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 شكر وعرفان
نهاء هذه المذكرة، أ شكر الله  الحمد لله الذي وفقني وأ عانني على ا 

على ما أ س بغه عليا من نعم وعلى تس يير السبيل  وتعالىس بحانه 

في كل وقت وكل  ومنحي العزم والصبر ل تمامها. فله الحمد والشكر

 حين.

 كما أ توجه بشكري وامتناني ا لى من مهد لي طريق العلم فأ عانني وكان لي خير 

 لها بصمات '' الذي كانت قصري احلام''  البروفسور قدوة أ س تاذي المشرف

.الدائم لي اودعمه  اواضحة من خلال توجيهاته  

 كما أ شكر أ عضاء لجنة المناقشة التي شرفتني بقبولها مناقشة مذكرتي،

 ممتحنا" مزهود رش يدة"  ةرئيسا والاس تاذ ''جدي نذير'' الاس تاذ

 .السديدةاللذين لشك أ نهما س يفيضون لي بتوجيهاتهما القيمة وملاحظاتهما 

لى كل  كما أ تقدم بالشكر لكل أ ساتذتي في تكويني خلال مسيرتي الدراس ية وا 

 الاحترامفله مني خالص من قدم لي يد العون من قريب أ و من بعيد 

 والتقدير

 أ سأ ل الله أ ن يجازي الجميع كل الخير 

 



 

هداء   ا 

 

 

 

 
من قال انا لها ...نالها     

بها.   ت وانا لها وان ابت رغما عنها اتي   
نلتها وعانقت اليوم مجدا عظيما لم يكن الحلم قريبا ول طريق سهلا ولكن وصلت والحمد لله حبا وشكرا  

 الغايات   أ سمى   أ دركت الذي بفضله    الحمدالله   ، وامتنانا 
يمة  التي تحملت كل العثرات واكملت رغم الصعوبات الى    اهدي بكل حب مذكرة تخرجي الى نفسي العظ

شخاص واعز الناس على روح   أ عظم  ال   
 ابي''   ، ام   ، جدتي   ، جدي '' 

 الى من دامت لي اياديهم وقت ضعفي الى ضلعي الثابت وامان قلبي اخوالي  
 حمزة''   ، الدينس يف    ، لطفي'' 

 الى من اعطاني يد العون خالتي 

 وردة''   ، نوه '' 
عند ضعفي زارعين الثقة وال صرار بداخلي س ندي والكتف الذي استند  الى من ساندوني بكل حب  

العزيز   وأ خ علية دائما اخواتي    
 رفيق''   ، روان ، وصال   ، تقوى   ، الهدى نور    ، كوثر '' 

 الى القلوب الطاهرة وملائكة العائلة الاحفاد 
 اس يد''   ، ساجد   ، ريتال   ، الرحمان ''هبة  

ولى والخطوة   خيرة   ما قبل الى رفاق الخطوة ال  ال   

 '' فدوى   ، يسرى ''  



Abstract 
 

In this memory, two typical chaotic maps with sine terms serve as the 

basis for studying the dynamics of two fractional-order chaotic maps. 

Using numerical methods including phase plots, bifurcation diagrams, 

Lyapunov exponents, and 0–1 test, the dynamic behavior of this map is 

examined. It is demonstrated that the suggested fractional maps display 

a variety of distinct dynamical behaviors, including coexisting 

attractors, with a change in fractional order. The charting of a 

bifurcation diagram for two symmetric beginning conditions illustrates 

the existence of coexistence attractors. Furthermore, three control 

strategies are presented. The suggested maps' states are stabilized, and 

their convergence to zero is guaranteed by the first two controllers. 

while the last synchronizes two non-identical fractional maps 

asymptotically. The conclusions are validated using numerical 

outcomes. 

Keywords: Chaos, discrete fractional calculus, sine maps. 

 

  

 
 

 

 

 

 

 

 



Résumé 

Dans ce mémoire, deux cartes chaotiques typiques avec des termes 

sinus servent de base pour l'étude de la dynamique de deux cartes 

chaotiques d'ordre fractionnel. En utilisant des méthodes numériques, y 

compris les plans de phase, les diagrammes de bifurcation, les 

exponents de Lyapunov et le test 0-1, le comportement dynamique de 

ces cartes est examiné. Il est démontré que les cartes fractionnelles 

suggérées montrent une variété de comportements dynamiques 

distincts, compris les attracteurs qui existent ensemble en même temps, 

avec un changement d'ordre fractionnaire.Dessiner un diagramme de 

bifurcation pour deux conditions initiales identiques illustre que les 

attracteurs sont existent ensemble en même temps. En outre, trois 

observations de contrôle sont affichées. Les états des cartes suggérées 

sont stabilisés, et leur convergence vers zéro est garantie par les deux 

premiers contrôleurs. Tandis que cette dernière synchronise 

asymptotiquement deux cartes fractionnaires non identiques, les 

conclusions sont validées en utilisant de résultats numériques. 

Mots-clés : Chaos, calcul fractionnel discrète, cartes sinus. 

   



 ملخص 
 

 
المذكرةفي هذ ستخدم خريطتان فوضويتان نموذجيتان تحتويان على ن  ،  ه 

مصطلحات جيبية كقاعدة لدراسة ديناميات خريطتين فوضويتين من الرتبة  
الكسرية. باستخدام الطرق العددية، بما في ذلك مخططات الطور، ورسوم 

رَكَّبات ليابونوف، واختبار   ، يتم فحص السلوك الديناميكي  1-0التشعب، وم 
الخريطة. مجموعة    لهذه  ت ظهر  المقترحة  الكسرية  الخرائط  أن  إثبات  تم 

واجدة متنوعة من السلوكيات الديناميكية المميزة، بما في ذلك الجاذبات المت
الوقت نفس  في  تشعب  معا  رسم  توضح  الكسرية.  الرتبة  في  تغيير  مع   ،

ابتدائيين متماثلين وجود جاذبات الوقتمت  لشرطين  نفس  في  معا  . واجدة 
لى ذلك، ت عرض ثلاث استراتيجيات للتحكم. يتم استقرار حالات بالإضافة إ 

الخرائط المقترحة، ويتم ضمان تقاربها إلى الصفر بواسطة أول متحكمين، 
بينما يقوم المتحكم الأخير بمزامنة خريطتين كسريتين غير متطابقتين بشكل  

 غير متماثل. يتم التحقق من الاستنتاجات باستخدام النتائج العددية.
 .الفوضى، الحساب الكسري المتقطع، الخرائط الجيبية الكلمات المفتاحية:
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General Introduction

The Chaotic dynamical systems which originate from both natural and engineered occurrences,

have trajectory patterns that resemble randomness, significant sensitivity to initial conditions, and

ergodicity, with attractors that are distinguished by intricate fractal configurations. Chaos maps

in discrete-time systems, extensively scrutinized for their applications in science and engineering,

are acknowledged. Various chaotic maps have been suggested and utilized in diverse domains,

such as the Lozi[22] system, generalized Hanon map, Lorenz map, Stefanski map, Rossler map,

Arnold map, and Grassi-Miller map. Discrete-time chaotic dynamical systems have been a focal

point of exploration in chaos control, synchronization, and practical uses such as secure commu-

nications for encryption and synchronization using chaos. Fractional calculus serves as a potent

tool for mathematical modeling, providing memory and non-locality to accurately delineate com-

plex non-linear phenomena. Recent research endeavors have focused on the stability analysis of

linear and nonlinear fractional discrete systems, employing techniques such as eigenvalue evalua-

tion and extensions of the direct Lyapunov method.Fractional-order discrete maps provide a novel

level of freedom and can be utilized to capture concealed facets of real-world phenomena in ecol-

ogy. These maps exhibit sensitivity to minute perturbations in parameters and initial conditions,

as well as variations in fractional orders. The investigation of the dynamics of fractional-order

discrete maps is conducted due to their uncomplicated forms and diverse dynamics, which render

them suitable for system analysis and computational purposes. The focal point of the disserta-

tion revolves around distinct fractional-order discrete time systems characterized by the Caputo-

like difference operator, with an examination of their dynamics carried out numerically.To assess

the advantages of fractional-order maps, the dissertation evaluates their asymptotic convergence

through stability analysis of linear fractional discrete systems. Additionally, the exploration of

control aspects of fractional maps, encompassing stabilization and synchronization techniques,is

undertaken to unveil novel intricate dynamical behaviors. The dynamics of discrete systems in a

state of chaos and fractional discrete systems are provided. additionally attempts to investigate

synchronization in fractional discrete systems.For that reason, this memory is divided into four

chapters.

Chapter 1:explains the key elements of the chaos theory as well as techniques for identifying

chaos.

Chapter 2:devoted to explaining the fundamental ideas of discrete fractional calculus, includ-

ing the theory of the stability of fractionarily discrete systems, the definition of fractionary sum

operators, and Caputo’s fractional difference.

