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Abstract  

The main objective of this thesis is an analytical study of the blow-up of solutions for 

certain pseudo-parabolic equations. In the first study, we focused on equations with 

source and damping terms with fixed exponents. To prove the blow-up, we used the 

method of differential inequalities. In the second study, we highlighted pseudo-

parabolic equations with variable exponents. By also using differential inequalities, we 

obtained the blow-up of the solution. Finally, we study the blow-up of solutions for 

pseudo-parabolic equations with variable exponents in the presence of a matrix with 

variable coefficients. 

 

Keywords: Blow–up , pseudo-parabolic equation , Lower bound , upper bound 

 الملخص

لبعض المعادلات شبه التكافؤية. في الهدف الرئيسي من هذه المذكرة هو دراسة تحليلية لانفجار الحل 

الدراسة الاولى ركزنا على المعادلات ذات منبع و كبح و ذات أسس ثابتة. لإثبات الانفجار نستعمل 

طريقة المراجعات التفاضلية. في الدراسة الثانية سلطنا الضوء على المعادلات شبه تكافؤية ذات أسس 

ة تحصلنا على انفجار الحل. اخيرا ندرس انفجار الحل متغيرة. أيضا باستخدام المتراجحات التفاضلي

 للمعادلات شبه تكافؤية ذات أسس متغيرة و بوجود مصفوفة ذات معاملات متغيرة

                                                                                                                                           

، الحد الأدنى، الحد الأقصىية تكافؤ الإنفجار، معادلة شبه الكلمات الرئيسية:  . 

Résumé  

L'objectif principal de cette mémoire est une étude analytique de l'explosion des 

solutions pour certaines équations pseudo-paraboliques. Dans la première étude, nous 

nous sommes concentrés sur les équations avec des termes de source et 

d'amortissement avec des exposants fixes. Pour prouver l'explosion, nous avons utilisé 

la méthode des inégalités différentielles. Dans la deuxième étude, nous avons mis en 

lumière les équations pseudo-paraboliques avec des exposants variables. En utilisant 

également les inégalités différentielles, nous avons obtenu l'explosion de la solution. 

Enfin, nous étudions l'explosion des solutions pour les équations pseudo-paraboliques 

avec des exposants variables en présence d'une matrice avec des coefficients variables. 

Mots-clés: Explosion, équation pseudo-parabolique, borne inférieure, borne 

supérieure 
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General Introduction

In all this work

* T > 0

* Ω is a bounded domain in Rn(n ≥ 1), with smooth boundary ∂Ω.

Consider the initial boundary value problem

υ(x, t) = 0, on ∂Ω× (0,∞), (1)

υ(x, 0) = υ0(x), x ∈ Ω, (2)

for a linear operator differential equations

(1 + L0(x)) υt + L1(x)υ = f(t, x, υ), in Ω× (0,∞) (3)

where L0(x) and L1(x) are second-order partial differential operators.

Examining the possibility that some evolution problems’ solutions blow up in finite time is why

we are interested in this work. We are then in the presence of a local time, but not globally.

A variety of nonlinear evolution equations exhibit the blow-up phenomenon. It happens for hy-

perbolic equations,Schrödinger equations, parabolic equations as well as pseudo-parabolic equa-

tions. In this work, we shall deal only with pseudo-parabolic equations.

For the first initial boundary value problem, operators L0(x), L1(x) have the form L0(x) = L1(x) =

−∆ (∆ is the Laplacian in x) and f(t, x, υ) = υp. For the second initial boundary value prob-

lem L0(x) = −∆, L1(x) = ∆r(x)∆r(x) (∆r(x) = div(|∇υ|r(x)−2∇υ) is th r(x)-Laplacian in x) and

f(t, x, υ) = |υ|p(x)−2 υ. For the third problem L0(x) = −∆, L1(t, x) = div(A(x, t) |∇υ|r(x)−2∇υ)

and f(t, x, υ) = |υ|p(x)−2 υ.

Historiography.

Many problems of thermodynamics, hydrodynamics, and filtration theory lead to equations of

type 3. Let us consider some examples.

1. C. G. Rossby [39] considered one of the earliest equations of type (3) in 1939. It is in the form

∆Dtυ + βDx2u = 0, n = 2 (4)

It first appeared in research on how certain kinds of ocean waves move. In the literature, it is
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now referred to as the Rossby wave equation, where ∆ represents the Laplacian in x.

2. S. L. Sobolev’s equation [44] considered in the study of small oscillations of a rotating ideal

fluid is

∆D2
t υ + ω2D3

x3
u = f(t, x), n = 3 (5)

(
ω

2
is the angular velocity). S. L. Sobolev developed some new mathematical physics problems in

addition to studying the Cauchy problem and the first and second boundary value problems for

this equation. This was the first comprehensive analysis of equations that were not solved for the

maximum derivative in terms of time. This is why now (5) is called the Sobolev equation.

3. In 1960, G. I. Barenblatt, J. P. Zheltov and I. N. Kochina [5] examined one of the first equations

of type (3). It has the form

(η∆− 1)Dtυ + β∆υ = f(t, x), n = 3 (6)

It explains why uniform liquids seep through fissure rocks( ∆ is the Laplacian in x).

Moreover, the equation (6), for n = 1 appeared in other physical papers unrelated to seepage

problems (see, for example, [11], [12]).

4. For the problem of non-stationary processes in semiconductors in the presence of sources, the

following equation was found

Dtυ −∆Dtυ −∆υ = f(υ), (7)

the term ∆υt − υt represents the rate at which the free electron density changes, while ∆υ rep-

resents the linear dissipation of the free charge current. The source term f(υ), which can be

expressed as either f(υ) = υp−1 or f(υ) = |υ|p−2 υ, represents a source of free electron current (

see [24])

5. Studying the aggregation of populations leads to the equation

υt − µ∆υt − β∆υ = |υ|p − 1

Ω

∫
Ω

|υ|p dx, (8)

the function υ(x, t) is utilized to denote the density of the species at a particular position x and

time t. The rate of reproduction is defined as the reaction term |υ|p − 1
Ω

∫
Ω
|υ|p dx. The nonlocal

term
∫

Ω
|υ|p dx can be used to express how, as a result of spatial inhomogeneity, the evolution

of a species at a given point in space depends not only on the density close by but also on the

mean value of all species present (see [21][10][34]). Nonlocal reaction terms can also be used

to characterize the behaviors of cancer cells in response to therapy or the Darwinian evolution of

a structured population density (see [29][28] ).
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The appearance of equations of type (3) - which are also known as Sobolev-type equations or

Sobolev-Galpern-type equations, was first introduced by S. Sobolev[32]- in many physical ap-

plications simulated the interest of mathematicians in them. Sobolev-type equations have taken

several different paths since the 1950s. In particular, the qualitative behavior of solutions to cer-

tain initial boundary value problems has been examined in conjunction with spectral problems.

A general theory of boundary value problems for those equations was constructed, and it was the

subject of numerous papers.

H. Di’s, X. Zhu’s, M.I. Vishik’s, G. I. Eskin’s, S. A. Galpern’s, Y. Zheng’s, J. Zhou’s, Pavlov’s, R. Z.

Xu’s, B. K. Romanko’s, R. E. Showalter’s, A. G. kostyuchenko’s and other works were devoted to

the construction of a general theory of boundary value problems for Sobolev-type equations (see,

for example, the bibliography in [46][14]).

Object, method, and aim.

The object of this work is to answer the questions usually posed in the study of the blow-up

phenomenon, which includes which solutions blow up and where and how they do. We use

a differential inequality technique. The essence of the method is to show that G = ‖υ‖H1
0 (Ω)

satisfies a differential inequality which leads to blow up in finite time. This method is used

in([14][25][31] [33][38]...). The first goal considers the study of the blow-up of solution for

the nonlinear pseudo-parabolic equation with damping and source terms. The second goal is

also centered on the study of these problems for the nonlinear pseudo-parabolic equation with

damping and source terms of variable-exponent types. The third one is to prove that the solution

of the pseudo-parabolic equation with damping and source of variable-exponent type with the

presence of a matrix, blows up in finite time.

Contents.

