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Abstract

Deepfake audio technology poses a growing threat to information authenticity and in-
tegrity. This thesis provides a systematic investigation of different Machine Learning
(ML) methods for detecting deepfake in Arabic speech. Firstly, a novel dataset of real
and synthetic Arabic audio speech was created. Then, various ML methods were evaluated
for their ability to discriminate between genuine and synthesized speech. Finally, a new
Arabic deepfake speech framework is proposed, including handcrafted feature extraction
and classification. Feature importance analysis revealed key acoustic and prosodic cues
that contribute to the detection process, where the XGBoost classifier emerged as the
most effective. Experimental results demonstrated the robustness and the high accuracy
of our proposed framework for Arabic deepfake speech detection compared to state-of-the-
art methods. This research establishes a benchmark for Arabic deepfake audio detection
and contributes to the ongoing efforts to combat the harmful effects of this technology.
Keywords: Deepfake Audio, Arabic Speech, Ensemble Learning, Machine Learning,

Deep Learning, Generative Artificial Intelligence.



oadle
A i Oile glaedl Fe S o Adliuact liol jie liudgd cia pedl O guall Adas JSA&S
Ao gomo sLil) @3 .y jadl (3 yall ASSI (o CALSU WY @lad GLOAGT alisiul A g b Y
WY @lad 7 3led mudd @ g Aaidaiactl g st Ao Hall O guall Slive (pe Sugds Sk
ellao¥ sl Gy yb (e W getl g oWl AN (o el e LgT jual dalisnet
OLEET b Wilie g adle A8 gl Coos (Adlad pileidl Jisole Hlisned! g3 geidl )
Wgat g A0 g Ol HLa) e Of jued) dcad] Jldond Cadss Aalidned! Cay jall O guall ol g3
il Oguall e adSE Ulae Coud) 10a pay cadSH Addes b eblad A
LG oig B jlaalt HEWI AmBISeY 5 yatinadl 3 ggntl B @il g iy ol
LSl (oall @lalll (I @latill (o3 yatl aSSI (i jodt O guall tdirLided| CLeld!
.4%«331“&%@?‘



Résumé

La technologie de 'audio deepfake représente une menace croissante pour l'authenticité
et I'intégrité de 'information. Cette these fournit une investigation systématique de diffé-
rentes méthodes d’apprentissage automatique (ML) pour détecter les deepfakes dans les
discours arabes. Tout d’abord, un nouveau jeu de données d’audio arabe réel et synthé-
tique a été créé. Ensuite, diverses méthodes de ML ont été évaluées pour leur capacité
a discriminer entre les discours authentiques et synthétisés. Enfin, un nouveau cadre de
discours deepfake arabe est proposé, incluant I'extraction de caractéristiques manuelles et
la classification des caractéristiques. L’analyse de 'importance des caractéristiques a ré-
vélé des indices acoustiques et prosodiques clés qui contribuent au processus de détection,
ou le classificateur XGBoost s’est avéré le plus efficace. Les résultats expérimentaux ont
démontré la grande précision et la robustesse de notre cadre proposé pour la détection
des discours deepfake en arabe, comparé aux méthodes de pointe. Cette recherche établit
une référence pour la détection de 'audio deepfake en arabe et contribue a I'effort continu
pour combattre les effets néfastes de cette technologie.

Mots-clés : Audio Deepfake, Discours Arabe, Apprentissage Ensemble, Apprentissage

Automatique, Apprentissage Profond, Intelligence Artificielle Générative.
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Chapitre 1

(General Introduction to Deepfake
Audio Detection

Introduction

Artificial Intelligence (AI) has revolutionized the world. However, this revolution has
also opened doors for manipulation. Deepfakes, a type of synthetic media, have emerged
as a growing concern. These Al-powered technologies can create highly realistic audio
or video recordings that manipulate the appearance or voice of a person. This chapter
explores the many forms of deepfakes and the difficulties they provide with some examples
and history and addresses the threat they pose. Next, we’ll focus on deepfake audio
recognition, identify the issue of distinguishing natural speech from artificial voice, and

finally present the thesis statement.

1.1 Context description

This section introduces deepfakes, exploring their definition, types, and the develop-
ment in their creation. We will examine the cybersecurity threats posed by deepfakes and
highlight real-world fraud examples. This context sets the stage for our exploration of

deepfake audio detection techniques.

1.1.1 DeepFake Definition

A new technology that makes an unsettling impression has emerged in the rapidly
changing digital landscape : deepfake technology. The term “deepfake” — a combination of

“deep learning” and “fake” — refers to synthetic media where images, videos, or audio clips
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are manipulated using advanced Al-based tools. These alterations create highly realistic
yet entirely generated representations that challenge our perception of reality. From their
inception to their current state, deepfakes have rapidly evolved, becoming increasingly

sophisticated and easily accessible to the general public [1].

1.1.2 DeepFake Types

Many varieties exist in DeepFake. The following are a few of the well-known ones :

e Textual DeepFake : In the early days of machine learning and Natural Language
Processing (NLP), the idea of a machine tackling creative efforts like writing seemed
like science fiction. Fast forward to 2017, and the landscape has dramatically shifted
by the introduce of Transformers like (Generative Pre-trained Transformer) GPT [2].
Decades of tireless work by researchers, data scientists, and countless contributors
have resulted in powerful language models and libraries. These advancements have
paved the way for Al-generated writing that rivals human quality in terms of conci-

seness and clarity.

This evolution highlights the remarkable capabilities of Al in domains once consi-
dered exclusively human. However, the development of Al writing tools also raises
important questions. We need to consider the potential impact of these tools on
authorship, plagiarism, and the very nature of creative expression in the digital

age [1].

e Video and Image Deepfake : For deepfake creators with malicious intent, the
ability to fabricate realistic videos and photographs is their primary weapon. In our
current social media-driven world, where visuals reign supreme, deepfake videos are
particularly dangerous. Unlike text, videos and photos have the power to capture

attention, illustrate stories, and shape narratives in a way that text simply cannot.

The threat posed by deepfake videos may even surpass that of manipulated text,
given the current capabilities of Al in video generation. Advancements in Al have
made video manipulation more sophisticated and potentially more harmful than na-
tural language manipulation. One example is MarioNETte [3], a program developed
by the Seoul-based software company Hyperconnect in 2021. This program exem-
plifies the power and potential misuse of deepfake technology. MarioNETte allows
users to create deepfake videos of historical figures, celebrities, and political leaders.
The program works by having another person mimic the facial expressions of the

target individual, which are then seamlessly integrated into a deepfake body. As for
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image deepfake we have the DALL-E [4] an Al system that can produce realistic

artwork and images from a natural language description.

This ability to create highly realistic deepfake videos or images of well-known per-
sonalities underscores the significant risks associated with this technology. Deepfake
can be used to spread misinformation, damage reputations, and sow discord in so-

ciety [1].

e Audio Deepfake : The world of deepfakes extends far beyond manipulated videos
and photos. Al have also unlocked the ability to clone a human voice with surprising
accuracy. To achieve this, deepfakes leverage a data repository containing audio
recordings of the target individual. These algorithms can then analyze and learn
from this data, meticulously replicating the person’s unique vocal characteristics,

including cadence, intonation, and even accent.

The creation of deepfake audio has become even more accessible with the release
of commercial programs like Lyrebird, Deep Voice, and Elevenlabs. These programs
demonstrate the growing accessibility of this technology. While initial recordings are
required to train the Al, subsequent interactions become surprisingly efficient. With
just a few additional phrases, the Al can become adept at mimicking your voice
and accent with impressive fidelity. As you provide more recordings, the deepfake
program strengthens its ability to convincingly reproduce your voice, allowing it to

narrate text in your tone and style.

This ease of use and impressive level of realism highlight the growing concerns
surrounding deepfake audio. The potential for misuse in areas like identity theft,
impersonation scams, and the spread of misinformation is significant, making the

development of robust detection methods a pressing priority [1].

1.1.3 DeepFake Audio Types

While deepfakes involving videos frequently make headlines, audio manipulation poses
a serious and distinct risk. Deepfake audio, sometimes referred to as synthetic audio
or voice cloning, uses machine learning to produce lifelike audio forgeries. Since audio
deepfakes target the human auditory system, they may be more difficult to detect than
video deepfakes, which rely on visual manipulation. We’ll examine the various varieties of

deepfake audio in this section :

e Text-to-Speech (TTS) : This technique involves generating entirely new speech

from scratch based on a text script. Advanced Al models can mimic the voice cha-
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racteristics (pitch, timbre, accent) of a target person to create realistic synthetic

speech.

e Voice Conversion : This method focuses on altering a person’s already-existing
audio recordings. Deep learning algorithms have the ability to alter voice content
while maintaining the identity of the original speaker. This makes it possible for

someone to pretend to say things they never said in a forgery.

e Emotion Fake : This method seeks to change a speaker’s emotional intonation. In
spite of the fact that the original recording may have shown a different emotion, Al
models are capable of altering audio to make someone sound happy, sad, or furious.

This can drastically alter a message’s impact and meaning.

e Scene Fake : The term describes the process of adjusting the speech’s surrounding
sound. Deepfake, for instance, could be used to mask edits or splicing by adding
background noise or making it appear as though someone is giving a speech in a

different setting (such as a political rally rather than a calm room).

1.1.4 The Rise of DeepFake

Deepfake first gained significant attention in the late 2010s, capturing the public’s
imagination and concern. Initially, they were mostly limited to entertainment and friendly
jokes. However, it wasn’t long before their potential for harm became evident. Today,
technology underscores a critical direction in the digital era : the thinning line between
truth and fiction.

The creation of deepfake is rooted in deep learning, a subset of Al that mimics the
neural networks of the human brain. By ingesting vast amounts of data — images, video
clips, or voice recordings — these algorithms learn to recreate and alter human likenesses
with startling accuracy. This technology has progressed rapidly, thanks to advancements

in AT and the increasing availability of data and computational power [5].

e The Evolution of Deepfakes : While the concept of Al-powered image manipu-
lation existed as early as the 1990s within academic circles, deepfakes entered the
public eye in the mid-2010s. The arrival of powerful neural networks and Generative
Adversarial Networks (GANs) in 2014 marked a turning point. These GANs, pionee-
red by lan Goodfellow, laid the groundwork for deepfake by enabling sophisticated

and realistic manipulations.

Initially, creating deepfakes was a technical difficulty, requiring significant processing

power and expertise. This limited their use to researchers and tech-savvy individuals.
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Early deepfakes, often fell short of the convincing realism seen today. However, tech-
nological advancements have democratized deepfake creation. Open-source projects
and user-friendly applications have emerged, making it easier for anyone to generate
believable deepfakes. This accessibility has fueled a significant rise in the production

and online distribution of deepfake content.

e Crossing the Line from Believable to Indistinguishable : Deepfake is no
longer just convincing, reaching a level where they are often indistinguishable from
reality. This dramatic jump in realism stems from advancements in Al algorithms,
the rise in computational power, and the plenty of data for training these models.
Systems using Deep Learning (DL) to generate deepfakes have gotten incredibly
good at recognizing and reproducing human facial expressions, facial features, and

even speech patterns.

One particularly concerning development is the ability to clone someone’s audio.
This opens the door to live deepfake, where someone can appear as another person
during phone calls or streams. The potential for misuse in such a scenario extends far

beyond entertainment, raising significant concerns in areas like politics or security.

The social media landscape further fuels the rise of deepfakes. These platforms,
where audio can be easily shared and viewed by millions, provide the perfect bree-
ding ground for deepfakes to spread. This widespread dissemination, combined with
our natural tendency to trust what we hear, makes deepfakes a powerful tool for

malicious actors to spread misinformation.

1.1.5 Deepfakes as a Cybersecurity Threat

Deepfakes have opened a new, unsettling chapter in cybercrime. The very technology
designed to entertain can now trick and manipulate with malicious intent. Deepfakes
have become a powerful tool for identity theft and social engineering scams, exploiting
our trust in familiar faces and voices. Imagine a shockingly realistic phone call from a loved
one requesting urgent financial aid, only to discover it’s a deepfake used by scammers. Or
consider the potential for deepfakes to impersonate CEOs issuing false directives in videos,
leading to massive financial fraud. These scenarios are no longer science fiction ; they are
real threats in our digital age. As deepfakes become more sophisticated, discerning genuine
interactions from manipulative fabrications becomes increasingly difficult. This highlights
the critical need to cultivate skepticism and implement verification methods in digital
communication.

Deepfakes pose a unique threat to businesses, going beyond traditional cybersecurity



CHAPITRE 1. GENERAL INTRODUCTION TO DEEPFAKE AUDIO DETECTION

concerns. Companies that are already battling to protect data and finances now face a
new challenge : safeguarding their reputation and authenticity. Imagine the devastating
impact of a deepfake video showcasing a company leader in a compromising situation.
Even if exposed as false, such content can inflict lasting damage on brand image and sta-
keholder trust. Deepfakes can also be weaponized in elaborate phishing schemes, tricking
employees into following seemingly legitimate orders from superiors, potentially leading
to data breaches or financial losses. The threat extends beyond external actors. Businesses
also need to aid internal security to prevent the creation and dissemination of deepfakes
within the organization. In today’s digital landscape, a comprehensive security strategy
must encompass defenses against deepfakes. This includes a combination of technological

safeguards, employee awareness campaigns, and careful verification protocols [6].

