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Chapter 0

Abstract

This dissertation deals with the most important definitions and mathematical prop-

erties of q-calculus, such as quantum derivative and Jackson integration, in addition to

formulating quantum transformations such as q-Laplace transform and q-Mellin trans-

form.
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Chapter 0

Introduction

The study and use of the special functions is a very old branch of mathematics. We mention

for example the Bernoulli and Euler numbers and polynomials, gamma and hypergeometric func-

tions, Jacobi’s elliptic functions, Bessel functions, and the polynomials of Legendre, Laguerre and

Hermite. Most of those functions were introduced to solve specific problems.

The study of basic hypergeometric series (also called q- hypergeometric series or q-series)

essentially started in 1748 when Euler considered the infinite product (q; q)−1
∞ =

∏∞
k=0(1− qk+1)−1

as a generating function for p(n), the number of partitions of a positive integer n into positive

integers. But it was not until about a hundred years later that the subject acquired an independent

status when Heine converted a simple observation that lim
q→1

[(1− qa)/(1− q)] = a into a systematic

theory of 2ϕ1 basic hypergeometric series parallel to the theory of Gauss’ 2F1 hypergeometric

series.

Apart from some important work by J. Thomae and L. J. Rogers the subject remained some-

what dormant during the latter part of the nineteenth century until F. H. Jackson embarked on

a lifelong program of developing the theory of basic hypergeometric series in a systematic man-

ner, studying q-differentiation and q-integration and deriving q-analogues of the hypergeometric

summation and transformation formulas that were discovered by A. C. Dixon, J. Dougall, L.

Saalschiitz, F. J. W. Whipple, and others.

D. B. Sears, L. Carlitz, W. Hahn, and L. J. Slater were among the prominent contributors

during the 1950’s. Sears derived several transformation formulas for 3ϕ2 series, balanced 4ϕ3 series,

and very-well-poised n+1ϕn series.

During the 1960’s R. P. Agarwal and Slater each published a book partially devoted to the

theory of basic hypergeometric series, and G. E. Andrews initiated his work in number theory,

where he showed how useful the summation and transformation formulas for basic hypergeometric

series are in the theory of partitions. Andrews gave simpler proofs of many old results, wrote

review articles pointing out many important applications and, during the mid 1970’s, started a

period of very fruitful collaboration with R. Askey. Thanks to these two mathematicians, basic

hypergeometric series is an active field of research today. Since Askey’s primary area of interest

is orthogonal polynomials, q-series suddenly provided him and his co-workers with a very rich

environment for deriving q-extensions of beta integrals and of the classical orthogonal polynomials

of Jacobi, Gegenbauer, Legendre, Laguerre and Hermite. Askey and his students and collaborators

who include W. A. AL-Salam, M. E. H. Ismail, T. H. Koornwinder, W. G. Morris, D. Stanton,
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and J. A. Wilson have produced a substantial amount of interesting work over the past sixteen

years.

In summary, the theory of q-calculus presents a discrete analogue of the derivative’s operator

and the integral as well as of the factorial ( i.e., which is referred to as shifted factorial!). In this

theory, we shall take a fixed positive integer q (0 < q < 1 or q > 1), and then try to figure out

some formulas that reduce to the classical one when the integer q goes to 1. It terms out, from

this, that we can give the q-analogue (i.e., in terms of q), as far as we can, of all the definitions

and problems. Note also that the transition of any classical expression to its q-analogue is not

unique.

We plan in this work to give a simple overview of the q-calculus including the shift factorial,

the definition of the q-derivation and q-integration. We shall also give a brief introduction to the

constructions of the main basic (q-analogue) special functions, and to point out some q-integral

transformations with special focus on the q-Laplace transform and q-Mellin transform.
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Chapter 1
The quantum Number

The fundamental rules upon which the concept of quantitative calculus is built are as follows:

Definition 1.0.1. The q-analogue of the integer number n is defined by this formula

[n]q = 1 + q + q2 + · · ·+ qn−1 =
1− qn

1− q
−−→
q→1

n, (1.1)

and the q-factorial of the integer n is defined by [0]q! = 1 and for n > 1

[n]q! = [n]q · [n− 1]q . . . [2]q · [1]q =
(1− qn) (1− qn−1) . . . (1− q)

(1− q)n
(1.2)

Example 1.0.1. From the definition we have

[1]q = 1, [2]q = 1 + q, [3]q = 1 + q + q2, [4]q = 1 + q + q2 + q3...

and

[3]q! =
(
1 + q + q2

)
(1 + q) = 1 + 2q + 2q2 + q3

[4]q! =
1− q4

1− q
· 1− q3

1− q
· 1− q2

1− q
· 1− q

1− q

=
(
1 + q + q2 + q3

) (
1 + q + q2

)
(1 + q)

= 1 + 3q + 5q2 + 6q3 + 5q4 + 3q5 + q6

Therefore, by analogy the quantum binomial theorem can be utilized in designing quantum

algorithms and understanding the dynamics of complex quantum system, thereby facilitating

applications and unraveling the mysteries of quantum phenomena

5



Chapter 1

Definition 1.0.2. The q-binomial coefficient is given by

[
n

k

]
q

=
[n]q!

[k]q![n− k]q!
=

[
n

n− k

]
q

, 0 ⩽ k ⩽ n. (1.3)

Let us recall some elementary properties of the q-factorial needed in the sequel.

The q-binomial coefficient verifies the following recurrence relations

[
n

k

]
q

= qk
[
n− 1

k

]
q

+

[
n− 1

k − 1

]
q

=

[
n− 1

k

]
q

+ qn−k

[
n− 1

k − 1

]
q

. (1.4)

Proof 1.0.1. Remark that we can write, for any 1 ≤ k ≤ n− 1,

[n] =
(
1 + q + · · ·+ qk−1

)
+ qk

(
1 + q + · · ·+ qn−k−1

)
= [k] + qk [n− k] .

Therefore,

[
n

k

]
q

=
[n− 1]! [n]

[k]! [n− k]!
=

[n− 1]! [k]

[k]! [n− k]!
+

[n− 1]!qk [n− k]

[k]! [n− k]!

which proves the left equality. Now, for second equality at right most, it suffices to apply the left

equality to the definition (1.3) of the q-binomial coefficient.

Example 1.0.2. [
3

1

]
q

= 1 + q + q2 ̸= 3 =

[
2

0

]
q

+

[
2

1

]
q

1.1 The quantum Derivative

The importance of the difference operator, usually denoted ∆w, lies in discrete models, i.e. the

difference equations essential in particular in modeling (to describe the evolution of a population)

as well as in the digital resolution and simulation. Another operator which is also of very great

importance, in particular in quantum, is the Jackson operator denoted Dq which provides another

generalization of the usual derivation operator. Let us now recall the Jackson operator as well as

some of these elementary properties
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Definition 1.1.1. Let the q-difference operators Dq and σq defined, respectively, by

Dqf(x) =
f(qx)− f(x)

qx− x
, dqf(x) = f(qx)− f(x), σqf(x) = f(qx). (1.5)

For any function f , put (q − 1)x = h in the latter definition to obtain

lim
q→1

Dqf(x) = lim
h→0

f(x+ h)− f(x)

h
= f ′(x).

