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Abstract

The main object of this dissertation is to investigate some classical numbers using the corresponding

generating functions. For ea� sequence included in this dissertation, we shall provide an overview

about its construction as well as some of its applications. Among classical numbers, we proposed

Fibonacci, Lucas, Pell, Bell, Harmonic, Stirling both the first and second kind, ... among others.
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Introduction

The solutions of problems in mathematics are sets of elements (finite or not), i.e. a

collections of objects satisfying some specific properties. For instance, given a sequence of

numbers, {an}n , we can associate a formal power series f (x) whose coefficients give the

above sequence, i.e.

f (x) = ∑
nÊ0

an xn .

The function f is called the generating function of the sequence {an}n .

The generating function is a powerful mathematical tools used to represent and generate

sequences, i.e. this function is represented as a power series expansion

Integer sequences appear in an amazingly wide range of subject areas besides discrete

mathematics, including biology, engineering, chemistry, and physics, as well as in puzzles.

An amazing database of different integer sequences can be found in the On-Line

Encyclopedia of Integer Sequences.

Some counting problems can be solved by finding a closed form for the function that

represents the problem and then manipulating the closed form to find the relevant

coefficient. Among these functions, the most relevant are those satisfying recurrence

relations in which the construction of the corresponding generating functions is more or

less easy reached.

In probability, the most important use of generating functions is to understand moments

of random variables and find explicitly either the random variables or their linear

combinations, among others.

Each way to write a positive integer n as a sum of positive integers is called a partition of

n. By introducing some enumerative combinatorics as a generalization of combinatorial

notions using some special functions, they appeared a numbers of interesting sequence

of numbers hidden inside such as the Stirling numbers both of the first and the second

kind, Bell, Harmonic, Bernoulli ... and more. Moreover, the discrete version as well as q-

analogue (q-numbers) provide many generalizations and give simplifications in counting

objects mainly in partitions.

In this dissertation, we investigate properties of generation functions as well as the

algebraic operations, i.e. addition, multiplication, differentiation, integration, shift and

inversion.

In Chapter 2, we shall provide various type of classical numbers defined in terms of linear

recurrence relations, then we construct either the ordinary generating functions or the

iii



exponential generating functions. In case of higher order, we show that some specific

sequences can be obtained as convolutions of some simple classical numbers.

In Chapter 3, we focus more or less in combinatorics of objects and discuss the construction

of generating functions of the sequence of numbers. In particular, some illustrative graph

are provided.

A conclusion is given at the end of the chapter 3, which explain further ideas and the

relationship between the selection of objects and the coefficients of xk in the generating

functions.
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Chapter 1

Preliminary

The first chapter provides different types of generating functions, the properties of the

algebraic operations as well as the difference of their effect on different types. Illustrative

example are provided.

ar =
∑

s

(
r

s

)
bs =⇒ bn =∑

m

(
n

m

)
(−1)n−mam.

1



Chapter 1. Preliminary

1.1 Generating functions

A given infinite sequence a0, a1, . . . , can often be represented in a more compact form or

in terms of itself, i.e. recursively. It can also be given with the help of other explicitly known

sequences, among other. For instance, the generating function is a representation of an

infinite sequence of numbers as the coefficients of a formal power series as

G(x) = a0 +a1x +a2x2 + . . .

Generating functions are a powerful tool that allows us to encode an infinite sequence of

numbers into a single function. They’re used to study sequences of numbers in a systematic

way, allowing us to perform operations on the sequences more easily.

Let us begin with the following sequence of positive integers

1, 1, 1, 1, 1, . . .

Therefore, the corresponding generating function is

g (x) = 1+x +x2 +x3 + . . .

The explicit form of above generating function is well known because it’s just a geometric

series with a common ration x. However, the building method is as follows

g (x) = 1+ x +x2 +x3 + . . .

xg (x) = x +x2 +x3 +x4 + . . .

(1−x)g (x) = 1

Hence, we have the closed form of g (x), i.e.

g (x) = 1+x +x2 +x3 +·· · =
∞∑

k=0
xk = 1

1−x
. (1.1)

Another interesting sequence is when ak = (n
k

)
for 0 É k É n. It merely seen that(

n

0

)
+

(
n

1

)
x +·· ·+

(
n

n

)
xn =

n∑
k=0

(
n

k

)
xk =

n∑
k=0

(
n

k

)
xk1n−k = (1+x)n . (1.2)

Once we obtained a closed expression of the generating function, we can use it to generate

further sequences. Indeed, if we replace x by −x in g (x) we get the generating function of

the sequence 1,−1,1,−1,1, . . . as follows

g (−x) = 1

1+x
= 1−x +x2 −x3 + . . .

1.1. Generating functions 2



Chapter 1. Preliminary

This idea allows us to generate a plenty of sequences just by replacing x.

Unfortunately, we cannot, for example, give anything to x in g (x) to generate the sequence

7,7,7, . . . . However, we remark that the latter sequence is just 7g (x). This leads to think

about elementary operations on generating functions as well as on power series. Notice

further that the sequence of numbers

7,
7

2
,

7

3!
,

7

4!
, . . . (1.3)

cannot be connected to g (x) by any elementary operations. However, if we associate the

latter sequence with the following generating function

G(x) =
∞∑

k=0
ak

xk

k !
= a0 +a1

x

1
+a2

x2

2!
+a3

x3

3!
+ . . .

In this case, we merely deduce that the generating function of the sequence of numbers

(1.3) is 7G(x) = 7ex . Now the function G(x) is referred to as the exponential generating

function while g (x) will be called the ordinary generating function. It is worthwhile to

notice that there are various type of generating functions. Besides the exponential and the

ordinary generating function, we quote for instance Poisson generating function, Dirichlet

generating function, Bell series, Lambert series, among others.

1.2 Operations on generating functions

In this section we deal with ordinary generating functions, but the operations could be

simply applied to other types of generating functions.

Let u(z) =∑∞
n=0 an zn and v(z) =∑∞

n=0 bn zn be two ordinary generating functions. Next, we

shall define some algebraic operations on ordinary generating functions as follows

Addition

The sum of u(z) and v(z) is denoted by u(z)+ v(z) and is defined by

u(z)+ v(z) =
∞∑

n=0
(an +bn)zn

Multiplication by a scalar

Multiplication of u(z) by a scalar λ is denoted by λu(z) and is defined by multiplying its

coefficient by this scalar, i.e. the multiplication of u(z) by a scalar λ is the generating

1.2. Operations on generating functions 3



Chapter 1. Preliminary

function of the sequence {λan}

λu(z) =
∞∑

n=0
λan zn

Example 1.1 From above we have

∞∑
k=0

xk = 1+x +x2 +x3 +x4 +·· · = 1

1−x

+
∞∑

k=0
(−1)k xk = 1−x +x2 −x3 +x4 +·· · = 1

1+x

∞∑
k=0

(
1+ (−1)k

)
xk =

∞∑
k=0

2x2k = 2+2x2 +2x4 +·· · = 1

1−x
+ 1

1+x
= 2

1−x2

Convolution

The product of u(z) and v(z) denoted by u(z)v(z), generates the sequence {cn} given by

cn =∑n
k=0 akbn−k , i.e.

u(z)v(z) =
∞∑

n=0

(
n∑

k=0
akbn−k

)
zn =

∞∑
n=0

cn zn

= a0b0 +
(
a0b1 +a1b0

)
z + (

a0b2 +a1b1 +a2b0
)
z2 + . . .