Chapter 3:In this chapter, we presented the definitions of synchronization, and then we reviewed

5



the different types of

synchronization while presenting the active observer method, using a numerical example to prove

the validity of this method.

Chapter 4:We studied two Sine-Term and sinusoidal fractal maps, studying their stability using

the appropriate observer, and then we synchronized the two corresponding sinusoidal fractal

systems, the master and the slave, using complete synchronization. To study stability, we used

methd linear stability with appropriate observer control.

6



Notation

Γ : Gamma function.

t(α) : Falling function.

V :Lyapunov function.

xf :Fixed point.

λi :The eigenvalues.

‖.‖ :The norm.

lim:The limit.

∆−υ :Fractional sum operators.
C∆υ

a :Caputo operator for difference.

e(t) :Error.

U :Controller

Rn:The set of dimensional real n:
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Chapter 1

Dynamics of Discrete Systems in a State of

Chaos

1.1 Introduction

The aim of this chapter is to provide the main keys to studying behavior of a chaotics dynamics

systems with a particular emphasis on discrete time, it is a system that will produce diferent be-

haviors in the long term when the initial conditions are disturbed very slightly. The sensibility

to the initial conditions of chaotic systems made chaos an undesirable situation.We introduce, in

particular, the notions of trajectory, flow, phase space, phase portrait, we also present an overview

of the trajectories. Nowadays, chaos theory has invaded most sciences. Indeed, by name-many

mathematical models of physical processes, biological phenomena, chemical reactions and eco-

nomic systems were defined using systems chaotic dynamics in discrete time. In this chapter we

give the notions of trajectory, flow, phase space, phase portrait . In com-starting by giving some

characteristics of chaos, we focus on the attractors Strange as well as Chaos Detection. so we let

give a famous example on chaotic systems in discrete time.

1.2 Discrete system

Discrete system discrete dynamic system is a set of recurrent algebraic equations described by:

XK+1 = F (XK , µ) (1.1)

where: F is the recurrence matrix function,XK ∈ U ⊆ Rn the state vector at the moment tk and

v ∈ V ⊆ Rp the parameter vector and k ∈ N.

8



Chapter 1. Dynamics of Discrete Systems in a State of Chaos

1.3 Notions of chaos theory

Definition 1.1 ”Trajectory”

Either x0 is a starting condition or x(t, x0) is the solution to the autonomous dynamic system. The

collection of points ∀t > 0, x(t, x0) represents the trajectory in the state space that leads to point

x0 at the starting time.

Definition 1.2 ”float”

Either x(x0, t), x0 ∈ D , is a solution of the autonomous dynamic system with initial condition

x(0) = x0. The application φt : D → Rn, defined byφt(x0) = x(x0, t) , is referred to as the system’s

float.

Definition 1.3 ”Phase Space”

The set of possible states of a dynamic system can alternatively be defined as an abstract space,

with each variable representing a dimension required to describe the system at a given moment,

and the degree of freedom defining the phase space. It represents the order that corresponds to

the dimension of the state space.

Definition 1.4 ”Phase Portrait”

A phase portrait is a graph that gives the appearance of trajectories in the phase space.

Definition 1.5 ”Dissipative system”

A dissipative system is one in which the volume of the phase space shrinks over time. Because the

volume of the phase space decreases, a dissipative system is usually distinguished by the presence

of an attractor. A non-dissipative system is categorized as conservative.

1.3.1 Attractors

Examining the asymptotic behavior of a dynamic system driven by many non-linear diarrheal

equations frequently exposes the concept of an attractor, which is the compact set of the phase

space that this entity maintains invariant and towards which all of the system’s paths converge.

A closed sub-region of the phase space that "attracted" all other orbits to it is commonly referred

to as an attractors Some mathematical determinations of attraction are quoted here:

1.3. Notions of chaos theory 9



Chapter 1. Dynamics of Discrete Systems in a State of Chaos

Definition 1.6 :(Guckenheimer et Holmes)[3]

Whether (X, f) is a discrete dynamic system, a subpart A of X is called attractor if and only if the

following conditions are met:

1. A is closed,

2. A is positively invariant,

3. A is attractive, i.e. there is an open neighborhood U of A such that:

• U is positively invariant,

• U is attracted by A;∀u ∈ U, limt→∞ d(f t (u) , A) = 0.

1.3.2 The Strange Attractors

The geometric shape of a weird attractor is complex and fractal, existing in finite space and

having a dimension that is not a decimal integer. Its trajectory is complex, and practically none

of the attractor’s trajectories ever go through the same location twice, which means the aperiodic

nature of every trajectory. Trajectories’ apparent conflicting tendencies to diverge on the attractor

and to be attracted to it give rise to this peculiar nature. Real systems are dissipative, meaning

that frictional forces cause trajectories to converge towards the attractor, which is why attraction

occurs. On the other hand, divergence results from initial condition sensitivity. In contrast to

the local phenomena of exponential divergence between two trajectories, attractors with finite

dimensions are unable to diverge infinitely and must fold back onto themselves. Consequently, the

weird attractor is the outcome of three concurrent ,contraction, stretching, and folding processes

result in a distinctive structure that is folded, stretched, and horseshoe-shaped. These attractors

are known as weird attractors and are the hallmark of chaos because of their fractal geometry.

The verification of chaotic behavior and its quantitative description inside the attraction basin are

made possible by this signature. An example of a "definition" of an odd attractor would be as

follows:

As long as there is a neighborhood U of A in the phase space, a bounded subset as A can be

thought of as a peculiar attractor for a transformation T of the space. Stated otherwise, for any

point in A, there exists a ballshaped region that, while abiding by the following set of conditions,

includes that particular point and is confined within the real number system R:

Attraction: Since U is an absorbing zone, all orbits with U as their beginning point are completely

enclosed within U . Furthermore, each orbit of this kind approaches and stays as near to A as is

desired.

1.3. Notions of chaos theory 10
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Sensitivity: Initial conditions have a significant impact on orbits whose initial point is in U .

Mixing property: There are orbits starting in U that pass as close to any point in A as is desired.

1.4 Definition of chaos

Before we state the definition of chaos, some necessary concepts need to be defined

Let f : (X, d)→ (X, d) where (X, d) is a metric space and

x(k + 1) = f(x(k)); k = 0, 1, . . . (1.2)

Definition 1.7 The map f is said to have sensitive dependence on the initial conditions, if there exists

ε > 0 such that for any x(0) ∈ X and any open U containing x(0), there exists y(0) ∈ U and k ∈ Z+

satisfying

d(fk (x (0)) , fk (y (0))) > ε (1.3)

Definition 1.8 Let f be a map on a metric space (X, d). Then f is said to be (topologically) transitive

if for any nonempty open sets U and V , there exists a positive integer k such that

fk (U) ∩ V 6= θ (1.4)

Definition 1.9 Let Y be a subset of an arbitrary set X. Then, Y is said to be dense in X if for any

x ∈ X, there exists a sequence (yn)n∈N ∈ Y such that limn→∞(yn) = x. i.e, the closure of Y is X.

In this stage, we are ready to put the definition of chaos due to Devaney.

Theorem 1.1 f : X → X is said to be chaotic if

• f possesses sensitivity to initial values,

• f is topologically transitive,

• The set of periodic points is dense in X.

Although there isn’t a single, widely accepted definition of chaos, this definition is still the most

fascinating because it is based on ideas that are easily understood.

1.4. Definition of chaos 11
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1.5 Characteristics of chaos

1.5.1 The non-linearity

The method used to forecast actual occurrences produced by dynamic systems is to build a mathe-

matical model that demonstrates the connection between a number of objects and a set of causes.

The phenomenon is linear if this relationship is an operation of proportionality. The outcome is

not proportionate to the cause when the phenomenon is nonlinear. A linear system can not be

chaotic; generally speaking, a chaotic system is a nonlinear dynamic system.

1.5.2 Determinism

Deterministic systems are those whose evolution can be predicted or calculated.with time. the

exact understanding of the system’s state at any one time,the first time, made it possible to calcu-

late the system’s condition precisely at any other time.It is utterly impossible to forecast the course

of a random phenomenon.any particulate.Thus, the basic deterministic, non-probability rules of

a chaotic system exist.Usually, it is controlled by recognized nonlinear diarrheal equations.hence

by unbending, totally deterministic laws.

1.5.3 L’aspect arbitraire

The system’s points fill the phase space if the movement is random.random: no discernible struc-

ture. In a chaotic movement, the points are random at first glance. However, upon observing

the system as a whole, it has been noted for a while that the dots create a specific form. The

figure(1.1) depicts the chaotic dynamic system’s random emergence in. The Rössler system of

currenc

1.5. Characteristics of chaos 12
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Figure 1.1: The random aspect of the Rössler system.