The monograph contains four chapters, except Introduction and References. The first chapter is

auxiliary and contains useful later facts about functional analysis, variable exponent space, and

function theory. In the second chapter, we consider the following pseudo-parabolic equation

with source and damping terms

υt −∆υ −∆υt = υp, in Ω× (0,∞),

υ(x, t) = 0, on ∂Ω× (0,∞),

υ(x, 0) = υ0(x), x ∈ Ω,

where p > 1. First, we present the theorem of the existence of a solution. Next, we show that the

5



energy is decreasing and we use some assumptions for initial data to prove a blow-up result. In

the third chapter, we consider the following nonlinear pseudo-parabolic equation with damping

and source terms of variable-exponent types

υt − div(|∇υ|r(x)−2∇υ)−∆υt = |υ|p(x)−2 υ, in Ω× (0,∞),

υ(x, t) = 0, on ∂Ω× (0,∞),

υ(x, 0) = υ0(x), x ∈ Ω,

where r(.) and p(.) are measurable functions. First, we present the result concerning the existence

of the local solution of this system. Next, we show that the energy is decreasing, and by some

assumptions for the variable exponents r(.), s(.), and the initial data, we obtain the blow-up

results. In the fourth chapter, we consider the following nonlinear pseudo-parabolic equation

with damping, source, and with presence of a matrix with variable entries in the divergence

operator 

υt −∆υt − div(A(x, t) |∇υ|r(x)−2∇υ) = |υ|s(x)−2 υ, in Ω× (0,∞),

υ(x, t) = 0, on ∂Ω× (0,∞),

υ(x, 0) = υ0(x), x ∈ Ω,

where A(x, t) = (aij(x, t))i,j is a matrix that satisfies some conditions to be specified later. We

assume that the conditions on p(x) and r(x) given in Chapter 3, hold. First, we present the result

concerning the existence of the local solution of this system, then we show the usual energy is

decreasing. After that, we use some assumptions for the variable exponents r(.), s(.), the initial

data, and the matrix A(., t) to prove that the solution becomes unbounded at a finite time T , and

find an upper bound for this time with a negative initial energy

6



Chapter 1

Auxiliary material

Elements of Functional Analysis - Variable Exponent Spaces - Important Lemmas - Notion

of blow-up.

In this chapter, We specify some of the symbols we will constantly use throughout the memory

and recall some basic notions about differential operators, elements of Functional Analysis,

Variable Exponent Spaces, and the notion of blow-up. For more information see [41] [15] [8].

1.1 Elements of Functional Analysis

1.1.1 Basic Notations and Facts

* The gradient of a function u is defined by:

gradu = ∇u =

(
∂u

∂x1

,
∂u

∂x2

, ...,
∂u

∂xn

)
, then |∇u|2 =

n∑
i=1

(
∂u

∂xi

)2

. (1.1)

* The divergence of a function u is defined by:

div u = ∇ · u =
∂u

∂x1

+
∂u

∂x2

+ ...+
∂u

∂xn
=

n∑
i=1

∂u

∂xi
. (1.2)

* The Laplacian of u

∆u =
∂2u

∂x2
1

+
∂2u

∂x2
2

+ ...+
∂2u

∂x2
n

=

n∑
i=1

∂2u

∂x2
i

. (1.3)

* ∆r(x) is the so-called r (x)-Laplace operator defined as

∆r(x)u = div(|∇u|r(x)−2∇u), (1.4)

7



Chapter 1. Auxiliary material

* If u has continuous partials up to the order k (included) in the domain Ω, we say that u is of

class Ck (Ω) , k ≥ 1. The class of functions that are continuously differentiable with any order in

Ω is represented by C∞ (Ω).

* Ck
0 (Ω) , 0 ≤ k ≤ ∞ denotes the vector subspace of the compactly supported Ck (Ω) functions in

Ω.

* The space C∞0 (Ω)which we will also note D (Ω) , is called the test function space on Ω.

* An operator A is called linear, if A(λx + µy) = λAx + µAy for any x, y ∈ D(A) and for any

λ, µ ∈ R (C)

Lemma 1.1 Let u and v two functions of C1(Ω), for all : 1 ≤ i ≤ n we have

∫
Ω

∂u

∂xi
vdx = −

∫
Ω

∂v

∂xi
udx+

∫
∂Ω

vuηids (1.5)

Where ηi(x) = cos(η, xi) cosinus direction of the angle between external regulator on ∂Ω in x

point and axis of xi

Corollary 1.1 ( Green’s Formula). Let Ω be a bounded open of class C1. Then for all functions

u ∈ C2
(
Ω̄
)

and v ∈ C1
(
Ω̄
)

we have∫
Ω

∆u (x) v (x) dx =

∫
Γ

∂u

∂η
(x) v (x) dΓ−

∫
Ω

∇u(x).∇v(x)dx, (1.6)

Where ∂u
∂η

= ∇u(x) · η(x) (normal derivative of u).

1.1.2 Norms and Banach Spaces

Definition 1.1 : Over the scalar field R or C, let X a linear space . A real function that satisfies the

following properties for every x, y ∈ X and every scalar λ is called a norm in X

1. ‖x‖ ≥ 0; ‖x‖ = 0 if and only if x = 0 (positivity)

2. ‖λx‖ = |λ| ‖x‖ (homogeneity)

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangular inequality)

Definition 1.2 : A linear space X with a norm is called a normed space.With a norm determined by

the distance between two vectors, which is given by

d(x, y) = ‖x− y‖

1.1. Elements of Functional Analysis 8



Chapter 1. Auxiliary material

which makes X a metric space and allows us to define a topology in X and a notion of convergence

in a very simple way.

Notation 1.1 : A normed space in which every Cauchy sequence converges is called complete and

deserves a special name.

Notation 1.2 : Banach space is the name given to a complete, normed linear space.

Definition 1.3 : X, Y linear spaces, endowed with the norms X and Y , respectively, and let F :

X → Y . We say that F is continuous at x ∈ X if

‖F (y)− F (x)‖Y → 0 when ‖y − x‖X

or, equivalently, if, for every sequence {xm} ⊂ X,

‖xm − x‖X → 0 implies ‖F (xm)− F (x)‖Y → 0

* If F is continuous at every x in X, then it is continuous in X. Specifically:

Proposition 1.1 [41]. Every norm in a linear space X is continuous in X.

Notation 1.3 : A few illustrations are necessary.

Spaces of continuous functions: Let X = C(A) represent the set of continuous functions (real

or complex) on A, where A is a compact subset of Rn that has the norm

‖f‖C(A) = max
A
|f | (1.7)

A sequence {fm} converges to f in C(A) if

max
A
|fm − f | → 0

in other words, if fm converges to f in A uniformly. C(A) is a Banach space because a uniform

limit of continuous functions is continuous.

1.1. Elements of Functional Analysis 9



Chapter 1. Auxiliary material

Summable and bounded functions: Let p a natural number and Ω an open set in Rn. The set

of functions f such that |f |p is Lebesgue integrable in Ω is denoted by X = Lp(Ω).

Equipped with the norm

‖ζ‖Lp(Ω) =
(∫

Ω
|ζ|p
) 1
p (1.8)

Lp(Ω) becomes a Banach space when equipped with the norm

Definition 1.4 Let X = L∞ (Ω) the set of essentially bounded functions in Ω. Remember that if there

exists M such that

|f (x)| ≤M a.e.on Ω (1.9)

then f : Ω→ R (or C) is effectively bounded.

The essential supremum of f is the infimum of all numbers M having the property (1.9), and it

is represented by

‖f‖L∞(Ω) = ess sup
Ω
|f (x)| (1.10)

‖f‖L∞(Ω) is a norm in L∞(Ω), and L∞(Ω) becomes a Banach space

Lemma 1.2 (Young’s Inequality). Let p, r ∈]1,∞[, s ≥ 1 such that 1
s

= 1
p

+ 1
r
. Then, for all

a, b ≥ 0, we have
(ab)s

s
≤ ap

p
+
br

r
(1.11)

By taking s = 1. It follows that for any ε > 0, we have

ab ≤ εap + c(ε)br, where c(ε) = 1/r(εp)
r
p .

For p = s = 2, it comes

ab ≤ εa2 +
b2

4ε
.

Lemma 1.3 (Hölder’s Inequality). Let p, r ∈]1,∞[ such that 1
p

+ 1
r

= 1. If f ∈ Lp(Ω) and

g ∈ Lr(Ω), then fg ∈ L1(Ω) with

‖fg‖1 ≤ ‖f‖p ‖g‖r (1.12)

By taking p = q = 2, we obtain the Cauchy-Schwarz inequality

‖fg‖1 ≤ ‖f‖2 ‖g‖2 (1.13)

1.1. Elements of Functional Analysis 10



Chapter 1. Auxiliary material

1.1.3 Hilbert Spaces

Definition 1.5 : Let X a linear space over R. An inner or scalar product in X is a function

(., .) : X ×X → R

with the following three properties. For every x, y, z ∈ X and scalars λ, µ ∈ R:

1. (x, x) ≥ 0 and (x, x) = 0 if and only if x = 0

2. (x, y) = (y, x)

3.(µx+ λy, z) = µ(x, z) + λ(y, z)

A linear space endowed with an inner product is called an inner product space.

An inner product induces a norm, given by:

‖x‖ =
√

(x, x) (1.14)

Definition 1.6 Let H an inner product space. We say that H is a Hilbert space if it is complete with

respect to the norm (1.14), induced by the inner product.

Example 1.1 Rn is a Hilbert space with respect to the usual inner product

(X, Y )Rn = X.Y =
n∑
i=1

xiyi, X = (x1, ..., xn) , Y = (y1, ..., yn)

The induced norm is

‖X‖ =
√
X.X =

(
n∑
i=1

x2
i

) 1
2

(1.15)

Example 1.2 L2 (Ω) is a Hilbert space (perhaps the most important one) with respect to the inner

product

(u, v)L2(Ω) =

∫
Ω

uvdx (1.16)

If Ω is fixed, we will simply use the notations (u, v) instead of (u, v)L2(Ω) and ‖u‖ instead of

‖u‖L2(Ω).

