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 شكر و عرفان
نهاء هذه المذكرة، أ شكر  الحمد لله الذي وفقني وأ عانني على ا 

الله س بحانه و تعالى على ما أ س بغه عليا من نعم وعلى تس يير 

بيل ومنحي العزم والصبر ل تمامها. فله الحمد والشكرفي كل الس 

 وقت وكل حين.

لى من مهد لي طريق العلم فأ عانني وكان  كما أ توجه بشكري وامتناني ا 

'' زراولية الحاج '' الذي  البروفسور قدوة أ س تاذي المشرف لي خير 

.كانت له بصمات واضحة من خلال توجيهاته ودعمه الدائم لي  

كما أ تقدم بالشكر لكل أ ساتذتي في تكويني خلال مسيرتي الدراس ية 

لى كل من قدم لي يد العون من قريب أ و من بعيد  فله مني خالص وا 

 ال حترام والتقدير

 أ سأ ل الله أ ن يجازي الجميع كل الخير 

 



 

 

هداء  ا 

 

 

جتهاداً في سبيل العلم   لى نفسي الطموحة، المثابرة والمكافحة التي سهرتِ سعياً وا  وفي سبيل  ا 

وأ قول من  . بدأ تِِا بطموحٍ وأ نهيتِها بنجاح  كنتي أ هلا لكل المصاعب والتحديات   هذه اللحظة  

ن أ بت رغما عنها أ تيت بها .   فرط الطموح أ نا لها وا 

وتخرجي: وبكل حب أ هدي ثمرة نجاحي   

لى النور الذي أ نار دربي والذي بذل جهد الس نين من أ جل أ ن أ عتلي سلالم النجاح    ا 

 "الغالي أ بي" 

لى التي سهلت لي الشدائد بدعائها والداعمة ال ولى في   حتضنني قلبها قبل يدها، ا  لى من ا  ا 

 حياتي واليد الخفية التي أ زالت عن طريقي الاشواك والمتاعب 

 "الحبيبة أ مي" 

يعلو فضل على فضلكم حفظكم الله لي من كل مكروه ل    

لى من شددت عضدي به أ خي   لى ضلعي الثابت وأ مان أ يامي ا   ا 

 "محمد الهادي "  

لى من ساندوني بكل حب عند ضعفي زارعين الثقة وال صرار بداخلي. س ندي والكتف الذي   ا 

 أ ستند عليه دائما أ خواتي  

 "ش يماء، حنان " 

لى القلوب الطاهرة وملائكة العائلة ال حفاد   ا 

   "أ لين، عبد الرحمان، محمد كنان" 



Abstract 
 

This thesis concerns the study of periodic orbits in some 

Zeraoulia-Sprott maps in 1 and 2 dimensions. The focus was 

on the analytical stability of periodic orbits in piecewise smooth 

maps of one dimension. The thesis was divided into three 

chapters that dealt with the properties of some 1 and 2 

dimensions piecewise smooth maps, the Lyapunov exponent, 

the study of the periodic orbits of some two-dimensional 

chaotic attractors, and the study of the periodic orbits in one 

dimension 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Resumé 
 
Cette thèse concerne l'étude des orbites périodiques dans 

certaines cartes de Zeraoulia-Sprott en 1 et 2 dimensions. 

L'accent était mis sur la stabilité analytique des orbites 

périodiques dans des cartes lisses par morceaux d'une 

dimension. La thèse était divisée en trois chapitres traitant des 

propriétés de certaines cartes lisses par morceaux en 1 et 2 

dimensions, de l'exposant de Lyapunov, de l'étude des orbites 

périodiques de certains attracteurs chaotiques bidimensionnels 

et de l'étude des orbites périodiques en une dimension. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 ملخص
 

  سبروت -ةوليارزفي بعض خرائط  المدارات الدورية  تتعلق هذه الأطروحة بدراسة  

في البعدين الأول والثاني. كان التركيز على الاستقرار التحليلي للمدارات الدورية  

إلى ثلاثة    طروحةفي خرائط سلسة متعددة الأجزاء ذات بعد واحد. وقد قسمت الأ 

والثاني، وأس   البعدين الأول  ذات  الملساء  الخرائط  تناولت خواص بعض  فصول 

الأبعاد،   ثنائية  الفوضوية  الجاذبات  لبعض  الدورية  المدارات  ودراسة  لابونوف، 

                                                                                 .   ودراسة المدارات الدورية في البعد الواحد
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General Introduction

The periodic orbits is a fundamental concept in the analysis of dynamical systems and serving as

a critical determinant of their characteristics. This concept was first used at the start of the 20th

by the mathematician Henri Poincaré in the field of differential systems. Periodic orbits can be

classified according to their period or their stability. It can be found in discrete and continuous

dynamical systems.

In this work, we studied periodic orbits in some discrete Zeraoulia-Sprott chaotic maps in 1 and 2

dimensions. We focus on the stability of periodic orbits analytically in one-dimensional piecewise

smooth maps. More details we divide this thesis into three chapters as follows:

Chapter 1, is devoted to presenting some properties of one and two-dimensional piecewise

smooth maps and Lyapunov exponents.

Chapter 2, is focused only on studying periodic orbits 2-dimensional Zeraoulia-Sprott chaotic

attractors.

Chapter 3, is interested in studying periodic orbits of some one-dimensional Zeraoulia-Sprott

mappings.
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Chapter 1

Notions of dynamical systems and

prelimanery concepts

This chapter examines various concepts related to dynamical systems and piecewise smooth maps,

including fixed points, periodic orbits, bifurcations, and Lyapunov exponents.

1.1 Fixed pionts and periodic orbits of maps

A discrete time system or map is defined by a difference equation:

xn+1 = fµ (xn) , xn ∈ Rn,

Definition 1.1 Fixed points xn+1 = xn, that is solutions of x∗ = f (x∗) .

Definition 1.2 Periodic orbits (x0, ..., xp−1) with xk = f (xk−1) , k = 1, ..., p− 1 and x0 = f (xp−1) .

Therefore,

xk = fp (xk) = f (... (f (xk)) ...) , k = 0, 1, 2, ..., p− 1.

That is, periodic points are fixed points of the iteration fp of the map f . The stability of fixed

point or periodic orbits can also be studied by linearization. If n = 1, then a fixed point x∗ is

linearly stable if |f ′ (x∗)| < 1. The condition for a periodic orbit with period p is:∣∣∣(fp)′ (xk)∣∣∣ < 1 k = 0, 1, 2, ...p− 1.

If fact, we only need to check one k, since

(fp)′ (x0) = (fp)′ (x1) = ... = (fp)′ (xp−1)

6



Chapter 1. Notions of dynamical systems and prelimanery concepts

Figure 1.1: Left figure showing graphic of the fixed points at the intersection between y = x and

y = f(x), and the cobweb diagram showing the iteration of the map xn+1 = f(xn) in right figure.

We have

dfp

dx
(xk) = f ′ (f (...f (xk) ...))︸ ︷︷ ︸×f ′ (f (...f (xk) ...))︸ ︷︷ ︸×...× f ′ (xk)

= f ′ (xk+p−1)× f ′ (xk+p−2)× ...× f ′ (xk)

= f ′ (xk−1)× f ′ (xk−2)× ...× f ′ (xk)

= f ′ (x0)× f ′ (x1)× ...× f ′ (xp−1)

So for the linear stability of a periodic orbit there is only one condition:
∏p−1

k=0
|f ′ (xk)| < 1.

Example 1.1 Consider the map

xn+1 = λxn, yn+1 = λ2yn.

with λ is any non-zero constant. An invariant set for this map is the parabola P = {(x, y) : y = x2} .
In fact, if (xn, yn) ∈ P, then yn = x2n and

yn+1 = λ2yn = λ2x2n = (λxn)2 = x2n+1.

That is (xn+1, yn+1) ∈ P as well. Therefore, the parabola P is invariant.

Due to the discrete nature of the points xn in the space, special graphical tools are used instead of

phase portraits. To visualize fixed points for the one-dimensional map xn+1 = f (xn) , we consider

the intersection of the line y = x and the curve y = f (x) . The stability of a fixed point x∗ can be

determined graphically by comparing the slope of f (x) at x∗ with the slope of the line y = x (see

Figure 1.1). The iteration of the trajectory x0, x1, ... can be viewed from the cobweb diagram

(right figure in Figure 1.1):

1. The vertical line x = xn intersect the curve y = f (x) at (xn, f (xn)) = (xn, xn+1) .

1.1. Fixed pionts and periodic orbits of maps 7



Chapter 1. Notions of dynamical systems and prelimanery concepts

Figure 1.2: The cobweb diagrams description of the behavior near a fixed point.

Figure 1.3: Saddle-node bifurcation.

2. The horizontal line through (xn, xn+1) intersect the line y = x at (xn+1, f (xn+1)) .

3. The vertical line through (xn+1, xn+1) becomes x = xn+1 and the whole process can be

continued again.

The behavior of the map xn+1 = fµ (xn) near a fixed point can be visualized using a cobweb

diagram (see Figure 1.2). The stability (whether it converges towards the fixed point x∗ or not)

depends on whether the absolute value of the derivative |f ′µ (x∗) | is greater than one.

The sign of f ′µ (x∗) determines the appearance of the cobweb diagram. If f ′µ (x∗) is positive, the

diagram looks like stairs. If f ′µ (x∗) is negative, the diagram looks like spirals.