While in case of the exponential generating function, the product u(z)v(z) generates the

sequence dn =∑n
k=0

(n
k

)
akbn−k , i.e.

u(z)v(z) =
( ∞∑

k=0

ak

k !
zk

)( ∞∑
n=0

bn

n!
zn

)
=

∞∑
n=0

(
n∑

k=0

ak

k !

bn−k

(n −k)!

)
zn

=
∞∑

n=0

(
n∑

k=0
n!

ak

k !

bn−k

(n −k)!

)
zn

n!
=

∞∑
n=0

(
n∑

k=0

(
n

k

)
akbn−k

)
zn

n!
=

∞∑
n=0

dn
zn

n!

The sequences {cn} and {dn} are called the Cauchy product and the binomial convolution

of the sequences an and bn , respectively.

We can evaluate the product u(z)v(z) by using a table to identify all the cross-terms from

the product of the sums

b0z0 b1z1 b2z2 b3z3 ...

a0z0 a0b0z0 a0b1z1 a0b2z2 a0b3z3 ...

a1z1 a1b0z1 a1b1z2 a1b2z3 ...

a2z2 a2b0z2 a2b1z3 ...

a3z3 a3b0z3 ...

1.2. Operations on generating functions 4



Chapter 1. Preliminary

Example 1.2 (Vandermonde’s Identity) For all m,n,r ∈N
r∑

i=0

(
m

i

)(
n

r − i

)
=

(
m

0

)(
n

r

)
+

(
m

1

)(
n

r −1

)
+ . . .

(
m

r

)(
n

0

)
=

(
m +n

r

)
. (1.4)

Expanding the expressions on both sides from the identity

(1+x)n+m = (1+x)n (1+x)m ,

we have from (1.2) that

n+m∑
k=0

(
n +m

k

)
xk =

(
n∑

i=0

(
n

i

)
xi

)(
m∑

j=0

(
m

j

)
x j

)

=
(

n

0

)(
m

0

)
x0 +

{(
n

0

)(
m

1

)
+

(
n

1

)(
m

0

)}
x

+
{(

n

0

)(
m

2

)
+

(
n

1

)(
m

1

)
+

(
n

0

)(
m

2

)}
x2 +·· ·+

(
n

n

)(
m

m

)
xn+m .

Now comparing the coefficients of xr on both sides yields the result.

Remark 1.1 If we take m = n = r in identity (1.4) we obtain

n∑
k=0

(
n

k

)(
n

n −k

)
=

(
n

0

)(
n

n

)
+

(
n

1

)(
n

n −1

)
+

(
n

2

)(
n

n −2

)
+ . . .

(
n

n

)(
n

0

)
=

(
2n

n

)
Now by using the identity (

n

k

)
=

(
n

n −k

)
we deduce the following identity

n∑
k=0

(
n

k

)2

=
(

2n

n

)
.

Differentiation and Integration

The first derivative of the ordinary generating function u(z) gives

u′(z) =
∞∑

n=0
(n +1)an+1zn =⇒ zu′(z) =

∞∑
n=0

nan zn

While the Integration on [0, z] gives∫ z

0
u(t ) d t =

∞∑
n=1

an−1

n
zn

1.2. Operations on generating functions 5



Chapter 1. Preliminary

Example 1.3 By taking the derivative of both sides with respect to x and making a change

n → n +1 we obtain from (1.1) that

∞∑
n=0

(n +1)zn = 1

(1− z)2 .

If you take the third power of (1.1) or take the second derivative of both sides you obtain

∞∑
n=0

(
n +2

2

)
zn = 1

(1− z)3 .

Example 1.4 Let us back to the generating function (1.1) and replace x by x2 to get

∞∑
n=0

x2n = 1

1−x2 = 1

2

(
1

1−x

)
+ 1

2

(
1

1+x

)
.

Integrating both sides from [0, x] we deduce that

∞∑
n=0

x2n+1

2n +1
=−1

2
ln(1−x)+ 1

2
ln(1+x) = 1

2
ln

(
1+x

1−x

)
= tanh(x).

It is worthwhile to notice that the derivative of an exponential generating function U(z)

would gives

U′(z) =
∞∑

n=0
an+1

zn

n!
=⇒ U(r )(z) =

∞∑
n=0

an+r
zn

n!

Shifting

For r Ê 1, the generating function of the sequences {an+r }nÊ0 and {an−r }nÊr are

∞∑
n=r

an−r zn = zr g (z),

∞∑
n=0

an+r zn = g (z)−a0 − za1 −·· ·−ar−1zr−1

zr .

Therefore, if we combine the shift with the derivative, we merely obtain (r = 0 gives g (z))

zr g (r )(z) =
∞∑

n=0
n(n −1) . . . (n − r +1)an zn . (1.5)

Example 1.5 From (1.1), we merely deduce that

∞∑
n=0

(
n + r

r

)
= 1

(1−x)r+1 .

1.2. Operations on generating functions 6



Chapter 1. Preliminary

On the other hand, since

6

(
n +3

3

)
−12

(
n +2

2

)
+6

(
n +1

1

)
= n3 −n

it then follows that

∞∑
n=0

(n3 −n)xn = 6
∞∑

n=0

(
n +3

3

)
xn −12

∞∑
n=0

(
n +2

2

)
xn +6

∞∑
n=0

(n +1)xn

Therefore, the generating function of the sequence
{
n(n2 −1)

}
is given by

∞∑
n=0

(n3 −n)xn = 6

(1−x)4 − 12

(1−x)3 + 6

(1−x)2 = 6x2

(1−x)4 .

Inverse of a power series

The power series
∑∞

n=0 bn zn is said to be the inverse of the power series
∑∞

n=0 an zn if:( ∞∑
n=0

an zn

)( ∞∑
n=0

bn zn

)
= 1

Proposition 1.1 A power series
∑∞

n=0 an zn is invertible if and only if a0 ̸= 0.