1.1.6 Deepfake Fraud Examples

While deepfakes hold promise for creative efforts and entertainment applications, their
potential for misuse is a growing concern. Deepfake technology has become a weapon in
the hands of malicious actors, enabling them to commit a variety of malicious activities.
This section will deeper into some recent, real-world examples of how deepfakes have been
used to commit fraud, highlighting the diverse ways this technology can be exploited and
the significant financial and reputational damage it can cause. By examining these cases,
we can gain a deeper understanding of the evolving threat landscape and the importance

of developing robust defences against deepfake fraud.

e CEO of world’s biggest ad firm targeted by deepfake scam. The head of
the world’s biggest advertising group was the target of an elaborate deepfake scam
that involved an artificial intelligence voice clone. The CEO of WPP, Mark Read,
detailed the attempted fraud in a recent email to leadership, warning others at the

company to look out for calls claiming to be from top executives.

Fraudsters created a WhatsApp account with a publicly available image of Read
and used it to set up a Microsoft Teams meeting that appeared to be with him and
another senior WPP executive, according to the email obtained by the Guardian.
During the meeting, the impostors deployed a voice clone of the executive as well
as YouTube footage of them. The scammers impersonated Read off-camera using
the meeting’s chat window. The scam, which was unsuccessful, targeted an “agency
leader”, asking them to set up a new business in an attempt to solicit money and
personal details. “Fortunately the attackers were not successful,” Read wrote in the

email. “We all need to be vigilant to the techniques that go beyond emails to take
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advantage of virtual meetings, Al and deepfakes.”

A WPP spokesperson confirmed the phishing attempt bore no fruit in a statement :
“Thanks to the vigilance of our people, including the executive concerned, the inci-
dent was prevented.” WPP did not respond to questions on when the attack took

place or which executives besides Read were involved !.

e Fraudsters Cloned Company Director’s Voice In 35 Million Heist, Police
Find. In early 2020, a branch manager of a Japanese company in Hong Kong recei-
ved a call from a man whose voice he recognized—the director of his parent business.
The director had good news : the company was about to make an acquisition, so
he needed to authorize some transfers to the tune of 35 million. A lawyer named
Martin Zelner had been hired to coordinate the procedures and the branch manager
could see in his inbox emails from the director and Zelner, confirming what mo-
ney needed to move where. The manager, believing everything appeared legitimate,

began making the transfers.

What he didn’t know was that he’d been duped as part of an elaborate swindle, one
in which fraudsters had used “deep voice” technology to clone the director’s speech,
according to a court document unearthed by Forbes in which the U.A.E. has sought
American investigators’ help in tracing 400,000 of stolen funds that went into U.S.-
based accounts held by Centennial Bank. The U.A.E., which is investigating the
heist as it affected entities within the country, believes it was an elaborate scheme,
involving at least 17 individuals, which sent the pilfered money to bank accounts

across the globe.

Little more detail was given in the document, with none of the victims’ names
provided. The Dubai Public Prosecution Office, which is leading the investigation,
hadn’t responded to requests for comment at the time of publication. Martin Zelner,
a U.S.-based lawyer, had also been contacted for comment, but had not responded

at the time of publication 2.

e Obama’s message to the public. Most of the more convincing deepfakes have
used imposters to impersonate the source’s speech and mannerisms, such as this
video developed by BuzzFeed and actor Jordan Peele combining After Effects CC

and FakeApp. Peele’s jaw was superimposed over Obama’s, with a jawline that

ICEO of world’s biggest ad firm targeted by deepfake scam https://www.theguardian.com/
technology/article/2024/may/10/ceo-wpp-deepfake-scam

2Fraudsters Cloned Company Directors Voice In 35 Million Heist,
Police Findhttps://www.forbes.com/sites/thomasbrewster/2021/10/14/
huge-bank-fraud-uses-deep-fake-voice-tech-to-steal-millions/
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matched Peele’s mouth motions replacing Obama’s. After that, FakeApp was used

to improve the footage with almost 50 hours of automated processing 2.

e Zuckerberg deepfake where he speaks frankly. Artist Bill Posters uploaded
this on Facebook-owned Instagram in June in reaction to Facebook’s failure to
remove the clip of Nancy Pelosi, displaying Mark Zuckerberg bragging about how
the site “owns” its followers. The video was created as part of Posters and Daniel
Howe’s Spectre project, which was produced for Sheffield Doc Fest to highlight how
one may use social media to deceive people. It was created using the VDR (video
conversation substitution) software from Israeli ‘Firm Canny AI, which is being

pushed with a deepfake singalong with several international leaders.

The posters used the hashtag deepfake to call attention to it. While the video seems

convincing in silent mode, the voice gives it away, demonstrating that a competent

actor is still required to create realistic deepfake instances. However, with Lyrebird
and Adobe VoCo proposing Al voice generation, it may not be much until one can
simply add passable sounds to deepfakes *.

e Yang Mi travels in time. A video featuring Yang Mi, one of China’s renowned
current performers, pasted into the 1983 Hong Kong tv series The Legend Of The
Condor Heroes went viral a few years ago, clocking up 240 million views before
being taken off by Chinese authorities. Its maker, a Yang Mi admirer, apologized on

Weibo, saying he made the film as a caution to promote awareness of the innovation.

While the film and television industries are likely to react negatively to deepfakes at

first, it is also feasible to see how the sector could ultimately accept the innovation

and profit from it by enabling viewers to perform director on home updates by
tricking dialogue, inserting alternate scenes, or even playing characters themselves.

There will also be a slew of celebrity cameos in video games 5.

e The Nancy Pelosi slowed-down video. It was not a deepfake in the traditional
sense ; instead, it illustrated why its possible misuse has become so dreaded in geopo-
litics. The 2019 clip was slowed down by 25 percent and video changed the pitch to
make it appear as though Nancy Pelosi, the United States House of Representatives

speaker, was gurning her words.

3This PSA About Fake News From Barack Obama Is Not What It Appearshttps://www.
buzzfeednews.com/article/davidmack/obama-fake-news-jordan-peele-psa-video-buzzfeed#
.gcxNolpGL

4A deepfake video of Mark Zuckerberg presents a new challenge for Facebook https://edition.cnn.
com/2019/06/11/tech/zuckerberg-deepfake/index.html

SChinese A-lister falls victim to ‘deepfake’ video stunt https://www.techinasia.com/
chinese-alister-falls-victim-deepfake-video-stunt
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The tape was shared worldwide, and after the video was fact-checked and found to be

fraudulent, Facebook declined to remove it, saying it had decreased its circulation.

The post was later taken down, although it’s unclear who was responsible and who

took it down ©.

e The Mandalorian Luke Skywalker deepfake. Star Wars fans were ecstatic
when Luke Skywalker appeared in The Mandalorian’s season 2 finale. However, once
the space dust had cleared, viewers were keen to point out problems in the digital
reconstruction of a youthful Mark Hamill. YouTuber Shamook tried his hand at
deepfaking a Luke Skywalker from the Return of the Jedi age, with stunning results.

Shamook had been recruited by no one other than Industrial Light and Magic, the
renowned visual effects company responsible for bringing the Star Wars universe to
life. We're interested in watching how deepfake technology shapes the universe far,

far away .

1.2 Problem Statement

The rapid advancement of deepfake audio technology is swiftly diminishing trust in the
authenticity of the human voice, posing a significant threat to security and communication
across multiple domains. Sophisticated Machine Learning (ML) techniques are being used
by malicious actors more often to create extremely convincing synthetic audio. This allows
them to spread false information, conduct fraud, and impersonate people with concerning
ease.

This manipulation of audio recordings using Voice Conversion (VC) has deep implica-
tions for Islamic scholars, where it could cause misinformation, misguidance, reputation
damage, and impact on religious Fatwas and decisions. For journalism, the credibility of
audio evidence is crucial, as well as for finance, where voice authentication is used to
secure transactions. In the legal sphere, deepfake audio can undermine the integrity of
court proceedings, while in the world of national security, it can be used to spread pro-
paganda. The potential for harm is immense, as deepfakes can be weaponized to damage

reputations, manipulate public opinion, and even encourage violence.

6Fact check : “Drunk” Nancy Pelosi video is manipulated https://www.reuters.com/article/
world/fact-check-drunk-nancy-pelosi-video-is-manipulated-idUSKCN24Z2B1/

"Mandalorian’s Luke Skywalker Without CGI : Mark Hamill, Deep Fake & Deaging https://
screenrant.com/mandalorian-luke-skywalker-mark-hamill-no-cgi-deepfake-look/


https://www.reuters.com/article/world/fact-check-drunk-nancy-pelosi-video-is-manipulated-idUSKCN24Z2B1/
https://www.reuters.com/article/world/fact-check-drunk-nancy-pelosi-video-is-manipulated-idUSKCN24Z2B1/
https://screenrant.com/mandalorian-luke-skywalker-mark-hamill-no-cgi-deepfake-look/
https://screenrant.com/mandalorian-luke-skywalker-mark-hamill-no-cgi-deepfake-look/
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1.3

Motivation

The motivation of our research thesis can be summarized in the following points.

1.4

This

Mitigate The Harm That Could Affect Islamic Scholars : Islamic scholars are
particularly vulnerable to deepfake. Misinformation could spread under the covers
of religious statements if audio recordings are maliciously altered. The loss of trust
in academic authority can have severe consequences for Muslim communities, as it
may have an impact on religious rulings known as fatwas and decisions. Deepfake
may also be utilized to harm a scholar’s reputation, which could lead to conflict in

society and religion.

Help Protect Financial Transactions That Relays On Voice Authentica-
tion : Voice authentication is a crucial security measure in financial transactions,

and deepfake can be used to compromise this security.

Protect Individuals and Organizations : Deepfake audio can be used for iden-

tity theft, financial fraud, and reputation damage.

Safeguard Democracy and the Information Ecosystem : Deepfake audio can
be used to spread misinformation and propaganda and manipulate public opinion.

Detection is crucial for maintaining a healthy democracy and combating fake news.

Restore Trust in Audio Evidence : Deepfake audio can undermine the reliability
and integrity of audio evidence in legal proceedings and investigations. Reliable

detection can help restore trust in this critical form of evidence.

Advance the Field of Audio Forensics : Developing new techniques for detecting
fake speech can push the boundaries of audio forensics and contribute to a safer

digital environment.

Objectives

research aims to address the growing threat of deepfake audio by achieving the

following objectives.

Develop a Benchmark for Deepfake Audio Detection in Arabic : Current
standards for deepfake audio detection are frequently trained on English-language
datasets. Due to the unique characteristics of the Arabic language, certain bench-

marks may not translate properly to Arabic audio. Thus, our goal is to create a
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thorough benchmark made especially for evaluating Arabic deepfake audio detec-

tion.

e Design a Framework for Deepfake Audio Detection : The accuracy and
durability of the deepfake detection techniques used today frequently have limits
and do not apply to the Arabic language. Our goal is to provide a novel architecture

for deepfake audio recognition for the Arabic language to overcome these constraints.

e Create a High-Quality Arabic Deepfake Audio Dataset : The lack of large-
scale, high-quality Arabic deepfake audio datasets delays the development and eva-
luation of robust deepfake detection models. Therefore, we aim to create a compre-

hensive Arabic deepfake audio dataset.

1.5 OQOutline

The remainder of this thesis is organised as follows :

Chapter 2 : "Artificial Intelligence Background" : This chapter provides the
technical foundation for understanding deepfake audio detection. It covers essen-

tial concepts in artificial intelligence, machine learning, and deep learning.

Chapter 3 : "Audio Fundamentals" : This chapter provides the fundamentals of
audio processing. Additionally, it deepens into the specific audio features and ma-

nipulation techniques relevant to deepfake detection.

Chapter 4 : "State of the art in deepfake audio detection" : This chapter compre-
hensively reviews existing research on deepfake audio detection. It examines various
approaches, methodologies, and algorithms that have been proposed to address this
challenge. It also identifies gaps and limitations in current research, highlighting

areas where further investigation is needed.

Chapter 5 : "Results and Contribution" : This chapter presents the main contribu-
tions of our research alongside the results of our deepfake audio detection framework,
highlighting the effectiveness of our framework.

Conclusion

This chapter has introduced deepfake, its types, and its growing presence. We’ve exami-

ned the cybersecurity threats posed by deepfake audio, highlighting real-world examples
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that emphasize the need for robust detection methods. Chapter 2 delves into the essential

concepts of AI, Machine Learning (ML), and Deep Learning (DL).

12



Chapitre 2

Artificial Intelligence Background

Introduction

The fundamental concepts and technologies that underlie the development of deepfake
audio detection systems will be presented in this chapter. We begin by exploring the
concept of Artificial Intelligence (AI) and its various subfields, including Machine Learning
(ML), Deep Learning (DL), and Natural Language Processing (NLP).

2.1 Definition of Artificial Intelligence

Artificial intelligence (AI) empowers computers and machines to mimic human intelli-
gence and problem-solving abilities. This technology can be used independently or inte-
grated with other technologies to automate tasks that traditionally require human input.
Examples of Al in our everyday lives include digital assistants, GPS navigation, self-
driving cars, and Al-powered content creation tools like ChatGPT.

Within the field of computer science, AI encompasses machine learning and deep
learning, which involve developing algorithms that learn and adapt from data to make
increasingly precise predictions or categorizations.

Al has experienced periods of heightened interest in the past, but the release of
ChatGPT signifies a major milestone. While previous advancements in generative Al
focused on computer vision, the latest breakthroughs have revolutionized natural lan-
guage processing (NLP). Today, generative Al can learn and replicate various data types,
including human language, images, video, code, and even molecular structures.

