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ABSTRACT

In this work, an accurate numerical approximation algorithm based on the reproducing

kernel Hilbert space (RKHS) approach has been proposed to solve a class of fractional

differential equations within the framework of the Caputo sense. The analytical solution is

presented as a convergent series with accurately computable structures in the reproducing

kernel space. The n-term approximation has been obtained and proven to converge

uniformly to the analytical solution. The main advantage of the RKHS approach is its

direct application without requiring linearization or perturbation, thereby avoiding errors

associated with discretization. Several numerical examples are provided to demonstrate

the accuracy of the computations and the effectiveness of the proposed approach. The

numerical results indicate that the RKHS method is a powerful tool for finding effective

approximated solutions to such systems arising in applied mathematics, physics, and

engineering.
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Introduction

At the end of the nineteenth century, Liouville and Riemann introduced the first

definition of fractional derivatives. However, the concept of fractional derivatives and

integrals, as an extension of traditional integer-order calculus, was already mentioned in

1695 by Leibniz and L’Hôpital. In recent years, fractional differential equations (FDEs)

have been discovered in various fields such as physics, chemistry, and engineering (Podlubny,

1999; Miller and Ross, 1993). Due to the lack of exact analytical solutions for most

fractional differential equations, approximation and numerical techniques are employed.

These techniques include Adomian’s decomposition method (ADM) (Adomian, 1994), the

variational iteration method (VIM) (Odibat and Momani, 2006), the differential transform

method (DTM) (Ertürk and Momani, 2008), and the homotopy perturbation method

(HPM) (Abdulaziz, et al., 2008).

The Reproducing Kernel Hilbert Space Method (RKHSM) stands as a prominent

numerical approach for tackling fractional differential equations (FDEs). The foundational

concept of reproducing kernels was initially introduced by three mathematicians in Berlin:

(Szegö, 1921), (Bergman, 1922), and (Bochner, 1922). In 1935, E. Moore further delved

into positive definite kernels within his general analysis, characterizing them as positive

Hermitian matrices. It was not until 1950 that N. Aronszajn formally introduced the

term ”Reproducing Kernel Function” and established the existence and uniqueness of a

reproducing kernel Hilbert space. Subsequently, in 1986, Cui demonstrated that W 1
2 [a, b]

constitutes a Hilbert space with a reproducing kernel function expressible by finite terms,

marking the inception of the application of reproducing kernel theory across diverse

domains. The general theory of reproducing kernel Hilbert spaces and its myriad applications
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were elucidated by S. Saitoh in 1988.

In recent years, numerous researchers have harnessed the RKHS method to obtain

analytical approximations for a wide array of problems, including regular and singular

initial value problems (IVPs), regular and singular boundary value problems (BVPs),

system of regular and singular IVPs and BVPs, regular and singular integral equations

(IEs), partial differential equations (PDEs), and inverse problems in PDEs. Additionally,

reproducing kernel theory finds significant applications in probability and statistics (Berlinet,

A. and Thomas, C. 2004). Although relatively few papers have utilized the reproducing

kernel method for solving FDEs, notable contributions include the algorithm proposed by

(Geng, F., and Cui, M. 2012) for solving nonlocal fractional boundary problems, as well

as the investigation conducted by (Zhang Y., Niu, J., and Lin, C.2012) on the three-point

boundary value problems of FDEs.

In this work, we adapt the RKHS method to provide precise solutions for a class of

fractional differential equations. Our numerical findings affirm the method’s accuracy

and efficiency in solving such equations. The analytical solution u(x) is expressed as a

series in the reproducing kernel space, and the approximate solution un(x) is derived by

truncating the series to n-terms.

This work follows a structured outline. In Chapter One, we delve into the fundamental

principles and definitions of functional analysis and fractional calculus. Chapter Two

provides an in-depth exploration of RKHS, including fundamental concepts, definitions,

and theorems. Additionally, we redefine the inner product of a reproducing kernel space

to derive the analytical approximate solution for a general form of ordinary differential

equations . We also present an analysis of the RKHS method and introduce an efficient

algorithm based on this method.
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Moving to Chapter Three, we apply the RKHS method to approximate solutions for

fractional logistic differential equations. Various numerical examples are presented to

demonstrate the method’s efficiency and accuracy.



CHAPTER 1

Review of Fundamental Mathematical

Concepts.
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This chapter aims to review essential concepts and necessary preliminaries to support

this thesis, facilitating the reader’s understanding of the content without the need to

refer to additional sources. The chapter comprises two main sections: the first covers

basic symbols and theories in functional analysis, while the second discusses fundamental

concepts in fractional calculus.

1.1 Foundational Concepts in Functional Analysis.

Definition 1.1.1. A norm on a vector space X is a function ∥.∥ : X → [0,∞) that

satisfiesthe following properties:

(i) ∥x∥ = 0 if and only if x = 0,

(ii) ∥αx∥ = |α| ∥x∥,

(iii) ∥x+ y∥ ≤ ∥x∥+ ∥y∥,

for all x,y ∈ X and α ∈ F (where F is a field, either real or complex).

Definition 1.1.2. A normed space X is a vector space endowed with a norm defined on

it.

Definition 1.1.3. A sequence (xn) in a normed space X is said to be convergent if there

exists an element x ∈ X such that the limit of the norm of the difference between xn and

x as n approaches infinity is zero, i.e.

lim
n→∞

∥xn − x∥ = 0.

In such a case, we denote xn → x and refer to x as the limit of the sequence (xn).
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Definition 1.1.4. A sequence (xn) in a normed space X is said to be Cauchy if, for every

ε > 0, there exists a positive integer N such that the norm of the difference between any

two terms xm and xn is less than ε for all m,n > N , i.e.

∥xm − xn∥ < ε for all m,n > N.

Corollary 1.1.5. A normed space X is complete if and only if every Cauchy sequence X

converges in X.

Remark 1.1.6. A complete normed space is called a Banach space.

Definition 1.1.7. A vector space X is considered an inner product space if there exists

a mapping ⟨., .⟩ : X × X → F, satisfying the following properties for all x, y, z ∈ X and

α ∈ F :

(i) ⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩

(ii) ⟨αx, z⟩ = α⟨x, z⟩

(iii) ⟨x, z⟩ = ⟨z, x⟩

(iv) ⟨x, x⟩ ≥ 0 and ⟨x, x⟩ = 0 ⇔ x = 0

Definition 1.1.8. A Hilbert space is a complete inner product space.

Definition 1.1.9. An inner product space, also known as a pre-Hilbert space, denoted by

X, is a vector space equipped with an inner product.

Definition 1.1.10. (Cauchy-Schwartz inequality). Let X be a pre-Hilbert space.

Then

∀x, y ∈ X, |⟨x, y⟩| ≤ ∥x∥∥y∥.
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When, x and y are linearly dependent, the inequality becomes an equality.

Definition 1.1.11. Consider vector spaces X and Y over the same field F, and let D (T )

be a subspace of X. A mapping T : D (T ) ⊂ X → Y , satisfying T (αx+ βy) = αT (x) +

βT (y) is referred to as a linear operator. If D (T ) = X, then, and only then, we write

T : X → Y .

Definition 1.1.12. A linear operator T : X → Y between two normed spaces X and Y

is considered bounded if there exists a real number c > 0 such that for all x ∈ D(T )

∥Tx∥ ≤ c ∥x∥ .

Definition 1.1.13. Consider an operator T : D (T ) → Y , not necessarily linear, where

D (T ) ⊂ X and X, Y are normed spaces the operator T is continuous at an x0 ∈ D (T ) if

for every ε > 0 there is δ > 0 such that ∥Tx− Tx0∥ < ε for any x ∈ D(T ) satisfying

∥x− x0∥ < δ.

Definition 1.1.14. T is continuous if T is continuous at every x ∈ D (T ).

Theorem 1.1.15. A linear operator T : D (T ) → Y , where D (T ) ⊂ X and X, Y are

normed spaces, is continuous if and only if it is bounded.

Definition 1.1.16. A linear functional f is an operator that maps from a vector space

X to the scalar field F, denoted as f : X −→ F. In other words, f is a linear operator

whose domain is the vector space X and whose range is the scalar field F.

Definition 1.1.17. A bounded linear functional f is a bounded linear operator. Thus

there exists a real number c > 0 for such that all x ∈ D(f), |f(x)| ≤ c ∥x∥ .
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Theorem 1.1.18. (Riesz representation Theorem) Every bounded linear functional

f on a Hilbert space H can be represented in terms of the inner product, namely, f(x) =

⟨x, z⟩ where z depends on f is uniquely determined by f and has norm ∥z∥ = ∥f∥ .

Definition 1.1.19. Let T : H1 −→ H2 be a bounded linear operator, where H1 and H2 are

Hilbert spaces. Then the Hilbert-adjoint operator T ∗ of T is the operator T ∗ : H2 −→ H1

such that for all x ∈ H1 and y ∈ H2,

⟨Tx, y⟩ = ⟨x, T ∗y⟩ .

Note : An operator T : H −→ H is self-adjoint if T = T ∗, where T ∗ denotes the

Hilbert-adjoint of T .

Definition 1.1.20. Let Ω be a domain in Rn and let 1 ≤ p < ∞. We denote by Lp (Ω)

the class of all measurable functions u, defined on Ω, for which
∫
Ω
|u (x)|p dx <∞.

