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Abstract

Diabetic Retinopathy (DR) is a frequent complication of diabetes mellitus that compro-
mises retinal function in more than 50% of type 2 diabetic patients. It occurs when the
retina’s blood vessels deteriorate. These altered vessels can dilate, leak fluid (plasma,
lipids, and/or blood), and even clog, leaving part of the retina without blood flow. All
these phenomena that occur as a result of diabetes can cause progressive damage to the
structures of the eyeball, leading to a severe reduction in vision and even, without appro-
priate treatment, to blindness in the working age. In our work, we propose a framework
for diabetic retinopathy detection based on rerinal lesions using advanced deep learning.
We use the U-Mamba architecture for retinal and blood vessel segmentation, achieving
high F'1 scores for various lesion types. Our Swin Transformer-based classification model,
incorporating lesion segmentation masks, demonstrated exceptional performance across
multiple datasets, with up to 97.75% accuracy on the EyePAC dataset. This approach
outperformed existing models across various datasets, showing promise for clinical DR
diagnosis.

Keywords: Diabetic Retinopathy Detection, Retinal Lesions Segmentation, Blood vessel

segmentation, Deep Learning, Retina Image Analysis.



Résumé

La rétinopathie diabétique, une complication courante du diabéte, affecte la fonction
rétinienne chez plus de la moitié des patients atteints de diabéte de type 2. Cette pa-
thologie résulte de la dégradation des vaisseaux sanguins rétiniens, entrainant dilatation,
fuites de fluides et occlusions vasculaires. Sans traitement adéquat, ces altérations peuvent
conduire & une perte de vision séveére, voire 4 la cécité chez les adultes en age de travailler.
Notre étude propose une approche novatrice pour la détection de la rétinopathie diabé-
tique, basée sur I'analyse des lésions rétiniennes par apprentissage profond avancé. Nous
avons employé I'architecture U-Mamba pour la segmentation de la rétine et des vaisseaux
sanguins, obtenant des scores F1 élevés pour différents types de lésions. Notre modéle de
classification, fondé sur le Swin Transformer et intégrant des masques de segmentation, a
démontré des performances remarquables sur plusieurs jeux de données, atteignant une
précision allant jusqu’a 97,75%.

Mots Clée : Détection de la rétinopathie diabétique, Segmentation des lésions réti-
niennes, Segmentation vasculaire rétinienne, Apprentissage profond, Analyse d’images

rétiniennes.
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(zeneral Introduction

Introduction

The main cause of vision impairment and blindness in diabetics is diabetic retinopathy
(DR). The blood vessels in the retina may be harmed by uncontrolled diabetes. Prompt
medical care and early identification are essential for preventing further visual impair-
ment. Diabetic retinopathy (DR) is a pathology that affects patients with type 1 and
type 2 diabetes, as a result of the most common complication of microangiopathy. It
occurs when the retina’s small blood vessels are damaged. These altered vessels can di-
late, leak fluid {plasma, lipids, and/or blood), and even clog, leaving part of the retina
without blood flow [10].

Diabetic retinopathy ranks as the second leading cause of blindness after age-related
macular degeneration (before the age of 55). No proliferative diabetic retinopathy (NPDR)
and proliferative diabetic retinopathy (PDR) are the two types of diabetic retinopathy
that affect the retina (PDR). About 35.4% of diabetes patients worldwide have DR, with
a third having vision-threatening DR and 7.6% having retinal edema [11]. The world
prevalence of diabetes among adults (aged 20-79 years) will be 6.4%, affecting 285 mil-
lion adults, in 2010, and will increase to 7.7%, and 439 million adults by 2030 [12].

The Wisconsin Epidemiologic Study of Diabetic Retinopathy (WESDR) is a lon-
gitudinal epidemiologic study of the progression of diabetic retinopathy. The WESDR
demonstrated a direct relationship between the prevalence of diabetic retinopathy and the
duration of diabetes, in both types of diabetes (types 1 and 2). After 20 years of diabetes,
almost 99% of type 1 diabetics and 60% of type 2 diabetics have diabetic retinopathy.
Moreover, proliferative diabetic retinopathy is present in 50% of type 1 diabetics after
20 vears of diabetes, and in 25% of type 2 diabetics after 25 years of diabetes. What’s
more, 3.6% of young patients (under 30 years of age at diagnosis) and 1.6% of patients
over 30 have visual acuity of 1/10 or less. This loss of vision is attributable to diabetes
in 86% of young patients (under 30) and in 33% of older patients [13].

Fundus fluorescein angiography is currently the gold-standard investigative method for
determining the state of the vessels in the fundus and retina (neovascularization). Other
techniques could potentially offer a safer, faster, and equally effective alternative method

for diagnosing and monitoring diabetic retinopathy [14]. Optical coherence tomography
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(OCT) is a non-invasive, non-contact imaging technique that produces micrometer-level
resolution of ocular tissue sections. OCT is based on the reconstruction of reflected light.
Similar to an ultrasound scan, the technique creates a two-dimensional image of the light
that the retina’s various layers have backscattered [15].

The diagnosis of this retinal pathology requires a combination of careful clinical ex-
amination and specialized imaging techniques. HEarly detection of diabetic retinopathy
is essential to restore vision and provide timely treatment. The high number of diabet-
ics worldwide indicates that DR remains a major factor in partial or total vision loss.
Consequently, early detection followed by rapid treatment procedures for people with
diabetes-related diseases is vital.

This project aims to propose an automated real-time diagnostic model based on ro-
bust and efficient artificial intelligence algorithms, which would automatically detect this
complication and speed up the work of doctors. This model will then be validated by
clinical evaluation by doctors and by performance criteria associated with the automatic
detection model, to provide early detection and predict the risk or level of progression of
the disease.

Deep Learning (DL) is a class of artificial intelligence (Al) methods inspired by the
structure of the human brain and based on artificial neural networks [16]. Essentially, DL
refers to methods that automatically learn the mathematical representation of intrinsic
data relationships. Unlike traditional machine learning methods, deep learning methods
require far less human guidance, as they are not based on the generation of hand-crafted
features, a task that can be very laborious. Instead, theyv learn appropriate features
directly from the data. What’s more, DL methods scale much better than traditional
machine learning methods as the amount of data increases. As part of this project, we
will be developing a real automatic system for the diagnosis and detection of retinal

pathologies based on the Deep Learning algorithm.

Project Contributions

Our project’s main goal is to address the pressing need for accessible DR detection tools
designed exclusively for healthcare providers in response to these major care-related bar-
riers through the development of a mobile app driven by advanced Al technology. Our

contributions are as follows:

¢ Provide OPHTALMO SCAN, a mobile application that uses a straightforward,
reasonably priced smartphone camera device to enable real-time DR detection by
utilizing artificial intelligence (AI). This intuitive software does more than just
locate possible DR. It leads users through the process of taking retinal images

and guarantees that the images are of suitable quality for precise analysis. After
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examining the collected image, the Al algorithm gives a prompt assessment of the
possibility of DR.

¢ The design and development of an intelligent system to analyze retinal images for
the early detection of diabetic retinopathy. This model will have the ability to
detect discriminating features that enable DR to be identified using retinal images

with good performance in terms of accuracy.

¢ Develop a set of robust methods to automate as far as possible the process of

detecting and analyzing retinal diseases on retinal images.

o Assessment of the quality of the proposed approaches, by comparing them with

work reported in the state of the art.

Manuscript structure
After an introduction, the manuscript will be organized as follows:

¢ Chapter 1: In this chapter, we introduce the basic concepts that provide the
fundamental knowledge needed to understand this project. This chapter is divided
into two parts. In the first part, we delve into the medical context by providing a
detailed exploration of the human eye, focusing on its anatomy and functions to
explain how diabetes can lead to retinal damage. Next, we detail the risk factors,
causes, and stages of diabetic retinopathy. The second part of the chapter will be
devoted to the technological context, introducing the essential concepts of Deep

Learning (DL}, with a focus on medical image classification and segmentation

¢ Chapter 2: This Chapter presents a comprehensive review of the most relevant
research in retinal image segmentation and DR classification, focusing on two pivotal
aspects: the delineation of retinal structures and the identification of pathological

changes indicative of DR progression.

¢ Chapter 3: In this chapter, we introduce our proposed framework for DR detec-
tion, overcoming the limits of related works, and then we delve into the experimen-
tal study, detailing the used datasets, the experimental setups, and the exhausted

experiments conducted to evaluate the performance of our contributions.

Finally, we will end this master thesis with a general conclusion encompassing the work

and research prospects for future work.



Chapter 1

Basic Concepts

Introduction

In this chapter, we introduce some basic concepts of the research area, giving essential
background knowledge to understand the remaining parts of this thesis. This chapter
consists of two parts. In the first part, we delve into the medical background, starting
with an introduction to diabetes, a chronic condition that affects millions worldwide.
This part also provides a detailed exploration of the human eye, focusing on its anatomy
and functions to explain how diabetes can lead to retinal damage. Subsequently, we focus
on Diabetic Retinopathy (DR), discussing its causes, symptoms, stages, symptoms, and
current treatment options.

The second part of the chapter transitions to the technological background, introduc-
ing essential concepts Deep Learning (DL}, which form the backbone of modern medical
image analysis. Then, we highlight image classification and segmentation, two critical
tasks in computer vision that have profound applications in detecting DR. By bridging
the medical and technological domains; this chapter sets the stage for the subsequent

exploration of DR detection through advanced image processing techniques.

1.1 Medical Background

1.1.1 Diabetes Disease

Diabetes mellitus presents as a chronic metabolic disorder with high blood sugar levels
(hyperglycemia) resulting from inadequate insulin production, insufficient insulin action,
or a combination of both [17]. The pancreas produces insulin, which enables cells to
absorb glucose for energy needs [17]. In cases of type 1 diabetes, insufficient or no insulin
is produced due to the autoimmune destruction of beta cells responsible for producing
insulin [18]. Conversely, type 2 diabetes is characterized by the body’s cells developing

resistance to the effects of insulin, often coupled with a gradual decline in insulin produc-



CHAPTER 1. BASIC CONCEPTS

tion over time [19]. This imbalance of insulin and glucose can lead to chronic damage,
dysfunction, and eventual failure of various organs. Critical organs affected include the
eyes, kidneys, nerves, heart, and blood vessels. Uncontrolled diabetes significantly in-
creases the risk of severe complications, such as cardiovascular diseases, kidney failure,
neuropathy, retinopathy, and lower-limb amputations, thereby impacting multiple organ
systems |20, 21].

1.1.1.1 Diabetes Types

Having discussed the general nature of diabetes, it is important to distinguish between
the major types of this metabolic disorder:

- Type 1 Diabetes: An autoimmune condition entails the immune system’s attack
on and destruction of the insulin-producing beta cells in the pancreas, resulting in a
complete lack of insulin. It accounts for about 5-10% of all diabetes cases and often
presents in childhood or adolescence, though it can occur at any age [22].