The applications of Al are constantly expanding, but with the growing enthusiasm
surrounding Al tools in business, ethical considerations and responsible Al practices have

become paramount 7).
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2.1.1 Types of Artificial Intelligence

This subsection is dedicated to discussing the types of Al, described as follows.

e Weak AI : Also known as narrow Al or Artificial Narrow Intelligence (ANI) Weak
Al also called narrow Al or ANI, is a type of artificial intelligence designed and

" it’s far from weak

trained to excel at specific tasks. Although it’s called "narrow,
and powers many of the Al applications we use today. Some notable examples of
weak Al include Apple’s Siri, Amazon’s Alexa, IBM Watsonx, and the technology

behind self-driving cars [7].

e Strong Al : Strong Al encompasses two theoretical forms : artificial general intel-
ligence (AGI) and artificial super intelligence (ASI). AGI refers to a hypothetical
machine with human-level intelligence, possessing self-awareness, consciousness, and
the capacity for problem-solving, learning, and future planning. ASI, or superintel-
ligence, would surpass human capabilities in intelligence and ability [7]. Although
strong Al remains purely theoretical without any existing real-world applications,
Al researchers are actively investigating its potential development. For now, the clo-
sest representations of ASI are found in science fiction, such as the character HAL
from the film "2001 : A Space Odyssey."

2.1.2 Subfields of Artificial Intelligence

e Machine learning (ML) : Is subset of artificial intelligence (AI) and computer
science, leverages data and algorithms to enable Al systems to mimic human learning

processes, gradually enhancing their accuracy over time [§].

e Deep learning (DL) : Is subset of artificial intelligence (AI) and computer science,
leverages data and algorithms to enable Al systems to mimic human learning pro-

cesses, gradually enhancing their accuracy over time [9].

2.2 Machine Learning

The basic concept of machine learning in data science involves using statistical learning
and optimization methods that let computers analyse datasets and identify patterns.
Machine learning techniques leverage data mining to identify historic trends and inform

future models [10]. Machine Learning types can be found in Figure 2.1.
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Figure 2.1: Machine learning Types

2.2.1 Supervised learning

Supervised machine learning utilizes labeled datasets to train algorithms for accurate

data classification or outcome prediction. As input data is introduced, the model refines its
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internal parameters to optimize its fit. This process, part of cross-validation, safeguards

against overfitting (excessive complexity) or underfitting (insufficient complexity). Su-

pervised learning enables organizations to address diverse real-world challenges at scale,

exemplified by filtering spam emails. Common techniques employed in supervised lear-

ning encompass neural networks, naive Bayes, linear regression, logistic regression, ran-

dom forests, and support vector machines (SVM). These are some popular algorithms of

Supervised learning [8] :

Linear Regression : Linear regression is a statistical method used to model the
relationship between a dependent variable and one or more independent variables.
It aims to find the best-fitting straight line that minimizes the sum of squared errors

between the observed data and the predicted values.

Logistic Regression : Logistic regression is a statistical model that analyzes the
relationship between one or more independent variables and a binary dependent
variable. It is used for classification problems, where the output is either 0 or 1,

indicating the presence or absence of a particular characteristic.

Decision Trees : A decision tree is a tree-like model that represents a series of
decisions and their possible consequences. It is used for both classification and re-
gression tasks, where the internal nodes represent feature tests, and the leaf nodes

represent the final predicted classes or values.

Random Forests : Random Forests are an ensemble learning method that com-
bines multiple decision trees to improve prediction accuracy and control overfitting.
Each tree is constructed using a random subset of features, and the final prediction

is made by aggregating the predictions of all the individual trees.

XGBoost : XGBoost is a powerful and efficient implementation of the gradient
boosting algorithm. It is a tree-based ensemble machine learning algorithm that
iteratively builds a series of weak decision trees and combines them to create a
strong predictive model. XGBoost is known for its scalability, high performance,

and ability to handle a wide range of data types and distributions.

Support Vector Machines : Support Vector Machines are a powerful class of
algorithms for classification and regression tasks. SVMs find the optimal hyperplane
that maximizes the margin between the classes in the feature space. The data points
closest to the hyperplane are called support vectors, and the goal is to maximize
the distance between them and the hyperplane. SVMs can handle high-dimensional

data and are effective for non-linear problems by using kernel tricks.
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e Naive Bayes : Naive Bayes is a collection of algorithms based on Bayes’ theorem
and the assumption of independence between features. Despite its simplicity, it
performs well on many classification tasks. It calculates the probability of each class
given the feature values, and assigns the class with the highest probability. Naive

Bayes is widely used in text classification, spam filtering, and sentiment analysis.

e K-Nearest Neighbors (KNN) : KNN is a non-parametric algorithm that classi-
fies new instances based on their similarity to the k nearest neighbors in the training
data. The algorithm computes the distances between the new instance and all the
training instances, selects the k closest neighbors, and assigns the class label based
on a majority vote of these neighbors. KNN is simple and effective, but can be

computationally expensive for large datasets.

e Gradient Boosting Machines (GBM) : Gradient Boosting Machines are an
ensemble learning technique that combines multiple weak decision tree models in
an iterative, additive manner. Each new tree is trained to predict the residuals of
the previous ensemble, gradually improving the overall model. GBMs are powerful
and can handle complex, non-linear relationships, but can be prone to overfitting if

not properly regularised.

2.2.2 Unsupervised learning

Unsupervised learning, also known as unsupervised machine learning, uses machine
learning algorithms to analyze and cluster unlabeled datasets (subsets called clusters).
These algorithms discover hidden patterns or data groupings without the need for human
intervention. This method’s ability to discover similarities and differences in information
make it ideal for exploratory data analysis, cross-selling strategies, customer segmenta-
tion, and image and pattern recognition. It’s also used to reduce the number of features
in a model through the process of dimensionality reduction. Principal component ana-
lysis (PCA) and singular value decomposition (SVD) are two common approaches for
this. Other algorithms used in unsupervised learning include neural networks, k-means
clustering, and probabilistic clustering methods.

These are some popular algorithms of Unsupervised learning [8] :

e K-Means Clustering : K-Means is one of the most widely used clustering algo-
rithms. It partitions the data into K clusters by iteratively assigning data points to
the closest cluster centroid and updating the centroids based on the assigned points.
The goal is to minimize the sum of squared distances between data points and their

assigned cluster centroids.
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e Hierarchical Clustering : Hierarchical clustering algorithms build a hierarchy of
clusters, either by merging smaller clusters into larger ones (agglomerative) or by
dividing larger clusters into smaller ones (divisive). The result is typically visualized
as a dendrogram, which represents the nested grouping of data points based on their

similarity or distance.

e Principal Component Analysis (PCA) : PCA is a dimensionality reduction
technique that transforms the original high-dimensional data into a lower-dimensional
representation by finding the directions (principal components) that maximize the
variance in the data. It can be used for data visualization, noise filtering, and feature

extraction.

e t-SNE (t-Distributed Stochastic Neighbor Embedding) : t-SNE is a non-
linear dimensionality reduction algorithm that is particularly well-suited for visuali-
zing high-dimensional data in a low-dimensional space (typically 2D or 3D). It aims
to preserve the local and global structure of the data, making it useful for identifying

clusters and patterns.

2.2.3 Semi-supervised learning

Semi-supervised learning offers a happy medium between supervised and unsupervised
learning. During training, it uses a smaller labeled data set to guide classification and
feature extraction from a larger, unlabeled data set. Semi-supervised learning can solve
the problem of not having enough labeled data for a supervised learning algorithm. It also

helps if it’s too costly to label enough data [10].

e Self-Training (Self-Learning) : Self-training is a wrapper algorithm that uses a
small amount of labeled data to train a model initially. This model is then used to
make predictions on the unlabeled data. The most confidently predicted unlabeled

instances are added to the training set, and the process is repeated iteratively.

e Graph-Based Methods : Graph-based methods represent the data as nodes in a
graph, with edges reflecting the similarity between instances. Labels are propagated

from the labeled nodes to the unlabeled nodes based on the graph structure.

2.2.4 Reinforcement machine learning

Reinforcement machine learning is a machine learning model that is similar to super-

vised learning, but the algorithm isn’t trained using sample data. This model learns as
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it goes by using trial and error. A sequence of successful outcomes will be reinforced to
develop the best recommendation or policy for a given problem.

The IBM Watson® system that won the Jeopardy ! challenge in 2011 is a good example.
The system used reinforcement learning to learn when to attempt an answer (or question,
as it were), which square to select on the board, and how much to wager—especially on

daily doubles [8].

e Q-Learning : Q-Learning is a model-free reinforcement learning algorithm that
learns an optimal action-selection policy for an agent interacting with its environ-
ment. It uses a Q-function that estimates the expected future reward for taking a
particular action in a given state. The Q-values are iteratively updated based on

the agent’s experiences and rewards received.

e SARSA (State-Action-Reward-State-Action) : SARSA is another model-free
reinforcement learning algorithm, similar to Q-Learning. However, instead of using
the maximum Q-value for the next state, it updates the Q-value based on the ac-
tual action taken in the next state. SARSA is an on-policy algorithm, meaning it

evaluates the same policy it is learning.

2.3 Deep Learning

A deep neural network (DNN) is technically defined as a neural network with three or
more layers, but in reality, most DNNs have far more. Trained on extensive datasets, DNNs
excel at identifying and classifying phenomena, discerning patterns and relationships,
evaluating possibilities, and making predictions and decisions. While a single-layer neural
network can offer basic predictive capabilities, the additional layers in a DNN enhance
and refine these outcomes, yielding greater accuracy.

Deep learning technology empowers a wide range of applications and services that ad-
vance automation, enabling analytical and physical tasks to be performed without human
involvement. It is the driving force behind everyday conveniences such as digital assis-
tants, voice-activated TV remotes, and fraud detection systems, as well as cutting-edge

technologies like self-driving cars and generative AT [11].

2.3.0.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are composed of artificial neurons, known as units,

which are organized into a series of layers. The number of units within a layer can vary
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significantly, ranging from just a few to millions, depending on the complexity of the pat-
terns the network needs to learn from the dataset. Typically, an ANN consists of an input
layer, one or more hidden layers, and an output layer. The input layer receives external
data for analysis, which then flows through the hidden layers, undergoing transformations
that make the information meaningful for the output layer. The output layer ultimately
delivers the network’s response to the input data [12]. ANN architecture can be found in

Figure 2.2.

Hidden Layers

Input Layer Output Layer

Figure 2.2: ANN architecture

2.3.0.2 Convolution Neural Network

Convolutional Neural Networks (CNNs) are a specialized type of artificial neural net-
work (ANN) designed to efficiently extract features from grid-like datasets, such as images
or videos, where spatial patterns are crucial [12].

The architecture of a CNN comprises multiple layers :

e Input Layer : Receives the raw input data, typically an image or video. Convolutional

Layer : Applies filters to the input to detect specific features like edges or textures.

e Pooling Layer : Downsamples the output of the convolutional layer, reducing the

data’s dimensionality and computational load.
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e Fully Connected Layer : Processes the extracted features and makes a final predic-

tion or classification.
The CNN learns to optimize its filters through a process of backpropagation and
gradient descent, adjusting its parameters to improve its accuracy in recognizing patterns
and making predictions. CNN architecture can be found in Figure 2.3.

Convolutional Max pooling Dense

. ayer .
ayer ! laye:

Input layer Output layer

IMAGE — —_— N —_—

Figure 2.3: CNN architecture

2.3.0.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a distinct type of neural network designed to
process sequential data, where the output from one step becomes the input for the next.
Unlike traditional neural networks, where inputs and outputs are independent, RNNs
maintain a "hidden state" or "memory state" that allows them to retain information from
previous inputs. This memory is crucial for tasks like language modeling, where predicting
the next word in a sentence relies on understanding the context of the preceding words.

RNNSs achieve this memory through the use of a hidden layer that carries information
forward through the sequence. A key advantage of RNNs is their ability to reuse the same
parameters for each input, simplifying the model’s complexity compared to other neural
networks. This parameter sharing allows the RNN to learn patterns and dependencies

across sequential data effectively. RNN architecture can be found in Figure 2.4 [9].

2.3.0.4 Long short-term memory (LSTM)

Long Short-Term Memory (LSTM) networks are a popular type of Recurrent Neural
Network (RNN) designed to address the vanishing gradient problem, a challenge where
information from distant past inputs can be lost or diluted. LSTMs introduce a mecha-

nism called "cells" within their hidden layers, equipped with three gates (input, output,
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Figure 2.4: RNN architecture

and forget gates). These gates regulate the flow of information, enabling the network to
selectively retain or discard data as it processes sequential input.

For instance, when predicting the word "peanut butter" in the sentence "Alice is al-
lergic to nuts. She can’t eat peanut butter," the LSTM’s memory of the earlier mention
of "nuts" is crucial. However, in standard RNNs, this connection might weaken if the re-
levant information appeared several sentences earlier. LSTMs overcome this limitation by
actively controlling the flow of information through the gates, allowing them to maintain
long-term dependencies and make accurate predictions even when the relevant context is
distant.

The forget gate determines which information to discard from the cell state, the input
gate decides what new information to store, and the output gate controls what information
is passed on to the next time step. This dynamic control allows LSTMs to effectively utilize
context from both recent and distant past inputs, making them particularly well-suited
for tasks like natural language processing and time series analysis [9]. LSTM architecture

can be found in Figure 2.5

2.3.0.5 Transformers

The transformer model, introduced in the 2017 paper "Attention is All You Need,"
marked a significant turning point in A, as it is now widely used in various applications,

including Large Language Model (LLM) training.
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Figure 2.5: LSTM architecture

These models excel in real-time text and speech translation, facilitating communication
for travelers and aiding researchers in areas like drug design and DNA analysis. They
are also valuable in finance and security for anomaly detection and fraud prevention.
Additionally, vision transformers have proven effective in computer vision tasks.

