FFD) and 

Response Surface Methodology (RSM) were used to develop and optimize predictive models for  

soil compression indices and overconsolidation ratio yielded high correlation coefficients (R²) for 

compression indices (Cc and Cs) and OCR, related to liquid limits, void ratio and unit weights and 

vertical in-situ stress. The high correlation coefficients obtained demonstrate the accuracy of these 

models in predicting parameters and estimating soil settlement. Numerical simulations using 3D 

Plaxis software confirmed the validity of the predictive models, with settlement results closely  

matching both calculated and predicted parameters, validating the accuracy of the models. The 

findings have practical implications for engineering practice, enabling engineers to anticipate and 

mitigate settlement issues in construction projects. The identification of preconsolidation pressure 

through OCR values enhances soil stability assessment and foundation design. In conclusion, this 

study contributes to advancing knowledge in geotechnical engineering and provides practical tools 

for addressing settlement issues in construction projects, achieving a comprehensive approach to 

understanding and predicting soil compressibility. 

 

This study yielded several key findings regarding the compressibility of clayey soils in Tebessa  

province. 

 

Statistical Analysis and Modeling Results: 

 
 Full Factorial Design (FFD) and Response Surface Methodology (RSM) yielded high 

correlation coefficients (R²) for compression indices (Cc and Cs) and OCR. 
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 Predictive models derived from FFD and RSM showed promising accuracy in predicting 

soil behavior. 

 The validation of these models through numerical simulations confirmed their reliability 

in predicting settlement behavior. 

 

Numerical Modeling Results: 

 
 Settlement results obtained from numerical simulations closely aligned with both 

calculated and predicted parameters, validating the accuracy of the predictive models. 

 Settlement values ranged from 10.3 cm to 13.8 cm, indicating variations in settlement 

behavior across different soil samples. 

 

These findings provide valuable insights into the compressibility of clayey soils in Tebessa 

province and lay the foundation for improved engineering practices in construction projects in the 

region. 



121 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

References 



122 

 

 

[1] Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley interdisciplinary 

reviews: computational statistics, 2(4), 433-459. 

[2] Alzabeebee, S., & Al-Taie, A. (2022). Development of new models to predict the 

compressibility parameters of alluvial soils. Geomech Eng, 30, 437-448. 

[3] Akan, R., Keskin, S. N., & Uzundurukan, S. (2015). Multiple regression model for the 

prediction of unconfined compressive strength of jet grout columns. Procedia Earth and Planetary 

Science, 15, 299-303. 

[4] Arjwech, R., Somchat, K., Pondthai, P., Everett, M., Schulmeister, M., & Saengchomphu, S.  

(2020). Assessment of geological, hydrogeological and geotechnical characteristics of a proposed 

waste disposal site: A case study in Khon kaen, Thailand. Geosciences, 10(3), 109. 

[5] Ameratunga, J., Sivakugan, N., & Das, B. M. (2016). Correlations of soil and rock properties 

in geotechnical engineering. 

[6] Balasubramaniam, A. S., & Brenner, R. P. (1981). Consolidation and settlement of soft clay. 

 
[7] Balsubramani, A., Dasgupta, S., & Freund, Y. (2013). The fast convergence of incremental 

PCA. Advances in neural information processing systems, 26. 

[8] Been, K., & Sills, G. C. (1981). Self-weight consolidation of soft soils: an experimental and 

theoretical study. Geotechnique, 31(4), 519-535. 

[9] Benz, T., & Nordal, S. (2010). Numerical methods in geotechnical engineering. Boca Raton, 

FL: CRC Press. 

[10] Berrah, Y., Chegrouche, A., Brahmi, S., & Boumezbeur, A. (2022). Land clayey deposits 

compressibility investigation using principal component analysis and multiple regression 

tools. Geomatics, Landmanagement and Landscape, (4). 

[11] Beattie, J. R., & Esmonde-White, F. W. (2021). Exploration of principal component analysis: 

deriving principal component analysis visually using spectra. Applied Spectroscopy, 75(4), 361- 

375. 