- Type 2 Diabetes: The most prevalent type, which accounts for approximately 90-
95% of all diabetes cases, is characterized by insulin resistance and a relative deficiency
in insulin secretion. This type often develops gradually and is associated with older age,
obesity, physical inactivity, and a family history of diabetes [22].

- Gestational Diabetes: Gestational diabetes mellitus (GDM) occurs during preg-
nancy and usually resolves after childbirth. It is characterized by glucose intolerance and
hyperglycemia due to insulin resistance, exacerbated by the placental hormones. GDM
can lead to various complications for both the mother and the fetus, including preeclamp-
sia, macrosomia, and an increased risk of developing type 2 diabetes later in life [23,24].

- Impaired glucose tolerance and impaired fasting glycaemia: Conditions
such as impaired glucose tolerance (IGT) and impaired fasting glycaemia (IFG) signify
a middle ground bhetween normal blood sugar levels and diabetes. People with IGT or
IFG have a higher likelihood of developing type 2 diabetes, but it is not a guaranteed
progression [25].

- Other Types of Diabetes: Monogenic diabetes syndromes, disorders of the ex-
ocrine pancreas (for example, cystic fibrosis and pancreatitis), and drug-induced diabetes
resulting from medications like glucocorticoids and specific antipsychotics are all included
in this category [22].

A comprehensive understanding of the various types of diabetes and their unique
characteristics is crucial for effective management and prevention of complications. Early
diagnosis and appropriate treatment can significantly improve health outcomes and en-

hance the quality of life for individuals with diabetes.
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1.1.1.2 Epidemiology

Diabetes mellitus poses a significant global health challenge, with rapidly escalating preva-
lence rates. As of 2021, approximately 537 million adults worldwide were living with di-
abetes, a figure projected to surge to 783 million by 2045 [26]. Over 75% of these adults
reside in low- and middle-income countries, driven by factors such as urbanization, aging
populations, decreased physical activity, and rising obesity rates. Type 1 diabetes, con-
stituting about 5-10% of all diabetes cases, is one of the most prevalent chronic diseases
in children, with the highest incidence rates observed in Scandinavia and the lowest in
East Asia [27]. Type 2 diabetes accounts for 90-95% of diabetes cases, primarily affecting
adults but increasingly seen in vounger populations, including children and adolescents.
The highest prevalence of type 2 diabetes is found in low- and middle-income countries,
where urbanization and lifestyle changes exacerbate the epidemic [28].

Gestational diabetes affects approximately 14% of pregnancies globally, with higher
rates in certain ethnic groups, including South Asian, Hispanic, and African-American
populations. The prevalence of gestational diabetes is on the rise due to increasing
maternal age and obesity rates, posing long-term risks for both the mother and offspring,
including the subsequent development of type 2 diabetes [24]. In Algeria, the prevalence
of diabetes among adults aged 19-69 years is estimated at 14.4%, with macrovascular
complications present in 7.6% and microvascular complications in 7.4% of the diabetic
population. These statistics underscore the significant burden of diabetes in the country
and the need for comprehensive management strategies.

The economic burden of managing diabetes and its complications is substantial. Pre-
ventive measures, including lifestyle changes and metformin, have been shown to reduce
these costs over time significantly. Furthermore, studies have revealed significant gaps
in diabetes-related knowledge and practices, emphasizing the necessity for improved ed-
ucation and management strategies to enhance patient outcomes. Regular screening and
early intervention are crucial, particularly for conditions like diabetic retinopathy, which
has a high prevalence among diabetic patients and can lead to severe visual impairment
if left untreated [29].

Overall, these findings underscore the urgent need for comprehensive public health
strategies that focus on prevention, early diagnosis, and effective management to miti-
gate the impact of diabetes and its complications on individuals and healthcare systems.
According to the diagnosis, during the first 20 vears, approximately all individuals with
diabetes of type 1, and over 60% of those with diabetes of type 2, are likely to develop
diabetic retinopathy (DR). At the time of diagnosis, 21% of those with type 2 show signs
of diabetic retinopathy [30].
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Figure 1.1: Hlustration of the human eye anatomy.

1.1.2 The Human Eye

The human eye is a complex and sophisticated organ responsible for the sense of sight.
It comprises various structures that work together to capture, focus, and transmit light,

ultimately resulting in visual perception.

1.1.2.1 Anatomy of the Human Eye

The human eye consists of various interconnected structures that work harmoniously to
facilitate vigion. Figure 1.1 provides a visual representation of the anatomical components
of the human eye, with a specific emphasis on its external and internal structures.

The sclera is the tough outer layer maintaining the eye’s shape. The cornea is a clear,
dome-shaped front part that focuses light onto the retina. The iris is the colored part
of the eye surrounding the pupil, which controls the amount of light entering the eye.
Behind the pupil, the lens changes shape to focus light on the retina.

The retina contains photoreceptor cells (rods and cones) that convert light into elec-
trical signals. The macula, at the center of the retina, includes the fovea, the point
of sharpest vision. The optic nerve carries visual information from the retina to the
brain [31]. The vitreous humor is a gel-like substance that fills the space between the
lens and the retina, helping maintain the eye’s shape. The choroid supplies blood to the
retina and absorbs excess light to prevent reflection within the eye [32].

Understanding eye anatomy is essential for managing eye health and treating condi-
tions like diabetic retinopathy. High blood sugar can harm the retina’s blood vessels,

leading to vision loss or blindness, emphasizing the retina’s crucial role in visions [33].
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1.1.2.2 Retina

The retina is a complex and delicate tissue located between the vitreous body and the
choroid at the posterior part of the eye. It consists of several layers of specialized cells
that work together to facilitate vision. The primary function of the retina is to convert
incoming light into electrical signals that the brain can interpret.

The retina contains various types of cells, including photoreceptor cells, bipolar cells,
ganglion cells, and several other types of supporting cells. The two main types of pho-
toreceptor cells are rods and cones. Rods are responsible for vision in low light conditions
and are highly sensitive to light but do not discern color. Cones, on the other hand, are
responsible for color vision and function best in bright light. In addition to photore-
ceptor cells, the retina also contains other specialized cells, such as horizontal cells and
amacrine cells, which play a role in modulating and fine-tuning the visual signals as they
pass through the retinal layers.

The retina is nourished by a network of blood vessels, including the central retinal
artery and vein, which supply oxygen and nutrients to the retinal cells. Fundus images are
used to capture detailed anatomical information about the retina. Figure 1.2 illustrates
the retina’s appearance in a fundus image [34]. In addition to blood vessels, the are three
main anatomical parts that make up the retina:

- Macula: is a small, specialized area that is located near the center of the retina. It
is responsible for central vision, which is crucial for tasks such as reading, driving, and
recognizing faces. Within the macula, there is a high concentration of cone cells, that are
responsible for detailed and color vision. The macula contains a small depression called
the fovea.

- Optic Disk: also known as the optic nerve head, is a region on the retina where
the optic nerve exits the eye. It does not contain any photoreceptor cells, making it a
blind spot in our visual field. The optic disk appears as a circular or oval-shaped area
and is easily identified in fundus images. It serves as a crucial landmark for assessing the
health of the optic nerve.

- Fovea: is a tiny pit at the macula’s center. It is the area of the retina with the
highest concentration of cone cells and is responsible for our sharpest central vision. The

fovea enables us to perceive fine details and provides excellent visual acuity.

1.1.2.3 Fundus Photography

Fundus photography is a technique used to capture images of the fundus, which can be
used for diagnostic and research purposes. Specialized fundus cameras consisting of an
intricate microscope attached to a flash-enabled camera are used in fundus photography.

The optical design of fundus cameras is based on the principle of monocular indirect

ophthalmoscopy, which provides an upright, magnified view of the fundus. A typical
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Figure 1.2: A retinal fundus image and its main anatomical features.

camera views 30 to B0 of retinal area, with a magnification of 2.5x, and allows some
modification of this relationship through zoom or anxiliary lenses.

Fundus photography is a useful tool for diagnosing, educating patients, counseling,
monitoring, and forecasting many ophthalmic conditions, notably diabetic retinopathy,

age-related macular degeneration, retinal vascular disorders, and glaucoma.

1.1.3 Diabetic Retinopathy

Diabetic retinopathy (DR) is a microvascular complication of diabetes mellitus charac-
terized by damage to the retinal blood vessels due to chronic hyperglycemia. In DR,
prolonged elevated blood glucose levels cause pathological changes in the retinal mi-
crovasculature, including capillary basement membrane thickening, pericyte loss, and
endothelial cell damage. These changes lead to increased vascular permeability, capillary
occlusion, and ischemia, ultimately resulting in retinal hemorrhages, fluid leakage, and
the formation of new, fragile blood vessels (neovascularization). If left untreated, DR can
progress to severe visual impairment and blindness. DR is a leading cause of blindness
among adults aged 20-7T4 years and significantly impacts the quality of life of individuals
with diabetes [35].

1.1.3.1 Stages of Diabetic Retinopathy and Clinical Features

Diabetic retinopathy (DR) presents with arange of clinical manifestations that vary based
on the stage and severity of the disease (see Figure 1.3). The primary stages are non-
proliferative diabetic retinopathy (NPDR) and proliferative diabetic retinopathy (PDR).

Additionally, diabetic macular edema (DME) is a critical complication that can ceccur
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Figure 1.3: Example of retinal in each diabetic retinopathy stage.

at any stage of DR. In diabetic patients, the prevalence of different types of retinopathy
increases with the age of diabetes and the patient’s age. Diabetic retinopathy is rare
before the age of 10. However, the risk of developing diabetic retinopathy increases after
puberty.

A) Non-Proliferative Diabetic Retinopathy (NPDR):

This is the most common form of DR, also known as background retinopathy. The most
common findings on fundus examination are signs of retinal ischemia (microaneurysms,
hemorrhages, intraretinal microvascularization abnormalities) without the growth of new
blood vessels. As illustrated in Table 1.1, the severity of NPDR is further categorized
into mild, moderate, and severe stages, each with distinct clinical features that extent

and severity of retinal lesions [33].

B) Proliferative Diabetic Retinopathy (PDR):

PDR is the advanced stage of DR and is mainly characterized by neovascularization,
the growth of new, abnormal blood vessels on the retina’s surface or optic disc. These
new vessels are fragile and prone to bleeding, leading to severe visual complications that
increase the risk of vision loss [37]. The PDR stage clinical features can be detailed by
the following retinal lesions:

- Neovascularization: The primary feature of PDR is the development of new blood
vessels in response to retinal ischemia. These vessels can grow on the retina, optic disc,
or into the vitreous humor, the clear gel that fills the space between the lens and the
retina. Neovascularization is driven by the upregulation of vascular endothelial growth
factor (VEGF) and other angiogenic factors [10].

