
People’s Democratic Republic of Algeria
Ministry of Higher Education and Scientific

Research

MASTER’S THESIS
Systems and Multimedia speciality

Deep learning-enhanced satellite-based Flood detection for early
Warning and prevention.

Prepared by:
Cherif Elarbi

Supervised by:
Dr. Nouioua Tarek

Before the jury:
Dr. Benour Akrem

Dr. Achouri Mounir

University Of Larbi Tebessi Tebessa
Faculty Of Exact Sciences And Science Nature and life

Department Of Mathematics And computer science

2023/2024

Dedication

To my mother and father,
to my family and my friends,

to my teachers,
to my colleagues,

to candles that burn to light up for others,
to everyone who taught me characters,

I dedicate this humble research to the Lord Almighty
to find acceptance and success.

Thanks
Thanks, and gratitude. As we take our last steps in university life, we look back on

the years we’ve spent here, filled with learning and growth. Our distinguished
professors have played a pivotal role in our journey, dedicating themselves to

shaping the future generation and revitalizing our nation.
Before moving forward, we must express our profound thanks, gratitude,

appreciation, and love to those who have carried the sacred torch of knowledge.
They have guided us on our path to wisdom and understanding.

Special thanks and sincere appreciation to Dr. Tarek Nouioua for his support,
guidance, encouragement, and all his efforts throughout this project. I would also

like to thank the examiners for dedicating their time to evaluate this work.

Abstract

The integration of deep learning techniques into satellite-based flood detection sys-
tems aims to improve early warning and prevention measures. Flooding poses signif-
icant risks to human lives and infrastructure, necessitating effective monitoring and
mitigation strategies.

This project leverages deep learning techniques, specifically transfer learning, to
enhance satellite-based flood detection systems. By utilizing pre-trained models such
as ResNet-50, VGG-16, and MobileNet-V2, we analyze satellite imagery to detect and
map flood-prone areas with high precision. CNNs have the ability to automatically
learn complex patterns, which significantly improves detection accuracy.

Our approach demonstrated that custom CNN architectures could achieve supe-
rior accuracy, with our custom model reaching 96.7% accuracy. Transfer learning
also proved effective, with models like VGG-16 and MobileNet-V2 achieving 95% ac-
curacy. However, the hybrid model showed high accuracy of 98% with the pretrained
DenseNet201 model, demonstrating its efficacy for classification.

The application of quantum computing in flood detection systems could offer
substantial advantages, including enhanced computational power and speed. These
advancements could lead to more accurate and efficient flood prediction and response
strategies in the future.

Abstract

L’intégration des techniques d’apprentissage profond dans les systèmes de détection
des inondations par satellite vise à améliorer les mesures de prévention et d’alerte
précoce. Les inondations posent des risques significatifs pour les vies humaines et les
infrastructures, nécessitant des stratégies efficaces de surveillance et de mitigation.

Ce projet exploite les techniques d’apprentissage profond, spécifiquement l’apprentissage
par transfert, pour améliorer les systèmes de détection des inondations par satellite.
En utilisant des modèles pré-entraînés tels que ResNet-50, VGG-16 et MobileNet-V2,
nous analysons les images satellites pour détecter et cartographier les zones sujettes
aux inondations avec une grande précision. Les réseaux de neurones convolutifs
(CNN) ont la capacité d’apprendre automatiquement des motifs complexes, ce qui
améliore considérablement la précision de la détection.

Notre approche a démontré que les architectures CNN personnalisées pouvaient
atteindre une précision supérieure, notre modèle personnalisé atteignant une pré-
cision de 96,7%. L’apprentissage par transfert s’est également révélé efficace, avec
des modèles tels que VGG-16 et MobileNet-V2 atteignant une précision de 95%.
Cependant, le modèle hybride a montré une haute précision de 98% avec le modèle
DenseNet201 pré-entraîné, démontrant son efficacité pour la classification.

L’application de l’informatique quantique dans les systèmes de détection des inon-
dations pourrait offrir des avantages substantiels, y compris une puissance de calcul
et une vitesse accrues. Ces avancées pourraient conduire à des stratégies de prévision
et de réponse aux inondations plus précises et efficaces à l’avenir.

Abstract

ඔ൹ފොູ ሌᇿإ ዛኗڎف اܳݱٷ؇؜٭۰ اᆇᅪ৙৑؇ر আॻ༟ اৎ৊أٺ݄ڎة اܳڰ٭ݯ؇َ؇ت ؜݆ اܳـܝލژ أَޙ۰݄ ሒᇭ اܳأ݄٭ݑ اܳٺأ޺޾ ّگٷ٭؇ت إد݁؇ج
ਐಱޚܹص ؇ᆙᆘ اܳٺۜٺ٭۰، واܳٴྡྷ٭۰ ๤དྷྟܳا ۋ٭؇ة আॻ༟ ܋ٴଫଃة ෛ੼؇ޗݠ ႟ၽ૰૜ اܳڰ٭ݯ؇َ؇ت .۰ਃಮ؇واܳިڢ اৎ৊ٴଲ୍ة ل۰ ا৕৑ࢾࣕار ଫଃًاܳٺڎا

واܳٺۛڰ٭ژ. ይዧݠݬڎ ᄭᄟ؇ڣأ اݿଫଐا౯౏ళ٭؇ت
اܳڰ٭ݯ؇َ؇ت ؜݆ اܳـܝލژ أَޙ۰݄ ܳٺأݞߌ߳ ً؇ܳٷگܭ، اܳٺأ޺޾ وً؇ܳٺ༲ڎࢴࣖ اܳأ݄٭ݑ، اܳٺأ޺޾ ّگٷ٭؇ت আॻ༟ ا๤དྷৎ৊وع ۱ڍا لأٺ݄ڎ

16 -VGGو ResNet-50 ݁ټܭ ݁ފٴگً؇ ݁ڎُر۰ً ஓ஁؇ذج اݿٺ༱ڎام ఈః༠ل ݆݁ اܳݱٷ؇؜٭۰. اᆇᅪ৙৑؇ر আॻ༟ اৎ৊أٺ݄ڎة
༟؇ܳ٭۰. ࢻࣖڢ۰ ይዧڰ٭ݯ؇َ؇ت اৎ৊أݠݪ۰ اৎ৊ٷ؇ޗݑ රඝافޔ ྾ངور ৖৑܋ྥލ؇ف اܳފ؇ّܹ٭۰ اܳݱިر ౫౜భܹ٭ܭ َگިم ،MobileNet-V2و
اܳـܝލژ دڢ۰ ොຬފ݆ ؇ᆙᆘ ،؇ًਃಮ؇ّܹگ اৎ৊أگڎة اஓ஁৙৑؇ط ّأ޺޾ আॻ༟ اܳگڎرة (CNNs) ا৖৑ܳٺڰ؇ڣ٭۰ اܳأݱྟ٭۰ اܳލٴႤၽت ጥ጑ٺஓ஄

.ଫଃ܋ٴ ႟ၽ૰૖
اࡺ࢕ࢦިذج وݬܭ ۋ٭ت ڣ؇فگ۰، دڢ۰ ොູگݑ أن ஓ୷ܝ݆ ا৖৑ܳٺڰ؇ڣ٭۰ اܳأݱྟ٭۰ ይዧލٴႤၽت ا௰௯௫ݱݱ۰ ปฃاܳٴ أن ݁گ؇رྲྀྥٷ؇ أཿྟٺب

VGG-16 ݁ټܭ ஓ஁؇ذج ۋگگب ۋ٭ت ً؇ܳٷگܭ، اܳٺأ޺޾ ڣأ؇ܳ٭۰ ཿྟٺب პაႰ .7% .96 دڢ۰ ሌᇿإ ؇਍ಱᄴᄟ ا௰௯௫ݱݧ
݁ފٴگً؇ اৎ৊ڎرب اࡺ࢕ࢦިذج ؕ݁ 98% ًܹ؞ب ༟؇ܳ٭۰ دڢ۰ ඔ൹༶ୖ୒ا اࡺ࢕ࢦިذج أޖ۳ݠ ،ዻዧذ و݁ؕ .95% دڢ۰ MobileNet-V2و

اܳٺݱྡྷ٭ژ. ሒᇭ ڣأ؇ܳ٭ٺ۬ ཯ྦྷٴب ؇ᆙᆘ DenseNet201،
اܳگڎرة ّأݞߌ߳ ዻዧذ ሒᇭ ؇ஓ୾ ܋ٴଫଃة، ਲ਼ਦال؇ اܳڰ٭ݯ؇َ؇ت ؜݆ اܳـܝލژ أَޙ۰݄ ሒᇭ اᆇᅀܳި݁٭۰ اࠍ੆ިݿٴ۰ ّޚٴ٭ݑ لިڣݠ ڢڎ

؇ୖ୒ ۰ً؇༶ݿٺ৖৑وا ً؇ܳڰ٭ݯ؇َ؇ت ይዧٺྡྷٴޝ و܋ڰ؇ءة دڢ۰ ଫ଒أ܋ اݿଫଐا౯౏ళ٭؇ت ሌᇿإ ّޝدي ڢڎ اܳٺޚިرات ۱ڍه .۰༟๤ཏܳوا ۰ਃಸިݿ؇੆اࠍ
اৎ৊ފٺگٴܭ. ሒᇭ