Definition 1.7 ( Weak Derivative ) Let Ω ⊂ Rn be an open set. Assume that and u ∈ L1
loc (Ω). Let

α = (α1, α2, ..., αn) ∈ Nn be a multi-indice. If there exists g ∈ L1
loc (Ω) such that∫

Ω

u
∂α1+α2,...+αnψ

∂α1x1...∂αnxn
dx = (−1)α1+α2,...+αn

∫
ψg

Ω

dx, ∀ψ ∈ C∞0 (Ω)

then g is called a weak partial derivative of u of order α.

The function g is denoted by D|α|u or by ∂α1+α2,...+αnu
∂α1x1...∂αnxn

1.1. Elements of Functional Analysis 11
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Definition 1.8 (Sobolev Spaces) Let m, p ∈ N. We define the constant exponent Sobolev space

Wm.p(Ω) as follows:

Wm,p(Ω) =
{
u ∈ Lp(Ω) such that D|α|u ∈ Lp(Ω) with |α| ≤ k

}
.

where |α| = α1 + α2, ...+ αn equipped with the following norm

‖u‖Wm,p(Ω) = ‖u‖Lp(Ω) +
∑

0<|α|≤m

‖Dαu‖Lp(Ω) (1.17)

Clearly

W 0,p(Ω) = Lp(Ω)

and

W 1.p(Ω) = {u ∈ Lp(Ω) such that ∇u exists and ∇u ∈ Lp(Ω)} (1.18)

equipped with the norm

‖u‖W 1.p(Ω) = ‖u‖Lp(Ω) + ‖∇u‖Lp(Ω) (1.19)

we denote H1(Ω) = W 1,2(Ω).

Definition 1.9 The space W 1.2(Ω) equipped with the norm

‖u‖2
H1 = ‖u‖2 + ‖∇u‖2 (1.20)

and the inner product

(u, v)H1 = (u, v)L2 + (∇u,∇v)L2 (1.21)

is a Hilbert space.

* Let Ω ⊆ Rn. We introduce an important subspace of H1(Ω)

Definition 1.10 We denote by H1
0 (Ω) the closure of D(Ω) in H1(Ω).

* The following Poincaré inequality represents a significant property of H1
0 (Ω), which is especially

helpful when solving boundary value problems.

Theorem 1.1 ( Poincaré’s inequality)[41]. Assume that the domain Ω ⊆ Rn is bounded. There

exists a positive constant Cp (Poincaré’s constant) such that, for every u ∈ H1
0 (Ω)

‖u‖ ≤ Cp ‖∇u‖ (1.22)

1.1. Elements of Functional Analysis 12
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1.2 Variable Exponent Spaces

1.2.1 Lebesgue Spaces With Variable Exponents

Definition 1.11 The Lebesgue space Lp(.)(Ω) is defined by

Lp(.)(Ω) =

{
u : Ω −→ R is measurable in Ω :

∫
Ω

|λu(x)|p(x) dx <∞ for some λ > 0

}
where p is a variable-exponent

Lp(.)(Ω) is endowed with the following Luxembourg-type norm

‖u‖p(.) = inf

{
λ > 0 :

∫
Ω

∣∣∣∣u(x)

λ

∣∣∣∣p(x)

dx ≤ 1

}

Lemma 1.4 If p(.) = p, where p is constant. Then

‖u‖p(.) =

(∫
Ω

|u(x)|p dx
) 1

p

if p = 2

‖u‖2 =

∫
Ω

|u(x)|2 dx

 1
2

In order to obtain the Poincaré inequality in the variable case, we now introduce the most crucial

condition on the variable exponent, known as the log-Hölder continuity condition:

Definition 1.12 We say that a function r : Ω → R is a log-hölder continuous on Ω, if there exists

constant a > 0 such that for all 0 < δ < 1, we have

|r(x)− r(y)| = −a
log |x− y| for all x, y ∈ Ω with |x− y| < δ. (1.23)

Theorem 1.2 [15] If r : Ω→ [1,∞[ is a measurable functions, then Lr(.)(Ω) is a Banach space.

* These are the Young’s and Hölder’s inequalities, just as they are in the case of constant exponent.

Lemma 1.5 (Young’s Inequality)[15] Let p, r, s ≥ 1 be measurable functions defined on Ω such

that
1

s(x)
=

1

p(x)
+

1

r(x)
, for a.e x ∈ Ω.

1.2. Variable Exponent Spaces 13
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Then, for all a, b ≥ 0, we have
(ab)s(.)

s(.)
≤ (a)p(.)

p(.)
+

(b)r(.)

r(.)

By taking s = 1 and 1 < p, r <∞, it follows that, for any ε > 0, we have

ab ≤ εap + c(ε)br, where c(ε) = 1/r(εp)
r
p .

For p = s = 2, it comes

ab ≤ εa2 +
b2

4ε
.

Lemma 1.6 (Hölder’s Inequality )[15] Let p, r, s ≥ 1 be measurable functions defined on Ω satis-

fying
1

s(x)
=

1

p(x)
+

1

r(x)
, for a.e x ∈ Ω.

If f ∈ Lp(.)(Ω) and g ∈ Lr(.)(Ω) then fg ∈ Ls(.)(Ω) and

‖fg‖s(.) ≤ ‖f‖p(.) ‖g‖r(.) . (1.24)

Case p = q = 2 yields the Cauchy-Schwarz inequality.

1.2.2 Sobolev Spaces With Variable Exponents

The Sobolev space is a vector space of functions with weak derivatives. One motivation for

studying these spaces is that solutions of partial differential equations belong naturally to Sobolev

spaces. In this section, we define the variable exponent Sobolev spaces and cite some important

properties and results related to this class of spaces.

Definition 1.13 Let m ∈ N. We define the variable exponent Sobolev space Wm.p(Ω) as follows:

Wm,p(.)(Ω) =
{
u ∈ Lp(.)(Ω) such that D|α|u ∈ Lp(.)(Ω) with |α| ≤ k

}
.

where |α| = α1 + α2, ...+ αn equipped with the following norm

‖u‖Wm,p(.)(Ω) = ‖u‖Lp(.)(Ω) +
∑

0<|α|≤m

‖Dαu‖Lp(.)(Ω) (1.25)

Theorem 1.3 The spaceWm,p(.)(Ω) is a Banach space, which is seperable if p is bounded and reflexive

if 1 < p− ≤ p+ <∞

Remark 1.1 If p(.) = 2 and m = 1 then we set H1
0 (Ω) = W 1,2

0 (Ω)

The version of the Poincaré inequality, in the variable exponent case, is presented in the following

theorem.

1.2. Variable Exponent Spaces 14
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1.3 Important Lemmas

The version of the Poincaré inequality, in the variable exponent case, is presented in the following

theorem.

Theorem 1.4 (Poincaré’s inequality)[15]. Let Ω ⊂ Rn be a bounded domain. If p satisfies the

log-Hölder inequality ( 1.23 )on Ω, then

‖u‖p(.) ≤ C ‖∇u‖p(.) , for all u ∈ W 1,p(.)
0 (Ω) (1.26)

where C is a positive constant deponding on Ω and p(.). In particular, the space W 1,p(.)
0 (Ω) has an

equivalent norm given by

‖u‖
W

1,p(.)
0 (Ω)

= ‖∇u‖p(.) (1.27)

Lemma 1.7 (Embedding Proprety) [15]. Let Ω ⊂ Rn be a bounded domain with a smooth

boundary ∂Ω. Assume that p, q ∈ C(Ω) such that

1 < p− ≤ p(x) ≤ p+ <∞ and 1 < q− ≤ q(x) ≤ q+ <∞ for all x ∈ Ω

and p(x) < q∗(x) in Ω with q∗ =

{
nq(x)
n−q(x)

, if n > q+,

∞, if n ≤ q+,

then we have continuous and compact embedding W 1,q(.)
0 (Ω) ↪→ Lp(.)(Ω).

Corollary 1.2 If q ∈ C(Ω) such that q ≥ 2 and q (x) < 2∗ in Ω with

2∗ =

{
2n
n−2

, if n > 2,

∞, if n ≤ 2,

then we have continuous and compact embedding H1
0 (Ω) ↪→ Lq(.)(Ω). So, there exists C > 0 such

that

‖u‖Lq(.)(Ω) ≤ C ‖u‖H1
0 (Ω) . (1.28)

1.4 Notion of blow-up

1.4.1 Elementary example. Blow-up in ODE.

The ODE problem 
du
dt

= u2 for t > 0

u(0) = α > 0

(1.29)

1.3. Important Lemmas 15
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is the simplest example in which the phenomenon of blow-up appears. Only the finite interval

[0, T [, where T = 1/α, defines the unique solution :

u(t) =
1

T − t (1.30)

and satisfies lim
t→T

u(t) = ∞. Inspired by this example, blow-up is defined as a phenomenon for

which there is no globally defined solution because it tends to infinity in a finite amount of time.