- Vitreous Hemorrhage: The new vessels in PDR are fragile and can rupture,

10
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Tableau 1.1: Non-Proliferative Diabetic Retinopathy Grades and Clinical Features.

NPDR Grades

Clinical Features

Mild

Microaneurysms: The earliest clinical sign, appearing as tiny
red dots on the retina caused by localized capillary dilations.

Retinal Hemorrhages: Small, dot-blot hemorrhages occur
within the deeper layers of the retina.

Moderate

Increased Microaneurysms and Hemorrhages: More
widespread microaneurysms and hemorrhages.

Hard Exudates: Lipid residues that appear as yellowish de-
posits resulting from leakage from damaged capillaries.

Cotton Wool Spots (Soft Exudates): Small, white, fluffy
lesions caused by microinfarctions in the retinal nerve fibre layer
due to capillary occlusion. These indicate localized ischemia and

represent accumulated axoplasmic material within the nerve fibre
layer [36].

Severe

Intraretinal Microvascular Abnormalities (IRMA): Irreg-
ularly dilated capillaries that serve as a precursor to new vessel
formation.

Venous Beading: Sausage-like retinal vessel dilations indicate
significant retinal ischemia.

Extensive Hemorrhages and Microaneurysms: More nu-
merous and widespread than moderate NPDR.

causing blood to leak into the vitreous humor. This bleeding can significantly impair

vision and may require surgical intervention if not resolved spontaneously. Vitreous

hemorrhage can present as sudden, painless vision loss or the appearance of dark spots

or floaters in the visual field.

- Tractional Retinal Detachment: Scar tissue associated with neovascularization

can contract and pull on the retina, causing it to detach from the underlying tissue.

Tractional retinal detachment is a medical emergency and can lead to permanent vision

loss if not treated promptly. Symptoms include flashes of light, a curtain-like shadow

over the visual field, and a sudden increase in floaters.

- Neovascular Glaucoma: In some cases, neovascularization can occur in the an-

11
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terior eye segment, forming new blood vessels on the iris and drainage angle. This can
obstruct aqueous humor outflow, increasing intraocular pressure and neovascular glau-
coma. Neovascular glaucoma is a painful and sight-threatening condition that requires

prompt medical and surgical management.

1.1.3.2 Diagnosis of Diabetic Retinopathy

Diagnosing DR involves a comprehensive eye examination to assess the extent of retinal
damage. Early detection through regular screenings is crucial for preventing vision loss.
The primary methods for diagnosing DR include fundus examination and various imaging

techniques.

A) Fundus Examination

Fundus examination is a critical component of the diagnostic process for DR. It involves
visually inspecting the eye’s interior surface, including the retina, optic disc, macula, and
posterior pole. The examination can be conducted using several techniques:

- Direct Ophthalmoscopy: A handheld ophthalmoscope is used to view the retina
through the pupil. This method allows for a direct view of the retinal structures but
offers a limited field of view.

- Indirect Ophthalmoscopy: This technique uses a binocular indirect ophthal-
moscope and a condensing lens, providing a wider field of view and a more detailed
examination of the peripheral retina. It is beneficial for detecting proliferative DR and
peripheral retinal changes.

- Slit-Lamp Biomicroscopy with a Fundus Lens: A slit-lamp biomicroscope
combined with a specialized fundus lens allows for a detailed and magnified retina view.
This method effectively identifies microaneurysms, hemorrhages, exudates, and neovas-
cularization

During a fundus examination, ophthalmologists look for key signs of diabetic retinopa-
thy, including microaneurysms, hemorrhages, exudates, cotton wool spots (Soft Exu-
dates), Neovascularization and Retinal Detachment. Figure 1.4 illustrates these key signs

in retinal lesions according to each DR stage.

B) Imaging Techniques

Several advanced imaging techniques complement the fundus examination to diagnose
and monitor DR, providing detailed visualization of retinal structures and blood flow.
Also, they are essential tools for guiding treatment decisions and assessing the response
to therapy.

- Fundus Photography: Using a specialized fundus camera, this technique involves

capturing high-resolution retina images. Fundus photography documents the presence

12
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Figure 1.4: Different retinal lesions according to each diabetic retinopathy stage [1].

and progression of retinal lesions over time. It provides a permanent record that can be
compared during follow-up visits [38].

- Fluorescein Angiography (FA): In this technique, a fluorescent dye (flucrescein)
1s injected into a vein in the arm. The dye travels to the retinal blood vessels, and pho-
tographs are taken asthe dye circulates through the retinal vasculature. FA helps identify
areas of leakage, capillary non-perfusion, microaneurysms, and neovascularization. It 1s
beneficial for evaluating the extent of retinal ischernia and guiding laser treatment [39].

- Optical Coherence Tomography {OCT): OCT is a non-invasive imaging tech-
nique that uses light wawves to create cross-sectional images of the retina. It provides
detailed information about the retinal layers and is especially useful for detecting and
monitoring diabetic macular edema (DME). OCT can reveal retinal thickening, cystoid
spaces, and disruptions in the retinal architecturs that are not visible on clinical exam-
nation [40].

- Optical Coherence Tomography Angiography {(OCTA): OCTA is an ad-
vanced form of OCT that visualizes blood flow within the retinal and choroidal vascu-
lature without dye injection. It provides high-resolution images of the retinal capillary
networks and can detect early microvascular changes, capillary dropout, and necwascu-
larization in DR, [41].

- Ultrasound Imaging {B-Scan Ultrasonography): B-scan ultrasonography
evaluates the retina in complex direct visualization, such as dense cataracts or vitre
ous hemorrhage. It helps detect retinal detachments, vitreous hemorrhage, and other

posterior segment pathologies [42].

13
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- Fundus Autofluorescence (FAF): FAF imaging captures the natural fluorescence
emitted by certain retinal structures when exposed to specific wavelengths of light. It
helps identify areas of retinal pigment epithelial (RPE) damage and atrophy, providing
insights into the retina’s health [43].

1.1.3.3 Treatment of Diabetic Retinopathy

The management of diabetic retinopathy (DR} involves a combination of laser treatments,
pharmacologic therapies, and surgical interventions aimed at preventing further retinal
damage, managing complications, and preserving vision. The choice of treatment depends

on the stage of the disease and the specific retinal changes present.

A) Laser Photocoagulation

Laser photocoagulation is a well-established treatment for DR, particularly in the man-
agement of proliferative diabetic retinopathy (PDR).

- Panretinal Photocoagulation (PRP): is used primarily for treating PDR. The
procedure involves applying laser burns to the peripheral retina to reduce the demand for
oxygen and decrease the stimulus for neovascularization. By destroying the peripheral
ischemic retina, PRP helps to prevent the growth of new, abnormal blood vessels and
reduces the risk of vitreous hemorrhage and retinal detachment [44].

- Focal/Grid Laser Photocoagulation: This technique targets specific leaking
microaneurysms, while grid photocoagulation is applied to areas of diffuse retinal thick-
ening. The laser seals leaking blood vessels, reduces fluid accumulation in the macula,

and stabilizes or improves vision [45].

B) Anti-Vascular Endothelial Growth Factor (VEGF) Therapy

This therapy has significantly advanced the treatment of DR, key complications of dia-
betes leading to vision loss. By inhibiting VEGF, these therapies reduce abnormal blood
vessel growth and fluid leakage in the retina, thus improving visual acuity and reducing
macular swelling. Clinical trials have demonstrated their efficacy, establishing anti-VEGFEF
therapy as a first-line treatment for preventing DR progression [46]. Despite challenges
like cost and the need for regular injections, anti-VEGF therapy remains a revolution-
ary approach, significantly enhancing vision preservation and quality of life for diabetic

patients.

C) Surgical Interventions

Surgical interventions are reserved for advanced cases of DR that do not respond to
less invasive treatments or when complications arise. Two surgical procedure can be

performed.
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- Vitrectomy: Vitrectomy is a surgical procedure that involves the removal of the
vitreous gel from the eye. It is indicated in cases of non-clearing vitreous hemorrhage,
tractional retinal detachment, and severe proliferative diabetic retinopathy with extensive
fibrovascular proliferation. The procedure helps to clear hemorrhages, relieve traction on
the retina, and allow for further laser treatment if necessary [47].

- Endolaser Photocoagulation: During a vitrectomy, endolaser photocoagulation
can be performed to treat retinal neovascularization. This approach allows for precise
application of laser therapy to areas that may not be accessible with conventional laser

techniques [48].

1.2 Deep Learning in Medical Image Analysis

1.2.1 Introduction to Deep Learning

Deep Learning (DL) is a subfield of machine learning. It has emerged as a powerful
tool for tackling complex tasks in various domains, including medical image analysis.
DL is inspired by the structure and function of the human brain and involves the use
of artificial neural networks with multiple layers to learn hierarchical representations of
data. This powerful technique has demonstrated remarkable success in tasks such as
image recognition, natural language processing, and speech recognition, among others.

The origins of DL can be traced back to the 1940s-1960s when artificial neural networks
were first proposed as a model for biological brain activity [49]. Early ideas in DL
were introduced in the 1960s [50]. However, due to the computational and conceptual
limitations of that period, models that could take advantage of these ideas were not
developed. The popular wave of deep learning came in the 1980s when batch processing
and unsupervised learning entered the scene. In the late 90s and early 2000s when the
popularity of neural networks started to decrease mainly due to the difficulties in training
models and the lack of adequate data sets [51].

From 2011, DL models outpaced the performance of traditional machine learning
methods in computer vision tasks and more general domains. This real revival of DL is
driven by three key factors: the availability of large-scale datasets (such as ImageNet [52]},
advances in computing power (especially GPUs), and improvements in network architec-
tures (like CNNs}. In which researchers demonstrated that DL networks could outper-
form traditional machine learning methods in tasks such as image and speech recogni-
tion [53, 54].

Today, DL is at the forefront of Al research and applications. Breakthroughs in ar-
chitectures (like transformers and generative models), coupled with vast computational
resources and large-scale datasets, have enabled deep learning models to achieve extraor-

dinary performance across various domains, including healthcare, autonomous driving,
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and more.

1.2.1.1 Artificial Neural Networks (ANNs)

Artificial Neural Networks {(ANNs) form the milestone of deep learning models. They
are computational models inspired by the biological neural networks in the human brain.
They are designed to mimic the way the brain processes information by interconnecting
a large number of processing units (neurons), organized in layers that enable the network
to learn from data and make predictions [2].

At the core of an ANN is the idea of learning from data by adjusting the strengths
of the connections between neurons, known as weights. These weights determine the
influence of one neuron’s output on another neuron’s input, allowing the network to

capture and represent complex patterns and relationships within the data.

a) Basic Structure

The fundamental structure of an ANN is illustrated in Figure 1.5. It typically comprises
three main layers: the input layer, the hidden layer(s), and the output layer.