Contents

1 Theoretical Study about Flood detection for early Warning
and prevention 2

1.1 Introduction . 3
1.2 Overview about Flood Detection in Satellite Images 3

1.2.1 Limitations of traditional flood detection methods 3
1.2.2 Importance of flood detection and early warning systems . . . 4
1.2.3 Importance of incorporating deep learning techniques 5

1.3 Conclusion : . 7

2 Artificial Intelligence Technics 8
2.1 Introduction . 9
2.2 Definition . 9
2.3 Machine learning . 10

2.3.1 Definition : . 10
2.3.2 Types of ML : . 10

2.4 Artificial Neural Networks . 12
2.5 Multilayer Perceptron . 13
2.6 Activation functions . 14

2.6.1 Binary step function: . 14
2.6.2 Linear Activation Function : 15
2.6.3 Relu Function : . 15
2.6.4 Sigmoid function . 16

2.7 Deep learning Definition . 17
2.8 Difference between machine learning and deep learning: 17

2.8.1 Machine Learning (ML): . 17
2.8.2 Deep Learning (DL): . 18

2.9 Major Deep Learning Types . 18

2.9.1 Convolutional Neural Networks (CNN): 19
2.9.2 CNN components : . 19

2.10 Tensorflow Definition . 20
2.10.1 Tensorflow application : . 20
2.10.2 Keras Applications . 21

2.11 Conclusion: . 25

3 STATE OF THE ART 26
3.1 Introduction . 27
3.2 Related works . 27

3.2.1 Nouioua Tarek (2023) : : . 27
3.2.2 Danielle Dias and Ulisses Dias(October 2018): 27
3.2.3 S. V. Georgakopoulos , K. Kottari1, K. Delibasis1, V. P. Pla-

gianakos , I. Maglogiannis (2018). 28
3.2.4 Zhongling Huang , Zongxu Pan and Bin Lei(2017). 28
3.2.5 Tulasi Krishna, Sajja Kalluri, Hemantha kumar. (2019). . . . 29
3.2.6 Tarek, Nouioua Hafid, Belbachir. (2021). 29
3.2.7 Tarek, Nouioua Belbachir, Ahmed. (2022). 30

3.3 Conclusion : . 31

4 Implementation and Results 32
4.1 Introduction : . 33
4.2 Dataset definition , data preparation : 33
4.3 Work environment and Tools : . 34

4.3.1 Anaconda . 34
4.3.2 Jupyter notebook . 34

4.4 Python (tools and libraries) . 35
4.4.1 Python Programming language 35
4.4.2 Tensorflow . 36
4.4.3 Keras . 36
4.4.4 Numpy((Numerical Python) 37
4.4.5 Matplotlib . 37
4.4.6 Pennylane . 38
4.4.7 Scikit-learn . 38
4.4.8 Imutils . 39

4.5 Plan overview . 39
4.6 Hybrid model creation : . 40

4.6.1 the principles of quantum mechanics 40

4.6.2 Model creation with Pre-trained Models and Hybrid Techniques: 41
4.7 Models Evaluation . 42

4.7.1 Classification Performance Metrics 42
4.8 Models Architecture . 43

4.8.1 Model 1 (ResNet50) : . 43
4.8.2 Model 1 (VGG16) : . 44
4.8.3 Model 3 (MobileNetV2) : . 45
4.8.4 Model 4 (Cnn custom model) : 46

4.9 Programming . 48
4.9.1 Model training . 48
4.9.2 Model prediction . 51

4.10 Models’ evaluation . 52
4.10.1 Model 1 (ResNet50) : . 53
4.10.2 Model 2 (VGG16): . 54
4.10.3 Model 3 (MobileNetV2): . 55
4.10.4 Model 4 (DenseNet201): . 57
4.10.5 Model 5 (Custom CNN): 58
4.10.6 Hybrid Model (DenseNet201) 59
4.10.7 Model evaluation . 60
4.10.8 Hybrid Model (ResNet50) . 60
4.10.9 Graphical results of other models : 62

4.11 Comparison of Results . 65
4.11.1 comparison of classical models with the state of the art . . . 65
4.11.2 Comparison of Classical and Hybrid Models 66

4.12 conclusion: . 67

List of Figures

1.1 this figure represents flood fatality statistics in US by The U.S. Nat-
ural Hazard Statistics . 4

1.2 this figure represents flood risk in Malaysia 5
1.3 This figure represents the components of a flood early warning system 6
1.4 This figure represents transfer learning and training from scratch . . 7

2.1 Ai Realm and the implied Techniques 9
2.2 Supervised Machine Learning schema 11
2.3 Unsupervised Machine Learning schema 11
2.4 Reinforcement Learning schema . 12
2.5 Artificial Neural Network Structure 13
2.6 MultiLayer Perceptron schema . 14
2.7 Linear Activation Function . 15
2.8 Rectified Linear Unit Activation Function 16
2.9 Sigmoid Function . 17
2.10 Difference between ML and DL . 18
2.11 Convolutional Neural Networks schema 19
2.12 Some applications of tensorflow . 20
2.13 Keras Applications . 22
2.14 VGG-16-architecture . 23
2.15 VGG-19-architecture . 23
2.16 ResNet Model Schema . 24
2.17 MobileNetV2 Schema . 25

3.1 QUANTUM INSTRUCTIONS AND THEIR SYMBOLS 30

4.1 Flood and non-flood images from My dataset 33
4.2 This figure represents the interface of anaconda 34
4.3 Jupyter Notebook interface . 35
4.4 Tensorflow logo . 35

4.5 tensorflow logo . 36
4.6 Keras library . 36
4.7 Numpy Icon . 37
4.8 Matplotlib library . 38
4.9 Pennylane library . 38
4.10 Scikit-learn library . 39
4.11 process overview . 39
4.12 This figure represents the structure of the implementation 41
4.13 Model 1 ResNet50 architecture . 44
4.14 Model 2 VGG16 architecture . 45
4.15 Model3 MobileNetV2 architecture 46
4.16 Model 4 Custom Cnn architecture 47
4.17 Importing Libraries . 48
4.18 Dataset access . 49
4.19 Data augmentation and preprocess 50
4.20 training and val . 50
4.21 loading trained model . 51
4.22 predited non flood image . 51
4.23 predited flood image . 52
4.24 Model 1 Accuracy and Loss graph . 53
4.25 Resnet50 test accuracy and loss . 53
4.26 Model 2 Accuracy and Loss graph . 54
4.27 VGG16 test accuracy and loss . 54
4.28 Model 3 Accuracy and Loss graph . 55
4.29 MobileNetV2 test accuracy and loss 56
4.30 Model 4 Accuracy and Loss graph . 57
4.31 DenseNet201 test accuracy and loss 57
4.32 Model 4 Accuracy and Loss graph . 58
4.33 Custom CNN test accuracy and loss 58
4.34 Images prediction . 59
4.35 Model hybrid (DenseNet201) Accuracy and Loss graph 59
4.36 Images prediction . 60
4.37 Model hybrid (ResNet50) Accuracy and Loss graph 61
4.38 Model classic (DenseNet121) Accuracy and Loss graph 62
4.39 Model classic (DenseNet169) Accuracy and Loss graph 62
4.40 Model classic (InceptionV3) Accuracy and Loss graph 63
4.41 Model hybrid (DenseNet169) Accuracy and Loss graph 63
4.42 Model hybrid (DenseNet121) Accuracy and Loss graph 64

4.43 Model hybrid (InceptionV3) Accuracy and Loss graph 64
4.44 Model hybrid (VGG16) Accuracy and Loss graph 65

List of Tables

3.1 CNN Architectures with number of parameters 29

4.1 Classification metrics for ResNet50 54
4.2 Classification metrics for VGG16 . 55
4.3 Classification metrics for MobileNetV2 56
4.4 Classification Performance Metrics 57
4.5 CNN custom classification metrics . 58
4.6 DenseNet201 hybrid classification report 60
4.7 Comparison of various binary classifiers and their F1-score. 66
4.8 Accuracy Comparison of Classical and Hybrid Models. 66

General introduction
In recent years, the increasing frequency and severity of flooding events have high-
lighted the critical importance of robust early warning and prevention systems.
Flooding poses significant risks to human lives, property, and ecosystems, under-
scoring the urgent need for advanced technologies and methodologies to mitigate its
impact. Traditional flood detection methods often rely on manual interpretation of
satellite imagery or simplistic algorithms, which are limited in accuracy, scalability,
and timeliness, particularly in remote or densely populated regions.

Addressing these limitations, this thesis focuses on the development and applica-
tion of deep learning-enhanced satellite-based flood detection systems for early warn-
ing and prevention purposes. Deep learning, a subfield of artificial intelligence, has
demonstrated remarkable capabilities in pattern recognition and feature extraction
from large-scale datasets, making it a promising tool for analyzing satellite imagery
and identifying flood extents with unprecedented accuracy and efficiency.