Proof. Let
∑∞

n=0 bn zn be the inverse of the power series
∑∞

n=0 an zn such that:( ∞∑
n=0

an zn

)( ∞∑
n=0

bn zn

)
= 1

∞∑
n=0

(
n∑

k=0
akbn−k

)
zn = 1

a0b0 +
∞∑

n=1

(
n∑

k=0
akbn−k

)
zn = 1

By identification, we find:

a0b0 = 1

and
∞∑

n=1

(
n∑

k=0
akbn−k

)
zn = 0

which gives the non-zero coefficient a0.

1.2. Operations on generating functions 7



Chapter 1. Preliminary

Conversely, if a0 is non-zero, then the triangular system of equations

a0b0 = 1

a1b0 +a0b1 = 0
...

anb0 +an−1b1 +·· ·+a0bn = 0

has a unique solution.

Example 1.6 We can merely check that

1 The series
∑∞

n=0 zn is invertible and its inverse is 1− z.

2 We have the following

ar =
∑

s

(
r

s

)
bs =⇒ bn =∑

m

(
n

m

)
(−1)n−m am .

1.2. Operations on generating functions 8



Chapter 2

Generating functions from recurrence relations

In this chapter, we shall investigate some classical numbers defined in terms of recurrence

relations of order two, three, and higher order. Some recurrence relations of higher are a

convolution of other recurrence relations of less order. Furthermore, combinatorial

interpretations in some cases are available.

1

89
= 0.01

+0.001

+0.0002

+0.00003

+0.000005

+0.0000008

+0.00000013

+0.000000021

+0.0000000034

+0.00000000055

+0.000000000089

+0.0000000000144

+0.00000000000233

+0.000000000000377

+0.0000000000000610

+0.00000000000000987

+ ...
... Fibonacci numbers

9



Chapter 2. Generating functions from recurrence relations

2.1 Generating function of recurrence relation

In counting problems, it may be difficult to find the solution directly. However, it is often

possible to express the nth number in terms of the previous numbers in the sequence of

solution. We call this interdependence a "recurrence relation" and the sequence may be

expressed recursively using the previous numbers. For instance

1 The sequence of numbers {an} defined recursively by

an = can−1

involves a constant sequence, i.e. an = cn a0, n Ê 1. Therefore, if we want to find the

corresponding ordinary generating function, we proceed as follows

an xn = can−1xn =⇒
∞∑

n=1
an xn = c

∞∑
n=1

an−1xn

If we denote by f (x) =∑∞
n=0 an xn , then

∞∑
n=0

an xn −a0 = cx
∞∑

n=1
an−1xn−1 = cx

∞∑
n=0

an xn ⇐⇒ f (x)−a0 = cx f (x)

from which we obtain the expression

f (x) = a0

1− cx
.

2 Let us consider the sequence of numbers {bn} defined recursively by

bn+1 −4bn = 5n , n Ê 0, b0 = 1.

We shall obtain its generating function h(x) using the above recurrence relation as follows

∞∑
n=0

bn+1xn+1 −4
∞∑

n=0
bn xn+1 =

∞∑
n=0

5n xn+1

⇐⇒
∞∑

n=0
bn+1xn+1 −4x

∞∑
n=0

bn xn = x
∞∑

n=0
(5x)n

⇐⇒ (
h(x)−b0

)−4xh(x) = x

1−5x

⇐⇒ h(x)
(
1−4x

)= x

1−5x
+1 = 1−4x

1−5x

=⇒ h(x) = 1

1−5x
=⇒ bn = 5n , n Ê 0.

2.1. Generating function of recurrence relation 10



Chapter 2. Generating functions from recurrence relations

2.2 Recurrence relations of order 2

As shown above, if the sequence of numbers satisfying some kind of recurrence relations,

then the generating function could be, more or less given in a closed form. Among

classical numbers, there are a numerous families satisfying recurrence relations such as

Fibonacci, Lucas, Pell, Tribonacci, Padovan, among others. We shall next select some

classical numbers satisfying a second order recurrence relation. To begin with, let us first

provide an overview of each chosen sequence.

Fibonacci sequence

Fibonacci numbers are the following positive integers

0,1,1,2,3,5,8,13,21,34,55,89,144, ...

in which each number is the sum of the two previous numbers. Therefore, if we denote

these numbers Fn , we obtain the following recurrence

Fn+1 = Fn +Fn−1, F1 = 1, F0 = 0.

Let F(x) be the generating function for this sequence of numbers, then

F(x)−F0 −F1x = F(x)−x =
∞∑

n=2
Fn xn =

∞∑
n=2

(Fn−1 +Fn−2) xn

= x
∞∑

n=0
Fn xn +x2

∞∑
n=0

Fn xn

accordingly,

F(x) =
∞∑

n=0
Fn xn = x

1−x −x2 = 1p
5

[
1

1−φx
− 1

1−φx

]
= 1p

5

∞∑
n=0

[
φn −φn

]
xn (2.1)

In particular, Fn is given explicitly by

Fn = φn −φn

p
5

= 1p
5

[(
1+p

5

2

)n

−
(

1−p
5

2

)n]
(2.2)

p-fibonacci numbers

For every integer p > 0, the p-Fibonacci sequence denoted throughout {Fn(p)}n∈N, is

defined in terms of the following recurrence relation

Fn+1(p) = pFn(p)+Fn−1(p), with F0(p) = 0, F1(p) = 1. (2.3)

2.2. Recurrence relations of order 2 11



Chapter 2. Generating functions from recurrence relations

The first few p-Fibonacci numbers are {0,1, p, p2 +1, p3 +2p, . . . }. Notice that for a different

given value of p will reduce the above sequence to other known families. In particular,

for p = 1 the p-Fibonacci reduces to the standard Fibonacci numbers. While the case p=2

involves the recurrence relation of Pell numbers. Since the initial condition coincide with

those of standard Fibonacci, then following the same process we merely obtain the ordinary

generating function of p-Fibonacci numbers

F̃(x) =
∞∑

n=0
Fn(p)xn = x

1−px −x2 . (2.4)

p-Lucas numbers

p-Lucas numbers are defined by the recurrence relation (2.3) with the initial conditions

L0(p) = 2 and L1(p) = p. As customary, for p = 1 the latter numbers gives the classical Lucas

numbers while the case p = 2 is called in the literature the Lucas-Pell numbers. Now, taking

in account the initial conditions, their generating function will be

L(x) =
∞∑

n=0
Ln(p)xn = 2−px

1−px −x2 .

General second order recurrence relations

In order to unify the study of every sequence of numbers satisfying a second order

recurrence relation, we shall take the following general definition. Let the sequence of

numbers En defined by the following recurrence relation

En+1 = pEn +qEn−1, E1 = b, E0 = a. (2.5)

The Table 2.1 below provides recurrence relations for certain classical numbers such as p-

Fibonacci, p-Lucas, p-Pell, p-Jacobsthal, p-Mersenne, . . . among others.