1.4.2 Blow-up in PDE.

When a problem involves multiple variables, or partial derivatives, the study of blow-up becomes

much more complex and fascinating from a mathematical perspective. The usual case is a PDE

where the solution depends on a spatial variable x ∈ Rn, n ≥ 1 and a time variable u = u(x, t).

The so-called pseudo-parabolic equations are a special class of these evolution equations that first

appear in the 19th century and are primarily used to model biological and physical processes.

We emphasize the use of mechanics, technology, biology, and ecology. Thus we have equations in

divergence form
∂υ

∂t
= divA(υ,∇υ,∇υt, x, t) +B(υ,∇υ, x, t), (1.31)

the prototype being the semilinear equation

∂υ

∂t
= ∆υ + ∆υt + f(υ) (1.32)

We complement our equation with an initial datum

υ(x, 0) = υ0(x)

and also with some boundary condition, usually υ = 0 at ∂Ω, if Ω is not all of Rn.

A local theory must be established first in the study of blow up; Theorem (2.1), Theorem (3.1)

and Theorem (4.1) show that the solution exists and is unique for a small time interval 0 < t < t0.

When u is bounded for every 0 < t < T but tends to infinity at some point(s), that is the simplest

scenario in which T can be finite,

u(., t) ∈ L∞(Ω) ∀0 ≤ t < T, lim
t→T

sup ‖u(., t)‖∞ =∞

Then we say that u blows up at T , which is the blow-up time.

The works of Kaplan ([23]), Fujita ([18] [19]), Friedman [20]) and others marked the beginning

of the mathematical theory of blow-up in the 1960s (of the previous century). The books [6] )

and ( [42] ) are the best sources to start with.

1.4. Notion of blow-up 16
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Blowing-up solution to a pseudo-parabolic

equation with source and damping terms

- Introduction - Main tools in the study of blow-up - Blow-up result

2.1 Introduction

In this chapter, we consider the following pseudo-parabolic equation



υt −∆υ −∆υt = υp, in Ω× (0,∞),

υ(x, t) = 0, on ∂Ω× (0,∞),

υ(x, 0) = υ0(x), x ∈ Ω,

(2.1)

where Ω ⊂ Rn (n ≥ 1) is a bounded domain with smooth boundary, v0(x) ∈ H1
0 (Ω), T ∈ [0,∞[.

Problem 2.1 describes a variety of significant physical and biological phenomena, such as the

analysis of nonstationary processes as discussed in [24], and the aggregation of populations as

explored in [49].Moreover, equation 2.1 can be regarded as a Sobolev type equation as demon-

strated in [44].

For problem 2.1, many results have been obtained, such as the existence and uniqueness in [43],

the maximum in [7], asymptotic behavior discussed in ([30], [50]), blow-up phenomena in ([50],

[51]), and homogenization explored in ([37]). Especially, in ([50]), the authors proved that there

are solutions that blow up in finite time T in H1
0 (Ω)-norm.

17
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In Section 2, first we present the theorem of existence of solution. Next, we show that the energy

is decreasing. In Section 3, we use some assumptions for initial data to prove a blow-up result.

By means of a differential inequality technique, we obtain an upper bound for blow-up time. Also,

a lower bound for blow-up time is determined under some other conditions.

Most of results in the chapter were obtained by Peng Luo ([31]) (2015). Similar result was

obtained by Xu and Su ([50]) (2013) before.

2.2 Main tools in the study of blow-up.

We devote this section to enumerating the main tools and techniques used in the study of blow-up

for the problem 2.1. We first start with the following existence and uniqueness of local solution,

which can be obtained by using Faedo-Galerkin methods as in ([50]).

Let us introduce the definition of a weak solution for our problem.

Definition 2.1 ( Weak solution) Let υ0 ∈ H1
0 (Ω) be given. Any functions υ such that

υ ∈ L∞([0, T0], H1
0 (Ω)), υt ∈ L2([0, T0], H1

0 (Ω))

is called a weak solution of (2.1) on [0;T), if

(υt, w) + (∇υt,∇w) + (∇υ,∇w) = (υp, w),

for a.e. t ∈ [0, T0] and all test function w ∈ H1
0 (Ω).

The local existence of solutions to 2.1 is assured by the

Theorem 2.1 Under the condition p > 1, and for υ0 ∈ H1
0 (Ω), the problem 2.1 has a unique local

weak solution υ on [0, T ) in the sense of Definition 2.1. Moreover, υ can be extended to the whole of

[0,∞) or there is T <∞ such that limt→T ‖υ‖H1
0 (Ω) =∞

In order to state and prove our result, we introduce the following functionals,

J(υ) =
1

2

∫
Ω

|∇υ|2 dx− 1

p+ 1

∫
Ω

υp+1dx, (2.2)

sometimes called energy, and

I(υ) =

∫
Ω

|∇υ|2 dx−
∫
Ω

υp+1dx. (2.3)

The decay of the energy of the system 2.1 is given in the following lemma:

2.2. Main tools in the study of blow-up. 18
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Lemma 2.1 The energy functional J is a decreasing function.

Proof. By multiplying υt on both sides of first equation in 2.1 and performing integration, we

obtain:

∫
Ω

υtυtdx−
∫
Ω

∆υtυtdx−
∫
Ω

∆υυtdx =

∫
Ω

υpυtdx

Then,we use the generalized Green formula and the boundary conditions, to find∫
Ω

(
|υt|2 x+ |∇υt|2

)
dx+

∫
Ω

∇υ∇υtdx =
1

p+ 1

d

dt

∫
Ω

υp+1dx

This implies that ∫
Ω

(
|υt|2 + |∇υt|2

)
dx+

1

2

d

dt

∫
Ω

|∇υ|2 dx =
1

p+ 1

d

dt

∫
Ω

υp+1dx.

So
d

dt

∫
Ω

(
1

2
|∇υ|2 dx− 1

p+ 1
υp+1

)
dx = −

∫
Ω

(
|υt|2 + |∇υt|2

)
dx

Then, we find
d

dt
J(υ) ≤ 0

2.3 Blow-up result

In this section, we study the blow up time for a solution υ to problem 2.1 that blows up at a

certain time T > 0. By means of a differential inequality technique, we obtain an upper bound

for blow-up time if constant exponents p and the initial data satisfy some conditions. Also, a

lower bound for blow-up time is determined under some other conditions.

2.3. Blow-up result 19
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2.3.1 Upper bound for blow-up time

The first main result of this chapter is given in the following theorem.

Theorem 2.2 [31] For any p > 1, if υo ∈ H1
0 (Ω) ∩ Lp+1(Ω), J(υ0) < 0, υ(x, t) is a solution of

problem 2.1, then υ(x, t) blows up in finite time T in H1
0 (Ω)-norm. Moreover, an upper bound for

blow-up time T is given by

Tmax ≤
‖υ0‖2

H1
0 (Ω)

(1− p2)J(υ0)
(2.4)

Proof. Let us define the auxiliary function

ϕ(t) = ‖υ(., t)‖2
H1
0 (Ω) =

∫
Ω

υ2(x, t)dx+

∫
Ω

|∇υ(x, t)|2 dx (2.5)

and

Ψ(t) = −2(p+ 1)J(υ) = −(p+ 1)

∫
Ω

|∇υ|2 dx+ 2

∫
Ω

υp+1dx. (2.6)

Multiplying υ on two sides of equation 2.1, and integrating by part, we have∫
Ω

(vvtdx+∇v∇vt) dx = −
∫

Ω

|∇υ|2 dx+

∫
Ω

υp+1dx. (2.7)

By differentiate ϕ(t) with respect to t, we obtain

ϕ′(t) = 2

∫
Ω

(vvtdx+∇v∇vt) dx. (2.8)

Combining 2.6, 2.7 and 2.8, we get

ϕ′(t) = −2

∫
Ω

|∇υ|2 dx+ 2

∫
Ω

υp+1dx ≥ Ψ(t). (2.9)

Now differentiate Ψ(t) with respect to t to obtain

Ψ
′
(t) = −2(p+ 1)

∫
Ω

∇υ.∇υtdx+ 2(p+ 1)

∫
Ω

υpυtdx

= 2(p+ 1)

−∫
Ω

∇υ.∇υtdx+

∫
Ω

υpυtdx

 (2.10)

Multiplying υt on two sides of equation 2.1 and integrating by part, we have

2.3. Blow-up result 20
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∫
Ω

(
v2
t dx+ |∇υt|2

)
dx = −

∫
Ω

∇υ.∇υtdx+

∫
Ω

υpυtdx (2.11)

We then substitute for
(
−
∫

Ω

∇υ.∇υtdx+
∫
Ω

υpυtdx

)
from 2.11, hence 2.10 becomes

Ψ
′
(t) = 2(p+ 1)

∫
Ω

υ2
tdx+

∫
Ω

|∇υt|2 dx

 . (2.12)

By using Cauchy-Schwartz inequality, we obtain:

ϕ(t)Ψ′(t) = 2(p+ 1)

∫
Ω

υ2dx+

∫
Ω

|∇υ|2 dx

∫
Ω

υ2
tdx+

∫
Ω

|∇υt|2 dx



≥ 2(p+ 1)

