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Abstract

The objective of this memory is to study the orthogonality in Banch space, So we will study the

orthogonality in different spaces, in C1 classe, L1(B(H)) and B(H), such that B(H) is the algebra of all

bounded linear operators in Hilbert space H . we begin first by the global minimum and orthogonality

in C1 class, in the next chapter we will study Birkhof-Jmaes orthogonality in L1(B(H)), Finally we will

see the definition of Birkhof-James orthogonality in B(H).
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Résumé:

L’objectif de ce mémoire est d’étudier l’orthogonalité dans Banach, alors on va étudier l’orthogonalité

dans des espaces différentes la classe C1,L1(B(H)) et B(H) tel que B(H) est l’algèbre des opérateurs

linéaires bornés sur un espace de Hilbert H . On va commencer premièrement par le minimum

globale dans la classe C1 . Puis dans la prochaine chapitre on va étudier l’orthogonalité de

Birkhoff-James dans L1(B(H)), finalement on va voir la définition de l’orthogonalité de Birkhoff-James

dans B(H).
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Introduction

Orthogonality is one of the fundamental concepts in geometry. The use of this concept dates back

to ancient civilizations, such as the ancient Egyptians and Babylonians. The orthogonality theorem

is one of the most important ancient theories that is still applied today in mathematical science. The

uses of this theory are not limited to abstract mathematics, geometry, and trigonometry only, but its

use extends to the sciences of physics and chemistry, and it has a major role in the sciences of space,

marine navigation, charts, and engineering construction. .We have Two primary definition of orthog-

onality, the usual sense definition in Hilbert space and Birkhof-James orthogonality in Banach space,

The Birkhoff-James orthogonality is a generalization of Hilbert space orthogonality to Banach spaces.

In this memory we are going to study the orthogonality in B(H), such that B(H) is the the algebra of

all bounded linear operators on Hilbert space H .The concept of orthogonality developed through the

contributions of many major mathematicians, including John von Neumann, David Hilbert in 1902

his works provided the basic framework for these developments and Marshall H. Stone in 1932 made

significant contributions to the theory of operators on Hilbert spaces, including the spectral theorem,

which is crucial for understanding orthogonality in B(H) . So we will study the orthogonality in differ-

ent spaces, C1, L1(B(H)) and B(H) . In the first chapter of this work, we will expose some mathematical

notions and complements in relation to this work. We will cite in particular, reminder about Banch

space, Hilbert space, orthogonal projections in Hilbert space.

In second chapter we will characterize the global minimum of an arbitrary function defined on a Ba-

nach space, we establish several new characterizations of the global minimum of the map Fψ. Further,

we apply these results to characterize the operators which are orthogonal to the range of elementary

operators.

In the third chapter, We will establish a new characterization of Birkhoff-James orthogonality of bounded

linear operators in L1(B(H),ρ) also implies best approximation has been proved.

In the last chapter we are going to minimizing the B(H)− norm of suitable affine mappings from B(H)

to B(H), using convex and Gâteaux derivative as well as input from operator theory. The mappings

considered generalize the so-called elementary operators and in particular the generalized derivations,

which are of great interest by themselves. The corollary obtained characterize global minima in terms

of (Banach space)orthogonality

Contents 2



Chapter 1

Preliminaries:

1.1 Banach space:

1.1.1 Vector space:

Definition 1.1 E is a nonempty set, E it has an addition operator, E called a vector space if

∀(x, y) ∈ E 2,∀λ ∈K :

1. x + y ∈ E .

2. λx ∈ E .

1.1.2 Normed vector space:

Definition 1.2 E is a vector space, ∥ . ∥. A norm on E is a function:

∥ . ∥: E →R+,∀(x, y) ∈ E 2,∀λ ∈K, satisfying:

1. ∥x∥ = 0 ⇒ x = 0.

2. ∥ x + y ∥≤∥ x ∥ + ∥ y ∥ .

3. ∥λx∥ = |λ|. ∥ x ∥ .

Then (E ,∥ . ∥) is called normed vector space.

Definition 1.3 Let (E ,∥ . ∥) be a normed vector space, and let x ∈ E. Then x is said to be a unit vector

whenever ∥ . ∥= 1.

Proposition 1.1 Let (E ,∥ . ∥) is a normed vector space, and let d : E × E →R+ be defined by:

d(x, y) = ∥x − y∥ is a metric on E satisfying:

3



Chapter 1. Preliminaries:

1. d(x, y) = 0 ⇒ x = y.

2. d(x, y) = d(y, x).

3. d(x, y) ≤ d(x, z)+d(z, y).

In other words, every normed vector space is a metric space.

Proposition 1.2 ∀(x, y) ∈ E 2

1. ∥x − y∥ = ∥y −x∥.

2. | ∥x − y∥ |≤ ∥x − y∥.

3. ∥x − y∥ ≥ 0.

Definition 1.4 (Cauchy sequence)

Let E be a vector space, {Xn} be a sequence of point in E, We say that {Xn} is a Cauchy sequence if for every

ε> 0 there exists N ∈N so that:

∀ε> 0,∃N ∈N,∀n,m > 0 :∥ xn −xm ∥≤ ε

Definition 1.5 We say that {Xn} converge to a point x ∈ X if:

lim
n→+∞ ∥ xn −x ∥= 0

Proposition 1.3 Let E is a normed vector space, then every convergent sequence in E is a Cauchy se-

quence.

Definition 1.6 An Banach space is a complete normed vector space.

1.2 Hilbert space:

Definition 1.7 Let E be a vector space in K, An inner product or (scalar product) on E is a map :

〈...〉: E × E −→K

such that:

1. ∀x, y, z ∈ E,∀λ ∈K, 〈λx + y.z〉 =λ〈x.z〉+〈y.z〉.

2. ∀x, y ∈ E, 〈x.y〉 = 〈y.x〉.

3. ∀x ∈ E, 〈x.x〉 ≥ 0.

1.2. Hilbert space: 4



Chapter 1. Preliminaries:

4. ∀x ∈ E, 〈x.x〉 = 0 ⇒ x = 0.

The pair (E ,〈...〉) is called inner product space or pre-Hilbert space.

Lemma 1.1 (Cauchy-Schwarz Inequality)

Let 〈...〉 is an inner product space on E, then:

|〈x.y〉|2 ≤ 〈x.x〉〈y.y〉.

Lemma 1.2 Let 〈x.x〉 is an inner product space on E, then the map:

x →∥x∥ =
√
〈x.x〉.

is an norm on E.

Lemma 1.3 (Parallelogram Law)

Let E be an inner product space, then

∀x, y ∈ E : ∥x + y∥2 +∥x − y∥2 = 2(∥x∥2 +∥y∥2).

Lemma 1.4 (Polarization Identity)

Let (E ,〈...〉) be an inner product space. Then ∀x, y ∈ E

〈y.x〉 = 1

4
(∥y +x∥2 −∥y −x∥2 − i∥y + i x∥2 + i∥y − i x∥2).

Definition 1.8 A Hilbert space is a complete pre-hilbert space.

1.3 Orthogonal projection:

Let H be a Hilbert space. we denoted its inner product by 〈...〉 which is another common notation for

inner products that is often reserved for Hilbert spaces. The inner product structure of a Hilbert spaces

allows us to introduce the concept of orthogonality, which makes it possible to visualize vectors and

linear subspaces of a Hilbert space in a geometric way.