OpenAT’s ChatGPT, a popular text generation tool, utilizes transformer architectures
for prediction, summarization, question answering, and more. This is due to transformers’
ability to focus on relevant input text segments. The "GPT" in various versions of the
tool stands for "generative pre-trained transformer." These text-based generative Al tools
benefit from transformer models as they efficiently predict the next word in a sequence,
drawing from extensive and complex datasets.

Another notable model, BERT (Bidirectional Encoder Representations from Transfor-
mers), also leverages the transformer architecture. Since 2019, BERT has been employed
for the majority of English-language Google searches and has expanded to over 70 other

languages 2| Transformers architecture can be found in Figure 2.6.

2.4 Generative Al : The Engine Behind Deepfakes

Generative Al, a branch of artificial intelligence, specializes in developing models that
can produce innovative and unique content. This encompasses a wide range of media,
including images, music, text, and, importantly, audio. These models acquire knowledge

by learning the patterns, styles, and structures present in existing data, and then leverage
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Figure 2.6: Transformers architecture [2].

this understanding to generate new content that closely resembles the original training
data.
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Comprehending the inner workings of generative Al is essential for deepfake audio de-
tection. It uncovers the fundamental processes employed in creating these highly realistic
fakes. By meticulously examining the traits of deepfakes produced by various models, re-
searchers can devise more sophisticated detection methods capable of pinpointing subtle

imperfections and inconsistencies that expose their artificial origin [13].

2.4.0.1 Generative AI Models

e Diffusion models : Also referred to as denoising diffusion probabilistic models
(DDPMs), diffusion models are generative models that identify vectors in latent
space using a two-stage training process : forward diffusion and reverse diffusion.
Forward diffusion gradually introduces random noise into training data, while re-
verse diffusion removes the noise to reconstruct the original data samples. The ge-
neration of new data involves running the reverse denoising process from entirely
random noise. Training a diffusion model typically takes longer than training a va-
riational autoencoder (VAE) model. However, due to the two-step process, diffusion
models can train hundreds or even countless layers, leading to superior output qua-
lity in generative Al models. Furthermore, diffusion models are classified as founda-
tion models due to their large scale, high-quality outputs, flexibility, and suitability
for generalized use cases. Nonetheless, the reverse sampling process makes running

foundation models a time-consuming endeavor [14].

e Variational autoencoders (VAEs) : Variational Autoencoders (VAEs) comprise
two neural networks : an encoder and a decoder. The encoder receives an input
and transforms it into a compact, concentrated representation of the data. This
condensed version retains the essential information needed for the decoder to ac-
curately reconstruct the original input while discarding any irrelevant details. The
encoder and decoder collaborate to learn an efficient and simplified representation
of the latent data. This enables users to easily sample new latent representations,
which can then be processed by the decoder to generate novel data. Although VAEs
can produce outputs like images more rapidly, the level of detail in their generated

images is typically lower compared to the outputs of diffusion models [15].

e Generative adversarial networks (GANSs) : Introduced in 2014, Generative
Adversarial Networks (GANs) were widely recognized as the predominant approach
among the three methods before diffusion models gained recent prominence. GANs
operate through a competitive dynamic between two neural networks : a genera-

tor that produces new samples and a discriminator that learns to differentiate the
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generated content as either authentic (originating from the domain) or fabricated
(generated). [16]

e VITS (Conditional Variational Autoencoder with Adversarial Learning
for End-to-End Text-to-Speech) : VITS is a deep learning model specifically
designed for text-to-speech (TTS) synthesis. This versatile model stands out for its
ability to generate high-fidelity speech waveforms directly from textual input. VITS’s
proficiency in producing natural-sounding speech makes it a popular choice for a va-
riety of applications, including voice cloning, speech synthesis, and the creation of
audiobooks and other narrated content. Additionally, VITS offers advantages over
conventional TTS systems by incorporating elements from both variational autoen-
coders (VAEs) and generative adversarial networks (GANs) within its architecture.
This combination allows VITS to capture the intricacies and nuances of human

speech patterns, resulting in highly realistic and intelligible synthetic speech [17].

e CREPE : A CONVOLUTIONAL REPRESENTATION FOR PITCH ES-
TIMATION : CREPE is a deep learning model designed with a specific purpose :
estimating the pitch of an audio signal. Unlike traditional methods that rely on
handcrafted features or intricate signal processing pipelines, CREPE leverages a
convolutional neural network (CNN) architecture. This CNN operates directly on
the raw audio waveform, eliminating the need for manual feature engineering or com-
plex preprocessing steps. This streamlined approach makes CREPE a more efficient

and effective solution for pitch estimation tasks [18].

e Retrieval-based Voice Conversion : RVC is a deep learning model that excels
in voice cloning and conversion. It builds upon the VITS architecture, originally de-
signed for text-to-speech synthesis. The distinguishing feature of RVC is its integra-
tion of VITS with retrieval-based methods, enabling it to achieve high-quality voice
conversions with minimal training data. In essence, RVC leverages the strengths of
both VITS (for generating natural-sounding speech) and retrieval-based techniques
(for efficient voice conversion with limited data) to create a powerful and flexible

tool for voice modification tasks.

2.4.1 Applications of Generative Artificial Intelligence

Generative Al is a versatile technology that enhances the workflow of professionals across
various fields, including creatives, engineers, researchers, and scientists. Its applications

are virtually limitless, impacting all industries and individuals.
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These models have the remarkable ability to take inputs in various forms, such as
text, images, audio, video, or code, and transform them into new content in any of these
modalities. For instance, they can generate images from text descriptions, compose music
from visual cues, or even transcribe video content into text.

Here are the most popular generative Al applications :

e Language : Text forms the foundation for numerous generative Al models and is
regarded as the most mature domain in this field. Large language models (LLMs) are
a prime example of language-based generative Al, widely utilized for diverse tasks
such as essay writing, code generation, translation, and even deciphering genetic

sequemnces.

e Audio : Music, audio, and speech represent rapidly growing domains within ge-
nerative Al. Some examples of its capabilities include models that can compose
songs and audio clips from text inputs, identify objects within videos and generate

corresponding sound effects, and even craft personalized music pieces.

e Visual : A prominent application of generative Al lies in the visual domain, encom-
passing the creation of 3D images, avatars, videos, graphs, and other illustrations.
This technology offers flexibility in generating images with diverse artistic styles and
provides techniques for editing and refining produced visuals. Generative Al models
are utilized to construct graphs of novel chemical compounds and molecules, aiding
in drug discovery, produce lifelike images for virtual and augmented reality expe-
riences, craft 3D models for video games, design logos, enhance existing images, and

much more.

e Automotive industry : In the automotive sector, generative Al is poised to revo-
lutionize car development and simulation by creating realistic 3D environments and
models. Additionally, synthetic data generated by Al is being used to train autono-
mous vehicles. This approach of virtually road testing self-driving capabilities in a
simulated 3D world enhances safety, efficiency, and adaptability while significantly

reducing risk and associated costs.

e Field of natural sciences : Generative Al is significantly impacting the field of na-
tural sciences. Within healthcare, generative models are facilitating medical research
by designing novel protein sequences that contribute to drug discovery. Additionally,
medical professionals benefit from the automation of tasks like medical scribing, co-
ding, imaging, and genomic analysis. In the field of meteorology, generative models

enable the creation of detailed simulations of the planet, leading to more accurate
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weather forecasts and predictions of natural disasters. These applications collec-
tively enhance public safety and empower scientists to anticipate and prepare for

environmental events more effectively.

e Entertainment industry : Across the entertainment industry, encompassing video
games, film, animation, world building, and virtual reality, generative Al models
are proving invaluable in streamlining the content creation process. Creators are
increasingly embracing these models as tools to augment their creativity and enhance

their workflows.

2.4.2 Benefits of generative Al

The most evident and significant advantage of generative Al lies in its ability to boost
efficiency. By producing content and answers on demand, it has the potential to streamline
or automate time-consuming tasks, reduce expenses, and liberate employees to focus on
more valuable work.

However, generative Al offers a plethora of additional benefits for both individuals

and organizations, some of them are :

e Enhanced creativity : Generative Al tools can stimulate creativity by automating
brainstorming sessions, generating numerous original variations of content. These
variations can serve as initial drafts or references, aiding writers, artists, designers,

and other creative professionals in overcoming creative blocks.

e Improved (and faster) decision-making : Generative Al excels at analyzing vast
datasets, uncovering patterns, and distilling valuable insights. It can then generate
hypotheses and recommendations based on these insights, empowering executives,
analysts, researchers, and other professionals to make more informed, data-driven

decisions with greater speed and efficiency.

e Dynamic personalization : Generative Al enables dynamic personalization in ap-
plications such as recommendation systems and content creation. By analyzing user
preferences and history, it can generate customized content in real time, resulting

in a more tailored and engaging experience for each user.

e Constant availability : Generative Al operates tirelessly, offering uninterrupted
availability 24/7 for tasks such as customer support chatbots and automated res-

ponses, ensuring consistent support and engagement.
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2.4.3 Challenges, limitations and risks

Generative Al, despite its rapid advancement, comes with considerable challenges and
risks for developers, users, and the public. A major concern is the phenomenon of "hallu-
cinations," where Al generates outputs that appear factual but are nonsensical or entirely
inaccurate. A well-known instance involved a lawyer who utilized a generative Al tool for
research and received fictional case examples with fabricated quotes and attributions.

Some experts consider hallucinations an unavoidable trade-off for achieving creativity
in Al models. However, developers can employ preventative measures, known as guar-
drails, to limit the model’s reliance on unverified or untrusted data sources. Continuous
evaluation and fine-tuning can also contribute to reducing hallucinations and improving

the overall accuracy of Al-generated content.

e Inconsistent outputs : Generative Al models can sometimes produce inconsistent
outputs even when given the same inputs due to their inherent variability. This in-
consistency can be problematic for certain applications, like customer service chat-
bots, where consistent responses are essential. However, users can address this issue
through prompt engineering, a process of iteratively refining and combining prompts

to achieve the desired outcomes consistently in their generative Al applications.

e Bias : Generative models can inadvertently learn societal biases present in their
training data, labeled data, external sources, or even from human evaluators invol-
ved in model tuning. This can result in the generation of biased, discriminatory,
or offensive content. To mitigate this risk, developers must prioritize diverse trai-
ning data, implement guidelines that proactively prevent bias during both training
and fine-tuning stages, and continuously assess model outputs for bias alongside

accuracy.

e Lack of explainability and metrics : A significant challenge with many gene-
rative Al models is their "black box" nature, making it difficult or impossible to
comprehend their decision-making processes. Even the engineers and data scientists
responsible for creating the underlying algorithms may struggle to explain the inner
workings and how specific results are reached. Explainable Al practices and tech-
niques can aid practitioners and users in understanding and trusting the processes

and outputs of these models.

Additionally, evaluating and comparing the quality of generated content poses a
challenge. Traditional metrics may fall short in capturing the subtleties of creativity,
coherence, and relevance. Developing reliable and robust evaluation methods for

generative Al remains an ongoing area of research.
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e Threats to security, privacy and intellectual property : Generative Al models
pose potential threats to security, privacy, and intellectual property. Malicious actors
can exploit these models to craft deceptive phishing emails, fabricated identities, or
other harmful content that can deceive users into compromising their security and
privacy. Developers and users must exercise caution to ensure that the data fed into
the model, whether during fine-tuning or through prompts, does not inadvertently
reveal their own intellectual property (IP) or any information protected as IP by
other organizations. Furthermore, vigilant monitoring of model outputs is crucial to
identify any new content that might expose their own IP or infringe upon the IP

rights of others.

e Deepfakes : Deepfakes are artificially generated or manipulated images, videos, or
audio designed to deceive viewers and listeners into believing that someone said or
did something they did not. These creations are a chilling example of how generative

Al can be maliciously exploited.

While many are aware of deepfakes used to tarnish reputations or spread disinfor-
mation, cybercriminals have also weaponized this technology for cyberattacks (such

as voice phishing scams) and financial fraud.

Researchers are actively developing AI models capable of more accurately detec-
ting deepfakes. However, until these become widely available, educating users and
promoting best practices like verifying content before sharing can help mitigate the

harm caused by deepfakes.

Conclusion

This chapter has equipped us with the foundational knowledge of Al, particularly ma-
chine learning and deep learning, all essential for understanding deepfakes and their de-

tection, next chapter will explore the fundamentals of audio.
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Audio Fundamentals

Introduction

In this chapter, we are exploring the concept of the world of audio, examining the

properties of sound, digital audio basics, and audio signal processing techniques.

Overview

Sound, at its essence, is a physical phenomenon that manifests as vibrations traveling
through a medium, such as air or water. These vibrations create pressure waves that
propagate outward from the source, eventually reaching our ears. When these waves in-
teract with the delicate structures within our ears, they are transformed into electrical
signals that are interpreted by our brains as sound. The characteristics of sound are di-
verse and complex. The frequency of a sound wave, measured in Hertz (Hz), determines
its pitch, with higher frequencies perceived as higher notes and lower frequencies as lower
notes. The amplitude of a sound wave, often measured in decibels (dB), corresponds to
its loudness or intensity. The distance between successive peaks of a sound wave is its
wavelength, and the speed at which these waves travel through a medium is known as the
velocity of sound. These fundamental properties of sound form the basis for understanding
audio, which refers to the electronic representation of sound waves. This representation
is typically achieved through a process called analog-to-digital conversion (ADC), where
continuous analog sound waves are sampled at regular intervals and converted into dis-
crete digital values. In the next sections, we will delve deeper into the intricacies of digital
audio representation, the various techniques used to process audio signals, and the specific
challenges associated with analyzing and manipulating audio data. This comprehensive

understanding of audio fundamentals is essential for comprehending the complex land-
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scape of deepfake audio detection.