[12] Budhu, M. (2010). Soil mechanics and foundations. John Wiley and Sons. 



123 

 

 

[13] Bouzenoune A. (1993). Peridiapiric mineralization of the Aptian limestone: iron carbonates 

from the hematite deposit of Ouenza (Eastern Algeria). Doctoral thesis, University Paris VI, 209  

p. 

[14] Das, B. M., & Sobhan, K. (2012). Principles of geotechnical engineering, 8th Edition. 

 
[15] Durakovic, B. (2017). Design of experiments application, concepts, examples: State of the  

art. Periodicals of Engineering and Natural Sciences, 5(3). 

[16] Dubourdieu G. (1956). Geological study of the Ouenza region (Algerian-Tunisian borders). 

Publications of the geological map service of Algeria, Algiers, N.S., 10, 659 p. 

[17] Elhaik, E. (2022). Principal component analyses (PCA)-based findings in population genetic 

studies are highly biased and must be reevaluated. Scientific Reports, 12(1), 14683. 

[18] Emerson, R. W., & Cavazzuti, M. (2017). Design of Experiments. Design for Six Sigma: a 

practical approach through innovation. 

[19] Erzin, Y., MolaAbasi, H., Kordnaeij, A., & Erzin, S. (2020). Prediction of compression index 

of saturated clays using robust optimization model. Journal of Soft Computing in Civil 

Engineering, 4(3), 1-16. 

[20] Fathi, B., & Smail, B. (2021). Contribution to the estimation of current reserves of the 

Tebessa-Morsott-NE Algerian aquifer complex (Doctoral dissertation, Larbi Tebessi Tebessa  

University). 

[21] Fox, G. A., & Metla, R. (2005). Soil property analysis using principal components analysis, 

soil line, and regression models. Soil Science Society of America Journal, 69(6), 1782-1788. 

[22] Gunduz, Z., & Arman, H. (2007). Possible relationships between compression and 

recompression indices of a low-plasticity clayey soil. Arabian Journal for science and engineering, 

32(2), 179. 

[23] Hemaili I. (2020). Updates of hydrogeological and hydrochemical data from the Tebessa- 

Morsott watershed, Larbi Tebessi university- Tebessa. 

[24] Hüeber, S. (2008). Discretization techniques and efficient algorithms for contact problems. 



124 

 

 

[25] Ivosev, G., Burton, L., & Bonner, R. (2008). Dimensionality reduction and visualization in 

principal component analysis. Analytical chemistry, 80(13), 4933-4944. 

[26] Jackson, J. E. (2005). A user's guide to principal components. John Wiley & Sons. 

 
[27] Khan, M. I., & Wang, S. (2021). Slope Stability Analysis to Develop Correlations between 

Different Soil Parameters and Factor of Safety Using Regression Analysis. Polish Journal of 

Environmental Studies, 30(5). 

[28] Kim, Y., Nam, B. H., Park, K. W., Shamet, R., & Horhota, D (2022). Estimation of Soils’  

Compression and Recompression Index Using Soil Index Properties—Florida Case Study. In Geo- 

Congress (pp. 92-102). 

[29] Kurnaz, T. F., Dagdeviren, U., Yildiz, M., & Ozkan, O. (2016). Prediction of compressibility 

parameters of the soils using artificial neural network. SpringerPlus, 5, 1-11. 

[30] Kurmi, P., Rai, H. K., Patel, R., Pandey, R., Agrawal, K., & Raghuwanshi, S. Prediction of 

related Soil Properties using Empirical Modelling Approach in Vertisols. 

[31] Kumar, V., Singh, K. P., Mangaraj, S., Chandel, N. S., Kumar, M., & Singh, K. (2023). Study 

of Advanced Techniques to Predict the Soil Properties. Int. J. Environ. Clim. Change, 13(5), 69- 

74. 

[32] LaValley, M. P. (2008). Logistic regression. Circulation, 117(18), 2395-2399. 