Sequence of numbers {En} E0 E1 p q

p-Fibobacci sequence Fn(p) 0 1 p 1

p-Lucas sequence Ln(p) 2 p p 1

p-Pell sequence Pn(p) 0 1 2 p

p-Jacobsthal sequence Jn(p) 0 1 p 2

p-Mersenne sequence Mn(p) 0 1 3p −2

Table 2.1: Recurrence relations for some specific numbers

2.2. Recurrence relations of order 2 12



Chapter 2. Generating functions from recurrence relations

2.2.1 The odd and the even p-numbers

From the above definition (2.5), we have

E2n+1 = pE2n +qE2n−1 = p
(
pE2n−1 +qE2n−2

)+qE2n−1

= (
p2 +q

)
E2n−1 +q

(
pE2n−2

)= (
p2 +q

)
E2n−1 +q

(
E2n−1 −qE2n−3

)
hence, by induction we can prove the following formulas

E2n+1 = (p2 +2q)E2n−1 −q2E2n−3, (2.6)

E2n = (p2 +2q)E2n−2 −q2E2n−4. (2.7)

Therefore, if Ẽo(x) and Ẽe(x) are the generating function of the odd p-number and even

p-numbers, respectively, defined by (2.5), then we have from (2.6) and (2.7) the following{
1− (

p2 +2q
)

x + (qx)2
}

Ẽo(x) = E1 +E3x − (
p2 +2q

)
E1x

= E1 +
((

p2 +q
)

E1 +pqE0

)
x − (

p2 +2q
)

E1x

= E1 +q
(
pE0 −E1

)
x{

1− (
p2 +2q

)
x + (qx)2

}
Ẽe(x) = E0 +E2x − (

p2 +2q
)

E0x

= E0 +
(
pE1 −

(
p2 +q

)
E0

)
x,

from which we obtain, taking into account the initial conditions, explicitly the generating

functions

Ẽo(x) = b +q
(
ap −b

)
x

1− (p2 +2)x + (qx)2 , Ẽe(x) = a + (
bp −a

(
p2 +q

))
x

1− (p2 +2)x + (qx)2 . (2.8)

2.2.2 Generating function of some convolution p-numbers

In order to use the properties of the convolution, we shall prove first some identities. For

the sake of simplicity we shall denote the p-Fibonacci and the p-Lucas by Fn := Fn(p) and

Ln := Ln(p), respectively.

Proposition 2.1 The p-Fibonacci and p-Lucas numbers defined above satisfying the

following identities

FnFm = 1

p2 +4

(
Ln+m − (−1)mLn−m

)
, (2.9)

LnLm = Ln+m + (−1)mLn−m . (2.10)

2.2. Recurrence relations of order 2 13
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Proof. A simple proof of these identities can be done using the characteristic equation, i.e.

the representation of the numbers in terms of the solution of the characteristic equation as

in standard case (2.2). For the p-numbers, the characteristic equation is the following

0 = x2 −px +1 = (x −σ1) (x −σ2) , σ1,2 = p ±
√

p2 +4

2
.

Taking into account the initial conditions, we have the following representations

Fn = σn
1 −σn

2

σ1 −σ2
, Ln =σn

1 +σn
2 . (2.11)

Let us remark, by taking σ1 > 0, σ2 < 0, that we have

σ1σ2 =−1, σ1 +σ2 = p, σ1 −σ2 =
√

p2 +4, σ2 = pσ+1.

Therefore, the left hand side of (2.9) will be

FnFm = 1

p2 +4

(
σn

1 −σn
2

)(
σm

1 −σm
2

)= 1

p2 +4

(
σn+m

1 +σn+m
2 − (

σn
1σ

m
2 +σm

1 σ
n
2

))
= 1

p2 +4

(
Ln+m − (

σn−m+m
1 σm

2 +σm
1 σ

n−m+m
2

))
= 1

p2 +4

(
Ln+m − (σ1σ2)n (

σn−m
1 +σn−m

2

))= 1

p2 +4

(
Ln+m − (−1)n Ln−m

)
.

Now the second identity for p-Lucas numbers is clear.

Some interesting identities could be easily obtained from (2.9)-(2.10). For instance, since

F1 = 1, remark then that for m = 1 the identity (2.9) reduces to the following

Fn = 1

p2 +4

(
Ln+1 +Ln−1

)
. (2.12)

While the choice n = k +1 and m = k transforms the identities to the following

FkFk+1 =
1

p2 +4

(
L2k+1 −p(−1)k

)
, (2.13)

LkLk+1 = L2k+1 +p(−1)k . (2.14)

From another hand, we merely obtain that

F2
k = 1

p2 +4

(
L2k −2(−1)k

)
, L2

k = L2k +2(−1)k . (2.15)

FkLk = F2k . (2.16)

Let us now denote by E1(x) and E2(x) the ordinary generating functions of the sequence{
Fn(p)Fn+1(p)

}
n∈N and

{
Ln(p)Ln+1(p)

}
n∈N, respectively. Then

2.2. Recurrence relations of order 2 14
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Theorem 2.1 The generating functions E1(x) and E2(x) are given explicitly as follows

E1(x) = px

1− (p2 +1)(x +x2)+x3 , E2(x) = p
(
2−p2x +2x2

)
1− (p2 +1)(x +x2)+x3 .

Proof. For E1(x) we shall use (2.13) together with (2.8). From one hand, we know that the

ordinary generating function of the sequence
{
(−1)n

}
is 1

1+x . From another hand, taking

into account the initial conditions, the generating function of the odd p-Lucas numbers

together with (2.13) involve

E1(x) = 1

p2 +4

(
p(1+x)

1− (p2 +2)x +x2 − p

1+x

)
= 1

p2 +4

(
p(1+x)2 −p(1− (p2 +2)x +x2)

(1− (p2 +2)x +x2)(1+x)

)
= px

1− (p2 +1)(x +x2)+x3 .

In the same way, the ordinary generating function E2(x) could be checked.

Next, we shall denote by E3(x), E4(x) and E5(x) the ordinary generating functions of the

sequence of numbers
{
F2

n(p)
}

n∈N,
{
L2

n(p)
}

n∈N and
{
Fn(p)Ln(p)

}
n∈N, respectively. Then

Theorem 2.2 The generating functions E3(x), E4(x) and E5(x) are given explicitly as follows

E3(x) = x −x2

1− (p2 +1)(x +x2)+x3 ,

E4(x) = 4− (
4+3p2

)
x −p2x2

1− (p2 +1)(x +x2)+x3 ,

E5(x) = px

1− (p2 +1)(x +x2)+x3 .