Dqf(x) =
dqf(x)

dqx
=

f(qx)− f(x)

qx− x
(1.6)

Example 1.1.1. 1 Compute the q-derivative of f(x) = x3

Dqx
3 =

(xq)3 − x3

xq − x
=

(xq − x) (x3q2 + x2q + x2)

xq − x

=
(
1 + q + q2

)
x2 = [3]qx

2

2 The q-derivativ of f(x) = xn, n ∈ N

Dqx
n =

(xq)n − xn

xq − x
=

qn − 1

q − 1
· x

n

x

=
(q − 1) (qn−1 + qn−2 + q + 1)

q − 1
· x

n

x

=
[
qn−1 + qn−2 + · · ·+ q + 1

)
xn−1

= [n]qx
n−1

1.2 Properties of q-Derivatives

In this section we shall provide some algebraic operations on Dq defined by (1.5). For any two

functions f and g, we have the following elementary operations

1

Dq(αf(x)± βg(x)) = αDqf(x)± βqDg(x) (1.7)

2 The q-product rule.

Dq(f · q)(x) = Dqf(x)g(x) + f(qx)Dqg(x) (1.8)

Azri Dhiya Eddine 7
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3 If g(x) ̸= g(qx) ̸= 0 then

Dq

(
f(x)

g(x)

)
=

Dqf(x)g(x)− f(x)Dqg(t)

g(x)g(qx)
(1.9)

4 when the function f > 0 So

Dq

√
f(x) =

Dqf(x)√
f(qx) +

√
f(x)

(1.10)

Proof 1.2.1. .

1

Dq(αf(x)± βg(x)) =
αf(qx)± βg(qx)− αf(x)± βg(x)

xq − x

=
αf(qx)− αf(x)

xq − x
± βg(qx)− βg(x)

xq − x

= Dqf(x)±Dqg(x).

2 We have.

Dq(fg)(x) =
f(qx)g(qx)− f(x)g(x)

xq − x

=
f(qx)g(qx)− f(qx)g(x) + f(qx)g(x)− f(x)g(x)

xq − x

=
f(qx)[g(qx)− g(x)]

xq − x
+

g(x)[f(qx)− f(x)]

xq − x

=f(qx)Dqg(x) + g(x)Dqf(x).

By symmetry we car interchange f and g

Dq(fg)(x) = f(x)Dqg(x) + g(qx)Dqf(x)

.

3 we have

g(x)
f(x)

g(x)
= f(x) (1.11)

We apply to (1,5) the rule (1) or we have:

g(x)Dq

(
f(x)

g(x)

)
+

f(qx)

g(qx)
Dqg(x) = Dqf(x)

Azri Dhiya Eddine 8
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if

Dq

(
f(x)

g(x)

)
=

g(qx)Dqf(x)− f(qx)Dqg(x)

g(x)g(qx)
. (1.12)

the two formulas (1, 6) and (3) are both valid.

Example 1.2.1. Let f, g : R → R be the functions f (x) = x2andg (x) = 4x.

Dq (fog) = 42x (q + 1)

and

Dqg(x) ·Dqf(g(x)) = 43x (q + 1)

so

Dq (fog) ̸= Dqg(x) ·Dqf(g(x))

4 Provided that it is g(x) = axβ, this is because the composition rule of two functions on the

Jackson derivative is only valid under this condition

We have

Dq(f ◦ g)(x) = f(qg(x))− f(g(x))

qx− x

=
f
(
aqxβ

)
− f

(
axβ
)

qx− x
· aqx

β − axβ

aqxβ − axβ

=
aqxβ − axβ

qx− x
·
f
(
aqxβ

)
− f

(
axβ
)

aqxB − axB

= Dqg(x) ·Dqf(g(x))

5 we have

Dq

√
f(x) =

√
f(qx)−

√
f(x)

qx− x

=
(
√

f(qx)−
√

f(x))(
√

f(qx) +
√

f(x))

(qx− x)(
√
f(qx) +

√
f(x))

=
f(qx)− f(x)

(qx− x)(
√
f(qx) +

√
f(x))

=
1

(
√
f(qx) +

√
f(x)

· f(qx)− f(x)

(qx− x)

=
Dqf(x)√

f(qx) +
√

f(x)
.

Azri Dhiya Eddine 9
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Theorem 1.2.1. Let’s have the following binomial Gaussian formula be:

(x+ a)nq =
n∑

k=0

[
n

k

]
q

qk(k−1)/2akxn−k

When we set a = 1, we find

(x+ 1)nq =
n∑

k=0

[
n

k

]
q

qk(k−1)/2xk (1.13)

We obtain the q-analogue of (1 + x)nq , n ∈ N.

Proposition 1.2.1. The q-analogue of f(x) = 1
(1−x)nq

is given by.

Dqf(x) =
Dq

(1− x)nq
=

[n]

(1− x)n+1
q

and

Dk
qf(x) =

[n][n+ 1] . . . [n+ k − 1]

(1− x)n+K
q

when (
Dk

qf
)
(0) = [n][n+ 1] · [n+ k − 1], k ⩾ 1

and therefore
1

(1− x)nq
= 1 +

∞∑
k=1

[n][n− 1] · · · [n+ k − 1]

[k]!
. (1.14)

The question arises, how can we apply the Jackson derivative (Dq) to e specific function suc-

cessively.

Theorem 1.2.2. For every n ⩾ 0, we have the flowing formula.

Dn
q (f · g)(x) =

n∑
k=0

[
n

k

]
q

Dn−k
q f

(
qkx
) (

Dk
qg(x)

)
. (1.15)

Proof 1.2.2. When n = 1, we simply obtain equation (1)

Azri Dhiya Eddine 10
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Let’s assume that equation (1, 24) holds for n, and well prove it for n+ 1.

Dn+1
q (fg)(x) = Dq

(
n∑

k=0

[
n

k

]
q

(
Dn−k

q f(qkx)
) (

Dk
qg(x)

))
.

=
n∑

k=0

[
n

k

]
q

qkDn+k+1
q f

(
qkx
) (

Dk
qg(x)

)
+

n∑
k=0

[
n

k

]
q

(
Dn−k

q f
(
qk+1x

)) (
Dk+1

q g(x)
)
.

By Substituting k + 1 → k into the second sum we find:

Dn+1
q (fg) (x) =

n∑
k=0

qk
[
n

k

]
q

(
Dn+1−k

q f(qkx)
) (

Dk
qg(x)

)
+

n+1∑
k=1

[
n

k − 1

]
q

(
Dn+1−k

q f(qkx)
) (

Dk
qg(x)

)
Then, using q-binomial coefficient formula (1.4) we deduce.

Dn+1
q (fg)(t) =

n+1∑
k=0

[
n+ 1

k

]
q

(
Dn+1−k

q f
(
qkx
)) (

Dk
qg(x)

)
(1.16)

and on the basis of (1.23), which is referred to as q-Leibniz. (1.22) is fulfilled.

Proposition 1.2.2. The q-analogue of (x− a)n is the polynomial

(x− a)nq =

 1

(x− a) (x− qa) ....... (x− qn−aa)
(1.17)

for all n ≥ 1

Dq (x− a)nq = [n] (x− a)n−1
q (1.18)

to conclude for any integer, we have:

Dq
1

(x− a)nq
= [−n] (x− qna)n−1

q (1.19)

Dq (x− a)−n
q = − [n] (x− qna)n−1

q (1.20)

Dq
1

(x− a)nq
=

[n]

(x− qna)n+1
q

(1.21)

Azri Dhiya Eddine 11



Chapter 2
Jackson’s q-integral

In this chapter, we shall investigate the concept of Jackson integration along with some important

properties for q-integration, including q-analogue of the exponential functions and trigonometric

functions such as cosine and sinus, as well as q-gamma and q-beta functions.
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The Jackson q-integration can be defined as the inverse operation of the q-derivation. If

DqF (x) = f(x), then

F (x)− F (qx) = (1− q)xf(x) (2.1)

We deduce from above that

F (qkx)− F (qk+1x) = (1− q)xqkf(qkx), k = 0, 1, 2, . . .