Lp (Ω) is Banach spaces with respect to the norms ∥u∥Lp =
(∫

Ω
|u (x)|p dx

) 1
p .

Definition 1.1.21. A function u : [a, b] −→ R is called absolutely continuous (Abs. C),

if for every positive ε, there exists a positive δ such that for any finite set of disjoint

intervals (x1, y1) , (x2, y2) , ..., (xk, yk) (⊂ [a, b]) with
∑k

j=1 |yj − xj| < δ, then

k∑
j=1

|u (yj)− u (xj)| < ε.

Theorem 1.1.22. (Fundamental theorem of Lebesgue integral calculus)

Let u : [a, b] −→ R be a function. Then u is absolutely continuous if and only if there is

a function v ∈ L1 [a, b] such that u (x) = u (a) +
∫ x

a
v (t) dt, ∀x ∈ [a, b] .
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1.2 Foundational Concepts in Fractional Calculus

Fractional calculus extends traditional calculus by dealing with integrals and derivatives

of non-integer orders. Its origins date back to the works of prominent mathematicians like

Leibniz and Riemann, Liouville, Grünwald and Letnikov (Oldham, 1974; Podlubny, 1999).

Fractional derivatives possess dynamic memory, enabling precise modeling of complex

systems, unlike integer-order derivatives. They offer more accurate representations of real-

world phenomena, making them invaluable in various fields. This section introduces basic

tools and definitions of fractional derivatives with singular kernels, but prior knowledge

of special functions is required for a deeper understanding.

1.2.1 Special Functions

1. The Gamma Function

The Gamma function, attributed to Euler, is widely employed in fractional-order

differential equations. Its definition, denoted by Γ (x) can be expressed as follows:

Γ (x) =

∫ ∞

0

tx−1e−tdt, x ∈ R+. (1.2.1)

Hence, the Gamma function exhibits the following properties:

(a) Γ(x+ 1) = xΓ(x), x ∈ R+.

(b) Γ(x) = (x− 1)!, x ∈ N.

(c) Γ(x)Γ(1− x) = π
sinπx

.

(d) Γ(1
2
) =

√
π.

2. The Beta Function
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The Beta function plays a crucial role in computing fractional derivatives of power

functions. It is defined by the two-parameter integral as follows:

B (x, y) =

∫ 1

0

tx−1 (1− t)y−1 dt, x, y ∈ R+. (1.2.2)

The Beta function can also be defined in terms of the Gamma function:

B (x, y) =
Γ (x) Γ (y)

Γ (x+ y)
, x, y ∈ R+.

The Beta function demonstrates the symmetric property: B (x, y) = B (y, x), evident

from its definition.

1.2.2 Fractional Integration and Differentiation

Definition 1.2.1. (Diethelm, 2010) Let α ∈ R+. The Riemann-Liouville fractional

integral operator of order α, denoted by Jα
a , is defined on L1 [a, b] as follows:

Jα
a f (x) =

1

Γ (α)

∫ x

a

(x− t)α−1 f (t) dt, (1.2.3)

for a ≤ x ≤ b.

Note that: For α = 0, we set J0
a = I, the identity operator.

The integral operator shares a crucial property with fractional integration, which can

be stated as follows:

Theorem 1.2.2. (Diethelm, 2010) Let α, β ≥ 0 and f ∈ L1 [a, b] . Then,

Jα
a J

β
a f = Jα+β

a f = Jβ
a J

α
a f.
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Holds almost everywhere on [a, b]. If additionally f ∈ C [a, b] or α+β ≥ 1, then the above

identity holds everywhere on [a, b].

Example 1.2.3. let f (x) = (x− a)c for some c > −1 and α > 0. Then,

Jα
a f (x) =

Γ (c+ 1)

Γ (α + c+ 1)
(x− a)α+c . (1.2.4)

Proof : We perform a direct derivation:

Jα
a f (x) =

1

Γ (α)

∫ x

a

(t− a)c (x− t)α−1 dt.

By substituting t = a+ s (x− a), we simplify to:

=
1

Γ (α)
(x− a)α+c

∫ 1

0

sc (1− s)α−1 ds

=
Γ (c+ 1)

Γ (α + c+ 1)
(x− a)α+c .

This thorough derivation establishes the fractional integration of Jα
a f (x) with respect to

x over the interval [a, x].

Definition 1.2.4. (Diethelm, 2010) Let α ∈ R+ and n − 1 < α < n. The operator

Dα
a , defined by

Dα
a f = DnJn−α

a f =
1

Γ (n− α)

(
d

dx

)n ∫ x

a

(x− t)n−α−1 f (t) dt, (1.2.5)

for a ≤ x ≤ b, is called the Riemman-Liouville fractional differential operator of order α.
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Certainly:

� For α = 0, we define D0
a = I, the identity operator.

� As a first consequence of this definition, we note that if α ∈ N the operator Dα
a in

Definition (1.2.4) coincides with the classical differential operator Dα.

Lemma 1.2.5. Let α ∈ R+ and let n ∈ N such that n > α. Then,

Dα
a = DnJn−α

a .

Example 1.2.6. Let f (x) = (x− a)c for some c > −1 and α > 0. Then,

Dα
a f (x) =

Γ (c+ 1)

Γ (c+ 1− α)
(x− a)c−α . (1.2.6)

Proof : Let n ∈ N such that n = [α] . Thus,

Dα
a f (x) = Dα

a (x− a)c

= DnJn−α
a (x− a)c

= Dn

(
Γ (c+ 1)

Γ (n− α + c+ 1)
(x− a)n−α+c

)
=

Γ (c+ 1)

Γ (n− α + c+ 1)
Dn (x− a)n−α+c

=
Γ (c+ 1)

Γ (n− α + c+ 1)

Γ (n− α + c+ 1)

Γ (c+ 1− α)
(x− a)c−α

=
Γ (c+ 1)

Γ (c+ 1− α)
(x− a)c−α

Remark 1.2.7. The property Dα
aD

β
af = Dα+β

a f = Dβ
aD

α
a f is not satisfied in both

equalities as seen in the following example.
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Example 1.2.8.

a. Let f (x) = x−
1
2 and α = β = 1

2
. Then,

Dα
0 f (x) = Dβ

0 f (x) =
Γ
(
−1

2
+ 1

)
Γ
(
−1

2
+ 1− 1

2

) (x− 0)−
1
2
− 1

2

=
Γ
(
1
2

)
Γ (0)

(x− 0)−
1
2
− 1

2 = 0.

Hence, Dα
0D

β
0 f (x) = 0.

But,

Dα+β
0 f (x) = D1f (x) =

−x− 3
2

2
.

b. Let f (x) = x
1
2 and α = 1

2
and β = 3

2
. Then,

Dα
0 f (x) =

Γ
(
1
2
+ 1

)
Γ
(
1
2
+ 1− 1

2

) (x− 0)−
1
2
− 1

2

=
Γ
(
3
2

)
Γ (1)

=

√
π

2
,

and

Dβ
0 f (x) = 0,

this implies

Dα
0D

β
0 f (x) = 0.

But

Dβ
0D

α
0 f (x) =

−x− 3
2

2
= Dα+β

0 f (x) .

Now we state some relations between Riemann-Liouville integral and the differential
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operators:

Theorem 1.2.9. Let α ≥ 0. Then for every f ∈ L1 [a, b] ,

Dα
aJ

α
a f = f, (1.2.7)

almost everywhere.

Proof : The case α = 0 is trivial.

For α > 0, let n = [α] . Then,

Dα
aJ

α
a f (x) = DnJn−α

a Jα
a f (x) = DnJn

a f (x) = f (x) .

We have thus established that Dα
a serves as the left inverse of Jα

a . However, we cannot

assert its role as the right inverse. Specifically, the following theorem provides clarification.

Theorem 1.2.10. (Diethelm, 2010) Let α ≥ 0 and n− 1 < α ≤ n. Then,

Jα
aD

α
a f (x) = f (x)−

n−1∑
k=0

(x− a)α−k−1

Γ (α− k)
lim
z→a+

Dn−k−1Jn−α
a f (z) . (1.2.8)

Specifically, for 0 < α < 1, we have:

Jα
aD

α
a f (x) = f (x)− (x− a)α−1

Γ (α)
lim
z→a+

J1−α
a f (z) . (1.2.9)

In 1967, M. Caputo introduced a groundbreaking concept: the Caputo fractional

derivative. This novel approach not only redefined fractional derivatives but also shed

light on their connection to the fractional Riemann-Liouville derivative. This linkage
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was pivotal, offering profound insights into fractional calculus and opening doors for its

wide-ranging applications across diverse fields in science and engineering.

Definition 1.2.11. Let α ∈ R+ and n− 1 < α ≤ n. The operator CDα
a , defined by

CDα
a f (x) = Jn−α

a Dnf (x) =
1

Γ (n− α)

∫ x

a

(x− t)n−α−1

(
d

dt

)n

f (t) dt (1.2.10)

for a ≤ x ≤ b, is called the Caputo differential operator of order α

Example 1.2.12. Let α ≥ 0 and n − 1 < α ≤ n and f (x) = (x− a)c for some c ≥ 0.