Definition 1.9 Let (E ,〈...〉) be an inner product space, we say that two vectors x, y ∈ E are orthogonal if

〈x.y〉 = 0 ( and write x⊥y). We say that subsets A and B are orthogonal if x⊥y for every x ∈ A and y ∈ B

( and write A⊥B).

Definition 1.10 The orthogonal complement S⊥ of a subset S is the set of vectors orthogonal to S

S⊥ = {y ∈ E : y ⊥ x,∀x ∈ S}

Theorem 1.1 The orthogonal complement of a subset of a Hilbert space is a closed linear subspace.

1.3. Orthogonal projection: 5



Chapter 1. Preliminaries:

1.3.1 The Pythagorean Theorem:

If x1, ...xn ∈ X and x j⊥xk for j ̸= k, then ∥∥∥∥∥ n∑
j=1

x j

∥∥∥∥∥
2

=
n∑

j=1

∥∥x j
∥∥2 .

1.3.2 Lemma:"Pythagors"

Let E be an inner product space, if x⊥y then:

∥∥x + y
∥∥2 = ∥x∥2 +∥∥y

∥∥2

1.3. Orthogonal projection: 6



Chapter 2

Global minimum and orthogonality in

C1-classes:

Let B(H) be a complex Banach space. We first define orthogonality in B(H). We say that b ∈ B(H) is

orthogonal to a ∈ B(H) if for all complex λ there holds

∥a +λb∥ ≥ ∥a∥. (2.1)

This definition has a natural geometric interpretation. Namely, b ⊥ a if and only if the complex line

{a+λb|λ ∈C} is disjoint with the open ball K (0,∥a∥), i.e., iff this complex line is a tangent one. Note that

if b is orthogonal to a, then a need not be orthogonal to b. If B(H) is a Hilbert space, then from (2.1) fol-

lows 〈a.b〉 = 0, i.e., orthogonality in the usual sense. Next we define the von Neumann–Schatten classes

Cp (1 ≤ p <∞). Let B(H) denote the algebra of all bounded linear operators on a complex separable

and infinite dimensional Hilbert space H and let T ∈ B(H) be compact, and let s1(X ) ≥ s2(X ) ≥ ... ≥ 0

denote the singular values of T , i.e., the eigenvalues of |T | = (T ∗T )1/2 arranged in their decreasing

order. The operator T is said to be belong to the Schatten p-classes Cp if

∥ T ∥p=
[ ∞∑

i=1
si (T )p

]1/p

= [
tr (T )p]1/p , 1 ≤ p <∞

where tr denotes the trace functional. Hence C1 is the trace class, C2 is the Hilbert–Schmidt class, and

C∞ corresponds to the class of compact operators with

∥ T ∥∞= s1(T ) = sup
∥ f ∥=1

∥ T f ∥

denoting the usual operator norm. For the general theory of the Schatten p-classes the reader is re-

ferred to [1]. Recall (see [1]) that the norm ∥ . ∥ of the B-space V is said to be Gâteaux differentiable at

non-zero elements X ∈V if

lim
R∋t→0

∥ X + tY ∥ − ∥ X ∥
t

= ReDX (Y )

7



Chapter 2. Global minimum and orthogonality in C1-classes:

for all Y ∈V . Here R denotes the set of all reals, Re denotes the real part, and DX is the unique support

functional (in the dual space V ∗) such that ∥ DX ∥= 1 and DX (X ) =∥ X ∥. The Gâteaux differentiability

of the norm at X implies that X is a smooth point of the sphere of radius ∥ X ∥. It is well known (see [8]

and the references therein) that for 1 < p <∞, Cp is a uniformly convex Banach space. Therefore every

non-zero T ∈Cp is a smooth point and in this case the support functional of T is given by

DT (X ) = tr

[
|T |p−1U X ∗

∥T ∥p−1
p

]
(2.2)

for all X ∈Cp , where T =U |T | is the polar decomposition of T . The first result concerning the orthogo-

nality in a Banach space was given by Anderson [11] showing that if A is a normal operator on a Hilbert

space H , then AS = S A implies that for any bounded linear operator X there holds

∥(S + AX −X A)∥ ≥ ∥S∥. (2.3)

This means that the range of the derivation δA : B(H) → B(H) defined by δA(X ) = AX −X A is orthogo-

nal to its kernel. This result has been generalized in two directions: by extending the class of elementary

mappings

E : B(H) → B(H), E(X ) =
n∑

i=1
Ai X Bi

and

Ẽ : B(H) → B(H), Ẽ(X ) =
n∑

i=1
Ai X Bi −X

where (A1, A2, ..., An) and (B1,B2, ...,Bn) are n-tuples of bounded operators on H , and by extending the

inequality (2.3) to Cp -classes with 1 < p <∞ see [3,9,16]. The Gâteaux derivative concept was used in

[2,5,9,17], in order to characterize those operators which are orthogonal to the range of a derivation. In

these papers, the attention was directed to Cp -classes for some p > 1. The main purpose of this note is

to characterize the global minimum of the map

X 7−→∥ S +φ(X ) ∥C1 ,

φ is a linear map in B(H)

in C1 at points which are not necessarily smooth by using the ϕ-Gâteaux derivative. These results are

then applied to characterize the operators S ∈ C1 which are orthogonal to the range of elementary

operators, where S is not necessarily a smooth point. It is very interesting to point out that this result

has been done in C1-classes with 1 < p <∞ but, at least to our knowledge, it was not given, till now, for

C1-classes. Recall that the operator S is a smooth point of the corresponding sphere in C1 if and only if

either S or S∗ is injective.

8



Chapter 2. Global minimum and orthogonality in C1-classes:

2.1 ϕ-Gâteaux derivative:

Definition 2.1 Let (B(H),∥.∥) be an arbitrary Banach space and F : B(H) →R. We define the ϕ-Gâteaux

derivative of F at a point x ∈ B(H) in direction y ∈ B(H) by

DϕF (x; y) = lim
t→0+

F (x + te iϕy)−F (x)

t

Note that when ϕ= 0 the ϕ-Gâteax derivative of F at x in direction y coincides with the usual Gâteaux

derivative of F at x in a direction y given by

DF (x; y) = lim
t→0+

F (x + t y)−F (x)

t
(2.4)

According to the notation given in [6] we will denote DϕF (x; y) for

F (x) = ∥x∥ by Dϕ,x(y) and for the same function we write Dx(y) for DF (x; y).

Remarque 2.1 In [6] the author used the term ϕ-Gâteaux derivative instead of the term “ϕ-directional

derivative” that we use here. It seems to us that the most appropriate term is the “ϕ-directional deriva-

tive,” because in the classical case when we do not have ϕ, as in (2.4) the existence of this limit corre-

sponds to the directional differentiability of F at x in the direction y, while the Gâteaux differentiability

of F at x corresponds to the existence of the same limit in any direction y ∈ E and moreover the function

y 7→ DF (x; y) is linear and continuous. We note that the existence of DF (x; y) for any y ∈ E does not

imply the Gâteaux differentiability of F at x. As a simple example of what precedes we take the function

F (x) = ∥x∥. We can easily check that DF (x; y) = ∥y∥ for any y ∈ E but the function y 7→ DF (x; y) is not

linear and so the Gâteaux derivative does not exist.