1.1.1 Bifurcation of maps

Saddle-node (tangential) bifurcation: For the map xn+1 = µ+ xn − x2n.

• If µ > 0,there are two fixed points x∗± = ±µ1/2, the fixed point x∗+ = µ1/2 is stable but

x∗− = −µ1/2 is unstable.

• If µ < 0, there is no fixed point, because bifurcation occurs when the straight line y = x

touches the parabola y = µ+ xn − x2n tangentially at µ = 0 (see Figure 1.3).

Transcritical bifurcation: For xn+1 = (1 + µ)xn − x2n . There are always two fixed points x∗ = 0

and x∗ = µ.

1.1. Fixed pionts and periodic orbits of maps 8



Chapter 1. Notions of dynamical systems and prelimanery concepts

Figure 1.4: Transcritical bifurcation.

Figure 1.5: Pitchfork bifurcation.

• When µ < 0, the fixed point x∗ = 0 is stable and x∗ = µ is unstable.

• When µ > 0, x∗ = 0 becomes unstable and x∗ = µ stable.

Supercritical pitchfork bifurcation: For xn+1 = µ+ xn − x3n

• If µ < 0, there is only one fixed point x∗ = 0, and it is stable.

• If µ > 0, there are three fixed points, x∗ = ±µ1/2 and they are stable, but x = 0 unstable.

1.1.2 Logistic map

The most basic quadratic family of maps is the logistic map

fµ (x) = µx (1− x) , µ ≥ 0, (1.1)

In the context of population dynamics, the two terms µx and −µx2 in this map can be interpreted

as and starvation (density-dependent mortality) respectively.

Fixed Points: There are two fixed points x∗ = 0 and x∗ = (µ− 1) /µ, provided µ ≥ 1.

Linear stability: We have f ′µ (x) = µ− 2xµ.

• If 0 ≤ µ < 1, the fixed point x∗ = 0 is stable and the fixed point x∗ = (µ− 1) /µ is not in the

range [0, 1].

1.1. Fixed pionts and periodic orbits of maps 9



Chapter 1. Notions of dynamical systems and prelimanery concepts

Figure 1.6: The fixed point x∗ = (µ − 1)/µ becomes unstable as µ > 3, and a period-2 orbit

emerges.

• If µ ≥ 1, the fixed point x∗ = 0 becomes unstable, but x∗ = (µ− 1) /µ become stable, as

long as 1 < µ < 3. Because the fixed points x∗ = 0 and x∗ = (µ− 1) /µ exchange stability at

µ = 1, this is a transcritical bifurcation.

Period-doublin bifurcation: As µ passes 3, f ′µ ((µ− 1) /µ) passes−1 and x∗ = (µ− 1) /µ becomes

unstable (see Figure 1.6 for sample iterations at µ = 3.35). Aperiod-two orbit
(
x∗+, x

∗
−
)

appears,

such that x∗+ = fµ
(
x∗−
)
, x∗− = fµ

(
x∗+
)
. In other words, both x∗+ and x∗− are fixed points of x =

fµ (fµ (x)) , but not fixed points of x = fµ (x) . This is called period-doubling bifurcation, signified

by fµ∗ (x) = −1 at µ∗ = 3.

Since

x− fµ (fµ (x)) = x (µx− µ+ 1)
(
µ2x2 −

(
µ2 + µ

)
x+ µ+ 1

)
,

all solutions of x− fµ (fµ (x)) = 0 are

x∗ = 0, x∗ =
µ− 1

µ
, x∗± =

µ+ 1±
√

(µ− 3) (µ+ 1)

2µ
.

The first two are inherited from x∗ = fµ (x∗) , while the last two constitute the periodic two orbits.

Solving the quadratic equation µ2x2− (µ2 + µ)x+µ+1 = 0, and with a more detailed calculation

it’s shown that the this period-two orbit loses its stability when the modulus

dfµ (fµ (x))

dx
|x∗± = f ′µ (fµ (x)) f ′µ (x) |x∗± = f ′µ

(
x∗+
)
f ′µ
(
x∗−
)

is greater than unit. From

x∗+ + x∗− =
µ− 1

µ
, x∗+x

∗
− =

µ− 1

µ2
,

can be simplified the Jacobian dfµ(fµ(x))

dx
|x∗± as

f ′µ
(
x∗+
)
f ′µ
(
x∗−
)

= µ2
(
1− 2x∗−

) (
1− 2x∗+

)
= µ2

(
1− 2

(
x∗+ + x∗−

)
+ 4x∗+x

∗
−
)

= 4 + 2µ− µ2.

1.1. Fixed pionts and periodic orbits of maps 10



Chapter 1. Notions of dynamical systems and prelimanery concepts

Figure 1.7: Bifurcation diagram for the map (1.1), when µ is not too close to 4.

Resolving
dfµ (fµ (x))

dx
|x∗± = ±1,

we obtain

µ = −1 or µ = 3 for
dfµ (fµ (x))

dx
|x∗± = 1,

and

µ = 1±
√

6 for
dfµ (fµ (x))

dx
|x∗± = −1.

We do not need to consider the negative values of µ = −1 or µ = 1−
√

6, indeed the fixed points x∗±
exists only for µ ≥ 3. Therefore, the only possible bifurcation occurs at µ∗ = 1+

√
6 ≈ 3.449,where

dfµ(fµ(x))

dx
|x∗± = −1. For equation x = fµ(fµ(x)), the value−1 suggests an additional period-doubling

bifurcation that results in period-four orbits, which are solutions of x = fµ (fµ (fµ (fµ (x)))) .

In fact, there is an infinite cascade of period-doubling bifurcations. At µ1 = 3, the system transi-

tions from period 1 to period 2. At µ2 = 1+
√

6, the period-doubles again from 2 to 4. This pattern

continues: µn corresponds to a transition from period 2n−1 to 2n. Furthermore, as µn approaches

a finite limit (approximately 3.56995), the period-doubling cascade ceases and chaotic behaviors

emerge. The limit of the ratio between the lengths of two consecutive bifurcation intervals is a

universal Feigenbaum constant:

lim
n→+∞

µn−1 − µn
µ− µn+1

≈ 4.669

Many other maps exhibit similar period-doubling bifurcations, and this limiting ratio remains

consistent regardless of the specific details of the map. It’s worth noting that while the bifurcation

diagrams for both pitchfork and period-doubling bifurcations may appear similar, the behaviors of

the fixed points differ significantly. In period-doubling bifurcation, the new "fixed points" actually

satisfy the equation x = fµ(fµ(x)), rather than x = fµ (x) .

1.1. Fixed pionts and periodic orbits of maps 11



Chapter 1. Notions of dynamical systems and prelimanery concepts

Figure 1.8: The eigenvalues of the Jacobian matrix near (x∗1, y
∗
1) and (x∗2, y

∗
2) .

1.1.3 Bifurcation of two-dimensional maps

By observing that when a parameter changes,it results in eigenvalues of the Jacobian matrix with

unit modulus, the same method may be used to investigate the bifurcation of two-dimensional

maps.

Example 1.2 Consider the map xn+1 = µyn + xn − x2n, yn+1 = xn. There are two fixed points

(x∗1, y
∗
1) = (0, 0) , (x∗2, y

∗
2) = (µ, µ) . The Jacobian matrix is given by

J (x, y) =

(
1− 2x µ

1 0

)
.

we get

J (x∗1, y
∗
1) =

(
1 µ

1 0

)
, J (x∗2, y

∗
2) =

(
1− 2µ µ

1 0

)
.

For the fixed point (x∗1, y
∗
1) , the two eigenvalues are governed by λ±1 = 1±

√
1+4µ
2

. For the fixed point

(x∗2, y
∗
2) , the two eigenvalues are governed by

λ±2 =
1− 2µ±

√
(1− 2µ)2 + 4µ

2
=

1− 2µ±
√

1 + 4µ2

2
.

The stability of the two fixed points (x∗1, y
∗
1) and (x∗2, y

∗
2) are exchanged, indicating the transcritical

bifurcation at µ = 0. The bifurcation is also clear from Figure 1.8. The fixed point (x∗1, y
∗
1) = (0, 0)

is stable, for µ ∈ (−1/4, 0) . The other fixed point (x∗2, y
∗
2) = (µ, µ) is stable for µ > 0, but becomes

unstable again when λ−2 = −1, or µ = 2/3. A period-doubling bifurcation occurs her (associated

with eigenvalue −1).

1.1. Fixed pionts and periodic orbits of maps 12
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1.2 Piecewise smooth maps

This section examines the piecewise smooth map in one and two dimensions by focusing on three

key ideas. Firstly, the map’s definition and some of its characteristics. Secondly, the fixed points

in both dimensions. Thirdly, periodic orbits. Consider a map F : Rm → Rm as follows:

xn + 1 = F (xn), x0 ∈ R (1.2)

Some properties:

• The map (1.2) is a piecewise smooth, if the phase space Rm can be partitioned into a finite

number J of disjoint non-empty open regions Ri, i = 1, ..., J, and a boundary Σ, so that

Rm =

(
J⋃
i=1

Ri

)
∪ Σ.

• The boundary Σ made up of a union of continuously differentiable surfaces which separate

the regions Ri.

• F is smooth in each regions Ri.

• Non-smoothness of F occurs on Σ, which is called switching surface or switching manifold.