∫
Ω

υυtdx+

∫
Ω

∇υ∇υtdx

2

=
(p+ 1)

2
[ϕ′(t)]

2

By Lemma2.1 and the fact that J(u0) < 0, it follows that Ψ(t) > 0 for all t ≥ 0. Hence, by 2.9 we

obtain:

ϕ(t)Ψ′(t) ≥ (p+ 1)

2
ϕ′(t)Ψ(t)

This can be expressed as:

Ψ′(t)

Ψ(t)
≥ (p+ 1)

2

ϕ′(t)

ϕ(t)
(2.13)

By integrating 2.13 from 0 to t, we obtain:

t∫
0

dΨ(ξ)

Ψ(ξ)
≥

t∫
0

(p+ 1)

2

dϕ(ξ)

ϕ(ξ)

Then
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[ln Ψ(ξ)]t0 ≥
[

(p+ 1)

2
lnϕ(x)

]t
0

so

ln Ψ(t)− ln Ψ(0) ≥ ln(ϕ(t))
(p+1)
2 − ln(ϕ(0))

(p+1)
2

Ψ(t)

(ϕ(t))
(p+1)
2

≥ Ψ(0)

(ϕ(0))
(p+1)
2

using 2.9, we obtain

ϕ′(t)

(ϕ(t))
(p+1)
2

≥ Ψ(0)

(ϕ(0))
(p+1)
2

(2.14)

Integrating inequality 2.14 from 0 to t, we see[
− 2

p+ 1

1

(ϕ(t))
P−1
2

]t
0

≥ Ψ(0)

(ϕ(0))
(p+1)
2

t

then

1

(ϕ(t))
P−1
2

≤ 1

(ϕ(0))
P−1
2

− p− 1

2

Ψ(0)

(ϕ(0))
(p+1)
2

t

so

ϕ(t) ≥ 1(
1

(ϕ(0))
P−1
2
− p−1

2
Ψ(0)

(ϕ(0))
(p+1)
2

t

) 2
p−1

(2.15)

Clearly, 2.15 cannot hold for all time, this means υ(x.t) blows up in finite time T in H1
0 (Ω)-norm.

In fact, let t→ T , 2.6 and 2.15 yield:

T ≤
‖υ0‖2

H1
0 (Ω)

(1− p2) J(υ0)
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2.3.2 Lower bound for blow-up time

The second main result of this chapter is given in the following theorem.

Theorem 2.3 [31] Suppose p ∈ [1, n+2
n−2

] , υ0 ∈ H1
0 (Ω), J(υ0) < d, I(u0) < 0 , then the solution

υ(x, t) of problem 2.1 blows up in finite time T in H1
0 (Ω)−norm. Moreover, T is bounded in the

succeeding text by
‖v0‖−p+1

H1
0 (Ω)

(p− 1)Cp+1
(2.16)

where C is the Sobolev embedding constants for H1
0 (Ω) ↪→ Lp(Ω).

Proof. Consider ϕ(t) as in 2.5

ϕ(t) = ‖υ(., t)‖2
H1
0 (Ω) =

∫
Ω

υ2(x, t)dx+

∫
Ω

|∇υ(x, t)|2 dx.

By multiplying υ(x, t) on both sides of equation 2.1 and performing integration by parts, we

obtain: ∫
Ω

(υυt +∇υ∇υt) dx = −
∫
Ω

|∇υ|2 dx+

∫
Ω

υp+1dx (2.17)

A direct differentiation of ϕ(t) yields:

ϕ
′
(t) = 2

∫
Ω

(υυt +∇υ∇υt) dx. (2.18)

From 2.17 and 2.18, we obtain

ϕ′(t) = −2

∫
Ω

|∇υ|2 dx+ 2

∫
Ω

υp+1dx (2.19)

By the Sobolev embeddings (See Lemma 1.7), we have∫
Ω

|υ|p+1 dx ≤ Cp+1

(∫
Ω

|∇υ|2 dx
) p+1

2

(2.20)

Then 2.20 and 2.19 imply

ϕ′(t) ≤ 2Cp+1 (ϕ(t))
p+1
2

If there exists t0 ∈ [0, T ) such that ϕ(t0) = 0, then we can obtain ϕ(T ) = 0. ,which contradicts the

fact that u(x, t) blows up at T in the H1-norm. So we see ϕ(t) > 0 and the following inequality,

ϕ′(t)

(ϕ(t))
p+1
2

≤ 2Cp+1 (2.21)
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By integrating inequality 2.21 from 0 to t, we obtain:

ϕ(0)
1−p
2 − ϕ(t)

1−p
2 ≤ (p− 1)Cp+1t (2.22)

so

t ≥ ϕ(0)
1−p
2 − ϕ(t)

1−p
2

(p− 1)Cp+1

If v blow-up in H1
0 -norm, then we establish a lower bound for Tmin by the form:

T ≥
‖v0‖−p+1

H1
0 (Ω)

(p− 1)Cp+1
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3.1 Introduction

In this chapter, we consider the following pseudo-parabolic equation

υt − div(|∇υ|r(x)−2∇υ)− µ∆υt = |υ|p(x)−2 υ, in Ω× (0,∞),

υ(x, t) = 0, on ∂Ω× (0,∞),

υ(x, 0) = υ0(x), x ∈ Ω,

(3.1)

Where Ω is a bounded domain ofRn with a smooth boundary ∂Ω. The nonlinear term div(|∇v|r(x)−2∇v)

is the so called r(x)-Laplace operator. The term with a variable exponent |v|p(x)−2 v plays the role

of a source, and the dissipative term ∆vt is a linear strong damping term. The exponents r(.) and

p(.) are given continuous functions defined on Ω and satisfy

2 < r− ≤ r(x) ≤ r+ < p− ≤ p(x) ≤ p+ <∞, (3.2)
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where

r− = ess inf r(x), r+ = ess sup r(x)

p− = ess inf p(x), p+ = ess sup p(x)

and the Zhikov–Fan conditions:

|r(x)− r(y)| = −a
log |x− y| and |p(x)− p(y)| = −b

log |x− y| (3.3)

for all x, y ∈ Ω with |x− y| < δ, where a, b > 0 and 0 < δ < 1.

Problem (3.1) occurs in the mathematical modeling of various physical phenomena, e.g., the

flows of electrorheological fluids, nonlinear viscoelasticity, fluids with temperature-dependent

viscosity, processes of filtration through a porous media and image processing, and so on... See

[2] [24] [3] [40].

In the case when r, p are constants, there have been many results about the existence and blow-up

properties of the solutions,we refer the readers to the bibliography given in [2], [16], [24] and

[43]. Obviously, if µ = 1, r(x) = 2, p(x) = p, then Eq (3.1) reduces to the following pseudo-

parabolic equation

vt −∆vt −∆v = |v|p−2 v, in Ω× (0, T ). (3.4)

In their work [50], Xu and Su proved that the solutions to the problem (3.4) blow up in a finite

time in H1
0 (Ω)-norm. In other studies [31], Luo considered the same problem treated in the work

of Xu and Su [50], and he obtained an upper bound and a lower bound of the blowup rate.

In the absence of the damped term (µ = 0), Eq. 3.1 becomes

υt − div(|∇υ|r(x)−2∇υ) = |υ|p(x)−2 υ, (3.5)

Alaoui, Messaoudi and Khenous [1] proved that any solutions of this equation with nontrivial

initial datum blow up in finite time. For the constant exponents case (r(x) = r, p(x) = p), Eq. 3.5

has been extensively studied and results concerning existence, nonexistence and asymptotic be-

havior have been established by many authors [[35]–[4]]. For instance, Payne et al. [[35],[36]]

obtained the upper and lower bounds on blow up time when blow up does occur by applying the

differential inequality techniques.

In Section 2, we present a main tools to study blow up (local existence ,energy). In Section

3, the blow up in finite time of solutions to the problem 3.1 is proved. The proof is based on

differential inequality techniques. We dedicate first the upper bound for blow up time to problem

3.1 under suitable conditions on r(·), p(·) and the initial data. Also, the lower bound of blow up

time is obtained under some other conditions.

The results presented in this chapter were mostly obtained by Di, Shang and Peng [14] (2017).
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3.2 Main tools in the study of blow-up.

We first start with the following existence and uniqueness of local solution for the problem (3.1),

which can be obtained by using Faedo-Galerkin methods as in ([2] [17] [27]). Here, the proof is

thus omitted. For simplicity, we set µ = 1.