We recall (see [6], Proposition 6) that the function y 7→ Dϕ,x(y) is subadditive and

| Dϕ,x(y) |≤∥ y ∥ (2.5)

We end this section by establishing a necessary optimality condition in terms of ϕ-directional derivative

for a minimization problem.

Theorem 2.1 Let (B(H),∥.∥) be an arbitrary Banach space and F : B(H) →R. If F has a global minimum

at υ ∈ B(H), then

inf
ϕ

Dϕ(υ; y) ≥ 0 (2.6)

for all y ∈ B(H).

Proof. Assume that F has a global minimum at υ, i.e.,

F (x) ≥ F (υ) (2.7)

2.1. ϕ-Gâteaux derivative: 9



Chapter 2. Global minimum and orthogonality in C1-classes:

for all υ ∈ B(H). Let t > 0, ϕ, and y ∈ B(H) be taken arbitrarily. Then (2.7) with x = υ+ te iϕy yields

F (υ+ te iϕy)−F (υ) ≥ 0

which implies
F (υ+ te iϕy)−F (υ)

t
≥ 0

for all t > 0. Letting t → 0+ we obtain

lim
t→0+

F (υ+ te iϕy)−F (υ)

t
≥ 0, ∀ϕ, y ∈ B(H)

Thus

Dϕ(υ; y) ≥ 0, ∀ϕ, y ∈ B(H)

and hence

inf
ϕ

Dϕ(υ; y) ≥ 0, ∀ϕ, y ∈ B(H)

This completes the proof

2.2 The Global Minimum:

Let φ : B(H) → B(H) be a linear map, that is, φ(αX +βY ) = αφ(X )+βφ(Y ) for all α,β, X ,Y , and let

S ∈C1. Put

U = X ∈ B(H) :φ(X ) ∈C1.

Let ψ : U →C1 be defined by

ψ(X ) = S +φ(X ) (2.8)

Define the function Fψ : U → R+ by Fψ(X ) = ∥ψ(X )∥C1 . Now we are ready to prove our first result in

C1-classes. It gives a necessary and sufficient optimality condition for minimizing Fψ.

Theorem 2.2 The map Fψ has a global minimum at V ∈U if and only if

inf
ϕ

Dϕ,ψ(V )(φ(Y )) ≥ 0, ∀Y ∈U . (2.9)

Before proving this theorem we need the following lemma.

Lemma 2.1 The following equalities hold for all V ,Y ∈U

DϕFψ(V ,Y ) = Dϕ ∥ . ∥C1 (ψ(V ),φ(Y )) = Dϕ,ψ(V )(φ(Y )).

2.2. The Global Minimum: 10



Chapter 2. Global minimum and orthogonality in C1-classes:

Proof. we have

DϕFψ(V ,Y ) = lim
t→0+

F (V + te iϕY )−F (Y )

t
(2.10)

= lim
t→0+

∥ψ(V + te iϕY ) ∥C1 − ∥ψ(V ) ∥C1

t
(2.11)

= lim
t→0+

∥ S +φ(V )+ te iϕφ(Y ) ∥C1 − ∥ψ(V ) ∥C1

t
(2.12)

= lim
t→0+

∥ψ(V )+ te iϕφ(Y ) ∥C1 − ∥ψ(V ) ∥C1

t
(2.13)

= Dϕ ∥ . ∥C1 (ψ(V ),φ(Y )) = Dϕ,ψ(V )(φ(Y )). (2.14)

Proof. Proof of Theorem 2.2. For the necessity we have just to combine Theorem 2.1 and Lemma 2.1.

Conversely, assume that (2.9) is satisfied. First, observe that

Dϕ,ψ(V )(V )(e i (π−ϕ)ψ(V )) = lim
t→0+

∥ψ(V )+ te iϕe i (π−ϕ)ψ(V ) ∥C1 − ∥ψ(V ) ∥C1

t
(2.15)

= lim
t→0+

∥ψ(V )− tψ(V ) ∥C1 − ∥ψ(V ) ∥C1

t
(2.16)

=∥ψ(V ) ∥C1 lim
t→0+

| 1− t | −1

t
=− ∥ψ(V ) ∥C1 (2.17)

From this, we have

∥ψ(V ) ∥C1=−Dϕ,ψ(V )(e i (π−ϕ)ψ(V )).

Let Y ∈U be arbitrary and put Ỹ = Y + e i (π−ϕ)V +φ−1(S + e i (π−ϕ)S). It is easy to see that Ỹ ∈U . Then

by (2.9) we have Dϕ,ψ(V )(φ(Ỹ )) ≥ 0 and hence by the subadditivity of Dϕ,ψ(V )(.) and the linearity ofφwe

get

∥ψ(V ) ∥C1 ≤−Dϕ,ψ(V )(e i (π−ϕ)ψ(V ))+Dϕ,ψ(V )(φ(Ỹ )) (2.18)

= Dϕ,ψ(V )(φ(Ỹ )−e i (π−ϕ)ψ(V )) (2.19)

= Dϕ,ψ(V )(φ(Y )+e i (π−ϕ)φ(V )+S +e i (π−ϕ)S −e i (π−ϕ)ψ(V )) (2.20)

= Dϕ,ψ(V )(ψ(Y )). (2.21)

By using (2.5) we obtain

∥ψ(V ) ∥C1≤ Dϕ,ψ(V )(ψ(V )) ≤∥ψ(V ) ∥C1

Finally as Y is arbitrary in U , then Fψ has a global minimum at V on U .

Note that in our proofs of Theorem 2.2 and Lemma 2.1 we do not use the form of the norm in C1-classes

and we can check that they still hold in any Cp -classes with 1 ≤ p ≤∞.

Now, we restrict our attention on C1-classes. First, let us recall the following result proved in [6, Theo-

rem 2] for C1-classes.

2.2. The Global Minimum: 11



Chapter 2. Global minimum and orthogonality in C1-classes:

Theorem 2.3 Let X ,Y ∈C1. Then, there holds

DX (Y ) = Re
{

tr (U∗Y )
}+ ∥QY P ∥C1 .

where X =U |X | is the polar decomposition of X ,P = Pker X ,Q =Qker X ∗ are projections.

The following corollary establishes a characterization of the ϕ-Gâteaux derivative of the norm in

C1-classes.

Corollary 2.1 Let X ,Y ∈C1. Then, there holds

Dϕ,X (Y ) = Re
{

e iϕtr (U∗Y )
}
+ ∥QY P ∥C1 .

for all ϕ, X , where X =U |X | is the polar decomposition of X ,P = Pker X ,Q =Qker X ∗ are projections.

Proof. Let X ,Y ∈C1. Put Ỹ = e iϕY . Applying Theorem 2.3 with ϕ, X , and Ỹ we get

Dϕ,X (Y ) = lim
t→0+

∥ X + te iϕY ∥C1 − ∥ X ∥C1

t
= lim

t→0+
∥ X + t Ỹ ∥C1 − ∥ X ∥C1

t
= DX (Ỹ ) (2.22)

= Re
{

tr (U∗Ỹ )
}+ ∥QỸ P ∥C1= Re

{
tr (U∗e iϕY )

}
+ ∥Qe iϕY P ∥C1 (2.23)

= Re
{

e iϕtr (U∗Y )
}
+ ∥QY P ∥C1 (2.24)

This completes the proof.

