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ABSTRACT

Motivated by the immense success of application of fractional equation in the branch
of mathematical physics, the thesis studies three general models of fractional order partial
differential equations using different definitions : Hilfer- Hadamard, Caputo and Caputo-
Fabrizio fractional derivatives. In the first model, the study finds the critical exponents
p. for which solutions cannot exist for all time in the subcritical case, whereas, in the
critical and supercritical cases, global small data solutions exist. The discussion is based on
the semi-group theory, fixed point theorem and the test function method. In the second
model, the study shows that no solutions can exist for all time for certain values of p.
Clearly, sufficient conditions for non-existence provide necessary conditions for existence of
solutions.

In many cases is difficult to find an analytical solution. For this reasons, the study uses
a novel finite difference discretization scheme to solve numerically fractional-order’s
partial differential equation involving a Caputo- Fabrizio fractional derivative supple-
mented with initial and boundary conditions (the third model).

Keywords: Critical exponent, nonexistence, novel finite difference, structural damping,

time fractional derivatives.
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ABBREVIATIONS AND NOTATION

CF Ja
De
D*
Do
DB
D
PDE
FDPE

C-F

Natural numbers.

Real numbers.

The integer part of a.

Space of Lebesgue complex-valued measurable functions f, for which
fllze@) = Ja|£(s)lds < oc.

Space of all measurable functions f on €, for which |f|P € L1(Q).

Banach space of all continuous functions from €.
v
Space of all continuous functions f such that (log Z) f() € Cla,b].

Euler gamma function.

Beta function.

Standard Mittag-Leffler function.

Mittag-Leffler function in two arguments « and f.

Laplacian operator of f.

Riemann-Liouville fractional integral of order a.

Hadamard fractional integral of order o > 0 of a function f € L[a,b].
Caputo-Fabrizio fractional integral of order a.

Riemann-Liouville fractional derivative of order «.

Caputo fractional derivative of order «.

Hadamard fractional derivative.

Hilfer- Hadamard fractional derivative of order 0 < o < 1 and type f.
Caputo-Fabrizio fractional derivative of order a.

Partial Differential Equation.

Fractional-order’s Partial Differential Equation.

Riemann-Liouville.

Caputo-Fabrizio.



INTRODUCTION

'If you wish to foresee the future of mathematics our proper course is to study the

history and present condition of the science." Henri Poincare.

We know to define nth derivatives and integrals for n € N.

How do we define derivatives and integrals to non-integer
order?

In mathematics literature, we can play with symbols for example we write % as 1:2
that prompted L’Hospital to ask Leibiniz " what if n be % in %" Leibiniz replied " you can
see by that, Sir, that one can express by an infinite series a quantity such d'/?zy. Although
infinite series and Geometry are distant relations, they admit only the use of exponents
which are positive and negative integers, and do not, as yet, know the use of fractional
exponents. "

The subject of fractional calculus was not limited to Euler’s attention. It has been
developed progressively up to now. However, there are many of these definitions in the
literature nowadays, but few of them are commonly used, including: Riemann-Liouville,
Caputo, Hadamard and Caputo-Fabrizio fractional calculus which we will define carefully in
a further part of this thesis. All these fractional derivatives definitions have their advantages
and disadvantages.

Let us first recall some works related to our models.

The semilinear pseudo-parabolic equation

ur — kAuy — Au = |uP,  (t,x) € (0,00) X Q, p>1,
u(t,z) =0, (t,z) € (0,00) x 99, (1)
u(0,z) = up(x), x €,

arises in many fields of science and engineering : the aggregation of population [33] and

the non-stationary processes in semiconductors [26]. Eq. (1) is also called a Sobolev type

equation; Sobolev Galpern type equation [2]. Many researchers have studied the existence
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and blow-up of solutions for problem (1) [12, 40], by using different methods, such as the
potential well method and the Galerkin method combined with the compactness method .
When k£ = 0, Eq. (1) reduces to the heat equation

up — Au = [ulP,  (t,z) € (0,00) x Q,
u(t,z) =0, (t,x) € (0,00) x 01, (2)
u(0,2) = ug(x), x€.

Fujita [15] has studied the global existence of mild solutions to(2), if p > 1 + 2 and
small initial data. In addition, he proved that the mild solution cannot exist globally when
1<p<1+%anduo>0.

In [42], Weissler proved that if p = 1+ 2 (critical case) and ug is small enough in L% (R"),
g. = N(p — 1)/2, then the solution of (2) exists globally.