Theorem 3.1 Let υ0 ∈ W 1,r(.)
0 (Ω)∩Lp(.)(Ω) be given. Assume that the conditions on r(x), p(x), given

in Section 3.1, hold. Then, problem (3.1) has a unique local solution υ on [0, T0)

υ ∈ L∞([0, T0];W
1,r(.)
0 (Ω) ∩ Lp(.)(Ω)), υt ∈ L2([0, T0];W 1,2

0 (Ω))

for some T0 > 0, satisfying

(υt, w)+(∇υt,∇w)+(|∇υ|r(x)−2∇υ,∇w) = (|υ|p(x)−2 υ, w), for all w ∈ W 1,r(.)
0 (Ω)∩Lp(.)(Ω) (3.6)

Moreover, the following alternatives hold

i) T0 = +∞ or

ii) T0 < +∞ and lim
t−→T

‖∇υ‖2
2 + ‖υ‖2

2 = +∞

The decay of the energy of the system (3.1) is given in the following lemma:

Lemma 3.1 The energy functional E of the problem (3.1) is a decreasing function. Here

E(t) =

∫
Ω

[
1

r(x)
|∇υ|r(x) − 1

p(x)
|υ|p(x)

]
dx

Proof. Replacing w by υt in the Eq. 3.6, we have∫
Ω

(
|υt|2 + |∇υt|2

)
dx+

d

dt

∫
Ω

1

r(x)
|∇υ|r(x) dx =

d

dt

∫
Ω

1

p(x)
|υ|p(x) dx (3.7)

We then define the energy by:

E(t) =

∫
Ω

[
1

r(x)
|∇υ|r(x) − 1

p(x)
|υ|p(x)

]
dx (3.8)

Therefore, from equations 3.7 and 3.8, we obtain:

E ′(t) = −
∫
Ω

(
|υt|2 + |∇υt|2

)
dx ≤ 0 (3.9)
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3.3 Blow-up result

In this section, we derive an upper and lower bound for the blow-up time of problem (3.1) under

certain conditions on the variable exponents r(.), p(.), and initial data. For simplicity, we set

µ = 1.

3.3.1 Upper bound for blow-up time

Theorem 3.2 [14]Assume that (3.2) and (3.3) hold. Let υ0 ∈ W 1,r(.)
0 (Ω) ∩ Lp(.)(Ω) such that∫

Ω

[
1

p(x)
|υ0|p(x) − 1

r(x)
|∇υ0|r(x)

]
≥ 0 (3.10)

Then, the solution υ of the problem 3.1 blow up in finite time T ∗in H1
0 (Ω)-norm. Moreover, an upper

bound for blow up time is given by

T ∗ ≤ 2(F (0))1− r−
2

(r − 2)β
(3.11)

where β is a suitable positive constant given later and F (0) = ‖υ0‖2
H1
0

Proof. We introduce an auxiliary function:

F (t) =

∫
Ω

υ2dx+

∫
Ω

|∇υ|2 dx (3.12)

By multiplying υ on both sides of problem 3.1 and integrating by parts, we obtain:∫
Ω

υυtdx+

∫
Ω

∇υ.∇υtdx =

∫
Ω

|υ|p(x) dx−
∫
Ω

|∇υ|r(x) dx (3.13)

By differentiating F (t) with respect to t, we obtain:

F ′(t) = 2

∫
Ω

υυtdx+ 2

∫
Ω

∇υ.∇υtdx = 2

∫
Ω

|υ|p(x) dx− 2

∫
Ω

|∇υ|r(x) dx

= 2

∫
Ω

p(x)

[
|υ|p(x)

p(x)
− |∇υ|

r(x)

r(x)

]
dx+ 2

∫
Ω

p(x)

[
1

r(x)
− 1

p(x)

]
|∇υ|r(x) dx (3.14)

As E ′(t) ≤ 0 see Lemma 3.1, we have:∫
Ω

p(x)

[
|υ|p(x)

p(x)
− |∇υ|

r(x)

r(x)

]
dx ≥

∫
Ω

p(x)

[
|υ0|p(x)

p(x)
− |∇υ0|r(x)

r(x)

]
dx

≥
∫
Ω

p−

[
|υ0|p(x)

p(x)
− |∇υ0|r(x)

r(x)

]
dx ≥ 0 (3.15)
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By (3.14) and (3.15), we see:

F ′(t) ≥ 2

∫
Ω

p(x)

[
1

r(x)
− 1

p(x)

]
|∇υ|r(x) dx

≥ 2

∫
Ω

p−

[
1

r+

− 1

p−

]
|∇υ|r(x) dx = C0

∫
Ω

|∇υ|r(x) dx, (3.16)

where C0 = 2p−

[
1
r+
− 1

p−

]
.

We define the sets Ω+ = {x ∈ Ω, |∇υ| ≥ 1} and Ω− = {x ∈ Ω, |∇υ| < 1}, so we get

F ′(t) ≥ C0

∫
Ω−

|∇υ|r+ dx+

∫
Ω+−

|∇υ|r− dx



F ′(t) ≥ C1

∫
Ω−

(
|∇υ|2

) r+
2 dx+

∫
Ω+−

(
|∇υ|2

) r−
2 dx


according to ‖∇υ‖2 ≤ C ‖∇υ‖r for all r ≥ 2.

This implies that

(F ′(t))
2
r+ ≥ C2

∫
Ω−

|∇υ|2 dx ≥ 0 and (F ′(t))
2
r− ≥ C3

∫
Ω+

|∇υ|2 dx ≥ 0 (3.17)

The Poincaré inequality gives ‖∇υ‖2 ≥ λ1 ‖υ‖2 , where λ1is the first eigenvalue of the problem{
∆w + λw = 0, in Ω

w = 0, on ∂Ω

Hence, we have:

‖∇υ‖2 =
1

1 + λ1

‖∇υ‖2 +
λ1

1 + λ1

‖∇υ‖2 ≥ λ1

1 + λ1

‖υ‖2 +
λ1

1 + λ1

‖∇υ‖2

≥ λ1

1 + λ1

‖υ‖2
H1
0

(3.18)

It follows from (3.17) and (3.18) that:

(F ′(t))
2
r+ + (F ′(t))

2
r− ≥ C2

∫
Ω−

|∇υ|2 dx+ C3

∫
Ω+

|∇υ|2 dx

≥ (C2 + C3)

∫
Ω

|∇υ|2 dx

≥ (C2 + C3) ‖∇υ‖2

≥ λ1

1 + λ1

(C2 + C3) ‖υ‖2
H1
0

≥ C4F (t) (3.19)
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or

(F ′(t))
2
r−

(
1 + (F ′(t))

(
2
r+
− 2
r−

))
≥ C4F (t) (3.20)

From (3.19) and the fact that F (t) ≥ F (0) > 0 (F ′(t) ≥ 0), we deduce either

2 (F ′(t))
2
r+ ≥ C4F (t) or 2 (F ′(t))

2
r− ≥ C4F (t)

so

(F ′(t))
2
r+ ≥ C4

2
F (t) ≥ C4

2
F (0) or (F ′(t))

2
r− ≥ C4

2
F (t) ≥ C4

2
F (0) (3.21)

which implies that

F ′(t) ≥ C5 (F (0))
r+
2 or F ′(t) ≥ C5 (F (0))

r−
2

Therefore,we have that F ′(t) ≥ α, where α = min
{
C5 (F (0))

r+
2 , C5 (F (0))

r−
2

}
. Moreover, utiliz-

ing 1
r+
− 1

r−
≤ 0 and (3.20), we get:

(F ′(t))
2
m−

(
1 + (α)

2
(

1
r+
− 1
r−

))
≥ C4F (t)

then

F ′(t) ≥ β (F (t))
r−
2 (3.22)

Where the constant β =

 C4(
1+(α)

2

(
1
r+
− 1
r−

))


r−
2

.

Integrating the inequality (3.22) from 0 to t, we observe

t∫
0

dF (η)

(F (η))
r−
2

≥
t∫
0

βdη

then

F (t)1− r−
2 ≥ F (0)1− r−

2 +
(2− r−)βt

2

so

F (t) ≤ 1(
F (0)1− r−

2 + (2−r−)βt
2

) 2
r−−2

(3.23)

Thus, (3.23) shows that F (t) blows up at some finite time T ∗ ≤ 2(F (0))1−
r−
2

(2−r−)β
, so the solution υ

blows up in H1
0 (Ω)-norm in finite time.

Remark 3.1 Considering the time estimate (3.11), it becomes evident that the larger F (0) is, the

faster the blow-up phenomenon occurs.
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3.3.2 Lower bound for blow-up time

Theorem 3.3 [14]Suppose that (3.2) and (3.3) hold. Furthermore assume that 2 < p+ < ∞ if

n ≤ 2, 2 < p+ < 2n
n−2

if n ≥ 3, υ0 ∈ W 1,r(·)
0 (Ω) ∩ Lp(·)(Ω) and the solution u of the problem (3.1)

becomes unbounded at finite time T ∗ in H1(Ω)-norm, then a lower bound T ∗ for blow up time is

given by

T ∗ ≥
∞∫
F (0)

dη

2B
p+
+ η

p+
2 + 2B

p−
− η

p−
2

(3.24)

where B+,B− are the Sobolev embedding constants for H1
0 (Ω) ↪→ Lp+(Ω), H1

0 (Ω) ↪→ Lp−(Ω),

respectively and F (0) = ‖υ0‖2
H1
0

Proof. We define the function F (t) as in equation (3.12), and perform calculations as in the

previous section.