The input layer is responsible for receiving the data or features that are to be processed
by the network [55]. These input features are then passed through the hidden layers,
where a series of mathematical operations are performed to transform the data, allowing
the network to learn complex patterns and relationships within the data [56]. The hidden
layers are composed of a variable number of neurons, which apply various activation
functions to the weighted sum of their inputs, producing outputs that are then passed to
the next layer till reach the output layer that provides a decision [55].

The choice of the number and size of hidden layers, as well as the specific activation
functions used, are critical design decisions that can significantly impact the performance
and capabilities of the ANN [57].

b) Activation Functions

Activation functions play a crucial role in introducing non-linearity into neural networks,
enabling them to model and learn complex relationships within the data. Without activa-
tion functions, neural networks would essentially become linear models, severely limiting
their capability to solve intricate problems [58].

The role of activation functions is to apply a non-linear transformation to the weighted
sum of inputs received by a neuron. This non-linear transformation allows the neural
network to capture and represent non-linear patterns present in the data. Different
activation functions have distinct properties and characteristics, making them suitable
for different types of problems and network architectures [59]. Table 1.2 summarizes

commonly used activation functions in neural networks.
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Figure 1.5: Architecture of the Artificisl Neural Network [2].

¢) Backpropagation Algorithm

Backpropagation is a fundamental algorithm for training ANNs. It involves a forward
pass, where inputs are propagated through the network to generate predictions, and a
backward pass, where the error is propagated back to update the weights [60].

In the forward pass, inputs are fed into the input layer, and the network computes
gutputs layer by layer until reaching the output layer. The errcr or loss is then caloulated
by comparing the output to the true labels using a loss function, such as mesan squared
error for regression or cross-entropy for classification.

The network’s weights are adjusted then in the backward pass based on the computed
error. This process uses the gradient of the loss function concerning each weight, obtained
through the chain rule of caleulus. This gradient 1s multiplied by a learning rate, a small
constant that controls the step size in the weight update process. The iterative process of
forward and backward passes continues until the network converges to a state where the
loss is minimized. The weight update rule can be summarized by the following equation:

Whpew = Wold — T}‘% (113
where w represents the weight, + is the learning rate, and % is the gradient of the
loss function with respect to the weight.
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Tableau 1.2: Comparison of Common Activation Functions
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1.2.1.2 Deep Neural Networks (DNNs)

ANNs have been successful in various applications. However, for complex problems in-
volving large datasets and intricate patterns, traditional ANNs can be limited in their
learning capacity and computational efficiency. This limitation has led to the develop-
ment of deep neural networks (DNNs), which are ANNs with multiple hidden layers and
specialized architectures, such as Multi-Layer Perceptrons (MLPs) and Convolutional
Neural Networks (CNNs).

a) Multi-Layer Perceptrons (MLPs)

Multi-Layer Perceptrons (MLPs) are a subclass of ANNs that form the foundational
architecture for many DL models. They consist of multiple layers of neurons, including
input, hidden, and output layers, where each layer is fully connected to the next. MLPs

are particularly significant for their ability to model complex, non-linear relationships
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Figure 1.6: Hlustration of a Multi-layer Perceptrons Architecture [3].

within data.

As shown in Figure 1.6, MLPs are composed of an input layer that receives the data,
one or more hidden layers that process the data, and an output layer that produces the
final result. Each layer is fully connected to the next, meaning every neuron in one layer
is connected to every neuron in the subsequent layer. This dense connectivity allows
MLPs to capture complex patterns in the data [61].

While MLPs are powerful for medelling a wvariety of tasks, they have limitations
when dealing with structured data like images or sequences. For instance, they do not
inherently exploit the spatial structure of images, which is where specialized architectures
like Convolutional Neural Networks (CNNs) come into play. Nevertheless, MLPs are
highly effective for tasks such as regression, classification, and simple pattern recognition,

and they serve as the basis for understanding more complex deep learning architectures.

b) Convolutional Neural Networks {(CNNs)

Convolutional Neural Networks (CNNs) are a specialized type of DNN designed to process
grid-like data structures, particularly images. They leverage the concepts of convolution
and pooling to capture spatial hierarchiss and reduce the dimensionality of the data,
making them more efficient and scalable for image analysis.

The CNN architecture is composed of several successive layers (Figure 1.7 ). There
are three main types of layers that are generally observed in the CNNs architectures:
Convolutional Layers (Conv), the Pocling Layer (Pocl), and the Fully-Connected Layers
(FCLs).

- The Convolutional Layer: performs a specific function of transformation on local
regions in the input (receipt field) to obtain a useful representation. It functions as a fea-

ture extractor. An input image is passed through a series of sliding learnable convolution
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Figure 1.7: Illustration of CNN architecture: example of VGG 16 model.

kernels (filters), creating as a result 3-dimensional convolution feature maps (Fmaps) (see
Pigure 1.8). The feature maps values are produced using the neuron activation function
that can be defined by:

Flz) = sz-mz-—l— b (1.2)

where x; ;w; and b are the convolutional input values (receipt field), the weights (filter
values), and the bias, respectively. s represents the filter size.

In addition, a correction operation called Rectified Linear Unit {ReLU) is also applied
to the obtained feature maps. ReLU is an element-wise operation defined by (Equation

1.3). The output feature maps have non-negative values.

flz) = Max(0, z) (1.3)

- The Pooling Layer: performs a sub-sampling operation, by reducing the spatial
dimensions (i.e the height and the width) of the intermediate fsature maps and retaining
the most important information. The pooling is an im portant concept for CNNg since it
aims to reduce the size of the feature maps in order to minimize the number of parame-
terg and the computation operations in the network. The pooling is generally operated
a8 a Max, Average, or Sum function on every depth slice of the input feature maps inde-
pendently. Whereas the depth dimension d is still unchanged, the height and the width
dimensions of the depth slice are down-sampled using pooling filters (Figure 1.8). The
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Figure 1.8: Principle of filter sliding in the convolution layer over an image.
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Fipure 1.9: Pooling layer principle: example of performing Max pooling function.

output of this layer produces typically a 3-dimensional feature maps of the dimensions

(2 % h x d) which can be defined by:

wi—F
=—11 1.4
o g + (1.4)

hy — F
h= 1 1.5
—+ (1.5)

Where wy, hy, and d are the input width, height, and depth respectively, S is the

stride, and F is the spatial extent. For the two pocling hyper-parameters F' and 5, they
are commonly used in two variations: F' =2 and & = 2 ag well as the overlapping pocling
in which £ =3 and 5= 2.

- Fully-Connected Layers (FCLs): As its name signifies, is a feed-forward neural
network in which all neurons are connected to all the neurons of the next layer and have
connections with all previous layer neurons (Figure 1.10. As shown in Equation 1.2, the
F'CLs neuron activation function can be computed using matrix multiplication added to

bias offset.
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Figure 1.10: Hlustration of Fully-Connected Layers structure [4].

Adding FCLs able the CNN model for end-tc-end learning [62]. More precisely, after
feature generation, we need for a decision. Thus, the obtained high-level features from
the comnv layer are fed into the FCLs structure that learns the non-linear combinations
in that feature space. Over a series of back-propagation epochs, the neurons weights are
determined for optimising the Softmax function. Finally, the last FCL outputs the final

decigion.

1.2.2 Deep Learning for Image Classification

Image classification is a core task in computer vision that involves categorizing images into
predefined classes based on their visual content. This process is essential in numerous
fields, including medical imaging, where classification involves assigning a label to an
entire image or specific regions within it, often to identify the presence or absence of
a particular disease or condition, such as identifying whether an X-ray shows signs of
prneumonia or a retinal image indicates diabetic retinopathy. Thus, image classification
plays a crucial role in automating diagnosis, supporting clinical decision-making, and
Improving patient care.

Image classification can be categorized into different types based on the number of

clagsses and the nature of the lsbels:

¢ Binary Classification: The image is assigned to one of two possible categories,

such as "normal" or "abnormal."

¢ Multi-class Classification: The image is assigned to one of multiple mutually

exclusive categories, such as different types of tumors or different stages of a disease.

¢ Multi-label Classification: The image can be assigned to multiple labels simul-

tanecusly, indicating the presence of multiple features or conditions.
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1.2.2.1 Deep Learning Techniques for Image Classification

With the advancements in deep learning and the availability of large-scale datasets, Deep
learning has significantly advanced image classification tasks, achieving state-of-the-art
performance across various applications. Deep neural networks have proven highly effec-
tive in learning complex features directly from raw image data. However, choosing an
appropriate deep learning architecture is crucial for effective image classification. Differ-
ent architectures are designed to handle the intricacies of image data and can significantly

impact the performance and efficiency of the model.

A) Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are the most widely used model architectures
for image classification tasks. Ovwver time, more sophisticated architectures have been
developed to improve the capabilities of CNNs. These architectures have the ability to
automatically learn powerful image representations from the input images.

The successful results of CNNs on image classification task has motivated the re-
search contributions in network architectural design. AlexNet [51] is one of the earliest
successful CNNs, AlexNet achieved groundbreaking performance on the ImageNet chal-
lenge in 2012, It introduced key concepts like RelLU activation functions and dropout
regularization.

Since then, several CNN architectures have been proposed to achieve the stat-of-the-
art performances on ImageNet dataset for different ILSVRC competition tasks, whereby
each CNN architecture has tried to address the shortcomings of previous CNN archi-
tectures by adding new structural reformulations or by exploring different strategies for
parameter optimization to improve the CNNs performance and reduce the computational
cost. Figure 1.11 summarizes the history of the CNN architectures evolution [63].

The full training of CNN models is a high computational cost process and requires
a huge amount of labelled data. Thus, several studies have examined the generalization
power of the CNN architecture, demonstrating the transferability of the CNN models
that are trained upon ImageNet dataset. These pre-trained CNN models are able to
serve as the backbone for other recognition tasks on other datasets. In the literature,
the most cited CNN networks belong to the three families: VGG, Resnet, and Incep-
tion khan2020survey.

e VGGNet: VGGNet [64] further improved upon AlexNet by using smaller convo-
lutional filters and stacking them deeper, leading to better feature extraction and

classification accuracy.

nttp://www. image-net.org/challenges/L3VRC/2012/
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Figure 1.11: History of The CNN architectures evolution khan2020survey.

s+ ResNet: ResNet [65]) addressed the vanishing gradient problem in deep networks

by introducing residual connections, allowing information to flow more efficiently
through the network.

s Inception Networks: Inception networks [66] introduced a novel architecture
with multiple parallel convolutional paths, enabling the network to learn features

at different scales and resolutions.

In medical image classification task, transfer learning allows leveraging the power
of these pre-trained models on large datasets, such as ImagelNet, to fine-tune them on
smaller medical image datasets. This significantly reduces the need for large amounts of

labeled medical data, making deep learning more accessible for medical applications.