• The map (1.2) is also known as hybrid system. For more details see [5]

1.2.1 One-dimensional piecewise smooth maps

Let 1-D piecewise smooth system be defined as follow:

xn+1 = f(xn, µ) =

{
g(x, µ), x < xb

h(x, µ), x > xb
(1.3)

where µ is the bifurcation parameter, the smooth curve x = xb, the state space was separated into

two regions RL and RR given by: {
RL = {x ∈ R : x < xb}
RR = {x ∈ R : x > xb}

and the boundary between them is given by:

Σ = {x ∈ R : x = xb}

Some properties:

1.2. Piecewise smooth maps 13
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• The map f is continuous, but its derivative is discontinuous at the borderline x = xb.

• The functions g and h are both continuous and they have continuous derivatives in x every-

where except at xb.

• x0 (µ) is a possible path of fixed points of f , this path depends continuously on µ.

• The possible fixed point hits the boundary at a critical parameter value µb : x0 (µb) = xb.

This system has a normal form given by:

N(x, µ) =

{
ax+ µ, x < 0

bx+ µ, x > 0
(1.4)

where µ is a parameter and a, b are the graph’s slopes at its two sides RL and RR of the border

x = 0. The fixed points are as follow: to the left (x < xb) and right (x > xb), respectively of the

boundary, let x∗L and x∗R be the system’s possible fixed points. Then, in the normal form (1.4) we

have: {
x∗L = µ

1−a < 0, if a < 1 ∧ µ < 0

x∗R = µ
1−b > 0, if b < 0 ∧ µ < 0

Periodic orbits are as follow: The period-2 orbit of the normal form (1.4) is given by:

N (N(x, µ))− x =

{
(a2 − 1)x+ (a+ 1)µ, x < 0

(b2 − 1)x+ (b+ 1)µ, x > 0

and the period-3 orbit are given by:

N (N (N(x, µ)))− x =

{
(a4 − 1)x+ (a3 + a2 + a+ 1)µ, x < 0

(b4 − 1)x+ (b3 + b2 + b+ 1)µ, x > 0

1.2.2 Two-dimensional piecewise smooth maps

Let 2-D piecewise smooth system defined be as follow:

g (x̂, ŷ, ρ) =


g1 =

(
f1 (x̂, ŷ, ρ)

f2 (x̂, ŷ, ρ)

)
, if x̂ < S(ŷ, ρ)

g2 =

(
f3 (x̂, ŷ, ρ)

f4 (x̂, ŷ, ρ)

)
, if x̂ > S(ŷ, ρ)

(1.5)

where ρ is the bifurcation parameter, the smooth curve x̂ = S(ŷ, ρ) created two regions in the

phase plane RL and RR given by:

1.2. Piecewise smooth maps 14
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{
RL = {(x̂, ŷ) ∈ R2, x̂ < S(ŷ, ρ)}
RR = {(x̂, ŷ) ∈ R2, x̂ > S(ŷ, ρ)}

and the boundary between them as:

Σ =
{

(x̂, ŷ) ∈ R2, x̂ = S(ŷ, ρ)
}

Some properties:

• Although the map g is continuous, its derivation discontinues at the borderline x̂ = S(ŷ, ρ).

• Both g1 and g2 are continuous functions with continuous derivatives.

• In each subregion RL and RR, the one-sided partial derivatives near the boundary are finite.

• The map (1.5) has one fixed point in RL and one fixed point in RR for a value ρ∗ of the

parameter ρ.

This system has a normal form is given:

N(x, y) =



(
τL 1

−δL 0

)(
x

y

)
+

(
1

0

)
µ, x < 0

(
τR 1

−δR 0

)(
x

y

)
+

(
1

0

)
µ, x > 0

(1.6)

where µ is a parameter and τL,R, δL,R are the traces and determinants of the corresponding ma-

trices of the linearized map in the two subregions RL and RR given by :{
RL = {(x, y) ∈ R2} , x < 0

RR = {(x, y) ∈ R2} , x > 0

Fixed points: Let PL and PR be the possible fixed points of the system near the border to the

right: x < S(ŷ, ρ) and left: x > S(ŷ, ρ) of the border respectively. Then in the normal form (1.6)

we have 
PL =

(
µ

1−τL+δL ,
−δLµ

1−τL+δL

)
∈ RL

PR =
(

µ
1−τR+δR ,

−δRµ
1−τR+δR

)
∈ RR

with eigenvalues λL 1.2 and λR 1.2 respectively.
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Periodic orbits: The period-2 orbit of the normal form (1.6) is given by:

N (N (x, y))− (x, y) =



(
N1 − x
N2 − y

)
, x < 0

(
N3 − x
N4 − y

)
, x > 0

where 


N1 = y + 2µ+ xτL + yτL + µτL + xτ 2L

N2 = −δLx
, x < 0


N3 = y + 2µ+ xτR + yτR + µτR + xτ 2R

N4 = −δRx
, x > 0

and the period-3 orbit given by:

N (N (N (x, y)))− (x, y) =



(
N5 − x
N6 − y

)
, x < 0

(
N7 − x
N8 − y

)
, x > 0

where 


N5 = y + 3µ+ xτL + 2yτL + 3µτL + 2xτ 2L + xτ 3L + yτ 2L + µτ 2L

N6 = −δLx
, x < 0


N7 = y + 3µ+ xτR + 2yτR + 3µτR + 2xτ 2R + xτ 3R + yτ 2R + µτ 2R

N8 = −δRx
, x > 0

1.3 Lyapunov Exponent

In this section, we present an analytical metric that can be applied to periodic orbits and chaos

analysis. The rate at which an infinitesimally small gap between two initially close states increases

over time is known as the Lyapunov exponent:

F t(x0 + ε)− F t(x0) ≈ εeλt (1.7)

1.3. Lyapunov Exponent 16
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The distance between two initially near states after t steps is represented on the left, while the

assumption that the distance increases exponentially with time is represented on the right. The

Lyapunov exponent is the exponent λ that is measured over an extended period of time (prefer-

ably t → ∞). Small distances extend infinitely over time if λ > 0, indicating the presence of

the stretching mechanism. Alternatively, in the case when λ < 0, the system finally settles into a

periodic trajectory, meaning that short distances don’t expand endlessly. Keep in mind that while

stretching is the only mechanism of chaos that the Lyapunov exponent characterizes, this is not

the only mechanism. Remember that this Lyapunov exponent does not capture the folding mech-

anism. We can do a little bit of mathematical derivation to transform Equation (1.7) and make it

easier to compute:

eλt ≈ |F t(x0 + ε)− F t(x0)|
ε

λ = lim
t→∞,ε→0

1

t
log
|F t(x0 + ε)− F t(x0)|

ε

= lim
t→∞,ε→0

1

t
log

∣∣∣∣dFdx
∣∣∣∣
x=x0

(using the chain rule of differentiation)

λ = lim
t→∞

1

t
log

∣∣∣∣dFdx
∣∣∣∣
x=F t−1(x0)=xt−1

.
dF

dx
|
x=Ft−2(x0)=xt−2

...
dF

dx
|x=x0

lim
t→∞

1

t

t−1∑
i=0

log

∣∣∣∣dFdx
∣∣∣∣
x=xi

Hence, the Lyapunov exponent is a time average of log|dF
dx
| at every state the system visits over

the course of the simulation.

By comparing this figure with the bifurcation diagram (Fig.1.9 ), we will notice that the parameter

range where the Lyapunov exponent takes positive values nicely matches the range where the

system shows chaotic behaviors. Additionally, the Lyapunov exponent meets the λ = 0 line

whenever a bifurcation takes place (e.g r = 1, 1.5, etc), showing the criticality of such parameter

values. Finally, there are several locations in the plot where the Lyapunov exponent diverges to

negative infinity. Such values occur when the system converges to an extremely stable equilibrium

point with dF t

dx
|x=x0 ≈ 0 for certain t.

1.3. Lyapunov Exponent 17
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Figure 1.9: The numerically constructed bifurcation diagram of equation xt = xt−1 + r − x2t−1.

Figure 1.10: The Lyapunov exponent of equation xt = xt−1 + r − x2t−1.

1.3. Lyapunov Exponent 18



Chapter 2

Periodic orbits of some 2-D

Zeraoulia-Sprott chaotic attractors

This chapter presents some characteristics of periodic orbits of some two dimensions Zeraoulia-

Sprott chaotic maps. It also touches on fixed points their stability. In addition, we give some

graphical representations of their dynamical behaviors in parameter space.

2.1 A minimal 2-D quadratic map

This section describes and analyse a simple minimal 2-dimensional quadratic map. Indeed, the

Hénom map [7] given by:

H (x, y) =

(
1− ax2 + by

x

)
is the simplest example of a dissipative map with chaotic solutions and it has been widely studied.

Its area contraction is constant over the orbit in the ab-plane and depends solely on b, result-

ing in a single quadratic nonlinearity. An alternative way to express it is as a one-dimensional

time-delayed map xn+1 = 1 − ax2n + bxn−1. Here we present and analyze an equally simple two-

dimensional quadratic map given by:

f (x, y) =

(
1− ay2 + bx

x

)
(2.1)

where a and b are bifurcation parameters.
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2.1.1 Some properties

• Equation (2.1) is an interesting minimal system, similar to the Hénom map, but with the

time delay in the non-linear rather than the linear term as evidence by writing it in the

time-delayed form xn+1 = 1− ax2n−1 + bxn.