The integration of AI techniques with existing methodologies is explored in this
study. It investigates the potential of a deep learning-based approach for flood detec-
tion in satellite images, employing convolutional neural networks (CNNs) and trans-
fer learning techniques to enhance disaster response and management. By leveraging
CNNs’ ability to automatically learn meaningful features from imagery and adapting
pre-trained models through transfer learning, the proposed methodology aims to rev-
olutionize flood detection systems and reduce vulnerability in flood-prone areas. The
work contributes to advancing flood monitoring systems by combining the power of
CNNs and transfer learning to develop an accurate and robust flood detection model.
[1]

1

Chapter 1

Theoretical Study about Flood
detection for early Warning and
prevention

2

1.1 Introduction
Flooding events demand quick response , posing a big challenge and threat to com-
munities worldwide , Flood detection plays a crucial role in early warning systems
and prevention strategies for effective disaster response and management, enabling
timely warnings, evacuation planning, and resource allocation.

While traditional flood detection methods face challenges due to their limited
efficacy in real-time monitoring and detection capabilities compared to advanced
techniques based on deep learning. These limitations restrict timely response and
early warning systems for flood events. By leveraging advanced technologies like deep
learning and satellite imagery, we can enhance our capabilities in detecting floods
accurately and efficiently, ultimately saving lives and reducing the devastating effects
of floods.

1.2 Overview about Flood Detection in Satellite
Images

Floods are a natural disaster causing a lot of damage and loss of life , using satellite
images can provide wide coverage and high resolution for monitoring large areas
and can help us to know flood or non-flood pattern using Deep learning techniques,
especially Convolutional Neural Networks (CNNs) prove to be highly effective ,in
analyzing images CNNs have the capability to recognize flooded regions by processing
sets of satellite images.[2]

1.2.1 Limitations of traditional flood detection methods
Traditional methods for flood detection in satellite imagery face several challenges
that limit their effectiveness.

1.Spectral Similarity: Traditional methods often rely on analyzing the spectral
reflectance properties of water bodies in satellite images. However, flooded areas can
have spectral signatures similar to other features like shadows, snow, or wet soil.
This similarity can lead to false positives (areas identified as flooded when they are
not) and false negatives (flooded areas missed by the method).

2.Complexity of Flood Patterns: Floods can exhibit a wide range of appear-
ances in satellite images. Factors like water depth, vegetation cover, debris, and
sediment load can significantly alter the spectral signature of flooded areas. Tradi-
tional methods may struggle to capture this variability and accurately identify floods

3

across diverse scenarios. Spatial Resolution Limitations: The spatial resolution of
some satellite sensors may not be fine-grained enough to capture smaller floods or
detailed flood boundaries. This can lead to underestimation of the flood extent or
missing critical information for early warning systems.

3.Data Dependency: Traditional methods may require specific weather data
or pre-flood baseline images for comparison. This can limit their applicability in
situations where such data is unavailable or unreliable.

4.Computational Cost: Some traditional methods can be computationally
expensive to implement, especially when dealing with large datasets of satellite im-
agery. This can hinder real-time monitoring capabilities[3]

Figure 1.1: this figure represents flood fatality statistics in US by The U.S. Natural
Hazard Statistics

[4]

1.2.2 Importance of flood detection and early warning sys-
tems

As we can see in figure 1.2 flood is a huge risk that poses threats to ecosystems
worldwide.

Why early warning systems?

1.Risk Reduction and Preparedness : Early warning systems help reduce flood-
related risks by providing timely information about possible flood events. This allows

4

Figure 1.2: this figure represents flood risk in Malaysia
[?]

authorities and individuals to take necessary precautions and evacuate areas at risk
and minimize loss of life and property.

2.Public Safety: The primary purpose of flood detection and early warning
systems is to ensure public safety. These systems can help save lives and prevent
flood damage by providing accurate and timely information about flood risk.

3. Environmental protection: Flood warning systems also work to protect
the environment by minimizing pollution and pollution from floods. These systems
support efforts to protect natural ecosystems by alerting authorities to potential
environmental hazards.

4. Economic benefits: Early warning systems can lead to significant cost
savings by reducing flood damage. These systems contribute to economic stability
in flood-prone areas by minimizing the impact on commerce, agriculture and public
services. [5]

1.2.3 Importance of incorporating deep learning techniques
Incorporating deep learning techniques, such as Convolutional Neural Networks
(CNNs) and transfer learning, for flood detection offers significant advantages in
terms of accuracy, robustness, and real-time applicability. By leveraging pre-trained
deep learning models like ResNet50 and VGG19 to build a new performance model,
we can improve the generalization capability of the system.[?]

5

Figure 1.3: This figure represents the components of a flood early warning system
[?]

Transfer Learning Definition :

Transfer learning is a powerful technique used in deep learning that improves the
learning of a new task By leveraging the ability to reuse existing models and their
knowledge of new problems, it has facilitated the training of deep neural networks,
even when data is limited.[6]

The Powerful Partnership: CNNs and Transfer Learning in Deep Learn-
ing:

Training a CNN from scratch on a new task can be expensive and requires a huge
dataset. Transfer learning enables us to adapt pre-trained CNN models, such as
VGG19 and ResNet50, trained on large datasets like ImageNet, transfer learning is
our main approach.

6

Figure 1.4: This figure represents transfer learning and training from scratch
[7]

1.3 Conclusion :
In this chapter, we gave an overview of flood detection for early warning and preven-
tion. We also discussed the challenges involved and introduced how deep learning
techniques can help address them. We’ll explore these techniques further in detail.

7

Chapter 2

Artificial Intelligence Technics

8

2.1 Introduction
In this chapter, we’re going to explore a bunch of different AI techniques. We’ll look
at how each one helps AI systems get better and work more effectively. The idea of
AI has been around for a while, dating back to the 1940s and 50s. There were some
important research projects during this time, like figuring out how to make networks
of connected neurons do computations. Then in 1956, there was a big workshop at
Dartmouth College where AI really started to take off. John McCarthy, who was a
big deal in AI, organized the workshop.[8]

Figure 2.1: Ai Realm and the implied Techniques
[9]

2.2 Definition
Artificial intelligence (AI) refers to the simulation of human intelligence in machines
that are programmed to mimic human behavior and cognitive functions such as learn-
ing, problem solving, perception, reasoning, and decision making. Artificial intelli-
gence encompasses a wide range of technologies and approaches, including machine

9

learning, deep learning, natural language processing, computer vision, robotics, and
expert systems. The goal of artificial intelligence is to create systems that can per-
form tasks that normally require human intelligence, such as automating processes,
increasing productivity, forecasting, healthcare, finance, transportation, education
and training. [10]

2.3 Machine learning
2.3.1 Definition :
Machine Learning (ML) is a subset of artificial intelligence (AI) that focuses on
developing algorithms and models that enable computers to learn patterns and make
predictions or decisions from data without being explicitly programmed to perform
the task. In essence, machine learning algorithms allow computers to learn from
experience, adapt to new data, and improve their performance over time.[11]

2.3.2 Types of ML :
There is three general Machine Learning types of which we can mention.

Supervised Learning :

Supervised learning is a type of machine learning where an algorithm is trained on
labeled data to learn the relationship between inputs and outputs. It is used for
tasks like classification (e.g., detecting spam emails) and regression (e.g., predicting
house prices). The algorithm uses this learned relationship to make predictions on
new, unseen data.[12]

Unsupervised Learning :

Unsupervised learning is the case where we fit the model without known outputs.
Our goal does not involve to predict any labels here. Rather we expect our model
to enlighten us by finding unseen patterns within the data set. This might be in the
way of grouping the data in various ways to our pleasure. Since we don’t have any
labels for model output, we need to further analyze the output results so that we
can make use of it.[12]

10

Figure 2.2: Supervised Machine Learning schema
[13]

Figure 2.3: Unsupervised Machine Learning schema
[13]

Reinforcement Learning

Reinforcement Learning (RL) is a type of machine learning focused on decision-
making. Its objective is to learn the best behavior in a particular environment to
obtain maximum reward. RL accomplishes this by interacting with the environment
and observing its responses, similar to how a child explores their surroundings to
learn the actions that lead to a desired outcome. In contrast to supervised learning,
RL does not rely on pre-labeled data. Instead, the algorithm must independently
discover the sequence of actions that lead to maximum reward. This process involves
a trial-and-error approach, where the quality of actions is measured not only by the
immediate reward they return but also by the potential delayed reward they may
generate. Reinforcement learning is a powerful algorithm that can learn to take the
right actions in an unfamiliar environment without the guidance of a supervisor. It
has been successfully applied in various fields, such as robotics, game playing, and

11

autonomous vehicle navigation [12]

Figure 2.4: Reinforcement Learning schema

2.4 Artificial Neural Networks
Computer architecture known as Artificial Neural Networks (ANNs) is modeled af-
ter the neural networks in the human brain. Artificial neurons in ANNs perform
brain-like functions as do biological neurons. Each neuron is linked to its neighbors
neurons by edges that can transmit messages to other cells. The strength of the con-
nections between neurons increases as the network learns through a process known
as training. Each neuron’s output is dictated by a non-linear function of the sum
of its inputs. Applications for ANNs include audio and picture recognition, natural
language processing, and predictive analytics. [14]