In the following theorem we use Theorem 2.2 to give another characterization of the global minimum

of Fψ as global minimum of the function LV ,φ(Y ) : U →R defined by

LV ,φ(Y ) =∥Qφ(Y )P ∥C1 − | tr (U∗φ(Y )) |

where ψ(V ) =U |ψ(V ) |.

Theorem 2.4 1. Fψ has a global minimum on U at V if and only if

LV ,φ(Y ) ≥ 0, ∀Y ∈U . (2.25)

2. If V ∈ kerφ, then Fψ has a global minimum on U at V if and only if LV ,φ(Y ) has a global minimum

on U at V .

Proof.

1. We prove the necessity of part (1). Assume that Fψ has a global minimum on U at V . Then by

Theorem 3.2 we have

inf
ϕ

Dϕ,ψ(V )(φ(Y )) ≥ 0, ∀ϕ,Y ∈U ,

2.2. The Global Minimum: 12



Chapter 2. Global minimum and orthogonality in C1-classes:

which ensures by Corollary 2.1 that

inf
ϕ

Re
{

e iϕtr (U∗φ(Y ))
}
+ ∥Qφ(Y )P ∥C1≥ 0

with ψ(V ) = U |ψ(V )| is the polar decomposition of ψ(V ) and P = Pkerψ(V ),Q = Qkerψ(V )∗ or

equivalently

∥Qφ(Y )P ∥C1≥− inf
ϕ

Re
{

e iϕtr (U∗φ(Y ))
}

By choosing the most suitable ϕ we get

∥Qφ(Y )P ∥C1≥ |tr (U∗)φ(Y )|, ∀Y ∈U , (2.26)

and so LV ,φ(Y ) ≥ 0 for all Y ∈U

Conversely, assume that (2.25) is satisfied. Let ϕ be arbitrary and Y ∈U . By (2.25) we have

∥Qφ(Ỹ )P ∥C1≥ |tr (U∗φ(Ỹ )| ≥ −Re(tr (U∗φ(Ỹ )))

with Ỹ = e iϕY ∈U . Hence, by the linearity of φ we obtain

∥Qφ(Y )P ∥C1≥−Re(e iϕ(tr (U∗φ(Y )))

for Y ∈U and all ϕ and so

inf
ϕ

[
∥Qφ(Y )P ∥C1 +Re(e iϕtr (U∗φ(Y ))

]
≥ 0

for Y ∈U and all ϕ. Thus Theorem 2.2 and Lemma 2.1 complete the proof of part (1)

2. Assume that V ∈ kerφ, that is, φ(V ) = 0; then LV ,φ(V ) = 0 and so (2.25) is equivalent to

LV ,φ(Y ) ≥ LV ,φ(V ), ∀Y ∈U .

This means that LV ,φ has a global minimum at V . Therefore part (1) ends the proof.

Now we characterize the global minimum of Fψ on C1, when φ is a linear map satisfying the following

useful condition:

tr (Xφ(Y )) = tr (φ∗(X )Y ), ∀X ,Y ∈C1, (2.27)

where φ∗ is an appropriate conjugate of the linear map φ. We state some examples of φ and φ∗ which

satisfy condition (2.27).

2.2. The Global Minimum: 13



Chapter 2. Global minimum and orthogonality in C1-classes:

1. The elementary operator E : I →I defined by

E(X ) =
n∑

i=1
Ai X Bi

where (A1, A2, ..., An) and (B1,B2, ...,Bn) are n-tuples of bounded Hilbert space operators and I

is a separable ideal of compact operators associated with some unitarily invariant norm. In [6,

Proposition 8] the author showed that the conjugate operator E∗ : I ∗ →I ∗ of E has the form

E∗(X ) =
n∑

i=1
Ai X Bi

and that the operators E and E∗ satisfy condition (2.27).

2. The elementary operator Ẽ : I →I defined by

Ẽ(X ) =
n∑

i=1
Ai X Bi −X

where (A1, A2, ..., An) and (B1,B2, ...,Bn) are n-tuples of bounded Hilbert space operators and I

is a separable ideal of compact operators associated with some unitarily invariant norm. Using

the same ideas of the proof of [6, Proposition 8] we can check that the conjugate operator

Ẽ∗ : I ∗ →I ∗ of Ẽ has the form

and that the operators Ẽ and Ẽ∗ satisfy condition (2.27).

Now, we are in position to prove the following theorem.

Theorem 2.5 Let V ∈ C1, and let ψ(V ) have the polar decomposition ψ(V ) = U |ψ(V )|. Then Fψ has a

global minimum on C1 at V if and only if U∗ ∈ kerφ∗.

Proof. Assume that Fψ has a global minimum on C1 at V . Then

inf
ϕ

Dϕ,ψ(V )(φ(Y )) Ê 0 (2.28)

for all Y ∈C1. That is,

inf
ϕ

Re
{

e iϕtr (U∗φ(Y ))
}
+∥Qφ(Y )P∥C1 Ê 0, ∀Y ∈C1.

Take ϕ so that

Re
{

tr (U∗φ(Y ))
}Ê 0. (2.29)

Let f ⊗g be the rank one operator defined by x 7→ 〈x, f 〉g , where f , g are arbitrary vectors in the Hilbert

space H . Take Y = f ⊗ g , since the map φ satisfies (2.27) one has

tr (U∗φ(Y )) = tr (φ∗(U∗)Y ).

2.2. The Global Minimum: 14



Chapter 2. Global minimum and orthogonality in C1-classes:

Then (2.29) is equivalent to Re{tr (φ∗(U∗)Y )} Ê 0 for all Y ∈C1, or equivalently

Re{〈φ∗(U∗)g , f )} Ê 0, ∀ f , g ∈ H .

As f , g are arbitrary we can easily check that

Re{〈φ∗(U∗)g , f )} = 0, ∀ f , g ∈ H .

Thus φ∗(U∗) = 0, i.e., U∗ ∈ kerφ∗.

Conversely, let ϕ be arbitrary. If U∗ ∈ kerφ∗, then e iϕU∗ ∈ kerφ∗. It is easily seen (using the same

arguments above) that

Re{e iϕtr (U∗φ(Y ))}+∥Qφ(Y )P∥C1 Ê 0, ∀Y ∈C1

Now as ϕ is taken arbitrary, we get (2.28).

We state our first corollary of Theorem 2.5. Let φ = δA,B , where δA,B : B(H) → B(H) is the generalized

derivation defined by δA,B (X ) = AX −X B .

Corollary 2.2 Let V ∈ C1, and let ψ(V ) have the polar decomposition ψ(V ) = U |ψ(V )|. Then Fψ has a

global minimum on C1 at V , if and only if U∗ ∈ kerδ∗A,B = kerδA,B

Proof. It is a direct consequence of Theorem 2.5.

This result may be reformulated in the following form where the global minimum V does not appear.

It characterizes the operators S in C1 which are orthogonal to the range of a derivation.

Theorem 2.6 Let S ∈C1, and let ψ(S) have the polar decomposition ψ(S) =U |ψ(S)|.

∥S + (AX −X B)∥C1 Ê ∥ψ(S)∥C1

for all X ∈C1 if and only if U∗ ∈ kerδB ,A.