F ′(t) = 2

∫
Ω

υυtdx+ 2

∫
Ω

∇υ.∇υtdx

according to (3.13)

F ′(t) = 2

∫
Ω

|υ|p(x) dx− 2

∫
Ω

|∇υ|r(x) dx ≤ 2

∫
Ω

|υ|p(x) dx (3.25)

By defining the sets Ω+ = {x ∈ Ω | |υ| ≥ 1} and Ω− = {x ∈ Ω | |υ| < 1} , we get:∫
Ω

|υ|p(x) dx ≤
∫
Ω+

|υ|p+ dx+

∫
Ω_

|υ|p_ dx

≤
∫
Ω

|υ|p+ dx+

∫
Ω

|υ|p_ dx

By using Sobolev embedding inequalities, we obtain :

∫
Ω

|υ|p(x) dx ≤ B
p+
+

∫
Ω

|∇υ|2 dx


p+
2

+B
p−
−

∫
Ω

|∇υ|2 dx


p−
2

(3.26)

where B+,B− are the optimal constants satisfying theSobolev embedding inequalities ‖υ‖Lp+ ≤
‖∇υ‖2 and ‖υ‖Lp− ≤ ‖∇υ‖2 respectively. Therefore, the combination of (3.25) and (3.26) implies
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that

F ′(t) ≤ 2B
p+
+

∫
Ω

|∇υ|2 dx


p+
2

+ 2B
p−
−

∫
Ω

|∇υ|2 dx


p−
2

F ′(t) ≤ 2B
p+
+

∫
Ω

|∇υ|2 dx


p+
2

+ 2B
p−
−

∫
Ω

|∇υ|2 dx


p−
2

≤ 2B
p+
+ (F (t))

p+
2 + 2B

p−
− (F (t))

p−
2 (3.27)

Integrating the inequality (3.27) from 0 to t, we get:

F (t)∫
F (0)

dη

2B
p+
+ (η)

p+
2 + 2B

p−
− (η)

p−
2

≤ t (3.28)

If u blows up in the H1
0 (Ω)-norm, then we derive a lower bound for T ∗ given by:

T ∗ ≥
∞∫
F (0)

dη

2B
p+
+ (η)

p+
2 + 2B

p−
− (η)

p−
2

(3.29)

Obviously, the integral is bounded since the exponents p+ ≥ p− > 2. This completes the proof of

Theorem 3.3
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4.1 Introduction

This chapter is the subject of an article written by Toualbia. A (University of Tebessa). This article

[45] will published in Applied Mathematics E-Notes. The novelties are the presence of the matrix

with variable entries in the divergence operator.
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with variable entries in the divergence operator.

In this chapter, we consider the following problem:

υt −∆υt − div(A(x, t) |∇υ|r(x)−2∇υ) = |υ|p(x)−2 υ, in Ω× (0,∞),

υ(x, t) = 0, on ∂Ω× (0,∞),

υ(x, 0) = υ0(x), x ∈ Ω,

(4.1)

where Ω is a bounded domain in Rn,n > 1, with a smooth boundary ∂Ω.

The matrix A = (aij(x, t))i,j, where aij is a function of class C1(
_
Ω × [0,∞[), and there exists a

constant a0 > 0 such that, for all (x, t) ∈ Ω× [0,∞[ and ξ ∈ Rn, we obtaine :

Aξ.ξ ≥ a0 |ξ|2 (4.2)

and

A′ξ.ξ ≤ 0 (4.3)

where A′ = ∂A
∂t

(., t) .The exponents r(.) and p(.) are given continuous functions defined on Ω and

satisfy

2 < r− ≤ r(x) ≤ r+ < p− ≤ p(x) ≤ p+ <∞ (4.4)

where

r− = ess inf r(x), r+ = ess sup r(x)

p− = ess inf p(x), p+ = ess sup p(x)

Obviously, if A = In, then Eq (4.1) reduces to the following pseudo-parabolic equation

vt −∆vt − div(|∇v|r(x)−2∇v) = |v|p(x)−2 v, in Ω× (0, T ). (4.5)

We proved in the precedent chapter that the solutions to this problem blow up in a finite time

in H1
0 (Ω)-norm, and we obtained an upper bound and a lower bound of the blowup rate.

In this chapter, we use some assumptions for the variable exponents r(.), p(.), initial data, and

matrix A(., t) to prove the blow-up of the solution to the problem 4.1. By means of a differential

inequality technique, we prove that the solutions become unbounded at a finite time T , and find

an upper bound for this time with a negative initial energy. Also, a lower bound for blow-up time

is determined.

The novelty in this chapter is the presence of the matrix with variable entries in the diver-

gence operator.
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4.2 Main tools in the study of blow-up

We first start with the existence and uniqueness of a local solution for the problem (4.1), which

can be obtained by using Faedo-Galerkin methods as in ([2] [17] [27]). Here, the proof is thus

omitted.

Theorem 4.1 Let υ0 ∈ W 1,r(.)
0 (Ω) ∩ Lp(.)(Ω) be given. Assume that the conditions on p(x), r(x), and

A, given in Section 4.1, hold. Then, problem (4.1) has a unique local solution v on [0, T0)

υ ∈ L∞([0, T0];W
1,r(.)
0 (Ω) ∩ Lp(.)(Ω)), υt ∈ L2([0, T0];W 1,2

0 (Ω))

for some T0 > 0, satisfying

(υt, w) + (∇υt,∇w) + (A |∇υ|r(x)−2∇υ,∇w) = (|υ|p(x)−2 υ, w), for all w ∈ W 1,r(.)
0 (Ω) ∩ Lp(.)(Ω)

(4.6)

Moreover, the following alternatives hold

i) T0 = +∞ or

ii) T0 < +∞ and lim
t−→T

‖∇u‖2
2 + ‖u‖2

2 = +∞

Remark 4.1 It is easy to see, under the condition (4.4) that |v|p(x)−2 v, A |∇v|r(x)−2∇v ∈ L2(Ω);

hence (|v|p(x)−2 v, w) and (A |∇v|r(x)−2∇v,∇w) make sense in formula (4.6).

The decay of the energy of the system (4.1) is given in the following lemma:

Lemma 4.1 The energy functional E of the problem (4.1) is a decreasing function. Here

E(t) =

∫
Ω

1

r(x)
A |∇υ|r(x)−2∇υ.∇υdx−

∫
Ω

1

p(x)
|υ|p(x) dx (4.7)

Proof. It is enough to multiply the first equation in (4.1) by υt and integrate over Ω, to obtain∫
Ω

υtυtdx−
∫

Ω

∆υtυtdx−
∫

Ω

div
(
A |∇υ|

r(x)−2
∇υ
)
υtdx =

∫
Ω

|υ|p(x)−2 υυtdx

Then, we use the generalized Green formula and the boundary conditions, to find

∫
Ω

(
|υt|2 + |∇υt|2

)
dx+

∫
Ω

A |∇υ|r(x)−2∇υ.∇υtdx =
d

dt

∫
Ω

1

p(x)
|υ|p(x) dx.
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This implies that

∫
Ω

(
|υt|2 + |∇υt|2

)
dx+

d

dt

∫
Ω

1

r(x)
A |∇υ|r(x)−2∇υ.∇υdx−

∫
Ω

1

r(x)
A
′ |∇υ|r(x)−2∇υ.∇υdx

=
d

dt

∫
Ω

1

p(x)
|υ|p(x) dx.

So

E
′
(t) = −

∫
Ω

(
|υ|2 + |∇υt|2

)
dx+

∫
Ω

1

r(x)
A
′ |∇υ|r(x)−2∇υ.∇υdx. (4.8)

Taking into account condition (4.3) on A′, we find

E
′
(t) ≤ −

∫
Ω

(
|υt|2 + |∇υt|2

)
dx ≤ 0 (4.9)

4.3 Blow-up result

4.3.1 Upper bound for blow-up time

Theorem 4.2 ([45]) Assume that (4.2), (4.3), (4.4), and (3.3) hold. Let v be a solution of (4.1)

and assume that υ0 ∈ W 1,r(.)
0 (Ω) ∩ Lp(.)(Ω) satisfies∫

Ω

1

p(x)
|υ0|p(x) dx−

∫
Ω

1

r(x)
A(x, 0) |∇υ0|r(x)−2∇υ0.∇υ0dx ≥ 0, (4.10)

then the solution v blow up at finite time Tmax > 0 in H1
0 (Ω)-norm. In addition, there exists an upper

bound for the time as given by

Tmax ≤
2 (G(0))

(
2−r−
2

)
(r− − 2)K

(4.11)

where K is a suitable positive constant is given later and the constant G(0) = ‖υ0‖2
H1
0 (Ω) .

Proof. Let us define the auxiliary function

G(t) = ‖υ‖2
H1
0 (Ω) =

∫
Ω

υ2dx+

∫
Ω

|∇υ|2 dx (4.12)

Our goal is to show that G satisfies a differential inequality which leads to blow up in finite time.