12

Figure 2.5: Artificial Neural Network Structure
[14]

2.5 Multilayer Perceptron
A multi-layer perceptron (MLP) is a type of neural network comprising input, hid-
den, and output layers. Input signals are processed by the hidden layers, which
perform computational operations, before being propagated to the output layer for
tasks like prediction or classification. MLPs utilize backpropagation to train their
neurons, adjusting parameters to minimize prediction errors. With the capability to
approximate any continuous function, MLPs excel in tasks such as pattern catego-
rization, recognition, prediction, and approximation due to their adaptability and
capacity to learn complex data relationships.[15]

13

Figure 2.6: MultiLayer Perceptron schema
[16]

2.6 Activation functions
In a neural network, the activation function plays a role similar to how our brains
decide whether to fire a neuron based on incoming signals. It’s like a filter that helps
the neuron decide if the incoming information is important for making predictions.
By performing basic math operations, it decides whether to ”activate” or ”not ac-
tivate” the neuron. Its main job is to crunch the numbers and produce an output
based on the inputs it receives. There are various types of activation functions, and
we’ll explore a few of them below.[17]

2.6.1 Binary step function:
The Binary Step Function stands as the most basic activation function, easily im-
plemented in Python with straightforward if-else statements.
It’s commonly employed in binary classifiers, where decisions are simplified into two
categories.
However, it falls short in multiclass classification tasks since it can only distinguish

14

between two classes, limiting its applicability in scenarios where multiple classes need
to be identified.[17]

2.6.2 Linear Activation Function :
The linear activation function is directly proportional to the input. The main draw-
back of the binary step function was that it had zero gradient because there is no
component of x in binary step function. In order to remove that, linear function can
be used. It ca be defined as: F(x) = ax The value of variable a can be any constant
value chosen by the user[18].

Figure 2.7: Linear Activation Function
[17]

2.6.3 Relu Function :
ReLU stands for rectified liner unit and is a non-linear activation function which is
widely used in neural network. The upper hand of using ReLU function is that all

15

the neurons are not activated at the same time. This implies that a neuron will be
deactivated only when the output of linear transformation is zero[18]

Figure 2.8: Rectified Linear Unit Activation Function
[19]

2.6.4 Sigmoid function
The sigmoid function, also called the logistic function, is an activation function that
returns an output ranging from 0 to 1, which is useful for normalizing the output of
each neuron. However, the sigmoid function can cause the neural network to stop
learning when input values are extremely high or low, resulting in the vanishing
gradient problem.[17]

16

Figure 2.9: Sigmoid Function
[17]

2.7 Deep learning Definition
Deep learning is a subset of machine learning that uses neural networks with multiple
layers to analyze complex data. The architecture of deep learning models is based on
artificial neurons that aim to mimic the functioning of the human brain. By using
multiple neural layers in deep learning models, you can extract and learn high-level
features from large data sets. This approach can be applied in various fields such as
image recognition, natural language processing and predictive modeling.[20]

2.8 Difference between machine learning and deep
learning:

2.8.1 Machine Learning (ML):
Requires manual feature extraction. Uses simpler models with fewer parameters.
Less data hungry and computationally intensive compared to deep learning. Suitable
for tasks with smaller datasets and when interpretability of the model is important.[21]

17

2.8.2 Deep Learning (DL):
Learns feature representations directly from raw data. Employs complex neural
network architectures with millions or billions of parameters. Requires large amounts
of labeled data and significant computational resources. Excels in tasks with large
and complex datasets, such as image recognition, natural language processing, and
speech recognition.

Overall, machine learning is more suitable for simpler tasks or when interpretabil-
ity is crucial, while deep learning shines in complex tasks where large datasets and
computational power are available, and feature engineering is challenging.[21]

Figure 2.10: Difference between ML and DL
[21]

2.9 Major Deep Learning Types
There are three main types of deep learning, which included as:
•MLP: which stands for Multilayer Perceptron
•RNN: stands for Recurrent Neural Networks
•CNN: stands for Convolutional Neural Networks

18

2.9.1 Convolutional Neural Networks (CNN):
A deep learning approach used for image identification and classification is a convo-
lutional neural network (CNN). From input photos, it is intended In order to learn
spatial hierarchies of features in an automatic and adaptive manner, without requir-
ing manual feature extraction. The key idea behind CNNs is to use convolution
operations on the input image, which allows the network to learn filters that capture
important patterns and features in the image. By stacking multiple convolutional
layers and other types of layers, such as pooling and activation layers, CNNs can
learn increasingly complex features and patterns, leading to highly accurate image
recognition and classification.[4]

Figure 2.11: Convolutional Neural Networks schema
[22]

2.9.2 CNN components :
the components enable CNNs to learn to extract hierarchical features from input
data, making them highly effective for tasks such as image classification, object
detection, and semantic segmentation.

1. Convolutional Layer: This layer applies filters (kernels) to the input image
to detect specific patterns. Each filter produces an activation map that represents
the presence or absence of particular features.

2. Pooling Layer: After each convolutional layer, a pooling layer is typically
added to reduce the spatial dimension of the activation map. This helps to decrease

19

the model’s complexity while preserving important features.
3. ReLU Activation: The ReLU (Rectified Linear Unit) activation function

is often used after the convolutional layer and before the pooling layer. It introduces
non-linearity by replacing negative values with zero, allowing the network to better
learn non-linear relationships in the data.

4. Fully-Connected Layer: After several convolutional, pooling, and ReLU
layers, the final layers of the CNN are typically fully-connected layers. These layers
aggregate the information learned by the previous layers and produce an output
vector that is then used for classification.

2.10 Tensorflow Definition
TensorFlow is an open-source platform and framework developed by Google re-
searchers , includes libraries and tools based on Python and Java — designed with
the objective of training machine learning and deep learning models on data.[23]

2.10.1 Tensorflow application :
There are numerous applications of TensorFlow, which contribute significantly to its
widespread popularity across diverse domains. These applications include : image
recognition and classification, natural language processing (NLP), speech recognition
and synthesis, reinforcement learning, as well as transfer learning and fine-tuning.[23]

Figure 2.12: Some applications of tensorflow
[24]

20

2.10.2 Keras Applications
Keras Applications are deep learning models that are made available alongside pre-
trained weights. These models can be used for prediction, feature extraction, and
fine-tuning. the official Table from keras website below contains a few:

21

Figure 2.13: Keras Applications
[25]

VGGnet:

VGG stands for Visual Geometry Group; it is a standard deep Convolutional Neural
Network (CNN) architecture with multiple layers. The “deep” refers to the number

22

of layers with VGG-16 or VGG-19 consisting of 16 and 19 convolutional layers.
The VGG architecture is the basis of ground-breaking object recognition models.
Developed as a deep neural network, the VGGNet also surpasses baselines on many
tasks and datasets beyond ImageNet. Moreover, it is now still one of the most
popular image recognition architectures.[26]

Figure 2.14: VGG-16-architecture
[27]

Figure 2.15: VGG-19-architecture
[28]

23

ResNet

ResNet, short for Residual Networks, is a type of convolutional neural network
(CNN) architecture that was introduced by Microsoft Research in 2015. It was de-
signed to address the problem of vanishing gradients and degradation in the training
of deep neural networks with a very large number of layers. The key innovation of
ResNet is the use of residual connections, also known as skip connections or shortcut
connections, which allow information to bypass certain layers in the network. Instead
of trying to learn the desired mapping directly, ResNet aims to learn the residual
mapping—the difference between the desired mapping and the identity mapping.
By incorporating residual connections, deeper networks can be trained more effec-
tively without suffering from vanishing gradients or degradation in performance. -
ResNet-18, ResNet-34, ResNet-50, ResNet-101, and ResNet-152. These variants dif-
fer primarily in the number of layers and the overall depth of the network.[29]

Figure 2.16: ResNet Model Schema

MobileNetV2

MobileNet-v2 is a deep convolutional neural network with 53 layers. It’s well-suited
for image classification tasks and it pre-trained on a large dataset over a million
images from the ImageNet database. it has been trained to classify images into 1000
object categories, like cats, mice, and pencils to various animals and beyond.[30]

24

Figure 2.17: MobileNetV2 Schema
[30]

2.11 Conclusion:
In this chapter, we have discussed various artificial intelligence techniques and ex-
plored several of its technologies.

25

Chapter 3

STATE OF THE ART

26

3.1 Introduction
Deep learning techniques, coupled with satellite imagery, have revolutionized flood
detection for early warning and prevention. Consequently, researchers aim to enhance
the accuracy and timeliness of flood detection systems. In this chapter, we will
explore recent studies related to our field, with a focus on examining transfer learning
techniques. Additionally, we will integrate quantum computing techniques ,we will
discuss two out of seven articles.

