
ةـــــيـــبــــعــــــــــــــــــــــــــــــــــــــــشـــة الـــيــــراطـــــقـــــــــــــــــــــــــــة الديمـــريـــــــزائــــــــــــــــة الجـــــــــــــــوريــــــهــــالجم  

People's Democratic Republic of Algeria 

والبـــــــــــــــــحث العــــــــــــــــــــلــــــمــــــــــــيالي ـــــــــــــم العــــــــــليـــــــعـــــــــــــــــــــــوزارة التـ  
Ministry of Higher Education and Scientific Research 

  ةـــــــــــــــــــــــــبســـــــت - ــــي التبســــــــــــــــيــالعربـــــــــــ الشهيـــــــــــد الشيـــــــــــــــخ ةـــــــــــــــجـــــــــــامع

  Echahid Cheikh Larbi Tebessi University– Tebessa 

Faculty of Science and Technology 

Departement of Electronic and Telecommunications 

 

 

Presented for obtaining the Academic Master’s degree 
 

Field: Telecommunications 
  

specialty : Network and Telecommunications 

 

Presented by: ABIDAT Mohammed  

 

THEME 

 

 

Medical image denoising. An Auto Encoders based 

approach 

  

 

 

 

Presented and evaluated, on 27/06/2024     , Committee members: 
   

Mr. Karim FERROUDJI   MCB President 

Mr. Lotfi HOUAM  MCB Supervisor 

Mrs. Hanane DJELLAB  MCA Examiner 

     

    

   

   

 Academic Year: 2023/2024  

 





Dedication 

 

i 

 

Dedication 

 

 

 

 

 

 

 

 

 

 

Dedicated to my parents. 

 

 

 

 

 

 

 

 

 



Acknowledgment 

 

ii 

 

Acknowledgment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I would like to thank my advisor, Professor HOUAM Lotfi for his continuous support 

and guidance. 

This thesis work would not have been successful without his feedback and teachings. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



List of Tables 

 

iii 

 

Table of Contents 

Dedication ........................................................................................................................... i 

Acknowledgment ............................................................................................................... ii 

Table of Contents ............................................................................................................. iii 

List of Tables ...................................................................................................................... x 

List of Figures....................................................................................................................xi 

Chapter 1 Introduction ...................................................................................................... 1 

1.1 Background and motivation ........................................................................................ 1 

1.2 Problem statement ...................................................................................................... 2 

1.3 Objectives of the master thesis .................................................................................... 2 

Chapter 2 An Overview on Medical imaging modalities .................................................. 4 

2.1 Introduction ................................................................................................................ 4 

2.2 Image definition ......................................................................................................... 4 

2.3 Types of Images ......................................................................................................... 5 

2.3.1 Classification of Images on the basis of Attributes ............................................... 5 

2.3.1.1 Vector graphics ............................................................................................. 5 

2.3.1.2 Raster images ................................................................................................ 6 

2.3.2 Classification of images on the basis of color ....................................................... 6 

2.3.2.1 Gray-scale images ......................................................................................... 6 

2.3.2.2 True color (or full color) ............................................................................... 7 

2.3.3 Categorizing Images Based on Dimensions .......................................................... 7 

2.4 Characteristics of a Digital Image ............................................................................... 8 

2.4.1 Dimension ........................................................................................................... 8 

2.4.2 Resolution ........................................................................................................... 8 

2.4.3 Noise ................................................................................................................... 8 



List of Tables 

 

iv 

 

2.4.4 Histogram ............................................................................................................ 8 

2.4.5 Luminance ........................................................................................................... 9 

2.4.6 Contrast ............................................................................................................... 9 

2.5 Applications ............................................................................................................... 9 

2.6 Medical imaging ....................................................................................................... 10 

2.7 Overview of medical imaging modalities .................................................................. 10 

2.7.1 X-ray imaging .................................................................................................... 10 

2.7.2 Computed Tomography (CT) Imaging ............................................................... 12 

2.7.3 Magnetic Resonance Imaging (MRI) ................................................................. 13 

2.7.4 Ultrasound imaging ........................................................................................... 14 

2.7.5 Nuclear medicine imaging ................................................................................. 16 

2.7.6 Electrical Impedance Tomography (EIT) ........................................................... 16 

2.7.7 Cardiovascular Imaging ..................................................................................... 17 

2.8 Comparison between different medical imaging medical .......................................... 18 

2.9 conclusion ................................................................................................................ 19 

Chapter 3 Medical image denoising techniques and artificial neural networks ............ 21 

3.1 Introduction .............................................................................................................. 21 

3.2 image denoising........................................................................................................ 22 

3.2.1 Image denoising problem statement ................................................................... 22 

3.2.2 Noise sources ..................................................................................................... 22 

3.2.3 Noise models ..................................................................................................... 23 

3.2.3.1 Additive Noise Model ................................................................................. 23 

3.2.3.2 Multiplicative Noise Model ......................................................................... 23 

3.2.4 Types of noises .................................................................................................. 23 

3.2.4.1 Gaussian Noise ........................................................................................... 23 



List of Tables 

 

v 

 

3.2.4.2 Salt and Pepper Noise ................................................................................. 24 

3.2.4.3 Poison Noise ............................................................................................... 24 

3.2.4.5 Impulse Noise ............................................................................................. 25 

3.2.4.6 Speckle Noise ............................................................................................. 26 

3.2.5 Medical Image Denoising Techniques ............................................................... 26 

3.2.5.1 Adaptive Filter ............................................................................................ 26 

3.2.5.2 Median Filter .............................................................................................. 27 

3.2.5.3 FIR Filter (finite impulse response) ............................................................. 27 

3.2.5.4 Linear Filter ................................................................................................ 27 

3.2.5.5 Non-Local Means Filter .............................................................................. 27 

3.2.5.6 Wavelet transform ....................................................................................... 28 

3.2.5.7 Curvelet transform ...................................................................................... 29 

3.2.5.8 Convolutional Networks (CNNs) ................................................................ 29 

3.3 Artificial Neural Networks ....................................................................................... 30 

3.3.1 Biological neuron .............................................................................................. 30 

3.3.2 Artificial neural networks .................................................................................. 30 

3.3.3 Perceptron in ANN ............................................................................................ 31 

3.3.3.1 Inputs and outputs ....................................................................................... 33 

3.3.3.2 Weights....................................................................................................... 33 

3.3.3.3 Summation function .................................................................................... 34 

3.3.3.4 Activation function ..................................................................................... 34 

3.3.4 The differences between biological and artificial neural networks ...................... 34 

3.3.4.1 Size ............................................................................................................. 34 

3.3.4.2 Signal transport and processing ................................................................... 35 

3.3.4.3 Processing speed ......................................................................................... 35 



List of Tables 

 

vi 

 

3.3.4.4 Topology .................................................................................................... 35 

3.3.4.5 Speed .......................................................................................................... 35 

3.3.4.6 Fault-tolerance ............................................................................................ 35 

3.3.4.7 Power consumption ..................................................................................... 35 

3.3.4.8 Learning...................................................................................................... 36 

3.3.4.9 Field of application ..................................................................................... 36 

3.3.4.10 Training algorithm .................................................................................... 36 

3.3.5 Types of Artificial Neural Networks .................................................................. 36 

3.3.5.1 Feed Forward Neural Network .................................................................... 36 

3.3.5.2 Feedback Neural Network ........................................................................... 37 

3.3.6 ANN Learning Techniques ................................................................................ 38 

3.3.6.1 Supervised Learning ................................................................................... 38 

3.3.6.2 Unsupervised Learning ............................................................................... 38 

3.3.6.3 Reinforcement Learning .............................................................................. 38 

3.3.7 Artificial neural network applications ................................................................ 38 

3.3.7.1 Speech recognition ...................................................................................... 38 

3.3.7.2 Handwritten characters recognition ............................................................. 38 

3.3.7.3 Signature Classification............................................................................... 38 

3.3.7.4 Medical: ...................................................................................................... 39 

3.3.8 What is Convolutional Neural Network ............................................................. 39 

3.3.9 Autoencoders ..................................................................................................... 43 

3.3.9.1 What Are Autoencoders? ............................................................................ 43 

3.3.9.2 Types of Autoencoder ................................................................................. 44 

3.3.9.3 Applications of Autoencoders?.................................................................... 47 

3.4 Related studies ......................................................................................................... 50 



List of Tables 

 

vii 

 

3.5 Conclusion ............................................................................................................... 50 

Chapter 4  Methodology .................................................................................................. 52 

4.1 Introduction .............................................................................................................. 52 

4.2 Convolutional Autoencoder architecture ................................................................... 53 

4.2.1 Input Layer ........................................................................................................ 54 

4.2.2 Encoder layers ................................................................................................... 54 

4.2.2.1 Convolutional Layer ................................................................................... 54 

4.2.2.2. Pooling Layer............................................................................................. 55 

4.2.3 Bottleneck Layer................................................................................................ 55 

4.2.4 Decoder Layers .................................................................................................. 56 

4.2.4.1. Up-sampling Layer .................................................................................... 56 

4.2.4.2. Convolutional Layer .................................................................................. 56 

4.2.5 Output Layer...................................................................................................... 56 

4.3 Autoencoder hyperparameters .................................................................................. 58 

4.3.1 Activation function ............................................................................................ 58 

4.3.2 Loss function ..................................................................................................... 59 

4.3.3 Optimization technique ...................................................................................... 59 

4.3.4 Callback ............................................................................................................ 60 

4.3.5 Batch size .......................................................................................................... 60 

4.3.6 Number of epochs .............................................................................................. 60 

4.4 Training procedure ................................................................................................... 60 

4.4.1 How autoencoder train ....................................................................................... 60 

4.4.2 How convolutional autoencoder train ................................................................. 62 

4.5 Conclusion ............................................................................................................... 63 

Chapter 5 Experiments and results ................................................................................. 64 



List of Tables 

 

viii 

 

5.1 Introduction .............................................................................................................. 64 

5.2 Types of Datasets ..................................................................................................... 64 

5.2.1 mini-MIAS database .......................................................................................... 65 

5.2.2 Panoramic Dental X-rays database ..................................................................... 65 

5.3 Noise Types.............................................................................................................. 66 

5.4 Types of Losses ........................................................................................................ 67 

5.5 Optimizer Types ....................................................................................................... 68 

5.6 preprocessing ........................................................................................................... 68 

5.6.1 Loading and Resizing Images ............................................................................ 68 

5.6.2 Splitting Dataset ................................................................................................ 68 

5.6.3 Normalizing Images ........................................................................................... 68 

5.6.4 Adding Noise ..................................................................................................... 68 

5.6.5 Preparing Noisy Images for Training ................................................................. 69 

5.6.6 median and gaussian filter .................................................................................. 69 

5.6.6.1 Median Filter: ............................................................................................. 69 

5.6.6.2 Gaussian Filter ............................................................................................ 69 

5.7 Evaluation metrics .................................................................................................... 70 

5.7.1 PSNR (Peak Signal-to-Noise Ratio) ................................................................... 70 

5.7.2 SSIM (Structural Similarity Index) .................................................................... 71 

5.8 Tools ........................................................................................................................ 72 

5.8.1 Software Tools................................................................................................... 72 

5.8.2 Hardware Tools ................................................................................................. 72 

5.9 Fine tuning ............................................................................................................... 72 

5.9.1 Batch Size Tuning ............................................................................................. 73 

5.9.2 Epoch Tuning .................................................................................................... 73 



List of Tables 

 

ix 

 

5.9.3 Image Size Tuning ............................................................................................. 73 

5.10 Fine tuning results .................................................................................................. 74 

5.10.1 mini-MIAS database results ............................................................................. 74 

5.10.1.1 Batch Size Tuning ..................................................................................... 74 

5.10.1.2 Epoch Tuning............................................................................................ 74 

5.10.1.3 image size Tuning ..................................................................................... 75 

5.10.2 Panoramic Dental X-rays database results ........................................................ 76 

5.10.2.1 Batch Size Tuning ..................................................................................... 76 

5.10.2.2 Epoch Tuning............................................................................................ 76 

5.10.2.3 image size Tuning ..................................................................................... 77 

5.11 Empirical evaluation ............................................................................................... 77 

5.12 Result and discussion .............................................................................................. 83 

5.13 Conclusion and future work .................................................................................... 84 

Chapter 6 Conclusion....................................................................................................... 86 

References......................................................................................................................... 88 

 

 

 

 

 

 

 

 

 

 



List of Tables 

 

x 

 

List of Tables 

Table 2- 1 Comparative analysis [2]. .................................................................................. 19 

 

Table 5- 1 For each type of noise in the, there are both low and high levels of perturbation.

 ...................................................................................................................................................... 69 

Table 5- 2 SSIM and PSNR results with different batch size values (fixing epochs in 50 and 

image size in 64×64 pixels). .......................................................................................................... 74 

Table 5- 3 SSIM and PSNR results with different numbers of epochs (fixing batch size in 10 

and image size in 64×64 pixels). .................................................................................................... 74 

Table 5- 4 SSIM and PSNR results with different image sizes (fixing batch size in 10 and 

number of epochs in 300). ............................................................................................................. 75 

Table 5- 5 SSIM and PSNR results with different batch size values (fixing epochs in 50 and 

image size in 64×64 pixels). .......................................................................................................... 76 

Table 5- 6  SSIM and PSNR results with different numbers of epochs (fixing batch size in 

10 and image size in 64×64 pixels). ............................................................................................... 76 

Table 5- 7 SSIM and PSNR results with different image sizes (fixing batch size in 10 and 

epochs in 200). .............................................................................................................................. 77 

Table 5- 8 comparing mean SSIM and PSNR scores using denoising CDAE without and 

with filtering for mini_MIAS database........................................................................................... 79 

Table 5- 9 comparing mean SSIM and PSNR scores using denoising CDAE without and 

with filtering for Panoramic Dental X-rays database. ..................................................................... 81 

 

 

 

 

 

 



List of Figures 

 

xi 

 

List of Figures 

 

Figure 2- 1 (a) Sample of binary digital image, and (b) Matrix of the Image [8]. .................. 5 

Figure 2- 2 vector graphics [9]. ............................................................................................ 6 

Figure 2- 3 raster graphics [9]. ............................................................................................. 6 

Figure 2- 4 (a)True color image, and (b) it's red, green and blue components respectively. ... 7 

Figure 2- 5 Image histogram and palette [6]. ........................................................................ 9 

Figure 2- 6 Conventional X-ray Radiography. .................................................................... 11 

 Figure 2- 7 X ray image of a human hand[11]. .................................................................. 11 

Figure 2- 8 X-ray CT Image acquisition using a circular sensor array [10]. ........................ 12 

Figure 2- 9 CT scan of fluid collection at the gastro-esophageal junction[12]. .................... 13 

Figure 2- 10 Block diagram of MRI device. ....................................................................... 14 

Figure 2- 11 MRI image of a human brain[13]. .................................................................. 14 

Figure 2- 12 Block diagram of Ultrasound imaging device. ................................................ 15 

Figure 2- 13 Ultrasound image of the pancreas[14] ............................................................ 15 

Figure 2- 14 whole body scan for thyroid cancer evaluation[15]. ........................................ 16 

Figure 2- 15 human thorax[16]. .......................................................................................... 17 

Figure 2- 16 axial image of the heart[17]. ........................................................................... 18 

 

Figure 3- 1 Schematic image of a biological neuron [24]. ................................................... 30 

Figure 3- 2 Schematic diagram of a neural network [25]..................................................... 31 

Figure 3- 3 A mathematical model of perceptron in a neural network [26]. ......................... 32 

Figure 3- 4 Schematic diagram of a shallow neural network [1].......................................... 33 

Figure 3- 5  Schematic diagram of a deep learning neural network [1]. ............................... 33 

Figure 3- 6 Plot of most commonly used activation function [26]. ...................................... 34 



List of Figures 

 

xii 

 

Figure 3- 7 Feed Forward Neural Network. ........................................................................ 37 

Figure 3- 8 Feedback Neural Network (Recurrent NN). ...................................................... 37 