Then,

CDα
a f (x) =


0 if c ∈ {0, 1, 2, ..., n− 1}

Γ(c+1)
Γ(c+1−α)

(x− a)c−α
if c ∈ N and c ≥ n

or c /∈ N and c > n− 1

Please refer to (Diethelm, K. 2010) for the detailed proof.

Theorem 1.2.13. If f is continuous and α > 0, then

CDα
aJ

α
a f = f.

Moreover, it’s worth noting that the Caputo derivative does not serve as the right inverse

of the Riemann-Liouville integral.

Theorem 1.2.14. Let α ≥ 0 and n− 1 < α ≤ n and. Then,

Jα
a (

CDα
a f (x)) = f (x)−

n−1∑
k=0

Dkf (a)

k!
(x− a)k . (1.2.11)

Proof : Please refer to (Diethelm, K. 2010) for the detailed proof.
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In this thesis, our objective is to solve the fractional differential equation (FDE) of

the following form:

CDα
au (x) = f

(
x, u (x) , u

′
(x) , ..., u(m−1) (x)

)
, a ≤ x ≤ b, m− 1 < α ≤ m (1.2.12)

subject to conditions

u(i) (a) = ci, i = 0, 1, 2, ..., r − 1, (1.2.13)

u(i) (b) = di, i = r, r + 1, ...,m− 1.

where CDα
a denotes the Caputo fractional derivative of order α, ci, 0 ≤ i ≤ r − 1 and

di, r ≤ i ≤ m − 1 are real constants, u (x) is unknown function to be determined

and f
(
x, u (x) , u

′
(x) , ..., u(m−1) (x)

)
is a linear or nonlinear depending on the problem

discussed.

Now, apply the operator Jα
a of both sides of equation (1.2.12), then by using (1.2.11) we

have:

u (x)−
m−1∑
k=0

u(k) (a)
(x− a)k

k!
= F

(
x, u (x) , u

′
(x) , ..., u(m−1) (x)

)
, (1.2.14)

where, F
(
x, u (x) , u

′
(x) , ..., u(m−1) (x)

)
= Jα

a

(
f
(
x, u (x) , u

′
(x) , ..., u(m−1) (x)

))
.



CHAPTER 2

Reproducing Kernel Hilbert Space



16

2.1 Reproducing Kernel Hilbert Space

Definition 2.1.1. Let X be an arbitrary set and K be a kernel on X, defined as:

K : X ×X → C

1. The kernel K is called Hermitian if for any finite set of points {x1, ..., xn} ⊆ X

and any complex numbers α1, ..., αn we have
∑n

i,j=1 αiαjK (xi, xj) ∈ R.

2. The kernel K is called positive definite if
∑n

i,j=1 αiαjK (xi, xj) ≥ 0.

Definition 2.1.2. (Aronszajn, 1950) Let H be a Hilbert space of functions f : X −→ F

on a set X. A function K : X × X −→ C is a reproducing kernel of H if the following

are satisfied:

1. K (., x) ∈ H for all x ∈ X.

2. ⟨f,K (., x)⟩ = f (x) for all f ∈ H and for all x ∈ X.

The last condition is called “The reproducing property”, the value of the function f at the

point x is reproduced by the inner product of f with K (., x). Further, one can rewrite the

first condition as: for all x ∈ X, kx (y) = k (x, y) as a function of y belongs to H, y ∈ X.

So applying the reproducing property to the function kx at y, we get:

kx (y) = ⟨kx, ky⟩ , for x, y ∈ X.

Consequently, for all x ∈ X we obtain ∥kx∥2 = ⟨kx, kx⟩ = k ⟨x, x⟩ .
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Definition 2.1.3. A Hilbert space H of functions on a set X is called a reproducing

kernel Hilbert space (RKHS) if there exists a reproducing kernel k of H.

Theorem 2.1.4. (Aronszajn, 1950) If a Hilbert space H of functions on a set X

admits a reproducing kernel, then the reproducing kernel k (x, y) is uniquely determined

by the Hilbert space H.

Proof : Let k (x, y) be a reproducing kernel of H. Suppose that there exists another

kernel R (x, y) of H. Then, for all x ∈ X, applying the reproducing property for k and R

we get:

∥kx −Rx∥2 = ⟨kx −Rx, kx −Rx⟩ = ⟨kx −Rx, kx⟩ − ⟨kx −Rx, Rx⟩

= (kx −Rx) (x)− (kx −Rx) (x) = 0.

Hence kx = Rx, that is, kx (y) = Rx (y), for all y ∈ X. This means that k (x, y) = R (x, y)

for all x, y ∈ X.

Theorem 2.1.5. (Aronszajn, 1950) For a Hilbert space H of functions on X, there

exists a reproducing kernel K for H if and only if for every x of X, the Dirac functional

δx : f → f (x) is a bounded linear functional on H.

Theorem 2.1.6. The reproducing kernel k (x, y) of a reproducing kernel Hilbert space H

is a positive definite kernel.

Proof : we have

0 ≤

∥∥∥∥∥
n∑

i=1

αikxi

∥∥∥∥∥
2

=

〈
n∑

i=1

αikxi
,

n∑
i=1

αikxi

〉
=

n∑
i=1

n∑
j=1

αiαj

〈
kxi
, kxj

〉
=

n∑
i=1

n∑
j=1

αiαjk (xi, xj) .



18

Hence,
∑n

i=1

∑n
j=1 αiαjk (xi, xj) ≥ 0

Propertie 2.1.7. (Aronszajn, 1950) Let H be a RKHS and its kernel k (x, y) on X,

then, for all x, y ∈ X, we have:

(i) |k (x, y)|2 ≤ k (x, x) k (y, y).

(ii) Let x0 ∈ X.Then the following are equivalent:

(a) k (x0, x0) = 0.

(b) k (x0, y) = 0 for all y ∈ X.

(c) f(x0) = 0 for all f ∈ H.

Proof : (i) By Schwartz Inequality in H we have

|k (x, y)|2 = |⟨kx, ky⟩|2 ≤ (∥kx∥ ∥ky∥)2 = ∥kx∥2 ∥ky∥2

= ⟨kx, kx⟩ ⟨ky, ky⟩ = k (x, x) k (y, y) .

(ii) It follows from (i) that |k (x0, y)|2 ≤ k (x0, x0) k (y, y) = 0. Hence k (x0, x0) = 0 is

equivalent with k (x0, y) = 0 for all y ∈ X if and only if f(x0) = 0 for all f ∈ H.

Theorem 2.1.8. For any positive definite kernel k (x, y) on X, there exists a uniquely

determined Hilbert space H of functions on X, admitting the reproducing kernel k (x, y) .

Proof : see (Aronszajn, 1950).

Theorem 2.1.9. Every sequence of functions {fn (x)}n≥1 which converges strongly to a

function f in H converges also in the pointwise sense, that is, limn→∞ fn (x) = f (x) , for
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any point x ∈ X. Further, this convergence is uniform on every subset of X on which

x 7−→ k (x, x) is bounded.

Proof : For x ∈ X, using the reproducing property and Schwartz Inequality,

|f (x)− fn (x)| = |⟨f (x) , kx (x)⟩ − ⟨fn (x) , kx (x)⟩|

= |⟨f (x)− fn (x) , kx (x)⟩|

≤ ∥f − fn∥ · ∥kx∥

= ∥f − fn∥ k (x, x)1/2 .

Therefore, limn→∞ fn (x) = f (x) for any point x ∈ X.

Moreover it is clear from the above inequality that this convergence is uniform on every

subset of X on which x 7−→ k (x, x) is bounded.

Definition 2.1.10. The function space Wm
2 [a, b] is defined as follows:

Wm
2 [a, b] =

{
u : u(i), i = 1, 2, ...,m− 1 are absolutely continuous on [a, b], u(m) ∈ L2 [a, b]

}
.

(2.1.1)

The inner product and the norm in the function space Wm
2 [a, b] are defined as follows

respectively; for any functions u (x) , v (x) ∈ Wm
2 [a, b]

⟨u, v⟩Wm
2 [a,b] =

m−1∑
i=0

u(i) (a) v(i) (a) +

∫ b

a

u(m) (x) v(m) (x) dx. (2.1.2)

∥u∥Wm
2 [a,b] =

√
⟨u, v⟩Wm

2 [a,b] (2.1.3)

Theorem 2.1.11. The function space Wm
2 [a, b] is a Hilbert Space.

Proof : see (Zhang, 2012).
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Theorem 2.1.12. The function space Wm
2 [a, b] is a reproducing kernel space. That is,

for each fixed x ∈ [a, b] and any u (y) ∈ Wm
2 [a, b], there exists kx (y) ∈ Wm

2 [a, b], y ∈ [a, b]

such that ⟨u (y) , kx (y)⟩ = u (x), and kx (y) is called the reproducing kernel function of

space Wm
2 [a, b].

Proof : see (Aronszajn, 1950).

2.2 Reproducing Kernel Function

In this section, we will find out the expression forms of the reproducing kernel function

in the space Wm
2 [a, b] . These expression can be represented by piecewise polynomial of

degree 2m− 1. The reproducing kernel function has a unique representation. Further, we

will give some corollaries and remarks related to these kernel functions.

At the end of this section, several examples of such kernel functions are given in W 1
2 [a, b].

Now, let’s find out the expression form of the reproducing kernel function kx (y) in the

space Wm
2 [a, b].