3.2 Related works
3.2.1 Nouioua Tarek (2023) : :
This article is authored by Dr. Nouioua tarek and represents the launch of my
project, the goal is flood detection in satellite images using deep learning incor-
porating transfer learning, this article aims to develop a robust model capable of
accurately identifying flooded and non-flooded regions. By leveraging convolutional
neural networks (CNNs) and transfer learning techniques, This process involves uti-
lizing pre-trained models specifically, ResNet50, InceptionV3, and VGG16—to gen-
erate predictions on a dataset that contains 102 images in total , 82 images for the
training process while 20 are reserved for validation. the InceptionV3 model shows
better performance for ’non-flood images’ but needs improvement for ’flood images.’
The VGG16 model has moderate accuracy but also has room for enhancement in
precision and recall, while Resnet50 shows good performance and high precision, re-
call, and F1-score, the model is more accurate.[1]

3.2.2 Danielle Dias and Ulisses Dias(October 2018):
In ”Flood detection from social multimedia and satellite images,” the authors Danielle
Dias and Ulisses Dias from the University of Campinas, Brazil, explore the use of
deep convolutional neural networks (CNNs) pre-trained on ImageNet, along with
transfer learning mechanisms, the authors selected 10 pre-trained CNN that were
trained on imageNet dataset they used transfer learning in feature extraction, model
prediction, and ensemble extraction for enhancing the efficiency and effectiveness of
their flood detection models using a dataset which contains two categories, the first
dataset contains images from social media and the second contains high-resolution
satellite images detecting areas affected by flood. using pre-trained CNN architec-
tures as feature extractors, it benefits from the learned features without training

27

the model from scratch, so the authors instead of directly using the output of these
pre-trained models for classification replaced the final part of the model with ANN
(Artificial Neural Network) to make predictions.

let’s take a look at the results, In the social media task, the ensemble of pre-
trained models achieved an F1-Score of 64.81%, and the best individual model is
(ResNet50) with an F1-Score of 62.93%.
In the satellite imagery task, the ensemble achieved an F1-Score of 71.72, which was
slightly below the F1-Score of the best individual model (DenseNet121) at 73.27%.
[6]

3.2.3 S. V. Georgakopoulos , K. Kottari1, K. Delibasis1, V.
P. Plagianakos , I. Maglogiannis (2018).

this article explores the application of CNN in classifying skin images, particularly
in dermoscopy images that are used for diagnosing skin. the new idea is to enhance
CNN’s performance on classifying skin images by adding techniques called mid-level
computer vision filters to the inputs of CNN, the filters help to extract special fea-
tures in the images while having a small dataset it should integrate transfer learning
techniques, which adjust a pre-trained CNN model on the specific task while using
the available data. the results of the study demonstrate the improvement of classi-
fication accuracy when the dataset is not large, the methodology also simplifies the
training process by making the areas analyzed by each neuron in the CNNs. [31]

3.2.4 Zhongling Huang , Zongxu Pan and Bin Lei(2017).
This article focuses on deep learning and its applications in image classification,
particularly utilizing transfer learning techniques and training deep CNNs for SAR
target recognition. This involves using a large dataset (unlabeled dataset) as the
source domain and the labeled dataset (MSTAR dataset) as the target domain.
The goal is to transfer features learned from the unlabeled SAR scene data (source
domain) to enhance performance on the target SAR classification task. The authors
propose a novel architecture for SAR target recognition, consisting of two main
pathways: a classification pathway and a reconstruction pathway. Each pathway is
interconnected through a feedback bypass connection. In the training stages, the
authors utilized three stages (unsupervised pre-training, transfer learning by fine-
tuning and Joint fine-tuning) , They observed that the transfer learning approach
outperforms the baseline CNN trained only on the MSTAR dataset, achieving an
accuracy of 99.09% on the 10-class SAR target recognition task. This indicates better

28

performance, and using transfer learning demonstrated robustness and a reduction
in the size of the training dataset. [32]

3.2.5 Tulasi Krishna, Sajja Kalluri, Hemantha kumar. (2019).
The article examines the application of CNNs for image classification tasks. It ex-
plores the CNN architecture, discussing its components such as the input layer, con-
volution layer, fully connected layer, and softmax layer. Additionally, it discusses
factors influencing image classification accuracies, such as the number of epochs,
dataset size, GPU-based systems, and batch size. It also provides various deep
learning architectures, including pre-trained models like LeNet, AlexNet, VGG, and
ResNet. The study presents experimental results comparing the performance of
deep learning models with traditional machine learning algorithms on datasets such
as CIFAR-10, ImageNet, and MNIST, among others.[33]

CNN Architecture Year Developed by No. of Parameters
LeNet[4] 1998 Yann LeCun et al. 60,000
AlexNet[5] 2012 Alex K et al. 62.3 million
VGGNet[6] 2014 Simonyan, Zisserman 138 million
GoogleNet[7, 8] 2014 Google 4 million
ResNet[9] 2015 Kaiming He 25 million

Table 3.1: CNN Architectures with number of parameters
[33]

3.2.6 Tarek, Nouioua Hafid, Belbachir. (2021).
This study explores the power of quantum computers and their development algo-
rithms on information systems security, Quantum computers have the potential to
perform calculations faster than classic computers, and the authors highlight the ca-
pability of quantum computers to break security protocols such as RSA, commonly
used for data transmission, it seems secure but it is not that would be in risk, must
be post-quantum cryptography in the future. Classic computers have a bit, quantum
has a qubit which means it can have two values 0 and 1 at the same time, it can be
in a superposition of state :

|ψ⟩ = α|0⟩+ β|1⟩ where α, β ∈ C with |α|2 + |β|2 = 1
Quantum instructions are specified for quantum processors and necessitate special

RAM known as QRAM. Additionally, in qubit information, one qubit represents two

29

bits of information which means the number of possible information states increases
exponentially (2 raised to the power of n) while quantum computing poses challenges
related to hardware and software, it also offers the optimization of complex systems,
enhancing data security, and provides researchers with the potential to unlock this
transformative technology. [34]

Figure 3.1: QUANTUM INSTRUCTIONS AND THEIR SYMBOLS

3.2.7 Tarek, Nouioua Belbachir, Ahmed. (2022).
This article, authored by Tarek Nouioua and Ahmed Hafid Belbachir, explores the
potential of quantum computers in accelerating and strengthening the security of in-
formation systems. The authors aims the power of quantum over classical computers
in image processing, highlighting its ability to provide exponential speedup for image
processing algorithms such as edge detection while reducing memory requirements.
For example, a 256x256 image can be represented using just 17 qubits in quantum
systems, compared to gigabits of memory in classical systems.

quantum computing can enhance image security through quantum encryption
and stenography techniques. The article introduces a quantum edge detection algo-
rithm that operates with quantum image representation, such as the Novel Enhanced
Quantum Representation (NEQR). This algorithm offers exponential speedup with
a time complexity of O(1), enabling the processing of large high-resolution images,
including 3D medical imaging, which is prohibitively expensive for classical comput-
ers.

However, quantum computing also poses a significant challenge to classical infor-
mation security, as it has the potential to break traditional cryptographic methods.

30

so , post-quantum cryptography offers a solution by developing new cryptographic
systems based on quantum physics principles, which are resilient to quantum attacks.
It is highlighted in the research the transformative capability of quantum computing
across various fields and ensure the need for continued research and development in
this rapidly evolving domain. [35]

3.3 Conclusion :
In this chapter, we have examined seven related works. The first five studies focus
on utilizing Convolutional Neural Networks (CNNs) in combination with transfer
learning techniques. These studies have demonstrated the effectiveness of such ap-
proaches in creating accurate and efficient models for classification tasks. The last
two studies delve into the realm of quantum computing. Following data augmen-
tation, we aim to incorporate quantum computing elements into our model which
becomes hybrid model to observe its potential in accelerating image processing and
enhancing the efficiency of building robust flood detection models, in the end we
will do a comparison and analysis between the hybrid task and the classical task to
evaluate their performances.

31

Chapter 4

Implementation and Results

32

4.1 Introduction :
In this chapter, we delve into the practical aspect of our project. We are going
to develop a system to predict flood and non-flood images using satellite imagery.
There are two tasks: the first involves building a classical model, while the second
entails creating a hybrid model. Finally, we will examine the results and conduct a
comparison.

4.2 Dataset definition , data preparation :
A dataset is a structured collection of data, typically organized in a way that facil-
itates analysis and processing , in our project we are using a dataset that contains
102 satellite images belonging to two classes: flooded and non-flooded. The dataset
is divided into two subsets: training and validation sets.

Training Set: This subset contains 80 images, which are used to train our deep
learning model. During training, the model learns from these images by adjusting its
parameters to minimize the difference between its predictions and the actual labels.

Validation Set: This subset contains 20 images, which are used to evaluate
the performance of our trained model. The model’s performance metrics, such as
accuracy, loss, precision, recall, and F1 score, are calculated based on its predictions
on these validation images. The validation set helps to assess how well the model
generalizes to new, unseen data.