Xu and Su [43] showed that all non-trivial solutions u of the following problem

ur — Aug — Au = |ulP,  (t,z) € (0,00) x Q,

u(t,x) =0, (t,2) € (0,00) x O, 3)
u(0, ) = ug(x), x € (),
where 1 < p < o0 if N =1,2;1 < p < % if N > 3, exist for all time under some

conditions and they obtain sufficient conditions for non-existence of solutions.
In 1982, Chen and Russell [11] investigated the following linear elastic system described
by
uy + Buy + Au =0, t>0, ze€, 0
uw(0,z) = up(x), w(0,2) =us(z), x€Q,
where A: the elastic operator and B: the damping operator in a Hilbert space H. They
reduce the problem (4) to

d(Asu\ [ 0 A3 Azu
dt\ w | \ —-A2 —-B u )

The problem (4) is equivalent to the first order equation in H.

In 2013, Fan, Li and Chen [14] studied the existence and uniqueness of mild solutions
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for the semilinear elastic system with structural damping in Banach spaces X

g + pAug + A%u = f(t,u(t)), t>0, z€Q, )

u(0) = up, w(0) = uy, x €,

where A € X is a closed linear operator and p > 2, the function f € C([0,a] x X, X). For
f(t,u(t)) = 0, Fan and Li studied the asymptotic stability of solutions and the analyticity.
In 2017, Luong and Tung [30] considered the following Cauchy problem

uy + pAuy + A*u(t) = f(t, u(t)) t>0, e,
u(0) = uo + g(u), w(0) + h(u)

(6)

Uy, x €€,

where A is closed operator, they established the existence of decay mild solutions to (6) by
using a suitable measure of non-compactness on the space of continuous functions.

Recently, fractional differential equations have interested in real-life phenomena. They
describe diverse phenomena in sciences and engineering fields and appear naturally in vis-
coelasticity, porous media, chemistry, electromagnetism physics, mechanics and biology.
Hence more applications have been found. The solution of non -integer order partial differ-
ential equations (PDEs) has an important property. It describes future, present and past
states, but in many cases, it is difficult to find the solution. Therefore, few researchers
have suggested numerical methods for studying PDE with fractional order: finite element
methods [21], mixed finite element methods [27, 28], finite difference methods [38, 39] and
finite volume methods. In 2015, Caputo and Fabrizio [9] proposed a new derivative. This
derivative is a product of convolution of f'(t) (derivative of function f(¢)) and exponential
function (eT=a") where 0 < a < 1.

The fractional diffusion -wave equation plays an important role to modeling the diffusion
and wave in fluid flow, oil strata... The fractional diffusion-wave equation obtained from the
classical diffusion or wave equation by replacing the first-or second-order time derivative by
a fractional derivative of order @ > 0. For 1 < a < 2, the fractional equation with initial
and boundary value is expected to interpolate the diffusion equation and the wave equation,
thus it is referred to as the time fractional diffusion-wave equation. In recent years, many
eminent researchers innovated some numerical methods to study this kind of equations. In
2005, Sun and Wu [41] showed a novel finite difference discreet scheme for a diffusion-wave

system. They proved the stability and L., convergence by using the energy method.
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The present thesis consists of four Chapters: Chapter 1 introduces some definitions about
fractional calculus which will be used in the sequel. Also, all the important results for the
properties of Riemann-Liouville, Caputo, Caputo-Fabrizio and Hilfer-Hadamard fractional
derivatives are represented. This Chapter is finished by the notion of blow-up where we
have introduce in particular what do authors mean by blow-up.

The rest of thesis contains the Chapters corresponding to the articles published or
accepted during the work of thesis ([3], [4], [6], [7], [8])-

Chapter 2 devotes to fractional partial differential equations under Caputo sense, in

Section 1, we study the semilinear equation with a time fractional structural damping

D€|tu(t,$) — 2ADgu(t, x) + Au(t,z) = |u(t,z)|P t>0, z€Q,

we obtain the blow- up result under some positive data when 1 <p <1+ ﬁ(z”, whereas,
ifp > 1+ﬁ’2+2 and ||uo|| e (@), ¢ = N(p—1)/2 is sufficiently small, we prove the existence

of global solution. In Section 2, we consider the time fractional semilinear equation with a

structural damping and a nonlinear memory
Dyt lu + (=A)7u+ (—A)Diu = I ul?,  (t,2) € (0,00) x RY,

we prove the non-existence of global solutions if

224 a; —7)

1<p<
PS (@8N 127y 20, - 2)

+1,

for any space dimension N > 1. Then (Section 3), we extend our idea to the system of

semilinear coupled equations

Diju+ (—=A)"u = Ig, " ol,  (t,2) € (0,00) x RY,

Dgjv + (—A)20 = [Sﬁwfu\q, (t,x) € (0,00) x RY,

Chapter 3 consecrates to the following semilinear equation with Hilfer- Hadamard frac-

tional derivative

Dg‘i’ﬂu—AD:i’ﬁu—Au: lulP, t>a>0, xe€,
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we establish the necessary conditions for the existence of global solutions.

In Chapter 4, we suggest a novel approximation of the Caputo-Fabrizio fractional deriva-
tive of order a (1 < a < 2). Our novel discretization is found by using discrete fractional
derivative at t = t;, with new coefficients. Section 1, we study the existence and uniqueness
of solution. Section 2, we give the novel finite difference discretization scheme.