B) Attention Mechanisms

While deep learning architectures like CNNg have significantly advanced image classifica-
tion, they often strupgle with capturing long-range dependencies and focusing on the most

relevant parts of an image. Attention mechanisms, inspired by the human visual system’s
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Tablean 1.3:

Types of Attention Mechanisms for Image Classification

Type of Attention

Description

Benefits

Self-attention

Allows the model to attend to dif-
ferent parts of the same input fea-
ture map, capturing long-range de-

- Captures global context
and long-range dependen-
cles.

pendencies and relationships be-
tween different regions.

- Improves performance
on images with complex
structures.

- Enhances relevant fea-
tures and suppresses irrel-
evant ones.

Channel Attention | Focuses on the importance of dif-
ferent feature channels, allowing the
model to selectively enhance or sup-
press specific features that are more

relevant to the classification task.

- Improves robustness to
noise and variations.

Spatial Attention Focuses on the spatial location of
features, allowing the model to pri-
oritize certain regions of the image

based on their spatial context.

- Emphasizes spatially rel-
evant features.

- Improves localization of
objects or lesions.

ability to selectively focus on specific regions, address these limitations by allowing the
model to dynamically weigh the importance of different parts of the input [67].

By selectively focusing on the most relevant regions and features, attention mech-
anisms can significantly improve classification accuracy, especially for complex or chal-
lenging datasets [68]. This feature can help models become more robust to distracting
parts of the image ignoring irrelevant or noisy information, improving its robustness to
real-world variations

Similar to CNNs, attention mechanisms trained on large datasets can often be effec-
tively transferred and fine-tuned for specific image classification tasks with limited data.
Whereas other DNN architectures suffer from the lack of interpretability of their pre-
dictions, Attention maps can provide insights into which regions or features the model
considers important for a particular classification decision, enhancing the model inter-
pretability [69].

Several types of attention mechanisms have been developed for image classification,

Table 1.3 summarize the three main attention mechanism types and their benefits.
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1.2.2.2 Evaluation Metrics for Classification Models

Evaluating the performance of classification models is crucial to understanding their effec-
tiveness and reliability. In the context of image classification, metrics provide quantitative
measures to assess how well a model distinguishes between different classes. This is espe-
cially important in medical imaging, where accurate and reliable classification can have
significant implications for diagnosis and treatment.

Choosing the appropriate evaluation metric depends on the specific requirements and
constraints of the classification task. In medical imaging, where the consequences of
misclassifications are significant, it is crucial to balance between metrics such as precision,

recall, and Fl-score, and consider metrics like AUC-ROC for a comprehensive evaluation.

A) Confusion Matrix

The confusion matrix summarizes the number of correct and incorrect classified samples
break-downing by each class showing the classes where the method makes confused pre-
dictions. The confusion matrix is a K x K matrix where K is the number of classes and
S is the total number of tested images in the dataset. FEach cell C; represents the total
number of samples that belong to #** class (ground truth) and are misclassified as 7"
class. All correctly classified samples lie on the diagonal of the matrix C;;4 = 5. The

sum of all the elements of the matrix is equal to the total number of the testing samples

S such that: «
S = Z Z B (1.6)

=1 g=l

B) Accuracy, Precision, Recall, and F1 Score

- Accuracy: is one of the most commonly used evaluation metrics for classification tasks.
It represents the proportion of correctly classified instances among the total instances in

the dataset as follows:

Number of Correct Predictions
Total Number of Predictions

Accuracy = i

Higher accuracy indicates that the model correctly classifies most of the images. How-
ever, in cases of imbalanced datasets where one class is much more frequent than others,
accuracy can be misleading. For example, if 90% of images belong to one class, a model
that always predicts this majority class will have 90% accuracy, even though it is ineffec-
tive at distinguishing the minority class.

- Precision: measures the proportion of correctly predicted positive instances among
all instances predicted as positive. It is a critical metric when the cost of false positives

is high. precision can be computer by the following equation:
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True Positives (T'P)

P F G —
PECSION = e Positives (T'P) + False Posttives (FP)

(1.8)

Higher precision indicates that the model has a low false positive rate and is reliable
in its positive predictions. This precision is useful in medical imaging when confirming a
diagnosis is critical, and false positives can lead to unnecessary treatments.

- Recall (Sensitivity or True Positive Rate): measures the proportion of cor-
rectly predicted positive instances among all actual positive instances. It is crucial when

the cost of false negatives is high. The recall metric is formulated as below:

True Positives (1'P)

=
Reca True Positives (T'P) + False Negatives (FN)

(1.9)

A higher recall value indicates that the model effectively identifies most of the positive
instances. This metric is important in scenarios where missing a positive case (e.g., failing
to detect a disease) has severe consequences.

- F1-Score: is the harmonic mean of precision and recall, providing a single metric
that balances the two. It is particularly useful when the dataset is imbalanced and a
balance between precision and recall is needed.

Precision < Recall

F1 5 =9 1.10
core & Frecision + Recall ( )

The high F1-Score indicates a good balance between precision and recall. This metric
is valuable in medical imaging where both detecting diseases (recall) and minimizing false
alarms (precision) are important.

Specificity (True Negative Rate): measures the proportion of correctly predicted
negative instances among all actual negative instances. It is the complement of recall for

the negative class.

True Negatives (T N)
True Negatives (T'N) + False Positives (F'P)

Speci ficity — (1.11)

Higher specificity indicates that the model is effective at identifving negative instances
and has a low false positive rate. The specificity is important in medical imaging to ensure

healthy cases are not wrongly classified as diseased

C) Area Under the ROC Curve (AUC-ROC)

AUC-ROC is a performance measurement for classification problems at various threshold
settings. ROC (Receiver Operating Characteristic) curve plots the true positive rate
(recall) against the false positive rate (specificity). this metric can be computer using the

following formula:
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1
AUC ROC = / ROC Curved (False Positive Rate) (1.12)
0

High AUC-ROC indicates that the model is good at distinguishing between the pos-
itive and negative classes across different thresholds. [t can be used in evaluating the
model’s performance over a range of decision thresholds, particularly when the classes

are imbalanced.

1.2.3 Deep Learning for Image Segmentation

Image segmentation is a fundamental task in computer vision that aims to divide an
image into distinct regions based on certain criteria, such as color, texture, or shape. The
resulting segmentation map assigns each pixel to a specific class or label, representing
different structures or regions of interest allowing for detailed analysis and interpretation
of the image. In medical imaging, this task is particularly critical in several applications
for identifying anatomical structures, detecting abnormalities, and quantifying disease
progression, in which image segmentation can isolate regions such as tumors, organs, or
blood vessels, facilitating diagnosis, treatment planning, and monitoring [5].

Three main image segmentation types can be distinguished:

1. Semantic Segmentation: Clagsifies each pixel into a category from a set of pre-
defined classes. All pixels belonging to the same class are labeled identically. It
focuses on identifying and classifying different objects or structures within an im-
age, , for instance, in a retinal image, pixels may be classified into categories like

lesion, and background.

2. Instance Segmentation: Extends semantic segmentation by distinguishing be-
tween different instances of the same object class. FEach instance is segmented
separately, allowing for differentiation between, for example, multiple lesions in a

retinal scan.

3. Panoptic Segmentation: Combines semantic and instance segmentation by pro-
viding a complete scene understanding. It classifies all pixels into both classes and

instances, ensuring that every pixel is accounted for in the segmentation process.
1.2.3.1 Deep Learning Techniques for Image Segmentation

A) Fully Convolutional Networks (FCNs)

Fully Convolutional Networks (FCNs) are CNN-based architectures specifically designed
for dense prediction tasks like image segmentation. Unlike traditional CNNs, FCNs
replace fully connected layers with convolutional layers, preserving the spatial structure

of the input image.
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As shown in Figure 1.12, the architecture of FCNgs consists of a sequence of convolu-
tional and pooling layers followed by up-sampling layers. The up-sampling layers, also
known as deconvolutional layers, increase the resolution of the feature maps to produce
a segmentation map that matches the input image size. The final output of an FCN is
a pixel-wise prediction map, where each pixel is assigned a class label, enabling precise
segmentation [5].

B) Mask R-CINN

Mask R-CNN extends the capabilities of the Faster R-CNN architecture for instance
segmentation, allowing it to detect and segment each object instance in an image [6]. As
illustrated in Figure 1.13, the Mask R-CNN architecture consists of three main blocks:

¢ Region Proposal Network (RPIN): Generates candidate object bounding boxes

(regions of interest, or Rols) that likely contain objects.

e RolAlign: Refines the regions to ensure accurate spatial alignment, crucial for

precise segmentation.

¢ Segmentation Head: Adds a small FCN to predict a binary mask for each pro-

posed region, segmenting the object instance within its bounding box.

C) U-Net Architecture

The U-Net architecture has become one of the most influential models in medical image
segmentation due to its ability to produce precise and reliable segmentations with limited
training data.

The U-Net architecture consists of a symmetric encoder-decoder structure with skip
connections, forming a "U" shape (see Figure 1.14). This structure allows for efficient

and precise segmentation by combining local and global contextual information [7].

Replacement of fully
connected layer by
convolutional layer

Output Image

Predicted
Pixel Label

Figure 1.12: Architecture of a fully convolutional network [5].
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¢ Encoder-Decoder Structure: U-Net consists of an encoder path that compresses
the input image into a compact representation and a decoder path that reconstructs
the segmentation map. The encoder captures context, while the decoder refines the

segmentation to the original resolution.

¢ Skip Connections: U-Net uses skip connections between corresponding layers
in the encoder and decoder. These connections transfer fine-grained details from
the encoder to the decoder, enhancing the model’s ability to produce detailed and

accurate segmentations.
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1.2.3.2 Evaluation Metrics for Segmentation Models

Evaluating segmentation models requires specialized metrics that go beyvond simple ac-
curacy, as these models predict dense, pixel-level information rather than discrete class
labels. The effectiveness of a segmentation model is determined by how well the predicted
segments match the ground truth regions in an image. In medical imaging, where precise
delineation of structures such as organs, tumors, or lesions is critical, choosing the right
evaluation metrics is essential for assessing model performance accurately.

For F represents the set of pixels in the predicted segment and & is the set of pixels in
the ground truth segment, | P| and |G| are the number of pixels in the predicted segment
and the ground truth segment respectively. Also, | M G| represents the number of pixels
common to both P and G where |FP U G| is the total number of pixels in either P and
(. The following metrics are the most commonly used for evaluating the segmentation

performance of the predicted segment.

A) Intersection over Union (IoU)

Intersection over Union (IoU}, also known as the Jaccard Index, is widely used for eval-
uating segmentation tasks, providing a balanced measure of accuracy and completeness.
It measures the overlap between the predicted segmentation and the ground truth. The
IoU metric can be calculated using the below formula where high IoU indicates a strong

overlap between the predicted and ground truth segments.