(a) this figure represents non-flood image (b) this figure represents flood image

Figure 4.1: Flood and non-flood images from My dataset

33

4.3 Work environment and Tools :
4.3.1 Anaconda
What is Anaconda? Anaconda is a free software package designed to help you with
research and scientific projects. By installing Anaconda, you get access to various
environments where you can code in Python or R. These environments, known as
integrated development environments (IDEs), are platforms or apps that make writ-
ing and developing code much easier, similar to how Microsoft Word or Google Docs
make writing documents simpler.[36]

Figure 4.2: This figure represents the interface of anaconda

4.3.2 Jupyter notebook
Jupyter Notebook is a web-based tool that you can access through your browser. It
allows you to run blocks of code separately, making it very flexible and perfect for
experimenting. You can combine different types of content, such as code, visualiza-
tions, equations, and text, all in one place. This makes it easy to create, share, and

34

present your work in an organized and visually appealing way. Since it’s web-based,
sharing your notebooks with others is simple, making it great for collaboration.[36]

Figure 4.3: Jupyter Notebook interface

4.4 Python (tools and libraries)
4.4.1 Python Programming language
Python is a versatile, high-level programming language that’s easy to learn and use.
It supports object-oriented programming and has powerful data structures. Python
is used in many areas, including web development, game creation, computer vision,
machine learning, robotics, web scraping, data analysis, automation, scripting, scien-
tific computing, and artificial intelligence. This paper explores Python’s popularity,
features, application areas, and popular libraries used in Python projects.[37]

Figure 4.4: Tensorflow logo

35

4.4.2 Tensorflow
TensorFlow is a versatile open-source toolkit, compatible with Python, that greatly
streamlines and speeds up the process of building neural networks and machine learn-
ing algorithms. It’s designed to handle complex numerical computations efficiently,
making it an invaluable tool for researchers, developers, and data scientists alike.[38]

Figure 4.5: tensorflow logo

4.4.3 Keras
Keras is an open-source high-level Neural Network library, which is written in Python
is capable enough to run on Theano, TensorFlow, or CNTK. It was developed by
one of the Google engineers, [39]

Figure 4.6: Keras library

36

4.4.4 Numpy((Numerical Python)
NumPy is the fundamental package for scientific computing in Python. It provides a
powerful multidimensional array object and various related tools, like masked arrays
and matrices. With NumPy, you can perform fast operations on arrays, including
math, logic, shape manipulation, sorting, selecting, I/O, Fourier transforms, basic
linear algebra, statistical operations, random simulations, and much more.[40]

Figure 4.7: Numpy Icon

4.4.5 Matplotlib
Matplotlib is a plotting library designed for the Python programming language, along
with its numerical mathematics extension, NumPy. It offers an object-oriented API,
allowing users to embed plots into applications using various general-purpose GUI
toolkits, such as Tkinter, wxPython, Qt, and GTK. Additionally, Matplotlib includes
a procedural ”pylab” interface that operates based on a state machine, similar to
OpenGL, and is intended to closely mimic MATLAB’s interface, although its use
is generally discouraged. The SciPy library also utilizes Matplotlib for its plotting
capabilities.[40]

37

Figure 4.8: Matplotlib library

4.4.6 Pennylane
A Python library for quantum machine learning, automatic differentiation, and op-
timization of hybrid quantum-classical computations.[41]

Figure 4.9: Pennylane library

4.4.7 Scikit-learn
a popular machine learning library in Python. It provides a wide range of tools
and algorithms for tasks. scikit-learn’s role is to import specific functions related to
metrics evaluation. These functions are used to compute precision, recall, and F1
scores, which are common metrics used to evaluate the performance of classification
models.[40]

38

Figure 4.10: Scikit-learn library

4.4.8 Imutils
A series of convenience functions to make basic image processing functions such
as translation, rotation, resizing, skeletonization, and displaying Matplotlib images
easier with OpenCV and both Python 2.7 and Python 3. [42]

4.5 Plan overview
In this section, we provide a figure that represents the process of our system . This
includes dataset division into training and testing, pre-processing, model creation
and finally model evaluation.

Figure 4.11: process overview

39

4.6 Hybrid model creation :
Leveraging the principles of quantum mechanics in our approach, PennyLane enables
the creation of hybrid models that combine quantum circuits with classical neural
networks, leading to enhanced computational capabilities.

4.6.1 the principles of quantum mechanics
a) Quantum Bits (Qubits):

Unlike classical bits, which can be either 0 or 1, qubits can exist in a superposition
of states, meaning they can be both 0 and 1 simultaneously. This property allows
quantum computers to process a vast amount of information in parallel.

b) Superposition:

Superposition allows quantum systems to explore multiple states simultaneously. For
instance, if you have a system with two qubits, it can represent four states (00, 01,
10, 11) at once. Mathematically, a qubit’s state can be represented as:

|α|2 + |β|2 = 1

Where |ψ⟩|ψ⟩ is the state of the qubit, and α and β are complex numbers representing
the probability amplitudes of the qubit being in state |0⟩|0⟩ and |1⟩|1⟩, respectively.
The probabilities of these states must add up to 1:

|α|2 + |β|2 = 1

40

4.6.2 Model creation with Pre-trained Models and Hybrid
Techniques:

Figure 4.12: This figure represents the structure of the implementation

The figure shows two paths for evaluating the models:

• Classic Model: The modified and trained Model A’ is evaluated directly as
a classic model. The output consists of two categories: Flooded and Non-
Flooded.

• Hybrid Model: After deleting the last layer and adding a new layer, the
model incorporates quantum function simulation. The output categories re-
main the same: Flooded and Non-Flooded.

Detailed explanation :

1) ImageNet Pre-trained Model:

We’ve adapted pretrained models from ImageNet. This serves as the initial model
(Model A) for further modifications.

41

2) Model A - Features Extraction:

The pretrained model (Model A) is used to extract features from the input data.
This step utilizes the knowledge gained from training on the ImageNet dataset.

3) Model A - Layer Modification:

This step involves deleting the last layer of pretrained Model A to replace it with a
new layer.

4) Model A’ - New Layer Addition:

After removing the last layer, a new layer is added to create Model A’, which can
perform a new classification task (e.g., flooded vs. non-flooded).

5) Training:

Training each model on the dataset for its specific task.

4.7 Models Evaluation
we used the classification performance metrics to evaluate our models and We eval-
uated their accuracy on the training and testing data across 30 epochs.

4.7.1 Classification Performance Metrics
Classification performance metrics plays a crucial role and its an essential tools to
evaluate the Efficiency of a classification model.

Accuracy :

Accuracy is the ratio of correctly predicted instances to the total instances.[43]

Accuracy =
TP + TN

TP + FP + FN + TN

42

Precision :

Precision (Precision or positive predictive value) calculate the how many positive
instances where correct out of total predicted positives.[43]

Precision =
TP

TP + FP

Recall:

Recall (also known as sensitivity or true positive rate) is the ratio of correctly pre-
dicted positive instances to all actual positives.[43]

Recall =
TP

TP + FN

F1 score:

The F1 Score: F1 Score is the harmonic mean of precision and recall.[43]

F1Score = 2× Precision×Recall

Precision+Recall

• TP: True Positives

• TN: True Negatives

• FP: False Positives

• FN: False Negatives

4.8 Models Architecture
4.8.1 Model 1 (ResNet50) :
this model based on transfer learning uses a pre-trained ResNet50 model. The use of
ResNet50 allows the model to leverage pre-trained weights and sophisticated feature
extraction , this architecture consists of an input layer for image data, following
a Global Average Pooling layer for dimensionality reduction, a Dropout layer for
regularization, and a Dense layer for final classification Flood or non flood.

43

Figure 4.13: Model 1 ResNet50 architecture

4.8.2 Model 1 (VGG16) :
this model based on transfer learning used a pre-trained VGG16 model.

44

Figure 4.14: Model 2 VGG16 architecture

4.8.3 Model 3 (MobileNetV2) :
this model based on transfer learning used a pre-trained MobileNetV2 model.

45

Figure 4.15: Model3 MobileNetV2 architecture

4.8.4 Model 4 (Cnn custom model) :
I designed a custom Convolutional Neural Network (CNN) model from scratch, and
here is its architecture. The model is designed for image classification tasks, specifi-
cally to classify images as either ”flood” or ”non-flood. The model starts with input
layer with image size 128x128 pixels with three color channels (RGB) , the model
consists of 3 convolutional layers followed by max-pooling layer , first layer uses 32
filters , the second 64 filters and the third used 128 filters each with kernel size of 3x3
, max pooling with size 2x2. after convolutional layer the model includes a flatten
layer that converts from 3D feature map to 1D vector, this vector is passed through
a dense layer which it made a binary classification by sigmoid activation funtion and
finally a dropout layer to prevent overfitting.

46

Figure 4.16: Model 4 Custom Cnn architecture

47

4.9 Programming
4.9.1 Model training
1) Importing libraries:

to use this libraries it should be called and imported

Figure 4.17: Importing Libraries

2) Data path access:

there is two different folder one for train other for validaion.

48

Figure 4.18: Dataset access

3) Data augmentation and preprocess

this figure is responsible for augmenting and preprocessing our training images be-
fore feeding them into your CNN model. Data augmentation helps to improve the
generalization of the model by introducing variability in the training data.