Summing over k = 0, 1, . . . , n− 1 we obtain

F (x)− F (qnx) = (1− q)x
n−1∑
k=0

qkf(qkx).

Suppose that 0 < q < 1, and then F (qnx) → F (0) as n → ∞. From which we deduce that

F (x)− F (0) = (1− q)x
∞∑
k=0

qkf(qkx).

Therefore, for 0 < q < 1 the q-integral of the function f on the interval [0, c] is defined by

∫ c

0

f(x)dqx = c(1− q)
∞∑
k=0

qkf(qkx) =
∞∑
r=0

(xr − xr+1) f(xr), (2.2)

where xr = cqr. For the interval [c,+∞[, the q-integral of f is defined by

∫ ∞

c

f(x)dqx = c(1− q)
∞∑
k=1

q−kf(q−kx). (2.3)

With c = 1 in (2.2) and (2.3) and summing these two quantities we obtain

Definition 2.0.1. The Jackson q-integral of f over an infinite interval is given by the expression

∫ ∞

0

f(x)dqx = (1− q)
∞∑

n=−∞

qnf(qnx). (2.4)

Now we are able to set the following

Definition 2.0.2. A function f is said to be absolutely q-integrable on [0,∞[, if the series∑
n∈Z q

nf(qn) converges absolutely.

We write L1 (Rq,+) for the set of all functions that are absolutely q-integrable on [0,∞[, where

Azri Dhiya Eddine 13
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Rq,+ is the set

Rq,+ = {qn : n ∈ Z}

By using geometric series in Riemann integral, Jackson was able to obtain the integral formula

for the function f(x)

Theorem 2.0.1. When 0 < q < 1 and if |f(x)xα| is bounded on the domain 0 < a < 1 where 0 ⩽

a < 1, then the Jackson integral (2.3) converges to F (x) on the domain ]0, a].

Proof 2.0.1. It is readily seen that the finite series is convergent, therefore

DqF (x) =
1

(q − 1)x

(
(1− q)x

∞∑
n=0

qnf (qnx)− (1− q)qx
∞∑
n=0

qnf
(
qn+1x

))

=
∞∑
n=0

qnf (qnx)−
∞∑
n=0

qn+1f
(
qn+1x

)
=

∞∑
n=0

qnf (qnx)−
∞∑
n=1

qnf (qnx) = f(x).

It is worthy to mention that from (2.2) we merely deduce that

Definition 2.0.3. For 0 < a < b we have

∫ b

a

f(x)dqx =

∫ b

0

f(x)dqx−
∫ a

0

f(x)dqx. (2.5)

It is worthy to mention that from definition (1.3), we can merely extract a more compact

formulas

Proposition 2.0.1. We have

∫ b

0

Dqf(x)dqx = f(b)− f(0) (2.6)

Dq

∫ x

0

f(t)dqt = f(x) (2.7)

Azri Dhiya Eddine 14
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Proof 2.0.2. Indeed, by definition we have

∫ b

0

Dqf(x)dqx =

∫ b

0

f(xq)− f(x)

xq − x
dqx.

=(1− q)b
∞∑
n=0

qn
f (bqn+1)− f (bqn)

−bqn(1− q)

=
∞∑
n=0

f (bqn)− f
(
bqn+1

)
= lim

N→∞

(
N∑

n=0

f (bqn)−
N∑

n=0

f
(
bqn+1

))
=f( b)− f

(
aqN+1

)
|q| < 1

Then ∫ b

0

Dqf(x)dqx = f(b)− f(0)

and we have

Dq

∫ x

0

f(x)dqx =Dq

(
(1− q)x

∞∑
n=0

qnf (xqn)

)

=
1

(1− q)x

(
(1− q)xq

∞∑
n=0

qnf
(
xqn+1

)
− (1− q)x

∞∑
n=0

qnf (xqn)

)

=
∞∑
n=0

qnf (xqn)−
∞∑
n=0

qn+1f
(
xqn+1

)
= f(x)

whence

Dq

∫ x

0

f(x)dqx = f(x)

Theorem 2.0.2. We have the following properties

(a) For u(x) = axβ we have

∫ u(b)

u(a)

f(u)dqu =

∫ b

0

f(u(t))dq1/βu(x). (2.8)

(b) The q-integration by parts

∫ b

0

f(x)Dqg(x)dqx = f(b)g(b)− f(0)g(0)−
∫ b

0

g(qx)Dqf(x). (2.9)

Azri Dhiya Eddine 15
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Proof 2.0.3. using rule (2.6), we have

∫
f(u(x))dq1/βu(x) =

∞∑
n=0

f
(
u
(
qn/βx

)) (
u
(
qn/βx

)
− u

(
q(n+1))/βx

)
=

∞∑
n=0

f
(
aqnxβ

) (
aqβxβ − aqn+1xβ

)
=

∞∑
n=0

f (qnu)
(
qnu− qn+1u

)
=

∞∑
n=0

qnf (qnu) (1− q)u

= (1− q)u
∞∑
n=0

qnf (qnu) =

∫
f(u)dqu

(2.10)

Second, using

Dq(fg)(x) = f(x)Dqg(x) + g(qx)Dqf(x)

we obtain the following

∫ b

0

Dq(fg)(x)dqx =

∫ b

0

f(x)Dqg(x)dqx+

∫ b

0

g(qx)Dqf(t)dq

f(b)g(b)− f(0)g(0) =

∫ b

0

f(x)Dqg(x)dqx+

∫ b

0

g(qx)Dqf(x)dqx

thus ∫ b

0

f(x)Dqg(x)dqx = f(b)g(b)− f(0)g(0)−
∫ b

0

g(qx)Dqf(x)dqx

from which we deduce

∫ b

a

f(x)Dqg(x)dqx = f(x)g(x)|ba −
∫ b

a

g(qx)Dpf(x)dqx

Examples

∫ x

0

tdqt = (1− q)x
∞∑
n=0

qnxqn

= (1− q)x2

∞∑
n=0

q2n

= (1− q)x2 1

1− q2
=

x2

1 + q
=

1

[2]q
x2
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Show that

∫ x

0

t2dqt =
x3

1 + q + q2
=

x3

[3]q

and h(t) = tn ∫ x

0

tndqt =
xn+1

[n+ 1]q

Proof

h(t) = tn ∫ x

0

tndqt = (1− q)×
∞∑
n=0

qn (xqn)n

= (1− q)xn+1

∞∑
n=0

(
qn+1

)n
=

1− q

1− qn+1
xn+1 =

xn+1

[n+ 1]q

g(t) =
√
t

∫ x

0

g(t)dqt = (1− q)x
∞∑
n=0

qn (xqn)

= (1− q)x
∞∑
n=0

qn
√
xqn

= (1− q)x
∞∑
n=0

qnx1/2qn/2

= (1− q)x3/2

∞∑
n=0

q3n/2

= x3/2(1− q) · 1

1− q3/2

= x3/2 (1−√
q)(1 +

√
q)