Suppose kx (y) is the reproducing kernel function of the space Wm
2 [a, b] , then for each

fixed x ∈ [a, b] and any u (y) ∈ Wm
2 [a, b] , y ∈ [a, b] we have ⟨u (y) , kx (y)⟩ = u (x) . Based

on (2.1.2) and (2.1.3), we have:

⟨u (y) , kx (y)⟩Wm
2 [a,b] =

m−1∑
i=0

u(i) (a) k(i)x (a) +

∫ b

a

u(m) (y) k(m)
x (y) dy. (2.2.1)

Applying the integration by parts for the second scheme of the right-hand of (2.2.1), we

obtain

∫ b

a

u(m) (y) k(m)
x (y) dy =

m−1∑
i=0

(−1)i u(m−i−1) (y) k(m+i)
x (y) |by=a +

∫ b

a

(−1)m u (y) k(2m)
x (y) .
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Let j = m − i − 1 , the first term of the right-hand side of the above formula can be

rewritten as

m−1∑
i=0

(−1)i u(m−i−1) (y) k(m+i)
x (y) |by=a=

m−1∑
j=0

(−1)m−j−1 u(j) (y) k(2m−j−1)
x (y) |by=a .

After some simplification, Equation (2.2.1) became

⟨u (y) , kx (y)⟩Wm
2 [a,b] =

m−1∑
i=0

u(i) (a)
(
k(i)x (a)− (−1)m−i−1 k(2m−i−1)

x (a)
)

+
m−1∑
i=0

(−1)m−i−1 u(i) (b) k(2m−i−1)
x (b) +

∫ b

a

(−1)m u (y) k(2m)
x (y) dy.

Since kx (y) , u (y) ∈ Wm
2 [a, b] , it follows that

k(i)x (a)− (−1)m−i−1 k(2m−i−1)
x (a) = 0, k(2m−i−1)

x (b) = 0, i = 0, 1, ...,m− 1.

Then ⟨u (y) , kx (y)⟩Wm
2 [a,b] =

∫ b

a
u (y) ((−1)m k

(2m)
x (y))dy

Now, for each x ∈ [a, b], if kx (y) satisfies (−1)m k
(2m)
x (y) = δ (x− y), where δ is dirace-

delta function, then ⟨u (y) , kx (y)⟩Wm
2 [a,b] =

∫ b

a
u (y) δ (x− y) dy = u (y) obviously, kx (y)

is the reproducing kernel of the space Wm
2 [a, b].

Therefore, kx (y) is the solution of the following generalized differential equation:


(−1)m k

(2m)
x (y) = δ (x− y)

k
(i)
x (a)− (−1)m−i−1 k

(2m−i−1)
x (a) = 0,i = 0, 1, ...,m− 1

k
(2m−i−1)
x (b) = 0, i = 0,m− 1.

(2.2.2)

while x ̸= y

(−1)m k2mx (y) = 0. (2.2.3)
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with the boundary conditions (BCs):

k(i)x (a)− (−1)m−i−1 k(2m−i−1)
x (a) = 0, k(2m−i−1)

x (b) = 0, i = 0, 1, ...,m− 1. (2.2.4)

The characteristic equation of Equation (2.2.3) is λ2m = 0, and their characteristic values

are λ = 0 with 2m multiple roots. So, the general solution of Equation (2.2.3) is given

by:

kx (y) =


∑2m−1

i=0 pi (x) y
i, y ≤ x;∑2m−1

i=0 qi (x) y
i, y > x.

(2.2.5)

On the other hand, since (−1)m k
(2m)
x (y) = δ (x− y), we have:

k(i)x (x+ 0) = k(i)x (x− 0) , i = 0, 1, ..., 2m− 2. (2.2.6)

Integrating, (−1)m k
(2m)
x (y) = δ (x− y) from x − ε to x + ε with respect to y and let

ε→ 0, we have the jump degree of k
(2m−1)
x (y) at y = x given by

(−1)m (k(2m−1)
x (x+ 0)− k(2m−1)

x (x− 0)) = 1. (2.2.7)

Equations (2.2.6) and (2.2.7) provided 2m conditions for solving the coefficients pi (x)

and qi (x) , i = 0, 1, ..., 2m − 2 , in equation (2.2.6). Further, equation (2.2.4) provided

2m BCs. So, we have 2m equations. It is easy to know that these 4m equations are

linear equations with the variables pi (x) and qi (x) , and the unknown coefficients pi (x)

and qi (x) of equation (2.2.5) could be calculated out by using Mathematica 8.0 software

package.
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The following corollary gives some important properties of the reproducing kernel kx (y)

Corollary 2.2.1. The reproducing kernel kx (y) is symmetric, unique and kx (y) ≥ 0, for

any fixed x ∈ [a, b] .

Proof : By the reproducing property, we have kx (y) = ⟨kx (.) , ky (.)⟩ = ⟨ky (.) , kx (.)⟩ =

ky (x) . Now, let kx (y) and Rx (y) be all the reproducing kernel of the space Wm
2 [a, b] ,

then kx (y) = ⟨kx (.) , Ry (.)⟩ = ⟨Ry (.) , kx (.)⟩ = Ry (x) .By the symmetry of Rx (y) , we

have the unique representation of kx (y). For the last condition, we note that

kx (x) = ⟨kx (.) , kx (.)⟩ = ∥kx (.)∥2 ≥ 0.

Now we present some expressions of reproducing kernel function in the space W 1
2 [a, b]

with respect to different norms by using the approaches proposed in this section,

Example 2.2.2. Consider the space

W 1
2 [a, b] = {u : u (x) is absolutely continuous on [a, b] and u′ (x) ∈ L2 [a, b]}.The inner

product and the norm in the space W !
2 [a, b] are given by,

⟨u, v⟩W 1
2
= u (a) v (a)+

∫ b

a

u′ (y) v′ (y) dy and ∥u∥W 1
2
=

√
⟨u, u⟩, where u (x) , v (x) ∈ W 1

2 [a, b] .

To find the reproducing kernel function kx (y) , we apply integration by parts to see that

⟨u, kx⟩W !
2
= u (a) kx (a) + u (y) k

′

x (y) |by=a −
∫ b

a

u (y) k
′′

x (y) dy.

Since u (y) , kx (y) ∈ W 1
2 [a, b] , we have kx (a) − k

′
x (a) = 0 and k

′
x (b) = 0.Thus, we need

to solve the BVP −k′′
x (y) = δ (x− y) subject to kx (a)− k

′
x (a) = 0 and k

′
x (b) = 0.

The characteristic equation is λ2 = 0, and the characteristic value is λ = 0 with 2 multiple



24

roots. So,

kx (y) =


p1 (x) + p2 (x) y, y ≤ x,

q1 (x) + q2 (x) y, y > x,

Also, by using equation (2.2.6) and (2.2.7) we have kx (x+ 0) = kx (x− 0) and k
′
x (x+ 0)−

kx (x− 0) = −1,hence the unknown coefficients pi (x) and qi (x) , i = 1, 2,can be obtained

by solve the following equations

1. kx (a)− k
′
x (a) = 0.

2. k
′
x (b) = 0.

3. kx (x+ 0) = kx (x− 0).

4. k
′
x (x+ 0)− k

′
x (x− 0) = −1.

So the reproducing kernel function is given by

kx (y) =


1− a+ y, y ≤ x,

1− a+ x, y > x,

Remark 2.2.3. Yao (2008) proved that the spaceW 1
2 [a, b] in Example (2.2.2) is a complete

reproducing kernel space and its reproducing kernel function is

kx (y) =


1 + y, y ≤ x,

1 + x, y > x,

Example 2.2.4. Consider the spaceW 1
2 [a, b] = {u : u (x) is absolutely continuous on [a, b]

and u′ (x) ∈ L2 [a, b] and u (a) = u (b) = 0}.
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The inner product and the norm in the space W !
2 [a, b] are given, respectively, by

⟨u, v⟩W !
2
=

∫ b

a

u′ (y) v′ (y) dy and ∥u∥ =
√

⟨u, u⟩, where u (x) , v (x) ∈ W !
2 [a, b] .

Similarly, as in example (2.2.2) we have:

Rx (y) =


p1 (x) + p2 (x) y, y ≤ x,

q1 (x) + q2 (x) y, y > x,

the unknown coefficients pi (x) and qi (x) , i = 1, 2,can be obtained by solve the following

equations

1. Rx (a) = 0.

2. Rx (b) = 0.

3. Rx (x+ 0) = Rx (x− 0).

4. R
′
x (x+ 0)−R

′
x (x− 0) = −1.

So the reproducing kernel function is given by

Rx (y) =


(b−x)(a−y)

a−b
, y ≤ x,

(a−x)(b−y)
a−b

, y > x,

Remark 2.2.5. Paulsen (2009) proved that the space W 1
2 [a, b] in Example (2.2.4) is a

complete reproducing kernel space and its reproducing kernel function is

Rx (y) =


(1− x) y, y ≤ x,

(1− y)x, y > x,
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2.3 Description of Reproducing Kernel Method

In this section, we will establish an iterative method to construct and calculate the

solution for the general mth-order BVP.