3.1 Properties of Sound

Sound waves possess several key properties that shape our auditory experience and are

crucial to understanding audio manipulation techniques used in deepfakes [19] :

e Frequency : Measured in Hertz (Hz), frequency is the number of cycles a sound
wave completes in one second. It directly correlates with the perceived pitch of a
sound. Higher frequencies produce higher-pitched sounds, while lower frequencies
result in lower-pitched sounds. Changes in pitch are fundamental to human speech

and can be manipulated in deepfakes to alter the perceived voice.

e Amplitude : This refers to the maximum displacement of particles in a medium
as the sound wave passes through. Amplitude is directly related to the loudness
or intensity of a sound, measured in decibels (dB). Variations in amplitude create
dynamics in speech, and deepfakes may manipulate these to make synthetic speech

sound more natural or to mask inconsistencies.

e Wavelength : This is the distance between two consecutive peaks or troughs of
a sound wave. Wavelength and frequency are inversely proportional, meaning that
higher-frequency sounds have shorter wavelengths, and vice versa. Manipulating
wavelengths in deepfakes can subtly alter the timbre of a voice, affecting its perceived

quality and character.

e Velocity (Speed of Sound) : The speed at which sound waves travel varies de-
pending on the medium through which they propagate. In general, sound travels
faster in solids than in liquids, and faster in liquids than in gases. This property is
relevant to deepfake detection as it affects the timing and synchronization of au-
dio components, which can be exploited to identify inconsistencies in manipulated

recordings.

Understanding these properties of sound is essential for analyzing and manipulating au-
dio signals effectively. In the context of deepfake audio detection, analyzing variations in
frequency, amplitude, and other acoustic features can provide valuable clues for distin-
guishing between authentic and synthetic speech. In subsequent sections, we will explore
how these properties are leveraged in various techniques for audio signal processing and

deepfake detection.
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3.2 Digital Audio Basics

Digital audio is the cornerstone of modern sound recording, processing, and reproduc-
tion. It offers numerous advantages over analog audio, including greater fidelity, resistance
to noise and degradation, and ease of editing and manipulation. However, to fully grasp
the implications of digital audio in the context of deepfake detection, it’s crucial to un-

derstand its fundamental principles [19].

3.2.1 Analog vs. Digital Audio

Sound, in its natural form, is an analog signal, meaning it is continuous and can take
on an infinite number of values within a given range. Analog audio signals are represented
as continuous fluctuations in voltage or current, mirroring the continuous variations in air
pressure that constitute sound waves. In contrast, digital audio is a discrete representa-
tion of sound, where the continuous waveform is divided into distinct samples at regular
intervals. Each sample is assigned a numerical value representing its amplitude at that

specific instant. The process of converting analog audio to digital involves two key steps :

e Sampling : This involves measuring the amplitude of the analog signal at fixed
intervals, known as the sampling rate. The higher the sampling rate, the more accu-

rately the digital signal represents the original analog waveform. Common sampling
rates include 44.1 kHz (used for CDs) and 48 kHz (used for digital video).

e Quantization : This involves mapping the continuous amplitude values of each
sample to a finite set of discrete levels. The number of levels is determined by the
bit depth of the digital audio. A higher bit depth allows for a wider range of am-
plitude values to be represented, resulting in greater dynamic range and reduced
quantization noise (the error introduced by rounding analog values to discrete le-

vels).

3.2.2 Sampling Rate and Bit Depth

The choice of sampling rate and bit depth significantly impacts the quality of digital
audio. A higher sampling rate captures more detail and nuances of the original sound,
resulting in greater fidelity and wider frequency response. Conversely, a lower sampling
rate can lead to aliasing, where high-frequency components of the sound are misinterpreted
as lower frequencies. Bit depth determines the dynamic range (the difference between the

loudest and quietest sounds) and the level of quantization noise. A higher bit depth allows
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for a wider dynamic range and reduces quantization noise, resulting in cleaner and more

accurate audio reproduction.

3.2.3 Audio File Formats

Digital audio is typically stored in various file formats, each with its own characteristics

and trade-offs :

e Uncompressed Formats :
— WAV (Waveform Audio File Format) : A lossless format that retains the
original audio quality but results in large file sizes.
— AIFF (Audio Interchange File Format) : Similar to WAV, commonly used
on Apple devices.
e Lossy Compressed Formats :
— MP3 (MPEG Audio Layer III) : A popular lossy format that significantly
reduces file size by discarding less perceptible audio information.
— AAC (Advanced Audio Coding) : A more efficient lossy format than MP3,
often used for streaming and mobile devices.
e Lossless Compressed Formats :
— FLAC (Free Lossless Audio Codec) : Provides compression without losing
audio quality, ideal for archiving and high-fidelity playback.
— ALAC (Apple Lossless Audio Codec) : Apple’s version of a lossless com-

pressed format.

Understanding these digital audio basics will provide a solid foundation for comprehending
how audio data is represented, processed, and manipulated, which is crucial for developing

effective deepfake audio detection techniques.

3.3 Audio Signal Processing

3.3.1 Fundamental Concepts

e Fourier Transform : The Fourier Transform is a mathematical technique that
decomposes a signal into its constituent frequency components. In audio signal ana-

lysis, it is used to convert the time-domain representation of an audio signal into
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the frequency domain, allowing for the analysis of the signal’s frequency content.
This transformation is crucial for understanding the spectral characteristics of audio
signals and extracting relevant features. [20] There are two main types of Fourier

Transforms :

— Continuous-Time Fourier Transform (CTFT) : The CTFT is used for
continuous-time signals that are defined for all values of time. It represents the
signal as a continuous function of frequency, providing a frequency spectrum

that is also continuous.

— Discrete Fourier Transform (DFT) : The DFT is used for discrete-time
signals, which are sampled at specific time intervals. It represents the signal
as a sequence of complex numbers, each corresponding to a specific frequency
component. The DFT is particularly important for digital signal processing, as
it allows for the efficient computation of the frequency spectrum of a sampled

signal.

e Time Domain Representation : The time domain representation of an audio
signal shows the amplitude of the signal over time. It depicts how the signal’s am-
plitude varies as a function of time. In this representation, the x-axis represents
time, and the y-axis represents the amplitude or intensity of the signal at each time
instant. Time domain representations are intuitive and directly reflect the waveform
of the audio signal as it is perceived by the human ear. However, they do not pro-
vide direct information about the frequency content of the signal, which is crucial

for many audio analysis tasks.

e Frequency Domain Representation : The frequency domain representation, ob-
tained through the Fourier Transform, decomposes the audio signal into its consti-
tuent frequency components. It shows the distribution of the signal’s energy across
different frequencies. In the frequency domain representation, the x-axis represents
frequency, and the y-axis represents the amplitude or strength of each frequency
component present in the signal. This representation provides valuable information
about the spectral characteristics of the audio signal, such as the dominant frequen-
cies, harmonic structures, and the distribution of energy across different frequency
bands.

The Fourier Transform and frequency domain representation has several important

properties and applications in audio signal processing :

35



CHAPITRE 3. AUDIO FUNDAMENTALS

e Frequency analysis : By transforming an audio signal into the frequency domain,
the Fourier Transform reveals the signal’s frequency content, which is essential for

tasks such as speech recognition, music analysis, and audio compression.

e Filtering : The frequency domain representation obtained through the Fourier
Transform enables efficient filtering operations by allowing for the selective mani-

pulation of specific frequency components.

e Feature extraction : Many audio features, such as Mel-Frequency Cepstral Co-
efficients (MFCCs) and spectral features, are derived from the frequency domain

representation obtained through the Fourier Transform.

e Audio compression : Techniques like MP3 encoding utilize the Fourier Trans-
form to identify and remove or encode less audible frequency components, achieving

efficient audio compression.

e Convolution and deconvolution : The Fourier Transform simplifies the compu-
tation of convolution and deconvolution operations, which are important for tasks

such as filtering, system identification, and signal restoration.

3.3.2 Filtering

Types of Filters : Audio filters are used to selectively attenuate or amplify specific fre-

quency components of an audio signal. The three main types of filters are : [21]

e Low-pass filters : These filters allow low-frequency components to pass through

while attenuating high-frequency components above a specified cutoff frequency.

e High-pass filters : These filters allow high-frequency components to pass through

while attenuating low-frequency components below a specified cutoff frequency.

e Band-pass filters : These filters allow a specific range of frequencies to pass

through while attenuating frequencies outside that range.

Applications of Filtering : Filtering is used in various audio applications, such as noise
reduction, equalization, and signal separation. For example, low-pass filters can
be used to remove high-frequency noise, while high-pass filters can remove low-

frequency rumble or hum from audio signals.

Concept of Filtering in Audio Signal Processing : In the context of audio signal
processing, filtering is a fundamental operation that allows for the selective ma-

nipulation of specific frequency components. By applying appropriate filters, it is
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possible to isolate, enhance, or suppress certain aspects of an audio signal, enabling

various signal processing tasks.

3.3.3 Feature Extraction

Extracting Important Features : Feature extraction is the process of deriving relevant
and informative characteristics from audio signals. These features capture essential proper-
ties of the audio data and are used for tasks such as audio classification, speech recognition,

and audio analysis. Common Features : [22]

e Mel-Frequency Cepstral Coefficients (MFCCs) : MFCCs are widely used fea-
tures in audio and speech processing. They represent the short-term power spectrum
of an audio signal, taking into account the non-linear perception of frequency by the
human auditory system. MFCCs are effective for capturing the spectral envelope of
audio signals and are commonly used in speech recognition, speaker identification,

and audio classification tasks.

N
MFCCy =) log(S,) cos {%k (n— 0.5)] . k=12 K (3.1)
n=1

e Chroma Features : Chroma features, also known as chromagrams, represent the
distribution of energy across different pitch classes (notes) in an audio signal. They
are particularly useful for analyzing harmonic content and are widely used in tasks

such as chord recognition, key detection, and music information retrieval.

Crh=Y_ Sn k=12...12 (3.2)

neHyg

e Root Mean Square (RMS) : The RMS value is a measure of the average power
or energy of an audio signal. It is often used as a feature for audio analysis tasks,

such as loudness estimation, dynamic range compression, and audio event detection.

RMS = (3.3)

e Spectral Centroid : The spectral centroid represents the "center of mass" of the
frequency spectrum of an audio signal. It provides information about the overall

brightness or sharpness of the sound and is commonly used in timbre analysis and
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audio classification tasks.

Z kak

(3.4)
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e Spectral Bandwidth : The spectral bandwidth is a measure of the frequency range
occupied by the majority of the energy in an audio signal’s spectrum. It can be used
to characterize the spread or concentration of energy across different frequencies,

which is useful for tasks such as instrument recognition and audio texture analysis.

BW = \/Z f’“_ )25’“ (3.5)

k:O

e Spectral Rolloff : The spectral rolloff is the frequency below which a specified
percentage (e.g., 85 present or 95 present) of the total spectral energy is contained.
It can be used to estimate the perceived brightness or sharpness of an audio signal

and is often employed in audio classification and music genre recognition tasks.

N-1
Rfmm{f]ZSk>OSSZSk} (3.6)

e Zero-Crossing Rate : The zero-crossing rate is the rate at which an audio signal
crosses the zero amplitude level. It provides information about the noisiness or perio-
dicity of the signal and can be useful for tasks such as speech /music discrimination,

onset detection, and audio segmentation.

=
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These features, along with others, are commonly extracted from audio signals and can
be used individually or in combination to capture different aspects of the audio data,

enabling various audio analysis and processing tasks.

3.4 Speech Processing

Speech processing is a multidisciplinary field that encompasses the analysis, synthesis,
and modification of spoken language. It plays a crucial role in various applications, from
voice assistants and automatic transcription to deepfake audio generation and detection.

Understanding the core principles of speech processing is essential for comprehending how
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deepfakes manipulate and mimic human voices [23].

3.4.1 Phonetics and Phonology

e Phonetics : This branch of linguistics studies the physical properties of speech
sounds, including their production, acoustic characteristics, and perception. It exa-
mines how individual sounds (phonemes) are articulated and how they combine to

form words.

e Phonology : This branch of linguistics focuses on the systematic organization of
sounds in a language. It explores the rules and patterns governing how phonemes are

combined to form words and how these words are used in meaningful communication.

Understanding phonetics and phonology is crucial for speech processing tasks, as it
provides insights into the structure and organization of spoken language. This know-
ledge is leveraged in tasks like speech recognition, where the acoustic properties of speech
sounds are used to identify words and phrases, and in text-to-speech synthesis, where the

phonemic structure of a language guides the generation of natural-sounding speech.

3.4.2 Speech Recognition

Automatic speech recognition (ASR) is the process of converting spoken language into

text. ASR systems typically consist of several components [23] :

e Acoustic Modeling : This component analyzes the acoustic features of speech
signals to identify individual phonemes or sub-word units. It uses statistical models

to predict the most likely sequence of phonemes given the acoustic input.

e Language Modeling : This component leverages linguistic knowledge to predict
the most likely sequence of words based on the identified phonemes and the context

of the utterance.

e Decoding : This component combines the outputs of the acoustic and language
models to determine the most probable word sequence, effectively transcribing the

spoken language into text.