(1−√
q)(1 +

√
q + q)

=
(1 +

√
q)

(1 +
√
q + q)

x3/2
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k(t) = log t

∫ x

0

k(t)dqt = (1− q)
∞∑
n=0

qnk (xqn) = (1− q)
∞∑
n=0

qn log (xqn)

= (1− q)
∞∑
n=0

qn log(x) + (1− q)
∞∑
n=0

qn log (qn)

= x(1− q) log(x)
∞∑
n=0

qn + x(1− q) log(q)
∞∑
n=1

nqn

= (1− q) log(x) · 1

1− q
+ (1− q)xq log(q)

∞∑
n=0

nqn−1

= x log(t) + (1− q)xq log(q)

(
Dq

∞∑
n=0

qn

)

= x log(x) + (1− q)xg log(q)Dq

(
1

1− q

)
= x log(x) + (1− q)xq log(q)

1

(1− q)2
= x log(x) + x

q log(q)

1− q

Remark 2.0.1. limq→1

(
x2

[2]q

)
= x2

2

limq→1

(
xn+1

[n+1]q

)
= xn+1

n+1
.

limq→1

(
1−√

q

1+
√
q+q

x3/2
)
= 2

3
x3/2.

limq→1

(
x log(x) + xq log(q)

1−q

)
= x log(x)− x

2.1 The q-analogue of the exponential function

Several different methods have been proposed for constructing a q-exponential function and in

this chapter, we will present the approach that relies on the q-differential equation.Dqy(x) = y(x) 0 < q < 1, x ∈ R+

y(0) = 1

(2.11)

from (2, 11) we have

y(x) =
y(qx)− y(x)

(q− 1)x

and from it

y(qx) = [1 + (q − 1)x]y(x)
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and

y(x) =
y(qx)

[1 + (q − 1)x]

if

y(qx) =
y (q2x)

1 + (q − 1)qx

then we conclude the following.

y(x) =
y (q2x)

(1 + (q − 1)x)(1 + (q − 1)qx)

y(x) =
y (qnx)

(1 + (q − 1)x)(1 + (q − 1)qx) (1 + (q − 1)q2x) · · · (1 + (q − 1)qnx

=
y (qnx)∏n

k=1 [1 + (qk − 1)x]

and we have limn→∞ qn = 0

y(x) =
y(0)∏n

k=1 [1 + (qk − 1)x]
. (2.12)

Now, let us find solutions for equation (2.14) in the following form

y(x) =
∞∑
n=0

cnx
n. (2.13)

where cn is a real number for every natural integer n, and from (2.14) and (2.15) we find

y(x) =
∞∑
n=0

cnDqx
n =

∞∑
n=0

cnx
n.

and we have Dqx
n = [n]qx

n−1 ∀n ⊂ N .

so we get

cn+1 =
1

[n+ 1]q
cn

if

cn = c0

n∏
j=0

1

[k]q!

cn =
c0
[n]q!

.

(2.14)
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Substituting (2.14) into (2.13), we find

y(x) = c0

∞∑
n=0

xn

[n]q!

y(x) = c0eq

(2.15)

and

Dq

(
y(x)

eq(x)

)
=

Dqy(x)eq(x)− y(x))Dqeq(x)

eq(x)eq(qx)
=

xy(x)eq(x)− xy(x)eq(x)

eq(x)eq(qx)
= 0

This shows that the function y(x)
eq(x)

is a constant function, so we conclude

y(x)

eq(x)
=

y(0)

eq(0)
= 1

So

y(x) = eq(x)

from (2.15) and (2.14) we find

eq(x) =
∞∑
n=0

xn

[n]q!
=

1∏n
k=1 [1 + (qk − 1)x]

Definition 2.1.1. for all x ∈ R, 0 < q < 1 we define the q-exponential function eq(x) is by

following:

eq(x) =
∞∑
n=0

xn

[n]q!

Notice that x ∈ R 0 < q < 1

lim
q→1

eq(x) = lim
q→1

∞∑
n=0

xn

[n]q!
=

∞∑
n=0

xn

n!
= e(x)

2.2 The function big q-exponential Eq

In the same way as before, we can extract the function q-exponential Eq(x) as solution of the

following Dqy(x) = y(qx)

y(0) = 1

(2.16)
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For 0 < q < 1. and x > 0, we have:

y(qx) =
y(qx)− y(x)

(q − 1)x

⇒ y(x) = [1 + (1− q)x]y(qx)

As above, we merely have

y(qx) =
2∏

k=1

[
1 +

(
1− qk

)
x
]
y
(
q2x
)

y(qx) =
n∏

k=1

[
1 +

(
1− qk

)
x
]
y (qnx)

and we have limn→∞ qn = 0.

Therefore,

y(x) = y(0)
∞∏
k=1

[
1 +

(
1− qk

)
x
]
. (2.17)

assuming the following formula to find solution to equation (2.19).

y(x) =
∞∑
n=0

dnx
n (2.18)

Where dn is a real number for any natural number n, and from (2, 19) and (2.20) we have

∞∑
n=0

dnDqx
n =

∞∑
n=0

dn (qx
n)

and since Dqx
n = [n]qx

n−1, then we obtain

dn+1 =
qn

[n+ 1]q!
dn

and we have.

∀n ∈ Nn dn = d0

n∏
n=1

qn−1

[n]q
dn

dn =
q

n(n−1)
2

[n]q!
d0
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by substituting (2.21) for (2.20), we find:

y(x) = d0

∞∑
n=0

q
n(n−1)

2
xn

[n]q!

⇒y(x) = d0Eq(x)

and

Dq

(
y(x)

Eq(x)

)
=

Dqy(x)Eq(x)− y(x)DqE(x)

Eq(x)Eq(qx)

=
xy(x)Eq(x)− xy(x)Eq(x)

Eq(x)Eq(qx)
= 0

This shows that the function y(t)
Eq(t)

is a constant function.

So we conclude
y(x)

Eq(x)
=

y(0)

Eq(0)
= 1

whence

y(x) = Eq(x)

from the foregoing, we conclude the following formula:

Eq(x) =
∞∑
n=0

q(
n
2) xn

[n]q!
dn =

n∏
k=1

[
1 +

(
1− qk

)
x
]
y (qnx)

Definition 2.2.1. For all x ∈ R, 0 < q < 1 we define the q-exponential function Eq(x) as follows

Eq(x) =
∞∑
n=0

q(
n
2) xn

[n]q!
(2.19)

Proposition 2.2.1. For the q-exponential functions we have the following properties

1

Dqeq(x) = eq(x) (2.20)

2

DqEq(x) = Eq(x) (2.21)

3

DqEq(−x) = −Eq(−qx) (2.22)
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4

eq(x)eq(y) = eq(x + y) (2.23)

5

eq(−x)Eq(x) = eq(x)Eq(−x) = 1 (2.24)

6

e1/q(x) = Eq(x) (2.25)

Proof 2.2.1. 1

Dqeq(x) =
∞∑
n=0

Dqx
n

[n]q!
=

∞∑
n=0

[n]qx
n−1

[n]q!
=

∞∑
n=0

[n]qx
n−1

[n]q[n− 1]q!