Figure 3- 9 A generic CNN pipeline with 6 types of layers: 1 input, 2 convolutional, 2 

pooling, 1 flattening, 2 fully connected, and 1 output [28]. ............................................................ 39 

Figure 3- 10 Image and a filter [29]. ................................................................................... 40 

Figure 3- 11 Applying The Filter To The Image [29]. ......................................................... 40 

Figure 3- 12 A max pooling in action. You can think of each colored region as a position of 

the 2x2 filter [30]. .......................................................................................................................... 41 

Figure 3- 13 how flattening layer function [28]. ................................................................. 42 

Figure 3- 14 The architecture of Fully Connected Layers [31]. ........................................... 42 

Figure 3- 15 Demonstrates The Basic Architecture Of An Autoencoder [32]. ..................... 44 

Figure 3- 16 Architecture of fully connected autoencoders [32]. ......................................... 45 

Figure 3- 17 Architecture of Convolutional Autoencoder for Image Segmentation [32]. ..... 45 

Figure 3- 18  A denoising autoencoder processes a noisy image, generating a clean image on 

the output side [32]. ....................................................................................................................... 46 

Figure 3- 19 The topology of Sparse Autoencoder [32]. ..................................................... 46 

Figure 3- 20 Architecture of variational autoencoder [32]. .................................................. 47 

Figure 3- 21 Sequence-to-Sequence Autoencoder [33]. ...................................................... 47 

Figure 3- 22 Face completion by filling in the missing pixels [32]. ..................................... 48 

Figure 3- 23 An illustration of the fully convolutional SegNet architecture [34]. ................ 49 

 

Figure 4- 1 Block diagram of the proposed model architecture. .......................................... 52 

Figure 4- 2 Architecture of the proposed CDAE. ................................................................ 53 

Figure 4- 3 Convolution of a 5×5 image and a 3×3 kernel with stride =1. Observe how a 

feature map is generated step by step [28]. ..................................................................................... 54 



List of Figures 

 

xiii 

 

Figure 4- 4 Convolution of zero-padded image with a kernel. Observe how the dimensions 

of the input remain preserved as compared to no zero-padding [28]. .............................................. 55 

Figure 4- 5 Demonstration of the max pooling operation [28]. ............................................ 55 

Figure 4- 6 Architecture of the CDAE used [3]................................................................... 57 

Figure 4- 7 Sigmoid activation function [31]. ..................................................................... 58 

Figure 4- 8 ReLU activation function [31] .......................................................................... 59 

Figure 4- 9 Autoencoder training architecture [37]. ............................................................ 62 

 

Figure 5- 1 Random samples of medical images taken from mini-MIAS dataset [38]. ........ 65 

Figure 5- 2 Random samples of medical images taken from the Panoramic Dental X-rays 

database [39]. ................................................................................................................................ 66 

Figure 5- 3 Effect of different type of noise on the original image, taken from the mini-

MIAS dataset (first row show the minimal level of noise second row show a higher noise level).  .. 66 

Figure 5- 4 Effect of different type of noise on the original image, taken from the Panoramic 

Dental X-rays dataset (first row show the minimal level of noise second row show a higher noise 

level). ............................................................................................................................................ 67 

Figure 5- 5 SSIM and PSNR results with different batch size values (fixing epochs in 50 and 

image size in 64×64 pixels). .......................................................................................................... 74 

Figure 5- 6 SSIM and PSNR results with different numbers of epochs (fixing batch size in 

10 and image size in 64×64 pixels). ............................................................................................... 75 

Figure 5- 7 SSIM and PSNR results with different image sizes (fixing batch size in 10 and 

epochs in 300). .............................................................................................................................. 75 

Figure 5- 8 SSIM and PSNR results with different batch size values (fixing epochs in 50 and 

image size in 64×64 pixels). .......................................................................................................... 76 

Figure 5- 9 SSIM and PSNR results with different numbers of epochs (fixing batch size in 

10 and image size in 64×64 pixels). ............................................................................................... 76 

Figure 5- 10 SSIM and PSNR results with different image sizes (fixing batch size in 10 and 

epochs in 200). .............................................................................................................................. 77 



List of Figures 

 

xiv 

 

Figure 5- 11 denoising performance of CDAE on the mini-MIAS database with and without 

filtering in the preprocessing. The top row displays the real images. The second and fifth rows show 

the noisier versions with minimal and higher noise levels, respectively. The third and sixth rows 

present the denoising results of CDAE without filtering. The fourth and eighth rows show the 

results of CDAE with filtering in the preprocessing. ...................................................................... 78 

Figure 5- 12 denoising performance of CNNDAE on the Panoramic Dental X-rays database 

with and without filtering in the preprocessing. The top row displays the real images. The second 

and fifth rows show the noisier versions with minimal and higher noise levels, respectively. The 

third and sixth rows present the denoising results of CNNDAE without filtering. The fourth and 

eighth rows show the results of CNNDAE with filtering in the preprocessing. ............................... 80 

Figure 5- 13 loss and validation loss from 300 epochs using a batch size of 10 and 200*200 

pixels image size with salt and pepper noise (density=0.3, proportion=0.5). ................................... 82 

Figure 5- 14 loss and validation loss from 200 epochs using a batch size of 10 and 200×200 

pixels image size with Gaussian noise (mean=0, variance=0.08). ................................................... 82 

Figure 5- 15 loss and validation loss from 300 epochs using a batch size of 10 and 200*200 

pixels image size with Speckle noise (mean=0, variance=0.04) with a log transformation in the 

preprocessing................................................................................................................................. 83 

 

 

 

 

 

 

 

 

 



Acronyms 

 

xv 

 

Acronyms 

 

AE: Autoencoder 

ANN: Artificial Neural Network 

CBCT: Cone Beam Computed Tomography 

CNN: Convolutional Neural Network 

CT: Computed Tomography 

DL: Deep Learning 

DNN: Deep Neural Network 

DSA: Digital Subtraction Angiography 

EIT: Electrical Impedance Tomography 

GAN: Generative Adversarial Network 

ML: Machine Learning 

MRI: Magnetic Resonance Imaging 

MRS: Magnetic Resonance Spectroscopy 

PET: Positron Emission Tomography 

PSNR: Peak Signal-to-Noise Ratio 

SNR: Signal-to-Noise Ratio 

SPECT: Single Photon Emission Computed Tomography 

SSIM: Structural Similarity Index 

US: Ultrasound 

 

 



Chapter 1 Introduction 

 

1 

 

Chapter 1 Introduction 

1.1 Background and motivation 

Artificial intelligence has had a profound impact on the medical industry, 

revolutionizing the process of medical diagnosis. The utilization of this technology has 

significantly enhanced the diagnostic procedure, resulting in improved efficacy, speed, and 

reliability. Its main objective is not to supplant doctors, but rather to facilitates their work [1]. 

One of the services provided is medical imaging, which encompasses the methods and 

technology employed to generate visual depictions of the inside structures of the body. 

These visual representations, commonly referred to as pictures, can be employed for 

the purposes of diagnosing, monitoring, or treating a range of medical disorders. The user's 

text is simply "M".Medical imaging facilitates the analysis and depiction of different 

anatomical components, including bones, muscles, organs, blood vessels, and other interior 

structures [2]. Medical imaging techniques such as X-rays, magnetic resonance imaging 

(MRI), computer tomography (CT), ultrasound, and others are used.All of these medical 

photos are prone to noise. The reasons for this variation range from the utilization of diverse 

image collecting techniques to efforts aimed at reducing patients' radiation exposure. 

As the level of radiation lowers, the level of noise increases. Noisy images often need 

to be denoised in order to facilitate accurate image analysis, whether performed by humans or 

machines [3]. Image denoising is a procedure that eliminates noise from an image, resulting in 

a crisp and distinct image. Medical imaging machines primarily utilize it to mitigate the noise 

in the resultant image. Prior to the final printing process, there are various approaches that can 

be employed to prevent any distortions in the image. 

Autoencoders are a prominent type of software utilized for the purpose of removing 

noise from photographs prior to their final printing [4]. An autoencoder is a neural network 

that encodes the input into a compact and meaningful representation, and then decodes it to 

rebuild the input as accurately as possible to the original [5]. In order to handle image 

processing, it is necessary to employ a certain kind of autoencoder known as convolutional 
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autoencoders. These autoencoders make use of the complete potential of convolutional neural 

networks to effectively utilize the structure of images [3]. 

1.2 Problem statement 

The task of removing noise from medical images is fraught with multiple challenges, 

including intricate noise patterns originating from several sources, such as electrical system 

noise, patient motion, and differences in scanning techniques. The noise might exhibit 

Gaussian, Poisson, or more intricate forms such as speckle noise. One of the primary 

challenges is the high dimensionality of images, especially 3D images like as CT and MRI 

scans. These images have a huge number of dimensions, which makes the denoising process 

computationally demanding. Efficient algorithms capable of handling big datasets are 

necessary to address this issue.  

It is essential to maintain the intricate intricacies and structural information. Preserving 

anatomical features and borders is crucial when minimizing noise. Any error has the potential 

to result in the loss of crucial diagnostic data and various additional complications. 

CNN-based denoising autoencoders are capable of efficiently tackling these 

difficulties by utilizing big datasets to acquire knowledge about intricate noise patterns that 

are specific to different medical imaging modalities and originate from diverse sources of 

noise. In addition, they have the capability to address the issue of image structure loss by 

extracting features at many scales. This allows them to retain intricate details and structural 

information while reducing noise. 

1.3 Objectives of the master thesis  

The main aim of this master thesis is to tackle the problem of reducing noise in 

medical images by employing a convolutional denoising autoencoder (CAE). Despite 

extensive study in the field of image denoising, the task of extracting significant information 

from noisy images while preserving crucial details remains a formidable challenge. 

Efficiently eliminating noise from medical images is crucial as accurate diagnosis and 

treatment necessitate high-quality images.  

The aim of our project is to develop a dependable procedure for eliminating noise 

from medical images while preserving essential diagnostic patterns. 
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In order to accomplish this, we utilize the capabilities of the CAE model, which is a 

specialized convolutional neural network specifically intended to detect and analyze noise 

patterns from the feature maps at each layer. The CAE model can effectively differentiate 

between noise and important information by understanding the context of the images, thus 

ensuring that only the noise is removed. The objective of this strategy is to improve the clarity 

and quality of medical images, hence enabling more accurate diagnoses and improved overall 

healthcare results. 
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Chapter 2 An Overview on Medical imaging modalities 

2.1 Introduction 

Medical imaging is an essential tool in the diagnosis and treatment of various diseases. 

It refers to the non-invasive techniques and approaches used to create visual representations of 

the internal organs and tissues of the human body. We can utilize these visual representations, 

also known as images, to detect and diagnose a variety of diseases, guide disease treatment 

strategies, and monitor treatment effectiveness. Specifically, it examines and visualizes 

various body parts such as bones, muscles, organs, blood vessels, and other internal 

structures.  

Diagnostic and therapeutic imaging are the two main categories into which medical 

imaging falls. 

Diagnostic imaging uses modalities like X-ray radiography, computed tomography 

(CT), magnetic resonance imaging (MRI), ultrasound (US), and nuclear medicine to detect 

and diagnose diseases and assess their severity. 

Modalities such as fluoroscopy, angiography, and interventional radiology are part of 

therapeutic imaging, which guides procedures like surgery or radiation therapy. Technology 

advancements have led to the development of a wide range of medical imaging modalities 

that offer detailed visual information about the internal structures and functions of the body. 

This chapter provides an overview of the most prominent imaging modalities, starting with 

the basics of diagnostic x-ray imaging, the historical starting point of medical imaging, and 

then discussing various imaging modalities [2]. 

2.2 Image definition 

The digital image itself is really a data structure within the computer, containing a 

number or code for each pixel or picture element in the image. This code determines the color 

of the pixel. Consider each pixel as a discrete sample of a continuous real image. From a 

photographer's point of view, it is a photograph (i.e., a projection of the real world), and from 

a computer engineer's point of view, an image may be a two-dimensional (2D) signal. 
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Therefore, an image is a two-dimensional function f(x,y), where for each position (x,y) in the 

projection plane, the values of the function f(x,y) represent the amplitude or light intensity of 

the image [6]. 

We define a digital image as a 2D discrete signal that varies over the spatial 

coordinates x and y, represented mathematically as f(x,y). It is also an n×n array of elements, 

and each element represents the sampled intensity [7]. 

 
Figure 2- 1 (a) Sample of binary digital image, and (b) Matrix of the Image [8]. 

2.3 Types of Images 

Various criteria such as attributes, color, dimension, and data types can perform image 

classification. We classify images as raster and vector based on attribute criteria, while we can 

classify them as binary, grayscale, true color, or pseudo color based on color. Furthermore, we 

distinguish between 2D and 3D images based on their dimensions, and we classify the images 

into signed integer, unsigned integer, float, logical, and double types based on their data 

types. So there is no single accepted way of classifying images. Here is a detailed description 

of the image classification process: 

2.3.1 Classification of Images on the basis of Attributes 

Any image's attributes determine whether it is a raster or vector graphic image. 

2.3.1.1 Vector graphics 

Uses graphic primitives, such as points, lines, circles, and ellipses, to depict an image. 

Hence, the notion of resolution is practically not present in graphics [7]. 
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Figure 2- 2 vector graphics [9]. 

2.3.1.2 Raster images 

 Are pixel-based, meaning that their quality depends on the quantity of pixels. 

Therefore, operations such as enlarging or blowing up a raster image frequently result in a 

quality reduction [7]. 

 

Figure 2- 3 raster graphics [9]. 

2.3.2 Classification of images on the basis of color 

The images fall into the following categories based on color: 

2.3.2.1 Gray-scale images 

The term gray-scale refers to the range of shades between white and black or vice 

versa; such images have many shades of gray, and eight bits (28 = 256) are enough to 

represent the gray-scale because the human visual system cannot differentiate more than 32 

different gray levels, and the additional bits are necessary to cover noise margins. Most 
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medical images, such as X-rays, CT images, MRIs, and ultrasound images, are often gray-

scale images [7]. 

2.3.2.2 True color (or full color) 

 The primary colors red, green, and blue combine to create the color of an image. We 

represent each color component like a grayscale image using eight bits. Most true-color 

images use 24 bits to represent all the colors. Hence, a true color image can be considered a 

three-band image. The number of colors that are possible is 2563 (i.e., 256×256×256 = 

1,67,77,216 colors) [7]. 

 

Figure 2- 4 (a)True color image, and (b) it's red, green and blue components respectively.  

2.3.3 Categorizing Images Based on Dimensions 

Dimensions can also classify images. Normally, digital images are a 2D rectangular 

array of pixels. When we consider another dimension, such as depth or any other 

characteristic that may be required, we generate a higher-order stack of images similar to 3D 

images. 

A volume image, where pixels are known as voxels, serves as a good example of a 3D 

image. The term '3D image' refers to the three-dimensional (x, y, and depth) dimension of the 

target in the imaging system, which could be a scene or an object. In medical imaging, some 

of the frequently encountered 3D images are CT images, MRIs, and microscopy images. 

Basically, we store these as 2D image slices taken across the body or the skull. Range images 

(often used in remote sensing applications) are also 3D images, because they incorporate 

depth information [7]. 
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2.4 Characteristics of a Digital Image 

An image is a structured set of information characterized by the following parameters: 

2.4.1 Dimension 

This is the size of the image. It takes the form of a matrix, whose elements are 

numerical values representing light intensities (pixels). The number of rows in this matrix 

multiplied by the number of columns gives us the total number of pixels in an image [6]. 

2.4.2 Resolution 

In image production, a monitor or printer achieves clarity or fineness of detail. The 

number of pixels per unit of measurement (inch or centimeter) on computer monitors 

expresses resolution. We also use the word resolution to indicate the total number of pixels 

that a monitor can display horizontally or vertically; the higher the number, the higher the 

resolution [6]. 

2.4.3 Noise 

The illumination of the sensor's optical and electronic devices causes noise in an 

image, which is defined as a sudden variation in a pixel's intensity in relation to its neighbors 

[6]. 