Proof. The generating functions are a direct calculations from (2.15)-(2.16) together with

(2.8) after replacing the initial conditions at the latter identity.

2.2.3 Inhomogeneous recurrence relations

Some interesting inhomogeneous recurrence relation of order 2 worth to be mentioned.

The first one we want to invoke is the so called Leonardo sequence {Dn} defined in terms of

the following recurrence [2]

Dn = Dn−1 +Dn−2 +1, n Ê 2. (2.17)

with initial conditions D0 = D1 = 1.

As each sequence, Leonardo numbers have their own properties. We shall provide some of

their amazing properties. First, by induction we can prove in few lines that

2.2. Recurrence relations of order 2 15
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Proposition 2.2 For n Ê 0, the Dn is an odd number.

Unexpected properties is that Leonardo and Fibonacci numbers are expressed in each other

as follows

Proposition 2.3 For n Ê 0, the Leonardo numbers Dn are given in terms of Fibonacci

numbers Fn via

Dn = 2Fn+1 −1. (2.18)

Proof. For n = 0 and n = 1 the identity (2.18) is true according to the initial conditions of

(2.17) . By induction, assume that (2.18) is true up to n. Therefore, from (2.17)

Dn+1 = Dn +Dn−1 +1 = (
2Fn+1 −1

)+ (
2Fn −1

)+1

= 2
(
Fn+1 +Fn

)−1 = 2Fn+2 −1.

Whence the result.

The ordinary generating function of Leonardo numbers can be easily calculated using the

initial conditions. Indeed, let us denote the latter by GL(x), then we have

GL(x) =
∞∑

n=0
Dn xn = 1−x +x2

1−2x +x3 .

Since the recurrence relation (2.17) is inhomogeneous, then substituting n by n + 1 and

substracting the resulting equality from (2.17) we infer that

Dn+1 = 2Dn −Dn−2, n Ê 2.

The latter identity shows that Leonardo numbers satisfy a recurrence relation of order 3,

this will be the main objective of the next section. Before moving to the next section, we

shall mention further generalizations of Leonardo numbers. In [6] the authors propose the

following generalization of Leonardo numbers, which we call p-Leonardo and denoted by

{Dn}. Again, these numbers are defined in terms of the following inhomegeneous second

order recurrence relation

Dn =Dn−1 +Dn−2 +p, n Ê 2. (2.19)

with initial conditions D0 =D1 = 1.

At first sight, the connection between p-Leonardo and Fibonacci constitutes a

generalization of (2.18) and can be again proved by induction in few lines

Proposition 2.4 For n Ê 0, the p-Leonardo numbers Dn are given in terms of Fibonacci

numbers Fn via

Dn = (
p +1

)
Fn+1 −p. (2.20)

2.2. Recurrence relations of order 2 16
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2.3 Recurrence relations of higher order

A linear homogeneous recurrence relation of order k with constant coefficients is a

recurrence of the form

un +d1un−1 +d2un−2 + . . .+dkun−k = 0, dk ̸= 0.

Remark that if un = zn is a solution of the equation with un ̸= 0 and verifying

zk +d1zk−1 +d2zk−2 + . . .+dk zn−k = 0.

In particular, if n = k, we find the latter equation is the characteristic equation, i.e.

zk +d1zk−1 +d2zk−2 + . . .+dk = 0.

2.3.1 Recurrence relation of order 3

Next we shall give illustrative examples for third order recurrence relation.

1 Let us begin with the so-called the Tribonacci sequence {Tn} and Tribonacci-Lucas

sequence {Kn} are defined by following third order recurrence relation

Yn = Yn−1 +Yn−2 +Yn−3, n Ê 3

with the initial condition T0 = 0, T1 = T2 = 1 and K0 = K2 = 3 and K1 = 1, respectively. By

taking into account the initial conditions, it’s not difficult to see that

∞∑
n=0

Tn xn = x

1−x −x2 −x3 ,
∞∑

n=0
Kn xn = 3−2x −x3

1−x −x2 −x3 .

It has been shown that Tribonacci numbers could be obtained by computing sums of the

elements in a specific direction from triangular numbers. The trinomial numbers obtained

in the expansion of the polynomial
(
1+x +x2

)n
, n Ê 0, explains such idea [4]

(
1+x +x2

)0 = 1(
1+x +x2

)1 = 1 +1x 1x2(
1+x +x2

)2 = 1 +2x +3x2 +2x3 +1x4(
1+x +x2

)3 = 1 +3x +6x2 +7x3 +6x4 +3x5 +x6(
1+x +x2

)4 = 1 +4x +10x2 +16x3 +19x4 +16x5 +10x6 +4x7 +x8(
1+x +x2

)5 = 1 +5x +15x2 +30x3 +45x4 +51x5 +45x6 +30x7 +15x8 +5x9 +x10

T0 = 1

T1 = 1
T2 = 2 T3 = 4

T4 = 7
T5 = 13

Tribonacci numbers Tn = Tn−1 +Tn−2 +Tn−3
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2 A second type of examples are special ones. We shall consider the so-called the Padovan

sequence, denoted {Cn} and the Perrin sequence {Rn} defined by the following recurrence

relation

Zn = Zn−2 +Zn−3, n Ê 3

with the initial conditions C0 = C1 = C2 = 1 and R0 = 3, R1 = 0, R2 = 2, respectively.

In Literature, it has been remarked that Padovan and Perrin numbers satisfying further

recurrence relations such as

Zn = Zn−1 +Zn−5 = Zn−3 +Zn−4 +Zn−5...

Their ordinary generating functions are

∞∑
n=0

Cn xn = 1+x

1−x2 −x3 ,
∞∑

n=0
Rn xn = 3−x2

1−x2 −x3 ,

respectively. Moreover, there are some combinatorial interpretations of Padovan numbers

mainly their appearance in partitions. It is also worthy to mention that Padovan numbers

could be obtained from Pascal triangle trough some specific directions.