49

Figure 4.19: Data augmentation and preprocess

4) training the model

training the model for 30 epochs and validation metrics for evaluating the model’s
progress

Figure 4.20: training and val

50

4.9.2 Model prediction
Here we are loading the trained model that makes the predictions.

Figure 4.21: loading trained model

1) the predicted images

In this subsection, there are flood and non-flood images predicted by the pre-trained
ResNet50 model.

Figure 4.22: predited non flood image

51

Figure 4.23: predited flood image

4.10 Models’ evaluation
In this section, we will present the model evaluations, graphical presentations, and
classification reports for each model used. We employed transfer learning with three
models: ResNet50, VGG16, and MobileNetV2, in addition to a custom CNN model.

52

4.10.1 Model 1 (ResNet50) :

(a) ResNet50 training and validation Ac-
curacy

(b) ResNet50 training and validation
Loss

Figure 4.24: Model 1 Accuracy and Loss graph

• Accuracy Graphs: these graphs demonstrate the training accuracy and val-
idation accuracy for pre-trained model over the epochs.

• Loss Graphs: These graphs demonstrate the training loss and validation loss
for pre-trained model over the epochs.

Figure 4.25: Resnet50 test accuracy and loss

• Validation Accuracy: The model achieved a high validation accuracy of
90%. This indicates that the model correctly classified 90% of the validation
images , the model has learned well from the training data to unseen data

• Validation Loss: The validation loss of 0.2275 is actually low , which means
that the model’s prediction are close to the actual labels.

53

• Classification report of ResNet50:

Class Precision (%) Recall (%) F1-Score (%)
Flood 86.67 100.00 92.86

Non-Flood 100.00 71.43 83.33

Table 4.1: Classification metrics for ResNet50

the table displays the performance metrics for binary classification , the pre-
tained model show high performance in detecting floods with precision of
86.67% , perfect recall of 100% and F1 score 92.86% ensuring that all instances
are correctly. In the non-flood class , precision is perfect 100% no false positive
but recall is lower 71.4% , the F1 score is 82.33% there is a need for improved
recall.

4.10.2 Model 2 (VGG16):

(a) training and validation Accuracy (b) training and validation Loss

Figure 4.26: Model 2 Accuracy and Loss graph

Figure 4.27: VGG16 test accuracy and loss

54

• Classification report of VGG16:

Class Precision (%) Recall (%) F1-Score (%)
Flood 92.86 100.00 96.30

Non-Flood 100.00 85.71 92.31

Table 4.2: Classification metrics for VGG16

The VGG16 model demonstrates robust performance, achieving a high valida-
tion accuracy close to 95%, with a validation loss of 1.2963. According to the
classification report, for the Flood class, the precision is 92.86%, the recall is
a perfect 100%, and the F1-score is excellent at 96.30%. For the Non-Flood
class, the precision is 100%, but the model shows some misclassification of Non-
Flood instances as Flood, with a recall of 85.71% and an F1-score of 92.31%.
Overall, the model is highly effective in identifying flood instances, there are
some errors in classifying non-flood images.

4.10.3 Model 3 (MobileNetV2):

(a) MobileNetV2 training and validation
Accuracy

(b) MobileNetV2 training and validation
Loss

Figure 4.28: Model 3 Accuracy and Loss graph

55

Figure 4.29: MobileNetV2 test accuracy and loss

• Classification report of MobileNetV2:

Class Precision (%) Recall (%) F1-Score (%)
Flood 92.88 100.00 96.40

Non-Flood 100.00 85.77 92.38

Table 4.3: Classification metrics for MobileNetV2

The MobileNetV2 model performs very well, with a high accuracy of 95% and
a low loss of 0.15. For the Flood class, it achieved a precision of 92.88%, a
perfect recall of 100%, and an F1-score of 96.40%. For the Non-Flood class, the
precision is 100%, recall is 85.77%, and the F1-score is 92.38%. This means the
model is excellent at detecting floods but sometimes misclassifies non-floods as
floods.

56

4.10.4 Model 4 (DenseNet201):

(a) DenseNet201 training and validation
Accuracy

(b) DenseNet201 training and validation
Loss

Figure 4.30: Model 4 Accuracy and Loss graph

Figure 4.31: DenseNet201 test accuracy and loss

• Classification report of DenseNet201:

Precision (%) Recall (%) F1-Score (%)
Flood Class 88.89 88.89 88.89

Non-Flood Class 90.91 90.91 90.91

Table 4.4: Classification Performance Metrics

These results suggest that the DenseNet201 model is effective in classifying
images into flood and non-flood categories with high accuracy and balanced
performance across both classes , These results suggest that the DenseNet201
model is effective in classifying images into flood and non-flood categories with

57

high accuracy and balanced performance across both classes , However, there
is still some improvement in reducing the validation loss further to enhance the
model’s overall reliability and robustness.

4.10.5 Model 5 (Custom CNN):

(a) Custom CNN training and validation
Accuracy

(b) Custom CNN training and validation
Loss

Figure 4.32: Model 4 Accuracy and Loss graph

Figure 4.33: Custom CNN test accuracy and loss

• Classification report of Custom CNN:

Class Precision (%) Recall (%) F1-Score (%)
Flood 91.33 94.80 93.03

Non-Flood 94.80 60.46 73.83

Table 4.5: CNN custom classification metrics

58

4.10.6 Hybrid Model (DenseNet201)

The concept of hybrid classical-quantum models involves integrating quantum
computing approaches to leverage their strengths and enhance the performance
of deep learning and AI applications. This integration leads to the development
of more efficient and powerful models.

Result of Prediction :

Figure 4.34: Images prediction

Graphic presentation :

(a) training and validation Accuracy (b) training and validation Loss

Figure 4.35: Model hybrid (DenseNet201) Accuracy and Loss graph

59

4.10.7 Model evaluation

We conducted our experiment using a pre-trained DenseNet201 model. We
built the model, froze its layers, and added a quantum layer for binary classifi-
cation, achieving an impressive accuracy of 98%. The process is highly efficient,
demonstrating the quantum computer’s capability to handle complex compu-
tations and optimize performance.

Class Precision (%) Recall (%) F1-Score (%)
Flood 99 98 98

Non-Flood 99 98 98

Table 4.6: DenseNet201 hybrid classification report

4.10.8 Hybrid Model (ResNet50)

The hybrid model’s performance, with an accuracy of 81%, demonstrates the
potential of integrating quantum computing into classical deep learning

Result of prediction :

Figure 4.36: Images prediction

60

Graphic presentation :

(a) training and validation Accuracy (b) training and validation Loss

Figure 4.37: Model hybrid (ResNet50) Accuracy and Loss graph

61

4.10.9 Graphical results of other models :

Classic-classic

(a) training and validation Accuracy (b) training and validation Loss

Figure 4.38: Model classic (DenseNet121) Accuracy and Loss graph

(a) training and validation Accuracy (b) training and validation Loss

Figure 4.39: Model classic (DenseNet169) Accuracy and Loss graph

62

(a) training and validation Accuracy (b) training and validation Loss

Figure 4.40: Model classic (InceptionV3) Accuracy and Loss graph

Classic-Quantum

(a) training and validation Accuracy (b) training and validation Loss

Figure 4.41: Model hybrid (DenseNet169) Accuracy and Loss graph

63

(a) training and validation Accuracy (b) training and validation Loss

Figure 4.42: Model hybrid (DenseNet121) Accuracy and Loss graph

(a) training and validation Accuracy (b) training and validation Loss

Figure 4.43: Model hybrid (InceptionV3) Accuracy and Loss graph

64

(a) training and validation Accuracy (b) training and validation Loss

Figure 4.44: Model hybrid (VGG16) Accuracy and Loss graph

4.11 Comparison of Results

4.11.1 comparison of classical models with the state of
the art

The table below is a summary for comparing results (Averaged F1-score of our
models with other related work.

65

Related works Binary classifier Averaged F1-Score (%)
Danielle Dias and Ulisses Dias
(2018)

DenseNet-121 73.27

MobileNet 56.82
InceptionV3 62.69

Nouioua Tarek (2023) ResNet50 68.66
VGG16 60
InceptionV3 58.33

My Models ResNet50 88.10
VGG16 94.31
MobileNetV2 94.39
DenseNet201 88.89
custom CNN 83.43
InceptionV3 93.67

Table 4.7: Comparison of various binary classifiers and their F1-score.

4.11.2 Comparison of Classical and Hybrid Models

MODELS Classical-Classical
accuracy%

Classical-
Quantic

Accuracy
%

ResNet-50 90 81
VGG-16 84 81
MobileNet-V2 95 95
DenseNet201 97 98
DenseNet169 99 97
DenseNet121 97 95
InceptionV3 92 90

Table 4.8: Accuracy Comparison of Classical and Hybrid Models.

Note : We have tested also DenseNet169, DenseNet121 and InceptionV3 for
both classical-classical and classical-quantum Transfer learning models, where
we have reported their accuracy results with the other models discussed in the
previous section in Table .