2.4.4 Histogram 

The grayscale, or color histogram, of an image is a function that gives the frequency of 

appearance of each grayscale (color) in the image. In the case of an image that is too light or 

too dark, it provides a wealth of information on the distribution of gray levels (color) and 

indicates the bounds between which the majority of gray levels (color) fall. 

By introducing a few modifications, one can enhance the quality of an image and 

extract useful information from it. We often modify the corresponding histogram to reduce 

quantization error, compare two images obtained under different lighting conditions, or 

measure certain properties of an image [6]. 

. 
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Figure 2- 5 Image histogram and palette [6]. 

2.4.5 Luminance 

This is the degree of brightness of the image points. It is also defined as the quotient of 

a surface's luminous intensity divided by its apparent area. A distant observer substitutes the 

word luminance for the word brilliance, referring to the brightness of an object. Good 

luminance is characterized by: 

- Luminous (bright) images, 

- Good contrast: avoid images where the contrast range tends towards white or black; 

these images result in loss of detail in dark or bright areas. 

- Absence of noise [6]. 

2.4.6 Contrast 

It's the marked opposition between two regions of an image, more precisely between 

the dark and light regions of the image. Contrast is defined as the luminance of two image 

areas [6]. If L1 and L2 are the respective luminance levels of two adjacent image areas, A1 and 

A2, contrast C is defined by the ratio: 

𝐶 =
𝐿1−𝐿2

𝐿1+𝐿2
         (2.1) 

2.5 Applications 

The use of digital image processing techniques has exploded and they are now used 

for all kinds of tasks in all kinds of areas, to know that:  

1. Image enhancement/restoration 

2. Medical visualization 
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3. Artistic effect 

4. Industrial inspection 

5. Law enforcement 

6. Human computer interfaces 

7. Remote sensing via satellites and other space crafts 

8. Image transmission and storage for business applications 

9. Radar, SONAR, Acoustic image processing 

10. Robotics [10] 

2.6 Medical imaging 

Medical imaging refers to the techniques and technologies used to create visual 

representations of the body's interior. We can use these visual representations, also known as 

images, to diagnose, monitor, or treat various medical conditions. Medical imaging enables 

the examination and visualization of various body parts, such as bones, muscles, organs, 

blood vessels, and other internal structures. 

We can divide medical imaging into two main categories: diagnostic imaging and 

therapeutic imaging. Diagnostic imaging employs modalities like X-ray, CT, MRI, 

ultrasound, and nuclear medicine to diagnose and assess the severity of a condition. 

Modalities such as fluoroscopy, angiography, and interventional radiology are part of 

therapeutic imaging, which guides procedures like surgery or radiation therapy. 

Some common modalities include X-ray, CT, MRI, ultrasound, and nuclear medicine; 

each has its own indications and limitations. These modalities are powerful diagnostic tools 

that can reveal the internal structure of the body and its functions [2]. 

2.7 Overview of medical imaging modalities 

2.7.1 X-ray imaging 

X-ray imaging, also referred to as radiography, is a diagnostic imaging technique in 

medicine that produces high-resolution images of internal anatomical structures such as 

bones. The basic principles of X-ray imaging are as follows:  
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X-rays are a form of electromagnetic radiation that can pass through many solid 

objects, including the human body. A beam of X-rays directs itself towards the area of the 

body under examination in this type of imaging. A special detector, such as an X-ray film or 

digital detector, detects the X-rays as they pass through the body. Because bones are denser 

than other tissues, they absorb more X-rays and appear white on the final image, while softer 

tissues such as muscles and organs absorb fewer X-rays and appear darker. The machine must 

use the appropriate amount of radiation and correctly position the body part in relation to the 

X-ray beam to produce a clear image. 

  

 

Figure 2- 6 Conventional X-ray Radiography. 

A radiologist, a medical doctor who specializes in interpreting medical images, takes 

different views to examine the same area from different angles, resulting in a more complete 

picture. A radiologist, a medical doctor specializing in medical image interpretation, then 

interprets the images to identify any abnormalities or issues, such as broken bones, tumors, or 

other conditions, and provides a diagnosis [2]. 

 

Figure 2- 7 X ray image of a human hand[11].  
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2.7.2 Computed Tomography (CT) Imaging 

CT imaging, commonly called CAT scanning due to its use of X-rays to make cross-

sectional pictures of the body, is a common medical imaging procedure. The basic principles 

of CT imaging are as follows: 

 CT scans use X-rays to create detailed images of internal structures by directing the X-

rays at the body from different angles and measuring the intensity of the X-rays that pass 

through the body with detectors. CT scans use a special type of X-ray detector known as a 

multi-slice detector, which can acquire multiple images simultaneously from different angles, 

enabling the creation of detailed cross-sectional images of the body. To improve image 

quality, CT scans also use techniques such as spatial filtering, which removes noise and 

improves contrast, and multi-energy imaging, which uses different energy levels of X-ray 

beams to capture different information and increase image contrast.  

      

Figure 2- 8 X-ray CT Image acquisition using a circular sensor array [10]. 

Additionally, CT scans can employ a technique known as dose modulation, which 

modifies the radiation dose based on the size, shape, and composition of the scanned body 

part, thereby mitigating the risk of side effects. A computer then processes the images from 

CT scans and displays them in various formats, including cross-sectional slices, 3D images, 
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and even virtual reality images. Radiologic technologists perform CT scans, while 

radiologists, medical doctors specializing in medical image interpretation, interpret the images 

[2]. 

 

Figure 2- 9 CT scan of fluid collection at the gastro-esophageal junction[12]. 

2.7.3 Magnetic Resonance Imaging (MRI)  

Magnetic Resonance Imaging (MRI) and Magnetic Resonance Microscopy (MRM) 

are medical imaging techniques that use a magnetic field and radio waves to produce detailed 

images of internal structures. The basic principles of both MRI and MRM are as follows. 

Magnetic Resonance Imaging (MRI) and Magnetic Resonance Angiography (MRA) 

are advanced imaging modalities that use a powerful magnetic field to align the nuclei of 

hydrogen atoms in the body. This generates a small magnetic moment, enabling the creation 

of detailed images of the body's internal structures. 
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         Figure 2- 10 Block diagram of MRI device. 

The process begins by using radiofrequency (RF) pulses to change the alignment of 

the hydrogen nuclei, which causes them to emit a weak radio signal. A detector picks up these 

signals, and a computer processes them to create detailed images of the body's internal 

structures [2]. 

 

Figure 2- 11 MRI image of a human brain[13]. 

2.7.4 Ultrasound imaging 

Ultrasound imaging is a medical imaging technique that uses high-frequency sound 

waves to produce detailed images of the internal structures of the body. The basic principles 

of ultrasound imaging are: 
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Ultrasound imaging is a medical imaging technique that uses a transducer, a device 

that emits high-frequency sound waves and detects the echoes of these waves as they bounce 

back from internal structures. The sound waves are sent into the body and as they hit a 

boundary between different types of tissue, some of the sound waves are reflected back to the 

transducer.  

These echoes are picked up by the transducer and converted into electrical signals, 

which are then processed by a computer to create detailed images of the internal structures of 

the body. These images can be used to evaluate organs, blood vessels, and fetuses during 

pregnancy, among other things [2]. 

 

Figure 2- 12 Block diagram of Ultrasound imaging device. 

 

Figure 2- 13 Ultrasound image of the pancreas[14] 

 

. 
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2.7.5 Nuclear medicine imaging 

Nuclear imaging is a kind of medical imaging that creates high-resolution pictures of 

the body’s inner workings by using minute quantities of radioactive material, called 

radiotracers. The basic principles of nuclear imaging are: 

Nuclear imaging is a medical imaging technique that uses radiotracers that are 

introduced into the body, either by injection, inhalation, or ingestion, depending on the type of 

exam. The radiotracers emit gamma rays, which are detected by a special camera, called a 

gamma camera. This camera creates an image of the distribution of the radiotracer in the 

body. The gamma camera detects the gamma rays and converts them into an image, which is 

then processed by a computer and can be viewed in different ways, such as 2D images, 3D 

images, or functional images. The images obtained from nuclear imaging provide functional 

information about the body, such as blood flow, metabolism, or chemical activity. This 

information can be used to evaluate certain disorders such as cancer, inflammation, or heart 

function [2]. 

 

Figure 2- 14 whole body scan for thyroid cancer evaluation[15]. 

2.7.6 Electrical Impedance Tomography (EIT) 

Electrical Impedance Tomography (EIT) is a medical imaging technique that uses 

electrical currents to produce images of the interior of the body. The EIT's basic principles 

are: 

EIT (Electrical Impedance Tomography) is a medical imaging technique that uses a 

small number of electrodes placed on the surface of the body. The electrodes apply small 
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electrical currents to the body and measure the resulting voltage changes. When the electrical 

currents pass through the body, they encounter different types of tissue with different 

electrical properties, such as conductivity and permittivity. 

These properties influence the distribution of the electrical current, enabling the 

creation of images depicting the internal structure of the body. Electrodes measure electrical 

activity in various parts of the body, and the computer uses this information to build 

representations of organs, including the lungs, heart, and brain. 

EIT is a non-invasive, radiation-free imaging method with potential applications in 

lung, brain, and breast imaging [2]. 

 

Figure 2- 15 human thorax[16].  

2.7.7 Cardiovascular Imaging 

It is a subspecialty of medical imaging that uses various modalities to visualize the 

structure and function of the heart and blood vessels. It includes techniques such as 

Echocardiography, Cardiac Computed Tomography (CCT), and Magnetic Resonance Imaging 

(MRI). These techniques help in the diagnosis of heart diseases, such as coronary artery 

disease, valvular heart disease, and congenital heart disease. They also play an important role 

in guiding interventional procedures such as angioplasty and stent placement [2]. 
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Figure 2- 16 axial image of the heart[17]. 

2.8 Comparison between different medical imaging medical 

This table provides a detailed overview of different medical imaging modalities, 

highlighting their working principles, common applications, advantages, and limitations. 

Modality Workin

g Principle 

Applications Advanta

ges 

Limitatio

ns 

X-ray Using ionizing 

radiation to 

produce images 

of the internal 

structure of a 

body 

Detecting broken 

bones, monitoring 

treatment of 

conditions such as 

pneumonia, 

monitoring the 

healing of fractures 

Inexpensive, 

widely 

available, 

quick results 

Low resolution 

images, ionizing 

radiation 

exposure 

CT Scan X-ray 

technology 

combined with 

computer 

processing to 

produce 

detailed 

images 

Detecting cancers, 

identifying blood 

clots, assessing 

organ damage, 

diagnosing spinal 

problems 

High resolution 

images, non-

invasive 

Ionizing 

radiation 

exposure, high 

cost 

MRI Combination of 

powerful 

magnetic fields 

and radio 

waves allows 

for the creation 

of high-

Detecting tumors, 

brain and spinal 

cord injuries, joint 

problems, and 

monitoring the 

progression of 

conditions such as 

Non-ionizing 

radiation, 

detailed images 

Long 

examination 

time, high cost, 

not suitable 

for patients 

with metal 
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resolution 

photographs 

multiple sclerosis implants 

Ultrasound 

Imaging 

Using high 

frequency 

sound waves to 

produce 

images 

Monitoring the 

growth and 

development of a 

fetus, evaluating 

organs and tissues, 

detecting tumors 

and cysts 

Non-invasive, 

no ionizing 

radiation 

exposure 

Operator 

dependent, 

limited view 

of deep 

structures 

Nuclear 

Imaging 

Using 

radioactive 

tracers to 

produce images 

Detecting diseases 

and conditions such 

as cancer, heart 

disease, and 

neurological 

conditions 

High 

specificity 

For certain 

conditions, 

non-invasive 

Limited view 

of the structure, 

exposure to 

ionizing 

radiation 

Electrical 

Impedance 

Tomography 

Using electrical 

currents to 

produce images 

Monitoring changes 

in tissue, measuring 

organ function 

 

 

Non-invasive, 

portable 

Limited spatial 

resolution, 

operator 

dependent 

Cardiovascular 

Imaging 

Various 

techniques to 

produce images 

of the heart and 

blood vessels 

Diagnosing heart 

disease, monitoring 

treatment 

 

High resolution 

images, non-

invasive 

High cost, 

operator 

dependent 

Table 2- 1 Comparative analysis [2]. 

2.9 conclusion 

In conclusion, medical imaging modalities are a crucial tool in modern healthcare and 

play a vital role in the diagnosis, management, and treatment of various diseases. There are 

several different modalities available, each with its own advantages and limitations. X-ray, 

computed tomography (CT), magnetic resonance imaging (MRI), nuclear imaging, 

ultrasound, electrical impedance tomography (EIT), and emerging technologies for in vivo 

imaging are the common medical imaging modalities. 
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In addition to these modalities, there are several advanced techniques, such as 

contrast-enhanced MRI, MR approaches for osteoarthritis, cardiovascular imaging, and 

medical imaging data mining and search, that can provide additional information and improve 

diagnosis accuracy. 
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 Chapter 3 Medical image denoising techniques and artificial 

neural networks 

3.1 Introduction 

The quality of digital images is determined by a variety of factors. The image tends to 

have a good quality when it has minimal disturbing factors such as salt and pepper noise, 

Gaussian noise, mixed noise, etc. Any disturbance from the outside causes a deficiency in the 

image signal, which we refer to as noise. Noise is one of the most important factors in the 

degradation of image quality. The acquisition procedure for digital images converts optical 

signals into electrical signals. Furthermore, these signals undergo conversion into digital 

signals, which are then presented in digital images based on the noise present. Images can 

contain a variety of noise types. The most popular noise, or, in other words, the disturbing 

factors, such as salt and pepper noise (impulse noise), has black and white pixels on the 

images. 

Image denoising is to remove noise from a noisy image so as to restore the true image. 

However, due to the high-frequency characteristics of noise, edges, and textures, this process 

can be challenging. 

To distinguish them during the denoising process, the denoised images may 

unavoidably lose some details. Overall, recovering meaningful information from noisy images 

is an important problem nowadays in the process of noise removal to obtain high-quality 

images. In fact, researchers have studied image denoising for a long time, making it a classic 

problem. However, it remains a challenging and open task [18]. 

There are two sections in this chapter. The first section covers the problem of image 

denoising, along with noise sources, models, and denoising methods. The second section 

discusses artificial neural networks, including CNNs and autoencoders, and their application 

in image denoising. 



Chapter 3 Medical image denoising techniques and artificial neural networks 

 

22 

 

3.2 image denoising 

3.2.1 Image denoising problem statement 

We can mathematically model the problem of image denoising as follows: 

𝑦 = 𝑥 + 𝑛    (3.1) 

In practical applications, various methods such as median absolute deviation, block-

based estimation, and principal component analysis (PCA)-based methods can estimate 

additive white Gaussian noise (AWGN) with standard deviation. The purpose of noise 

reduction is to decrease the noise in natural images while minimizing the loss of original 

features and improving the signal-to-noise ratio (SNR). The major challenges for image 

denoising are as follows: 

– Flat areas should be smooth, 

– Edges should be protected from blurring, 

– Textures should be preserved, and 

– New artifacts should not be generated. 

Because solving the clean image x in Eq. (3.1) is an ill-posed problem, we cannot get a 

unique solution from the image model with noise. To obtain a trustworthy estimation 

Over the past several years, the field of image processing has extensively studied 

image denoising. We will introduce spatial domain methods and transform domain methods 

in more detail in the upcoming sections. 

Owing to solve the clean image x from the Eq. (3.1) is an ill-posed problem, we 

cannot get the unique solution from the image model with noise. To obtain a good estimation 

of image x, image denoising has been well-studied in the field of image processing over the 

past several years. Generally, image denoising methods can be roughly classified as: spatial 

domain methods, transform domain methods, which are introduced in more detail in the next 

couple of sections [19]. 

3.2.2 Noise sources 

Image acquisition and transmission can introduce noise into the image. There may be a 

variety of reasons why noise appears in the image. The number of pixels corrupted in the 
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image determines the noise quantification. The primary sources of noise in digital images are 

as follows: 

– Environmental circumstances may influence the imaging sensor. 