1.5.4 Sensitivity to initial conditions

Another property of chaotic phenomena is that they are very sensitive to disturbances. Eduard

Lorenz had just discovered that in nonlinear systems, differences in the initial conditions would

generate entirely different trajectories. Lorenz illustrated this fact by eating a butterfly. For

two initially very close, arbitrary initial conditions, the two trajectories corresponding to these

initial data diverge exponentially. Subsequently, the two trajectories are incomparable. One of

the essential properties of chaos is, therefore, this sensitivity to initial conditions.which can be

characterized by measuring the rates of divergence of trajectories from a mathematical point of

view, it is said that f shows a sensitive dependence on initial conditions when:

∀ε > 0,∃δ > 0,∀x ∈ D, ∃ (y, p) ∈ D; ‖x− y‖ < ε⇒ ‖fp(x)− fp(y)‖ > δ. (1.5)

1.5.5 Power Spectrum

Therefore, in such a system, the variable’s spectrum only comprises one assembly of strips that

are situated at wi pulses, to their mwi harmonics with wi, to combinations linear frequencies

mwi + nwj with a spectrum consisting of m,n ∈ Z Quasi-periodic frequencies are those with

many frequencies but no one ratio. The presence of Broad spectrum is a necessary component of

a system’s chaotic dynamics.

1.5. Characteristics of chaos 13
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1.6 Chaos Detection

There are several methods to determine whether nonlinear systems are chaotic or not. They are

generally not very numerous, nor are they spread over a very long period of time across the system

studied. Two of the most commonly used methods have been chosen: the fractal dimension and

the Lyapunov exponents.

1.6.1 Lyapunov exponents

Chaotic evolution is difficult to understand, because the divergence of trajectories on the attractor

is rapid. When this divergence grows exponentially with time for almost all initial conditions close

to a given point, we have the phenomenon of sibility to initial conditions, an idea to which the

Lyapounov exponents are attached, which give a quantitative measure of this local exponential

divergence and measure in fact the degree of sensitivity of a dynamic system. Let us first recall

this formula and let’s see how Lyapunov was able to deduce such a formula.

λ = lim
n→+∞

1

n

n∑
i=1

ln |f ′ (xi−1) | (1.6)

1.6.2 Fractal dimension

If, after calculating the dimension of the attractor of a system studied, we obtain a non-integer

positive value, this means that the system has a strange attractor. we have several dimensions

such as the Kolmogorov dimension, dimension correlation, Lyapunov dimension. There is a slight

diference between each of these dimensions, but they all characterize,the strange attractor with

its fractal dimension and satisfy the following three properties:

1. A ⊂ B ⇒ d (A) ≤ d(B).

2. A = 0⇒ d (A) = 0.

3. d(A×B) = d (A)× d (B) .

we will know Lyapunov dimention, the most famous and widely used dimension as follows:

1.6. Chaos Detection 14
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Dimension of Lyapunov

This dimension is determined by Li and Yorke [14] and is given by :

dl = m+

∑m
i=1 λi
|λm+1|

(1.7)

Ranking Lyapunov’s exhibitors of the attractor of a dynamic system by :

λ1 ≥ λ2 ≥ . . . ≥ λm and m the largest integers such as :

m∑
i=1

λi ≥ 0 and
m+1∑
i=1

λi ≤ 0. (1.8)

1.7 Routes to chaos

It is yet unknown what circumstances lead a system to become chaotic. On the other hand,

there are various ways in which a regular dynamic system can evolve toward chaos.Assume for

the moment that a control parameter influences the dynamics under study [[4], [5], [6]].If this

parameter is changed, the system may go from a stationary state to a periodic state, follow a

transition scenario, and eventually enter a chaotic state if a particular threshold is reached. The

change from a fixed point to chaos can be described by a number of situations.The transition from

a fixed point to chaos is typically characterized by abrupt changes known as bifurcations rather

than a steady process. The abrupt change from one dynamic regime to a different, qualitatively

distinct one is indicated by a bifurcation. Each of these situations

1.7.1 Period doubling

The most well-known example of this shift toward chaos is presumably this one. The frequency

of the periodic regime doubles when the experiment’s control parameter is increased, and it is

subsequently multiplied by 4, 8, 16, and so on. As the doublings get closer together, they trend

to an accumulating point, at which an infinite frequency would presumably be obtained. This is

the moment when chaos sets in with in the system.Robert May [7] has specifically examined it in

population dynamics using the logistic map Xn+1 = rXn (1−Xn). The series either converges to

a fixed point or does not, depending on the value of the parameter r. When an increases beyond

3, the system splits.Indicating that, around the fixed point, it oscillates between two values. This

is referred to as a period−2 attractor cycle. These two attractors go away from the fixed point

until a fresh bifurcation happens when r ieigenbaum came to understand the existence of a type

1.7. Routes to chaos 15
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of universality in this shift towards chaos a cascade of ncreases further. Every point splits, giving

rise to a period−4 attractor cycle.This is referred to as period doubling. Fperiod doubling from

this case.

1.7.2 Indeterminacy

In this situation, chaotic bursts arise erratically in a regularly oscillating system, which is charac-

terized by indeterminacy. After a particular period of time, or "regularity," the system maintains

a periodic or nearly periodic regime before destabilizing suddenly to create a chaotic explosion

of sorts. After that, it stabilizes once more, paving the way for a subsequent burst. It has been

noted that as one passes further away from the critical value of the constraint that caused the

chaotic phases to occur, their frequency and length tend to grow. This transition phenomenon

occurs when the limit cycle, which corresponds to the periodic state, bifurcates subcritically and

there isn’t an attractor in the vicinity. In the Rössler system, this is what is seen [8].

1.7.3 Quasi-periodicity

Ruelle and Takens’ (1971) theoretical work [10] emphasized the quasi-periodicity scenario, which

was exemplified by the Lorenz model (1963) [9]. Numerous studies, including the well-known

thermohydrodynamic ones, have confirmed cette situation.Among other things, the Belousov-

Zhabotinsky reaction in chemistry and the Rayleigh-Bénard convection in a tiny box. The dy-

namical system’s "competition" between various frequences is what leads to chaos. A seconde

frequency emerge quand a parameter is changed in a system that exhibits periodic behavior at

a single frequency. The behavior is periodic if the ratio between the two frequences is reason-

able. Nevertheless, if the ratio is The behavior is quasi-periodic, irrational, and, in this instance,

the trajectories span the surface of a torus. When we adjust the setting once again, a third fre-

quency starts to show up, and so on, till chaos. Additionally, some systems go straight from two

frequencies to chaos.

1.8 0–1 Test

The benefit of this approach is that the test may be done right away to the series data x(n) and

does not require phase space reconstruction: The outcome is either 0 or 1, depending on how

regular or chaotic the system is. The actual digits 1 and 0 are not here,therefore the test is still

good as long as K is close enough to them. In practice, we applied the 0− 1 test method directly

to the state x(n). For an arbitrary constant c in (0, π),we calculate the translation variables

1.8. 0—1 Test 16
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pc (n) =

n∑
j=1

x (j) cos (jc) , qc (n) =

n∑
j=1

x(j) sin (jc) , n = 1, 2, . . . , N. (1.9)

The dynamics of the translation components (pc, qc) provide a visual test. Basically,if the dynamic

is regular then the behavior of trajectories in the (pc − qc) plane is bounded, whereas if the dy-

namic is chaotic then the (pc − qc) trajectories depict Brownian like behavior.In order to examine

the diffusive behavior of pc and qc, we define the meawn square displacement as:

Mc (n) = lim
N→∞

1

N

N∑
j=1

(
(pc (j + n)− pc(j))2 + (qc(j + n)− qc(j))2

)
, n ≤ N

10
(1.10)

with the asymptotic growth rate of

Kc = lim
n→∞

logMc (n)

log c
(1.11)

In practice, the final result K can be determined numerically by computing the median of Kc

When K ' 1, the behavior is classified as chaotic and when K is close to 0 the behavior is regular.

In order to further confirm the influence of the fractional order υ = (υ1, υ2) on the properties of

the fractional-order maps, we apply a new approach proposed by Gottwald and Melbourne called

the 0− 1 test method.

1.9 Applications for chaos

• Physics: In order to understand the behavior of complex systems including fluid dynamics,

online dynamics, and celestial mechanics, chaos theory has been employed in physics.

• Engineering: To improve the design and administration of complex systems, such as power

plants, chemical reactors, and communication networks, chaos theory has been used to

engineering.

• Biology: The workings of biological systems, such as brain networks, heart cycles, and

ecological systems, are understood through the application of chaos theory in biology.

• Finance: To explain market behavior and create models that can forecast market volatility,

chaos theory has been applied to finance.

• computer science: Algorithms for data analysis and optimization have been developed us-

ing chaos theory.Chaos theory has been utilized to music and art to examine the relationship

between creativity and unpredictability and to generate new forms of expression.

1.9. Applications for chaos 17
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Figure 1.2: The Hénon attractor for a = 1.4 and b = 0.3.