=
∞∑
n=0

xn−1

[n− 1]q!
=

∞∑
m=0

xm

[m]q!
= eq(x)

2

DqEq(x) =
∞∑
n=0

q(
n
2)Dqx

n

[n]q!
=

∞∑
n=0

q(
n
2) [n]qx

n−1

[n]q!
=

∞∑
n=0

q(
n
2) [n]qx

n−1

[n]q[n− 1]q

=
∞∑
n=0

q(
n
2) xn−1

[n− 1]q!
=

∞∑
m=0

q(
n
2) xm

[m]q!
= Eq(x)

3

DqEq(−x) = Dq

(
1 +

∞∑
n=1

q
n(n−1)

2
(−x)n

[n]q!

)
= Dq

(
1 +

∞∑
n=1

(−1)n · q
n(n−1)

2

[n]q!
xn

)

=
∞∑
n=1

(−1)nq
(n−1)

2

[n]q!
Dqx

n =
∞∑
n=1

(−1)nq
n(n−1)

2

[n− 1]q!
xn−1 =

∞∑
n=0

(−1)n+1q
n(n+1)

2

[n]q!
xn

= −
∞∑
n=0

(−1)n+1q
n(n−1)

2

[n]q!
(qx)n = −Eq(qx)

4

eq(x)eq(y) =

(
∞∑
k=0

xk

[k]q!

)(
∞∑
n=0

yn

[n]q!

)

=
∞∑
k=0

∞∑
n=0

xkyn

[k]q![n]q!
=

∞∑
k=0

∞∑
n=0

[n+ k]q!

[k]q![n]q!

xkyn

[n+ k]q!
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if we change the variable from m = n+ k, then we have

eq(x)eq(y) =
∞∑

m=0

1

[m]q!

(
m∑
k=0

[m]q!

[k]q![m− k]q′!
xkym−k

)

=
∞∑

m=0

(
m∑
k=0

(
m

k

)
xkym−k

)
1

[m]q!
=

∞∑
m=0

(x + y)m

[m]q!

= eq(x+ y)

5

eq(x)Eq(−x) =
1∏n

k=1 [1 + (qk − 1) x]
·

n∏
k=1

[
1 +

(
1− qk

)
(−x)

]
=

∏n
k=1

[
1 +

(
qk − 1

)
(x)
]∏n

k=1 [1 + (qk − 1)x]
= 1

e1/q =
∞∑
n=0

(1− 1/q)nxn

(1− 1/q) (1− 1/q2) . . . (1− 1/qn)

=
∞∑
n=0

q(
n
2) (1− 1/q)nxn

(1− q) (1− q2) . . . (1− qn)

= Eq(x)

2.3 The q-trigonometric functions

The q-trigonometric functions are q-analogue the classical trigonometric functions. These

functions are defined as follows:

cosq x =
eq(ix) + eq(−ix)

2
=

∞∑
n=0

(−1)nx2n

[2n]q!
∀x ∈ C, |x| < 1 (2.26)

Cosq x =
Eq(ix) + Eq(−ix)

2
=

∞∑
n=0

(−1)nqn(2n−1)x2n

[2n]q!
∀x ∈ C (2.27)

sinq x =
eq(ix)− eq(−ix)

2
=

∞∑
n=0

(−1)nx2n+1

[2n+ 1]q!
∀x ∈ C, |x| < 1 (2.28)

Sinx =
Eq(ix)− Eq(−ix)

2
=

∞∑
n=0

(−1)nqn(2n+1)x2n+1

[2n+ 1]q!
∀x ∈ C (2.29)

Proposition 2.3.1. 1 According to (2.25), we have

Sinq(x) = sin1/q(t) (2.30)
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cosq(x) = cos1/q(t) (2.31)

2 From (2.20) and (2.21) together with u(x) = ix, we find

Dq sinq x = cosq(t) .Dq sinq x = cos(qx)

Dq cosq x = − sin q(t) .Dq cosq x = − sinq(qx)
(2.32)

3 We have

cosq x · cosq x =
eq(ix)Eq(ix) + eq(−ix)Eq(−ix) + 2

4

and

sinq x · sinq x = −eq(ix)Eq(ix) + eq(−ix)Eq(−ix)− 2

4

and thus we have

cosq x cosq x + sinq x sinq x = 1

It is the q-analogue of the equation

sin2 x+ cos2 x = 1

4 Further properties easily verified using only the definition are the following

cosq(x) + isinq(x) = eq(x)

cos2q(x) + sin2
q(x) = eq(ix)e(−ix)

sinq(x)Cosq(x) = cosq(x)Sinq(x)

cos2q(x) + sin2
q(x) = Eq(ix)Eq(−ix)

2.4 The Function q-Gamma and q-Beta

The q-Gamma and q-Beta functions are generalizations of the classical Gamma and Beta

functions, respectively. They are used in mathematics, particularly in the context of special number

theory and special functions and often appear in the context of q-series theory.

The two formulas are introduced by Euler as they are related to solutions of certain special
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differential equation.

Γ (t) =

∞∫
0

xt−1e−xdx, t > 0 (2.33)

β (t, s) =

∞∫
0

xt−1

(1 + x)s+t
dx, t > 0 (2.34)

they are gamma and beta functions, respectively. Some of their properties are the following

Γ(t+ 1) = tΓ(t) (2.35)

Γ(n) = (n− 1)!. if n is a positive integer (2.36)

β(t, s) =
Γ(t)Γ(s)

Γ(t+ s)
(2.37)

Formula (2.38) shows that the gamma function can be considered as a generalization of the facto-

rials. Next, we study the q-analogues of these two functions, where 0 < q < 1 is involved.

We have q ∈ C, and for each 0 < |q| < 1, the q-Gama Γq(x) is given as follows:

Γq(x) =
(q, q)∞
(qx; q)∞

(1− q)1−x (2.38)

Where (q, q) =
∏∞

k=0

(
1− aqk

)
. It is a meromorphic function with poles at x = −n± 2πik/ log q

where k and n are non-negative integers

When q > 1, using the inverse of observation (1.2) we obtain

Γq(x) = q(
n
2)Γ1/q(x) =

(q−1, q−1)∞
(q−x; q−1)∞

(q − 1)1−xq(
x
2) (2.39)

Definition 2.4.1. Let the formula for q-gamma be the following, t > 0

Γq(t) =

∫ ∞

0

xt−1E−qx
q dqx (2.40)

and

Γ̂q(t) =

∫ ∞

0

xt−1e−x
q dqx x ∈ C,Re(x) > 0 (2.41)

Proposition 2.4.1. for t ∈ N∗, we have.

(1)

Γq[t+ 1] = tΓ[t], Γq(1) = 1, Γ̂q(1) = 1 (2.42)
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(2)

Γ̂q(t+ 1) = q−t[t]qΓ̂(t) (2.43)

Proof 2.4.1. (1) According to the property (2.22), we have

Γq(t+ 1) =

∫ ∞

0

xt · E−qx
q dqx

Γq(t+ 1) = −
∫ ∞

0

xtDqE
−x
q dqx

Using q-integral by parts (2.11) we have

Γq[t+ 1] = −
qxtE−qt

1 + (qx)tE−q2x
q

2q

∣∣∣∣∣
∞

0

+

∫ ∞

0

E−qx
q DqX

tdqx

=
q limx→∞

(
xtE−qt

1

)
+ limx→∞

(
(qx)tE−q2x

q

)
2q

∣∣∣∣∣∣
∞

0

+

∫ ∞

0

E−qx
q DqX

tdqx

=

∫ r

0

(t)f t−1E−qx
q dqt = [t]qrq(t).

limT→∞
(
xtE−qt

q

)
= limx→∞

(
(qx)tE−q2x

q

)
= 0.