– Low light and sensor temperature may cause noise in the image. 

– Dust particles present on the scanner may cause noise in the digital image. 

– There is interference in the transmission channel [20]. 

3.2.3 Noise models 

Noise in the image can take two forms: additive form and multiplicative form. 

3.2.3.1 Additive Noise Model 

The addition of an additive noise signal to the original signal results in a corrupted, 

noisy signal, which adheres to the following model: 

w(x, y)  =  s(x, y)  +  n(x, y)   (3.2) 

Gaussian noise is a kind of additive noise that uniformly distributes itself over the 

signal. This kind of noise has a gaussian distribution [20]. 

3.2.3.2 Multiplicative Noise Model 

This model involves multiplying the noise signal by the original signal. The 

multiplicative noise model adheres to the following rules: 

w(x, y)  =  s(x, y)  ×  n(x, y)            (3.3) 

Where s(x, y) represents the original image intensity and n(x, y) denotes the noise 

introduced to compose the corrupted signal w(x, y) at (x, y) pixel position [20]. 

3.2.4 Types of noises 

The noise's pattern and probabilistic characteristics distinguish it. There is an 

abundance of different types of noise. We focus solely on the most notable types, which 

include Gaussian noise, salt and pepper noise, poison noise, impulse noise, and speckle noise. 

3.2.4.1 Gaussian Noise 

 Gaussian noise, also known as the Gaussian distribution, is statistical noise with a 

probability density function (PDF) that is equal to the normal distribution. In other words, the 
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values that the noise can take on are Gaussian-distributed. A special case is white Gaussian 

noise, in which the values at any given times are equally distributed and statistically 

independent (un co-related). In applications, Gaussian noise is most frequently used as 

additive white noise to acquire additive white Gaussian noise. Some scholars have referred to 

gaussian noise as additive noise [20]. The signals' haphazard oscillation produces Gaussian 

noise. We can calculate the probability density function P for a Gaussian random variable (z) 

as follows [18]: 

 PG(Z) =
1

σ√2π
e

(Z−μ)2

2σ2            (3.4) 

3.2.4.2 Salt and Pepper Noise 

 Salt and pepper noise is a kind of noise normally observed on images. It manifests as 

randomly occurring white and black pixels. An efficient noise elimination technique for this 

kind of noise involves the use of a median filter, morphological filter, or contra-harmonic 

mean filter. Salt and pepper noise sneaks into images in situations where rapid transients 

occur, such as faulty switching [20]. 

Salt and pepper noise values may be either minimum (0) or maximum (255). For 

pepper noise, the typical intensity value is close to 0; for salt noise, it is close to 255. 

Furthermore, the unaffected pixels remain unchanged [18, 21]. 

𝑛(x, y) = {
0,   Pepper noise
255,   Salt noise

       (3.5) 

3.2.4.3 Poison Noise 

The nonlinear responses of the image detectors and recorders induce poisson noise. 

This kind of noise is image-data-reliant. This term arises because detection and recording 

processes involve arbitrary electron emission with a Poisson distribution and a mean response 

value [20]. 

If we assume that the noise has a unity variance, the image-dependent term has a 

standard deviation because the mean and variance of a Poisson distribution are identical [22]. 

𝑃(𝑘) =
𝑒−λλ𝑘

𝑘!
                   (3.6) 
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P(k) is the probability of having k pixels affected by noise in a window of a certain 

dimension. It also represents the average number of affected pixels in a window of the same 

size, also known as the Poisson distribution variance [22]. 

3.2.4.5 Impulse Noise 

 Impulse noise is a class of acoustic noise that comprises unwanted, approximately 

instantaneous (impulse-like) sharp sounds (like clicks and pops). Electromagnetic 

interference, scratches on recording disks, and ill-synchronization in digital recording and 

communication are the main causes of this type of noise. Impulse noise corruption is most 

familiar in digital images. Impulse noise consistently operates independently of the image 

pixels, distributing itself randomly throughout the image. 

Hence, unlike Gaussian noise, for an impulse noise-corrupted image, all the image 

pixels are not noisy; a number of image pixels will be noisy, and the rest of the pixels will be 

noise-free. There are two types of impulse noise: salt and pepper noise and random-valued 

impulse noise. In the salt and pepper type of noise, the noisy pixels take either a salt value 

(gray level = 225) or a pepper value (gray level = 0), and they appear as black and white spots 

on the images. If p is the total noise density, then salt noise and pepper noise will have a noise 

density of p/2. Eq. (3.7) provides a mathematical representation of this. 

Yij = {
0 or 255 with probability p
xij with probability 1 − p      (3.7) 

 

where Yij indicates the noisy image pixel, represents the total noise density of impulse 

noise, and represents the uncorrupted image pixel. At times, the salt noise and pepper noise 

may have different noise densities, and thus the total noise density will be p = p1 + p2. 

Random-valued impulse noise can take any gray-level value between 0 and 225. In this 

scenario, noise disperses randomly throughout the entire image, and the likelihood of 

encountering any gray level value as noise remains constant [20]. We can mathematically 

represent random-valued impulse noise as in equation (3.8). 

𝑌𝑖𝑗 = {
𝑛𝑖𝑗  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝

𝑥𝑖𝑗  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝
       (3.8) 
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3.2.4.6 Speckle Noise 

 Since random values multiplied by pixel values can model the noise, speckle noise is 

also known as multiplicative noise. It causes major problems in some radar applications. We 

can calculate its probability function using the following equation [18]: 

𝑭(𝒈) =
𝒈𝜶−𝟏 𝒆

−𝒈

𝒂

𝜶−𝟏!𝒂𝜶                   (3.9) 

3.2.5 Medical Image Denoising Techniques 

Denoising medical images is a significant step in improving the performance of 

various medical imaging applications. It is one of the crucial preprocessing steps for medical 

image analysis, such as image segmentation and registration, tissue and organ delineation, 

computer-aided diagnosis (CAD), deblurring, and edge and image quality enhancement. For 

further medical imaging tasks like tissue segmentation, renal cyst volume measurement, skull 

stripping, and brain voxel classification, we must solve two problems in image quality 

assessment: noise corruption and noise reduction. 

Common medical image denoising techniques include Gaussian filters, mean filters, 

median filters, Wiener filters, non-local means filters, guided filters, convolutional neural 

networks, wavelet transforms and variations, and denoising auto-encoding neural networks 

are some examples of common medical image denoising techniques. 

In this section, we examine the primary groups of the previously mentioned 

techniques. 

3.2.5.1 Adaptive Filter 

It is commonly used to enhance or restore data by removing noise without 

significantly blurring the structure in the image. 

f(x, y) = g(x, y)−(


2/σL
2)[g(x, y) − mL]                    (3.10) 

- g(x,y) : pixel value at position (x,y) 

- 
2  : variance of overall noise 

- 𝜎𝐿
2: Local variance of local region 

- 𝑚𝐿 : Local Mean   [18] 
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3.2.5.2 Median Filter 

 Median filter is nonlinear filtering technique. It is widely used to remove salt and 

pepper noise and preserves the edges. The median filter calculates by first sorting all the pixel 

values from window into numerical order, and then replacing the pixel being considered with 

the middle (median) pixel value [18]. 

3.2.5.3 FIR Filter (finite impulse response) 

 FIR filter has symmetrical impulse response in the spatial domain (region of support 

centered about the origin) which offer a significant reduction in number of multiplications 

necessary for filter realization. Advantages of FIR filter is it’s always stable [18]. 

3.2.5.4 Linear Filter 

 Linear filter in which the value of an output pixel is linear combination of the values 

of the pixels in the input pixel neighborhood. Disadvantages of this filter that noise become 

increase in it [18]. 

3.2.5.5 Non-Local Means Filter 

NLM algorithm can be classified into 4 types, which boost up the SNR value, in this 

way to obtain the best edge preservation[23]. The algorithm can be given below: 
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3.2.5.6 Wavelet transform 

A time-frequency illustration of an analyzed signal is provided by a powerful tool 

named as wavelet transform that has the main advantage of its ability to obtain the 

information like time, location, and frequency of an image simultaneously, while the Fourier 

transform provides only the frequency information of the signal. Mathematically, a wavelet 

can be explained as a real-valued function ψ(t) which satisfy the conditions: 

∫ t)dt = 0 and ∫ |t)2|dt
+∞

−∞
= 1

+∞

−∞
             (3.11) 

The probability density function of the wavelet transform is given by 

P(g) =
1

√s
 p(

i−j

s
)                 (3.12) 

Algorithm: Non-Local Means 

Input 1: Image with random value impulsive noise  

Output 1: NLM (Denoised Image) 

For each pixel I, where i 𝝐 [𝟏, 𝑵], 

Do 

For each pixel in 𝑵𝒌, where 𝑵𝒌Is the square patch around the center pixel 𝒌, 

Do 

Evaluate, normalization constant 𝒁(𝒊) ∑ 𝑒
 ||𝑣(𝑁1°−𝑣(N1)||𝑧

ℎ𝑧

𝑗

 

Where j refers to the 𝑵𝒌 patches 

Calculate, weights matrix  𝑾(𝑰, 𝒋)
1

𝑧(𝑖)
 𝑒

 ||𝑣(𝑁1°−𝑣(N1)||𝑧

ℎ𝑧  

Done 

Denoise pixel i ;𝑵𝑳[𝒗](𝒊) ∑ 𝑤(𝑖, 𝑗)𝑣(𝑗)𝑗=1  

Done 
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where
1

√𝑠
, is an energy normalization [23]. 

3.2.5.7 Curvelet transform 

Is a new type of multi-scale transform that relies upon wavelet. Curvelet transform is a 

type of run of typical multi-scale geometric investigation technique, which is produced based 

on the wavelet transform. It has the better peculiarity characteristics and it could keep more 

edge data of images.  

        By using denoising technique we obtain the better output from the original image. The 

restored image has less noise while comparing other images. Suppose f(m,n) an image is 

corrupted by additive noise, as given by: 

g(m, n) = f(m, n) + (m, n)            (3.13) 

where η(m,n) are autonomous similarly distributed Gaussian variable with zero mean 

and variance σ. Image denoising algorithms differ from simple threshold to difficult 

representation based methods. However simple threshold techniques can eliminate majority of 

the noise [23]. 

 

 

 

 

 

 

3.2.5.8 Convolutional Networks (CNNs) 

Convolutional Neural Networks (see § 3.3.8) in image denoising are advanced deep 

learning models designed to automatically reduce noise from images. They leverage multiple 

layers of convolutional filters to learn and identify patterns that differentiate noise from actual 

image content. These networks are trained on large datasets of noisy and clean image pairs, 

enabling them to effectively remove various types of noise while preserving important image 

details and features.  

Algorithm: Curvelet 

1.Apply the Forward Curve-let transform to the noisy image. 

2.Threshold the Curve-let coefficients to remove some unimportant curve-let 

coefficients by using a threshold function in the curve-let domain. 

3.Inverse Curve-let transform of the threshold coefficients to reconstruct a function. 
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CNN-based denoising methods often outperform traditional denoising techniques, 

offering superior performance in maintaining the clarity and quality of the denoised images 

[23].  

3.3 Artificial Neural Networks 

3.3.1 Biological neuron 

A neuron has a roughly spherical cell body called a soma. An extension on the cell 

body known as the axon, or nerve fibers, transmits the signals generated in the soma to other 

neurons. Another kind of extension around the cell body, like a bushy tree, is the dendrites, 

which are responsible for receiving the incoming signals generated by other neurons. 

At the very end, the axon enlarges and forms terminal buttons. Special structures 

called synapses, which are the junctions transmitting signals from one neuron to another, 

place terminal buttons. 

The signaling process is partly electrical (from the beginning of the dendrites until the 

end of the axon) and partly chemical (between every neuron and another, certain chemicals 

called neurotransmitters in the synapse are responsible for transmitting the signal)[24]. 

 

Figure 3- 1 Schematic image of a biological neuron [24]. 

3.3.2 Artificial neural networks 

 An artificial neural network (ANN) is a mathematical model that tries to simulate the 

structure and functionalities of biological neural networks. The basic building block of every 

artificial neural network is an artificial neuron, that is, a simple mathematical model 

(function). Such a model has three simple sets of rules: multiplication, summation, and 
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activation. At the entrance of an artificial neuron, the inputs are weighted, which means that 

every input value is multiplied by its individual weight. 

In the middle section of an artificial neuron is a sum function that sums all weighted 

inputs and biases. At the exit of an artificial neuron, the sum of previously weighted inputs 

and bias is passing through an activation function that is also called a transfer function [25]. 

 

Figure 3- 2 Schematic diagram of a neural network [25]. 

3.3.3 Perceptron in ANN 

A perceptron is a machine learning algorithm specifically designed for the purpose of 

binary categorization. A simplified version of a biological neuron, created to imitate the 

cognitive processes of the brain.  
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The perceptron is a computational model that receives many inputs, assigns separate 

weights to each input, adds them together, and then applies an activation function to get an 

output. Subsequently, you may utilize this output to categorize data into one of two distinct 

classifications.  

 The perceptron was initially introduced by Frank Rosenblatt in 1958. While the 

perceptron is regarded less complex in comparison to modern machine learning models, it 

served as the basis for the development of deep learning. The understanding of how it 

functions can be beneficial in comprehending more sophisticated models, making it a crucial 

asset in the toolkit of any machine learning engineer [24]. 

 

 

Figure 3- 3 A mathematical model of perceptron in a neural network [26]. 

Basically, neural networks can be classified into two categories: 

- Shallow neural network (in which there is only one single hidden layer between the input 

and output layer)[1] 
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Figure 3- 4 Schematic diagram of a shallow neural network [1]. 

- Deep neural network (in which there are multiple hidden layers between the input and 

output layer and it is the most widely used network)[1] 

 

Figure 3- 5  Schematic diagram of a deep learning neural network [1]. 

3.3.3.1 Inputs and outputs 

 the network inputs represent the variables of the study and its outputs represent the 

solution to the problem for which the network was designed [27]. 

3.3.3.2 Weights 

 it is the basic element in the neural network, it expresses the relative strength of the 

variables included in the network, or the strength of the connection between the layers of the 

network [27]. 
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3.3.3.3 Summation function 

 this function calculates the weight of all the inputs and sums them [27]. 

𝑛𝑒𝑡 = ∑ 𝑥𝑖
𝑛
𝑖=1 𝑤𝑖                          (3.12) 

3.3.3.4 Activation function 

An activation function is a mathematical equation that determines the output of each 

element (perceptron or neuron) in the neural network. It may be defined as the extra force or 

effort applied over the input to obtain an exact output [27]. 

Most commonly used activation functions: 

Sigmoid                                             𝜎(𝑧) =
1

1+exp (−𝑧)
                        (3.13) 

 

Tanh                                                  𝑡𝑎𝑛ℎ(𝑧) =
exp(𝑧)−exp (−𝑧)

exp (𝑧)+exp (−𝑧)
          (3.14) 

  

ReLU (Rectified Linear Unit)         𝑅𝑒𝐿𝑈(𝑧) = max (0, 𝑧)               (3.15) 

 

 

Figure 3- 6 Plot of most commonly used activation function [26]. 

3.3.4 The differences between biological and artificial neural networks  

3.3.4.1 Size 

Our brain contains about 86 billion neurons and more than 100 synapses 

(connections). The number of “neurons” in artificial networks is much less than that. 
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3.3.4.2 Signal transport and processing 

 The human brain works asynchronously, ANNs work synchronously. 

3.3.4.3 Processing speed 

 Single biological neurons are slow, while standard neurons in ANNs are fast. 

3.3.4.4 Topology 

 Biological neural networks have complicated topologies, while ANNs are often in a 

tree structure. 

3.3.4.5 Speed 

 Certain biological neurons can fire around 200 times a second on average. Signals 

travel at different speeds depending on the type of nerve impulse, ranging from 0.61 m/s up to 

119 m/s. Signal travel speeds also vary from person to person depending on their sex, age, 

height, temperature, medical condition, lack of sleep, etc. 