1.10 Examples for discrete systems

Example 1.1 01 The Hénon system[22]

{
Xk+1 = 1− aX2

k + Yk

Yk+1 = bXk

while a and b are parameters.

Example 1.2 02 The Lozi system[23]

{
Xk+1 = 1− a|Xk|+ bYk

Yk+1 = Xk

where the system’s nonlinear behavior is controlled by the parameters a and b.

1.10. Examples for discrete systems 18
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Figure 1.3: The Lozi attractor for (x0, y0) = (0.0) , ν = 0.98, a = 1.7 and b = 0.5.

1.11 Conclusion

The interest of this chapter is to provide the basic notions of chaotic systems,in discrete time such

as: phase space, trajectories, phase space, fixed point etc...

Then, we presented the characteristics of chaos, the transition and route of chaos, ending with an

example of a discrete system.

1.11. Conclusion 19



Chapter 2

Fundamentals of Discrete Fractional

Calculation

2.1 Introduction

We identify the most widely used formulation in the discrete fractional, the Caputo-operator

difference, and provide several essential features based on the difference operator and Gamma

function. which is useful for the remaining tasks, will be mentioned. Here we start by providing

some essential fundamental definitions. such as the fractionl sum and differenceoperator, like

caputo operator for différence, We recall some concepts relating to the stability of discrete chaotic

systems of fractional order and their types of stability, in particular the Lyapunov function stability.

2.2 Basic notion

2.2.1 Gamma Function

he factorial for all real numbers is simply extended to represent the Gamma function in its most

basic form[3]. It is defined by:

Γ (x) =

∞∫
0

e−ttx−1dt, x ∈ R+

Definition 2.1 :

We define the decreasing factorial power for n ∈ N as:

t(n) = t(t+ 1)(t+ 2) . . . (t+ 1− n) =
Γ (t+ 1)

Γ(t+ 1− n)

20
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2.2.2 Falling function

The definition of the falling function of real order is

t(α) =
Γ (t+ 1)

Γ (t+ 1− α)
(2.1)

Keep in mind that t(0) = 1 , and that t(α) = 0 for any nonpositive t− α + 1 .

2.3 Fractional sum and difference operators

2.3.1 Fractional sum operators

Allow X : Na → R, Na = {a, a+ 1, a+ 2, . . .}, where a ∈ R. Suppose that a function X defined

on Na has a difference operator stated in the following form:

∆X (t) = X(t+ 1)−X(t), t ∈ Na (2.2)

Next, it is possible to define the fractional sum of positive fractional order υ.

The following defines the fractional sum of positive fractional order υ:

∆−
υ

a X(t) =
1

Γ (υ)

t−υ∑
s=a

(t− σ (s))(υ−1)X(s)), (2.3)

a ∈ R, t ∈ Na+υ, and σ (s) = s+ 1.

In the following definition, we are now prepared to precisely state the Caputo fractional difference

operator.

2.3.2 Like Caputo operator for difference

The Caputo-like difference, denoted by an C∆υ
aX (t), is defined as follows:

C∆υ
aX (t) = ∆−(n−υ)∆nX (t) =

1

Γ (n− υ)

t−(n−υ)∑
s=a

(t− σ (s))(n−υ−1) ∆nX (s)). (2.4)

where

∆nX(s) =

n−1∑
k=0

n!

k! (n− k)!
(−1)n−kX (s+ k) . (2.5)

In the event when n is a positive integer and the fractional order υ.
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C∆υ
aX(t) = ∆nX(t), t ∈ Na. (2.6)

We list some of the different operators’s properties below.

Here, we provide a few attributes associated with the definition given above.

• For a given constant C, the Caputo difference is

C∆υ
aC = 0, 0 < υ < 1

• For υ > 0,and f : Na → R

C∆−υa ∆υ
a+n−υf (t) = f (t)−

n−1∑
k=0

(t− a)(k)

k!
∆kf(a).

Specifically, if 0 < υ < 1 then

C∆−υa ∆υ
a+n−υf (t) = f (t)− f(a).

We are now prepared to define an initial value problem with discrete fractions.{
C∆υ

aX (t− υ) = f(t+ υ − 1), X (t+ υ − 1)

∆kX(a) = Xk, n = [υ] + 1, k = 0, . . . , n− 1
(2.7)

For the discrete fractional issue (1.28), the corresponding discrete fractional equation is as fol-

lows:

X (t) = X0(t) +
1

Γ (υ)

t−υ∑
s=a+n−υ

(t− σ (s))(υ−1)f(s+ υ − 1, X(s+ υ − 1)), t ∈ Na+n, (2.8)

where:

X0(t) =
n−1∑
k=0

(t− a)k

Γ(k + 1)
∆(k)X(k). (2.9)

We can now define the equivalent numerical formula, when a = 0, thanks to Theorem 1.2.1.

For the discrete fractional problem (1.28), the discrete fractional equation is equal to the follow-

ing numerical formula:

X (t) = X0 (t) +
1

Γ (υ)

t−υ∑
j=0

Γ (t+ υ − 1− j)
Γ (t+ υ − j) f (j,X (j)) , (2.10)

where the initial point is X(0).
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2.4 Fixed point

The study of the behavior of a discrete dynamic system is equivalent to the study of point stability.

It’s the dynamic system

x(k + 1) = F (x(k)), k = 1, 2, . . . (2.11)

where x(k) = (x1(k), . . . , xn(k))T and F : Rn → Rn

If there is a fixed point in the system, one can:

xf = F (xf ) (2.12)

In graphs, an equilibrium point is the intersection point between the two curves y = f(x)and

y = x.

2.5 Stability

The notion of stability of a dynamic system characterizes the behavior of its trajectories around

equilibrium points. Analysis of the stability of a dynamic system therefore allows us to study the

evolution of its state trajectory when the initial state is close from a point of equilibrium. There

are some concepts for the stability of dynamic systems. mics such as stability in the sense of

Lyapunov.types of stability

Examining the vector difference equation will help.{
x(k + 1) = F (k, x(k),

x(k0) = x0

(2.13)

2.5.1 Stability type

Definition 2.2 (Stability)

The origin is a stable equilibrium point x in the Lyapunov sense of the system (1.14).

∀ε > 0,∃δ = δ (ε) > 0 : ||x(k0)− xf || < δ ⇒ ||x(k, x(k0))− xf || < ε,∀k ≥ k0
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Definition 2.3 (uniform stability)

The origin is a point of equilibrium x uniformly stable in Lyapunov’s sense of the system (1.14),

which is:

∀ε > 0,∃δ = δ (ε) > 0 : ||x(k0)− xf || < δ ⇒ ||x(k, x(k0))− xf || < ε,∀k ≥ k0

Definition 2.4 (attractive)

The fixed point xf is attractive when there is convergence between the initial state x and the final

state xf over an infinite amount of time, provided that the initial criteria x(k0) are met, that is:

∀k0 ∈ N;∃δ0 (k0) ,Such as: ‖x(k0)− xf‖ < δ0(k0)⇒ limx(k, k0, x(k0)) = xf , (2.14)

When δ0 (t0) it is said that the fixed point xf is globally attractive.

Definition 2.5 (asymptotic stability)

When a fixed point xf is both attractif (respectively globally asymptotically) and stable in the

Lyapunov sense, it is said to be asymptotically (respectively asymptotically globally)

∃δ > 0 : ||x(k0)− xf || < δ ⇒ lim
t→+∞

||x(k, k0, x(k0))− xf || = 0

Thus, asymptotic stability means that one can determine a neighborhood of the equilibrium point,

such as any trajectory derived from a point x(0) belonging to a neighborhood. of xf , tends to

x→ +∞

Definition 2.6 (Exponential stability)

The origin is a locally exponentially stable equilibrium point xf of the system (1.14) if there are

two constants strictly positive a ,b such as

∀ε > 0,∃δ > 0 : ||x (k0)−xf || < δ ⇒ ||x(k, x(k0))−xf || < a||x (k0)−xf || exp(−bk),∀k ≥ k0,∀ ∈ Br.

When Br = Rn, the origin is said to be globally exponentially stable.

Definition 2.7 (Instability)

The equilibrium point xf is said to be unstable if it is not stable,.in the sense of Lyapunov.
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2.5.2 Fractional order difference system stability

Stability of linear systems

[11]An equation of a linear system at zero:

C∆ν
aX(k) = AX(k + ν − 1) (2.15)

assumes asymptotic stability if:

λ ∈
{
z ∈ C : |z| < (2 cos

| arg z| − π
2− υ )υ, and | arg z| > υπ

2

}
,

when X(k) = (x1 (k) , . . . , xn (k)), and 0 < υ ≤ 1 for each of A eigenvalues λ.