Speech recognition technology is constantly evolving, with deep learning models like re-
current neural networks (RNNs) and Transformers playing an increasingly important role

in achieving state-of-the-art performance.
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3.4.3 Text-to-Speech (TTS) Synthesis

Text-to-speech (TTS) synthesis is the inverse of speech recognition, converting written
text into spoken language. TTS systems analyze the text input, determine its linguistic
structure, and generate corresponding acoustic signals that mimic human speech. TTS
technology is used in various applications, including voice assistants, accessibility tools for
the visually impaired, and, unfortunately, in the creation of deepfake audio. The ability to
generate convincing synthetic speech using T'T'S models raises significant concerns about
the authenticity and trustworthiness of audio recordings. In the context of deepfakes, TTS
synthesis can be used to create fabricated speech that closely mimics the voice of a tar-
get individual, making it difficult to distinguish from genuine recordings. Understanding
the intricacies of speech processing, including phonetics, phonology, speech recognition,
and TTS synthesis, is essential for developing effective countermeasures against deepfake
audio. By analyzing the unique characteristics of both human speech and synthetically
generated audio, researchers can identify the subtle differences that reveal the artificial

nature of deepfakes [23].

3.4.4 Voice Biometrics

Voice biometrics is the process of recognizing individuals based on their unique voice
characteristics. It leverages the fact that each person’s voice has distinct acoustic proper-
ties influenced by physiological and behavioral factors, such as vocal tract shape, articu-
lation patterns, and speaking style. Voice biometrics has applications in various domains,
including security, authentication, and forensics. Speaker Recognition : Speaker recogni-
tion is a fundamental task in voice biometrics, and it can be further categorized into two

main types [24] :

e Speaker Identification : Speaker identification is the process of determining who
is speaking from a set of known voice samples or speakers. It involves comparing an
unknown voice sample against a database of enrolled voice models or templates. The
system attempts to find the best match and identify the speaker from the available

set of speakers.

e Speaker Verification : Speaker verification, also known as voice authentication or
voiceprint recognition, is the process of confirming whether a speaker is who they
claim to be. In this scenario, the speaker’s identity is first claimed or provided, and
the system compares the given voice sample against the pre-enrolled voice model

associated with that claimed identity. The system then makes a binary decision,
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either accepting or rejecting the claim based on the similarity between the voice

sample and the stored model.

Importance of Voice Biometrics in Security and Authentication : Voice biometrics has
gained significant importance in security and authentication applications due to several

key advantages :

e Unique Identifiers : Voice characteristics are unique to each individual, making

them suitable for identification and verification purposes.

e Non-Invasive : Voice biometrics is a non-invasive and contactless authentication

method, providing a convenient user experience.

e Remote Authentication : Voice-based authentication can be performed remotely,

enabling secure access to systems and services without physical presence.

e Multimodal Authentication : Voice biometrics can be combined with other bio-
metric modalities, such as face or fingerprint recognition, for enhanced security and

accuracy.

e Forensic Applications : Voice recordings can be used in forensic investigations,
law enforcement, and intelligence gathering for speaker identification and verifica-

tion.

Features Used in Voice Biometrics : Effective voice biometric systems rely on extracting
robust and discriminative features from voice samples. Some commonly used features in

speaker recognition include :

e Pitch : The fundamental frequency of a person’s voice, which is influenced by the

length and tension of the vocal cords.

e Tone : Refers to the resonant frequencies or formants produced by the vocal tract,

which contribute to the unique timbre or quality of a person’s voice.

e Cadence : The rhythm, stress patterns, and intonation of speech, which can be

influenced by factors like accent, emotion, and speaking style.

e Spectral features : Characteristics derived from the frequency spectrum of the
voice signal, such as Mel-Frequency Cepstral Coefficients (MFCCs), which capture

the spectral envelope and harmonic structure of the voice.
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e Temporal features : Characteristics related to the time-varying nature of speech,

such as energy contours, zero-crossing rates, and duration patterns.

Challenges in Extracting Robust Speaker-Specific Features : While voice biometrics
offers several advantages, extracting robust and reliable speaker-specific features can be

challenging due to various factors :

e Intra-Speaker Variability : A person’s voice can vary due to factors like emotio-
nal state, health conditions, aging, and environmental conditions (e.g., background

noise), making it difficult to capture consistent features.

e Inter-Speaker Similarity : Some speakers may have similar voice characteristics,
especially if they are related or share similar physiological or linguistic backgrounds,

complicating the discrimination process.

e Channel and Noise Effects : The recording conditions, transmission channels,
and background noise can introduce distortions and artifacts that can degrade the

quality of the extracted features.

e Spoofing Attacks : Voice biometric systems can be vulnerable to spoofing attacks,
where an impostor attempts to mimic or synthetically generate a target speaker’s

voice, compromising the system’s security.

To address these challenges, researchers and developers in the field of voice biometrics
continuously work on improving feature extraction techniques, exploring robust and inva-
riant features, and developing advanced machine learning algorithms and countermeasures
against spoofing attacks. Additionally, multi-modal biometric systems that combine voice
with other modalities, such as facial features or behavioral characteristics, can enhance

the overall accuracy and reliability of biometric recognition systems.

3.5 Challenges in Audio Analysis

Despite the advancements in audio processing techniques, several challenges persist in
analyzing audio signals, particularly in the context of deepfake detection. These challenges
can significantly impact the accuracy and reliability of audio analysis tasks, requiring

careful consideration and innovative solutions.
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3.5.0.1 Noise and Distortion

Background noise and signal distortion are ubiquitous in real-world audio recordings.
Noise, stemming from various sources such as environmental sounds, microphone artifacts,
or electronic interference, can obscure or mask the relevant acoustic information in the
audio signal. Distortion, on the other hand, can arise from clipping, compression, or
other non-linear effects that alter the original waveform, introducing unwanted artifacts
and affecting the overall quality of the audio. Both noise and distortion can hinder the
performance of audio analysis tasks, such as speech recognition, speaker identification,
and deepfake detection. To mitigate these issues, various signal processing techniques are

employed, including :

Noise Reduction : Methods like spectral subtraction, Wiener filtering, and deep learning-
based denoising algorithms can be used to reduce background noise and enhance

the desired signal.

Signal Enhancement : Techniques like equalization, dynamic range compression, and
de-clipping can be used to improve the overall quality of the audio signal and com-

pensate for distortions.

In the context of deepfake detection, effective noise reduction and signal enhancement
are crucial for ensuring that the analysis focuses on the genuine characteristics of the

audio, rather than artifacts introduced by noise or distortion.

3.5.0.2 Variability in Speech

Human speech is incredibly diverse, with individuals exhibiting a wide range of accents,
dialects, intonation patterns, and speaking styles. Factors like emotional state, age, gender,
and health conditions can further influence the acoustic properties of speech. This inherent
variability poses a significant challenge for audio analysis, as algorithms need to be robust
enough to handle this diversity and accurately extract meaningful features from different
voices and speaking conditions. To address this challenge, researchers employ various

approaches, including :

Speaker Adaptation : This technique involves fine-tuning speech processing models to

adapt to the specific characteristics of individual speakers or groups of speakers.

Robust Feature Extraction : Developing feature extraction techniques that are less
sensitive to variations in speech can improve the performance of audio analysis
tasks.
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Large and Diverse Training Data : Training machine learning models on large and
diverse datasets that encompass a wide range of speakers and speaking conditions

can enhance their ability to generalize to unseen data.

3.5.0.3 Security Concerns

The rise of deepfake audio technology raises significant security concerns, particularly
in the context of spoofing attacks. Malicious actors can exploit deepfakes to impersonate
individuals, bypass voice authentication systems, and spread misinformation. These at-
tacks can have severe consequences, including financial fraud, identity theft, and damage
to reputation. The development of reliable deepfake audio detection methods is crucial
for mitigating these security risks. By analyzing the subtle differences between genuine
and synthetic speech, detection algorithms can identify manipulated audio and prevent
it from being used for malicious purposes. This ongoing research effort is essential for
safeguarding the integrity of audio information and maintaining trust in digital commu-
nication. By addressing these challenges head-on, researchers are paving the way for more
accurate, robust, and secure audio analysis systems that can effectively detect deepfakes

and other forms of audio manipulation.

Conclusion

This chapter has equipped us with the foundational knowledge of audio processing
techniques, essential for understanding deepfakes and their detection. We are now prepared

to explore the current state-of-the-art deepfake detection methods in the following chapter.
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Chapitre 4

State of the Art in Deepfake Audio

Detection

Introduction

This chapter provides a comprehensive overview of the current state of the art in deep-
fake audio detection. It explores the diverse approaches being pursued by researchers,
ranging from traditional audio forensics techniques to cutting-edge machine learning and
deep learning models. We will examine the strengths and limitations of existing methods,
identify key challenges and open questions in the field, and highlight emerging trends that

show promise for the future of deepfake detection.

4.1 Traditional Audio Forensics Techniques

Before the advent of deep learning-based approaches, audio forensics relied on a variety
of established techniques to analyze and authenticate audio recordings. These techniques
primarily focused on identifying inconsistencies, artifacts, or patterns within the audio
signal that could indicate tampering or manipulation.

Traditional audio forensics techniques can be broadly categorized into two main ap-

proaches [24] :

Signal Analysis : This involves examining the raw audio waveform and its spectral re-

presentation to identify anomalies or inconsistencies that might indicate tampering.

Content Analysis : This focuses on analyzing the content of the audio, such as the spo-

ken words, acoustic environment, or background noise, to determine its authenticity.
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4.1.0.1 Techniques

Several traditional techniques have been employed in audio forensics [24] :

e Audio Fingerprinting : This involves creating a unique "fingerprint" of an audio
recording based on its acoustic characteristics. By comparing fingerprints, forensic
experts can identify identical or similar recordings and detect instances of re-use or

manipulation.

e Spectrographic Analysis : This involves visually examining the spectrogram of
an audio signal, which displays the distribution of frequencies over time. Experts can
identify discontinuities, abrupt changes, or unnatural patterns in the spectrogram

that might suggest editing or tampering.

e Electrical Network Frequency (ENF) Analysis : This technique analyzes the
subtle fluctuations in electrical power frequency that are often embedded in audio
recordings. By comparing the ENF patterns of a recording with known reference
patterns, experts can verify the time and location of the recording and potentially

detect tampering.

e Auditory Analysis : Trained forensic experts can listen critically to audio re-
cordings, using their knowledge of speech patterns, acoustics, and production tech-
niques to identify inconsistencies, artifacts, or anomalies that might indicate mani-

pulation

4.1.0.2 Limitations

While traditional audio forensics techniques have been valuable tools for authentica-
tion and tampering detection, they face limitations when confronted with sophisticated

deepfakes :

e Handcrafted Features : Many traditional methods rely on handcrafted features
that may not capture the subtle nuances and complex patterns introduced by deep-

fake algorithms.

e Limited Generalization : These techniques often require extensive knowledge
and expertise in audio analysis and may not generalize well to novel manipulation

techniques.

e Time-Consuming : Manual analysis of audio recordings can be time-consuming

and labor-intensive, especially for large volumes of data.
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As deepfake technology continues to advance, traditional methods are becoming in-
creasingly inadequate for detecting sophisticated manipulations. This has led to a growing
interest in exploring machine learning-based approaches, which offer the potential for more

automated, adaptable, and accurate deepfake audio detection.

4.2 Current State-of-the-Art Detection Methods

In recent years, there has been a significant shift towards leveraging machine learning
and deep learning techniques for deepfake audio detection, driven by their ability to learn
complex patterns and adapt to evolving manipulation techniques. This section will review
some of the prominent methods in this area, highlighting their key features, strengths, and
limitations. A comparative analysis of the state-of-the-art methods for detecting synthetic

speech can be found in Table 4.1

4.2.1 Machine Learning-Based Methods

Alegre el al. [25] presented a novel countermeasure to detect spoofing attacks in automa-
tic speaker verification (ASV) systems. Spoofing attacks are when a bad actor tries to fool
the ASV system by impersonating someone else’s voice. The countermeasure uses local
binary patterns (LBPs) to analyze speech signals and a one-class classification approach
to distinguish between genuine and spoofed speech. The results showed that the coun-
termeasure was effective in detecting all three types of spoofing attacks voice conversion

attacks, speech synthesis and artificial signal attacks.

Jordan J. Bird and Ahmad Lotfi [26] addressed the growing implications of deepfake
voice conversion. They proposed a robust machine learning approach to detect deepfake
audio generated using Retrieval-based Voice Conversion (RVC). They extracted 26 audio
features and then generated the DEEP-VOICE dataset, which consists of real human
speech from eight well-known figures, they achieved effective performance using the XG-

Boost model.

4.2.2 Deep Learning-Based Methods

Wu et al. [27] presented Quick-SpoofNet, an innovative approach leveraging one-shot
learning and metric learning to detect audio deepfakes, including previously unseen at-
tacks, in automatic speaker verification (ASV) systems. Addressing the challenge of ge-

neralizing to unseen spoofing attacks, which existing countermeasures struggle with due
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to assumptions of similar data distributions between training and test utterances. Quick-
SpoofNet was evaluated using the ASVspoof2019 dataset’s logical access (LA) subpart
for in-domain assessment with unseen attacks. For generalization, subsets from the ASVs-
poof2021 dataset were used, representing real-world scenarios with unseen attacks. The
method achieved a remarkable overall Equal Error Rate (EER) and accuracy on the three
ASVspoof2019 dataset parts (LA, PA, DF) and demonstrated robust performance against

various voice cloning and conversion algorithms within this dataset.