The continuous, floating point number values of synaptic weights carry over 

information in artificial neurons. There are no refractory periods for artificial neural networks 

(periods while it is impossible to send another action potential due to the sodium channels 

being locked shut), and artificial neurons do not experience “fatigue”: they are functions that 

can be calculated as many times and as fast as the computer architecture would allow. 

3.3.4.6 Fault-tolerance 

 Biological neuron networks, due to their topology, are also fault-tolerant. Artificial 

neural networks are not modeled for fault tolerance or self-regeneration (similarly to fatigue, 

these ideas are not applicable to matrix operations), though recovery is possible by saving the 

current state (weight values) of the model and continuing the training from that saved state. 

3.3.4.7 Power consumption 

 The brain consumes about 20% of all the human body’s energy; despite its large size, 

an adult brain operates on about 20 watts (barely enough to dimly light a bulb), making it 

extremely efficient. Considering that humans can continue to function for a considerable 

amount of time with just a small amount of vitamin-rich lemon juice and beef tallow, this 

efficiency is truly remarkable. 
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For a benchmark, a single Nvidia GeForce Titan X GPU runs on 250 watts alone and 

requires a power supply. Our machines are way less efficient than biological systems. When 

used, computers also generate a lot of heat, with consumer GPUs operating safely between 50 

and 80 °C rather than 36.5 and 37.5 °C. 

3.3.4.8 Learning 

We still do not understand how brains learn or how redundant connections store and recall 

information. Learning builds upon previously stored information in the brain. Repetition and 

sleep deepen our knowledge, and once we master tasks that once required focus, we can 

execute them automatically. 

On the other hand, artificial neural networks have a predefined model that does not 

allow for the addition or removal of additional neurons or connections. Only the connections' 

weights (and biases representing thresholds) can be changed during training. 

The networks begin with random weight values and gradually try to reach a point 

where further weight changes will no longer improve performance. Biological networks 

usually don't stop or start learning. ANNs have different fitting (train) and prediction 

(evaluate) phases. 

3.3.4.9 Field of application 

ANNs are specialized. They can perform one task. They might be perfect at playing 

chess, but they fail at playing go (or vice versa). Biological neural networks can learn 

completely new tasks. 

3.3.4.10 Training algorithm 

ANNs often use Gradient Descent algorithm for learning. Human brains use 

something different (but we don't know what?) [25]. 

3.3.5 Types of Artificial Neural Networks 

There are two important types of ANNs: 

3.3.5.1 Feed Forward Neural Network 

In feedforward ANNs, the information flow is only in one direction. That is, data 

flows from the input layer to the hidden layer, and then to the output layer. There are no 
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feedback loops. We commonly use these neural networks for supervised learning tasks such 

as classification and image recognition. When the data is not in consecutive order, we use 

them. Feedforward networks are comparable to convolutional neural networks (CNNs). 

 

Figure 3- 7 Feed Forward Neural Network. 

3.3.5.2 Feedback Neural Network 

The feedback loops are an element of the feedback ANNs. Recurrent neural networks, 

among others, primarily serve memory retention purposes. Situations where the data is 

sequential or time-dependent best suit these networks. The feedback loops define recurrent 

neural networks (RNNs). 

 

Figure 3- 8 Feedback Neural Network (Recurrent NN). 
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3.3.6 ANN Learning Techniques 

3.3.6.1 Supervised Learning  

In this learning method, the user trains the model with labeled data. It signifies that the 

user has already tagged some data with the appropriate responses. We refer to learning that 

occurs in the presence of a supervisor as supervised learning. 

3.3.6.2 Unsupervised Learning 

 For this learning, the model does not require supervision. Typically, it handles 

unlabeled data. The user gives permission for the model to categorize the data on its own. It 

organizes the data based on similarities and patterns without requiring any prior data training. 

3.3.6.3 Reinforcement Learning 

The output value is unknown in this case, but the network provides feedback on 

whether it is correct or incorrect. It’s referred to as “Semi-Supervised Learning”. 

3.3.7 Artificial neural network applications 

The following are some important applications of artificial neural networks: 

3.3.7.1 Speech recognition  

heavily relies on artificial neural networks (ANNs). Earlier speech recognition models 

used statistical models, such as hidden Markov models. With the introduction of deep 

learning, several forms of neural networks have become the only way to acquire a precise 

classification. 

3.3.7.2 Handwritten characters recognition  

Neural networks have trained to recognize handwritten characters, which can take the 

form of letters or digits. 

3.3.7.3 Signature Classification 

When developing these authentication systems, we use artificial neural networks to 

recognize signatures and categorize them according to the person's class. Furthermore, neural 

networks can determine whether or not a signature is genuine. 
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3.3.7.4 Medical: 

 It provides detailed results by detecting cancer cells and analyzing MRI images. 

3.3.8 What is Convolutional Neural Network 

A convolutional neural network (CNN), also known as ConvNet, is a specialized type 

of deep learning algorithm mainly designed for tasks that necessitate object recognition, 

including image classification, detection, and segmentation. Various practical scenarios, 

including autonomous vehicles and security camera systems, employ CNNs. 

Six layers generally make up a CNN pipeline (or architecture): the input layer, the 

convolutional layer(s), the pooling layer(s), the flattening layer, the fully connected layer(s), 

and the output layer [28]. 

 

Figure 3- 9 A generic CNN pipeline with 6 types of layers: 1 input, 2 convolutional, 2 pooling, 1 

flattening, 2 fully connected, and 1 output [28]. 

 

- Input Layer 

 The input layer is the first layer in CNNs, concerned with receiving the raw input 

data, e.g., images, videos, audios, texts, etc. It represents images as tensors (multi-

dimensional matrices), with each element representing the value of a pixel's color intensity. In 

CNNs, the input layer is not learnable, and there are no neurons present. 

As per the network architecture, the input layer does batch normalization (which 

makes sure that the data's scale and distribution are consistent to speed up training), pre-

processing (which includes things like cropping, resizing, and data augmentation to make sure 

that the input sizes are consistent and to increase the data's variability), and forward 

propagation (which sends the data to the next part of the network to be processed) [28]. 
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- Convolutional layer 

 Convolution, from a simplistic point of view, is the application of a mathematical 

filter to an image. From a more technical point of view, it is a matter of dragging a matrix 

over an image, and for each pixel, use the sum of the multiplication of that pixel by the value 

of the matrix. This technique allows us to find parts of the image that might be of interest to 

us. Take the figure below M as an example of an image and F as an example of a filter [29]. 

 

Figure 3- 10 Image and a filter [29]. 

 

Apply the filter to the image: in the M image matrix, we can see that each value of the pixels 

of the tile image (the orange boxes) is multiplied by each corresponding filter value (1x1, 1x0, 

1x1....). Then add all these values to get a single value '4' that will be part of a new convoluted 

image [29]. 

 

 

Figure 3- 11 Applying The Filter To The Image [29]. 
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- Poolling  

Is another operation similar to convolutions performed on an image? Sometimes, 

applying a convolution to an image doesn’t reduce it enough, so we can further utilize pooling 

operations. Pooling is simpler than convolution because we do not have a kernel full of 

elements. Instead, we have a filter that we slide across the image, and for every position of 

this filter, we simply take the minimum, maximum, mean, or median of the set of pixels 

inside the image that fall underneath this filter. It is most typical to use a max pool with a 2x2 

filter and a 2x2 stride, such that there is no overlap between filters. Max Pool has appeared to 

work better than the average pool [30]. 

 

Figure 3- 12 A max pooling in action. You can think of each colored region as a position of the 2x2 

filter [30]. 

 

- Flattening Layer  

The role of a flattening layer is to “flatten” the multi-dimensional feature maps or 

activation maps received from the previous convolutional or pooling layers. The flattening 

layer is located before the fully connected layers. The flattening layer transforms the multi-

dimensional data into a 1-dimensional vector (refer to Figure 3.13) and then transfers it to the 

fully connected layer, specifically designed to receive 1-dimensional data as input [28]. 
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Figure 3- 13 how flattening layer function [28]. 

 

- Fully Connected (FC) Layer 

Typically, the final segment (or layers) of any CNN architecture comprises fully 

connected layers, with each neuron within a layer establishing a connection with its 

antecedent neuron. The CNN architecture uses the last layer of fully connected layers as its 

output layer. Fully-connected layers are a type of feed-forward artificial neural network 

(ANN), and they follow the principles of traditional multi-layer perceptron neural networks 

(MLP). The FC layers receive input in the form of a set of metrics (feature maps) from the 

final convolutional or pooling layer, flatten these metrics into a vector, and feed this vector 

into the FC layer to produce the final CNN output [31], as illustrated in Figure 3.14. 

 

Figure 3- 14 The architecture of Fully Connected Layers [31]. 
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- Output layer 

Is the final layer in a CNN, placed after the FC layer (see Figure 3.14). It generates the 

model's final output. It is an essential component of CNNs, and its function is to make 

decisions based on the network's extracted and learned features. The preceding FC layer fully 

connects all neurons in the output layer. The number of neurons in the output layer of CNNs 

is equivalent to the number of classes for classification tasks and the number of regression 

outputs for regression tasks. Each neuron represents a class, and the network predicts the 

corresponding class based on the neuron's highest activation [28]. 

3.3.9 Autoencoders 

3.3.9.1 What Are Autoencoders? 

An autoencoder (AE) is an artificial neural network used for unsupervised learning 

tasks (i.e., no class labels or labeled data) such as dimensionality reduction, feature extraction, 

and data compression. They seek to: 

 Accept an input set of data (i.e., the input) 

 Internally compress the input data into a latent space representation (i.e., a single vector 

that compresses and quantifies the input) 

 Reconstruct the input data from this latent representation (i.e., the output) 

An autoencoder consists of the following two primary components: 

 Encoder: The encoder compresses input data into a lower-dimensional representation 

known as the latent space or code. This latent space, often called embedding, aims to 

retain as much information as possible, allowing the decoder to reconstruct the data 

with high precision. If we denote our input data as x and the encoder as , then the 

output latent space representation, s would be. 

𝑠 = 𝐸(𝑥)          (3.16) 

 Decoder: The decoder reconstructs the original input data by accepting the latent 

space representation s. If we denote the decoder function as D and the output of the 

detector as o, then we can represent the decoder as o=D(s).  

https://pyimagesearch.com/2023/07/10/introduction-to-autoencoders/#TOC
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o = D(s)        (3.17) 

Both encoder and decoder are typically composed of one or more layers, which can be 

fully connected, convolutional, or recurrent, depending on the input data’s nature and the 

autoencoder’s architecture [32]. 

By using our mathematical notation, the entire training process of the autoencoder can 

be written as shown in the following figure: 

 

Figure 3- 15 Demonstrates The Basic Architecture Of An Autoencoder [32]. 

 

 

3.3.9.2 Types of Autoencoder 

- Vanilla Autoencoder 

Figure 3.16 shows the simplest form of an autoencoder, consisting of one or more 

fully connected layers for both the encoder and decoder. It works well for simple data but may 

struggle with complex patterns [32]. 

 

https://pyimagesearch.com/2023/07/10/introduction-to-autoencoders/#TOC
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Figure 3- 16 Architecture of fully connected autoencoders [32]. 

- Convolutional Autoencoder (CAE) 

Utilizes convolutional layers in both the encoder and decoder, making it suitable for 

handling image data. By exploiting the spatial information in images, CAEs can capture 

complex patterns and structures more effectively than vanilla autoencoders and accomplish 

tasks such as image segmentation[32], as shown in Figure 3.17. 

 

Figure 3- 17 Architecture of Convolutional Autoencoder for Image Segmentation [32]. 

 

https://pyimagesearch.com/2023/07/10/introduction-to-autoencoders/#TOC
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- Denoising Autoencoder 

This autoencoder is designed to remove noise from corrupted input data, as shown 

in Figure 3.18. During training, the input data is intentionally corrupted by adding noise, 

while the target remains the original, uncorrupted data. The autoencoder learns to reconstruct 

the clean data from the noisy input, making it useful for image denoising and data 

preprocessing tasks [32]. 

 

Figure 3- 18  A denoising autoencoder processes a noisy image, generating a clean image on the output 

side [32]. 

- Sparse Autoencoder 

This type of autoencoder enforces sparsity in the latent space representation by adding 

a sparsity constraint to the loss function (as shown in Figure 3.19). This restriction makes the 

autoencoder represent the input data with a small group of active neurons in the latent space. 

This makes feature extraction more efficient and reliable [32]. 

 

Figure 3- 19 The topology of Sparse Autoencoder [32]. 

https://pyimagesearch.com/2023/07/10/introduction-to-autoencoders/#TOC
https://pyimagesearch.com/2023/07/10/introduction-to-autoencoders/#TOC
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- Variational Autoencoder (VAE) 

Figure 3.20 shows a generative model that introduces a probabilistic layer in the latent 

space, allowing for sampling and generation of new data. VAEs can generate new samples 

from the learned latent distribution, making them ideal for image generation and style transfer 

tasks [32]. 

 

Figure 3- 20 Architecture of variational autoencoder [32]. 

- Sequence-to-Sequence Autoencoder (SSAE) 

Also known as a Recurrent Autoencoder, this type of autoencoder utilizes recurrent 

neural network (RNN) layers (e.g., long short-term memory (LSTM) or gated recurrent unit 

(GRU)) in both the encoder and decoder shown in Figure 3.21. This architecture is well-suited 

for handling sequential data (e.g., time series or natural language processing tasks) [33]. 

 

 

Figure 3- 21 Sequence-to-Sequence Autoencoder [33]. 

 

3.3.9.3 Applications of Autoencoders? 

Autoencoders have a wide range of applications across various domains, including: 

https://pyimagesearch.com/2023/07/10/introduction-to-autoencoders/#TOC
https://pyimagesearch.com/wp-content/uploads/2023/07/seq-to-seq-AE.png
https://pyimagesearch.com/wp-content/uploads/2023/07/seq-to-seq-AE.png
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- Dimensionality Reduction 

Autoencoders can reduce the dimensionality of input data by learning a compact and 

efficient representation in the latent space. This can be helpful for visualization, data 

compression, and speeding up other machine learning algorithms. 

- Feature Learning 

Autoencoders can learn meaningful features from input data, which can be used for 

downstream machine learning tasks like classification, clustering, or regression. 

- Anomaly Detection 

By training an autoencoder on normal data instances, it can learn to reconstruct those 

instances with low error. When presented with an anomalous data point, the autoencoder will 

likely have a higher reconstruction error, which can be used to identify outliers or anomalies. 

- Denoising Images  

Autoencoders can be trained to reconstruct clean input data from noisy versions. The 

denoising autoencoder learns to remove the noise and produce a clean version of the input 

data.  

- Image Inpainting  

As shown in Figure 3.22 , autoencoders can fill in missing or corrupted parts of an 

image by learning the underlying structure and patterns in the data [32].  

 

Figure 3- 22 Face completion by filling in the missing pixels [32]. 

https://pyimagesearch.com/2023/07/10/introduction-to-autoencoders/#TOC
https://pyimagesearch.com/2023/07/10/introduction-to-autoencoders/#TOC
https://pyimagesearch.com/wp-content/uploads/2023/07/inpainting-AE.png
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- Generative Modeling 

 Variational autoencoders (VAEs) and other generative variants can generate new, 

realistic data samples by learning the data distribution during training. This can be useful for 

data augmentation or creative applications. 

- Recommender Systems  

Autoencoders can be used to learn latent representations of users and items in a 

recommender system, which can then predict user preferences and make personalized 

recommendations. 

- Sequence-to-Sequence Learning  

Autoencoders can be used for sequence-to-sequence tasks, such as machine translation 

or text summarization, by adapting their architecture to handle sequential input and output 

data [32]. 

- Image Segmentation  

Autoencoders are commonly utilized in semantic segmentation as well. A notable 

example is SegNet (Figure 3.23), a model designed for pixel-wise, multi-class segmentation 

on urban road scene datasets. This model was created by researchers from the University of 

Cambridge’s Computer Vision Group [34]. 