As a corollary of this theorem we have

Corollary 2.3 Let S ∈ C1, and let ψ(S) have the polar decomposition ψ(S) = U |ψ(S)|. Then the two

following assertions are equivalent:

1. ∥S + (AX −X B)∥C1 Ê ∥S∥C1 , ∀X ∈C1

2. U∗ ∈ kerδB ,A.

2.2. The Global Minimum: 15



Chapter 3

The Orthogonality In L1(B(H)):

Let B(H) be a complex Banach space and let (B(H),ρ) be a positive measure space. M denote a closed

subspace of X . Let f ∈ L1(B(H))\ M . Then there exists a unique best approximant g to f from M if and

only if ∥∥ f − g
∥∥≤ ∥∥ f −h

∥∥ , ∀h ∈ M . (3.1)

We recall that f is said to be orthogonal to M , written f ⊥ M , if and only if

∀λ ∈C :
∥∥ f

∥∥≤ ∥∥ f +λg
∥∥ , ∀g ∈ M . (3.2)

we are going to to establish a new characterization of Birkhoff-James orthogonality of bounded linear

operators in L1(B(H),ρ) also implies best approximation has been proved.

3.1 Birkhoff-James Orthogonality: A New Characterization in L1(B(H))

Definition 3.1 Let Lp (B(H)),1 < p < ∞, and Lq (B(H)) the Dual space. Let M be a closed subspace of

Lp (B(H)),we recall that f ∈ Lp (B(H)) is orthogonal to M, written f ⊥ M, if and only if∥∥ f
∥∥

p ≤ ∥∥ f + g
∥∥

p , ∀g ∈ M . (3.3)

Theorem 3.1 Let M be a closed subspace of Lp (Ω),1 < p < ∞, f ∈ Lp (B(H)) is orthogonal to M if and

only if ∫
X

g | f |p−1 si g n( f )d X = 0, ∀g ∈ M . (3.4)

Proof. See [19].

Definition 3.2 Let (B(H),∥ . ∥) be an arbitrary Banach space. Then theϕ-Gâteaux derivative of the norm

at f in the direction g is defined as

Dϕ, f (g ) = lim
t→0+

∥ f + te iϕg ∥ − ∥ f ∥
t

. (3.5)

16
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3.2 Best Approximation in L1(B(H))

Proposition 3.1 If the function H f ,g (t ) =∥ f + te iϕg ∥ is convex, then the following statements are hold :

1. Dϕ, f (g ) is subadditive and positively homogeneous functional on B(H).

2. Dϕ, f (g ) ≤∥ g ∥ .

3. Dϕ, f (e iθg ) = Dϕ+θ, f (g ).

Proof.

1. We have

∥ f + te iϕ(g +h) ∥≤
∥∥∥∥ f

2
+ te iϕg

∥∥∥∥+∥∥∥∥ f

2
+ te iϕh

∥∥∥∥ .

Taking the limit as t → 0+, we obtain

Dϕ, f (g +h) = lim
t→0+

∥∥ f + te iϕ(g +h)
∥∥−∥∥ f

∥∥
t

≤ lim
t→0+

∥∥ f +2te iϕg
∥∥+∥∥ f +2te iϕh

∥∥−2
∥∥ f

∥∥
2t

(3.6)

= Dϕ, f (g )+Dϕ, f (h) (3.7)

Positive homogeneity is obvious.

2. It is easy to see that ∣∣∣∥ f + te iϕg ∥ − ∥ f ∥
∣∣∣≤∥ f + te iϕg − f ∥= t ∥ g ∥ .

Taking the limit as t → 0+, we get

Dϕ, f (g ) = lim
t→0+

∥ f + te iϕ(g ) ∥ − ∥ f ∥
t

≤∥ g ∥ .

3. The proof is obvious.

Theorem 3.2 Let (B(H),∥ . ∥) be an arbitrary Banach space. If the function f ∈ B(H) is orthogonal to

g ∈ B(H), then

inf
ϕ

Dϕ, f
(
g
)≥ 0. (3.8)

Proof. Let f be orthogonal to g , i.e.

∀λ ∈C ∥ f ∥≤∥ f +λg ∥, ∀g ∈ M .

3.2. Best Approximation in L1(B(H)) 17
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Then
∥ f + te iϕg ∥ − ∥ f ∥

t
≥ 0, ∀t > 0,

and passing to the limit as t → 0+, we obtain

inf
ϕ

Dϕ, f (g ) ≥ 0.

Theorem 3.3 Let M be linear subspace of L1(B(H)) and f ∈ L1(B(H)) \ M, then g is a best L1(B(H))

approximant to f from M if and only if∣∣∣∣∫
f (x)=g (x)

e−iθ(x)h(x)dρ(x)

∣∣∣∣≤ ∫
f (x )̸=g (x)

|h(x)|dρ(x), ∀h ∈ M , (3.9)

where

( f −h)(x) = ∣∣ f −h
∣∣e−iθ(x).

Proof. See [20].

Definition 3.3 Let M be a linear closed subspace of L1(B(H)) and let S(B(H)) = {
ϕ ∈ B(H)/ ∥ϕ ∥≤ 1

}
.

f ∈ L1(B(H)) is orthogonal to M if and only if, there exists a function ϕ ∈ S(B(H)), such that

1.
∫

B(H) f ϕd x = ∫
B(H) | f | d x.

2.
∫

B(H)ϕhd x = 0, ∀h ∈ M.

Remarque 3.1 In the particular case, for x ∈ ker f has measure zero. The function f ∈ L1(B(H)) is or-

thogonal to M if and only if ∫
B(H)

(si g n f )h(x)dρ(x) = 0, ∀h ∈ M . (3.10)

Theorem 3.4 Let M be linear closed subspace of L1(B(H)) .The function f ∈ L1(B(H)) is orthogonal to

g ∈ M if and only if ∣∣∣∣∫
{g ̸=0}

e−iθ(x) f (x)dρ(x)

∣∣∣∣≤ ∫
{g=0}

∣∣ f (x)
∣∣dρ(x), (3.11)

where

f (x) = ∣∣ f (x)
∣∣e iθ(x).

Proof. We have, in L1(B(H))

Dϕ,g
(

f
)= Re

{∫
g ̸=0

e iϕe−iθ(x) f (x)dρ(x)

}
+

∫
g=0

∣∣ f (x)
∣∣dρ(x).

3.2. Best Approximation in L1(B(H)) 18
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Since

lim
ρ→0

∣∣g (x)+ρe iϕ f (x)
∣∣− ∣∣g (x)

∣∣
ρ{

cos(ϕ−θ(x))+ψ(x)| f (x)|, g (x) ̸= 0.∣∣ f (x)
∣∣ , g (x) = 0.

and also ∣∣g (x)+ρe iϕ f (x)
∣∣− ∣∣g (x)

∣∣
ρ

≤ ∣∣ f (x)
∣∣ .

Thus, we get f ⊥ g if and only if

i n f Re

{∫
f ̸=0

e iϕe−iθ(x) f (x)dρ(x)

}
+

∫
f =0

| f (x)|d(x) ≥ 0.

However, the infimum will be attained for that ϕ, for which

e iϕ
∫

f ̸=0
e−iθ(x) f (x)dρ(x) =−

∣∣∣∣∫
f ̸=0

e−iθ(x) f (x)dρ(x)

∣∣∣∣ ,

and the result follows .