 
[33] Le, T. H., & Shin, S. (2018). A literature review on RSM-based robust parameter design 

(RPD): Experimental design, estimation modeling, and optimization methods. Journal of Korean 

Society for Quality Management, 46(1), 39-74. 

[34] Legget, R. F. (1979). Geology and geotechnical engineering. Journal of Geotechnical and 

Geoenvironmental Engineering, 105(ASCE 1444 Conf Paper). 

[35] Long, T., He, B., Ghorbani, A., & Khatami, S. M. H. (2023). Tree-Based Techniques for 

Predicting the Compression Index of Clayey Soils. Journal of Soft Computing in Civil 

Engineering, 7(3), 52-67. 



125 

 

 

[36] Masse J.P. & Chikhi-Aouimeur F. (1982). The Ouenza carbonate platform (South 

Constantine, Algeria). Organization and dynamics during the Upper Aptian. Geol. Meditate,  

Marseille, Vol, IX, n°3, p 259-267. 

[37] Montgomery, D. C. (2017). Design and analysis of experiments. John wiley & sons. 

 
[38] Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response surface 

methodology: process and product optimization using designed experiments. John Wiley & Sons. 

[39] Naqvi, M. W., Kc, D., & Hu, L. (2023). Numerical Modelling and Sensitivity Analysis of the 

Pitztal Valley Debris Flow Event. Geosciences, 13(12), 378. 

[40] Niedoba, T. (2014). Multi-parameter data visualization by means of principal component 

analysis (PCA) in qualitative evaluation of various coal types. physicochemical problems of 

Mineral processing, 50(2), 575-589. 

[41] Ostertagová, E. (2012). Modelling using polynomial regression. Procedia Engineering, 48,  

500-506. 

[42] Potts, D. M., Zdravković, L., Addenbrooke, T. I., Higgins, K. G., & Kovačević, N. 

(2001). Finite element analysis in geotechnical engineering: application (Vol. 2, p. 427). London: 

Thomas Telford. 

[43] Razmyar, A., & Eslami, A. (2017). Geotechnical characterization of soils in the eastern and  

western areas of tehran. Engineering, Technology & Applied Science Research, 7(4), 1802-1810. 

[44] Stewart, G. W. (1993). On the early history of the singular value decomposition. SIAM 

review, 35(4), 551-566. 

[45] Schölkopf, B., Smola, A., & Müller, K. R. (1997, October). Kernel principal component  

analysis. In International conference on artificial neural networks (pp. 583-588). Berlin, 

Heidelberg: Springer Berlin Heidelberg. 

[46] Scholz, M. (2012). Validation of nonlinear PCA. Neural processing letters, 36, 21-30. 

 
[47] Shahabadi, S. M. S., & Reyhani, A. (2014). Optimization of operating conditions in 

ultrafiltration process for produced water treatment via the full factorial design 

methodology. Separation and Purification Technology, 132, 50-61. 



126 

 

 

[48] Smith, D. K. (2021). The Role of Hydrogeological Investigation in Geotechnical 

Engineering. Science Insights, 37(4), 288-291. 

[49] Tang, K., Wang, J., & Li, L. (2020). A prediction method based on Monte Carlo simulations 

for finite element analysis of soil medium considering spatial variability in   soil 

parameters. Advances in Materials Science and Engineering, 2020, 1-10. 

[50] Telford, J. K. (2007). A brief introduction to design of experiments. Johns Hopkins apl  

technical digest, 27(3), 224-232. 

[51] Villa, A., Carrión García, A., & San Matías Izquierdo, S. (2012). Modeling response variables 

in Taguchi design parameters using CART and random forest based systems. Communications in 

Dependability and Quality Management, 15(4), 5-15. 

[52] Vinod, P., & Bindu, J. (2010). Compression index of highly plastic clays—an empirical 

correlation. Indian Geotechnical Journal, 40(3), 174-180. 

[53] Yu, J., Kim, J. E., Lee, J. H., & Kim, T. W. (2021). Development of a PCA-based vulnerability 

and copula-based hazard analysis for assessing regional drought risk. KSCE Journal of Civil  

Engineering, 25(5), 1901-1908. 