Consider the general mth-order BVP of the following type

u(m) (x) + a1 (x)u
(m−1) + ...+ am−1 (x)u

′ (x) = F (x, u (x)) , a ≤ x ≤ b, (2.3.1)

subject to the BC’s

u(i) (a) = ci, i = 0, 1, 2, ..., r − 1 (2.3.2)

u(i) (b) = di, i = r, r + 1, ...,m− 1.

where ai (x) , i = 1, 2, ...,m− 1, are continuous real-valued functions, ci, 0 ≤ i ≤ r− 1 and

di, r ≤ i ≤ m− 1 are real constants u (x), is unknown function to be determined, u(m) (x)

indicates the mth derivative of u (x), and F (x, u (x)) is a linear or nonlinear depending

on the problem discussed.

In order to solve the BVP (2.3.1) and (2.3.2) using the RKHS method; First of all, we

construct a reproducing kernel space Wm+1
2 [a, b] in which every function satisfies the

homogeneous BC’s of Equation (2.3.2) and then utilize the space W 1
2 [a, b]. The inner

product and the norm in the space Wm+1
2 [a, b] can be obtained as in Equations (2.1.2)

and (2.1.3), respectively.

Let kx (y) and Rx (y) be the reproducing kernel functions of the space Wm+1
2 [a, b] and

W 1
2 [a, b], respectively. Define a differential operator L : Wm+1

2 [a, b] −→ W 1
2 [a, b] such

that Lu (x) = u(m) (x) + a1 (x)u
(m−1) (x) + ... + am−1 (x)u

′ (x). Note that we can show
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that L is bounded operator by using the following lemma;

Lemma 2.3.1. if u (x) ∈ Wm+1
2 [a, b] , then |u (x)| ≤M0 ∥u (x)∥Wm+1

2
.

Moreover,
∣∣u(i) (x)∣∣ ≤Mi ∥u (x)∥Wm+1

2
, where Mi are constants, i = 1, 2, ...,m.

Proof : By reproducing property of kx (y) and Schwartz inequality, also since k
(i)
x (y) ,

i = 0, 1, 2, ...,m is uniformly bounded about x and y, we obtain

|u (x)| =
∣∣∣⟨u (y) , kx (y)⟩Wm+1

2

∣∣∣ ≤ ∥kx (y)∥Wm+1
2

∥u (y)∥Wm+1
2

≤M0 ∥u (x)∥Wm+1
2

.

From the representation of kx (y), we can get

∣∣u(i) (x)∣∣ = ∣∣∣〈u (y) , k(i)x (y)
〉
Wm+1

2

∣∣∣ ≤ ∥∥k(i)x (y)
∥∥
Wm+1

2
∥u (y)∥Wm+1

2
≤Mi ∥u (x)∥Wm+1

2
.

Thus, after homogenization of the BC’s (2.3.2), the BVP (2.3.1) and (2.3.2) can be

converted into the equivalent form as follows:

Lu (x) = F (x, u (x)) ,a ≤ x ≤ b; (2.3.3)

u(i) (a) = 0, i = 0, 1, 2, ..., r − 1; u(i) (b) = 0, i = r, r + 1, ...,m− 1. (2.3.4)

where u (x) ∈ Wm+1
2 [a, b] and F (x, u) ∈ W 1

2 [a, b].

Now, we construct an orthogonal function system of the spaceWm+1
2 [a, b]. For a countable

dense set {xi}∞i=1 of [a, b], let φi (x) = Rxi
(x), where Rx (y) is the reproducing kernel of

W 1
2 [a, b] . So, from the properties of Rx (y) for every u (x) ∈ W 1

2 [a, b], it follows that

⟨u (x) , φi (x)⟩W 1
2
= ⟨u (x) , Rxi

(x)⟩W 1
2
= u (xi). Additionally, let ψi (x) = L∗φi (x), where
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L∗ is the adjoint operator of L.

Obviously, ψi (x) ∈ Wm+1
2 [a, b]. In terms of the properties of kx (y), we have:

⟨u (x) , ψi (x)⟩Wm+1
2

= ⟨u (x) , L∗φi (x)⟩Wm+1
2

= ⟨Lu (x) , φi (x)⟩W 1
2
= Lu (xi) , where i = 1, 2, ...

Lemma 2.3.2. ψi (x) can be expressed in the form ψi (x) = Lykx (y) |y=xi
. The subscript

y by the operator L indicates that the operator L applies to the function of y.

Proof : From the above assumption, it is clear that

ψi (x) = L∗φi (x) = ⟨L∗φi (y) , kx (y)⟩Wm+1
2

= ⟨φi (y) , Lkx (y)⟩W 1
2
= Lykx |y=xi

.

Theorem 2.3.3. Suppose that the inverse operator L−1in Equation (2.3.3) exist. Thus,

if {xi}∞i=1 is dense in [a, b], then {ψi (x)}∞i=1 is the complete function system of the space

Wm+1
2 [a, b].

Proof : For each fixed u (x) ∈ Wm+1
2 [a, b], let ⟨u (x) , ψi (x)⟩ = 0, i = 1, 2, ..., that is

⟨u (x) , ψi (x)⟩Wm+1
2

= ⟨u (x) , L∗φi (y)⟩Wm+1
2

= ⟨Lu (x) , φi (x)⟩W 1
2
= Lu (xi) = 0.

Note that {xi}∞i=1 is dense in [a, b], therefore, Lu (x) = 0. It follows that u (x) = 0 from

the existence of L−1 and the continuity of u (x).

Now, we will form an orthonormal function
{
ψ̂i (x)

}∞

i=1
of the space Wm+1

2 [a, b] by
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Gram-Schmidt orthogonalization process of {ψi (x)}∞i=1 as follows:

ψ̂i (x) =
i∑

k=1

βikψk (x) , i = 1, 2, ... (2.3.5)

where βik are orthogonalization coefficients and are given by

β11 =
1

∥ ψ1 ∥
, βii =

1√
∥ ψi ∥2 −

∑i−1
k=1 c

2
ik

, βij =
−
∑i−1

k=j cikβkj√
∥ ψi ∥2 −

∑i−1
k=1 c

2
ik

, j < i, (2.3.6)

where cik = ⟨ψi, ψk⟩Wm+1
2

.

Theorem 2.3.4. For each u (x) ∈ Wm+1
2 [a, b] , the series

∑∞
i=1

〈
u (x) , ψ̂i (x)

〉
ψ̂i (x) is

convergent in the sense of the norm of Wm+1
2 [a, b]. On the other hand, if {xi}∞i=1 is dense

in [a, b] then the solution of the BVP (2.3.1) and (2.3.2)is unique and given by

u (x) =
∞∑
i=1

i∑
k=1

βikF (xk, u (xk)) ψ̂i (x) , (2.3.7)

Proof : Applying Theorem (2.3.3), it is easy to see that
{
ψ̂i (x)

}∞

i=1
is the complete

orthonormal basis of the space Wm+1
2 [a, b]. Thus, u (x) can be expanded in the Fourier

series about the orthonormal system
{
ψ̂i (x)

}∞

i=1
as u (x) =

∑∞
i=1

〈
u (x) , ψ̂i (x)

〉
ψi (x).

Moreover, the spaceWm+1
2 [a, b] is Hilbert space, then the series

∑∞
i=1

〈
u (x) , ψ̂i (x)

〉
ψ̂i (x)

is convergent in the sense of the norm ofWm+1
2 [a, b] . Since ⟨v (x) , φi (x)⟩ = v (xi) for each
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v (x) ∈ W 1
2 [a, b], we have:

u (x) =
∞∑
i=1

〈
u (x) , ψ̂i (x)

〉
Wm+1

2

ψ̂i (x)

=
∞∑
i=1

〈
u (x) ,

i∑
k=1

βikψk (x)

〉
Wm+1

2

ψ̂i (x)

=
∞∑
i=1

i∑
k=1

βik ⟨u (x) , ψk (x)⟩
Wm+1

2

ψ̂i (x)

=
∞∑
i=1

i∑
k=1

βik ⟨u (x) , L∗φk (x)⟩
Wm+1

2

ψ̂i (x)

=
∞∑
i=1

i∑
k=1

βik ⟨Lu (x) , φk (x)⟩
W1

2

ψ̂i (x)

=
∞∑
i=1

i∑
k=1

βik ⟨F (x, u (x)) , φk (x)⟩
W1

2

ψ̂i (x)

=
∞∑
i=1

i∑
k=1

βikF (xk, u (xk))ψ̂i (x) .

We denote the n-term approximate solution to u (x) by

un (x) =
n∑

i=1

i∑
k=1

βikF (xk, u (xk))ψ̂i (x) , (2.3.8)

Theorem 2.3.5. For any u (x) ∈ Wm+1
2 [a, b], u

(i)
n (x) are uniformly convergent to u(i) (x) ,

i = 0, 1, ...,m.

Proof : By using Lemma (2.3.1), for any x ∈ [a, b] , we get

∣∣u(i)n (x)− u(i) (x)
∣∣ =

∣∣∣〈u(i)n (x)− u(i) (x) , kx (x)
〉
Wm+1

2

∣∣∣ = ∣∣∣〈un (x)− u (x) , k(i)x (x)
〉
Wm+1

2

∣∣∣
≤

∥∥k(i)x (x)
∥∥
Wm+1

2
∥un (x)− u (x)∥Wm+1

2

≤ Mi ∥un (x)− u (x)∥Wm+1
2

−→ 0, as n −→ ∞.
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Thus, the approximate solution un (x) and u
(i)
n (x) converge uniformly to u (x) and its

derivative u(i) (x) , respectively.