66

4.12 conclusion:

In this chapter, we demonstrated our contribution, which involves a deep learn-
ing model and transfer learning technique for the classification of flood and
non-flood satellite images. We discussed the results and compared them with
other models.

67

General Conclusion
this project focused on developing and evaluating deep learning models for
classifying flood and non-flood satellite images. Through the utilization of
various CNN architectures and transfer learning techniques, we aimed to im-
prove the accuracy of flood detection from satellite imagery. the custom CNN
model achieved the highest accuracy of 96.7%. Additionally, transfer learn-
ing with pre-trained models like VGG-16 and MobileNet-V2 showed promising
results, each achieving an accuracy of 95However, the hybrid model, integrat-
ing quantum computing approaches, The DenseNet201 model demonstrated
an impressive accuracy of 98%, highlighting its effectiveness in flood detection
tasks and ResNet50 demonstrated accuracy of 81% This suggests that while
hybrid classical-quantum models hold potential, there are challenges and lim-
itations to be addressed, including hardware constraints. In the future, more
research is necessary to develop advanced techniques that make AI-based flood
detection systems more accurate and reliable.

68

Bibliography

[1] Nouioua Tarek. Flood detection in satellite images using deep learning.
12 2023.

[2] Tensorflow . https://ceur-ws.org/Vol-2283/MediaEval18paper61.pdf/.
[3] Tensorflow . https://gemini.google.com/app/.
[4] Rahul Chauhan, Kamal Kumar Ghanshala, and R.C Joshi. Convolutional

neural network (cnn) for image detection and recognition. In 2018 First
International Conference on Secure Cyber Computing and Communication
(ICSCCC), pages 278–282, 2018.

[5] Muhammad Zakaria and Waheb Al-Areeqi. Flood monitoring and warning
systems: A brief review. Journal of Southwest Jiaotong University, 56:140–
156, 06 2021.

[6] Danielle Dias and Ulisses Dias. Flood detection from social multimedia
and satellite images using ensemble and transfer learning with cnn ar-
chitectures. In Martha Larson, Piyush Arora, Claire-Hélène Demarty,
Michael Riegler, Benjamin Bischke, Emmanuel Dellandréa, Mathias Lux,
Alastair Porter, and Gareth J. F. Jones, editors, Working Notes Proceed-
ings of the MediaEval 2018 Workshop, Sophia Antipolis, France, 29-31 Oc-
tober 2018, volume 2283 of CEUR Workshop Proceedings. CEUR-WS.org,
2018.

[7] transfer-learning . https://skyengine.ai/se/skyengine-blog/128-what-is-
transfer-learning/.

[8] AN Ramesh, Chandra Kambhampati, John RT Monson, and PJ Drew.
Artificial intelligence in medicine. Annals of the Royal College of Surgeons
of England, 86(5):334, 2004.

[9] Kouassi Konan Jean-Claude. A comprehensive overview of artificial intel-
ligence (now published in proceedings of the cs it conference - cscp, vol.
12, no. 23, pp. 173-194, doi:10.5121/csit.2022.122314), 10 2022.

69

[10] artificial intelligence . https://insights.btoes.com/what-is-artificial-
intelligence/.

[11] Batta Mahesh. Machine learning algorithms-a review. International Jour-
nal of Science and Research (IJSR).[Internet], 9(1):381–386, 2020.

[12] Kouassi Konan Jean-Claude. A comprehensive overview of artificial intel-
ligence (now published in proceedings of the cs it conference - cscp, vol.
12, no. 23, pp. 173-194, doi:10.5121/csit.2022.122314), 10 2022.

[13] transfer-learning . https://medium.com/@metehankozan/supervised-and-
unsupervised-learning-an-intuitive-approach-cd8f8f64b644/.

[14] Jayvadan Patel and Anita Patel. Chapter 10 - artificial neural networking
in controlled drug delivery. In Munish Puri, Yashwant Pathak, Vijay Ku-
mar Sutariya, Srinivas Tipparaju, and Wilfrido Moreno, editors, Artificial
Neural Network for Drug Design, Delivery and Disposition, pages 195–
218. Academic Press, Boston, 2016.

[15] Fionn Murtagh. Multilayer perceptrons for classification and regression.
Neurocomputing, 2(5):183–197, 1991.

[16] S. Abinaya and M.K. Kavitha Devi. Chapter 12 - enhancing crop pro-
ductivity through autoencoder-based disease detection and context-aware
remedy recommendation system. In Mohammad Ayoub Khan, Rijwan
Khan, and Mohammad Aslam Ansari, editors, Application of Machine
Learning in Agriculture, pages 239–262. Academic Press, 2022.

[17] İsmail Akgül. ACTIVATION FUNCTIONS USED IN ARTIFICIAL
NEURAL NETWORKS, pages 41–58. 10 2023.

[18] Sagar Sharma, Simone Sharma, and Anidhya Athaiya. Activation func-
tions in neural networks. Towards Data Sci, 6(12):310–316, 2017.

[19] Ahmed Afif Monrat, Raihan Islam, Mohammad Hossain, and Karl Ander-
sson. Challenges and Opportunities of Using Big Data for Assessing Flood
Risks: Trends, Issues, and Challenges, pages 31–42. 07 2018.

[20] Chandrahas Mishra and D. Gupta. Deep machine learning and neural net-
works: An overview. IAES International Journal of Artificial Intelligence
(IJ-AI), 6:66, 06 2017.

[21] transfer-learning . https://levity.ai/blog/difference-machine-learning-
deep-learning/.

[22] cnn . https://www.analyticsvidhya.com/blog/2020/10/what-is-the-
convolutional-neural-network-architecture/.

70

[23] Tensorflow . https://www.techtarget.com/searchdatamanagement/definition/TensorFlow/.
[24] Tensorflow . https://techvidvan.com/tutorials/tensorflow-applications/.
[25] Keras applications. https://keras.io/api/applications/.
[26] vgg-very-deep-convolutional-networks. ://viso.ai/deep-learning/vgg-very-

deep-convolutional-networks/.
[27] Residual Networks (ResNet) in Deep Learning.

https://www.geeksforgeeks.org/vgg-16-cnn-model/.
[28] Thanh-Hai Nguyen, Thanh-Nghia Nguyen, and Ba-Viet Ngo. A vgg-19

model with transfer learning and image segmentation for classification of
tomato leaf disease. AgriEngineering, 4(4):871–887, 2022.

[29] Jiazhi Liang. Image classification based on resnet. Journal of Physics:
Conference Series, 1634:012110, 09 2020.

[30] Ulzhalgas Seidaliyeva, Daryn Akhmetov, Lyazzat Ilipbayeva, and Eric
Matson. Real-time and accurate drone detection in a video with a static
background. Sensors, 20:3856, 07 2020.

[31] Spiros Georgakopoulos, K. Kottari, Konstantinos Delibasis, Vassilis Pla-
gianakos, and Ilias Maglogiannis. Improving the performance of convolu-
tional neural network for skin image classification using the response of
image analysis filters. Neural Computing and Applications, 31, 06 2019.

[32] Zhongling Huang, Zongxu Pan, and Bin Lei. Transfer learning with deep
convolutional neural network for sar target classification with limited la-
beled data. Remote Sensing, 9:907, 08 2017.

[33] Sajja Tulasi Krishna and Hemantha kumar Kalluri. Deep learning and
transfer learning approaches for image classification. 06 2019.

[34] Nouioua Tarek and Belbachir Hafid. The quantum computer and the
security of information systems. pages 1–9, 09 2021.

[35] Nouioua Tarek and Ahmed Belbachir. The quantum computer for ac-
celerating image processing and strengthening the security of information
systems. Chinese Journal of Physics, 81, 11 2022.

[36] Damien Rolon-Mérette, Matt Ross, Thaddé Rolon-Mérette, and Kinsey
Church. Introduction to anaconda and python: Installation and setup.
Quant. Methods Psychol, 16(5):S3–S11, 2016.

[37] AL Sayeth Saabith, T Vinothraj, and M Fareez. Popular python libraries
and their application domains. International Journal of Advance Engi-
neering and Research Development, 7(11), 2020.

71

[38] Pramod Singh, Avinash Manure, Pramod Singh, and Avinash Manure.
Introduction to tensorflow 2.0. Learn TensorFlow 2.0: Implement Machine
Learning and Deep Learning Models with Python, pages 1–24, 2020.

[39] Navin Kumar Manaswi. Understanding and Working with Keras, pages
31–43. Apress, Berkeley, CA, 2018.

[40] MMM Fareez, Vinothraj Thangarajah, and Sayeth Saabith. Popular
python libraries and their application domains. 11 2020.

[41] Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, Shah-
nawaz Ahmed, Vishnu Ajith, M Sohaib Alam, Guillermo Alonso-Linaje,
B AkashNarayanan, Ali Asadi, et al. Pennylane: Automatic differ-
entiation of hybrid quantum-classical computations. arXiv preprint
arXiv:1811.04968, 2018.

[42] imutils . https://chatgpt.com/.
[43] Mohammad Hossin and Md Nasir Sulaiman. A review on evaluation met-

rics for data classification evaluations. International journal of data mining
& knowledge management process, 5(2):1, 2015.

72