• It differs from the Hénon map, despite its similarity and simplicity, in that it contains irreg-

ular dissipation, a richer and more diverse path to chaos and a variety of attractors.

• These attractors covering the entire range of dimensions from 1 to 2 with basin of attraction

that are often much more complicated than for the Hénon map.

• This system is special case of general 2-D quadratic maps and differs from other well-known

2-D maps such as the delayed logistic map [8] given by g (x, y) = (ax (1− y) , x) .

2.1.2 Fixed points

We starting by studying the existence of the fixed points of the map (2.1), then determine their

stability. We have

f (x, y) = (x, y)⇔
(

1− ay2 + bx

x

)
=

(
x

y

)
we get the following equations:{

1− ay2 + bx = x

x = y
⇒ 1− ax2 − (1− b)x = 0

we calculate the discriminant of the last equation ∆ = (1− b)2 + 4a and we have two cases:

• If ∆ = (1− b)2 + 4a ≥ 0, the map (2.1) has two fixed points
P1 =

(
b−1−

√
4a−2b+b2+1
2a

, b−1−
√
4a−2b+b2+1
2a

)
P2 =

(
b−1+

√
4a−2b+b2+1
2a

, b−1+
√
4a−2b+b2+1
2a

)
• If ∆ = (1− b)2 + 4a < 0, the map (2.1) has no fixed points.

Now, we determine their stability:
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1. The Jacobian matrix of the map (2.1) is J(x, y) =

(
b −2ay

1 0

)
and at a fixed point (x, x),

its characteristic polynamials are given by:

λ2 − bλ+ 2ax = 0 (2.2)

2. The local stability of the two equilibria is studied by evaluating the roots of equation (2.2).

So, after some of calculate we obtained the following results:

P1 is unstable in the following cases:

1. a ≥ − ((−b+ 1) /2)2 , b < 0.

2. a ≥ − ((−b+ 1) /2)2 , a > (1/2) b+ (3/4) b2 − (1/4) , b > 0.

P1 is a saddle point in the following case:

1. a ≥ − ((−b+ 1) /2)2 , a < (1/2) b+ (3/4) b2 − (1/4) , b > 0.

On the other hand, P2 is unstable in the following cases:

1. a ≥ − ((−b+ 1) /2)2 , a > (1/8) b2 − (1/8) b3 + (1/64) b4, b ≥ 2.

2. a ≥ − ((−b+ 1) /2)2 , a > − (1/2) b+ (3/4) , b < 2.

3. a ≥ − ((−b+ 1) /2)2 , a ≤ (1/8) b2 − (1/8) b3 + (1/64) b4, b > 2.

P2 is stable in the following cases:

1. a ≥ − ((−b+ 1) /2)2 , a > (1/8) b2 − (1/8) b3 + (1/64) b4, a ≥ − ((−b+ 1) /2)2 ,

a < − (1/2) b+ (3/4) , b < 2.

2. a ≥ − ((−b+ 1) /2)2 , a ≤ (1/8) b2 − (1/8) b3 + (1/64) b4, 0 ≤ b ≤ 2.

3. a ≥ − ((−b+ 1) /2)2 , a ≤ (1/8) b2 − (1/8) b3 + (1/64) b4,

a > (1/2) b+ (3/4) b− (1/4) ,−2 < b < 0

P2 is a saddle point in the following cases:

1. a ≥ − ((−b+ 1) /2)2 , a ≤ (1/8) b2 − (1/8) b3 + (1/64) b4,

a < (1/2) b+ (3/4) b2 − (1/4) ,−2 ≤ b < 2.

A shematic representation of these results is given in Figure 2.1.
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Figure 2.1: Stability of the fixed points of the map (2.1) in the ab-plane, where the numbers on

the figure are as follows: 1: P1 is unstable, 2: P1 is a saddle, 3: P1 is stable, 4: P2 is unstable, 5:

P1 is a saddle, 6: P1 is stable.

2.1.3 Priodic orbits

We have

f (f (x, y)) =

(
f1 (x, y)

f2 (x, y)

)
where 

f1 (x, y) = a3y4 + 2a2bxy2 + 2a2y2

−ab2x2 − 2abx− aby2 − a+ b2x+ b+ 1

f2 (x, y) = x

The period-2 orbit of the map (2.1) is given by:

f (f (x, y))− (x, y) = 0⇔
(
f1 (x, y)− x
f2 (x, y)− y

)
=

(
0

0

)
and the period-3 orbit given by:

f (f (f (x, y)))− (x, y) = 0⇔
(
f3 (x, y)− x
f4 (x, y)− y

)
=

(
0

0

)
where {

f3 (x, y) = 1− a (f1 (x, y))2 + b (f1 (x, y))

f4 (x, y) = x

The periodic orbits are shown respectively in Figure.2.2 along with their basins of attraction in

white and their absence in Figure.2.3.
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Figure 2.2: Left figure represent a periodic orbit of the map (2.1) with its basin of attraction

(white) obtained for a = 1and b = 0.1, right figure represent a quasi-periodic orbit with its basin

of attraction (white) for a = 1 and b = 0.17.

Figure 2.3: Left figure represent the chaotic attractor with its basin of attraction (white) for a = 1

and b = 0.675, and the right figure represent another chaotic attractor with its basin of attraction

(white) for a = 0.59948 and b = 1.

Figure 2.4: The quasi-periodic route to chaos for the map (2.1) obtained versus the parameter

0 < a ≤ 1.07 with b = 0.6.
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Figure 2.5: The Lyapunov exponents of map (2.1) versus the parameter 0 < a ≤ 1.07 with b = 0.6

and 0 < b ≤ 0.67, with a = 1.

Figure 2.4 shows a the periodic orbits of periods 5 and 6 for map (2.1)

Figure 2.5 shows big dots that indicate the existence periodic orbits and the values for which

Lyapunov exponents are zero.

Figure 2.6 shows regions of unbounded (white), fixed point (gray), periodic (blue), quasiperiodic

(green), and chaotic (red) solutions in the ab-plane for the map (2.1), where we use |LE| <
0, 0001 as the crirterion for quasi-periodic orbits with 106 iterations for each point.

Figure 2.7 shows a similar plot for the Hénom map.

2.2 A simple 2-D rational discrete mapping

This section introduces a simple rational map along with some of its dynamical properties. In

[9], a 1-D discrete iterative system featuring a rational fraction was discovered during a study of

evolutionary algorithms:

g (x) =
1

0.1 + x2
− ax, (2.3)
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Figure 2.6: Dynamical behaviors regions in the ab-plane of the map (2.1).

Figure 2.7: Hénon map’s dynamical behaviors regions in the ab-plane.

Figure 2.8: The bifurcation diagram for the map (2.1) obtained for a = 1and 0 < b ≤ 0.67.
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where a is a parameter, the map (2.3) delineates diverse random evolutionary processes, pre-

senting a complexity surpassing that of the logistic system. In [10], an extended version of the

initial one-dimensional discrete chaotic system from [9] is introduced, broadening it into two

dimensions as follows:

h(x, y) =

(
1

0.1+x2
− ay

1
0.1+y2

− ax

)
, (2.4)

where a and b are parameters. The map (2.4) has more complicated dynamical behavior than the

one-dimensional map (2.3). A novel and very simple 2-D map is created by Zeraoulia and Sprott

[3] based on concepts studied in [9,10], which is defined by the existence of only one rational

fraction without a vanishing denominator:

f(x, y) =

(
−ax
1+y2

x+ by

)
, (2.5)

where a and b are bifurcation parameters.

2.2.1 Some properties

• The map (2.5) is algebraically simpler but with more complicated behavior than map (2.4).

• It produces several new chaotic attractors obtained via the quasi-periodic route to chaos.

• The map (2.5) is defined for all points in the plane.

• The associated function f (x, y) of the map (2.5) is of class C∞ (R2) , and it has no vanishing

denominator.

• The chaotic map (2.5) is symmetric under the coordinate transformation (x, y)→ (−x,−y) ,

and this transformation persists for all values of the map parameters.

2.2.2 Fixed points

The fixed points of the map (2.5) are the real solution of

f (x, y) = (x, y)⇔
(

−ax
1+y2

x+ by

)
=

(
x

y

)

So, we may easily obtain the equations:{
(a+ 1 + y2)x = 0

(1− b) y = x
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Let −1 ≤ a ≤ 4. Then, if b 6= 1, the map (2.5) has only fixed point P = (0, 0) . If b = 1, then the

y-axis is invariant by iteration of the map (2.5). The Jacobian matrix of map (2.5) evaluated at a

point (x, y) is given by:

Df (x, y) =

(
−a
1+y2

2axy

(1+y2)2

1 b

)
,

and at the fixed point p = (0, 0), the Jacobian matrix is given by

Df (x, y) =

(
−a 0

1 b

)
,

The local stability of P is studied by evaluating the eigenvalues of the Jacobian Df (P ) . The

eigenvalues of Df (P ) are: λ1 = −a and λ2 = b. Then one has the following results:

If |a| < 1 and |b| < 1, then P is asymptotically stable. If |a| > 1 or |b| > 1, then P is an unstable

fixed point. If |a| < 1 and |b| > 1, or |a| > 1 and |b| < 1, then P is saddle point. If |a| = 1 or

|b| = 1, then P is a non-hyperbolic fixed point.