Example 2.1 :

Considre the following linear fractional discrete system:{
C∆ν

aX(t) = Y (k + ν − 1)−X(k + ν − 1),
C∆ν

aY (t) = −X(k + ν − 1),
, (2.16)

where 0 < ν < 1, k ∈ Na−ν+1 and the matrix A is given by

A =

(
−1 1

0 −1

)

The eigen values of the matrix A are λ1 = −1, λ2 = −1. Hence

According to Theorem 2.1, the trivial solution of the system (2.16) is asymptotically stable. The

time evolution of the states of the system (2.16) is shown in Figure 2.1.

2.5. Stability 25



Chapter 2. Fundamentals of Discrete Fractional Calculation

Figure 2.1: Time evolution of the system 2.16

Stability of non-linear systems

The discrete fractional nonlinear system:

C
q ∆υ

a = F (k + υ − 1, X(k + υ − 1)), for every k ∈ Na+n−υ, (2.17)

about the presence and stability of asymptotic outcomes. The stabilization of the origin equilib-

rium point and Lyapunov stability are the two most frequently applied theorems. The following

theorems declare them, accordingly.

Asymptotically stable fractional nonlinear discrete system (3.1) exists if, given the equilibrium

point x = 0, there is a positive definite and decreasing scalar function V (t;X(t)) such that
C∆υ

aV (t,X(t)) ≤ 0.

The following inequality is true for each t ∈ Na+n−υ:

1

2

C

∆υ
aX

T (t)X (t) ≤ XT (t+ υ − 1)C ∆υ
aX (t) , 0 < υ ≤ 1. (2.18)

Examine the non-linear fractional system that follows.{
C∆υ

aX (t) = −0.1X(t+ υ − 1)
C∆υ

aY (t) = −0.5Y (t+ υ − 1)
(2.19)

where 0 < υ < 1

In accordance with Lemma and the Lyapunov function V = 1
2
(x2 + y2), we generate
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Figure 2.2: Time evolution of system

C∆υ
aV = X(t+ υ − 1)C∆υ

aX(t) + Y (t+ υ − 1)C∆υ
aY (t)

≤ −0.1X2(t+ υ − 1)− 0.5Y 2(t+ υ − 1)

≤ 0

Therefore, the system (2.19) is asymptotically stable based on Theorem 2.1.Figure 2.2 displays

the condition of the system’s time progression (2.19).

2.6 Conclusion

In this chapter is to study the stability of the solution of a system of differential equations linear

and non-linear fractional. The derivatives considered are in Caputo, and order between 0 and 1.

The theoretical results given clearly show that the stability condition for systems fractional order

differs from the well-known state for integer order systems. Especially, the left half-plane (stable

region) for integer order systems applies in the angular sector | arg λ| >
(

(υπ)
2

)
in the case of

fractional order systems, indicating that the stability region becomes larger and larger when the

value of the fractional order is diminished.

2.6. Conclusion 27



Chapter 3

Theory of synchronization

3.1 Introduction:

The phenomenon of synchronization is manifested when two dynamic systems evolve read in the

same way over time. One of the synchronization configurations. The most popular configuration

is the master-slave configuration for which a system dynamic called slave system follows the

rhythm and trajectory imposed by another dynamic system called master system. The prospects

for using chaos in various applications have motivated researchers to study the question of the

possible posability to synchronize chaos. The prospects of using chaos in various applications have

motivated researchers to study the question of the possible possibility of ability to synchronize

chaos. This synchronization seems difficult to achieve, because the diference of synchronization

where we seek to reproduce only a period oscillation, chaotic synchronization presents more

constraints.

3.2 Synchronization definition

3.2.1 General Definition

One of the first things humans have noticed is the synchronization of human relationships. For

example, a baby that responds to its mother’s smile simply synchronizes its own facial expressions

with hers.

Definition 3.1 (Larousse)

Synchronization is a Greek word divided by two parts: Syn wants to say together, and Chrono

wants to say time. Phase-setting is the process of arranging many operations to occur simultane-
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ously, depending on the time.

Definition 3.2 (general)

One way to manage a periodic movement (or chaotic movement) is through synchronization.

When two dynamic systems synchronize, it means that one system evolves by imitating the other’s

behavior.

3.2.2 Mathematical definitions of synchronization

We have the two systems master-slave as folloing.{
∆X(k + 1− α) = f(X(k))

∆Y (k + 1− α) = g(Y (k)) + U
(3.1)

where X(k) = (x1(k), x2(k), ..., xn(k))T ∈ Rn and Y (k) = (y1(k), y2(k), ..., yn(k))T ∈ Rn,with

X, Y ∈ Rn, f and g of defined nonlinear functions of Rn → Rn. Both systems are called synchro-

nized if

lim
t→+∞

‖e(k)‖ = 0

where e(k) = X(k)− Y (k) represents the synchronization error.

.

Definition 3.3 Brown and Kocarev [24] The subsystems in equation (3.1) are synchronized on the

path of ϕ (w0) , relative to the gx and gy properties, if there is a instant independent of application h

such that ||h(gx, gy)|| = 0.With the choice of gx, gy, and h, we can determine the type of synchroniza-

tion. This approach leads to the idea that there are different types of synchronization that could be

They are engaged in the same formalism.

Theorem 3.1 The master system and the slave system are synchronized only if all of the slave sys-

tem’s Lyapunov exposants, also known as conditional Lyapunov exposants, are negative.

3.3 Master-slave system

let consider a master system as follow:
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C∆α1

0 x1 (k + 1− α1) = f1 (X (k)) ,
C∆α2

0 x2 (k + 1− α2) = f2 (X (k)) ,

C∆αn
0 xn (k + 1− αn) = fn (X (k)) ,

k = 0, 1, ..., (3.2)

the Caputo fractional difference of order αi denoted by C∆αi
0 where 0 < αi ≤ 1, for i = 1, 2, .., n,

X(k) = (x1(k), x2(k), ..., xn(k))T ∈ Rn is the state of the system (1) and (f1, f2, ..., fn)T : Rn → Rn.
A slave system is given by:

C∆α1
0 y1 (k + 1− α1) = g1 (Y (k)) + U1,

C∆α2
0 y2 (k + 1− α2) = g2 (Y (k)) + U2,

C∆αn
0 yn (k + 1− αn) = gn (Y (k)) + Un,

k = 0, 1, ..., (3.3)

where U = (U1, U2, ..., Un)T ∈ Rn is a control vector to be determined, and Y (k) = (y1(k), y2(k), ..., yn(k))T ∈
Rn is the state of the system (2), (g1; g2, ..., gn)T : Rn → Rn.

3.4 Synchronization types

We have an extensive bibliography, we have been advisedd ifferent types and schemes of the

synchronization tell you that the complete synchronization (CS), anti-synchronization (AS), the

generalized synchronization (GS), the projective synchronization (PS), full state hybrid projective

synchronization Synchronization Q- S ,etc.

Complete synchronization (C.S)

Definition 3.4 [12] The problem of complete synchronization is to determine the control U so that

lim
k→∞
‖Y (k)−X(k)‖ = 0, (3.4)

where ‖.‖is the euclidean norm.

Remark 3.1 If (f1, f2, ..., fn) = (g1, g2, ..., gn), the relationship becomes identical complete synchro-

nization.

If (f1, f2, ..., fn) 6= (g1, g2, ..., gn), it is a non-identical complete synchronization.

Anti-synchronization

Definition 3.5 [13] The problem of anti-synchronization is to determine the control U so that

lim
k→∞
‖Y (k) +X(k)‖ = 0, (3.5)
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Projective synchronization

Definition 3.6 [14]

The master system X(k) = (xi (k)) and the drive system Y (k) = (yi (k))are said to be projective

synchronized, if there exists non zero vector α = (αi)1≤i≤n such that

lim
k→∞
|yi(k)| − αixi(k)| = 0, ∀(x(0), y(0)), 1 ≤ i ≤ n

FSHP synchronization (FSHPS)

Definition 3.7 [15] We say that we have a FSHP synchronization (full state hybrid projective syn-

chronization) between the master system (3.2) and the slave system (3.3), if there exists a controls

Ui, 1 ≤ i ≤ n, and a constants
(
γij
)

1≤i,j≤n ∈ R
n×n, such as:

lim
k→∞

∣∣∣∣∣yi (k)−
n∑
j=1

γijxj (k)

∣∣∣∣∣ = 0, i = 1, ..., n. (3.6)

FSHPI synchronization (IFSHPS)

Definition 3.8 [16] We say that we have a FSHP inverse synchronization between the master sys-

tem(3.2) and the slave system (3.3), if there exists a controlsUi, 1 ≤ i ≤ n, and a constants(
βij
)

1≤i,j≤n ∈ R
n×n, so that synchronization errors

lim
k→∞

∣∣∣∣∣xi (k)−
n∑
j=1

βijyj (k)

∣∣∣∣∣ = 0, i = 1, ..., n. (3.7)

Generalized synchronization (G.S)

Definition 3.9 [17] If there exists a controller U and a function φ : Rn → Rn, check

lim
k→∞
‖Y (k)− φ (X(k))‖ = 0, (3.8)

then, systems (3.2) and (3.3) synchronize in the generalized sense with respect to the function φ.