1 0

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

1 11 55 165 330 462 462 330 165 55 11 1

1 12 66 220 495 792 924 792 495 220 66 12 1

1 13 78 286 715 1287 1716 1716 1287 715 286 78 13 1

1 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1

1 15 105 455 1365 3003 5005 6435 6435 5005 3003 1365 455 105 15 1

C26 = 1081

C25 = 816

C24 = 616

C23 = 465

C22 = 351

C21 = 265

C20 = 200

C19 = 151

C18 = 114

C17 = 86

C16 = 65

C15 = 49

C14 = 37

C13 = 28

C12 = 21

C11 = 16

C10 = 12

C9 = 9

C8 = 7

C7 = 5

C6 = 4

C5 = 3

C4 = 2
C3 = 2

C2 = 1
C1 = 1

C0 = 1

Padovan numbers obtained through the above direction Cn = Cn−2 +Cn−3
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2.3.2 Recurrence relation of order greater than 3

We can also provide generating functions of the convolution of some of the above

sequences. For instance, if we consider the following fifth order recurrence relation

In+5 = In+4 +2In+3 −2In+1 − In , n Ê 3 (2.21)

with the initial conditions I0 = I1 = 1, I2 = 2, I3 = 4 and I4 = 8, then its ordinary generating

function will be
∞∑

n=0
In xn = x +x2

1−x −2x2 +2x4 +x5 . (2.22)

Next, we shall discuss some convolutions of classical numbers as well as decompositions

of some sequences of numbers defined by higher order recurrence relations in terms of the

classical number’s sequences.

Convolution of Fibonacci and Padovan

To begin with, let us back to the sequence of numbers defined by the linear recurrence

relation (2.21). In order to understand the behavior of the sequence, we shall simplify or

decompose its generating function. Indeed, the latter can be considered as a convolution of

two sequences when we decompose the generating function as a product of two functions,

i.e.
∞∑

n=0
In xn = x +x2

1−x −2x2 +2x4 +x5 =
( x

1−x −x2

)(
1+x

1−x2 −x3

)
=

( ∞∑
n=0

Fn xn

)( ∞∑
n=0

Cn xn

)
which suggests that the numbers In are the product of Fibonacci and Padovan, that is to say,

In = FnCn . Therefore, we have obtained, by multiplying numbers of sequences satisfying

recurrence relations of order two and three, a new sequence of numbers satisfying a fifth

order recurrence relation.

Convolution of Fibonacci and Perrin

Now, under the initial conditions I0 = 0, I1 = I2 = 3, I3 = 8 and I4 = 14, the generating

function of the recurrence relation (2.21) takes the following form

∞∑
n=0

In xn = 3x −x3

1−x −2x2 +2x4 +x5 . (2.23)
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as above, using the decomposition of the denominator, in this case the generating function

is a convolution of Fibonacci and Perrin sequences, i.e.

∞∑
n=0

In xn = 3x −x3

1−x −2x2 +2x4 +x5 =
( x

1−x −x2

)(
3−x2

1−x2 −x3

)
=

( ∞∑
n=0

Fn xn

)( ∞∑
n=0

Rn xn

)
.

2.4 Binomial transformation

For a sequence of numbers {an}, its binomial transform is a new sequence {ân} defined by

the rule

ân =
n∑

k=0

(
n

k

)
ak with inversion an =

n∑
k=0

(
n

k

)
(−1)n−kâk . (2.24)

It could be also defined in the symmetric version as follows

ân =
n∑

k=0

(
n

k

)
(−1)k+1ak with inversion an =

n∑
k=0

(
n

k

)
(−1)k+1âk .

It has been proved that the binomial transform of many classical numbers also satisfy

recurrence relations. For instance, we can prove by induction the following results

Theorem 2.3 Under the notations above, the binomial transforms of p-Fibonacci,

Tribonacci, Padovan and Perrin satisfy the following recurrence relations

F̂n+2 = (p +2)F̂n+1 −pF̂n , T̂n+3 = 4T̂n+2 −4T̂n+1 +2T̂n ,

Ĉn+3 = 3Ĉn+2 −2Ĉn+1 + Ĉn , Ên+3 = 3Ên+2 −2Ên+1 +Ên ,

respectively. Moreover, their ordinary generating functions could be computed explicitly.

Indeed, the generating function of binomial transform of p-Fibonacci, Tribonacci, Padovan

and Perrin numbers are

∞∑
n=0

F̂n xn = x

1− (p +2)x +px2 ,
∞∑

n=0
T̂n xn = x −x2

1−4x +4x2 −2x3 ,

∞∑
n=0

Ên xn = 3−6x +2x2

1−3x +2x2 −x3 ,
∞∑

n=0
Ĉn xn = 1−x

1−3x +2x2 −x3 ,

respectively.
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Generating functions beyond recurrence

relations

In this chapter we introduce the Pochhammer symbol, i.e. the ascending factorial and

descending factorial. The coefficients of their expansions appear in many situations and

referred to as the Stirling numbers. In fact, many classical numbers are somehow

connected.

∑
n≥0

(x)n zn =
1

1−xz −
1 · xz2

1− (x +2)z −
2(x +1)z2

1− (x +4)z −
3(x +2)z2

· · · .

∑
n≥0

n! · zn =
1

1− z −
12 · z2

1−3z −
22z2

· · ·

21
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3.1 Enumerative Combinatorics

The rising factorial, sometimes called the ascending factorial, is defined by (x|w)0 = 1 and

(x|w)n = x(x +w)(x +2w)...(x + (n −1)w), n ≥ 1,

and generalized falling factorial, also called descending factorial, is defined by 〈x|w〉0 = 1

and

〈x|w〉n = x(x −w)(x −2w)...(x − (n −1)w), n ≥ 1.

When w = 1, the rising factorial gives the Pochhammer symbol, i.e.

(x)n := (x|1)n = x(x +1)(x +2)...(x +n −1), n ≥ 1, (3.1)

while the falling factorial becomes

〈x〉n := 〈x|1〉n = x(x −1)(x −2)...(x −n +1), n ≥ 1, (3.2)

By expanding the rising and the falling factorial, we obtain polynomials in x, i.e. power

series. Indeed, the following are few terms

(x)1 = 1 〈x〉1 = 1

(x)2 = x(x +1) = x2 +x 〈x〉2 = x(x −1) = x2 −x

(x)3 = x(x +1)(x +2) = x3 +3x2 +2x 〈x〉3 = x(x −1)(x −2) = x3 −3x2 +2x

(x)4 = x4 +6x3 +11x2 +6x 〈x〉4 = x4 −6x3 +11x2 −6x

(x)5 = x5 +10x4 +35x3 +50x2 +24x 〈x〉5 = x5 −10x4 +35x3 −50x2 +24x.

It is worthwhile to notice some of the properties of the falling and the rising factorial. We

have

(x)n = 〈x +n −1〉n = (−1)n 〈−x〉n , 〈x〉n = (x −n +1)n = (−1)n(−x)n

〈x〉n = n!

(
x

n

)
, (x)n = n!

(
x +n −1

n

)
, 〈n〉n = (1)n = n!