2.2.3 Periodic orbits

The period-2 orbit of the map (2.5) is given by:

f (f (x, y))− (x, y) = 0⇔
(
f1 (x, y)− x
f2 (x, y)− y

)
=

(
0

0

)
where 

f1 (x, y) = xa2y2+xa2

a2x2+y4+2y2+1

f2 (x, y) = x+ b2y + bx+ by

and the period-3 orbit given by:

f (f (f (x, y)))− (x, y) = 0⇔
(
f3 (x, y)− x
f4 (x, y)− y

)
=

(
0

0

)
where 

f3 (x, y) =
−a
(
a2x y2+1

a2x2+y4+2y2+1

)
1+
(
a2x y2+1

a2x2+y4+2y2+1

)2

f4 (x, y) = x+ b2x+ 2b2y + b3y + 2bx+ by
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Figure 2.9: The classic double scroll attractor obtained for α = 9.35, β = 14.79, m0 = −1
7
, m1 = 2

7
.

2.3 The discrete hyperchaotic double scroll map

This section introduces a 2-D discrete piecewise linear chaotic map and we focusing on three

key ideas. Firstly, the map’s definition and some of its characteristics. Secondly, the fixed points

and the Jacobian matrix. Thirdly, periodic orbits. This map is called the discrete hyperchaotic

double-scroll, capable of generating a hyperchaotic solutions similar to the calssical double-scroll

attractor generated by the Chua circuit [11] given by:

x′ = α (y − h (x))

y′ = x− y + z

z′ = −βy

where

h (x) =
2m1x+ (m0 −m1) (|x+ 1| − |x− 1|)

2
.

The double scroll attractor for this case is shown in Figure 2.9.

Consider the following 2-D piecewise linear map:

f (x, y) =

(
x− ah (y)

bx

)
(2.6)

where a and b are the bifurcation parameters, h is given above and m0 and m1 are respectively

the slopes of the original Chua circuit’s inner and outer sets. So, the discrete hyper-chaotic double
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Figure 2.10: The discrete hyperchaotic double scroll attractor obtained from the map (2.6) for

a = 3.36, b = 1.4, m0 = −0.43, and m1 = 0.41 with initial conditions x = y = 0.1.

scroll map can be given by:

f (x, y) =



A1 ×
(
x

y

)
+ b1, y ≥ 1

A2 ×
(
x

y

)
+ b2, |y| ≤ 1

A3 ×
(
x

y

)
+ b3, y ≤ −1

where 

A1 = A3 =

(
1 −am1

b 0

)
, A2 =

(
1 −am0

b 0

)
,

b1 =

(
a (m1 −m0)

0

)
, b2 =

(
0

0

)
, b3 =

(
a (m0 −m1)

0

)
.

Due to the shape of the vector field f of the map (2.6), the plane can be devided into three linear

regions denoted by:

R1 =
{

(x, y) ∈ R2/ y ≥ 1
}
,

R2 =
{

(x, y) ∈ R2/ |y| ≤ 1
}
,

R3 =
{

(x, y) ∈ R2/ y ≤ −1
}
.

where in each of these regions the map (2.6) is linear
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2.3.1 Some properties

• The associated function f(x, y) is continuous in R2, but it is not differentiable at the points

(x,−1) and (x, 1) for all x ∈ R.

• The map (2.6) is a diffeomorphism except at points (x,−1) and (x, 1) when abm1m0 6= 0,

since the determinant of its Jacobian is non zero if and only if abm0 6= 0 or abm1 6= 0, but

it does not preserve area and it is not a reversing twist map for all values of the system

parameters.

• The map (2.6) is symmmetric under the coordinate transformion (x, y) → (−x,−y), and

this transformation persists for all values of the system parameters.

2.3.2 Fixed points

The fixed points of the map (2.6) are the real solutions of the system:

f (x, y) = (x, y)⇔
(
x− ah (y)

bx

)
=

(
x

y

)

We get the following equation:


f1 (x, y) = 0, if y ≥ 1

f2 (x, y) = 0, if |y| ≤ 1

f3 (x, y) = 0, if y ≤ −1

bx = y

where 
f1 (x, y) = am1x+ a (m0 −m1)

f2 (x, y) = am0x

f3 (x, y) = am1x− a (m0 −m1)

So, we have three cases from the existance of the fixed points:

Case 1: For y ≥ 1

x1 =
m1 −m0

bm1

⇒ y1 =
m1 −m0

m1

, abm1 6= 0

such that

y1 =
m1 −m0

m1

≥ 1⇔ m1 −m0 ≥ m1 ⇔ m0 < 0 and m1 > 0

So, P1 =
(
m1−m0

bm1
, m1−m0

m1

)
exist in R1 if m0m1 < 0.

Case 2: For |y| ≤ 1
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x2 = 0⇒ y2 = 0, abm0 6= 0

So, P2 = (0, 0) exist in R2 if m0 6= 0.

Case 3: For y ≤ −1

x3 =
m0 −m1

bm1

⇒ y1 =
m0 −m1

m1

, abm1 6= 0

such that

y1 =
m1 −m0

m1

≤ −1⇔ m1 −m0 ≤ −m1 ⇔ m0 < 0 and m1 > 0

So, P3 =
(
m0−m1

bm1
, m0−m1

bm1

)
exist in R3 if m0m1 6= 0. Then, can be written the fixed points as follows:



P1 =
(
m1−m0

bm1
, m1−m0

m1

)
,

P2 = (0, 0)

P3 =
(
m0−m1

bm1
, m0−m1

bm1

)
.

if m0m1 < 0

P = (0, 0) , if m0m1 > 0

Jacobian matrix: The Jacobian matrix of the map (2.6) evaluated at the fixed points P1, P2 and

P3 given by:

J1,3 =

(
1 −abm1

1 0

)
, J2 =

(
1 −abm0

1 0

)
We note here that P1 and P3 is the same, therefore the two equilibrium points P1 and P3 have the

same stability type. The eigenvalues of the corresponding Jacobian matrices (2.6) is given by the

solutions of their characteristic polynomials given respectively by:{
λ2 − λ+ abm1 = 0

λ2 − λ+ abm0 = 0

To study the stability of the fixed points, we perform three main steps:

1. We assess the Jacobian matrix at the fixed point.

2. We calculate the eigenvalues from the solution of the characteristic polynomial.

3. We compare the resulting eigenvalues with the unit disk (if |λ| < 1 the fixed point is stable,

if |λ| > 1 the fixed point is unstable).
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2.3.3 Periodic orbits

The period-2 orbit of the map (2.6) is given by:

f (f (x, y))− (x, y) = 0⇔




f4 (x, y) if y ≥ 1

f5 (x, y) if |y| ≤ 1

f6 (x, y) if y ≤ −1

bx = y

 =

(
0

0

)

where 
f4 (x, y) = 2am1 − 2am0 − a2m2

1 + a2m0m1 + a2ym2
1 − axm1 − aym1

f5 (x, y) = a2ym2
0 − axm0 − aym0

f6 (x, y) = a2m2
1 + 2am0 − 2am1 − a2m0m1 + a2ym2

1 − axm1 − aym1

and the period-3 given by:

f (f (f (x)))− (x, y) = 0⇔




f7 (x, y) , if y ≥ 1

f8 (x, y) , if |y| ≤ 1

f9 (x, y) , if y ≤ −1

bx− y

 =

(
0

0

)
(2.7)

where



f7 (x, y) = −3m0 + 3m1 + a2m3
1 − 3am2

1 + a2xm2
1 + 2a2ym2

1 − a3ym3
1 − 2axm1 − aym1

−a2m0m
2
1 + 3am0m1

f8 (x, y) = a2xm2
0 + 2a2ym2

0 − a3ym3
0 − 2axm0 − aym0

f9 (x, y) = 3a2m2
1 − a3m3

1 + 3am0 − 3am1 − 3a2m0m1 + a2xm2
1 + 2a2ym2

1 − a3ym3
1

−2axm1 − aym1 + a3m0m
2
1

Big dots that indicate the periodic orbits for the map (2.6) and the Lyapunov exponent spectrum

for m0 = −0.43 and m1 = 0.41, b = 1.4, and −3.365 ≤ a ≤ 3.365 as shown in Figure 2.11.

If we fix parameters b = 1.4, m0 = −0.43, and m1 = 0.41 and vary a ∈ R, the map (2.6) exhibits

the following dynamical behaviors as shown in Fig 2.12. For a = −1.8 and a = 1.8, the map (2.6)

has a stable period-3 orbit with equation (2.7). In the interval −1.8 ≤ a ≤ 0.1, and 0 ≤ a ≤ 1.8,
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Figure 2.11: The Lyaponov exponents of the map (2.6) versus the parameter −3.365 ≤ a ≤ 3.365

with b = 1.4, m0 = −0.43,and m1 = 0.41.