Remark 3.2 Generalized synchronization is considered to be a generalization of complete synchro-

nization, anti-synchronization, projective synchronization and FSHP synchronization.

Inverse generalized synchronization (IGS)
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Definition 3.10 [18] If there exists a controller U and a function ϕ : Rn → Rn, check

lim
k→∞
‖X(k)− ϕ (Y (k))‖ = 0, (3.9)

then, systems (3.2) and (3.3) synchronize in the generalized inverse sense with respect to the function

ϕ.

Remark 3.3 If the function φ is defined by φ (Y (k)) = DY (k) where B =
(
βij
)

1≤i,j≤n ∈ R
n×n, we

say that we have a inverse full-state hybrid projective synchronization.

Synchronization Q− S

Definition 3.11 [19] We say that systems (3.2) and (3.3) are inQ−S synchronization in dimension

d, if there is a controller U and two functions Q : Rn → Rd, S : Rn → Rd such that

lim
k→∞
‖Q (X(k))− S (Y (k))‖ = 0. (3.10)

Remark 3.4 Q − S synchronization is considered to be a generalization of all types of previous

synchronizations.

3.5 Method of an active controller:

The active controller method is a powerful methodology that has demonstrated its ability to

synchronize not only identical systems but also non-identical systems with different dimensions.

There are two synchronization systems, master and slave, which are defined as follows:

cDq
tX(k) = F (X(k)) (3.11)

and
cDq

tY (k) = G(Y (k)) + U (3.12)

Where: X(k), Y (k) ∈ Rn are the state vectors of the master and slave systems, respectively One

control vector to determine is F : Rn → Rn, G : Rm → Rm, 0 < q ≤ 1, U ∈ Rm.
When time tends to infinity, the error between the two systems’ trajectories must converge to-

wards zero for the two systems to synchronize. This error is obtained as follows:

e(k) = Y (k)−X(k) (3.13)
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so

cDq
t e(k) = cDq

tY (k)−c Dq
tX(k)

= F (X(k))−G(Y (k)) + U

If the quantity F (X(k))−G(Y (k)) may be expressed in the following way:

− F (X(k)) +G(Y (k)) = Ae(k) +H(X(k), Y (k)) (3.14)

The error can be expressed as follows:

cDq
t e(k) = Ae(k) +H(X(k), Y (k)) + U (3.15)

In which A ∈ Rnis a constant matrix and H is a non-linear function. This is how the controller U

is suggested:

U = V −H(X(k), Y (k)) (3.16)

where V is the active controller, as defined by:

V = −Le(k) (3.17)

in which L is an unknown control matrix. As a result, the error’s final formula becomes:

cDq
t e(k) = (A− L) e(k) (3.18)

Thus, the synchronization issue between the master system (3.1) and the slave system (3.2)

becomes the zero-stabilized system issue (8). The following theory is an immediate consequence

of the theory of fractional-order system stability.

Example 3.1 Let us consider master the 2D fractional lorenz map [8] as follow
C∆α1

a x1 (k + 1− α1) =

2∑
j=1

a1jxj (k) + f1 (x1 (k) , x2 (k)) ,

C∆α2
a x2 (k + 1− α2) =

2∑
j=1

a2jxj (k) + f2 (x1 (k) , x2 (k)) ,

k = 0, 1, ..., (3.19)

whene
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Figure 3.1: Chaotic attractor of the fractional order Lorenz map forα1 = 0.98, α2 = 0.8.



(a11, a12, a21, a22) = (0.93751, 0, 0,−0, 75) ,

f1(x1(k), x2(k)) = −0.75x1(k)x2(k),

f2(x1(k), x2(k)) = 0.75x2
1(k),

α1 6= α2, a = 0,

and and initial conditions are x1 (0) = 0.1, x2 (0) = 0.

Figure 3.1 showing the resulting chaotic attractor nd its general shape is similar to that of the

integer order one. We choose the fractional flow map suggested in for the slave. We defined of

the slave system as follow:
C∆α1

a y1 (k + 1− α1) =

2∑
j=1

b1jyj (k) + g1 (y1 (k) , y2 (k)) + U1,

C∆α2
a y2 (k + 1− α2) =

2∑
j=1

b2jyj (k) + g2 (y1 (k) , y2 (k)) + U2,

k = 0, 1, ..., (3.20)

where y1, y2 are states of the slave systems respectively, and
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Figure 3.2: Fractional order chaotic attractor Flow map for α1 = 0.98, α2 = 0.8.



(b11, b12, b21, b22) = (−1.1, 1, 0,−1),

g1 (y1 (k) , y2 (k)) = 0

g2 (y1 (k) , y2 (k)) = y2
1 (k)− 1.7,

a = 0, α1 6= α2,

and Ui (k) , i = 1, 2, are controllers, the uncontrolled map (12) with U1 = U2 = 0 is chaotic as

presented in Figure3.2.

Theorem 4.1 states that condition (3.14) can be satisfied by B-C if there is a control matrix C.

One may select the case, for example

C =

(
−0.1 0

0 0

)
,

It manifestly meets the requirement, and hence, systems (11) and (12) are in 2D synchronization.

The control law may now be constructed quite easily using Theorem . The error system that

results looks like this: {
C∆α1

a e1 (k + 1− α1) = −e1 (k) + e2 (k) ,
C∆α2

a e2 (k + 1− α2) = −e2 (k) ,
k = 0, 1,

Figure3.3 shows the errors time evolution. Since the errors converge to zero in a reasonable

amount of time, synchronization is evidently achieved.

The numerical results show how accurate the suggested scheme
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Figure 3.3: Evolution of states of the error system for α1 = 0.98, α2 = 0.8.

3.6 Conclusion

The main objective of this chapter was to present the different types of synchronization and the

most efficient active synchronization control method. we have presented the definitions of chaotic

synchronization. We then defined several synchronization types of chaotic systems of fractional

order. The method of active control most used to achieve synchronization of chaotic dynamic

systems.
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Chapter 4

On the Dynamics and Control of Fractional

Chaotic Maps with Sine Terms

This study examines the behavior of two chaotic maps with fractional orders, which are derived

from standard chaotic maps with sine terms. The analysis of this map’s dynamics is conducted

using numerical methods like phase plots, bifurcation diagrams, Lyapunov exponents,and the

0-1 test. By varying the fractional order, it is demonstrated that the fractional maps proposed

in this study display various dynamic behaviors, including the presence of coexisting attractors.

Furthermore, three control schemes are presented. The first two controllers work to stabilize

the states of the proposed maps and guarantee their asymptotic convergence to zero. The third

controller is responsible for synchronizing a pair of non-identical fractional maps. Numerical

results are utilized to validate the conclusions.

4.1 Map of fractional sines

The two-dimensional iterated map presented by Zeraoulia and Sprott in 2008 [4] and provided

by: is of relevance to us in this part.{
x(n+ 1) = 1− α sinx(n) + βy(n),

y(n+ 1) = x(n),
(4.1)

where x and y represent the discrete-time system’s states, α and β stand for some bifurcation

parameters. All it took to create this map was to swap out the x2 word in the typical Hénon map

using the sinx trigonometric term. By use of a period–doubling bifurcation path to chaos, this

was found to generate a C∞ mapping that may be regarded as a generalization of the chaotic

attractor with “multifolds”.
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Figure 4.1: Phase portrait of the sine map for parameter values (α, β) = (3.8, 0.3)

[4] states that when α falls between [−150, 200] and β = 0.3, the map displays chaotic behavior.

The map for α = 0.3 is examined in the following. Phase space is what mapped out in Figure 1,

confirming the existence of chaos.

The fractional Caputo-type form of (1), which we derive first, begins with the delta-differences

taken as follows: {
∆x(n) = x(n+ 1)− x(n)

∆y(n) = y(n+ 1)− y(n)
∆x(n) = 1− α sinx(n) + βy(n)− x(n),

∆y(n) = x(n)− y(n).

(4.2)
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Next, using the definition of the Caputo-like delta difference to substitute the first-order differ-

ence, we obtain:-
C∆υ

ax(t) = 1− α sinx(t+ υ − 1) + βy(t+ υ − 1)− x(t+ υ − 1),

C∆υ
ay(t) = x(t+ υ − 1)− y(t+ υ − 1),

(4.3)

where an is the beginning point, 0 < υ < 1, and t ∈ Na+1−υ.We will refer to (4.2) as the fractional

sine map from now on.