Corollary 3.1 Let M be a linear closed subspace of L1(B(H)), then the following assertions are equivalent

1. The function f ∈ L1(B(H)) is orthogonal to g ∈ M if and only if∣∣∣∣∫
g ̸=0

e−iθ(x) f (x)dρ(x)

∣∣∣∣≤ ∫
g=0

∣∣ f (x)
∣∣dρ(x).

2. g is a best L1(B(H)) approximant to f from M if and only if∣∣∣∣∫
f (x)=g (x)

e−iθ(x)h(x)dρ(x)

∣∣∣∣≤ ∫
f (x )̸=g (x)

|h(x)|dρ(x), ∀h ∈ M ,

where

( f −h)(x) = ∣∣ f −h
∣∣e−iθ(x)

3. The function f ∈ L1(B(H)) is orthogonal to g ∈ M if and only if

e iϕ
∫

f ̸=0
e−iθ(x) f (x)dρ(x) =−

∣∣∣∣∫
f ̸=0

e−iθ(x) f (x)dρ(x)

∣∣∣∣ .

Proof. 1)=⇒ 2)

Let f ∈ L1(B(H)) is orthogonal to g ∈ M , then∣∣∣∣∫
g ̸=0

e−iθ(x) f (x)dρ(x)

∣∣∣∣≤ ∫
g=0

∣∣ f (x)
∣∣dρ(x).

3.2. Best Approximation in L1(B(H)) 19
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Taking

g (x) = f1(x)−h1(x)

Then f1 is a best L1(B(H)) approximant to h1 from M.

3)=⇒ 1)

The function f ∈ L1(B(H)) is orthogonal to g ∈ M implies

e iϕ
∫

f ̸=0
e−iθ(x) f (x)dρ(x) =−

∣∣∣∣∫
f ̸=0

e−iθ(x) f (x)dρ(x)

∣∣∣∣ .

Taking ϕ= 0, then ∣∣∣∣∫
g ̸=0

e−iθ(x) f (x)dρ(x)

∣∣∣∣≤ ∫
g=0

∣∣ f (x)
∣∣dρ(x).

3)=⇒ 1)=⇒ 2)

1)=⇒ 3),using Theorem 3.4.
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Chapter 4

Jemes and Birkhoff orthogonality in B(H) :

Let B(H) be a complex Banach space, and X ,Y ∈ B(H), X we first define orthogonality in B(H). We say

that Y ∈ B(H) is orthogonal to X ∈ B(H) if for all complex λ there holds,

∥ X +λY ∥B(H)≥∥ X ∥B(H) . (4.1)

This definition has a natural geometric interpretation. Namely Y ⊥ X if and only if the complex line

{X +λY |λ ∈C} is orthogonal in B(H), i.e, if and only if this complex line is a tangent one.

Definition 4.1 Let B(H) be a Banach space, and X ,Y ∈ B(H), X is smooth point of the boundary of K in

B(H) if there exists a unique functional FX , called the support functional, such that

∥ FX ∥= 1 and FX =∥ X ∥ .

Remarque 4.1 If B(H) is a Hilbert space from (4.1) We can easily derive 〈X ,Y 〉 = 0, i.e, orthogonality in

the usual sense. In general, such orthogonality is not symmetric in Banach space We can take as example

the following vectors (−1,0) and (1,1), which are in the Hilbert-Schmidt classes C2, with the max-norm.

Joel Anderson has proved that, every non-zero X ∈ B(H), is a smooth point if and only if X ∈ B(H) attains

its norm, e ∈ B(H), ∥X e∥ = ∥X ∥, and in this case the support functional of X is given by

DT (X ) = Retr

[
e ⊗Te

∥T ∥ X

]
= Re

〈
X e,

Te

∥ T ∥
〉

, ∀X ∈ B(H). (4.2)

Here,Re denotes the real part and DT (X ) is the unique support functional (in the dual space B(H)∗),

recall that the rank one operator, e ⊗Te is defined by

(e ⊗Te)X = 〈X ,Te〉e, ∀X ∈ B(H). (4.3)

and

tr (
(e ⊗Te)

∥T ∥ X ) =
〈

X e,
Te

∥ T ∥
〉

, ∀X ∈ B(H). (4.4)
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The first result concerning the orthogonality in Banach space was given by Anderson [11] ,showing that

if A is a normal operator on a Hilbert space H and S ∈ B(H) then AS = S A implies that for any bounded

linear operator x there holds

∥ S + AX −X A ∥≥∥ S ∥ . (4.5)

This means that the range of the derivation

δA : B(H) → B(H),

defined by

δA(X ) = AX −X A, (4.6)

is orthogonal to its kernel. This result has been generalized in two directions: by extending to the class of

elementary mappings

E : B(H) → B(H).

E(X ) =
i=n∑
i=1

Ai X Bi ,

and

Ẽ : B(H) → B(H).

Ẽ(X ) =
i=n∑
i=1

Ai X Bi −X ,

where (A1, A2, ...An) and (B1,B2, ...Bn) are n− tuples of bounded operators on H, and by extending the

equality (4.2) to Cp the Schatten p-classes with 1 < p <∞ see [15], [18].The Gâteaux derivative concept

was used in [12, 13, 14] and [5]. In order to characterize those operators which are orthogonal to the

range of a derivation in Cp . First we characterize the global minimum of the map

X →∥ S +Φ(X ) ∥,

where Φ is a linear map in B(H), by using the Gâteaux derivative. These results are then applied to

characterize the operators S ∈ B(H) which are orthogonal to the range of elementary operators.

4.1 ϕ-Gâteaux derivative:

Proposition 4.1 1)Let B(H) be a Banach space X ,Y ∈ B(H), and ϕ ∈ [0,2π).The function

γ :R→R,

γ(t ) =∥ X +e i t Y ∥, (4.7)

4.1. ϕ-Gâteaux derivative: 22
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is convex.

The limit

Dϕ,X (Y ) = lim
t→0+

∥ X + te iϕY ∥ − ∥ X ∥
t

, (4.8)

always exists.The number Dϕ,X (Y ) we shall call theϕ-Gâteaux derivative of the norm at the vector X , in

the Y and ϕ directions.

2)The vector Y is orthogonal to X in the sense of James if and only if the inequality

inf
ϕ

Dϕ,X (Y ) ≥ 0, (4.9)

holds.

Theorem 4.1 Let (B(H)) be an arbitrary Banach space we define the function

F : B(H) →R,

F (X ) =∥ X ∥ .

If F has a global minimum at X ∈ B(H), then

DF (X )(Y ) ≥ 0,∀Y ∈ B(H). (4.10)

4.2 The Global Minimum in B(H):

Let ϕ be a linear map :

ϕ : B(H) → B(H),

and let the map ψ defined by

ψ(X ) =ϕ(X )+S, (4.11)

for some element S ∈ B(H).