PAa|

BolF e i
T Pug

(1.13)

B) Dice Coefficient

The Dice Coefficient (F1 Score}, is another metric for measuring the overlap between two
sets. It is similar to IoU but tends to be more sensitive to the sizes of the segments.
This metric is particularly useful in medical imaging where it is crucial to maximize the
overlap between predicted and actual regions. The high Dice Coefficient reflects a strong
correspondence between the predicted and ground truth segments. [t can be formulated

as:

2|P NG|

Dice Coef ficient = ————
[P+ 6]

(1.14)

C) Precision and Recall for Segmentation

Precision and Recall can be adapted for segmentation tasks to evaluate the correctness
of the positive predictions and the model’s ability to capture all relevant regions, re-

spectively. Balancing precision and recall is essential in medical imaging to ensure both
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accurate and complete segmentations. High precision indicates that a high proportion of
the predicted segment pixels are correctly labelled, where high recall indicates that a high
proportion of the ground truth segment pixels are correctly captured by the prediction.

Precision and recall metrics are computed by the following equations

PnaG
Precision = [FEG (1.15)
|
|P NG
Recall = ——— (1.16)
Gl

Conclusion

This chapter has established the foundational concepts for understanding the subsequent
exploration of diabetic retinopathy (DR) detection. Initially, we examined the medical
background, detailing the impact of diabetes on global health and its specific impacts on
ocular health, leading in DR. We detailed the anatomy of the eve and the mechanisms by
which diabetes causes retinal damage, outlining the progression and symptoms of DR, as
well as current treatment methodologies.

Subsequently, we transitioned to the technological context, introducing Deep Learning
(DL) as a key tool in modern medical image analysis. We underlined the importance of
image classification and segmentation tasks in the context of DR detection, illustrating
how these techniques can enhance diagnostic accuracy and efficiency.

Having bridged the medical and technological domains, a background is prepared to
proceed to the next chapter. In Chapter 2, we explore deeper into the existing literature
on deep learning-based diabetic retinopathy detection. By reviewing the most relevant
research, we will gain insights into the current state-of-the-art techniques, identify key
challenges, and explore potential avenues for future research. This comprehensive review
will provide a solid foundation for the subsequent chapters, where we will present our

proposed methodology and contribute to the advancement of this critical field.
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Chapter 2

State of the Art

Introduction

Diabetic Retinopathy (DR) as detailed in the previous chapter, remains a leading cause
of vision impairment globally, necessitating robust screening and early detection meth-
ods. Recent advancements in medical image analysis, particularly through deep learning
techniques, have advanced the automated diagnosis of DR from retinal fundus images.
This chapter presents a comprehensive review of the most relevant research in retinal
image segmentation and DR classification, focusing on two pivotal aspects: the delin-
eation of retinal structures and the identification of pathological changes indicative of
DR progression.

The first section examines state-of-the-art methods in retinal image segmentation,
with particular emphasis on blood vessel extraction and retinal lesions identification.
These techniques form the foundation for advanced DR detection systems, enabling the
precise localization and quantification of retinal abnormalities. We explore the evolu-
tion from traditional fully convolutional networks to more sophisticated architectures,
including variants of U-Net and region-based convolutional neural networks, each offer-
ing unique advantages in addressing the inherent challenges of retinal image analysis.

The second part of this chapter delves into recent methods for DR classification,
highlighting end-to-end learning paradigms and lesion-based methodologies. We review
different architectural networks, training strategies, and performance optimizations that
have significantly enhanced the accuracy and reliability of automated DR grading sys-
tems. This comprehensive overview aims to explain the current landscape of DR detec-
tion techniques, providing a solid framework for understanding the field’s trajectory and

identifying different axes for future research and clinical application.
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2.1 Retinal Image Segmentation

The fundus image is the area where arteries, veins, and capillaries can be observed di-
rectly. Changes in the retinal vessels in the fundus alert us to the onset of many fundus
and cardiovascular diseases, like diabetic retinopathy. Consequently, retinal vessel seg-
mentation is crucial for the diagnosis and screening of various diseases. Retinal image seg-
mentation is the process of partitioning an image into meaningful sections, which enables
clinicians and automated systems to isolate and analyze distinct anatomical structures
within the retina, such as blood vessels and lesions. This process is crucial for identifying
abnormalities and tracking disease progression.

The breaking down of the retinal images into detailed segments gives clearer insights
into the state of the eye identifying pathological changes and facilitates the monitoring
of disease progression. This section delves into the relevant studies used in retinal image

segmentation including retinal blood vessel and retinal lesion segmentation tasks.

2.1.1 Retinal Blood Vessel Segmentation

Many computer-aided diagnostic (CAD) systems begin with the segmentation of retinal
blood vessels to diagnose non-ocular conditions like hypertension, cerebrovascular, and
cardiovascular diseases, in addition to ocular conditions like diabetic retinopathy (DR).
Retinal segmentation involves automatically detecting the boundaries of blood vessels
within the retina, predicting whether each pixel in a fundus image is a vessel or not
through binary classification. This detection is critical for classifiers to learn essential
features like retinal proliferation and retinal detachment, which significantly aid in accu-
rately classifying diabetic retinopathy.

The task is challenging due to complex vessel morphology, lesion confusion, and lim-
ited annotated data. However, recent retinal blood vessel segmentation advancements
have notably improved the accuracy and reliability of diagnosing diabetic retinopathy and
other vision-threatening conditions. Various researchers have developed methods to en-
hance segmentation performance, often employing Fylly Convolutional Neural Networks
(FCNNs), or exploiting U-Net architecture and its variations for semantic segmenting

blood vessels from fundus retina images.

2.1.1.1 FCN-based Methods for Retinal Blood Vessel Segmentation

Fully Convolutional Neural Networks (FCNs) have proven to be highly effective in appli-
cations related to image segmentation. In retinal blood vessel segmentation, FCNs have
been integrated into various studies. In [70], authors have introduced dual-source fusing
FCN to improve blood vessel segmentation accuracy. The FCN models receive fused in-

put from dual sources, including retinal grayscale image and edge information obtained
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by the Sobel filter. FCN has also been used in [71] for retinal patch-level segmentation.
The authors in this study have proposed a blood vessel segmentation framework that con-
tains three main steps, patch extraction, FCN-based patch segmentation, and then the
obtained FCN segmentation masks are combined using a patch aggregation phase. Their
framework is tested using the DRIVE dataset, which shows promising results. Figure 2.1
presents an overview of the semantic segmentation approach based on FCN methods
proposed in [8].

An improved multi-path FCN model was proposed in [72] for automatic retinal ves-
sel segmentation. The model receives a multi-scale retinal image input where the fi-
nal segmentation result is obtained by overlapping the multi-segmentation outputs from
the multi-path FCN model using a reconstruction algorithm. The experimental study
has been conducted on three retinal image datasets including STARE, DRIVE, and
CHASE DBI1 showing a performance improvement compared to basic FCN.

In the same context, a butterfly FCN (BFCN) [73] has been proposed to improve the
basic FCN model by using multi-scale inputs. The multi-scale inputs can improve the
segmentation quality by reaching powerful special information via the different receptive
fields size. This advantage helps the proposed BFCN to better understand the local
context information of the retinal image.

Another study [74] has proved the efficacity of using multi-scale inputs for retinal blood
vessel segmentation by designing residual multi-scale FCN architecture. The experimental
results on CHASE DBI1, DRIVE, and STARE have shown the segmentation ability of
thin, medium, and large vasculature under different optic disk positions, sizes, and large

variations of contrast.
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2.1.1.2 U-Net-based Methods for Retinal Blood Vessel Segmentation

The U-Net architecture has been widely used in several medical image analyses including
retinal blood vessel segmentation. In [75], U-Net architecture is integrated with region
merging. Their approach mitigates the common issue of feature loss during segmentation
by recombining segmented regions with the original retinal images, preserving essential
details for accurate disease classification. This method achieved impressive accuracy in
classifying stages of diabetic retinopathy using Convolutional Neural Networks {CNNs},
marking a substantial advancement in diagnostic methodologies. However, due to U-Net’s
limitations, such as the unsuccessful identification of thin retinal vessels, high computa-
tional complexity, insufficient segmentation degree, and poor continuity of microretinal
vessels, several methods have been proposed to address these issues.

Authors in [76] have developed Dense U-Net model that advances the capabilities of
the U-Net architecture by incorporating dense blocks. This model improves the segmen-
tation accuracy of small blood vessels by ensuring each layer’s input derives from the
output of all previous layers. Their model demonstrated superior performance on the
DRIVE and CHASE DBI1 datasets, showcasing advancements in sensitivity and accu-
racy for detecting finer vascular details crucial for diagnosing ophthalmic diseases. The
authors of [77] have addressed the limited representative capacity of the U-net network
by proposing a residual U-Net. The proposed network has a new residual block structure
and a dropout layer to alleviate the network’s over-fitting problems. The added resid-
ual blocks allow the residual U-Net network to extract more representative retinal image
features showing promising results for retinal blood vessel segmentation on DRIVE and
STARE datasets. In the same context, residual attention and dual-supervision cascaded
U-Net (RADCU-Net) model is proposed in [78], using an attention mechanism with a
residual unit for image feature representation improvement. The model’s performance
has been demonstrated on the DRIVE and STARE datasets.

Table 2.1 summarizes the most relevant related works on retinal blood vessel seg-
mentation, highlighting their key contributions, advantages, and limitations providing a

comprehensive overview of the state-of-the-art methods for this task.
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Tableau 2.1: Synthesis of Retinal Blood Vessel Segmentation Methods

Method Advantages

Limitations

Dual-Source Fusing FCN
[70].

Improved segmenta-

tion accuracy

Uses retinal grayscale
image and edge infor-

mation

e Limited by the quality
of edge detection

FCN-Based Patch Seg-

mentation [71].

Effective patch-level

segmentation

Includes patch aggre-

gation phase

e Miss global context

information

Improved Multi-Path
FCN [72].

Multi-scale retinal im-

age input

Reconstruction algo-
rithm for final seg-

mentation

¢ Increased complexity

due to multiple paths

Butterfly FCN (BFCN)
[73].