We use Theorem 1 to derive a numerical formula for system (4.2) in order to do numerical

analysis. To begin, we take the equivalent discrete integral for t ∈ Na+1−υ and 0 < υ < 1. This

yields:


x(t) = x(a) + 1

Γ(υ)

∑t−υ
s=t+1−υ (t− σ (s))(υ−1) (1− α sinx(t+ υ − 1) + βy(t+ υ − 1)− x(t+ υ − 1)),

y(t) = y(a) + 1
Γ(υ)

∑t−υ
s=t+1−υ (t− σ (s))(υ−1) (x(t+ υ − 1)− y(t+ υ − 1)),

(4.4)

The reciprocal (t−σ(s))(υ−1)

Γ(υ)
, which stands for a discrete kernel function, can be understood as

follows:

(t− σ (s))(υ−1)

Γ (υ)
=

Γ(t− s)
Γ (υ) Γ (t− s− υ + 1)

. (4.5)

Therefore, by selecting a zero initial value, that is, a = 0, the numerical formula is defined as

follows:
x(n) = x(0) + 1

Γ(υ)

∑n
j=1

Γ(n−j+υ)
Γ(n−j+1)

(1− α sinx(j − 1) + βy(j − 1)− x(j − 1)) .

y(n) = y(0) + 1
Γ(υ)

∑n
j=1

Γ(n−j+υ)
Γ(n−j+1)

(x(j − 1)− y(j − 1)),

(4.6)

We take into consideration the same bifurcation parameter values as previously employed for

numerical simulation. Calculus formula (4.6) is used to examine the impact of the fractional

order υ regarding the fractional sine map’s dynamics (4.2). The bifurcation diagram that results

when υ = 1 is first shown in Figure 2, where α is varied in steps of ∆α = 0.003 and maintained

within the interval [−1, 4]. Our fractional map should reduce to the conventional one since υ = 1,

with the answer x(n) based on all historical data x(n−1), x(n−2), ..., x(0). The map’s dynamics

change when the fractional order υ is changed from 1 to smaller values. For υ = 0.976, υ = 0.78,

and υ = 0.65, the phase portraits are Figure 4 shows the equivalent bifurcation diagrams for
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Figure 4.2: Attractors of the fractional sine map for different fractional orders υ.

α ∈ [−1, 4]. It has been noted that when the bifurcation parameters are fixed α and β and alter

the fractional order υ value, the bounded attractor of the fractional map disperses over wider

areas. Figure 5 illustrates the transitory condition that is seen when υ = 0.63. At first, the

solution converges to a confined attractor, but it then steadily diverges to infinity in a different

direction.
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To demonstrate the presence of chaotic dynamics in the fractional-order sine map under specific

system parameters (α, β) = (3.8, 0.3), the 0 − 1 test technique is utilized. The 0 − 1 test involves

generating a random walk process from time series data for binary testing purposes. A straight-

forward method for assessment involves plotting the motion paths of the translation component

within the p − q plane. Typically, unbounded trajectories in the p − q plane indicate chaotic

behavior, while bounded trajectories suggest regular behavior. In this study, the test is directly

applied to the solution x(n) with outcomes presented in Figures 4.3 and 4.4. Figure 4.3 displays

the evolution of the translation components (p, q), where unbounded trajectories signify chaotic

behavior. Figure 4.4 illustrates the asymptotic growth rate K approaching 1 with increasing n,

indicating chaotic dynamics. Additionally, Figure 4.5 exhibits the temporal progression of chaotic

states for υ = 0.78. To further investigate the impact of the fractional order υ on the system

dynamics of the new map (4.2), bifurcation and largest Lyapunov exponent (LLE) diagrams are

employed with υ as a critical parameter. Figure 9 showcases bifurcation and LLE diagrams for

the parameter set (α, β) = (3, 0.3) across the range υ ∈ [0.65, 1]. Decreasing below 1 leads to a

transition of the fractional υ order sine map (4.2) from chaotic to periodic states, returning to

chaos at 0.7124. Further reduction in υ results in the system converging towards an unbounded

attractor. Overall, these findings support the notion that the fractional order υ can serve as a

bifurcation parameter

Now, we switch to a new two-dimensional chaotic map with two sine terms. The definition of the

so-called sine-sine map is: {
x(n+ 1) = sinx(n)− sin 2y(n),

y(n+ 1) = x(n),
(4.7)

In this case, the dependent state variables are x and y. A globally attractive map with a class-1

basin, System (4.7), was suggested in [7]. The initial circumstances’ phase space

Figure 10 displays (x(0), y(0)) = (1, 1). The attractor’s shape is consistent with the findings that

are stated in [7].

The fractional sine-sine map for t ∈ Na+1−υ can be written as follows, using the fractional discrete

calculus notation outlined in Section 2 as in the previous section:{
∆x(n) = x(n+ 1)− x(n),

∆y(n) = y(n+ 1)− y(n),
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Figure 4.3: The 0–1 test (dynamics of translation componentsp and q)of the fractional sine map

for different fractional orders: (a)υ = 0.976, (b)υ = 0.78, (c)ν = 0.65.
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Figure 4.4: The 0–1 test (asymptotic growth rate versus n) of thefractional sine map for different

fractional orders:(a)υ = 0.976, (b)υ = 0.78, (c)υ = 0.65.
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Figure 4.5: Time evolution of states for the fractional sine map with υ = 0.78.

Figure 4.6: Initial conditions (x (0), y (0)) = (1, 1) for the classic sine-sine map’s phase portrait.

{
∆x(n) = sinx(n)− sin 2y(n)− x(n),

∆y(n) = x(n)− y(n),
(4.8)


C∆υ

ax(t) = sinx(t+ υ − 1)− sin 2y(t+ υ − 1)− x(t+ υ − 1),

C∆υ
ay(t) = x(t+ υ − 1)− y(t+ υ − 1),

(4.9)

in which 0 < υ < 1. The numerical formula can also be expressed as follows:
x(n) = x(0) + 1

Γ(υ)

∑n
j=1

Γ(n−j+υ)
Γ(n−j+1)

(sinx(j − 1)− sin 2y(j − 1)− x(j − 1)) ,

y(n) = y(0) + 1
Γ(υ)

∑n
j=1

Γ(n−j+υ)
Γ(n−j+1)

(x(j − 1)− y(j − 1)) ,

Using numerical formula (17) with two different fractional orders υ = 0.989 and υ = 0.976 yields

the phase space portraits shown in Figure 4.7. The largest Lyapunov exponents for these two
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Figure 4.7: Attractors of the fractional sine–sine map for two different fractional orders υ = 0.989

and υ = 0.976.

orbits are illustrated in Figure 4.8.Since the fractional order map has a positive largest Lyapunov

exponent, the phase portrait in Figure 4.7 are therefore a chaotic attractor. The chaotic states

for 5 υ = 0.976 isdepicted in Figure 4.9. The calculated values K of the 0 − 1 test for these two

orbits are also presented in Figure 4.10. We observe that K approaches 1 for υ = 0.989 and

υ = 0.976.Therefore, the 0–1 test confirms the existence of chaos.

To analyze further the effect of the fractional-order υ on the dynamic behavior of the fractional-

order sine-sine map (4.7), we chose to vary υ from 0 to 1 in steps of 0.001 and observe the

behavior of the map.

from (x, y) to (−x,−y). From Figure 16, we find that even with a fractional order, the map

still exhibits a chaotic behavior. The chaotic properties of the map disappear in the interval

υ ∈ [0.952, 0.967] and reappear for υ ∈ [0.939, 0.951] as seen in Figure 16. Finally, when υ ≤ 0.03,

chaos disappears once more and the system becomes stable.

4.1. Map of fractional sines 45



Chapter 4. On the Dynamics and Control of Fractional Chaotic Maps with Sine Terms

Figure 4.8: LLE of the fractional sine–sine map for different fractional orders: (a)υ = 0.989 and

(b)υ = 0.976.

Figure 4.9: Time evolution of states for the fractional sine–sine map with υ = 0.976.
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4.2 Control of the fractional sine maps

4.2.1 Stabilization

In order to stabilize both the fractional sine map and the fractional sine-sine map, we developed

an active controller in this section. Typically, the stabilization mechanism.The challenge lies in de-

termining an appropriate adaptive control law that will cause the system’s states to asymptotically

converge towards zero.