The rising as well as falling factorial can be extended to real x with help of gamma function

as follows

(x)n = Γ(x +n)

Γ(x)
, 〈x〉n = Γ(x +1)

Γ(x −n +1)
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3.2 Stirling numbers

The coefficients of the power series (3.1) and (3.2) constitute a sequence of numbers called

the Stirling numbers of the first kind. That is to say, the sequence of numbers obtained from

the following expansion

〈x〉n =
n∑

k=0
s(n,k)xk . (3.3)

The sequence numbers obtained from the inverse of the expansion are called the Stirling

numbers of the second kind. In other words, Stirling numbers of the first and second kind

can be considered inverses of one another. Roughly speaking, we have from one hand

xn =
n∑

k=0
S(n,k)〈x〉k . (3.4)

and from the other hand, they constitute matrix inverses of one another. That is, if we

denote by s = (snk) the lower triangular matrix of Stirling numbers of the first kind, i.e. snk =
s(n,k). Then the inverse of this matrix is the lower triangular matrix s−1 = S = (Snk) with

Snk = S(n,k) the Stirling numbers of the second kind.

Another place where you can encounter Stirling numbers is the following: Let D = d/d x,

then the differential operators xnDn and (xD)n are connected through the following

relations [9]

(xD)n =
n∑

k=0
S(n,k)xkDk , xnDn =

n∑
k=0

s(n,k)(xD)k = 〈xD〉n

In combinatorics Stirling numbers of the first kind s(n,k) count the number of

permutations of n elements with k disjoint cycles (circular permutations). While Stirling

numbers of the second kind denoted S(n,k) count the number of ways to partition a set of

n elements into k nonempty subsets.

Now, to get the generating function of the Stirling numbers, there are many ways using

either the definition or some of their properties. We shall here use some of these techniques

alternatively. Let us start with the first kind numbers. From the above properties we have

from one hand

(1+ z)x =
∞∑

n=0

(
x

n

)
zn =

∞∑
n=0

n!

(
x

n

)
zn

n!
=

∞∑
n=0

〈x〉n
zn

n!

=
∞∑

n=0

zn

n!

n∑
k=0

s(n,k)xk =
∞∑

k=0
xk

∞∑
k=n

s(n,k)
zn

n!
.
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From the other hand, since

(1+ z)x = ex ln(1+z) =
∞∑

k=0

(
ln(1+ z)

)k xk

k !

it follows then that

Proposition 3.1 The exponential generating function of the first kind Stirling numbers is

∞∑
k=n

s(n,k)
zn

n!
= (ln(1+ z))k

k !
. (3.5)

Although James Stirling had discovered the Stirling numbers of the second kind in a purely

algebraic context in 1730, Masanobu Saka was the first person to realize the combinatorial

significance of the latter numbers in 1782. [5]. Indeed, Saka studied the number S(n,k)

of ways that a set of n elements can be partitioned into k subsets where he discovered the

following recurrence relation which can be proved by induction

S(n,k) = S(n −1,k −1)+kS(n −1,k), 1 É k < n. (3.6)

In order to use the latter recurrence, let us now consider the following sums

a Ak(x) =
∞∑

n=0
S(n,k)xn , b Tn(x) =

∞∑
k=0

S(n,k)xk . (3.7)

Theorem 3.1 We have the following

Ak(x) = xk

(1−x)(1−2x) . . . (1−kx)
Tn(x) = x (1+D)Bn−1(x).

Proof. Since A0(x) = B0(x) = 1, then by using the above recurrence relation (3.6) we obtain

for k Ê 1 that

Ak(x) =
∞∑

n=1
S(n,k)xn =

∞∑
n=1

S(n −1,k −1)xn +k
∞∑

n=1
S(n −1,k)xn

= x
∞∑

n=1
S(n −1,k −1)xn−1 +kx

∞∑
n=1

S(n −1,k)xn−1

Therefore,

Ak(x) = xAk−1(x)+kxAk(x) =⇒ Ak(x) = x

1−kx
Ak−1(x) = xk

(1−kx)...(1−2x)(1−x)

The same thing for Tn(x).
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It is worthy to mention that Tn(x) is a polynomial in x referred to as Touchard polynomial .

Moreover, the Stirling numbers of the first kind satisfy the following analogue recurrence

relation which can be used, as above, to extract the ordinary generating function

s(n +1,k) = s(n,k −1)−ns(n,k).

The following tables provide the first few values of these numbers

n\k 1 2 3 4 5 6 7 8 9

1 1

2 -1 1

3 2 -3 1

4 -6 11 -6 1

5 24 -50 35 -10 1

6 -120 274 -225 85 -15 1

7 720 -1764 1624 -735 175 -21 1

8 -5040 13068 -13132 6769 -1960 322 -28 1

9 40320 -109584 118124 -67284 22449 -4536 546 -36 1

Table 3.1: The first values of Stirling numbers of the first kind

1

1 1

1 3 1

1 7 6 1

1 15 25 10 1

1 31 90 65 15 1

1 63 301 350 140 21 1

= B6

1 127 966 1701 1050 266 28 1

1 255 3025 7770 6951 2646 462 36 1

1 511 9330 34105 42525 22827 5880 750 45 1

(n
2

)

Figure 3.1: The first values of Stirling numbers of the second Kind
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3.3 Bell numbers

If we look at the table of Stirling numbers of the second kind, we can extract many

properties regarding these numbers. At the first sight, we can see that the diagonal entries

is always 1. The second remark is that the line right below the main diagonal constitutes

the binomial coefficient
(n

2

)
(as explained in red at the table of these numbers).

Now, since the Stirling numbers of the second kind count the number of partition of n-set

into k-nonempty parts, then the total number of partitions of the integer n is the sum of

the corresponding row. This interesting sequence of numbers is called the nth Bell

numbers and denoted by Bn . That is to say, the Bell numbers are the total number of ways

of partitioning a et of n elements, i.e.

Bn =
n∑

k=0
S(n,k).

It is worthy to mention that the Bell numbers had been studied by many mathematicians.

One of the earliest appearances of theme is in Japan around the year 1500. Moreover, in

order to simplify the computation of thee numbers, we shall provide some of their

properties mainly recurrence relations. For this end we have [8]

Proposition 3.2 Let Bn be the number of set partitions of [n]. Then Bn satisfies the following

recurrence relation

Bn+1 =
n∑

k=0

(
n

k

)
Bk , B0 = 1. (3.8)

Moreover, their exponential generating function can be easily computed. First, we have

∞∑
n=k

xn

(n −k)!k !
=

∞∑
n=0

xn+k

n!k !
= xk

k !

∞∑
n=0

xn

n!
= xkex

k !
. (3.9)

Therefore, using (3.8) we obtain

B(t ) =
∞∑

n=0
Bn

t n

n!
= 1+

∞∑
n=0

Bn
t n

n!
= 1+

∞∑
n=1

n−1∑
k=0

(
n −1

k

)
Bk

t n

n!

= 1+
∞∑

n=0

n∑
k=0

(
n

k

)
Bk

t n+1

(n +1)!
= 1+

∞∑
k=0

Bk

∞∑
n=k

(
n

k

)
t n+1

(n +1)!