1. Γq(1) =
∫ p

0
E−qx

q dqt = E0
q − E∞

q = 1

2. Γ̂q(1) =
∫∞
0

e−x
q dx

3. Γ̂q(t+ 1) =
∫∞
0

xte−x
q dqx

Using q-integral by parts (2.9), we have

u = xt, Dqv(e) = eq(−x)dqx

from which we obtain

Γ̂q(t+ 1) = −
∫ α

0

[t]xt−1
1 (eq(−qx)) dqqx

= [t]q

∫ ∞

0

xt−1eq(−qt)dqqx

and setting α = qx, it follows that

Γ̂q (t+ 1) =
[t]q
qt

∫ ∞

0

αt−1eq(−α)dqα

= q−t[t]qΓ̂q(t).
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Definition 2.4.2. The q-Beta function is defined for t, s > 0 by the following

βq(t, s) =

∫ 1

0

xt−1(1− qx)s−1
q dqx (2.44)

From the definition of the q-integral we have

β(t,∞) = (1− q)
∞∑
j=0

qj
(
qja
)t−1 (

1− qj+1
)∞
q

= (1− q)
∞∑
j=1

qj
(
qja
)t−1 (

1− qj+1
)∞
−∞

=

∫ ∞

0

xt−1(1− qx)∞q dqx

Using the following relation (1− qj+1)
∞
q = 0 for any non negative integer j, we have from the

above Ex
q = (1 + (1− q)x)∞q , and thus we obtain

Bq(t,∞) =

∫ ∞

0

xt−1E
− qx

(1−q)
q dqx

by the change the variable x = (1− q)y

βq(t,∞) = (1− q)t
∫ ∞

0

y(t− 1)E−qy
q dqy

or

Γq(t) =
βq(t,∞)

(1− q)t
(2.45)

Introducing another variable might seem like a step backward at first glance, but in reality, it

increases our freedom in handling functions and simplifying the problem.

Proposition 2.4.2. If t > 0, and n ∈ Z+, we have.

βq(t, n) =
(1− q)(1− q)n−1

q

(1− qt)nq
(2.46)

For t, s > 0, we have:

βq(t, s) =
(1− q)(1− q)∞q (1− 1t+s)

∞
q

(1− qt)∞q (1− qs)∞q
(2.47)
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Chapter 3
The q-Laplace transform

The Laplace transform is a mathematical tool used to convert time domain functions into frequency

domain functions. It’s useful in solving differential equations and analyzing linear time invariant

systems, as it transforms different: operations into algebraic operations that are easier to handle.

The Laplace transform of the function f , is defined in terms of integral as follows

L(f(t))(s) = F (s) =

∫ 1

0

f(t) · e(−st)dt

For instance, the Laplace transform of the constant function, i.e. f(t) = 1, is 1
s

L(1)(s) =
∫ ∞

0

e(−st)dt = −1

s
[e(−st)]∞0 =

1

s

29



Chapter 3

3.1 The q-analogue of Laplace transform

The q-Laplace transform is a q-version of the standard Laplace transform. Since there are two

version of the q-exponential functions, it’s obvious that we should have at least two version of

q-Laplace transform. From another hand, because the q-exponentials are the inverse of each other,

we shall only consider one of them.

Definition 3.1.1. The q-Laplace transform of a function f is given by

Lq(f(t))(p) =

∫ ∞

0

eq(−pt)f(t)dqt

where f is defined over the positive real axis and Re(p) > 0.

Example 3.1.1. .

1 f(t) = 1

Lq(1)(s) =

∫ ∞

0

eq(−st)dqt = −1

s

∫ 1

0

Dqeq(−st)dqt =
1

s
[eq(−st)]∞0 =

1

s

2 f(t) = t

Lq(t)(s) =

∫ ∞

0

+eq(−st)dqt = −1

s

∫ 1

0

tDqeq(−st)dqt

= −1

s

t eq(st)|∞0 −
∞∫
0

eq(−st)dqt

 =
1

s
{Lq(1)(s)} =

1

s2

3 f(t) = t2

Lq

(
t2
)
(s) =

∞∫
0

t2eq(−st)dqt = −1

s

∫ ∞

0

t2Dqeq(−st)dqt

= −1

s

t2eq(−st)
∣∣∞
0
− 2−

∞∫
0

teq(−st)dqt

 =
2

s
{fq | t) (s)

}
=

2

s3

4 f(t) = tα and α > −1, with the change of variable ρt = x

Lq

(
t2
)
(s) =

∫ ∞

0

tαeq(−st)dqt =
1

sα+1

∫ ∞

0

eq(−x)x2dqx =
1

sα+1
Γ̂q(α + 1)
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Proposition 3.1.1. we have the q-Laplace transform of some elementary functions

1.

Lq (eq(at)) (s) =
∑
n=0

an

sn−1
q−(x

n+1) (3.1)

2.

Lq (Eq(at)) (s) =
q

qs− a
(3.2)

3.

Lq(cosq(at))(s) =
1

s

∑
n=0

(−1)nq−(
2n+1

2 )
(a
s

)2n
(3.3)

4.

Lq (cosq(at)) (s) =
q2s

(qs)2 + a2
(3.4)

5.

Lq (sinq(at)) (s) =
1

s

∞∑
n=0

(−1)nq

(
2n+1
2

)(a
s

)2n+1

(3.5)

6.

Lq (sinq(at)) (s) =
aq

(qs)2 + a2
(3.6)

Proof 3.1.1. 1.

Lq (eq(at)) (s) =

∫ ∞

0

eq(−st)eq(at)dt =

∫ ∞

0

eq(−st)
∞∑
n=0

antn

[n]!
dqt

=
i∑

n=0

i

[n]!

∫ ∞

0

eq(−st)tndqt =
∑
n=0

an

(n)
Iq (t

n) (p)

=
∞∑
n=0

an

[n− 1]

1

q

q̂(n+ 1)

sn+1
=

∞∑
n=0

an

sn+1
q(n)−1

2.

Lq

(
E ′

q(at)
)
(s) =

∫ ∞

0

eq(−st)Eq(qt)dqt =

∫ ∞

0

eq(−st)
2∑

n=0

antnn
[n!

qn

)
dt

=
∞∑
n=0

âq(n)

ln)q

∫ ∞

0

eq(−st)tdt =
∞∑
n=0

aq(i)

[n]!
Lq (t

n) (s)

=
n∑

n=0

anq(n)

[n)q!q
· q̄

n+2)

sn+1
[n]q! =

1

s

2∑
n=0

(
a

sq

)n

=
1

s
· 1

1− a
sq

=
q

sq − a
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3. according to equation (2.26) we have

Lq (cosat) (s) = Lq

(
eq (iat) + eq (−iat)

2

)
(s)

=
1

2
[Lq (eq (iat) (s)) + Lq (eq (−iat)) (s)]

=
1

2

[
∞∑
n=0

q
−n(n+1)

2
(ia)n

sn+1
+

∞∑
n=0

q
−n(n+1)

2
(−ia)n

sn+1

]

=
1

2

∞∑
n=0

q−n(2n+1)

s2n+1
[(ia)n + (−ia)n]

=
∞∑
n=0

q−n(2n+1)

s2n+1
(−1)na2n =

1

s

∞∑
n=0

(−1)nq
−
(
2n+1
2

)(a
s

)2n

4. according to equation (2.27), we have

Lq(cos(at))(s) = Lq

(
Eq(iat) + Eq(−iat)