Multi-scale inputs for

hetter local context

Improved understand-
ing of retinal image

features

e Potentially higher
computational re-

guirements
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Table 2.1 — Continued from previous page

Reference & Method

Advantages

Limitations

Residual Multi-Scale
FCN [74].

e Effective for wvarious
vessel sizes and optic

disk positions

o IHandles variations in

contrast

e Struggle  with  ex-
tremely low-contrast

images

U-Net with Region Merg-
ing [75].

o Preserves essential de-
tails for disease classi-

fication

o Addresses feature loss

issue

¢ High computational

complexity

Dense U-Net [76].

e Improved small blood

vessel segmentation

¢ Increased model com-

plexity and memory

structure

e Addresses overfitting

with a dropout layer

usage
e Hach layer uses the
output from all previ-
ous layers
Residual U-Net [77].
e New residual block e Require larger

datasets for opti-

mal performance
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Table 2.1 — Continued from previous page

Reference & Method | Advantages Limitations
RADCU-Net [78].

e Uses attention mech- ¢ Complex architecture
anism with residual is challenging to train
unit and optimize

e Dual-supervision
for  better feature

representation

Because retinal vascular segmentation is a challenging and urgent process, several
techniques for this task are constantly being developed. Figure 2.2 depicts the develop-

ment timeline.
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2.1.2 Retinal Lesions Segmentation

Retinal lesions are key indicators of eye conditions, especially diabetic retinopathy. These
lesions, which include microaneurysms, hemorrhages, hard and soft exudates, mark the
stages and severity of the disease. Segmenting these lesions from retinal images is vital
for accurate diagnosis and monitoring. By extracting these abnormalities, we can better
understand the extent of retinal damage and develop targeted treatments. This section
explores the various studies used to segment retinal lesions, highlighting the advantages

and the limits of each work.

2.1.2.1 RCNN-based Methods for Retinal Lesions Segmentation

Region-based Convolutional Neural Networks (R-CNN) have emerged as a powerful tool
in medical image analysis, offering a robust framework for object detection and segmen-
tation. In the context of retinal lesion segmentation, R-CNNs provide the capability to
precisely identify and outline different types of lesions within complex retinal images, ad-
dressing challenges such as variability in lesion size, shape, and intensity. Several studies
have explored the application of R-CNNs for retinal lesion segmentation.

Faster Region-based Convolutional Neural Network architecture is proposed in [79]
to tackle the challenges of DR lesions segmentation. This method was used on two
public datasets: DIARETDBI and Messidor for the localization of four different DR
abnormalities including MicroAneurysms (MA), Hemorrhages (HE), Hard Exudates (HE)
and Soft Exudates (SE). Authors of [80] addressed the problem of recognizing two types
of lesions: Microaneurysms and Exudates, by introducing DRDr model which makes use
of R-CNN and Transfer Learning for the segmentation of the lesions found in fundus
images. A normalized database was built from e-ophtha MA and e-ophtha EX and
customize Mask R-CNN to spot small lesions. To mitigate the limitations of their small
dataset, they apply data augmentation strategies and leverage the pre-trained weights of
ResNet101.

2.1.2.2 U-Net-based Methods for Retinal Lesions Segmentation

U-Net has become instrumental in segmenting retinal lesions by effectively capturing
intricate details from images. Its robust architecture enhances the accuracy of identifying
and delineating lesions, contributing significantly to the field of retinal image analysis
and clinical diagnosis. A study by [81] has presented a modified U-Net architecture
that integrates residual network features, periodic shuffling, and sub-pixel convolution
initialized to nearest neighbor resize. This architecture is specifically tailored for the
segmentation of microaneurysms and hard exudates for diabetic retinopathy. The study

validates the proposed method on two widely used IDRID and e-ophtha datasets.
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U-Net was also integrated into a new architecture [82] featuring a Relation Trans-
former Block (RTB) that incorporates attention mechanisms at two levels: a self-attention
transformer for global lesion feature dependencies and a cross-attention transformer to
integrate vascular information, improving lesion detection in complex fundus structures.
Additionally, a Global Transformer Block (GTB) captures detailed lesion patterns early
in the network. The proposed network segments four types of lesions simultaneously and
is validated on IDRID and DDR datasets.

To tackle the complex structural challenges inherent in lesion segmentation for dia-
betic retinopathy, authors in [83| introduce Cascade Attentive RefineNet (CARNet). This
approach leverages a dual-input strategy, incorporating both global and local informa-
tion from fundus images. The global image encoder (ResNet50) captures broad context,
while the local image encoder (ResNet101) focuses on fine details within patch images. A
high-level refinement decoder integrates features from both encoders using dual attention
mechanisms, enhancing the model’s ability to discern and segment lesions accurately.
Evaluation on benchmark datasets (IDRID, E-ophtha, and DDR) demonstrates CAR-
Net’s efficacy in overcoming complexities such as diverse lesion sizes and similarity to
other fundus tissues.

Feature Fusion U-Net (FFU-Net), an enhanced model tailored for lesion segmentation
in diabetic retinopathy is introduced in [84]. The model improves upon traditional U-Net
architecture by replacing pooling layers with convolutional layers to better retain spatial
information in fundus images. Additionally, FF'U-Net incorporates a Multiscale Feature
Fusion (MSFF) block to enhance the learning of multiscale features and integrates a
Balanced Focal Loss function to mitigate issues related to data imbalance and misclas-
sification. Experimental evaluation on the IDRID dataset validates FFU-Net’s efficacy,
demonstrating notable advancements in segmentation accuracy compared to conventional
U-Net models.

To address the difficulty of segmenting small lesions in fundus images with extensive
backgrounds, authors in [85] introduce HACDR-Net. This network includes heteroge-
neous cross-convolution, modulated deformable convolution, and near-far-aware convolu-
tion. An adaptive aggregation module combines heterogeneous feature maps to identify
diverse lesion areas. Additionally, the Noise Adjusted Loss (NALoss) function is pro-
posed to balance predictions between background and lesions by incorporating Gaussian
noise and hard example mining. The effectiveness of these methods is validated through
experiments on the IDRID and DDR datasets.

Recent studies struggle with accurate model design due to insufficient annotated train-
ing data. To address this, authors in [86] propose a semi-supervised multitask learning
approach using unlabelled data, like Kaggle-EyePACS, to enhance diabetic retinopa-
thy (DR) segmentation. The model, featuring a multi-decoder architecture, combines

unsupervised and supervised learning phases to utilize unlabelled data and improve seg-
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mentation performance. This method is rigorously evaluated on FGADR and IDRiD

datasets.

Table 2.2 presents a comparative overview of different methods for retinal lesion seg-

mentation. It summarizes the main findings from several investigations, stressing both

their benefits and drawbacks. The objective of this comparison analysis is to provide

light on the advantages and disadvantages of each work for particular retinal lesion seg-

mentation applications.

Tableau 2.2: Synthesis of Retinal Lesion Segmentation Methods

ent DR abnormalities

e Tested on two public

datasets

Reference & Method | Advantages Limitations
Faster R-CNN for DR
Lesions [79].
e Localizes four differ- e May struggle with

very small lesions

DRDr Model with Mask
R-CNN [80].

e Recognizes Mi-
Croaneurysms and
Exudates

e Uses transfer learning
and data augmenta-

tion

e Limited by small

dataset size

Modified U-Net [81].

e [ntegrates residual

network features

e Uses periodic shuffling
and sub-pixel convo-

lution

e May be computation-

ally intensive
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Table 2.2 — Continued from previous page

Reference & Method

Advantages

Limitations

U-Net with Relation
Transformer Block [32].

e Incorporates  multi-
level attention mech-

anisms

e Segments four types
of lesions simultane-

ously

¢ Complex architecture
may require signifi-

cant training data

Cascade Attentive Re-
fineNet {CARNet) [83].

e Dual-input strategy
for global and local

information

e Uses dual attention

mechanisms

e May require high
computational re-

sources

FFU-Net (Feature Fu-
sion U-Net) [84].

e Retains spatial infor-

mation better

e Incorporates  Multi-
scale Feature Fusion

block

e Might struggle with
extremely small le-

slons

HACDR-Net [35].

e Uses  heterogeneous

cross-convolution

e Incorporates Noise
Adjusted Loss func-

tion

o Complex architecture
may be difficult to op-

timize
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Table 2.2 — Continued from previous page
Reference & Method | Advantages Limitations
Semi-Supervised Multi-
task Learning [86].

o Utilizes unlabelled e Performance may de-
data, pend on quality of un-

labelled data
¢ Combines  unsuper-

vised and supervised

learning

2.2 Diabetic Retinopathy Classification

2.2.1 End-to-End Learning

Recent years have seen the introduction of a few unique CNN-based techniques for DR
classification, such as IDRID, EyePacs, APTOS, DDR, and Messidor, which use end-
to-end training on small datasets. To enhance the amount of data needed to train their
suggested architectures, these architectures frequently use augmentation. Works provided
in [87], [88], [89], [90], [91], [92], [93], [94], [95], [96], [97], and |98] have examples of similar
buildings. Despite being trained from scratch, these architectures exhibit strong learning
logic and achieve excellent results in the detection and grading of DR. To enhance the
architecture or create a new architecture centred around CNN encoders, each of these
architectures incorporates a novel feature into the established deep CINN techniques.
Traditional CNN-based techniques have been improved, as demonstrated in the works
[88], [89], [90], [91], [93], [94], and [96]. Although the work in [91] builds its suggested
method around the Inception architecture, the authors included long-range global de-
pendency units to link feature maps from several convolutional layers. This prevents
overfitting and greatly enhances the model’s learning on tiny datasets. In a comparable
manner, the multiclass classification task in [93]| is approached as two binary and one
ternary classification tasks. By splitting the detection tasks that identify images as DR
and No-DR, NPDR and PDR, and then lastly as mild, moderate, and severe NPDR,
three networks have been employed to achieve DR grading. Because each network had a
unique architecture and preprocessing method, the model was able to address the class
imbalance present in the datasets. The work in [90] presents the chimp optimization
approach for training a high-layer DenseNet variation. The paper also introduced a
new CNN module for multiclass classification tasks in DR grading, called Spiking neural

networks. In studies [99], [88], [94], and [96], other techniques involving residual block
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integration, entropy improvement, and discrete wavelet transform have been combined
with conventional CNNs to allow them to be trained from scratch instead of utilizing
pre-trained models.

The following publications described a few unconventional CNN-based DL architec-
tures: [87], [92], [95], [97], and [98]. These architectures deviate from the conventional
pooling layer stacking method. Instead, those efforts improved the activation and loss
functions and included more sophisticated and novel methods of extracting feature maps,
attention layers, and cascading skip connections. In [87], skip connections are integrated
into dilated convolutional blocks, and feature maps are produced from these convolu-
tional layers by hierarchical feature extraction. A unique approach that enhances current
capsule networks and adapts them to DR detection and grading tasks was presented in
the work of [92]. Newer and shorter variants of the ResNet are provided in the works [97]
and [98], which are appropriate for learning from datasets with little to no data. When
compared to typical ResNets with 50 layers or more, these architectures exhibit reduced
fluctuations on the learning curve and superior generalization capabilities.