Multiply (4.1) by υ and integrate over Ω to get
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∫
Ω

υυtdx+

∫
Ω

∇υ∇υtdx =

∫
Ω

|υ|p(x) dx−
∫

Ω

A |∇υ|r(x)−2∇υ.∇υdx (4.13)

Now differentiate G(t) with respect to t to obtain

G
′
(t) = 2

∫
Ω

(υυtdx+∇υ∇υt) dx = 2

∫
Ω

(
|υ|p(x) − A |∇υ|r(x)−2∇υ.∇υ

)
dx

= 2

∫
Ω

(
p(x)

(
|υ|p(x)

p(x)
− A |∇υ|r(x)−2∇υ.∇υ

r(x)

)
+ p(x)

(
1

r(x)
− 1

p(x)

)
A |∇υ|r(x)−2∇υ.∇υ

)
dx

(4.14)

By (4.10) and the fact that E(t) ≤ E(0) (E
′
(t) ≤ 0), we have

∫
Ω

p(x)

[
|υ|p(x)

p(x)
− A |∇υ|r(x)−2∇υ.∇υ

r(x)

]
dx ≥

∫
Ω

p(x)

[
|υ0|p(x)

p(x)
− A(x, 0) |∇υ0|r(x)−2∇υ0.∇υ0

r(x)

]
dx

≥ p−

∫
Ω

[
|υ0|p(x)

p(x)
− A(x, 0) |∇υ0|r(x)−2∇υ0.∇υ0

r(x)

]
dx ≥ 0. (4.15)

By (4.14) and (4.15), we see

G
′
(t) ≥ 2

∫
Ω

p−

(
1

r+

− 1

p−

)
A |∇v|r(x)−2∇v.∇vdx

Using condition (4.2) on A, we obtain

G
′
(t) ≥ a0C0

∫
Ω

|∇υ|r(x) dx, (4.16)

where C0 = 2 p−

(
1

r+

− 1

p−

)
> 0.

Now we define the sets Ω+ = {x ∈ Ω : |∇υ| ≥ 1} and Ω− = {x ∈ Ω : |∇υ| < 1} . By using the fact

that ‖υ‖2 ≤ C ‖υ‖r for all r > 2, we get

G
′
(t) ≥ a0C0

(∫
Ω−

|∇υ|r+ dx+

∫
Ω+

|∇υ|r− dx
)

≥ C1

((∫
Ω−

|∇υ|2 dx
) r+

2

+

(∫
Ω+

|∇υ|2 dx
) r−

2

)
.

This implies that
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(
G
′
(t)
) 2
r+ ≥ C2

(∫
Ω−

|∇υ|2 dx
)

and
(
G
′
(t)
) 2
r− ≥ C3

(∫
Ω+

|∇υ|2 dx
)
. (4.17)

The Poincare inequality gives ‖∇v‖2
2 ≥ λ ‖v‖2

2, where λ is the first eigenvalue of (−∆) . Therefore,

we get

‖∇υ‖2
2 =

1

1 + λ
‖∇υ‖2

2 +
λ

1 + λ
‖∇υ‖2

2 ≥
λ

1 + λ
‖υ‖2

2 +
λ

1 + λ
‖∇υ‖2

2 =
λ

1 + λ
‖υ‖2

H1
0 (Ω) (4.18)

It follows from (4.17) and (4.18) that

(
G
′
(t)
) 2
r+ +

(
G
′
(t)
) 2
r− ≥ (C2 + C3) ‖∇υ‖2

2 ≥
(C2 + C3)λ

1 + λ
‖υ‖2

H1
0 (Ω) = C4G(t) (4.19)

Since we have G(t) ≥ G(0) > 0 (because G′(t) ≥ 0), and from (4.19), we get

(
G
′
(t)
) 2
r+ ≥ C4

2
G(t) ≥ C4

2
G(0) or

(
G
′
(t)
) 2
r− ≥ C4

2
G(t) ≥ C4

2
G(0). (4.20)

This implies that

G
′
(t) ≥ C5 (G(0))

r+
2 or G

′
(t) ≥ C5 (G(0))

r−
2 .

Now put β = min
{
C5 (G(0))

r+
2 , C5 (G(0))

r−
2

}
, then we get

G
′
(t) ≥ β (4.21)

(4.19) implies that

(
G
′
(t)
) 2
r−

(
1 +

(
G
′
(t)
)2
(

1
r+
− 1
r−

))
≥ C4G(t) (4.22)

From (4.2), we observe that 2

(
1

r+

− 1

r−

)
≤ 0. Making use (4.21), we get

G
′
(t) ≥ K (G(t))

r−
2 (4.23)

where K =

 C4

1 + β
2
(

1
r+
− 1
r−

)


r−
2

is a positive constant.

Integrating (4.23) from 0 to t we get
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G(t) ≥ 1(
(G(0))1− r−

2 +
(2− r−)Kt

2

) 2
r−−2

which implies that G(t) −→∞ as t −→ Tmax in H1
0 (Ω), where

Tmax ≤
2 (G(0))

(
2−r−
2

)
(r− − 2)K

.

Consequently, the solution to the problem (4.1) blows up in finite time. Hence the proof is

completed.

4.3.2 Lower bound for blow-up time

In this section, we determine a lower bound for the blow-up time of the problem (2.19).

Theorem 4.3 [45]Suppose that the conditions on p(x), r(x), and A, given in section 1, hold. Fur-

thermore assume that 2 < p+ <∞ if n ≤ 2, 2 < p+ < 2n
n−2

if n > 2, υ0 ∈ W 1,r(.)
0 (Ω)∩Lp(.)(Ω) and υ

be a blow-up solution of problem (2.19), then a lower bound for blow-up time Tmin can be estimated

in the form

Tmin ≥
∫ ∞
G(0)

dξ

2 max(C
p+
− , C

p−
+ )
(
ξ
p+
2 + ξ

p−
2

) , (4.24)

where C−, C+ are the optimal constants satisfying the Sobolev embedding inequalities

‖υ‖Lp− ≤ C− ‖∇υ‖2 and ‖υ‖Lp+ ≤ C+ ‖∇υ‖2 , respectively.

Proof. Consider G(t) as in (4.12)

G(t) = ‖υ‖2
H1
0 (Ω) .

Multiply (4.1) by υ and integrate over Ω to get

∫
Ω

υυtdx+

∫
Ω

∇υ∇υtdx =

∫
Ω

|υ|p(x) dx−
∫

Ω

A |∇υ|r(x)−2∇υ.∇υdx

A direct differentiation of G(t) yields

G
′
(t) = 2

∫
Ω

(υυt +∇υ∇υt) dx,
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then

G
′
(t) = 2

[∫
Ω

|υ|p(x) dx−
∫

Ω

A |∇υ|r(x)−2∇υ.∇υdx
]
.

Taking into account condition (4.2) on A, we find

G′(t) ≤ 2

∫
Ω

|υ|p(x) dx. (4.25)

Defining the sets

Ω+ = {x ∈ Ω : |υ| ≥ 1} and Ω− = {x ∈ Ω : |υ| < 1} .

Thus, we have ∫
Ω

|υ|p(x) dx =

∫
Ω+

|υ|p(x) dx+

∫
Ω−

|υ|p(x) dx

≤
∫

Ω+

|υ|p+ dx+

∫
Ω−

|υ|p− dx

≤
∫

Ω

|υ|p+ dx+

∫
Ω

|υ|p− dx.

By the Sobolev embeddings (Lemma 1.7), we have

∫
Ω

|v|p(x) dx ≤ C
p+
+

(∫
Ω

|∇v|2 dx
) p+

2

+ C
s−
−

(∫
Ω

|∇v|2 dx
) p−

2

≤ max(C
p+
− , C

p−
+ )

((∫
Ω

|∇v|2 dx
) p+

2

+

(∫
Ω

|∇v|2 dx
) p−

2

)

≤ max(C
p+
− , C

p−
+ )
(

(G(t))
p+
2 + (G(t))

p−
2

)
(4.26)

where C− and C+ are the corresponding embedding constants. Therefore, (4.25) becomes

G
′
(t) ≤ 2 max(C

p+
− , C

p−
+ )
(

(G(t))
p+
2 + (G(t))

p−
2

)
(4.27)

By integrating both sides of the last inequality over (0, T ), we obtain∫ G(t)

G(0)

dξ

2 max(C
p+
− , C

p−
+ )
(
ξ
p+
2 + ξ

p−
2

) ≤ T.

If v blow-up in H1
0 -norm, then we establish a lower bound for Tmin by the form

Tmin ≥
∫ ∞
G(0)

dξ

2 max(C
p+
− , C

p−
+ )
(
ξ
p+
2 + ξ

p−
2

) ,
which is the desired result.
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4.4 Conclusion

In this study, we aim to investigate the possibility that solutions to certain evolution problems

experience blow-up in finite time. This implies dealing with the presence of local, but not global,

time. We concentrate here on the case in which the singularity occurs because the solution

becomes unbounded in a specific region, causing the equation in question to lose its meaning.

This is what we refer to as blow-up.

The blow-up phenomenon is observed in various types of nonlinear evolution equations, including

Schrödinger equations, hyperbolic equations, parabolic equations, and pseudo-parabolic equa-

tions. In this work, we will specifically address pseudo-parabolic equations.

In this work, we have answered the questions that are usually posed in the study of the blow-up

phenomenon, which include which solutions blow up, where, and how this occurs.
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