DX (Y ) = lim
t→0+

∥ X + tY ∥ − ∥ X ∥
t

, (4.12)

such as

DX (Y ) ≤∥ Y ∥, (4.13)

DX (X ) =∥ X ∥, (4.14)

DX (−X ) =− ∥ X ∥ (4.15)

4.2. The Global Minimum in B(H): 23
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Theorem 4.2 The map Fψ(X ) =∥ψ(X ) ∥ has a global minimum at X ∈ B(H) if and only if

Dψ(X )(ϕ(Y )) ≥ 0, ∀Y ∈ B(H), (4.16)

it is clear to see that

ψ(X )+ tϕ(Y ) =ψ(X + tY ), (4.17)

we choose t such that

ϕ(Y −X ) =ψ(Y )−ψ(X ), (4.18)

Dψ(X ) = L,

then

∥ψ(X ) ∥=−L(−ψ(X )) ≤−L(−ψ(X ))+L(ψ(Y ))−ψ(Y )), (4.19)

from where

∥ψ(X ) ∥≤ L(ψ(Y )), (4.20)

and by sub additivity we get

∥ψ(X ) ∥≤∥ψ(Y ) ∥, (4.21)

In the following theorem we characterize the global minimum of the map Fψ on B(H) at V when ϕ is a

linear map .

Theorem 4.3 Let V ∈ B(H) be a smooth point and f is a unique vector for which V attains its norm,

then the map Fψ has a global minimum at V ∈ B(H), if and only if

tr (( f ⊗V )ϕ(Y )) = 0, ∀Y ∈ B(H). (4.22)

Proof.

1. Let V ∈ B(H) be a smooth point

Fψ has a global minimum on B(H) at V , then

Dψ(V )(ϕ(Y )) ≥ 0, ∀Y ∈ B(H).

By (4.2) we get

Re(
〈

(ϕ(Y )) f ,V f
〉

) ≥ 0, ∀Y ∈ B(H).

Let Γ is the subspace of B(H) in which V ∈ B(H) attains its norm the set

{〈
V ∗ϕ(Y ) f , f

〉
/ f ∈ Γ,∥ f ∥= 1

}
.

4.2. The Global Minimum in B(H): 24
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is numerical range of V ∗ϕ(Y ) on the subspace Γ. is convex and closed. By (4.16), it must contain

a value whose real part is positive, under all rotations around the origin, it must contain the

origin, and we will have a vectors f ∈ Γ such that

〈
V ∗ϕ(Y ) f , f

〉< δ, ∀Y ∈ B(H).

Where δ> 0, as δ is arbitrary we can easily check that

〈
V ∗ϕ(Y ) f , f

〉= 0, ∀Y ∈ B(H).

Then

tr (( f ⊗V )ϕ(Y )) = 0, ∀Y ∈ B(H).

2. Suppose that

tr (( f ⊗V )ϕ(Y )) = 0, ∀Y ∈ B(H).

Then we use the arguments of least proof 1) we get

Re(
〈
ϕ(Y ) f ,V f

〉
) ≥ 0, ∀Y ∈ B(H),

which completes the proof of the second part of the theorem.

Let ϕ= δA,B .

δA,B : B(H) → B(H),

is the generalized derivation defined by

δA,B (X ) = AX −X B. (4.23)

Corollary 4.1 Let V ∈ B(H) be a smooth point, and f is the unitary vector in which V ∈ B(H) attains its

norm, then Fψ has a global minimum at V ∈ B(H) ,if and only if

f ⊗ψ(V ) f ∈ K erδB ,A. (4.24)

Proof. It is easily seen that

f ⊗ψ(V ) f ∈ K erδA,B ⇔ tr (( f ⊗V )δA,B ) = 0.
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Theorem 4.4 Let S ∈ B(H) be a smooth point, then

∥ S + (AX −X B) ∥B(H)≥∥ψ(S) ∥B(H), ∀X ∈ B(H), (4.25)

if and only if ∃ f ∈ Γ,∥ f ∥= 1, such that

f ⊗ψ(S) f ∈ K erδB ,A (4.26)

Proof. This theorem is a particular case of the previous one. its proof is trivial.

Corollary 4.2 Let V ∈ B(H) be a smooth point, f is the unitary vector in which V ∈ B(H) attains its norm,

if S ∈ K erδA,B , then the following assertions are equivalent

1.

∥ S + (AX −X B) ∥B(H)≥∥ψ(S) ∥B(H), ∀X ∈ B(H). (4.27)

2.

f ⊗ψ(S) f ∈ K erδB ,A (4.28)

Remarque 4.2 We point out that, thanks to our general results given previously with more general linear

maps ψ.Theorem 5.4 and its Corollary 4.1 are still true for more general classes of operators than δA,B

such as the elementary operators E(X ) and Ẽ(X ). Note that Theorem 4.4 and Corollary 4.2 generalize the

results given in [7].

us some applications of the previous corollary let ∆A,B the elementary operator defined by

∆A,B : B(H) → B(H)

∆A,B = AX B −X . (4.29)

Theorem 4.5 Let S ∈ B(H) be a smooth point, and A,B ∈ B(H), are contractions, that verify

∆A,B (S) = 0. (4.30)

Then ∃S̃ ∈ B(H), verify

∆A,B (S̃) = 0 =∆A∗,B∗(S̃). (4.31)

Proof. if A,B ∈ B(H), are contractions, that verify

∆A,B (S) = 0.

∥∆A,B (S̃)+S∥B(H) ≥ ∥S∥B(H), ∀S̃ ∈ B(H). (4.32)
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Suppose that S ∈ B(H) be a smooth point, we use the Corollary 4.2 applied to ∆A,B , ∃ f ∈ H , hold’s

∆A,B (S)( f ⊗S f ) = 0 =∆A∗,B∗( f ⊗S f ), (4.33)

taking

S̃ = f ⊗S f . (4.34)

completes the proof. On the other hand, we applied the Corollary 4.2 we obtain

∆A,B (S̃) = 0 =∆A,B (s) ⇔∥∆A,B (S̃)+S∥B(H) ≥ ∥S∥B(H), ∀S ∈ B(H). (4.35)

Now we will present an other characterization of the orthogonality in the sense of Birkhoff

Theorem 4.6 Let S ∈ B(H) be a smooth point, and Y ∈ B(H), then the following assertions are equiva-

lent.

1. The map Fψ has a global minimum at S ∈ B(H).

2. There exists unitary vector f ∈ Γ, such that

Re(< (ϕ(Y ) f .S f ) >) ≥ 0. (4.36)

3. There exists unitary vector f ∈ Γ, such that

tr (( f ⊗S f )ϕ(Y )) = 0, ∀Y ∈ B(H). (4.37)

4. there exists unitary vectors fn ∈ Γ, such that

∥ S fn ∥B(H) →
n→+∞∥ S ∥B(H) (4.38)

and 〈
ϕ(Y ) fn ,S fn

〉 →
n→+∞ 0 (4.39)

Proof.

1) → 2)

We use the Theorem 4.2 and Theorem 4.3

2) → 3)

see Theorem 4.3

4) → 1)
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Its easily to see that X ⊥ Y ∈ B(H), in the sense of Birkhoff if and only if

DX (Y ) ≥ 0, ∀Y ∈ B(H).