The first derivative with respect to t together with the use of (3.9) give

B′(t ) =
∞∑

k=0
Bk

∞∑
n=k

(
n

k

)
t n

n!
=

∞∑
k=0

Bk

∞∑
n=k

t n

(n −k)!k !
= e t

∞∑
k=0

Bk
t k

k !
= e t B(t ).

Solving the latter differential equation with the initial condition B(0) = 1, we deduce that
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Theorem 3.2 The exponential generating function of Bell numbers is

∞∑
n=0

Bn
t n

n!
= eex−1. (3.10)

For people who don’t like combinatorics, we refer to [7] for comprehensive information on

the exponential polynomials.

Now, since B0 = 1, then the reciprocal of Bn can be defined (in literature the reciprocal of

Bell numbers are called Uppuluri-Carpenter numbers and denoted Cn). Hence, by

definition we have BnCn = 1 from which we deduce the exponential generating function

n∑
k=0

Cn
xn

n!
= e1−ex

, Cn =
n∑

k=0
(−1)kS(n,k). (3.11)

Furthermore, if we add, and then subtract, the expressions of Bn and Cn , we obtain [7]

En :=1

2
(Bn +Cn) = S(n,2)+S(n,4)+ ...+S(n,k) =

[n
2

]∑
k=0

2S(n,2i )

On :=1

2
(Bn −Cn) = S(n,1)+S(n,3)+ ...+S(n, l ) =

[n−1
2

]∑
k=0

S(n,2i +1),

where k and l is the largest even integer and the largest odd integer that is less than or equal

to n, respectively. From these, the exponential generating functions are given explicitly

n∑
k=0

En
xn

n!
= cosh

(
ex −1

)
,

n∑
k=0

On
xn

n!
= sinh

(
ex −1

)
.

Notice further that the Touchard polynomials (3.7) evaluated at 1 is nothing else but Bell

numbers, i.e. Tn(1) = Bn . Therefore, we can invoke further properties. For instance, the

geometric polynomials (also known as Fubini polynomials) are slight modification of

Touchard polynomials, obtained from the latter by multiplying the coefficient of xk by k !.

Roughly peaking, by setting x = 1 the Fubini polynomials give the so-called geometric

numbers (or preferential arrangement numbers or Fubini numbers) Gn as

Gn =
n∑

k=0
S(n,k)k !. (3.12)

It is easy to see that the exponential and the ordinary generating function are explicitly given

∞∑
n=0

Gn
xn

n!
= 1

2−ex ,
∞∑

n=0
Gn xn = n!xn

(1−x)(1−2x) . . . (1−nx)
.
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3.4 Harmonic numbers

The Harmonic numbers denoted {Hn}nÊ1 are defined by the general term

Hn = 1+ 1

2
+ 1

3
+·· ·+ 1

n
.

Therefore, we shall look for a closed formula for the generating function given by

H(x) =
∞∑

n=1
Hn xn =

∞∑
n=1

(
1+ 1

2
+ 1

3
+·· ·+ 1

n

)
xn =

∞∑
n=1

(
n∑

k=1

1

k

)
xn

which is clearly the generating function of the sequence {1,1,1, . . . } times the generating

function of the sequence {Hn}nÊ1.

Let us remark first, that the derivative of the generating function of the latter sequence gives( ∞∑
n=1

1

n
xn

)′
=

∞∑
n=0

xn = 1

1−x
.

Accordingly, by integrating both sides we get that the generating function of the sequence

{Hn}nÊ1 is

− ln(1−x) = ln

(
1

1−x

)
.

Finally, the convolution shows that the generating function of the Harmonic numbers is

H(x) =
∞∑

n=1
Hn xn = 1

1−x
ln

(
1

1−x

)
.

Next we shall invoke very amazing properties by performing diagonal sums in the

Harmonic triangle. Let us begin with explanations of this triangle. In fact, the Harmonic

triangle is related to reciprocals of the elements in Pascal’s triangle and is formed by taking

successive differences of terms of the harmonic series.

Therefore, after the first row, each entry is the difference of the two elements immediately

above it. It is worth to mention that each element is the sum of the element to its right and

the element below it in the array. For example, for
1

20
we see that at its right is

1

12
and bellow

this number we find
1

30
, by checking we find that

1

12
− 1

30
= 1

20
.
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1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8
. . .

1

2

1

6

1

12

1

20

1

30

1

42

1

56
. . .

1

3

1

12

1

30

1

60

1

105

1

168
. . .

1

4

1

20

1

60

1

140

1

280
. . .

1

5

1

30

1

105

1

280
. . .

1

6

1

42

1

168
. . .

1

7

1

56
. . .

1

8
. . .

From another hand, each entry is the sum of the infinite series formed by the entries in the

row below and to the right, in other words, each row has the first element in the row above it

as its sum. Further remark is that each rising diagonal contains elements which are
1

n
times

the reciprocal of the similarly placed elements in Pascal’s triangle.

In contrast to the harmonic triangle, each element in any row after the first is the sum of all

terms in the row above it and to the left, while it is also the difference of the two terms in

the row beneath it, and the sum of the element to its left and the element above it. Since

the nth row in the harmonic triangle has sum
1

n −1
, if we multiply the row by n, we can

immediately write the sum of the reciprocals of elements found in the columns of Pascal’s

triangle written in left-justified form as

n

n −1
=

∞∑
k=n

(
k

n

)−1

, n > 1.
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3.5 Conclusion

There are plenty of interesting sequences of numbers that we meet in our daily life. Solving

recurrence relation can be given in term of generating functions which help in tern to

provide some connections between coefficients and and object. Indeed, if we consider

various ways of selecting objects from a set S = {a,b,c}, then

1 Select one object from S we have

{a} or {b} or {c}
(
denoted by a +b + c

)
2 Select two objects from S we have

{a,b} or {a,c} or {b,c}
(
denoted by ab +ac +bc

)
3 Select three objects from S we have

{a,b,c}
(
denoted by abc

)
Remark that these symbols can be found in the following expression

(1+ax) (1+bx) (1+ cx) = 1x0 + (a +b + c) x1 + (ab +ac +bc) x2 + (abc) x3.

We my write 1+ax = x0 +ax1 which could be interpreted as

"a is not selected or a is selected once".

The latter technique of modeling is very practical mainly in combinatorics to choose

objects in different ways, arrangements, configurations, looking for the shortest routes in

rectangular grid, ... etc.

This simple interpretation shows how one can associate objects to coefficients in

generating functions. There are many techniques for modeling problem in daily life and

across different fields such as calculus, biology, physics, electronics, random variables, ...

among others.
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