2

)
=

1

2
[Lq (Eq(iat)) (s) + Lq (Eq(−iat)) (s)]

=
1

2

[
q

ps− ia
+

q

ps+ ia

]
=

q2s

q2s2 + a2

5. according to equation (2.28 ), we have

Lq(sing(at))(s) = Lq

(
eq(iat)− eq(−iat)

2

)
(s) =

1

2
[Lq (eq(iat)) (s)− Lq (eq(iat)) (s)]

=
1

2

[
∞∑
n=0

q−
n(n+1)

2
(ia)n

sn−1
−

2∑
n=0

q−
n(n+1)

2
(i− ia)n

sn+1

]

=
2∑

n=0

(−1)n · q−(
2n+2

2 )a
2n+1

q2n+2
=

1

s

∞∑
n=0

(−1)nq−(
2n+2

2 )
(a
s

)2n+1

6. according to equation (2.29), we have

Lq (sinq(at)) (s) = Lq

(
Eq(iat)− Eq(−iat)

2i

)
(s)

=
1

2i
[Lq (Eq(iat)(s)− Lq (Eq))− iat) (s)]

=
1

2i

[
q

sq − ia
− q

sq + ia

]
=

aq

q2s2 + a2

In terms of the big q-exponential function, there is another definition of the second kind q-
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Laplace transform denoted (Lq), and defined as follows

Lq {f(t)} (s) =
∞∫
0

f(t)Eq (−qst) dqt

Example 3.1.2. In terms of the second kind we have

1. f(t) = 1

Lq (1) (s) =

∫ σ

0

Eq(−qst)dt = − 1

qs

∫ ∞

0

DqEq(−qst)dt = − 1

qs
[Eq(−qst)]∞0 =

1

qs

2. f(t) = t

Lq(t)(s) =

∫ ∞

0

Eq(−qst)tdqt = − 1

qs

∫ ∞

0

tDqE(−qst)dqt

= − 1

qs

{[
tEq(·qst)|∞0 −

∫ ∞

0

Eq(−qst)dqt =
1

qs
{Lq(1)(s)} =

1

(qs)2

3. f(t) = tα, α > −1, with the change of variable st = x we obtain

Lq (t
α) (s) =

∫ ∞

0

Eq(−qst)tαdqt =
1

sα+1

∫ ∞

0

Eq(−qx)xαddqx =
1

sα+1
Γq(t+ 1)

Proposition 3.1.2. The q-Laplace transform (Lq) of elementary functions, we have for instance

the following

1.

Lq (eq(t)) (s) =
∑
n=0

1

sn+1
q

n(n−1)
2 (3.7)

2.

Lg (Eq(t)) (s) =
1

s− 1
(3.8)

3.

Lq (cosq(t)) (s) =
n∑

n=0

(−1)nq−(2n−1) 1

sn+1
(3.9)

4.

Lq (cosq(t)) (s) =
s

s2 + 1
(3.10)
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5.

Lq sin(t)) (s) =
∑
n=0

(1)nq(m−1)(n−1) 1

s2n+2
(3.11)

6.

Lq {sinq(t)} (s) =
1

s2 + 1
(3.12)

Proof 3.1.2. 1.

Lq (eq(t)) (s) =

∫ ∞

0

Eq(−qst)eq(t)dqt =

∫ ∞

0

Eq(−qst)
∞∑
n=0

t

[n]q!
dqt

=
∞∑
n=0

1

[n]q!

∫ ∞

0

Eq(−qst)tndqt =
∞∑
n=0

1

[n]q!

∫
q

(tn) (s)

=
∞∑
n=0

1

[n]
· rq(n+ 1)

sn+1
=

∞∑
n=0

1

sn+1
· q

n(n−1)
2

2.

Lq (Eq(t)) (s) =

∫ ∞

0

Eq(−qst)Eq(t)dqt =

∫ ∞

0

Eq(−qst)
∞∑
n=0

tn

[n]q!
q

(
n

2

)
=

∞∑
n=0

q(n)

[n]

∫ ∞

q

E0(−qst)tndqt =
∞∑
n=0

q(n)

[n]
Lq (t

n) (s)

=
∞∑
n=0

q(n)

[n]

rq(n+ 1)

sα+1
=

1

s− 1

in the same manner as before, we deduce(3).

3. Lq (cosq(t)) (s) =
∞∑
n=0

(−1)nqn(2n−1) 1

sn+1

4. Lq (Cosq(t)) (s) =
s

s2 + 1

5. Lq (sinq(t)) (s) =
∑∞

n=0(−1)nq(2n−1)(n−2) 1
p2n+1

6. Lq(Sinq(t))(s) =
1

s2 + 1
.

3.2 The q-Laplace transform and the q-derivative

Together with Jackson operator (Dq), the q-Laplace transform involve some perturbations, i.e.

depends on the initial conditions of functions
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Proposition 3.2.1. Let f be a function defined on R+ with q-Laplace transform of Ddf exist.

Then

Lq (Dqf(t)) (s) = −f(0) +
s

q
Lq (f(t))

(
s

q

)
(3.13)

Proof 3.2.1. By definition, using q-integral by part, we find:

Lq (Dqf(t)) (s) =

[
f(t)eq(−st)|∞0 −

∫ ∞

0

f(qt)Dqeq (−stdd]
t
d

= −f(0)−
∫ ∞

0

f(qt)Dqeq(−st)dqt

= −f(0) + s

∫ ∞

0

f(qt)eq(−st)dqt

= −f(0) +
s

q

∫ σ

0

f(x)eq

(
−s

q
x

)
dqx

= −f(0) +
s

q
Lq(f(c))

(
s

q

)

More generally, we can apply the q-Laplace transform of Dn
q f to obtain the Dn+1

q f

Proposition 3.2.2. Let f be a function defined on R+ and assume that its q-Laplace transform

of Dn
q f exist. Then

Lq

(
Dn

q f(t)
)
(s) = snq−(

n+1
2 )Lq (f(t))

(
s

qn

)
−

n−1∑
i=0

sn−i−1q−(
n−i
2 )Di

qf(0). (3.14)

Proof 3.2.2. We assume that equation (3.13) holds true for n and we proceed it for n+ 1.

Lq

(
Dn+1

q f(t)
)
(s) = Lq

(
Dn

q (Dqf(t))
)
(s)

= snq−(
n+1
2 )Lq (Dqf(t))

(
s

qn

)
−

n−1∑
i=0

sn−i−1q−(
n−i
2 )Di

q (Dqf) (0)

= snq−(
n+1
2 )Lq (Dqf(t))

(
s

qn

)
−

n∑
i=1

sn−iq−(
n+1−i

2 )Di
q (f) (0).

Now by using (3.13), we deduce that

Lq

(
Dn+1

q f(t)
)
(p) = pnq−(

n+1
2 )
{
−f(0) +

p

qn+1
Lq (f(t))

(
p

qn+1

)}
−

n∑
i=1

pn−iq−(
n+1−i

2 )Di
q (f) (0)

= pn+1q−(
n+2
2 )Lq (f(t))

(
p

qn+1

)
−

n∑
i=0

pn−iq−(
n+1−i

2 )Di
q (f) (0).

where we have used the identity
(
n+1
2

)
=
(
n
2

)
+ n.
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The q-Mellin transform

Initiated by Hjalmar Mellin (1854-1933), the Mellin transform of a suitable function f over ]0,∞[

is given by

M(f)(s) =

∫ ∞

0

f(x)xs−1dx

The inversion formula for the Mellin transform is given by the following line integral,

f(x) =
1

2πin

∫ c+i∞

c−i∞
M(f)(s)x−sds.