Theorem 4.1 The 1D control law can be used to govern the 2D fractional sine map:

U(t) = 2x(t) + α sinx(t)− 1−
(

3

4
+ β

)
y(t) (4.10)

Proof. The fractional sine map that is controlled looks like this:
C∆υ

ax(t) = 1− α sinx(t+ υ − 1) + βy(t+ υ − 1)− x(t+ υ − 1) + U(t+ υ − 1),

C∆υ
ay(t) = x(t+ υ − 1)− y(t+ υ − 1),

The intended controller is denoted by u (t). To achieve the new dynamics, we first replace our

controlled system (4.12) with the proposed control law (4.11).
C∆υ

ax(t) = 1− α sinx(t+ υ − 1) + βy(t+ υ − 1)− x(t+ υ − 1) + 2x(t+ υ − 1)

+α sinx(t+ υ − 1)− 1− 3
4
y(t+ υ − 1)− βy(t+ υ − 1),

C∆υ
ay(t) = x(t+ υ − 1)− y(t+ υ − 1),

C∆υ
ax(t) = x(t+ υ − 1)− 3

4
y(t+ υ − 1),

C∆υ
ay(t) = x(t+ υ − 1)− y(t+ υ − 1),

(4.11)

We then demonstrate the globally asymptotically stable nature of (4.13) zero equilibrium. To do

this, the error system can be expressed in the concise form shown below:

C∆υ
a (x(t), y(t))T = A(x(t), y(t))T (4.12)

Where

A =

(
1 −3

4

1 −1

)
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Figure 4.10: The 0− 1 test of the fractional sine–sine map for different fractional orders: (a)υ =

0.989 and (b)υ = 0.976.

The eigen values of the matrix A are λ1 = −1
2
, λ2 = 1

2
.meet the requirements listed below:

|λi| <
(

2 cos
|arg λi| − π

2− υ

)υ
and |arg λi| >

υπ

2
, i = 1, 2.

Since this satisfies Theorem requirement, the zero equilibrium of equation (4.13) is globally as-

ymptotically stable. The states will therefore undoubtedly gravitate to asymptotically to zero.The

control law (4.11) proposed for the fractional Hénon-like map was numerically tested for α =

0.976 using the same parameters and initial conditions as before. Figure 4.11 illustrates the con-

vergence of the states towards zero through time-evolution and phase space plots.

By following the identical process, we can also announce the following outcome concerning the

stabilization of the fractional

sine-sine map.
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Figure 4.11: (a) State x(n), (b) state y(n), (c) attractor of the fractional sine-map after being

stabilized for υ = 0.976.
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The 2D controlled fractional sine–sine map
C∆υ

ax(t) = sin x(t+ υ − 1)− sin 2y(t+ υ − 1)− x(t+ υ − 1) + U(t+ υ − 1),

C∆υ
ay(t) = x(t+ υ − 1)− y(t+ υ − 1),

(4.13)

is kept stable by the 1D control law:

u(t) = sin 2y(t)− sinx(t) + 2(x(t)− y(t)). (4.14)


C∆υ

ax(t) = sin x(t+ υ − 1)− sin 2y(t+ υ − 1)− x(t+ υ − 1)

+ sin 2y(t+ υ − 1)− sinx(t+ υ − 1) + 2x(t+ υ − 1)− 2y(t+ υ − 1),

C∆υ
ay(t) = x(t+ υ − 1)− y(t+ υ − 1),

C∆υ
ax(t) = x(t+ υ − 1)− 2y(t+ υ − 1),

C∆υ
ay(t) = x(t+ υ − 1)− y(t+ υ − 1),

(4.15)

where

A′ =

(
1 −2

1 −1

)
The eigen values of the matrix A are λ1 = −i, λ2 = i.

meet the requirements listed below:

|λi| <
(

2 cos
|arg λi| − π

2− υ

)υ
and |arg λi| >

υπ

2
, i = 1, 2.

Assuming a fractional order of υ = 0.976, and using the same parameters and initial conditions as

discussed in Section 4, Figure4.12 illustrates the resulting states and phase plot. The outcomes

validate the effectiveness of the suggested law in asymptotically stabilizing the systems states.

4.3 Synchronization

In this section, we will explore an alternative method of controlling fractional sine maps and pro-

posed sine maps. Our main objective here is to achieve chaos synchronization, which involves

arranging the states of the fractal sine map in such a way that they mirror the precise trajecto-

ries of the primary fractal sine map. In this context,we denote the master states and the slave
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Figure 4.12: (a) State x(n), (b) state y(n),(c) attractor of the fractional sine–sine map after being

stabilized for υ = 0.976.

4.3. Synchronization 51



Chapter 4. On the Dynamics and Control of Fractional Chaotic Maps with Sine Terms

states Therefore, we can express the master-slave pair as:Now, let’s look at an alternative control

scheme for the fractional sine and sine-sine maps that have been suggested. In this case, the goal

of chaotic synchronization is to match the precise trajectories of a fractional sine master map,

regulate the states of the fractional sine-sine map.The subscripts m and s stand for the master

and slave states, respectively. Thus, we can declare the master-slave pair as:
C∆υ

axm(t) = 1− α sinxm(t+ υ − 1) + βym(t+ υ − 1)− xm(t+ υ − 1),

C∆υ
aym(t) = xm(t+ υ − 1)− ym(t+ υ − 1),

(4.16)

and


C∆υ

axs(t) = sinxs(t+ υ − 1)− sin 2ys(t+ υ − 1)− xs(t+ υ − 1) + U1(t+ υ − 1),

C∆υ
ays(t) = xs(t+ υ − 1)− ys(t+ υ − 1) + U2(t+ υ − 1),

(4.17)

Let’s define what synchronization means before we provide our findings. The following are the

synchronization errors: 
e1(t) = xs(t)− xm(t),

e2(t) = ys(t)− ys(t)
(4.18)

A master-slave pair (4.18)–(4.19) is considered synchronized if and only if:

lim
t→∞
||ei(t)|| = 0 for i = 1, 2. (4.19)

It suggests that the states of the slaves converge on those of the master. Our result is given in the

following theorem.

Theorem 4.2 The synchronization of the master-slave pair system (4.18)–(4.19) is contingent upon:

{
u1 = − sinxs (t) + sin 2ys (t) + 1− α sinxm (t) + βym (t) ,

u2 = 0.
(4.20)


e1(t) = (sin xs(t+ υ − 1)− sin 2ys(t+ υ − 1)− xs(t+ υ − 1) + u1(t+ υ − 1))

−(1− α sinxm(t+ υ − 1) + βym(t+ υ − 1)− xm(t+ υ − 1)),

e2(t) = (xs(t)− ys(t) + U2(t))− (xm(t)− ym(t)) .
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The error system (4.20) fractional Caputo-type differences can be expressed as follows:


C∆υ

ae1(t) = sinxs(t+ υ − 1)− sin 2ys(t+ υ − 1)− xs(t+ υ − 1) + ux(t+ υ − 1)

−1 + α sinxm(t+ υ − 1)− βym(t+ υ − 1) + xm(t+ υ − 1),

C∆υ
ae2(t) = xs(t+ υ − 1)− ys(t+ υ − 1) + Uy(t+ υ − 1)− xm(t+ υ − 1) + ym(t+ υ − 1).

(4.21)

where {
C∆υ

ae1(t) = −xs(t+ υ − 1) + xm(t+ υ − 1),
C∆υ

ae2(t) = xs(t+ υ − 1)− xm(t+ υ − 1)− ys(t+ υ − 1) + ym(t+ υ − 1).

Changing the control law results in the following extremely basic dynamics:
C∆υ

ae1(t) = −e1(t+ υ − 1),

C∆υ
ae2(t) = e1(t+ υ − 1)− e2(t+ υ − 1).

(4.22)

It is simple to demonstrate that zero is an equilibrium for (4.24) and that it is globally asymptoti-

cally stable. The error system can then be written in a concise form as in the equation (4.25) that

follows:

C∆υ
ae(t) = Ae(t), (4.23)

Where e(t) = (e1(t), e2(t))T and

A =

(
−1 0

1 −1

)
The eigenvalues (λi = 1, i = 1, 2) of A clearly meet the requirements listed below:

|λi| <
(

2 cos
|arg λi| − π

2− υ

)υ
and |arg λi| >

υπ

2
, i = 1, 2.

Because of Theorem 2.1, the master-slave pair is synchronized since the zero equilibrium is glob-

ally asymptotically stable.

We use numerical results to guarantee the effectiveness of the suggested one-dimensional syn-

chronization control. The pair of master and slave (4.18)–(4.19) was assessed.using the necessary

numerical formulas in accordance with Theorem , while keeping the control law (4.22) in mind.

The outcomes, which are displayed in Figure 4.13, demonstrate that the pair’s synchronization

was effective because the errors distinctly converge towards zero.
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Figure 4.13: Time–evolution of the synchronization errors.

4.4 Conclusions

This chapter began with an introduction to the topic of the dynamics of discrete systems in a

state of chaos in fractional calculus. It then moved on to discuss discrete fractional-order systems’

stability. Finally, it explored synchronization theory, covering different types of synchronization

and the control mechanisms that go along with them. In the last part of the chapter, two fractional

maps were created using the traditional chaotic maps combined with trigonometric sine functions.

4.5 General conclusion

This memo began with an introduction to the topic of the dynamics of discrete systems in a state of

chaos in fractional calculus. It then moved on to discuss discrete fractional-order systems’ stability.

Finally, it explored synchronization theory, covering different types of synchronization and the

control mechanisms that go along with them. In the last part of the research, two fractional maps

were created using the traditional chaotic maps combined with trigonometric sine functions.
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