Table 2.3 provides a comprehensive comparison of various end-to-end learning meth-
ods for diabetic retinopathy classification. It encapsulates key findings from multiple
studies, highlighting both the strengths and limitations of each approach. This com-
parative analysis aims to illuminate the merits and drawbacks of different techniques,
facilitating informed decision-making when selecting appropriate methods for specific di-
abetic retinopathy classification tasks. By presenting this information in a structured
format, researchers and practitioners can readily assess the suitability of each method for

their particular applications.

Tableau 2.3: Summary of End-to-End Learning Techniques for DR Classification

Method Advantages Limitations
[87]
e Integrates skip connections ¢ May be complex to imple-
into dilated convolutional ment
blocks
¢ Requires significant compu-
e Hierarchical feature extrac- tational resources
tion

Continued on next page
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Table 2.3 — Continued from previous page

Method Advantages Limitations
[88]

e Uses augmentation to en- Performance highly depen-
hance training dent on augmentation tech-

nigues

e Incorporates residual block
integration Potential overfitting if not

carefully managed
[89]
e Uses augmentation to en- Performance highly depen-
hance training dent on augmentation tech-
nigues
Potential overfitting if not
carefully managed
[90]

e Introduces Spiking neural Complex architecture may
networks for multiclass clas- be difficult to optimize
sification

Requires high computa-

e Uses DenseNet variation tional resources

with chimp optimization
91]

e [ncorporates long-range May require extensive hy-
global dependency units perparameter tuning

e Prevents overfitting on Computationally intensive
small datasets
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Table 2.3 — Continued from previous page

Method Advantages Limitations
[92]

e Enhances capsule networks e May require specialized
for DR tasks knowledge to implement

e Novel approach to feature ¢ Potential scalability issues
extraction and attention
layers

[93]

e Addresses class imbalance ¢ Complex system with three
with unique preprocessing networks may be hard to
methods manage

e Splits detection tasks for ¢ High computational re-
more accurate classification quirements

[94]

e Uses augmentation to en- e Performance highly depen-
hance training dent on augmentation tech-

niques

e Integrates residual blocks
for improved performance ¢ Potential overfitting if not

carefully managed
195]

e Improves activation and ¢ Complex architecture may
loss functions be difficult to implement

o Uses sophisticated feature ¢ Requires high computa-
map extraction techniques tional resources
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Table 2.3 — Continued from previous page

Method Advantages Limitations
[96]
Uses augmentation to en- Performance highly depen-
hance training dent on augmentation tech-
niques
Incorporates entropy im-
provement and discrete Potential overfitting if not
wavelet transform carefully managed
[97]
Suitable for small datasets May not perform as well on
larger datasets
Reduces learning curve fluc-
tuations Limited by the depth of the
network
[98]
Superior generalization ca- May not perform as well on
pabilities larger datasets
Suitable for small datasets Limited by the depth of the
network

2.2.2 Retinal Lesions based Methods

This section summarizes the most common techniques for DR classification based on
the detection of single and multiple ocular lesions. The most popular method consists
of two steps: first, a set of features relating to DR-related lesions are extracted, and
subsequently, a model utilizes these features to classify or grade the DR.

The proposed framework in [100] for ocular lesion detection and DR classification
includes three stages: preprocessing fundus images, lesion detection using transfer learn-
ing with pre-trained models {DenseNetl21, Xception, ResNet50, and MobileNet). Then,
classifier training on the Kaggle EyePACS dataset. The best classifier’s lesion predictions
are then used for DR classification, and evaluated on the Messidor-2 dataset.

Another work presented in [101] introduces a CNN-based algorithm for diabetic

retinopathy (DR) classification, focusing initially on preprocessing fundus images and
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segmenting branching blood vessels using maximum principal curvature from the Hessian
matrix. Although effective, relying solely on blood vessel characteristics for classification
poses limitations. While enhancing images with adaptive histogram equalization and
morphological opening, classification is carried out by two CNN-based sub-networks: an
excitation sub-network and a bottleneck sub-network. Their agreement determines the
final label. Experimental validation was performed on DIARETDBI1 dataset. However,
the method’s reliance on blood vessel features alone may overlook other crucial indicators
of DR progression and severity, suggesting a need for broader feature inclusion to enhance
diagnostic accuracy.

In [102], a novel directed acyclic graph (DAG) network based on multi-feature fusion
of fundus pictures is proposed for the multi-classification of diabetic retinopathy. First,
three characteristics—microaneurysms, soft exudate, and neovascularization spots—are
extracted using several algorithms from diabetic retinas of varying grades. These at-
tributes are then incorporated into the innovative DAG network that has been presented.
Additionally, distinct grades of diabetic retinas are learned by the combination of the
multi-feature fusion method. Lastly, the clinical multi-classification of diabetic retina is
carried out using the optimal classification model. The IDRID and clinical datasets from
Dalian NO.3 People’s Hospital are utilized to assess how well the suggested approach
performs.

Apart from these techniques, Authors in [103] have presented an innovative method-
ology that makes significant progress in the field. In order to detect retinal lesions, their
system uses a hybrid classifier that goes through multiple stages: preprocessing to remove
background pixels and extract the optic disc and blood vessels; filter banks are used to
detect potential lesions; and a feature set is created using descriptors like shape, intensity,
and statistics. In order to improve classification accuracy, this method expands on the
m-Mediods based modeling technique by integrating it with an ensemble Gaussian Mix-
ture Model. DIARETDB1, STARE, MESSIDOR, and DRIVE—standard fundus image
databases were used to illustrate the efficacy of this approach.

Table 2.4 offers a detailed overview of different retinal lesion-based methods for dia-
betic retinopathy classification. It synthesizes results from various research efforts, em-
phasizing both the advantages and potential shortcomings of each methodology. The
purpose of this comparative summary is to shed light on the strengths and weaknesses
of each study. This tabular presentation allows for easy comparison and evaluation of

different lesion-based techniques.
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Tableau 2.4: Summary of Retinal Lesion-Based Methods for DR Classification

e Uses data aug-

mentation

augmented data

Model Advantages Limitations Datasets Used
Transfer
Learning il . . -,
Model [L00] o Utilizes pre- ay require o Kaggle
trained models significant
. e EyePACS
computational
o Multi-stage ap-
) resources ¢ Messidor-2
proach for im-
proved accuracy Dependence on
quality of pre-
trained models
CNN-based
Blood Vessel
Model [101] e Focuses on Overlooks other .
blood vessel DR indicators DIARETDBI1
characteristics
May miss non-
o Uses adap- vascular lesions
tive  histogram
equalization
Deep Feature
Extraction
Model [104] ¢ Combines deep Complexity in o IDRID
learning  with model selection Dataset
traditional
) Potential over-
classifiers
fitting with
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Table 2.4 — Continued from previous page

Model Advantages Limitations Datasets Used
DAG
Network Multi-feat C 1 jé IDRiD
Model [102] ulti-feature omplex  net- i
fusion approach work structure
Dalian NO.3
Considers vari- May require ex- People’s Hos-
ous lesion types tensive training pital dataset
data
Hybrid
Classifier
Model [103] Comprehensive High computa- DIARETDB
lesion detection tional complex-
. STARE
1ty
Combines multi-
: : " MESSIDOR
ple classification May be sensitive
techniques to image quality DRIVE
Conclusion

This chapter has examined current methods in retinal image analysis for diabetic retinopa-
thy (DR) classification. We focused on three key areas where recent progress has been
significant: retinal blood vessel segmentation, retinal lesion segmentation, and diabetic
retinopathy classification.

For retinal blood vessel segmentation, we reviewed several network architectures, in-
cluding Fully Convolutional Networks (FCNs) and U-Net variants. These approaches
have improved the accuracy of retinal vasculature delineation, crucial for early DR de-
tection. In retinal lesion segmentation, we discussed advancements using Region-based
Convolutional Neural Networks (R-CNN} and modified U-Net designs. These techniques
have enhanced our ability to identify and outline various DR-related lesions, such as
microaneurysms, hemorrhages, and exudates.

Regarding diabetic retinopathy classification, we explored two main strategies: end-
to-end learning and lesion-based methods. End-to-end approaches classify DR directly
from fundus images, while lesion-based methods use segmented lesions as classification
features. Both approaches represent important developments in automated DR diagnosis.
We have analyzed the strengths and weaknesses of each method, providing a balanced

overview of current research. This review highlights challenges and opportunities in DR
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detection and classification using computational techniques.

The next chapter will introduce our proposed framework for retinal lesions-based
DR classification. This approach builds on the strengths of the methods discussed here
while addressing some of their limitations. Integrating an advanced segmentation model
with a recent classification network architecture to improve DR diagnosis accuracy. The
following chapter will outline the proposed framwork with the experimental study showing

its contribution to automated DR classification.
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Chapter 3

Contributions and Results

Introduction

This chapter outlines the suggested framework for analysing retinal images, with an
emphasis on segmentation and the identification o f D iabetic R etinopathy ( DR). The
chapter is organised as follows: we start by outlining the suggested framework and going
over the segmentation and detection phases of the retinal images. The experimental
setup, including the datasets and evaluation metrics, is then described. We wrap up with
a summary of the experimental outcomes and give the blood vessel image segmentation,

retinal lesions image segmentation, and DR detection.

3.1 Proposed Framework

For more information please contact us on

- amel.bouchemha@univ-tebessa.dz

- yaakoub.boualleg@univ-tebessa.dz
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General Conclusion

In this project, we proposed and realized a realtime diabetic retinopathy detection
using advanced deep-learning techniques. Experimental results prove that the proposed
approach has proven its effectiveness and robustness, both absolutely and in compari-
son with other similar state-of-the-art methods, using several well-known and publicly
available datasets.

The proposed method includes many elements that contribute fully to its success.
First, the proposed approach combines an innovative image segmentation method against
state-of-the-art classification models to achieve high accuracy in DR diagnosis. The U-
Mamba architecture, leveraging the power of structured state-space models, demonstrated
robust performance in segmenting various retinal lesions and blood vessels. Then, the
Swin Transformer-based classification model showed encouraging performance across sev-
eral datasets, building on earlier segmentation results. The high sensitivity and specificity
values across all datasets further underscore the model’s reliability in correctly identifying
both positive and negative cases. Our method proved to be robust to the training set
and to the inter-rater variability, which shows its potential for real-world application in
screening and diagnostic systems.

The proposed approach gave high performance for the different levels of retinopathy
severity. All metric validations demonstrated the effectiveness of the developed system
for early and real-time detection of DR. Nevertheless, while these results are promising,
there is still room for further improvement and exploration. Future work could focus
on improving model performance for less common severity levels, investigating the inter-
pretability of model decisions, and validating the approach on other diversified datasets.
In conclusion, this chapter demonstrates the potential of combining advanced segmenta-
tion and classification techniques for accurate DR detection. The proposed framework
holds promise for aiding the early diagnosis and management of diabetic retinopathy,

which could contribute to improved patient outcomes in the clinical setting.
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