Authors of 28] proposed a new method to detect synthetic speech, which is fake speech
created by computers using text-to-speech (TTS) and voice conversion (VC) algorithms.
The method is based on the idea that real speech has a more consistent pattern than
synthetic speech. The method trains a model to recognize the patterns of real speech.
The authors tested their method on the ASVspoof 2019, a dataset specifically designed
for testing methods that detect fake speech. The results showed that their method was
better at detecting synthetic speech than other existing methods. This is especially true
for synthetic speech created by methods the model hadn’t seen before, showing that the

method is good at generalizing to new types of synthetic speech.

Zeinalil et al. [29] proposed a new system where they extracted 3 features and built
three different model variants based on ResNET to detect synthetic speech created by TTS
and VC algorithms, the authors used the ASVspoof 2019 dataset to train their models,
after the conducted experiments the fusion model showed promising results compared to
other methods.

Spoofing attacks, which try to impersonate legitimate users using techniques like voice
conversion, speech synthesis, replay, and impersonation, are a threat to biometric au-
thentication, especially Automatic Speaker Verification (ASV) systems. To address this
threat Parasu et al. [30] proposed the Light-ResNet architecture with spectrogram in-
put features to improve generalization in spoofing detection. Evaluations conducted on
various databases, including ASVspoof 2015, BTAS 2016 (replay), and ASVspoof 2017
V2.0, demonstrate that the Light-ResNet architecture consistently outperforms baseline

systems in terms of generalization and spoofing detection performance

Conclusion

We reviewed deepfake audio detection techniques, from traditional methods to cutting-

edge machine learning and deep learning approaches. While traditional methods have
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Paper Title Classifier Key Features Dataset(s) Performance Strengths Limitations
Used Metrics
Alegre et al. [25] Machine - Local Binary NIST’05, - Reduced FAR - Generalization - May struggle
Learning Patterns (LBPs) NIST’06 from 55% to to unseen attack with highly
(One-class - One-class 4.1% for voice types sophisticated
SVM) classification conversion - attacks -
Reduced FAR to Limited to
0.2% for speech spectro-
synthesis and temporal
artificial signals features
Jordan J. Bird Machine - 26 audio DEEP-VOICE - 99.3% average - Real-time - Limited to
and Ahmad Learning features - (custom accuracy - 0.995 detection - High RVC-based
Lotfi. [26] (XGBoost) Multiple ML dataset) precision, 0.991  performance voice conversion
models recall across metrics - May not
compared generalize to
other types of
voice synthesis
Khan and Deep - One-shot ASVspoof2019- - 0.50% EER on - Generalizes to - Computatio-
Malik. [27] Learning learning - LA, ASVspoof2019-  unseen attacks - nally intensive -
(Siamese Metric learning ~ ASVspoof2021- LA - 86.41% High May require
LSTM) DF, accuracy on performance on  large support
VSDC-0PR ASVspoof2021-  in-domain data  set for best
DF performance
Wu et al. [28] Deep - Feature ASVspoof 2019  EER - 0.25%, - Lightweight - Computatio-
Learning genuinization - Precision - architecture nally intensive -
(Light Lightweight 97.29%, struggle with
CNN) model Accuracy - other languages
98.50%, F1 -
95.50%, Recall -
93.20%
Zeinalil et Deep - generalization ~ ASVspoof 2019  improved t-DCF - Generalizes to - Computatio-
al. [29] Learning against and EER by unseen attack nally intensive -
(ResNET-  unknown 71% and 75% types struggle with
based attacks respectively other languages
models)
Parasu et Deep - generalization ~ ASVspoof 2019  improved t-DCF - Generalizes to - Computatio-
al. [30] Learning against and EER by unseen attack nally intensive -
(Light- unknown 71% and 75% types struggle with
ResNET)  attacks respectively other languages

Tableau 4.1: Comparison of State-of-the-Art Methods for Detecting Synthetic Speech
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limitations, machine learning models offer new possibilities. Challenges remain, including
generalization to unseen speakers and manipulation techniques. Emerging trends like multi
modal approaches and self-supervised learning hold promise. Continued innovation is cru-

cial to stay ahead of deepfake technology’s evolving threat.

50



Chapitre 5

Contributions and Results

Introduction

This chapter details the methodological framework employed to develop a robust and
reliable deepfake audio detection system for the Arabic language. The primary research
goal is to create a model capable of accurately distinguishing between genuine and synthe-
tically Arabic-generated speech. To achieve this, we have taken a data-centric approach,
emphasizing the importance of creating a high-quality, diverse, and representative Arabic

dataset for training and evaluation.

5.1 Proposed Contributions

The primary contributions of our research, which are twofold : the creation of the Arabic
Audio Deepfake dataset and the development of a machine learning-based framework for
deepfake audio detection. These contributions aim to address the gap in resources and
techniques for detecting audio deepfakes in the Arabic language, thereby advancing the

field of audio forensics and security.

5.1.1 Contribution 1 : Dataset Creation - Arabic Audio Deepfake

One of the critical challenges in the field of deepfake detection, particularly in audio,
is the lack of comprehensive and representative Arabic datasets. To address this, we have
created the Islamic Scholars Arabic Audio Deepfake dataset. This dataset is specifically
tailored to support the development and evaluation of deepfake detection algorithms for

Arabic audio content. The creation of this dataset involved several key steps :
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5.1.1.1 Data Collection and Prepossessing

The dataset for this research was constructed by collecting publicly available audio re-
cordings sourced from YouTube. These recordings include a variety of sources, including
interviews, speeches, podcasts, and other forms of spoken content, ensuring a diverse re-
presentation of real-world speech scenarios. To capture the rich diversity within the Arabic
language, we accurately selected recordings from five distinct speakers, each representing

a unique region and dialect.

Speaker Profession Nationality

Sheikh Muhammad bin Sa- Islamic Scholar Saudi

lih al-Uthaymeen!

Sheikh Ibn Baz? Islamic Scholar Saudi

Sheikh Salih bin Fawzan al- Jurist and Professor Saudi

Fawzan?3

Muhammad al-Ghazali* Islamic Preacher and Thin- Egyptian
ker

Muhammad  Ratib  al- Islamic Preacher Syrian

Nabulsi®

! YouTube Video (Last accessed : 01-05-2024)

2 YouTube Video (Last accessed : 01-05-2024)

3 YouTube Video (Last accessed : 01-05-2024)

4 YouTube Video (Last accessed : 01-05-2024)

® YouTube Video (Last accessed : 01-05-2024)

Tableau 5.1: List of speakers, their professions, and nationalities.

This selection ensures that the dataset encompasses the variations in pronunciation,
intonation, and vocabulary that exist across different regions and dialects of the Arabic
language, enhancing the model’s ability to generalize to diverse real-world scenarios. For
each speaker, we collected approximately 20 minutes of high-quality audio recordings.
These recordings were carefully selected to minimize background noise and ensure opti-
mal audio quality for subsequent analysis. The 20-minute recordings were then segmented
into shorter, 1-minute samples, resulting in 20 individual audio files per speaker. This seg-
mentation not only facilitates efficient data processing but also provides a standardized
format for feature extraction and model training. Given the high quality of the source
recordings, there was no need for additional noise reduction or audio enhancement during
the preprocessing stage. The resulting dataset comprises a total of 100 real audio samples
(5 speakers x 20 samples per speaker), providing a robust foundation for training and
evaluating our deepfake audio detection system. In the following sections, we will explore

the details of deepfake generation and data annotation, explaining how we created syn-

52


https://www.youtube.com/watch?v=OAp4qrmKuvc
https://www.youtube.com/watch?v=HKFn8Tvxo4A
https://www.youtube.com/watch?v=EGtuHONWzm4
https://www.youtube.com/watch?v=6K_q7646PvE
https://www.youtube.com/watch?v=_EM_-M2paDA

CHAPITRE 5. CONTRIBUTIONS AND RESULTS

thetic audio samples and labeled them accordingly to construct a comprehensive dataset

for deepfake audio detection.

5.1.1.2 Deepfake Generation

To augment our dataset with synthetic samples and create a robust training environ-
ment for our deepfake audio detection model, we employed the RVC (Retrieval-based
Voice Conversion) model. RVC is a cutting-edge deep learning-based model designed for
high-quality voice conversion tasks. By leveraging the VITS (Variational Inference with
adversarial learning for end-to-end Text-to-Speech) architecture, RVC excels in producing
natural and expressive voice conversions with relatively small amounts of training data.
In our deepfake generation process, we utilized each of the five unique speakers as both
a source and a target for voice conversion. The RVC model was employed to convert the
voice of each speaker into the voices of the remaining four speakers, effectively creating
a matrix of pairwise voice conversions. This approach resulted in a total of 400 distinct
deepfake audio samples per speaker ( 20 minutes divided into 20 samples ), where each
sample represents the source speaker’s voice converted to one of the other four speakers.
This approach covered a wide array of voice transformations across different regions and
dialects of the Arabic language. The diversity of these synthetic samples is essential for
training a robust deepfake detection model that can generalize effectively to real-world
scenarios, where manipulated audio might originate from various sources and utilize dif-
ferent conversion techniques. The subsequent section will elaborate on the data annotation
process, detailing how each audio sample (both real and synthetic) was meticulously labe-
led to create a balanced and informative dataset for training and evaluating our deepfake

audio detection system.

5.1.1.3 Data Annotation

To facilitate the training and evaluation of our deepfake audio detection model, a me-
ticulous data annotation process was conducted. The goal of this process was to assign
clear and consistent labels to each audio sample, indicating whether it was a genuine
recording or a synthetically generated deepfake. Each of the five speakers in our dataset
was assigned a unique abbreviation to facilitate labeling. For instance, Speaker 1 was
labeled as "S1," Speaker 2 as "S2," and so on. To differentiate between real and deep-
fake samples, each audio file was labeled as either "real" or "fake." For example, a real
audio sample from Speaker 1 would be labeled as "S1 real," while a deepfake sample of
Speaker 1’s voice converted to Speaker 2’s voice would be labeled as "S1 fake S2." This

labeling scheme ensures a clear and unambiguous identification of each sample’s origin
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and nature, enabling the machine learning model to learn the distinct characteristics of
both genuine and deepfake audio during training. The annotation process was conducted
automatically to ensure the creation of a high-quality dataset that can effectively train
a reliable deepfake audio detection model. The resulting annotated dataset comprises a
balanced distribution of real and deepfake audio samples, featuring a wide range of spea-
kers, dialects. This diversity is essential for ensuring that the trained model is robust
to variations in speech patterns and manipulation techniques, enabling it to generalize

effectively to real-world scenarios.

5.1.1.4 Dataset Statistics

The final dataset collected for this study comprises collection of real and deepfake audio

samples, totaling 500 unique recordings. The distribution of the dataset is as follows :
Real Audio Samples : 100 samples (5 speakers x 20 samples per speaker)
Deepfake Audio Samples : 400 samples (20 speakers x 20 deepfakes per speaker)

Each audio sample has a duration of 1 minute, resulting in a total dataset length of
400 minutes (6 hours and 40 minutes) of audio data. The dataset is evenly distributed
across the five selected speakers, ensuring that each speaker is represented equally in both
the real and deepfake categories. This balanced and diverse dataset is a crucial asset for
training and evaluating our deepfake audio detection model. It provides a comprehensive
representation of real-world speech patterns across different dialects and a wide array of
deepfake manipulations generated using the RVC model. By training on such a diverse
dataset, we aim to develop a model that can generalize effectively to unseen audio samples
and accurately distinguish between genuine and synthetic speech. In the following sections,
we will delve into the feature extraction process, discussing the specific acoustic, prosodic,
and linguistic features that we extract from these audio samples to characterize and
differentiate between real and deepfake speech. These features will serve as the input to
our machine learning models, enabling us to build a robust and reliable deepfake audio

detection system.

Category Number of Samples Duration per Sample
Real Audio 100 (5 speakers x 20 samples) 1 minute
Deepfake Audio 400 (20 speakers x 20 deepfakes) 1 minute

Total 500

Tableau 5.2: Dataset Distribution
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5.1.2 Contribution 2 : Proposed Framework For Deepfake Audio

Detection

Building on the Islamic Scholars Arabic Audio Deepfake (ISAAD) dataset, we propose a
new framework for detecting deepfake audio. Our framework leverages advanced Machine
Learning (ML) techniques to achieve high detection accuracy and robustness. The key

components of the proposed framework are outlined in Figure 5.1.

h 4

Feature Vector
— :

Results ( Real / Fake )

Audio File >

uoloBXg alnjea
(1s00gDX ) J01)ISSR|D

Figure 5.1: Proposed Framework Architecture For Deepfake Audio Detection.

5.1.2.1 Feature Extraction

Feature extraction is a critical step in deepfake audio detection, as it involves trans-
forming raw audio signals into meaningful numerical representations that can be used
to train machine learning models. These features capture the essential characteristics of
the audio, including spectral content, temporal patterns, and higher-level linguistic cues,

making them invaluable for distinguishing between genuine and synthetic speech.

5.1.2.2 Overview

The choice of features plays a pivotal role in the effectiveness of deepfake detection
systems. Relevant features can capture the subtle artifacts and inconsistencies introduced
by deepfake generation techniques, enabling the model to learn discriminative patterns
between real and manipulated audio. In this study, we leverage a combination of low-level
and high-level features, drawing inspiration from established practices in audio analysis

and deepfake detection research.

5.1.2.3 Feature Selection

The selection of features for this research was guided by a comprehensive review of the

relevant literature. We focused on features that have been shown to be effective in previous
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studies on deepfake detection, as well as features that capture the specific characteristics
of speech that are often manipulated in deepfakes. The chosen features can be broadly

categorized into low-level feature and high-level features :

e Low-Level Features : These features capture the fundamental acoustic properties

of the audio signal.