CHAPTER 3

RKHS method for Solving Fractional Logistic

Models
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Fractional calculus is the study of derivatives and integrals of non-integer order that

provides an attractive mechanism to explain memory and hereditary characteristics of

complex systems. Recently, it has been widely used in modeling real-world models

due to its accuracy in providing and neglecting the influence of external forces as in

physics, engineering, mechanics, biology, medicine and economics (Kilbas, et al., 2006)

and (Mainardi F, 2010). One model that has benefited from the development of fractional

calculus is the logistic model, which is an attempt to describe several phenomena that

possess growth data such as population growth, the spread of bacteria, infectious diseases

and social media. See (Bacaër, 2011) and the references cited therein. The actual formula

of this model was first proposed by the Belgian mathematician Verhulst in 1835 , who

stated that the virtual increase of population is limited by the size and the fertility of

the country. As a result, the population gets closer and closer to a steady state. He

introduced the nonlinear first-order ordinary DE in the following quadratic form :

du(x)

dx
= λu(x)

(
1− u(x)

δ

)
,

where u(x), λ, and δ are related to the population, growth rate parameter, and carrying

capacity, respectively. This model known as the Verhulst model, assumes that the growth

rate λ is linearly increasing and decreasing in terms of u(x). Furthermore, by substituting

u(x) = u(x)
δ
, the classical logistic differential equation (LDE) is described by:

du(x)

dx
= λu(x)(1− u(x)),
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which has the exact solution as follows:

u(x) =
u0

u0 + (1− u0)e−λx
,

where u0 = u(0) is related to the initial population data.

In terms of methodology, the approximate methods have been known as powerful

mathematical tools for dealing with many complex natural models with local and non-

local operators, which arise at studies of physics, engineering, biology, chemistry, and

other sciences. These advanced methods are used when the classical analytical techniques

accomplished fail. It is also being continuously improved to keep pace with the rapid

developments taking place in the universe and the emergence of new global economic,

biological, chemical, and astronomical models. However, with respect to the proposed

model, some modern numerical approaches have been applied to solve the quadratic and

cubic fractional Logistic equations, including the spectral Laguerre collocation method

(Khader and Babatin ,2013), Decomposition method (Momani and Qaralleh, 2007), operational

matrices of Bernstein polynomials (Al-Bar. 2015), and the Residual power series method

(Alshammari, et al., 2019).

The motivation of the current study is to expand the applications of the RKHS method

for obtaining approximate solutions for a class of modified quadratic fractional Logistic

differential equations (FLDEs) in the frame of Caputo fractional derivative. At any rate,

implementations of the method on a nonlinear FLDEs of quadratic type:

CDα
au(x) = λu(x)(1− u(x)), u(a) = u0, (3.0.1)

In which, 0 < α ≤ 1, x ∈ [a, b]; λ > 0. Here, note that CDα
a indicates the Caputo fractional
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derivative and u(x) indicates smooth solution to be determined in the desirable space

W2
2[a, b]. These equations are generalized by applying the fractional derivative rather

than the classical integer order derivative to standard LDEs to contribute to improving

model accuracy.

3.1 Quadratic Fractional Logistic Differential Equation

In this section, a modified technique based of the reproducing kernel concept is

proposed to solve a class of FLDEs of type quadratic in RKHSW2
2[a, b] . A new reproducing

kernel function is constructed to create an orthogonal system and to calculate the analytical

and approximate solutions in the desirable spaceW2
2[a, b]. The convergence, and complexity

of the proposed approach are discussed. The main motivation for using the proposed

technique is high accuracy and low computational cost compared to other existing methods

especially when involving fractional differentiation operators. In this orientation, the

effectiveness, applicability, and feasibility of this technique are verified by numerical

examples. From a numerical viewpoint, the obtained results indicate that the suggested

intelligent method has many advantages in accuracy and stability using the Caputo

fractional operator.

3.1.1 Introduction

We consider the quadratic FLDE of the following form:

CDα
au(x) = λu(x)(1− u(x)), x ≥ a, 0 < α ≤ 1, (3.1.1)
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subject to the IC:

u(a) = u0, (3.1.2)

where λ > 0, CDα
a indicates the Caputo fractional derivative, while u(x) indicates smooth

solution to be determined in the desirable space W2
2[a, b]. We suppose that FLDE (3.1.1)

have a unique solution.

In order to solve FLDE (3.1.1) in the frame of Caouto fractional derivative, we

construct two reproducing kernel functions. The RKHS W2
2[a, b] is determined as

W2
2[a, b] = {u(x) : u, u′ is absolutely continuous on [a, b], u′′ ∈ L2[a, b], x ∈ [a, b], u(a) = 0}.

The standard inner product and the norm associated with the RKHS W2
2[a, b] are given,

respectively, by:

⟨u1, u2⟩W2
2
=

1∑
i=0

u
(i)
1 (a)u

(i)
2 (a) +

∫ b

a

u
(2)
1 (x)u

(2)
2 (x)dx, u1, u2 ∈ W2

2[a, b], (3.1.3)

and

∥u∥W2
2
=

√
⟨u, u⟩W2

2
, u ∈ W2

2[a, b]. (3.1.4)

Theorem 3.1.1. The unique representation of a reproducing kernel functions Kx(y) of

the RKHS W2
2[a, b] is given by

Kx(y) =


ρ(x, y), y < x,

ρ(y, x), x ≤ y,

(3.1.5)

where ρ(x, y) = 1
6
(y − a)(2a2 − y2 + 3x(2− y)− a(6 + 3x+ y)).

Proof : To find out the expression form of Kx(y) for the RKHS W2
2[a, b], we have to do
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the following: Through several integrations by parts for Eq. (3.1.3), we have

⟨u(y),Kx(y)⟩W2
2

=
∑1

i=0 u
(i)(y)(∂iyKx(a) + (−1)i∂3−i

y Kx(a)) +
∑1

i=0(−1)i−1u(i)(b)∂3−i
y Kx(b))

+
∫ b

a
u(y)∂4yKx(y)dy.

(3.1.6)

Since Kx(y) ∈ W2
2[a, b], it follows that Kx(a) = 0. Further, since u(x) ∈ W2

2[a, b], one gets

u(a) = 0.

If ∂iyKx(b) = 0, i = 2, 3 and ∂1yKx(a)− ∂2sKx(a) = 0, then

⟨u(y),Kx(y)⟩W2
2

=
∫ b

a
u(y)∂4sKx(y)dy. (3.1.7)

Now, for each x ∈ [a, b], if Kx(y) ∈ W2
2[a, b] also satisfies

∂4yKx(y) = δ(x− y), (3.1.8)

where δ(x) is the Dirac-Delta function, then

⟨u(y),Kx(y)⟩W2
2
= u(x). (3.1.9)

The characteristic equation of Eq.(3.1.8) is r4 = 0 and its characteristic value r = 0 with

multiplicity root 4. So, let

Kx(y) =


∑4

i=1 ai(x)y
i−1, y < x,∑4

i=1 bi(x)y
i−1, x ≤ y.

(3.1.10)
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Moreover, for Eq. (3.1.8), let Kx(y) satisfies the following linear equations:

lim
y→x−

∂iyKx(y) = lim
y→x+

∂iyKx(y), i = 0, 1, 2,

and integrating Eq. (3.1.8) from x− ϵ into x+ ϵ with respect to y and let ϵ→ 0, we have

the jump degree of ∂3yKx(y) at y = x

lim
y→x−

∂3yKx(y)− lim
y→x+

∂3yKx(y) = 1.

From the last descriptions and by using Mathematica software 12 package the unknown

coefficients ai(x) and bi(x), i=1,2,3,4 can be obtained.

Note that, Kx(y) is symmetric, unique, and semi d.p., i.e., Kx(y) ≥ 0, for any fixed

x ∈ [a, b].

Definition 3.1.2. The RKHS W1
2[a, b] is determined as

W1
2[a, b] = {u(x) : u is absolutely continuous on [a, b], u′ ∈ L2[a, b], x ∈ [a, b]}.

The inner product and norm are attached, respectively, by

⟨u1, u2⟩W1
2
=

∫ b

a

(
u1(x)u2(x) + u′1(x)u

′
2(x)

)
dx, u1, u2 ∈ W1

2[a, b], (3.1.11)

and

∥u∥W1
2
=

√
⟨u, u⟩W1

2
, u ∈ W1

2[a, b]. (3.1.12)

It’s easy to proof that the space W1
2[a, b] is a complete RKHS and its reproducing
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kernel function Rx(y) given by

Rx(y) =
1

2 sinh(b− a)

[
cosh(x+ y − b− a) + cosh(|x− y| − b+ a)

]
. (3.1.13)

From the definition of the RKHSs W2
2[a, b] and W1

2[a, b], we obtain W2
2[a, b] ↪→ W1

2[a, b],

i.e., ∃ c > 0 such that ∥u∥W1
2
≤ c∥u∥W2

2
.

3.1.2 Implements of the Modified RKHS Method

In this section, we demonstrate how to implement the modified RKHS method to

solve a class of quadratic FLDEs in the frame of Caputo fractional derivative in RKHS

W2
2[a, b]. To perform this, we must homogenize the IC using the simple transformation

u(x) = u(x)− u0. Thus, the equivalent form of the quadratic FLDE (3.1.1) is given by

CDα
au(x) = λ(u(x) + u0)(1− u(x)− u0), 0 < α ≤ 1, (3.1.14)

subject to the initial condition

u(a) = 0. (3.1.15)

After that, we characterize the differential linear operator as follows


L : W2

2[a, b] −→ W1
2[a, b];

Lu(x) =C Dα
au(x).