 

Figure 3- 23 An illustration of the fully convolutional SegNet architecture [34]. 

These are just a few examples of the many possible applications of autoencoders. 

Their versatility and adaptability make them an important tool in the machine learning 

toolbox. 

https://pyimagesearch.com/2023/07/10/introduction-to-autoencoders/#TOC
https://pyimagesearch.com/2023/07/10/introduction-to-autoencoders/#TOC
https://pyimagesearch.com/2023/07/10/introduction-to-autoencoders/#TOC
https://pyimagesearch.com/2023/07/10/introduction-to-autoencoders/#TOC
https://pyimagesearch.com/wp-content/uploads/2023/07/segnet-AE-scaled.jpg
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3.4 Related studies 

In [3], Gondara et al. have presented empirical evidence that stacked denoising 

autoencoders built using convolutional layers work well for small sample sizes, which are 

typical of medical image databases. This contradicts the commonly held belief that deep 

architecture-based models require very large training datasets for optimal performance. These 

methods have demonstrated the ability to recover signals even in the presence of extremely 

high noise levels, a threshold beyond which most other denoising methods would fail. 

Xie et al. have presented a novel approach to image denoising and blind inpainting that 

combines sparse coding and pre-trained deep neural networks with denoising auto-encoders 

[35]. It has proposed a new training scheme for DA that makes it possible to denoise and 

inpaint images within a unified framework. In the tests, their method worked about as well as 

the standard linear sparse coding algorithm at getting rid of white Gaussian noise that was 

added on top of other noise. Moreover, their non-linear approach successfully tackles the 

much harder problem of blind inpainting complex patterns, which, to the best of their 

knowledge, has not been addressed before. It has also been demonstrated that the proposed 

training scheme is capable of improving DA's performance in unsupervised feature learning 

tasks. 

Qi et al. have proposed a contrastive-center loss for deep neural networks [36]. The 

contrastive-center loss takes into account both how compact the classes are within themselves 

and how separate the classes are from each other. It does this by penalizing the differences in 

the distances of training samples from their class centers and the sum of the distances of 

training samples from their non-class centers. The contrastive-center loss has a very clear 

intuition and geometric interpretation, which is more appealing. The experimental results on 

several benchmark datasets prove the effectiveness of the proposed contrastive-center loss. 

3.5 Conclusion 

 In summary, Chapter 2 focuses on medical image denoising, a crucial process for 

improving image quality by removing noise such as salt and pepper, Gaussian, and other 

types. Noise, caused by various factors during image acquisition and transmission, degrades 

image quality and complicates the extraction of meaningful information. The chapter 
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discusses various noise models, including additive and multiplicative noise, as well as 

Gaussian, salt and pepper, Poisson, impulse, and speckle noise. 

The chapter also explores several denoising techniques, including adaptive filters, 

median filters, FIR filters, and linear filters. It delves into advanced methods like wavelet and 

curvelet transforms and highlights the role of convolutional neural networks (CNNs) and 

autoencoders in denoising. With their specialized architecture, CNNs excel in image 

recognition tasks, while autoencoders, including variations like denoising autoencoders and 

variational autoencoders, serve unsupervised learning tasks like dimensionality reduction and 

data compression. Overall, the chapter underscores the ongoing challenges and advancements 

in medical image denoising, aiming to achieve high-quality, noise-free images that preserve 

essential details and structures. 
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Chapter 4  Methodology 

4.1 Introduction 

Our primary goal is to eliminate noise from images. Understanding the image's context 

is necessary to ensure the elimination of noise only. We extract the context of an image by 

passing it through the CAE (convolutional autoencoder) model, a convolutional neural 

network whose primary task is to capture the noise patterns in an image from the feature map 

at each layer. This model is used to identify noise artifacts in the image. 

In this part, we delve into the methodology employed for developing and training a 

Convolutional Neural Network-based Denoising Autoencoder (CDAE). The aim of this 

model is to effectively reduce noise in grayscale images while preserving essential features.  

The methodology encompasses the detailed architecture of the autoencoder, including 

its input, encoder, bottleneck, decoder, and output layers. Furthermore, we discuss the 

activation functions, loss function, optimization techniques, and training procedures integral 

to the model's development. This comprehensive approach ensures a robust framework for 

image denoising, optimizing the model's performance through meticulous design and training 

strategies. 

 

Figure 4- 1 Block diagram of the proposed model architecture. 
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4.2 Convolutional Autoencoder architecture 

The basic architecture of a convolutional autoencoder (CAE) is shown in Figure 4.2. 

Convolutional autoencoders utilize the classic autoencoder design, with convolutional 

encoding and decoding layers. Convolutional autoencoders are more suitable for image 

processing compared to conventional autoencoders because they fully employ the capabilities 

of convolutional neural networks to exploit the structure of images. 

Convolutional autoencoders utilize weight sharing across all input locations to 

maintain local spatiality. The ith feature map is represented as follows:   

ℎ𝑖 = 𝑠(𝑥 ∗ 𝑊𝑖 + 𝑏𝑖 ) (4.1) 

In the above scenario, bias is being transmitted over the entire map. The symbol "*" 

represents a convolution operation in 2D, and "s" specifies an activation function. A single 

bias is assigned to each latent map, and the reconstruction is derived accordingly: 

𝑦 = 𝑠(∑ ℎ𝑖 ∗ 𝑊̃𝑖

𝑖∈𝐻

+ 𝑐) (4.2) 

The variable "c" represents the bias per input channel, "H" represents a collection of 

latent feature mappings, and "𝑊̃" represents a flip operation across both weight dimensions.  

Back propagation is employed to calculate the gradient of the error function in relation 

to the parameters [3]. 

 

Figure 4- 2 Architecture of the proposed CDAE. 
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4.2.1 Input Layer  

 In the input layer images are in specified shape (200,200,1), which means that the 

images are grayscale (1 channel) and 200×200 pixels. 

4.2.2 Encoder layers 

4.2.2.1 Convolutional Layer 

 Convolutional Layer is the fundamental layer of CNNs and it has a set of learnable 

“filters” (also called kernels). These filters are used to perform convolutions with images to 

extract features. Convolution is a linear operation in which one matrix (filter) is moved over 

another (image) [28]. 

 

Figure 4- 3 Convolution of a 5×5 image and a 3×3 kernel with stride =1. Observe how a feature map is 

generated step by step [28]. 

This layer has a 64 filter, each with a size of 3×3pixels, the activation function is 

ReLU (rectifier linear unit). 

“padding=’same’”: The process of adding pixels of “zero” values at the borders of the 

input images or the feature maps (before performing convolutions) is called “zero-padding”. 

Padding size refers to the width appended at each edge. Larger padding sizes result in 

spatially larger feature maps, somewhat increasing the computational cost [28]. 

Advantages of zero-padding are preservation of spatial dimensions and capturing 

features at the edges (avoiding information loss).  
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Figure 4- 4 Convolution of zero-padded image with a kernel. Observe how the dimensions of the input 

remain preserved as compared to no zero-padding [28]. 

4.2.2.2. Pooling Layer 

Pooling Layer is used to down-sample (sub-sample) the data inside CNNs and it 

typically comes after the convolutional layer(s). A network can have multiple pooling layers.  

The main purpose of a pooling layer is to reduce the computational load of the 

network. It decreases spatial dimensions of the feature maps by extracting important 

information from them and discarding the rest [28]. 

 

Figure 4- 5 Demonstration of the max pooling operation [28]. 

This layer performs with a pool size of 2×2 pixels, which reduces the spatial 

dimension of the feature map by taking the maximum value in each 2×2pixels. 

4.2.3 Bottleneck Layer 

This layer contain the most compressed representation of the input data. The encoding 

is generated in the lower-dimensional hidden layer. The bottleneck layer contains a reduced 

number of nodes, and this number also determines the dimension of the input's encoding. 
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4.2.4 Decoder Layers 

4.2.4.1. Up-sampling Layer 

This layer performs an up-sampling with a scale of 2×2 pixels, which increases the 

spatial dimensions of the feature map by replicating each pixel value. 

4.2.4.2. Convolutional Layer  

This layer has a 64 filter, each with a size of 3×3pixels, associate with an activation 

function ReLU. 

 “padding=’same’”, the padding ensure that the spatial dimension of this output is the 

same as the input, and the convolutional layers in the decoder are for reconstructing the 

feature map with a higher spatial dimension.  

4.2.5 Output Layer 

The output layer is a convolutional layer with 64 filters of 3×3 pixels size, and 

“padding=’same’”, and a sigmoid activation function. 

The convolutional denoising autoencoder (CDAE) utilized a straightforward 

architecture, as depicted in Figure 4.6. 
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Figure 4- 6 Architecture of the CDAE used [3]. 
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4.3 Autoencoder hyperparameters 

4.3.1 Activation function  

The main task of any activation function in any neural network-based model is to map 

the input to the output. 

-Sigmoid: The sigmoid activation function takes real numbers as its input and bind the output 

in the range of [0,1]. data shall be mapped to values between 0 and 1 to validate with the 

matrix multiplication and neural network calculations [31]. 

𝑓(𝑥)𝑠𝑖𝑔𝑚 =
1

1 + 𝑒−𝑥
 (4.3) 

 

Figure 4- 7 Sigmoid activation function [31]. 

 

-ReLU: The Rectifier Linear Unit (ReLU) is the most commonly used activation function in 

Convolutional Neural Networks. It is used to convert all the input values to positive numbers. 

The advantage of ReLU is that it requires very minimal computation load compared to others 

[31]. The mathematical representation of ReLU is given by:  

𝑓(𝑥)𝑅𝑒𝐿𝑈 = max (0, x) (4.4) 
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Figure 4- 8 ReLU activation function [31] 

4.3.2 Loss function  

By employing a loss function, we compute the prediction error produced by the CNN 

model on the training data in the output layer of the CDAE. The prediction error measures the 

discrepancy between the network's forecast and the real output, and the CNN model improves 

this error while it learns. 

The loss function utilizes two parameters to compute the discrepancy: the initial 

parameter represents the predicted output of the CNN model (referred to as the prediction), 

while the second parameter represents the true output, also known as the ground truth. 

we used a custom loss function as:  

𝐿 = 1 − SSIM (4.5) 

 which computes the dissimilarities between the original and the denoised image, with 

a maximum value of 1. the less loss value gets, means better denoising performance [3]. 

4.3.3 Optimization technique 

An optimizer is a crucial element that fine-tunes a neural network’s parameters during 

training. Its primary role is to minimize the model’s error or loss function, enhancing 

performance. Various optimization algorithms, known as optimizers, employ distinct 

strategies to converge towards optimal parameter values for improved predictions efficiently. 

In our case, we used RMS prop optimizer for training process. 
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4.3.4 Callback 

It allows the training process to automatically stop when the model performance is not 

improving, by monitoring the validation loss between the original free-noise image and the 

denoised image. The training will stop if this value of the validation loss does not improve for 

5 consecutive epochs. 

4.3.5 Batch size 

The batch size refers to the number of images that are inputted into the model 

simultaneously. “Batch = 10”, which means after 10 samples the model will update the 

weights to optimize model performance and accuracy. 

4.3.6 Number of epochs 

The number of epochs is an hyperparameter that determines the number of iterations 

the learning algorithm will traverse over the complete training dataset. An epoch refers to the 

point at which every sample in the training dataset has been used to update the internal model 

parameters.  

“epoch=100”, means the number of times the entire dataset passed through the model 

during the training process. 

4.4 Training procedure 

The goal of training an autoencoder is to minimize the difference between the input 

and the reconstructed output, and we measure this using a loss function. 

4.4.1 How autoencoder train 

Training an autoencoder is unsupervised in the sense that no labeled data is 

needed. The training process is still based on the optimization of a cost function, and can be 

summarized in the following steps [3]: 

Step 1: Forward Pass 

Input: An autoencoder first takes an input x 
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Encoding: The encoder maps(encode) x into a latent representation y using deterministic 

mapping, such as: 

y = f(x; θe) = s(Wex + be) (4.6) 

where:  

"s": is an activation function. 

"We, be": encoder parameters (weight, bias). 

Decoding: y is then mapped back(decode) into a reconstruction z, which is of same shape as x 

using similar mapping. 

z = g(z; θd) = s(Wdz + bd) (4.7) 

 

where:  

"s": is an activation function. 

"Wdz, bd": decoder parameters (weight, bias). 

Step 2: Compute Loss 

The difference between the original input x and the reconstructed input z is measured 

using a loss function.in our case we used “1_ssim” as a custom loss function. 

L = 1 − SSIM 

where:                     SSIM = [l(x, z)]α[c(x, z)]β[s(x, z)]γ 

(4.8) 

Step 3: Backpropagation 

The loss is then backpropagated through the network to compute the gradients of the 

loss with respect to all the parameters (weights and biases). 

Step 4: Update Parameters 

Using an optimization algorithm in our case we used RMS propagation, the 

parameters of the encoder and decoder are updated to minimize the loss. 
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Figure 4- 9 Autoencoder training architecture [37]. 

4.4.2 How convolutional autoencoder train 

The difference of training between a basic AE and a CAE, is in the forward pass and 

the parameters [3]. 

Step 1: Forward Pass 

Input: An autoencoder first takes an input image x of shape (H, W, C), where H is 

height, W is width, and C is the number of channels. 

Encoding: The input x is passed through a series of convolutional layers, to encode x into a 

latent representation 𝑦 = ℎ(𝐿). Each convolutional layer performs: 

y = f(x; θe) = h
(𝑙) = s(We(𝑙) ∗ h

(𝑙−1) + be
(𝑙)) (4.9) 

where:  

"s": is an activation function. 

"We, be": encoder parameters for convolutional layers (kernel coefficients, bias). 

"l": is the number of the layer. And ℎ(0) = 𝑥 . 

Decoding: The latent representation y is passed through a series of deconvolutional layers, to 

decode it into a reconstruction 𝑧 = ℎ(𝑀). Each convolutional layer performs: 

z = z(y; θd) = h
(𝑚) = s(Wd

(𝑚) ∗ h
(𝑚−1) + bd

(𝑚)) (4.10) 

where:  

"s": is an activation function. 
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"Wd, bd": encoder parameters for deconvolutional layers (kernel coefficients, bias). 

"m": is the number of the layer. And ℎ(0) = 𝑦 . 

 

Step 2: Compute Loss 

The difference between the original input x and the reconstructed input z is measured 

using a loss function. In our case we used “1_ssim” as a custom loss function, it’s the same as 

the previous case (AE). 

Step 3: Back propagation 

The loss is then back propagated through the network to compute the gradients of the 

loss with respect to all the parameters (weights and biases). 

Step 4: Update Parameters 

Using an optimization algorithm in our case we used RMS prop, the parameters of the 

encoder and decoder are updated to minimize the loss. 

4.5 Conclusion 

In summary, this chapter provided a thorough examination of the methodology used to 

create and train a CNN-based denoising autoencoder. By detailing the architecture and its 

components, from the input layer to the output layer, we established a clear blueprint for the 

model.  

The use of specific activation functions, a custom loss function, and the RMSprop 

optimizer contributed to the model's effectiveness in noise reduction. Additionally, the 

implementation of early stopping callbacks and a structured training procedure ensured 

optimal performance. This methodological framework lays a solid foundation for achieving 

superior denoising capabilities, ultimately enhancing image quality and clarity. 
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Chapter 5 Experiments and results  

5.1 Introduction 

Medical imaging techniques like MRI, CT, and ultrasound are prone to noise due to 

various factors, including efforts to reduce patient radiation exposure. As radiation decreases, 

noise increases, making effective denoising crucial for accurate image analysis. 

Image denoising is a long-standing problem in computer vision with many traditional 

approaches, such as partial differential equations (PDEs), wavelet transforms, and non-local 

means. These methods aim to reconstruct the original image from its noisy version, often 

assuming a specific noise process. 

Deep learning advancements, particularly convolutional neural networks (CNNs), 

have shown promise in denoising tasks. Convolutional Neural Network Denoising 

Autoencoders (CDAEs) leverage spatial correlations in images, outperforming traditional 

methods. 