The definition of the Mellin convolution product of suitable functions f and g is

f ∗M g(x) =

∫ ∞

0

f(y)g

(
x

y

)
dy

y
.

In this chapter we are interested with the q-analogue of Mellin transform in terms of q-Jackson

integral.
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Definition 4.0.1. Let f ∈ Rq,+, the q-Mellin transform of f is given by

Mq(t)(s) = Mq[f(t)](s) =

∫ ∞

0

ts−1f(t)dqt. (4.1)

There exists a (possibly empty) maximal open vertical strip denoted (x0, x1) in which the q-

integral (4.1) is well defined. Such strip will be called a fundamental strip.

As the classical Mellin transform, we have interesting properties of q-Mellin transform which

coincide with the classical Mellin transform.

Proposition 4.0.1. Let f, (ai)i ∈ Rq,+, we have the following properties

Mq[f(at)](s) = s−sMq[f(t)](s)
d

ds
Mq[f(t)](s) = Mq[log(f(t))](s)

Mq

[
f

(
1

t

)]
(s) = Mq[f(t)](−s) Mq

[
1

t
f

(
1

t

)]
(s) = Mq[f(t)](1− s)

Mq[tDqf(t)](s) = [−s]qMq[f(t)](s) Mq[Dqf(t)](s) = [1− s]qMq[f(t)](s− 1)

Mq

[∫ t

0

f (x) dqx

]
(s) =

1

[−s]q
Mq[f(t)](s+ 1) Mq

[
f
(
tθ
)]

(s) =

[
1

θ

]
qθ
Mqθ [f(t)]

(s
θ

)
Mq

[
Dn

q f(t)
]
(s) = [1− s]q[2− s]q...[n− s]qMq[f(t)](s− n)

Mq

[
∞∑
i=0

bif(ait)

]
(s) =

(
∞∑
i=0

bi
asi

)
Mq[f(t)](s), (bi)i ∈ C

Example 4.0.1. We summarize some q-transformation of elementary q-functions

Mq

[
E−qt

q

]
(s) = Γq(s) Mq

[
E−t

q

]
(s) = qsΓq(s)

Mq

[
E−qαtα

qα

]
(s) =

[
1

α

]
qα
Γqα

( s
α

)

Mq [cosq2(t)] (s) =
Γq2 (1/2)

(1 + q−1)1/2
qs−1/2 ((1 + q))s−1/2 Γq2

(
s
2

)
Γq2
(
1−s
2

)
Mq [sinq2(t)] (s) =

Γq2 (1/2)

(1 + q−1)1/2
qs+1/2(1 + q)s−1/2Γq2

(
s+1
2

)
Γq2
(
2−s
2

)
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4.1 The q-Mellin inversion formula

The most interesting question of integral transformation is whether the inverse exist or not.

In this section we shall discuss the inverse of the q-Mellin transform. The inversion formula is

given by the next Theorem

Theorem 4.1.1. Let f ∈ Rq,+ and c in the fundamental strip, then we can inverse and obtain

the expression of f from its q-Mellin transform by the formula

f(x) =
log(q)

2πi(1− q)

∫ c+ iπ
log(q)

c− iπ
log(q)

Mq(f)(s)x
−sds. (4.2)

Proof 4.1.1. Let x = qn ∈ Rq,+, we have using the definition of q-Jackson integral

∫ c+ iπ
log(q)

c− iπ
log(q)

Mq(f)(s)x
−sds = (1− q)

∫ c+ iπ
log(q)

c− iπ
log(q)

∞∑
−∞

qs(k−n)f(qk)ds.

The above series converges uniformly with respect to s, therefore

∫ c+ iπ
log(q)

c− iπ
log(q)

Mq(f)(s)x
−sds = i(1− q)

∞∑
k=−∞

qc(k−n)f(qk)

∫ iπ
log(q)

− iπ
log(q)

qi(k−n)tdt

=
2iπ(1− q)

log(q)

∞∑
k=−∞

qc(k−n)f(qk)δk,n

=
2iπ(1− q)

log(q)
f(qn) =

2iπ(1− q)

log(q)
f(x).

Whence the desired formula.

For the convolution there are further properties q-analogue to the classical ones. We mention

some of them here.

Definition 4.1.1. The q-Mellin convolution product of the functions f and g is the function as

denoted above by f ∗M g defined by

f ∗M g(x) =

∫ ∞

0

f(y)g

(
x

y

)
dqy

y
, x ∈ Rq,+. (4.3)

provided the q-integral exists.
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Theorem 4.1.2. If the q-Mellin convolution product of f and g exists, then

1 f ∗M g = g ∗M f 2 Mq [f ∗M g] = Mq(f)Mq(g)

Theorem 4.1.3. For the suitable functions f and g, we have the following relations

1
log(q)

2πi(1− q)

∫ c+ iπ
log(q)

c− iπ
log(q)

Mq(f)(s)Mq(g)(1− s)ds =

∫ ∞

0

f(x)g(x)dqx

2
log(q)

2πi(1− q)

∫ c+ iπ
log(q)

c− iπ
log(q)

Mq(f)(s)Mq(g)(s)ds =

∫ ∞

0

f(y)g

(
1

y

)
dqy

y
,

4.2 Conclusion

It is worthy to mention that Mellin and its q-analogue is quite different of Laplace and Fourier

transforms as well as their q-analogues. Indeed, we can combine the Fourier cosine and Fourier

sine all together to obtain the Laplace transform with a slate modification and this true either for

classical transformations or their q-analogues.

We remarked at the construction stage of some q-analogues of elementary functions that we

always have two choices: one for 0 < q < 1 and one when q > 1, and this corresponds somehow to

the right and left fractional integral calculus. That wealth has been approved with their applications

mainly at recent discover of the quantum theory and application in q-information, q-bit, ... etc.

Azri Dhiya Eddine 39



The references

[1] R. Askey, The q-Gamma and q-Beta Functions, Appl. Anal. 8 (1978), 125-141.

[2] W. S. Chung, T. Kim and H. I. Kwon, On the q-analog of the Laplace transform, Russ. J.

Math. Phys. 21 (2014), 156-168.

[3] A. de Sole, V. G. Kac, On integral representations of q-gamma and q-beta functions, Rend.

Mat. Acc. Lincei s. 9, 16 (2005), 11-29.

[4] T. Ernst, A Comprehensive Treatment of q-Calculus, Springer Basel, 2012.

[5] L. Euler, Introductio in Analysin Infinitorum, Marcum-Michaelem Bousquet, Lausannae,

1748.

[6] A. Fitouhi, N. Bettaibi, and K. Brahim, The Mellin Transform in Quantum Calculus, Constr.

Approx. 23 (2006), 305-323.

[7] G. Gasper, Lecture notes for an introductory minicourse on q-series, arXiv:9509223.

[8] G. Gasper, M. Rahman, Basic Hypergeometric Series, 2nd edn. Cambridge University Press,

Cambridge 2004.

[9] I. M. Gessel, A q-analog of the exponential formula, Discrete Math. 40 (1982), 69-80.
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