Figure 2.12: The border collision bifurcation route to chaos of the map (2.6) for b = 1.4 with

−3.365 ≤ a ≤ 3.365 , m0 = −0.43,and m1 = 0.41.
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Figure 2.13: Regions of dynamical behaviors in the ab-plane for the map (2.6).

the map (2.6) has a period-1 orbit and its equation is of the form:

f (x, y)− (x, y) =

(
0

0

)

⇔



(
−am1y + a (m0 −m1)

bx− y

)
=

(
0

0

)
, if y ≤ −1(

x− am0y

bx− y

)
=

(
0

0

)
, if |y| ≤ 1(

−am1y + a (m1 −m0)

bx− y

)
=

(
0

0

)
, if y ≥ 1

Figure 2.13 shows regions in the ab-plane given by (a, b) ∈ [−3.365, 3.365]× [−2, 2] of unbounded

(white), periodic orbits of periods 1 and 3 (blue) in the ab-plane for the map (2.6), with 106

iterations for each point.
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Periodic orbits of some 1-D

Zeraoulia-Sprott mpaping

This chapter presents the mathematical analysis of some one-dimensional Zeraoulia-Sprott mpa-

ping, with special emphasis on the analysis of the stability of fixed points and periodic orbits.

3.1 One-dimensional discrete mapping

Consider the arbitrary 1-D discrete mappings given by:

xk+1 = gυ (xk) , υ ∈ (υmin, υmax) . (3.1)

where gυ : [a, b] → R with a < b be two real numbers, and gυ is of class C3. Let us consider the

controlled 1-D mapping given by:

xk+1 = gυ (xk) + u (xk) = ϕυ (xk) , (3.2)

υ ∈ (υmin, υmax) .

where u : [a, b] → [a, b] is the unknown controller to be chosen. Define the controller u : [a, b] →
[a, b] by the following conditios:

(A1) The controller u (x) is of class C3.

(A2) The controller u (x) has the following special values:


u(a) = a− gυ (a)

u(b) = a− gυ (b)

there exist a piont c ∈ (a, b) : u′ (c) = −g′υ (c)
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(A3)

a− gυ (x) ≤ u (x) ≤ b− gυ (x)

(A4)

u′ (x) > −g′υ (x) , for all x ∈ [a, c) .

(A5)

u′ (x) < −g′υ (x) , for all x ∈ (c, b] .

(A6)

2
(
g
′

ν (x) + u
′
(x)
)(

g
′′′

ν (x) + u
′′′

(x)
)
− 3

(
g
′′

ν (x) + u
′′

(x)
)2
< 0 for all x ∈ [a, b]

More generally, take gυ (x) = υx, with x ∈ [0, 1] . Define the controller

u (x) = − (υ + β + γ)x3 + βx2 + γx,

where 
0 ≤ υ < 1

2
,

0 ≤ υ < γ < 1− υ,
υ + β + γ < 1,

β < min
{

1− (γ + υ) , 1
6

√
13υ2 + 30υγ + 21γ2 − 1

2
γ − 5

6
υ
}
.

Hence

ϕυ (x) = (−ν − β − γ)x3 + βx2 + (ν + γ)x. (3.3)

The conditions (A1)-(A6) are satisfied.

3.1.1 Fixed pionts

The fixed points of map (3.3) are:

ϕυ (x) = x⇔ (−ν − β − γ)x3 + βx2 + (ν + γ)x = x

⇒ (−ν − β − γ)x3 + βx2 + (ν + γ − 1)x = 0

⇒
(
(−ν − β − γ)x2 + βx+ (ν + γ − 1)

)
x = 0

3.1. One-dimensional discrete mapping 36



Chapter 3. Periodic orbits of some 1-D Zeraoulia-Sprott mpaping


x1 = 0

(−ν − β − γ)x2 + βx+ (ν + γ − 1) = 0

⇒


x1 = 0

x2,3 = ±1
2

β+
√
−4β−4γ−4ν+β2+4γ2+4ν2+4βγ+4βν+8γν

β+γ+ν
, β + γ + ν 6= 0

So, there are three fixed points. Now, we study their stability, we have

ϕ′υ (x) = 3 (−ν − β − γ)x2 + 2βx+ (ν + γ)

At x1 we have:

ϕ′υ (x1) = ϕ′υ (0) = ν + γ = m1

Thus, we get

• If |m1| < 1, x1 stable.

• If |m1| > 1, x1 unstable.

• If |m1| = 1, we cannot conclude their stability.

At x2 we have:

ϕ′υ (x2) = ϕ′υ

(
1

2

β +
√
−4β − 4γ − 4ν + β2 + 4γ2 + 4ν2 + 4βγ + 4βν + 8γν

β + γ + ν

)
= m2

Thus, we get

• If |m2| < 1, x2 stable

• If |m2| > 1, x2 unstable

• If |m2| = 1,we cannot conclude their stability.

At x3 we have:

ϕ′υ (x3) = ϕ′υ

(
−1

2

β +
√
−4β − 4γ − 4ν + β2 + 4γ2 + 4ν2 + 4βγ + 4βν + 8γν

β + γ + ν

)
= m3

Thus, we get

• If |m3| < 1, x3 stable.

• If |m3| > 1, x3 unstable.

• If |m3| = 1,we cannot conclude their stability.
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3.1.2 Periodic orbits

The period-2 orbit of the map (3.3) is given by ϕυ (ϕυ (x))− x = 0, i.e.,

a0x
9 + a1x

8 + a2x
7 + a3x

6 + a4x
5 + a5x

4 + a6x
3 + a7x

2 + (a8 − 1)x = 0

where 

a0 = β4 + 4β3γ + 4β3ν + 6β2γ2 + 12β2γν + 6β2ν2 + 4βγ3 + 12βγ2ν

+12βγν2 + 4βν3 + γ4 + 4γ3ν + 6γ2ν2 + 4γν3 + ν4

a1 = −3β4 − 9β3γ − 9β3ν − 9β2γ2 − 18β2γν − 9β2ν2 − 3βγ3 − 9βγ2ν

−9βγν2 − 3βν3

a2 = 3β4 + 3β3γ + 3β3ν − 6β2γ2 − 12β2γν − 6β2ν2 − 9βγ3 − 27βγ2ν

−27βγν2 − 9βν3 − 3γ4 − 12γ3ν − 18γ2ν2 − 12γν3 − 3ν4

a3 = 5β3γ − β4 + 5β3ν + β3 + 12β2γ2 + 24β2γν + 2β2γ

+12β2ν2 + 2β2ν + 6βγ3 + 18βγ2ν + βγ2

+18βγν2 + 2βγν + 6βν3 + βν2

a4 = 6βγ3 − 3β3ν − 2β3 − 2β2γ − 2β2ν − 3β3γ + 18βγ2ν

+18βγν2 + 6βν3 + 3γ4 + 12γ3ν + 18γ2ν2

+12γν3 + 3ν4

a5 = β3 − 3β2γ2 − 6β2γν − 2β2γ − 3β2ν2 − 2β2ν − 3βγ3

−9βγ2ν − 2βγ2 − 9βγν2 − 4βγν − 3βν3 − 2βν2

a6 = 2β2γ + 2β2ν − βγ3 − 3βγ2ν − 3βγν2 − βγ − βν3 − βν − γ4

−4γ3ν − 6γ2ν2 − γ2 − 4γν3 − 2γν − ν4 − ν2

a7 = βγ2 + 2βγν + βγ + βν2 + βν

a8 = γ2 + 2γν + ν2
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and the period-3 orbit given by ϕυ (ϕυ (ϕυ (x)))− x = 0, i.e.,

b0x
27 + b1x

26 + b2x
25 + b3x

24 + b4x
23 + b5x

22 + b6x
21 + b7x

20 + b8x
19

+b9x
18 + b10x

17 + b11x
16 + b12x

15 + b13x
14 + b14x

13 + b15x
12 + b16x

11

+b17x
10 + b18x

9 + b19x
8 + b20x

7 + b21x
6 + b22x

5 + b23x
4 + b24x

3

+b25x
2 + (b26 − 1)x = 0

where

b0 = −βa30 − γa30 − νa30

b1 = −3βa20a1 − 3γa20a1 − 3νa20a1

b2 = −3βa0a
2
1 − 3βa20a2 − 3γa0a

2
1 − 3γa20a2 − 3νa0a

2
1 − 3νa20a2

b3 = −βa31 − γa31 − νa31 − 3βa20a3 − 3γa20a3 − 3νa20a3 − 6βa0a1a2 − 6γa0a1a2 − 6νa0a1a2

b4 = −3βa0a
2
2 − 3βa21a2 − 3γa0a

2
2 − 3βa20a4 − 3γa21a2 − 3νa0a

2
2 − 3γa20a4

−3νa21a2 − 3νa20a4 − 6βa0a1a3 − 6γa0a1a3 − 6νa0a1a3

b5 = −3βa1a
2
2 − 3βa21a3 − 3γa1a

2
2 − 3βa20a5 − 3γa21a3 − 3νa1a

2
2 − 3γa20a5

−3νa21a3 − 3νa20a5 − 6βa0a1a4 − 6βa0a2a3 − 6γa0a1a4 − 6γa0a2a3

−6νa0a1a4 − 6νa0a2a3

b6 = −βa32 − γa32 − νa32 − 3βa0a
2
3 − 3γa0a

2
3 − 3βa21a4 − 3νa0a

2
3 − 3βa20a6

−3γa21a4 − 3γa20a6 − 3νa21a4 − 3νa20a6 − 6βa0a1a5 − 6βa0a2a4

−6βa1a2a3 − 6γa0a1a5 − 6γa0a2a4 − 6γa1a2a3 − 6νa0a1a5

−6νa0a2a4 − 6νa1a2a3
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b7 = −3βa1a
2
3 − 3βa22a3 − 3γa1a