We test how well CDAEs remove noise from the mini-MIAS and Panoramic Dental 

X-rays databases in this chapter, both with and without median and Gaussian preprocessing 

filters. Before the CDAE processes the images, these filters aim to reduce noise. Additionally, 

we explore handling speckle noise using logarithmic transformation to convert it from 

multiplicative to additive, followed by inverse transformation after denoising. However, this 

approach did not yield significant improvements. 

We present quantitative and qualitative results, including visual comparisons and 

metrics such as peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). The 

findings highlight the marginal benefits of preprocessing and discuss the implications of 

dataset size on denoising model performance. 

5.2 Types of Datasets 

For training and testing the denoising process of medical images, we use the mini-

MIAS and a Panoramic Dental X-rays dataset. 
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5.2.1 mini-MIAS database 

The Mammographic Image Analysis Society has produced a digital mammography 

database with a resolution of 1024×1024. It contains 161 pairs of films, examples of 

abnormalities commonly encountered in screening, as well as a comprehensive set of normal 

cases. We carefully selected the mammograms from the United Kingdom National Breast 

Screening Programme to ensure the highest quality of exposure and patient positioning. We 

digitized each medio-lateral oblique view using a scanning microdensitometer with a linear 

response in the optical density range of 0.0 to 3.2, representing each pixel with 8 bits. The 

entire database, when compressed, occupies less than 2 GBytes, fitting onto a single 8-mm 

magnetic tape. For research purposes, copies are available [38]. 

 

Figure 5- 1 Random samples of medical images taken from mini-MIAS dataset [38]. 

5.2.2 Panoramic Dental X-rays database 

This dataset consists of anonymized and deidentified panoramic dental X-rays of 116 

patients with a format of 2900×1250 pixels taken by the Soredex CranexD digital panoramic 

x-ray unit at Noor Medical Imaging Center, Qom, Iran.  

The subjects cover a wide range of dental conditions, from healthy to partial and 

complete edentulous cases. Figures 5.1 and 5.2, respectively, display a sample of images from 

the two datasets [39]. 
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Figure 5- 2 Random samples of medical images taken from the Panoramic Dental X-rays database [39]. 

5.3 Noise Types  

Developing a system for universally reducing noise in images is a complex challenge 

that requires a solution. Gaining an understanding of the diverse patterns generated by the 

various types of noise offered valuable insight into other approaches for solving this 

challenge. Figure 5.3 and 5.4 illustrates the impact of different types of noise on medical 

images from both datasets. 

When we closely observe Figure 5.3, we notice the following: 

1. Versions of Gaussian noise include salt and pepper noise. 

2. One can represent poisson noise as a version of speckle noise. 

3. Gaussian noise can represent speckle noise as a function. 

 

Figure 5- 3 Effect of different type of noise on the original image, taken from the mini-MIAS dataset 

(first row show the minimal level of noise second row show a higher noise level). 



Chapter 5 Experiments and results 

 

67 

 

 

Figure 5- 4 Effect of different type of noise on the original image, taken from the Panoramic Dental X-

rays dataset (first row show the minimal level of noise second row show a higher noise level). 

 

5.4 Types of Losses 

To train such as model, there are made use of various types of loss functions:  

 L1 Loss: 

𝐿1 = ∑ |Iorig − Idenoised| (5.1) 

where Iorig is the original image and Idenoised is the output of the model. 

 L2 Loss: Mean Squared Error (MSE) 

𝐿2 = 𝑀𝑆𝐸 =
1

𝑚
∑ |Iorig − Idenoised|2 (5.2) 

where Iorig is the original image and Idenoised is the output of the model. 

 Elastic Loss with λ = 0.25, 0.5, and 0.75: 

𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑁𝑒𝑡 = 𝜆. 𝐿1 + (1 − 𝜆). 𝐿2 (5.3) 

To train our model, we have made use of the MSE loss function. 
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5.5 Optimizer Types 

We have made use of two types of optimizers in our training and testing process: Mini 

Batch Gradient Descent and Adam Optimizer. We found that both optimizers perform 

optimally, but Adam Optimizer was a better optimizer. 

5.6 preprocessing 

5.6.1 Loading and Resizing Images 

The images are loaded from a specified path, in grayscale mode. Each image is resized 

to a fixed dimension of 200x200 pixels to ensure uniformity across the dataset. The resized 

images are then flattened and stored in a list ‘img_single’. 

5.6.2 Splitting Dataset 

The dataset is divided into training and testing sets. The first 10% of the images, are 

assigned to the testing set (test_y), while the remaining images are used for training (train_y). 

5.6.3 Normalizing Images 

The training and testing images are normalized to a range of [0, 1], ensuring the pixel 

values are suitable for training the autoencoder. The images are then reshaped to include a 

channel dimension. resulting in arrays of shape (number of images, width, height, channel). 

5.6.4 Adding Noise 

The flattened images are normalized to the range [0, 1]. and instead of corrupting a 

single image at a time, flattened dataset with each row representing an image was corrupted, 

simultaneously perturbing all images. Different parameters detailed in Table 1 were used for 

corruption. 
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Table 5- 1 For each type of noise in the, there are both low and high levels of perturbation. 

5.6.5 Preparing Noisy Images for Training 

The noisy images are reshaped back to their original 200x200 dimensions. Similar to 

the ground truth images (the free-noise images in ‘test_y’ and ‘train_y’), the first 10% of the 

noisy images are used for testing (test_x), while the remaining images are used for training 

(train_x). Both the noisy training and testing images are reshaped to include a channel 

dimension, resulting in arrays of shape (number of images, width, height, channel). 

5.6.6 median and gaussian filter 

We fed the photos into the CDAE after applying a mix of Gaussian and median filters. 

This preprocessing phase aims to improve the input image quality and minimize noise. 

5.6.6.1 Median Filter: A median filter with a kernel size of 5x5 pixels was used. The median 

filter is effective in removing impulsive noise, such as salt-and-pepper noise, while preserving 

the edges of the image. 

5.6.6.2 Gaussian Filter: A Gaussian filter with a kernel size of 5×5 pixels was applied. with a 

standard deviation for the Gaussian distribution was set to 1.0. The Gaussian filter smooths 

the image by averaging the pixel values within the kernel, weighted by a Gaussian function, 

effectively reducing Gaussian noise. 

 

Noise type Corruption parameters 

Salt and Pepper Density = 0.1, proportion = 0.5 

Salt and pepper density= 0.3, proportion=0.5 

Gaussian mean=0, variance = 0.01 

Gaussian mean=0, variance = 0.08 

Poisson Proportion = 0.2, mean=1 

Poisson Proportion = 0.2, mean=5 

Speckle mean = 0, variance = 0.04 

Speckle mean = 0, variance = 0.2 
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5.7 Evaluation metrics 

To quantify the difference in change between the two images, before and after passing 

it through our proposed model, we need relevant metrics that would score any improvement 

or deterioration in the image. We have used metrics that capture the structure of the image in 

both cases, while also using metrics that capture the effectiveness of a machine learning 

model by only changing the input to the model. An ideal evaluation technique would be 

where our proposed architecture could be exposed to various types of noise and image sizes. 

If any system works consistently in this setting, we would have an ideal and optimal blind 

denoising and enhancement system. 

Making use of metrics like PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural 

Similarity Index Measure) are being used to evaluate changes in the structural changes of an 

image. Both these metrics use very different aspects of an image to determine the difference 

with respect to the original, non-noisy, ideal image. The lesser difference in the images 

equates to higher scores. PSNR primarily looks into the mean square error between the two 

images, whereas SSIM calculates changes in the luminance, contrast, and structure difference 

between them. 

5.7.1 PSNR (Peak Signal-to-Noise Ratio)  

 This term is defined as a ratio between the maximum possible signal strength and the 

amount of noise that affects the quality of an image. This ratio is calculated in the logarithmic 

scale due to existence of wide dynamic[40]. 

range in images. The formula to calculate PSNR is expressed below: 

𝑃𝑆𝑁𝑅 = 20. log10(
𝑆𝑖𝑔𝑚𝑎𝑥

√𝑀𝑆𝐸
) 

Where: 

𝑀𝑆𝐸 =
1

𝑀. 𝑁
∑ ∑ ||Iorig − Idegraded||2

𝑛

𝑐𝑜𝑙𝑢𝑚𝑛𝑠=1

𝑚

𝑟𝑜𝑤𝑠=1

 

(5.4) 

Where: 

Sigmax: is the maximum signal strength of the original image, 
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MSE: is the Mean Squared Error, 

Iorig: is the image data of the original image, 

Idegraded: is the image data of the degraded image, 

m: is the number of rows in the image, 

n: is the number of columns in the image [40]. 

5.7.2 SSIM (Structural Similarity Index)  

 It is a method to measure the similarity between two images in terms of factors like 

contrast, luminance, and structural context. It is viewed as a quality measure for an image 

being compared to the original image, 

which in these cases, is regarded as an ideal image. This metric evaluates the images 

on structural metrics instead of the absolute difference in pixel values[40], as seen in PSNR. 

SSIM can be calculated using the following formulae: 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝑙(𝑥, 𝑦)]𝛼[𝑐(𝑥, 𝑦)]𝛽 [𝑠(𝑥, 𝑦)]𝛾 (5.5) 

         where α, β and γ> 0 control the relative significance of each of three terms in SSIM and 

l, c and s are luminance, contrast and structural components calculated as follow: 

   

𝑙(𝑥, 𝑦) =
2µ𝑥µ𝑦 + 𝐶1

µ𝑥
2 + µ𝑦

2 + 𝐶1
 

𝑐(𝑥, 𝑦) =
2𝜎𝑥𝜎𝑦 + 𝐶2

𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2
 

 

𝑠(𝑥, 𝑦) =
2𝜎𝑥𝑦 + 𝐶3

𝜎𝑥𝜎𝑦 + +𝐶3
 

 

(5.6) 

        where µx and µy represents the mean of original and coded image, Ϭx and Ϭy are 

standard deviation and Ϭxy is the covariance of two images [40]. 
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5.8 Tools 

5.8.1 Software Tools 

Developing the different deep learning models such as CDAE were done in python 3 

programming language and main libraries such as Tensorow and Keras were used. 

- TensorFlow: is an open-source machine learning system that runs at large scale and in 

heterogeneous environments. It maps the nodes of a dataflow graph across many machines in 

a cluster, and within a machine across multiple computational devices, including multi-core 

CPUs (Central Processing Units), general-purpose GPUs (Graphics Processing Units), and 

TPUs (Tensor Processing Units). TensorFlow enables developers to test novel optimizations 

and training algorithms. It also supports a variety of applications, with a focus on training and 

inference on deep neural networks. 

- Keras : is a high-level neural networks API that is developed in Python and can run on top 

of software libraries such as TensorFlow, CNTK, or Theano. It can run smoothly on both 

CPUs and GPUs. Keras was implemented with a focus on enabling fast experimentation [37]. 

5.8.2 Hardware Tools 

The CDAE modelling were done on an ASUS Vivobook 

-Intel(R) Core (TM) i5-8265U CPU @ 1.60GHz   1.80 GHz. 

-16.0 GB RAM. 

-no GPU. 

5.9 Fine tuning  

To maximize the performance of the model, the autoencoder was fine-tuned 

independently for each database (mini-MIAS database and the Panoramic Dental X-rays 

database) with salt and pepper noise effect. Important hyperparameters were also adjusted. 

The primary hyperparameters tuned were the number of epochs, batch size, and image size. 

For each tuning process, the model's performance was evaluated using SSIM (Structural 

Similarity Index Measure) and PSNR (Peak Signal-to-Noise Ratio) metrics.  The following 

consecutive steps were used to carry out the fine-tuning process: 
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5.9.1 Batch Size Tuning 

Process: The batch size was varied across the values of 10, 20, 30, 40, and 100, while 

keeping the number of epochs fixed at 50 and the image size at 64x64 pixels. 

Outcome: The batch size that produced the best SSIM and PSNR scores was selected for the 

next stage.  

5.9.2 Epoch Tuning 

Process: With the optimal batch size determined from the previous step, the number of 

epochs was then varied among 50, 100, 200, 300, 400, and 500. 

Outcome: The best-performing number of epochs was chosen for the subsequent tuning step. 

5.9.3 Image Size Tuning 

Process: Finally, the image size was adjusted among 64x64, 100x100, and 200x200 pixels, 

while keeping the batch size and number of epochs fixed at their optimal values obtained from 

the previous stages. 

Outcome: The image size that resulted in the highest SSIM and PSNR was selected as the 

optimal configuration. 

By systematically adjusting and evaluating these hyperparameters, the model was fine-

tuned to achieve the best denoising performance for each database, ensuring robust and 

reliable results. 
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5.10 Fine tuning results 

5.10.1 mini-MIAS database results  

5.10.1.1 Batch Size Tuning 

Batch size 10 20 30 40 100 

SSIM 0.853 0.846 0.814 0.822 0.774 

PSNR 26.445 25.057 19.381 22.940 22.828 

Table 5- 2 SSIM and PSNR results with different batch size values (fixing epochs in 50 and image size 

in 64×64 pixels). 

 

Figure 5- 5 SSIM and PSNR results with different batch size values (fixing epochs in 50 and 

image size in 64×64 pixels). 

5.10.1.2 Epoch Tuning 

Epoch 50 100 200 300 400 500 

SSIM 0.856 0.878 0.889 0.894 0.891 0.890 

PSNR 22.407 23.495 27.993 28.328 27.179 27.514 

Table 5- 3 SSIM and PSNR results with different numbers of epochs (fixing batch size in 10 and image 

size in 64×64 pixels). 
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Figure 5- 6 SSIM and PSNR results with different numbers of epochs (fixing batch size in 10 and 

image size in 64×64 pixels). 

5.10.1.3 image size Tuning 

Image size in pixel 64×64 100×100 200×200 

SSIM 0.883 0.903 0.913 

PSNR 27.263 29.246 30.598 

Table 5- 4 SSIM and PSNR results with different image sizes (fixing batch size in 10 and number of 

epochs in 300). 

 

Figure 5- 7 SSIM and PSNR results with different image sizes (fixing batch size in 10 and epochs in 

300). 

 

The best hyperparameters for mini-MIAS database are 10 for batch size, 300 for the 

number of epochs and 200×200 pixels for image size. 
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5.10.2 Panoramic Dental X-rays database results 

5.10.2.1 Batch Size Tuning 

Batch size 10 20 30 40 100 

SSIM 0.737 0.705 0.704 0.690 0.595 

PSNR 21.328 20.824 20.623 20.061 19.095 

Table 5- 5 SSIM and PSNR results with different batch size values (fixing epochs in 50 and image 

size in 64×64 pixels). 

 

Figure 5- 8 SSIM and PSNR results with different batch size values (fixing epochs in 50 and image size 

in 64×64 pixels). 

5.10.2.2 Epoch Tuning 

Epoch 50 100 200 300 400 500 

SSIM 0.725 0.787 0.809 0.801 0.806 0.784 

PSNR 19.937 23.131 23.796 22.952 23.353 21.980 

Table 5- 6  SSIM and PSNR results with different numbers of epochs (fixing batch size in 10 and 

image size in 64×64 pixels). 

 

Figure 5- 9 SSIM and PSNR results with different numbers of epochs (fixing batch size in 10 and 

image size in 64×64 pixels). 

0

0.2

0.4

0.6

0.8

10 20 30 40 100

SSIM

17

18

19

20

21

22

10 20 30 40 100

PSNR

0.65

0.7

0.75

0.8

0.85

50 100 200 300 400 500

SSIM

18

20

22

24

26

50 100 200 300 400 500

PSNR



Chapter 5 Experiments and results 

 

77 

 

5.10.2.3 image size Tuning 

Image size 64×64 100×100 200×200 

SSIM 0.807 0.835 0.868 

PSNR 23.042 22.925 25.937 

Table 5- 7 SSIM and PSNR results with different image sizes (fixing batch size in 10 and epochs in 

200). 

 

Figure 5- 10 SSIM and PSNR results with different image sizes (fixing batch size in 10 and epochs in 

200). 