(3.1.16)

Lemma 3.1.3. The fractional operator L from W2
2[a, b] into W1

2[a, b] is bounded and

linear.

Proof : We need to prove the presence of a positive constant K such that ∥Lu(x)∥2
W1

2
≤
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K∥u(x)∥2
W2

2
. To do this, the reproducing property of Kx(y) are applied together with

Cauchy-Schwartz inequality, we obtain ||

∣∣(Lu)(i)(x)∣∣ =
∣∣∣〈u(x), (LKx

)(i)
(x)

〉
W2

2

∣∣∣
≤

∥∥∥∥(LKx

)(i)
(x)

∥∥∥∥
W2

2

∥u∥W2
2

≤ K{i}∥u(x)∥2
W2

2
, i = 0, 1.

Here, K{i} =

∥∥∥∥(LKx

)(i)
(x)

∥∥∥∥
W2

2

=

∥∥∥∥(CDα
aKx

)(i)
(x)

∥∥∥∥
W2

2

in the indices 0 ≤ i ≤ 1. Since

Kx(y) is uniformly bounded about x and y, we have
(C
Dα

aKx

)(i)
(x) is uniformly bounded

about x. Now, by using the norm over the space W1
2[a, b], we have

∥Lu(x)∥2W1
2
= ∥CDα

au(x)∥2W1
2
=

∫ b

a

[(C
Dα+1

a u(x)
)2

+
(C
Dα+2

a u(x)
)2]

dx ≤ K∥u(x)∥2W2
2
,

in which, K = (b− a)

(
(K{1})2 + (K{2})2

)
.

The next step is how to create an orthogonal function system of W 2
2 [a, b]. To see

this, we put φi(x) = Rxi
(x) and ψi(x) = L⋆φi(x), i=1,2,. . . , such that {xi}∞i=0 is dense

countable sub set in [a, b] and L⋆ indicated the adjoint operator of L. Look this, from

the properties of reproducing kernel Rx(y), for every u(x) ∈ W 1
2 [a, b], it follows that

⟨u(x), φi(x))⟩W 1
2
= ⟨u(x),Rxi

(t)⟩W 1
2
= u(xi). Additionally, In terms of the properties of

reproducing kernel Kx(y) , one gets

⟨u(x), ψi(x)⟩W 2
2
= ⟨u(x),L⋆φi(x)⟩W 2

2
= ⟨Lu(x), φi(x)⟩W 1

2
= Lu(xi), i = 1, 2, . . . .

To derive the normal function basis {ψ̂i(x)}∞i=1 of the RKHS W 2
2 [a, b] from {ψi(x)}∞i=1.

we need to use the well-known Gram-Schmidt orthogonalization process, which can be
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used as follows:

ψ̂i(x) =
i∑

k=1

ϱikψk(x), i = 1, 2, . . . , (3.1.17)

where, ϱik is the orthogonalization coefficients of {ψi(x)}∞i=1 such that ϱii > 0.

Theorem 3.1.4. If {xi}∞i=1 is dense countable sub set on [a, b], then {ψ̂i(x)}∞i=1 is complete

function system in W2
2[a, b] and ψi(x) = LyKx(y) |y=xi

.

Proof : Note that

ψi(x) = L∗φi(x) = ⟨L∗φi(y),Kx(y)⟩W2
2
= ⟨LKx(y), φi(y)⟩W1

2
= LyKx(y) |y=xi

.

To show the completeness, let ⟨u(x), ψi(x)⟩ = 0. This mean that

⟨u(x), ψi(x)⟩W2
2
= ⟨u(x),L∗φi(x)⟩W2

2
= ⟨Lu(x), φi(x)⟩W1

2
= Lu(xi) = 0.

By the density of the sequence {xi}∞i=1 on [a, b], we have Lu(x) = 0. Further, from the

existence of the inverse operator L−1, we conclude that the {ψi(x)}∞i=1 is complete.

Theorem 3.1.5. Let u(x) ∈ W2
2[a, b] be a unique solution of the quadratic FLDEs

(3.1.16). Thus, its analytical solution has the following form

u(x) =
∞∑
i=1

i∑
k=1

λϱik(u(x) + u0)(1− u(x)− u0)ψ̂i(x), (3.1.18)

where ϱik are the orthonormalization coefficients.

Proof : Since, {ψ̂i(x)}ni=1 is a normal function basis of W2
2[a, b], u(x) can be written in

the Fourier series expansion u(x) =
∑∞

i=1⟨u(x), ψ̂i(x)⟩W2
2
ψ̂i(x).

Additionally, since W2
2[a, b] is a Hilbert space, then the series

∑∞
i=1⟨u(x), ψ̂i(x)⟩W2

2
ψ̂i(x)
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is convergent in sense of the norm ∥ · ∥W2
2
of W2

2[a, b]. On the other hand, we have

u(x) =
∑∞

i=1⟨u(x), ψ̂i(x)⟩W2
2
ψ̂i(x)

=
∑∞

i=1

∑i
k=1 ϱik⟨u(x), ψi(x)⟩W2

2
ψ̂i(x)

=
∑∞

i=1

∑i
k=1 ϱik⟨u(x),L⋆φk(x)⟩W2

2
ψ̂i(x)

=
∑∞

i=1

∑i
k=1 ϱik⟨Lu(x), φk(x)⟩W1

2
ψ̂i(x)

=
∑∞

i=1

∑i
k=1 λϱik(u(xk) + u0)(1− u(xk)− u0)ψ̂i(x).

(3.1.19)

Lemma 3.1.6. If u(x) ∈ W2
2[a, b], then there exists a positive number K such that

∥u(i)(x)∥C ≤ K∥u(i)(x)∥W2
2
, i = 0, 1,

where ∥u(i)(x)∥C = max
x∈[a,b]

|u(x)|.

Proof : For any y, x ∈ [a, b], we have u(i)(x) = ⟨u(y), ∂iyKx(y)⟩W2
2
, in the indices 0 ≤ i ≤

1. By the expression formula of ∂iyKx(y), it follows that ∥∂iyKx(·)∥W2
2
< Ki, in the indices

0 ≤ i ≤ 1. Thus, by Cauchy-Schwartz inequality, we obtain

|u(i)(x)| = |⟨u(y), ∂iyKx(y)⟩W2
2
| ≤ ∥∂iyKx(y)∥W2

2
∥u(y)∥W2

2
≤ Ki∥u(x)∥W2

2
, i = 0, 1.

As result, ∥u(i)(x)∥C ≤ K∥u(i)(x)∥W2
2
, such that K = max{K1,K2}.
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By the direct application of Lemma (3.1.6) ,we get

|u(i)n (x)− u(i)(x)| = |⟨u(i)n (x)− u(i)(x), ∂isKy(x)⟩W2
2
|

≤ ∥∂iyKy(x)∥W2
2
∥u(i)n (x)− u(i)(x)∥W2

2

≤ Ki∥u(i)n (x)− u(i)(x)∥W2
2
, i = 0, 1.

Hence, |u(i)n (x) − u(i)(x)| ≤ Ki∥u(i)n (x) − u(i)(x)∥W2
2
→ 0 as n → ∞, i = 0, 1. Thus,

un(x) and u′n(x) are uniformly convergent to u(x) and u′(x), respectively. Note that if

the studied problem is linear, we can easily determine the approximate solution from the

following truncated equation:

Note that, If the studied problem is linear, then we can easily determine directly the

approximate solution by the following truncated equation:

un(x) =
n∑

i=1

i∑
k=1

λϱik(u(xk) + u0)(1− u(xk)− u0)ψ̂i(x).

Here, because the studied problem is nonlinear DE then the analytical and approximate

solutions of FLDE (3.1.1) can be given using the iterative process that described in Section

(2.3).

Consequently, the approximate solution uNn (x) can be obtained by taking finitely many

terms in the series representation of un(x), and by using the iterative process ,

uNn (x) =
N∑
i=1

i∑
k=1

ϱikλ(uk−1(xk) + u0)(1− uk−1(xk)− u0)ψ̂i(x). (3.1.20)
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3.1.3 Computational Simulations for Quadratic FLDEs

In this section, the efficiency and accuracy of the modified RKHS method are demonstrated

by including two numerical examples for quadratic FLDEs in the frame of Caputo fractional

operator. The results obtained are compared to the exact solution at the integer-order

α = 1, and with each other at different values of arbitrary-order α. In this regard, the

obtained results show that the proposed method provides a convenient methodology for

controlling the convergence of the approximate solution.

Example 3.1.7. (Kumar, et al., 2017) Consider the following quadratic FLDE in

the frame Caputo fractional derivative:


CDα

0 u(x) =
1
2
u(x)(1− u(x)), 0 < α ≤ 1;

u(0) = 1
4
.

(3.1.21)

The exact solution at α = 1 is u(x) = e
x
2

e
x
2 +3

.

By using the modified RKHS method, taking xi =
i−1
n−1

, i = 1, .., n, with the reproducing

kernel function Kx(y) on the interval [a, b] = [0, 1], the approximate solutions un(x) at the

different values of fractional order α are computed by Eq. (3.1.20).