[54] Yune, C. Y., & Olgun, C. G. (2016). Analysis of consolidation settlement of normally  

consolidated soil by layering under 3D conditions. KSCE Journal of Civil Engineering, 20, 2280- 

2288. 

[55] Zienkiewicz, O. C., & Taylor, R. L. (2005). The finite element method for solid and structural 

mechanics. Elsevier. 

[56] Zou, K. H., Tuncali, K., & Silverman, S. G. (2003). Correlation and simple linear 

regression. Radiology, 227(3), 617-628. 


	Abstract
	General introduction
	Chapter I:
	I.1. Introduction
	I.2. Consolidation
	I.2.1. One dimensional consolidation test
	I.2.2. Compression and recompression indices discussion and prediction in literature
	I.2.2.1. Compression Index (Cc)
	I.2.2.2. Recompression Index (Cr)
	I.2.2.3. Prediction and Modeling
	I.3. Design of experiments
	I.3.1. Brief history of design experiments
	I.3.2. Main uses of DOE
	I.3.3. DOE techniques
	I.3.3.1. Randomized complete block design
	I.3.3.2. Factorial design
	I.3.3.3. Response surface methodology
	I.3.3.4. Taguchi (Robust Design)
	I.4. Statistics uses
	I.4.1. Principal component analysis
	I.4.2. Regressions
	I.4.3. Finite element analysis
	I.4.3.1. Methodologies for Predicting Soil Properties using Finite Element Analysis (FEA)
	I.5. Conclusion

	Chapter II:
	II.1. Introduction
	II.2. Overview
	II.3. Geographic location
	II.4. Geology
	II.4.1. Lithostratigraphy of Tebessa region
	II.4.1.1. Secondary
	II.4.1.1.2. Lower and middle Cretaceous
	II.4.1.1.3. Upper Cretaceous
	II.4.1.2. Tertiary
	II.4.2. Tectonic and structural description:
	II.5. Hydrogeology
	II.5.1. General description
	II.5.2. Boundary conditions maps
	II.5.3. Piezometry
	II.5.3.1. Inventory of water points
	II.5.3.2. Establishment of a piezometric map
	II.6. Climatic
	II.6.2. Precipitations
	II.6.2. Temperatures
	II.7. Conclusion

	Chapter III: Geotechnical Data Investigation
	III.1. Introduction
	III.2. Presentation of geotechnical soil data in the studied region
	III.2.1. Implementation of boreholes
	III.3. Identification and classification of the soils studied
	III.3.1. Granulometry of the studied soils (grain size)
	III.3.2. Atterberg limits
	III.4. Tests and results
	III.5. Conclusion

	Chapter IV: Experimental Design and Data Analysis in Predictive
	IV.1. Introduction
	IV.2. Materials and methods
	IV.2.2. Design of experiments
	IV.2.2.1. Input and output parameters
	IV.3. DOE and data implementation
	IV.4. Results and discussion
	IV.4.2. Response surface methodology
	IV.4.3. Optimisation
	IV.4.4. Overconsolidation ration and preconsolidation pressure predicting
	IV.4.5. Validation of the equations
	IV.4.5.1. Settlement calculation
	IV.4.5.2. Plaxis Modeling
	IV.4.5.2.1. Data Introduction
	IV.4.5.2.1.1. The geometric model
	IV.4.5.2.1.2. Material properties
	IV.4.5.2.2. Mesh Generation
	IV.4.5.2.3. Phasing
	IV.4.5.2.4. Output
	IV.4.5.2.5. Curves
	IV.4.6. Results interpretation
	IV.4.6.1. Predictive Equations and Validation
	IV.4.6.2. Settlement Analysis
	IV.4.6.3. Plaxis Simulation
	IV.4.6.4. Comparison of Results
	IV.5. Conclusion
	General conclusion
	Statistical Analysis and Modeling Results:
	Numerical Modeling Results:


	References