The best hyper parameters for the Panoramic Dental X-rays database are: 10 for batch 

size, 200 for the number of epochs and 200×200 pixels for image size. 

5.11 Empirical evaluation  

For the baseline comparison, we explore the impact of incorporating median and 

Gaussian filtering in the preprocessing step of the CDAE. 

 Our objective with this addition is to improve the performance of the autoencoder for 

denoising images. 

To keep similar noise effect, we corrupt the images of the two datasets with same 

noise level as shown in table 1. 

Using a batch size of 10 and 300 epochs, with an image size of 200×200 pixels for the 

mini-MIAS database, and similarly for the Panoramic Dental X-rays database (with the 

number of epochs changed to 200), the denoising results are presented in Figure 5.11,5.12, 

and Table 7" 
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Figure 5- 11 denoising performance of CDAE on the mini-MIAS database with and without filtering in 

the preprocessing. The top row displays the real images. The second and fifth rows show the noisier versions 

with minimal and higher noise levels, respectively. The third and sixth rows present the denoising results of 

CDAE without filtering. The fourth and eighth rows show the results of CDAE with filtering in the 

preprocessing. 
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Mammogram database with minimal noise levels 

Noise types S&P noise Gaussian noise Speckle noise Poisson noise 

Metrics SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR 

CNNAE 0.913 30.598 0.846 28.546 0.868 28.955 0.887 29.441 

CNNAE+Filtering 0.903 32.265 0.840 30.152 0.860 30.356 0.851 31.109 

Mammogram database with higher noise levels 

Noise types S&P noise Gaussian noise Speckle noise Poisson noise 

Metrics SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR 

CNNAE 0.882 30.822 0.750 21.697 0.840 29.070 0.854 29.483 

CNNAE+Filtering 0.889 28.740 0.777 28.515 0.842 26.680 0.758 28.416 

Table 5- 8 comparing mean SSIM and PSNR scores using denoising CDAE without and with 

filtering for mini_MIAS database. 

 

we investigated the denoising performance of a Convolutional Neural Network 

Denoising Autoencoder (CDAE) on the mini-MIAS database, both with and without the 

application of Gaussian and median filtering in the preprocessing stage. The results are 

presented in a comprehensive Figure 5.12 and table 8. 

The results reveal that with minimal noise levels, there is a slight improvement in 

PSNR scores when using CDAE with filtering compared to without_ filtering, while the 

SSIM values remain close. Conversely, at higher noise levels, CDAE with filtering shows a 

slight improvement in SSIM scores, with PSNR values being similar between the two 

approaches. 

These findings suggest that the preprocessing filters only slightly improve denoising 

performance. The filters appear to help the CDAE better maintain image details, as evidenced 

by the minor gains in PSNR at low noise levels. The increase in SSIM at higher noise levels 

suggests that the filters help preserve the pictures' structural integrity.  

 

 

 

 



Chapter 5 Experiments and results 

 

80 

 

To test if less sample size by using Panoramic Dental X-rays database would have an 

impact on denoising performance. 

 

Figure 5- 12 denoising performance of CNNDAE on the Panoramic Dental X-rays database with and 

without filtering in the preprocessing. The top row displays the real images. The second and fifth rows show the 

noisier versions with minimal and higher noise levels, respectively. The third and sixth rows present the 

denoising results of CNNDAE without filtering. The fourth and eighth rows show the results of CNNDAE with 

filtering in the preprocessing. 
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Panoramic Dental X-rays database with minimal noise levels 

Noise types S&P noise Gaussian noise Speckle noise Poisson noise 

Metrics SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR 

CNN-AE 0.868 25.937 0.802 25.621 0.813 26.615 0.868 27.779 

CNNAE+Filtering 0.826 24.977 0.753 23.614 0.769 24.674 0.803 27.648 

Panoramic Dental X-rays database with higher noise levels 

Noise types S&P noise Gaussian noise Speckle noise Poisson noise 

Metrics SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR 

CNN-AE 0.815 27.740 0.662 24.212 0.718 25.478 0.766 26.635 

CNNAE+Filtering 0.805 25.938 0.655 24.063 0.690 23.441 0.655 24.018 

Table 5- 9 comparing mean SSIM and PSNR scores using denoising CDAE without and with 

filtering for Panoramic Dental X-rays database.  

 

The results reveal that with minimal and higher noise levels, there is no significant 

improvement in PSNR and SSIM scores when using CDAE with filtering compared to 

without filtering. 

These findings suggest that the preprocessing filters do not provide substantial benefits 

in denoising performance for this particular dataset. The lack of improvement can be 

attributed to the limited size of Panoramic Dental X-rays database compared to the mini-

MIAS which is almost double the size of the other database, which provides fewer images for 

training the autoencoder.  

We conclude that the capability of CDAE to learn and denoise is strong, making the 

added preprocessing filters less impactful but still beneficial under certain noise conditions.as 

we can see in figure 15 the model converged nicely for the given noise levels and sample size 

(292 training images). But as the noise level is changes with less sample size (106 training 

images) the network has trouble converging. As shown in figure 29. 
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Figure 5- 13 loss and validation loss from 300 epochs using a batch size of 10 and 200*200 pixels 

image size with salt and pepper noise (density=0.3, proportion=0.5). 

 

 

Figure 5- 14 loss and validation loss from 200 epochs using a batch size of 10 and 200×200 pixels 

image size with Gaussian noise (mean=0, variance=0.08). 

Speckle noise 

we also explored a specific approach for handling speckle noise, which is a type of 

multiplicative noise that poses significant challenges in image denoising. We suggested 

incorporating a logarithmic transformation before the autoencoder (AE) to convert the 

multiplicative noise into additive noise, followed by an inverse logarithmic transformation 
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after the AE processing. This method aimed to simplify the noise characteristics, hoping to 

improve the denoising performance. 

    

 

Figure 5- 15 loss and validation loss from 300 epochs using a batch size of 10 and 200*200 pixels 

image size with Speckle noise (mean=0, variance=0.04) with a log transformation in the preprocessing. 

Average SSIM: 0.20129868 

Average PSNR: 13.300069 

 

However, contrary to our expectations, the results did not show any improvement when 

compared to the standard approach without the logarithmic transformation. 

5.12 Result and discussion  

The proposed medical image denoising model is trained using two medical datasets as 

in section 5.2; These images were processed before passing to the denoising system. Pre-

processing consists of resizing all images to have same dimensions (64×64, 100×100 and 

200×200), to use computational resources more efficiently. Then, a noise is added to images 

with different levels, as in Figure 5.3 and 5.4. The processed images are split into 90% for 
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training and 10% testing. as indicated in section 5.2, 322 images from mini-mias dataset, and 

116 images from Panoramic Dental X-rays database. 

The training data are then encoded via the CDAE. When the data is encoded, the input 

is transformed into a set of features. These features are identified by the encoder to act as 

markers for decoding the output at the next stage. Figure 5.13 presents the loss curve of model 

training and validation. The training has stopped at 300 epochs, as the loss starts to stabilize to 

its minimum after 250 epochs. 

The 10 % images test dataset is then passed to the trained model, to evaluate the 

performance of the system in reconstructing medical mammography and X-ray panoramic 

dental noisy images. Table 8 and 9 shows the average results without and with applying 

filtering on the image test dataset using PSNR and SSIM metrics.  

They show that the trained model with images that have minimal noise levels added 

noise, has the best average results for the salt& paper noise: 0.913 for SSIM, 30.598 dB for 

PSNR without filtering, and 0.903 for SSIM, 32.265 dB for PSNR with filtering, but the 

trained model with images that have high noise levels added noise, has the best average 

results for the Gaussian noise:   0.777 for SSIM, 28.515 dB for PSNR. 

The conclusions drawn from the data shown in Tables 8 and 9 indicate that the 

performance of the proposed model is significantly influenced by the level and nature of 

noise, as well as the preprocessing procedures implemented. An optimal solution would be to 

select an SSIM value greater than 0.88, while maintaining a PSNR of approximately 28 dB. 

5.13 Conclusion and future work 

We have demonstrated that Convolutional Neural Network Denoising Autoencoders 

(CDAEs) can effectively denoise medical images. Contrary to common belief, our results 

indicate that good denoising performance can be achieved even with small training datasets, 

as few as 300 samples. 

The gains in denoising performance were negligible even after experimenting with a 

number of preprocessing methods, such as logarithmic adjustment for speckle noise and 

median and Gaussian filtering.  
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This implies that although preprocessing can have certain advantages, CDAEs' built-in 

capabilities are strong enough to effectively manage noise on their own, given enough 

training data. 

We propose a CDAE denoising system to effectively reduce noise in mini-MIAS and 

X-ray panoramic dental images. We train this system using small medical datasets, 

demonstrating its efficiency with two metrics: PSNR and SSIM. 

Future work can use larger datasets with a mixture of different kinds of noise. 

Furthermore, we can apply this model to other types of images, including DNA and 

microscopic images. 
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Chapter 6 Conclusion                                                              

Noise in images is a well-known problem. In every image, noise is predominant in 

some form or another. Noisy images pose challenges and frequently lead to their removal 

from datasets, as they lead the model to incorrectly identify features. Images with lower 

resolution do not hold enough context and information due to the small number of pixels in 

the image. Various stages in the image processing pipeline introduce different types of noise. 

Identifying and using the noise artifacts from the images to enhance the images can 

help provide better-looking images. Denoising would also improve the image's details, which 

can help machine learning models learn better features. 

This enhancement in the existing datasets has the potential to enhance the precision 

and functionality of contemporary cutting-edge algorithms. Software-based denoising and 

image enhancement can serve as a remedy to sensor noise, which is primarily a hardware 

issue. By using a denoising and augmentation technique, we can effectively utilize all the 

intricate details included in an image. Historically, we have relied on empirical methods to 

ascertain the most effective approaches for addressing different forms of noise in 

photographs. We implemented noise reduction techniques tailored to the specific type of noise 

identified by the user in the image. 

During image processing applications, the CAD system serves as a highly powerful 

diagnostic tool. Numerous factors can introduce noise into natural images. However, the 

primary source of noise addition occurs during acquisition and transmission. Appropriate 

denoising filters can suppress or detach this noise. Therefore, we should implement the 

denoising process to enhance the image quality for a more accurate diagnosis. 

This master thesis critically examines the benefits and constraints of many published 

publications on approaches for denoising dataset images. In order to achieve improved results 

while working with noisy photos, the denoising method consistently necessitates prior 

knowledge of the noise map and its ability to adjust.  

This master thesis provides a comprehensive summary of the process of reconstructing 

the dataset picture, identifying the noise present in the dataset image, applying CDAE 
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denoising methods, and conducting a comparative analysis based on the resulting output. The 

evaluation of the output is done using numerical performance metrics such as PSNR (Peak 

Signal-to-Noise Ratio) and SSIM (Structural Similarity Index).  

However, the findings of the experimental study indicate that the performance of the 

suggested model is strongly affected by the level and kind of noise, as well as the 

preprocessing processes employed. To achieve the best outcome, it is advisable to choose an 

SSIM value that is higher than 0.88, while also ensuring that the PSNR remains         around 

28 dB. 

The imaging techniques and diverse noise reduction algorithms are subject to daily 

improvements. Thus, it is crucial to improve the denoising techniques as well. The objective 

of this review is to present a comprehensive analysis of the presence of noise in dataset photos 

and the many denoising approaches that are now accessible. Researching noise can assist 

developers in devising novel denoising techniques for dataset photos. 
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MEDICAL IMAGE DENOISING. AN AUTO ENCODERS BASED APPROACH 

 

 

 
 

 

 
 

 

DÉBRUITAGE D‘IMAGES MEDICALES PAR UNE APPROCHE BASÉE SUR LES 

AUTO- ENCODEURS 

  

Abstract: 

Artificial intelligence (AI) has significantly enhanced medical diagnostics, particularly through medical imaging. 

However, these images often suffer from noise due to various factors like reduced radiation exposure. Efficient 

noise reduction is crucial for accurate diagnosis. This master thesis addresses the problem of denoising medical 

images using Convolutional Autoencoders (CAEs). CAEs leverage the power of Convolutional Neural Networks 
(CNNs) to effectively distinguish between noise and essential diagnostic information. By training on large 

datasets, CAEs learn intricate noise patterns specific to different imaging modalities, preserving critical anatomical 

details. The proposed method aims to improve image clarity, ensuring reliable diagnostics and better healthcare 
outcomes. This study demonstrates the potential of CAEs in enhancing the quality of medical imaging, thereby 

supporting more precise medical evaluations. 

Key words: Medical Image Denoising, Autoencoders, Convolutional Autoencoders (CAEs), Convolutional Neural 

Networks (CNNs), Noise Reduction, Medical Imaging, Image Processing, Diagnostic Imaging, Artificial 

Intelligence. 

 

 

Résumé : 

L'intelligence artificielle (IA) a considérablement amélioré le diagnostic médical, en particulier grâce à l'imagerie 

médicale. Cependant, ces images souffrent souvent de bruit en raison de divers facteurs tels que l'exposition 

réduite aux rayonnements. Une réduction efficace du bruit est essentielle pour un diagnostic précis. Cette thèse 

aborde le problème de l'identification des images médicales à l'aide d'auto-encodage convolutif (CAEs). Les 
CAEs tirent parti du pouvoir des réseaux neuronaux convolutifs (CNN) pour distinguer efficacement le bruit et les 

informations essentielles de diagnostic. En s'entraînant sur de grands ensembles de données, les CAE apprennent 

des motifs de bruit complexes spécifiques à différentes modalités d'imagerie, tout en préservant les détails 
anatomiques critiques. La méthode proposée vise à améliorer la clarté de l'image, en assurant un diagnostic fiable 

et de meilleurs résultats de soins de santé. Cette étude démontre le potentiel des ECA dans l'amélioration de la 

qualité de l'imagerie médicale, soutenant ainsi des évaluations médicales plus précises. 

Key words: Débruitage d'images médicales, Autoencodeurs, Autoencodeurs Convolutionnels (CAEs), 

Réseaux de Neurones Convolutionnels (CNNs),Réduction du Bruit, Imagerie Médicale, Traitement 

d'Image, Imagerie Diagnostique, Intelligence Artificielle. 

 

 

 : ملخص

 هذه الصور من تحسينات كبيرة في تشخيصات الطبية، وخاصة من خلال التصوير الطبي. ومع ذلك، غالباً ما تعاني يأحدث الذكاء الاصطناع
شكلة مه الأطروحة ناول هذالضوضاء بسبب عوامل مختلفة مثل تقليل التعرض للإشعاع. يعد تقليل الضوضاء بكفاءة أمرًا حاسمًا للتشخيص الدقيق. تت

تمييز لل لشبكات العصبية الالتفافيةة اتستفيد المشفرات الذاتية الالتفافية من قو .إزالة الضوضاء من الصور الطبية باستخدام المشفرات الذاتية الالتفافية

نماط لالتفافية أالذاتية الفعال بين الضوضاء والمعلومات التشخيصية الأساسية. من خلال التدريب على مجموعات بيانات كبيرة، تتعلم المشفرات ا

حسين وضوح تحة إلى هدف الطريقة المقترالضوضاء المعقدة الخاصة بطرائق التصوير المختلفة، مع الحفاظ على التفاصيل التشريحية الحرجة. ت
لتصوير حسين جودة اية في تالصورة، مما يضمن تشخيصًا موثوقاً ونتائج رعاية صحية أفضل. تظُهر هذه الدراسة إمكانات المشفرات الذاتية الالتفاف

 .الطبي، مما يدعم التقييمات الطبية الأكثر دقة

قليل ت، ةلالتفافيات العصبية ا، الشبكالطبية، المشفرات الذاتية، المشفرات الذاتية الالتفافية إزالة الضوضاء من الصور : الكلمات المفتاحية
 .الضوضاء، التصوير الطبي، معالجة الصور، التصوير التشخيصي، الذكاء الاصطناعي

. 

 

 

ةالطبية باستخدام نهج يعتمد على المشفرات الذاتيإزالة الضوضاء من الصور   