The numerical outcomes of the proposed method are listed in the form of tables and

graphical representations as follows: Numerical approximations for Example (3.1.7) compared

with the exact solutions at α = 1 are given in Table (3.1) over [a, b] = [0, 1] with step

size 0.1. Figure (3.1) exhibits a comparison among the behavior curves of exact and

approximate solutions at α = 1. While in Table (3.2), the numerical results at different

values of fractional order α are summarized in the frame of Caputo fractional derivatives.

In Figure (3.2), the behavior of the approximate solutions are presented in the frame of
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Caputo fractional derivatives with different values of α.

In addition, we compute the absolute error of n-order approximate function at a

particular point x which is adopted from

en = |u(x)− un(x)|, (3.1.22)

where, x ∈ [0, 1], u(x) is the exact solution and un(x) is the approximate solution. Also,

the relative error at a particular point t is calculated:

rn =
|u(x)− un(x)|

u(x)
. (3.1.23)

Table 3.1: Numerical results in Example (3.1.7): Approximate solution, absolute errors,
relative errors.

xi Exact solution Approximate solution Absolute Error Relative Error
0. 0.25 0.25 0. 0.
0.1 0.259492 0.259491 3.16557× 10−7 1.21991× 10−6

0.2 0.269214 0.269214 6.91116× 10−7 2.56716× 10−6

0.3 0.279164 0.279163 1.06151× 10−6 3.80248× 10−6

0.4 0.289336 0.289334 1.42619× 10−6 4.92920× 10−6

0.5 0.299724 0.299722 1.78378× 10−6 5.95141× 10−6

0.6 0.310322 0.31032 2.13312× 10−6 6.87388× 10−6

0.7 0.321124 0.321121 2.47329× 10−6 7.70200× 10−6

0.8 0.332120 0.332117 2.80365× 10−6 8.44169× 10−6

0.9 0.343302 0.343299 3.12380× 10−6 9.09929× 10−6

1. 0.354661 0.354658 3.43363× 10−6 9.68144× 10−6

Example 3.1.8. (Kumar, et al., 2017) Consider the following quadratic FLDE within

Caputo fractional derivative:


CDα

0 u(x) =
1
2
u(x)(1− u(x)), 0 < α ≤ 1;

u(0) = 1
2
.

(3.1.24)

The exact solution of Eq. (3.1.24) when α = 1 is u(x) = e
x
2

e
x
2 +1

.
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Figure 3.1: Solution curves of Example (3.1.7) at α = 1: Solid line is exact; Dotted line is
approximate solution

Table 3.2: Approximate solutions in the frame of Caputo fractional derivative of Example
(3.1.7).

Caputo fractional derivative
xi α = 1 α = 0.9 α = 0.75 α = 0.55
0.0 0.2500000000 0.2500000000 0.2500000000 0.2500000000
0.1 0.2594908709 0.2608938185 0.2687497944 0.3817621873
0.2 0.2692124735 0.2713333169 0.2820584730 0.2972463094
0.3 0.2791610379 0.2817634954 0.2941860352 0.3102060310
0.4 0.2893317276 0.2922625543 0.3056488759 0.3216472469
0.5 0.2997189801 0.3028615396 0.3166810139 0.3321037761
0.6 0.3103163716 0.3135739971 0.3274046963 0.3418446428
0.7 0.3211166644 0.3244050442 0.3378919084 0.3510304015
0.8 0.3321119242 0.3353549334 0.3481882159 0.3597658954
0.9 0.3432933646 0.3464206999 0.3583238532 0.3681242085
1.0 0.3546513763 0.3575976995 0.3683187474 0.3761571814

Figure 3.2: Graphical results of Example (3.1.7) in the frame Caputo fractional derivatives
with different values of α: Blue line α = 0.55; Brown line α = 0.65; Green line
α = 0.75; Red line α = 0.85; Gray line α = 0.95; Black line α = 1.

By taking xi =
i−1
n−1

, i = 1, . . . , n and n = 30, the numerical outcomes of the solutions

using the RKHSM are summarized in the form of tables and graphs representations as



46

follows: The absolute errors of Example (3.1.8) at α = 1 are shown in Table (3.3). Table

(3.4) shows the numerical results at different values of fractional order α in the frame of

Caputo fractional concepts. The approximate solution curves for different values of α in

the frame of Caputo fracional operators are presented in Figure (3.3).

Table 3.3: Numerical results in Example (3.1.8): Approximate solution, absolute errors,
relative errors.

xi Exact solution Approximate solution Absolute Error Relative Error
0. 0.5 0.5 0. 0.
0.1 0.512497 0.512497 1.58773× 10−7 3.09803× 10−7

0.2 0.524979 0.524979 3.15903× 10−7 6.01745× 10−7

0.3 0.537430 0.537429 4.73191× 10−7 8.80470× 10−7

0.4 0.549834 0.549833 6.32423× 10−7 1.15020× 10−6

0.5 0.562177 0.562176 7.95317× 10−7 1.41471× 10−6

0.6 0.574443 0.574442 9.63465× 10−7 1.67721× 10−6

0.7 0.586618 0.586616 1.13828× 10−6 1.94041× 10−6

0.8 0.598688 0.598686 1.32095× 10−6 2.20641× 10−6

0.9 0.610639 0.610638 1.51241× 10−6 2.47677× 10−6

1. 0.622459 0.622458 1.71330× 10−6 2.75248× 10−6

Figure 3.3: Solution curves of Example (3.1.8) at α = 1: Solid line is exact; Dotted line is
approximate solution
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Table 3.4: Approximate solutions in the frame of Caputo fractional derivative of Example
(3.1.8).

Caputo fractional derivative
xi α = 0.95 α = 0.85 α = 0.75 α = 0.65 α = 0.55
0. 0.5 0.5 0.5 0.500000 0.5
0.1 0.514050 0.527931 0.523075 0.529519 0.537602
0.2 0.527374 0.538477 0.539677 0.547419 0.556275
0.3 0.540307 0.548963 0.554062 0.562023 0.570592
0.4 0.552965 0.559389 0.567134 0.574793 0.582632
0.5 0.565390 0.569746 0.579270 0.586315 0.593188
0.6 0.577604 0.580026 0.590673 0.596897 0.602669
0.7 0.589615 0.590218 0.601470 0.606729 0.611318
0.8 0.601428 0.600316 0.611746 0.615940 0.619298
0.9 0.613041 0.610311 0.621562 0.624619 0.626720
1. 0.624454 0.620196 0.630964 0.632834 0.633668

(a) Caputo fractional derivative

Figure 3.4: Graphical results of Example (3.1.8) in the frame of Caputo fractional derivatives
with different values of α: Blue line α = 0.55; Brown line α = 0.65; Green line
α = 0.75; Red line α = 0.85; Gray line α = 0.95; Black line α = 1.
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4.0.1 Conclusions

To conclude, in this work, a precise numerical approximation algorithm based on

the reproducing kernel Hilbert space (RKHS) approach has been developed to address a

specific class of fractional differential equations within the framework of the Caputo sense.

The analytical solution is formulated as a convergent series with accurately computable

structures in the reproducing kernel space. A finite-term approximation has been derived

and proven to uniformly converge to the analytical solution. The primary advantage

of the RKHS approach lies in its direct applicability without the need for linearization

or perturbation, thereby circumventing errors associated with discretization. Several

numerical examples have been provided to demonstrate the accuracy of the computations

and the efficacy of the proposed approach. The numerical results indicate that the

RKHS method serves as a robust tool for obtaining effective approximate solutions to

such systems arising in applied mathematics, physics, and engineering.

For future endeavors, further research could concentrate on formulating novel reproducing

kernel functions and different RKHS formulations to tackle a wider array of fractional

differential equations with non-classical initial and boundary conditions.
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طريقة باستخدام الكسرية التفاضلية للمعادلات العددي الحل

التكرارية المستنسخة النواة

اعداد

جدي كنزة

المشرف

جدي نذير الدكتور

الملخص

،)RKHS( المستنسخة النواة ذو هلبرت فضاء منهج تستخدم دقيقة، عددي تقريب خوارزمية الرسالة هذه تقترح
على أساسي بشكل الحل منهجية تعتمد كابوتو. إطار ضمن الكسرية التفاضلية المعادلت من محددة فئة لمعالجة
ناحية. من الكسرية التفاضلية المعادلة حل تحديد بشروط تفي �2

� a, b هيلبرت فضاء استنساخ نواة بناء
التحليلية للحلول العامة الصيغة على للحصول النواة استنساخ خاصية استخدام على يعتمد أخرى، ناحية من

شكل في والتقريبية التحليلية الحلول تمثيل يتم سابققا. إنشاؤها تم التي �2
� a, b هيلبرت فضاء على والتقريبية

مع موحد بشكل تتقارب مشتقاتها وجميع التقريبية الحلول . �2
� a, b هيليرت فضاء في فورييه متسلسلة

عددية، أمثلة عدة خلل من المقترح النهج فعالية من التحقق يتم التوالي. على مشتاتها، وجميع التحليلية الحلول
والهندسة. والفيزياء، التطبيقية، الرياضيات مجالت في الناشئة الخطية غير النظمة حل في قوته إلى يشير مما
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