2
3 − 3βa21a5 − 3γa22a3 − 3νa1a

2
3 − 3βa20a7

−3γa21a5 − 3νa22a3 − 3γa20a7 − 3νa21a5 − 3νa20a7 − 6βa0a1a6

−6βa0a2a5 − 6βa0a3a4 − 6βa1a2a4 − 6γa0a1a6 − 6γa0a2a5

−6γa0a3a4 − 6γa1a2a4 − 6νa0a1a6 − 6νa0a2a5

−6νa0a3a4 − 6νa1a2a4

b8 = −3βa0a
2
4 − 3βa2a

2
3 − 3γa0a

2
4 − 3βa22a4 − 3γa2a

2
3 − 3νa0a

2
4 − 3βa21a6

−3γa22a4 − 3νa2a
2
3 − 3βa20a8 − 3γa21a6 − 3νa22a4 − 3γa20a8

−3νa21a6 − 3νa20a8 − 6βa0a1a7 − 6βa0a2a6 − 6βa0a3a5

−6βa1a2a5 − 6βa1a3a4 − 6γa0a1a7 − 6γa0a2a6 − 6γa0a3a5

−6γa1a2a5 − 6γa1a3a4 − 6νa0a1a7 − 6νa0a2a6 − 6νa0a3a5

−6νa1a2a5 − 6νa1a3a4

b9 = βa20 − βa33 − γa33 − νa33 − 3βa1a
2
4 − 3γa1a

2
4 − 3βa22a5 − 3νa1a

2
4

−3βa21a7 − 3γa22a5 − 3γa21a7 − 3νa22a5 − 3νa21a7 − 6βa0a1a8

−6βa0a2a7 − 6βa0a3a6 − 6βa0a4a5 − 6βa1a2a6 − 6βa1a3a5

−6βa2a3a4 − 6γa0a1a8 − 6γa0a2a7 − 6γa0a3a6 − 6γa0a4a5

−6γa1a2a6 − 6γa1a3a5 − 6γa2a3a4 − 6νa0a1a8 − 6νa0a2a7

−6νa0a3a6 − 6νa0a4a5 − 6νa1a2a6 − 6νa1a3a5 − 6νa2a3a4
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b10 = 2βa0a1 − 3βa2a
2
4 − 3γa0a

2
5 − 3βa23a4 − 3γa2a

2
4 − 3νa0a

2
5 − 3βa22a6 − 3γa23a4

−3νa2a
2
4 − 3βa21a8 − 3γa22a6 − 3νa23a4 − 3γa21a8 − 3νa22a6 − 3νa21a8

−3βa0a
2
5 − 6βa0a2a8 − 6βa0a3a7 − 6βa0a4a6 − 6βa1a2a7 − 6βa1a3a6

−6βa1a4a5 − 6βa2a3a5 − 6γa0a2a8 − 6γa0a3a7 − 6γa0a4a6 − 6γa1a2a7

−6γa1a3a6 − 6γa1a4a5 − 6γa2a3a5 − 6νa0a2a8 − 6νa0a3a7 − 6νa0a4a6

−6νa1a2a7 − 6νa1a3a6 − 6νa1a4a5 − 6νa2a3a5

b11 = βa21 − 3βa1a
2
5 − 3βa3a

2
4 − 3γa1a

2
5 − 3βa23a5 − 3γa3a

2
4 − 3νa1a

2
5 − 3βa22a7

−3γa23a5 − 3νa3a
2
4 − 3γa22a7 − 3νa23a5 − 3νa22a7 + 2βa0a2 − 6βa0a3a8

−6βa0a4a7 − 6βa0a5a6 − 6βa1a2a8 − 6βa1a3a7 − 6βa1a4a6 − 6βa2a3a6

−6βa2a4a5 − 6γa0a3a8 − 6γa0a4a7 − 6γa0a5a6 − 6γa1a2a8 − 6γa1a3a7

−6γa1a4a6 − 6γa2a3a6 − 6γa2a4a5 − 6νa0a3a8 − 6νa0a4a7 − 6νa0a5a6

−6νa1a2a8 − 6νa1a3a7 − 6νa1a4a6 − 6νa2a3a6 − 6νa2a4a5

b12 = 2βa0a3 − γa34 − νa34 − 3βa0a
2
6 − 3βa2a

2
5 − 3γa0a

2
6 − 3γa2a

2
5 − 3νa0a

2
6

−3βa23a6 − 3νa2a
2
5 − 3βa22a8 − 3γa23a6 − 3γa22a8 − 3νa23a6 − 3νa22a8

−βa34 + 2βa1a2 − 6βa0a4a8 − 6βa0a5a7 − 6βa1a3a8 − 6βa1a4a7

−6βa1a5a6 − 6βa2a3a7 − 6βa2a4a6 − 6βa3a4a5 − 6γa0a4a8 − 6γa0a5a7

−6γa1a3a8 − 6γa1a4a7 − 6γa1a5a6 − 6γa2a3a7 − 6γa2a4a6 − 6γa3a4a5

−6νa0a4a8 − 6νa0a5a7 − 6νa1a3a8 − 6νa1a4a7 − 6νa1a5a6 − 6νa2a3a7

−6νa2a4a6 − 6νa3a4a5
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b13 = βa22 − 3βa1a
2
6 − 3βa3a

2
5 − 3γa1a

2
6 − 3βa24a5 − 3γa3a

2
5 − 3νa1a

2
6 − 3βa23a7

−3γa24a5 − 3νa3a
2
5 − 3γa23a7 − 3νa24a5 − 3νa23a7 + 2βa0a4 + 2βa1a3

−6βa0a5a8 − 6βa0a6a7 − 6βa1a4a8 − 6βa1a5a7 − 6βa2a3a8 − 6βa2a4a7

−6βa2a5a6 − 6βa3a4a6 − 6γa0a5a8 − 6γa0a6a7 − 6γa1a4a8 − 6γa1a5a7

−6γa2a3a8 − 6γa2a4a7 − 6γa2a5a6 − 6γa3a4a6 − 6νa0a5a8 − 6νa0a6a7

−6νa1a4a8 − 6νa1a5a7 − 6νa2a3a8 − 6νa2a4a7 − 6νa2a5a6 − 6νa3a4a6

b14 = 2βa0a5 − 3βa2a
2
6 − 3γa0a

2
7 − 3βa4a

2
5 − 3γa2a

2
6 − 3νa0a

2
7 − 3βa24a6

−3γa4a
2
5 − 3νa2a

2
6 − 3βa23a8 − 3γa24a6 − 3νa4a

2
5 − 3γa23a8 − 3νa24a6

−3νa23a8 − 3βa0a
2
7 + 2βa1a4 + 2βa2a3 − 6βa0a6a8 − 6βa1a5a8

−6βa1a6a7 − 6βa2a4a8 − 6βa2a5a7 − 6βa3a4a7 − 6βa3a5a6

−6γa0a6a8 − 6γa1a5a8 − 6γa1a6a7 − 6γa2a4a8 − 6γa2a5a7

−6γa3a4a7 − 6γa3a5a6 − 6νa0a6a8 − 6νa1a5a8 − 6νa1a6a7

−6νa2a4a8 − 6νa2a5a7 − 6νa3a4a7 − 6νa3a5a6

b15 = βa23 − βa35 − γa35 − νa35 − 3βa1a
2
7 − 3βa3a

2
6 − 3γa1a

2
7 − 3γa3a

2
6 − 3νa1a

2
7

−3βa24a7 − 3νa3a
2
6 − 3γa24a7 − 3νa24a7 + 2βa0a6 + 2βa1a5 + 2βa2a4

−6βa0a7a8 − 6βa1a6a8 − 6βa2a5a8 − 6βa2a6a7 − 6βa3a4a8 − 6βa3a5a7

−6βa4a5a6 − 6γa0a7a8 − 6γa1a6a8 − 6γa2a5a8 − 6γa2a6a7 − 6γa3a4a8

−6γa3a5a7 − 6γa4a5a6 − 6νa0a7a8 − 6νa1a6a8 − 6νa2a5a8 − 6νa2a6a7

−6νa3a4a8 − 6νa3a5a7 − 6νa4a5a6
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b16 = 2βa0a7 − 3βa2a
2
7 − 3γa0a

2
8 − 3βa4a

2
6 − 3γa2a

2
7 − 3νa0a

2
8

−3βa25a6 − 3γa4a
2
6 − 3νa2a

2
7 − 3βa24a8 − 3γa25a6 − 3νa4a

2
6

−3γa24a8 − 3νa25a6 − 3νa24a8 − 3βa0a
2
8 + 2βa1a6 + 2βa2a5

+2βa3a4 − 6βa1a7a8 − 6βa2a6a8 − 6βa3a5a8 − 6βa3a6a7

−6βa4a5a7 − 6γa1a7a8 − 6γa2a6a8 − 6γa3a5a8 − 6γa3a6a7

−6γa4a5a7 − 6νa1a7a8 − 6νa2a6a8 − 6νa3a5a8 − 6νa3a6a7

−6νa4a5a7

b17 = βa24 − 3βa1a
2
8 − 3βa3a

2
7 − 3γa1a

2
8 − 3βa5a

2
6 − 3γa3a

2
7

−3νa1a
2
8 − 3βa25a7 − 3γa5a

2
6 − 3νa3a

2
7 − 3γa25a7

−3νa5a
2
6 − 3νa25a7 + 2βa0a8 + 2βa1a7 + 2βa2a6

+2βa3a5 − 6βa2a7a8 − 6βa3a6a8 − 6βa4a5a8

−6βa4a6a7 − 6γa2a7a8 − 6γa3a6a8 − 6γa4a5a8

−6γa4a6a7 − 6νa2a7a8 − 6νa3a6a8 − 6νa4a5a8

−6νa4a6a7

b18 = γa0 + νa0 − βa36 − γa36 − νa36 − 3βa2a
2
8 − 3βa4a

2
7 − 3γa2a

2
8

−3γa4a
2
7 − 3νa2a

2
8 − 3βa25a8 − 3νa4a

2
7 − 3γa25a8 − 3νa25a8

+2βa1a8 + 2βa2a7 + 2βa3a6 + 2βa4a5 − 6βa3a7a8

−6βa4a6a8 − 6βa5a6a7 − 6γa3a7a8 − 6γa4a6a8

−6γa5a6a7 − 6νa3a7a8 − 6νa4a6a8 − 6νa5a6a7
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b19 = γa1 + νa1 + βa25 − 3βa3a
2
8 − 3βa5a