— Mel-Frequency Cepstral Coefficients (MFCCs) : MFCCs are a widely
used representation of the short-term power spectrum of a sound, based on a
nonlinear Mel scale that approximates human auditory perception. They have
been shown to be effective in capturing the spectral envelope of speech, which

can reveal inconsistencies in synthetically generated audio.

— Spectral Features : These features capture various aspects of the frequency
distribution of the audio signal, such as spectral centroid, spectral bandwidth,
spectral rolloff, and spectral flux. They provide insights into the tonal quality,
energy distribution, and dynamics of the audio, which can be indicative of

manipulation.

— Zero-Crossing Rate : This feature measures the rate at which the audio
signal crosses the zero-amplitude line. It is useful for distinguishing between
voiced and unvoiced speech segments, which can be important for identifying

unnatural transitions or discontinuities in deepfake audio.

e High-Level Features : These features capture higher-level linguistic and prosodic

aspects of the audio signal.

— Prosodic Features : These include pitch (fundamental frequency), intonation
(variation in pitch), and energy (loudness). Variations in prosody can be indi-
cative of emotional state or speaking style, and inconsistencies in these features

can be a telltale sign of deepfake audio.

— Statistical Features : These include measures like mean, variance, skewness,
and kurtosis, which can capture the statistical distribution of various acoustic
features. Deviations from expected statistical patterns can indicate anomalies

in the audio signal.

These models were selected based on their proven effectiveness in classification tasks,
their ability to handle tabular data, and their potential to capture complex patterns in

the audio features.
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5.1.2.4 Feature Classification : XGBoost

After rigorous experimentation and evaluation, we found that XGBoost (Extreme Gra-
dient Boosting) consistently outperformed other models on our dataset. XGBoost is an
ensemble learning method that combines the predictions of multiple decision trees, levera-
ging the strengths of each individual tree to improve overall performance. This approach

offers several advantages for deepfake audio detection :

e High Accuracy : XGBoost is known for its ability to achieve high accuracy on a

wide range of classification tasks, including those with complex feature interactions.

e Regularization : It incorporates regularization techniques to prevent overfitting,

ensuring that the model generalizes well to unseen data.

e Handling Missing Values : XGBoost can effectively handle missing values, which

can be common in real-world audio datasets.

e Feature Importance : It provides insights into the relative importance of different
features, which can aid in understanding the factors that contribute to deepfake

detection.

Given XGBoost’s strong performance and its suitability for tabular data, we selected it

as the primary model for our deepfake audio detection system.

5.2 Experimental study

In this section, we present the experimental results obtained from the evaluation of
our proposed framework for deepfake audio detection. We detail the experimental setup,

dataset utilization, evaluation metrics, and comparative analysis with existing methods.

5.2.1 Training and Evaluation

To train and assess the performance of our proposed deepfake audio detection fra-
mework, we employed a rigorous methodology that involved model training, evaluation
metrics, and cross-validation.

5.2.1.1 Training Methodology

We utilized the XGBClassifier implementation from the XGBoost library in Python,

initializing it with a fixed random _state for reproducibility. The model was trained on
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the extracted features (X train) and corresponding labels (y _train), which indicate whe-
ther each sample is real or fake. For training, we opted for a straightforward approach,
leveraging the default hyperparameters provided by the XGBoost library. These default
settings often provide a good starting point and can yield competitive results in many

cases.

5.2.1.2 Evaluation Metrics

To comprehensively assess the performance of our framework, we employed a suite of

evaluation metrics :

e Accuracy : The overall proportion of correctly classified samples (both real and
fake).
Number of Correct Predictions
Total Number of Predictions

Accuracy = (5.1)

e Mean Absolute Error (MAE) : The average absolute difference between the
predicted probabilities and the true labels.

N
1
MAE = — P, —v; 5.2
y LR ul (52)

e AUC (Area Under the ROC Curve) : A measure of the model’s ability to

distinguish between real and fake samples across different classification thresholds.

1
AUC ROC = / ROC Curved (False Positive Rate) (5.3)
0

e MCC (Matthews Correlation Coefficient) : A balanced measure of the quality

of binary classifications, considering true and false positives and negatives.

MCOC — TP xTN —-FP x FN (5.4)
/(TP + FP)(TP+ FN)(TN + FP)(TN + FN)

e Precision : The proportion of correctly predicted deepfakes out of all samples

predicted as deepfakes.

True Positives (T P)
True Positives (T'P) + False Positives (F'P)

Precision = (5.5)

e Recall : The proportion of correctly predicted deepfakes out of all actual deepfakes.
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True Positives (T P)

Recall =
cea True Positives (T P) + False Negatives (F'N)

(5.6)

e Fl-score : The harmonic mean of precision and recall, providing a single metric
that balances both.

Precision x Recall
F158 =2 5.7
core % Precision 4+ Recall (5:7)

These metrics provide a comprehensive view of the model’s performance, considering
both its overall accuracy and its ability to correctly identify deepfakes without misclassi-

fying genuine audio.

5.2.1.3 Evaluation protocol : Cross-Validation

To ensure the robustness and generalizability of our model, we employed 5-fold cross-
validation. This technique involves dividing the dataset into 5 folds, training the model on
4 folds (80%), and evaluating it on the remaining fold (20%). This process is repeated 5
times, with each fold serving as the test set once. The final performance metrics are then
averaged across all folds, providing a more reliable estimate of the model’s performance
on unseen data. By incorporating cross-validation, we can assess the model’s ability to
perform consistently across different data splits and reduce the risk of overfitting to the
training set. This enhances the model’s generalizability and ensures its effectiveness in

real-world scenarios.

5.3 Experimental Results

This section presents our deepfake audio detection results for Arabic speech. We re-
cap Chapter 1’s objectives (robust detection system, Arabic dataset) and Chapter 4’s
methodology (feature extraction, XGBoost model). We showcase model performance,
emphasizing XGBoost’s effectiveness. We then discuss our contributions, including the
novel Arabic deepfake dataset and the potential benchmark for Arabic speech deepfake

detection. Finally, we address strengths, limitations, and future directions.

5.3.1 Experimental Setup

The experimental setup for this research involved a combination of hardware and soft-
ware tools to facilitate both the generation of deepfake audio samples and the training

and evaluation of the detection model.
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5.3.1.1 Hardware

e Deepfake Generation : We utilized the computational power of an NVIDIA Tesla
T4 GPU hosted on Google Colab. This high-performance GPU accelerated the deep-
fake generation process, enabling us to efficiently create a large number of synthetic

audio samples using the RVC model.

e Model Training and Evaluation : The training and evaluation of our XGBoost
classifier were conducted on an Apple M1 PRO CPU. The M1 PRO chip’s powerful
machine learning capabilities allowed us to efficiently train and validate our model

on the extracted audio features.

5.3.1.2 Software and Libraries

e Data Preprocessing, Feature Extraction, and Model Training : For these
tasks, we utilized the JetBrains DataSpell integrated development environment

(IDE), which provides a convenient interface for data science workflows.

e Machine Learning Framework : We primarily relied on the TensorFlow fra-
mework for implementing our XGBoost classifier, leveraging its extensive machine

learning capabilities and optimized performance.

5.3.1.3 Implementation Details

For feature extraction, we utilized the librosa library, a popular Python package for
audio and music analysis. Librosa provides a comprehensive set of functions for loading,
visualizing, and analyzing audio signals. It also offers a wide range of built-in feature ex-
traction functions, making it an ideal tool for our research. By leveraging the capabilities
of librosa, we were able to efficiently extract a diverse set of low-level and high-level fea-
tures from our dataset, capturing the nuances and complexities of both real and deepfake
audio. These extracted features formed the foundation for training and evaluating our

machine learning models for deepfake audio detection.

5.3.2 Performance of Different Models

To rigorously assess the effectiveness of various machine learning models in detecting
deepfake Arabic audio, we conducted a comprehensive evaluation on our custom-created
dataset. We trained and tested several models, including traditional algorithms, ensemble
methods :
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e Traditional Algorithms :

Logistic Regression

— Decision Trees

— Support Vector Machines (SVM)

— Naive Bayes

— K-Nearest Neighbors (KNN)

e Ensemble Methods :

— Random Forest

— Gradient Boosting Machines :

x+ XGBoost
* Light GBM

As evident from Table 5.3, the XGBoost model consistently outperformed all other

models across all evaluation metrics. It achieved the highest accuracy, precision, recall,

F1l-score, AUC, and MCC, indicating its superior ability to discriminate between real and

deepfake Arabic audio.

In particular, XGBoost’s ensemble learning approach, which combines the predictions

of multiple decision trees, seems to be particularly effective in capturing the complex

patterns and nuances present in the audio features. Furthermore, its built-in regularization

techniques help prevent overfitting, ensuring that the model generalizes well to unseen

data.
Tableau 5.3: Overall Performance of Different Models (5-fold Cross-Validation)
Model Accuracy MAE AUC MCC Precision Recall F1l-score
XGBoost 0.9965 0.0035 0.9965 0.9930 0.9945 0.9985 0.9965
Light GBM 0.9956 0.0044 0.9956 0.9913 0.9940 0.9973 0.9956
Random Forest 0.9943 0.0057 0.9943 0.9886 0.9951 0.9935 0.9943
Decision Tree 0.9463 0.0537 0.9463 0.8926 0.9431 0.9500 0.9465
k-Nearest Neighbors 0.7965 0.2035 0.7965 0.5968 0.7668 0.8524 0.8073
Naive Bayes 0.7610 0.2390 0.7610 0.5380 0.7105 0.8814 0.7867
Logistic Regression 0.8817 0.1183 0.8817 0.7640 0.8688 0.8994 0.8838
SVM 0.6818 0.3182 0.6818 0.3737 0.6480 0.7966 0.7146
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Conclusion

This chapter has presented the framework for our Arabic deepfake audio detection
system, emphasizing the importance of a custom dataset. We detailed the creation process
of our new Arabic deepfake dataset, which serves as the foundation for training and

evaluating our model.
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In this thesis, we have explored the complex challenge of deepfake audio detection,
focusing on the unique context of the Arabic language. Through the creation of a new
Arabic deepfake dataset and the development of an effective framework deepfake audio
detection model, we have made significant steps in advancing the field. Our research
has not only demonstrated the feasibility of detecting deepfake Arabic audio with high
accuracy but has also shed light on the specific features and techniques that are most
effective in distinguishing real from manipulated speech.

The implications of our findings extend beyond the technical world. By contributing
to the development of reliable deepfake audio detection tools, we empower individuals and
organizations to better protect themselves from the potential harms of this technology.
Our research also has broader societal implications, as it helps to safeguard trust in audio
information and combat the spread of misinformation, which is crucial for maintaining a

healthy democracy and informed public discourse.

Strengths and Limitations

Strengths

Our approach to deepfake audio detection in Arabic exhibits several notable strengths,

stemming primarily from our contributions to the field :

e Novel Arabic Dataset : The creation of a custom Arabic deepfake audio dataset
addresses a critical gap in existing resources, providing a valuable tool for training
and evaluating detection models specifically tailored for the Arabic language. This
dataset’s diversity in speakers, dialects, and voice conversion techniques enhances

the model’s ability to generalize to real-world scenarios.

e Effective XGBoost Model : The XGBoost model, with its ensemble learning
approach and regularization capabilities, has demonstrated exceptional performance
in accurately classifying real and deepfake Arabic audio samples. This highlights the

model’s potential as a benchmark for Arabic speech deepfake detection.
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e Interpretability and Feature Importance : The XGBoost model provides in-
sights into the relative importance of different features, allowing us to identify the
most discriminative acoustic, prosodic, and linguistic cues for deepfake detection.
This information can be leveraged to refine feature engineering techniques and im-

prove the explainability of the model’s decision-making process.

e Robustness and Generalization in Arabic speech : Our model has shown ro-
bustness to variations in speaker characteristics and deepfake generation techniques
in Arabic speech, demonstrating its potential for real-world deployment. The use of

cross-validation further enhances the model’s ability to generalize to unseen data.

Limitations

While our approach offers promising results, there are some limitations that warrant

consideration :

e Dataset Bias : The reliance on publicly available YouTube recordings for our
dataset might introduce biases in terms of the types of speech, speaking styles,
and recording quality represented. Expanding the dataset with more diverse and
controlled samples could further improve the model’s performance and generaliza-

tion capabilities.

e Hyperparameter Optimization : While the XGBoost model performed well with
default hyperparameters, there is potential for further improvement through syste-
matic hyperparameter tuning. Exploring different combinations of learning rates,
tree depths, and regularization parameters could lead to even higher accuracy and

more robust detection.

e Exploration of Alternative Architectures : While XGBoost proved effective,
other deep learning architectures, such as convolutional neural networks (CNNs)
or transformers, have shown promise in audio analysis tasks. Exploring these al-
ternative models could potentially reveal additional insights and improve detection

performance.

By acknowledging these limitations, we can identify areas for future research and de-
velopment, ultimately leading to more robust and generalizable deepfake audio detection
methods for the Arabic language and beyond.

While our work represents a significant step forward, it is by no means the final word

on deepfake audio detection. The ever-evolving nature of deepfake technology necessitates
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continuous research and development to stay ahead of the curve. Future research should
focus on expanding and diversifying datasets, exploring new model architectures and fea-
ture extraction techniques, and addressing the challenges of generalization and adversarial
attacks.

By fostering collaboration between researchers, policymakers, and industry stakehol-
ders, we can collectively work towards a future where the authenticity and trustworthiness
of audio information can be reliably verified, mitigating the harmful effects of deepfakes

and ensuring the integrity of communication in the digital age.
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