We prove that

∥ S +λϕ(Y ) ∥B(H)≥∥ S ∥B(H), ∀λ ∈C. (4.40)

There exists a sequence of unitary vectors fn ∈ Γ, such that

∥ S fn ∥B(H) →
n→+∞∥ S ∥B(H), (4.41)〈

ϕ(Y ) fn ,S fn
〉 →

n→+∞ 0. (4.42)

Then

∥ S +λϕ(Y ) ∥2
B(H)≥∥ S +λϕ(Y ) fn ∥2

B(H) (4.43)

≥∥ S fn ∥2
B(H) +2Reλ<ϕ(Y ) fn .S fn >+ ∥ϕ(Y ) fn ∥2

B(H)

≥∥ S fn ∥2
B(H) +2Re(<ϕ(Y ) fn .S fn >) →

n→+∞∥ S ∥2
B(H) . (4.44)

3) → 4)

On the other hand, in the case of the proof of Theorem 4.7 we obtain unitary vector f such that

|<ϕ(Y ) f ,S f >|< δ. (4.45)

let N ∈N∗,if we take δ→ 1
N we get the result

Corollary 4.3 Let ϕ(Y ) = δA,B (Y ) = AY −Y B,and S,Y ∈ B(H) where S in a smooth point, then the fol-

lowing conditions are equivalent.

1. The map ∥ S + AY −Y B ∥2
B(H) has a global minimum at S ∈ B(H)

2. There exist unitary vector f ∈ Γ, such that

Re〈(AY −Y B) f ,S f 〉 ≥ 0. (4.46)

3. There exist unitary vector f ∈ Γ, such that

tr (( f ⊗S f )(AY −Y B) = 0, ∀Y ∈ B(H), (4.47)

4. There exists a sequence of unitary vectorsfn ∈ Γ, such that

∥ S fn ∥B(H) →
n→+∞∥ S ∥B(H) (4.48)

and

〈(AY −Y B) fn ,S fn〉 →
n→+∞ 0. (4.49)

If S ∈ K erδA,B , we obtain the following corollary
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Corollary 4.4 Let ϕ(Y ) = δA,B (Y ) = AY − Y B and S,Y ∈ B(H), where S is a smooth point, then the

following assertions are equivalent.

1.

∥ S + AY −Y B ∥2
B(H)≥∥ S ∥B(H), ∀S ∈ K erδA,B . (4.50)

2. There exist unitary vector f ∈ Γ, such that

Re〈(AY −Y B) f ,S f 〉 ≥ 0. (4.51)

3. There exist unitary vector f ∈ Γ, such that

tr (( f ⊗S f )(AY −Y B) = 0, ∀Y ∈ B(H). (4.52)

4. There exists a sequence of unitary vectorsfn ∈ Γ, such that

∥ S fn ∥B(H) →
n→+∞∥ S ∥B(H), (4.53)

and

〈(AY −Y B) fn ,S fn〉 →
n→+∞ 0. (4.54)

If we put

ϕ(Y ) = Y .

Then we obtain the following corollary

Corollary 4.5 Let ϕ(Y ) = Y and S,Y ∈ B(H), where S is a smooth point, then the following assertions

are equivalent.

1. Y ⊥ S, in the sense of Birkhoff.

2. There exist unitary vector f ∈ Γ, such that

Re〈Y f .S f 〉 ≥ 0. (4.55)

3. There exist unitary vector f ∈ Γ, such that

tr (( f ⊗S f )Y ) = 0, ∀Y ∈ B(H). (4.56)

4. There exists a sequence of unitary vectorsfn ∈ Γ, such that

∥ S fn ∥B(H) →
n→+∞∥ S ∥B(H) . (4.57)

〈(AY −Y B) fn ,S fn〉 →
n→+∞ 0. (4.58)

4.2. The Global Minimum in B(H): 29



Bibliography

[1] B. Simon, Trace ideals and their applications, London Mathematical Society Lecture Notes Series

35, Cambridge University Press,1979.

[2] B.P. Duggal, Range-kernel orthogonality of the elementary operators X →∑n
i=1 Ai X Bi −X , Linear

Algebra Appl. 337 (2001) 79–86.

[3] B.P. Duggal, A remark on normal derivations, Proc. Amer. Math. Soc. 126 (1998) 2047–2052.

[4] B.P. Duggal, Putnam–Fuglede theorem and the range-kernel orthogonality of derivations, Inter-

nat. J. Math. Math. Sci. 27 (2001) 573–582.

[5] D. Keckic, Orthogonality of the range and the kernel of some elementary operators, Proc. Amer.

Math. Soc 128(2000), 3369-3377.

[6] D. Keckic, Orthogonality in C1 and C∞-spaces and normal derivations, J. Operator Theory, sub-

mitted for publication

[7] Dragoljub J, Gateaux derivative of B(H) norm, Proceedings of the american Mathematical socity

Volume 133, Number 7, Pages 2061–2067 S0002-9939(05)07746-4 January 25,2005.

[8] F. Kittaneh, Operators that are orthogonal to the range of a derivation, J. Math. Anal. Appl. 203

(1996) 863–873.

[9] F. Kittaneh, Normal derivations in norm ideals, Proc. Amer. Math. Soc. 123 (1995) 1779–1785.

[10] G. Birkhoff, Orthogonality in linear metric spaces, Duke Math. J. 1 (1935) 169–172.

30



Bibliography

[11] J. Anderson, On normal derivations, Proc. Amer. Math. Soc 38(1979), 129-135.

[12] J. Diestel, Geometry of Banach spaces-Selected Topicspringer, 1975.

[13] L.Gajek, J.Jachymski and D.Zagrodny, Projections, Extendability of operators and the Gateaux

derivative of the norm, J.Appl Anal1(1995)29-38.

[14] P.J. Maher, Commutator Approximants,Proc. Amer. Math. Soc115(1992), 995-1000.

[15] R.G.Douglas, On the operator S ∗X T −X and related topics, Acta. sci. Math(Szeged) 30(1969),19-

32.

[16] S. Mecheri, On the orthogonality in von Neumann–Shatten classes, Internat. J. Appl. Math. 8

(2002) 441– 447.

[17] S. Mecheri, On minimizing ∥S − (Ax −X B)∥p , Serdica Math. J. 26 (2000) 119–126.

[18] S. Mecheri, Another version of Maher’s inequality, J. Anal.Appl. Z. Anal. Anw, 23(2004), 303-311.

[19] P. R. HALMOS, A Hilbert Space Problem Book, Princeton, N. J., Van Nostrand, 1967.

[20] S. Mrcheri, Best L(X ,µ) approximant, East Journal on Approximations, 4 (2004), pp. 1–8.

[21] H.Mecheri and B. Rebeai, Birkhoff and James Orthogonality and the Best approximant in L1(X ),

The Australian journal of Mathematical Analisis and Applications Vol15,iss 1. 2018, 1-6.

[22] S. Mecheri and H. Mecheri, The Gateaux derivative and orthogonality in C1;An. St. Univ. Ovidius

Constanta, Vol. 20(1), 2012,275–284.

[23] H .Mecheri, Jemes and Birkhoff Orthogonality in B(H), Palestine Journal of Mathematics, Vol.

11(Special Issue II)(2022) , 101–107

Bibliography 31


	Preliminaries:
	 Banach space:
	Vector space:
	Normed vector space:

	Hilbert space:
	Orthogonal projection:
	The Pythagorean Theorem:
	Lemma:"Pythagors"


	Global minimum and orthogonality in C1-classes:
	-Gâteaux derivative:
	The Global Minimum:

	The Orthogonality In L1(B(H)):
	Birkhoff-James Orthogonality: A New Characterization in L1(B(H))
	Best Approximation in L1(B(H))

	Jemes and Birkhoff orthogonality in  B(H) :
	-Gâteaux derivative:
	The Global Minimum in B(H):