2
7 − 3γa3a

2
8 − 3βa26a7 − 3γa5a

2
7

−3νa3a
2
8 − 3γa26a7 − 3νa5a

2
7 − 3νa26a7 + 2βa2a8 + 2βa3a7

+2βa4a6 − 6βa4a7a8 − 6βa5a6a8 − 6γa4a7a8 − 6γa5a6a8

−6νa4a7a8 − 6νa5a6a8

b20 = γa2 + νa2 − 3βa4a
2
8 − 3βa6a

2
7 − 3γa4a

2
8 − 3βa26a8 − 3γa6a

2
7 − 3νa4a

2
8

−3γa26a8 − 3νa6a
2
7 − 3νa26a8 + 2βa3a8 + 2βa4a7 + 2βa5a6

−6βa5a7a8 − 6γa5a7a8 − 6νa5a7a8

b21 = γa3 + νa3 + βa26 − βa37 − γa37 − νa37 − 3βa5a
2
8 − 3γa5a

2
8 − 3νa5a

2
8

+2βa4a8 + 2βa5a7 − 6βa6a7a8 − 6γa6a7a8 − 6νa6a7a8

b22 = γa4 + νa4 − 3βa6a
2
8 − 3βa27a8 − 3γa6a

2
8 − 3γa27a8 − 3νa6a

2
8

−3νa27a8 + 2βa5a8 + 2βa6a7

b23 = γa5 + νa5 + βa27 − 3βa7a
2
8 − 3γa7a

2
8 − 3νa7a

2
8 + 2βa6a8

b24 = γa6 + νa6 − βa38 − γa38 − νa38 + 2βa7a8

b25 = βa28 + γa7 + νa7

b26 = γa8 + νa8

3.2 About periodic orbits in 1-D linear piecewise smooth maps

In this section we shall study stable periodic orbits of piecewise-smooth systems analytically. The

map is defined by:

xn+1 = f (xn,a, b, µ, l) =

{
axn + µ for xn ≤ 0

bxn + µ+ l for xn > 0
, (3.4)

where a, b ∈ (0, 1), and l is denoted for height of the discontinuity. With these parameters, it turns

out that stable periodic orbits exist for µ ∈ (0, 1] . Let us consider l > 0 in equation (3.4). There

are three cases as shown in Figure.3.1.

Case 1: For µ > 0, there is a stable fixed point xR = µ+1
1−b on the the right-half plane.

Case 2: For 0 > µ > −l, there are two stable fixed points on both sides of the discontinuity.
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Figure 3.1: Graph of the map for 0 < a < 1 and 0 < b < 1, and l > 0

Figure 3.2: Graph of the map for 0 < a < 1 and 0 < b < 1, and −l > 0.

Case 3: For µ < −l, there is a stable fixed point in the left half plane and it is given by

xL = µ
1−a .

Three additional cases may be observed when l < 0, as shown in Figure.3.2.

Case 4: For µ < 0, there is a stable fixed point in the left half plane and it is given by xL = µ
1−a .

Case 5: For −l > µ > 0, there is no fixed point.

Case 6: For µ < −l, there is another stable fixed point in the right half plane xR = µ+1
1−b .

Assume that the left half plane is L = (−∞, 0] and the right half plane is R = (0,∞). By

designating which of the two sets (L or R) the corresponding point belongs to, one can transform

(code) a given sequence of points {xn}n≥0 through which the system evolves into a sequence of

Ls and Rs. It is obvious that a periodic orbit has a repeating string of Ls and Rs. We designate

this repeated string with the symbol σ as a pattern. The length of the string σ is denoted by |σ|
and gives the number of symbols in the pattern i.e., the period of the orbit. A period orbit with a

pattern σ is denote as Oσ. Pσ denote the interval of paremeter µ for which orbit Oσ exists. The

sum of geometric series 1 + k + k2 + ...+ kn is denoted by Skn.

Definition 3.1 A periodic orbit Oσ is termed as admissible if Pσ 6= ∅. An admissible pattern is the

pattern of an admissible orbit.

Definition 3.2 If a pattern of a periodic orbit Oσ consists of only one R and multiple Ls or vica-
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versa, it is called an atomic pattern.

Thus, there are two types of atomic patterns, thos with pattern
︷ ︸︸ ︷
LLL........LLR, abbreviated as

LnR (termed as L-atomic pattern) and those with pattern L
︷ ︸︸ ︷
RRR........RR, abbreviated as LRn

(termed as R-atomic pattern). Both L and R-atomic form the pattern LR.

Definition 3.3 A pattern is called a molecullar pattern if it is made up of a combination of atomic

patterns.

Example 3.1 LLRLLRLR is a molecular pattern. The atomic patterns LLR and LR are combined

to create it.

Lemma 3.1 An atomic pattern of any period is admissible.

Proof. Consider an atomic orbit OLnR with period n+ 1. We write down the inequalities as:

x0 ≤ 0,

x1 = ax0 + µ ≤ 0,

x2 = ax0 + µ ≤ 0,

= a2x0 + (a+ 1)µ ≤ 0,

.....

xn−1 = an−1x0 + µSan−2 ≤ 0,

xn = anx0 + µSan−1 > 0,

xn+1 = x0 = bxn + µ− 1 ≤ 0,

x0 =
(an−1b+ an−2b+ ...+ ab+ b+ 1)µ− 1

1− anb .

Substituting the value of x0 into the list of inequalities above, would yield a list of upper bounds

for µ (whenever the point xi is in L ) and lower bounds for µ (when the point xi is in R).

We denote upper bounds by µupperi and lower boundes by µlaweri . We define µ2 = mini (µ
upper
i ) and

µ1 = maxi µ
lawer
i . Therefore, Pσ = (µ1, µ2] . Some simple algebraic manipulation of the inequalities

abouve gives:

PLnR =

(
an

San
,

an−1

an−1b+ San−1

]
.

Let us assume PLnR = ∅, then
an

San
>

an−1

an−1 + San−1

an ×
(
an−1b+ San−1

)
− an−1 × (San) > 0
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an−1
[
anb+ aSan−1 − San

]
> 0

−an−1 (1− anb) > 0

which is a contradiction since a, b ∈ (0, 1) . Hence PLnR 6= ∅. We write down the inequalities as:

x0 ≤ 0,

x1 > 0,

....

xn+1 = x0 ≤ 0

x0 =
(bn−1 + bn−2 + ...+ b+ 1) (µ− 1) + bnµ

1− bna

Finding µ1 and µ2 in the way as explained above, we get

PLnR =

(
abn−1 + Sbn−2
abn−1 + Sbn−1

,
Sbn−1
Sbn

]
.

Further, it can be easily checked that PLnR 6= ∅.

Example 3.2 Let us consider an orbit OLRn . Here x0 ≤ 0, x1 > 0 and x2 = x0. From equation (3.4)

we get

x1 = ax0 + µ.

x2 = bx1 + µ− 1,

= abx0 + (b+ 1)µ− 1,

= x0.

x0 =
(b+ 1)µ− 1

1− ab ≤ 0.

µ ≤ 1

b+ 1
.

Substituting the value of x0 in x1 we get:

x1 = a
(b+ 1)µ− 1

1− ab + µ > 0.

µ >
a

1 + a
.

Hence PLnR =
(

a
1+a

, 1
b+1

]
.
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Example 3.3 Consider a pattern LLRLLRLR LLRLLRLR LLRLR. This pattern corresponds to a

molecular orbit of period-21. LLR is represented by L′ and LR is represented by R′. Then the above

pattern becomes L′L′R′L′L′R′L′R′. Additionally, L′L′R′ ≡ LLRLLRLR is now designated as L′′ and

L′R′ ≡ LLRLR is designated as R′′. Therefore, the above pattern can be written as L′′L′′R′′, which

is atomic in symbols L′′ and R′′. So this is an admissible pattern. Now consider another pattern like

LLRLLRLR LLRLR LLRLR LLRLLRLR. It can be expressed as L′′R′′R′′L′′. This pattern does

not correspond to an admissible orbit since it is neither atomic or molecular in the new notation.

3.3 Conclusion

In conclusion, this study focused on finding periodic orbits of some Zeraoulia-Sprott maps. The

goal of this study is to understand the behaviors of dynamic systems by providing information

about the stability of these periodic orbits. This study also revealed the presence of chaotic orbits

in the Zeraoulia-Sprott maps that are very sensitive to the starting conditions.
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