At the end of this thesis, there is an alphabetic list of the references used to prepare
this thesis under the title Bibliography.

10



CHAPTER 1

NOTATIONS AND PRELIMINARIES

This Chapter mainly introduces definitions and basic properties of fractional calculus,
including Riemann-Liouville, Caputo, Hilfer- Hadamard and Caputo-Fabrizio, which will

all be at the core of this work.

1.1 Basic Fractional Integrals and Derivatives

A great number of researchers throughout history have defined fractional derivatives and
integrals in many different ways. This thesis restricts the attention to the use of: Riemann-
Liouville, Caputo, Hilfer- Hadamard, Caputo-Fabrizio. It also presents some results and

basic properties of fractional calculus.

1.1.1 Riemann-Liouville Fractional Integrals and Derivatives

As it is the case of the majority of works on fractional calculus, we begin with a gener-
alization of repeated integration, let f be a continuous function on the real line, then we

can form the definite integral from a to ¢

t

@) = [ ) dr

a

Repeating this process gives

2= [ t ( " 1) dT) ds.

According to the Fubini theorem,
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For the n-fold iterated integral, we obtain
31 n—1
@ = [ [ [
=—— [ (t— dr, t 1.1
m—n/< () dr > (1)

A proof is given by induction. Equation 1.1 can be generalized for non-integer n. Using the
Gamma function I'(n) = (n — 1)!, to remove the discrete nature of the factorial, we obtain

a fractional generalization of the integral
& 1 ! a—1
I8, /(1) = w/ (t=7)*"f(r) dr, t>a.

Definition 1.1.1. Let [a,b](—0c0 < a < b < 400) be a finite interval of R. The left and

right Riemann- Liouville fractional integrals of order o > 0 are defined by

19, f(t) = F(la) / (=) f(r) dr, t>a, (left hand), (1.2)
and
I f(t) = F(la) /tb(T —)*7 f(r) dr, t <b, (right hand). (1.3)

Lemma 1.1.2 (Fractional integration by parts). Let f(t) and g(t) be continuous functions
on [a,b], £ <a <1, forn e N\{0,1}. Then

[ o0 de= [ fo) g0 dr (1.4

Proof. For f,g € C(la,b],R), then there exist C; > 0 and Cy > 0 such that |f(¢)| < C; and
|9(t)| < Cs. Therefore

‘/ I8, f (1) dt| <

0102//F t—Taldet

- - a—1
< 0102/(1 F(oz) /a (t 7') dr dt.

We observe that
Cif 7 <t —1, then log(t —7) >0 and (t —7)*7! <1,

12



1.1. Basic Fractional Integrals and Derivatives

2. if 7>t—1, thenlog(t—7)<0and (t —7)*' < (t—7)% .
Thus

b1 t o1 b1 t—1 t .
_ < _
QQLFML@ - Mﬁ\a@/r (/ dr+ [ (-7 mﬁ

<Cﬁb/ @+—ala>ﬁ—a—1+n)ﬁ

b+ a

<C’102(b—a)< —1—a—|—n><oo.

Due to the following inequality[20)]

|
41’

D(z+1)> z € [0,1].

Now, as the Fubini theorem is applied we get

/ﬁ ()15 f(t) t/ (/’F )o- &ijxr)d7>dt
_ / F(7) ( / Fi(z_T)aflg(t) dt) dr
—/ T\bg 7)

This completes the proof.

T
gamma(alpha+1

0.98F\ alpha®+1/alpha+1|{
096 \

094F |\

0.92f \

0.9+
0.88|

0.86

0.84

0.82 . . -
0 0.2 0.4 0.6 0.8 1

alpha

Figure 1.1 — Simulation of I'(« + 1) and ‘fjll
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The Riemann-Liouville fractional derivatives based on the Riemann-Liouville fractional

integrals.
Definition 1.1.3. The left and right Riemann-Liouville fractional derivatives Dy and Diy,
of order a > 0 of function f € L'(a,b) are defined by
d ! n—aox
D f(t) = I oIi“f(t), t>a
__1 (4 n/t(t — )"t f(7) dr, (left hand) (1.5)
I(n—a)\dt) Ja ’ ’
and
n d " n—a
Dy, f(t) = (1) i oI, “f(t), t<b
= =" (d ’ /b(T — )" f(7) dr, (right hand) (1.6)
L(n—a)\dt) Ji ’ ’ '

where n = [a] + 1 ([«] the integer part of «). In particular, when o« = n € N*, then

Dt = () 0 and D) = -1 1) 500

The aim of the study, now is to present some results that will be used in the coming

sections.

Lemma 1.1.4. 1. Suppose f € C(0,00), p=q >0, and DHT (t) exists, then

Dyjr (L F)(8) = Dyyr f(1). (1.7)

In particular, when p =n we have[}4]

ir (L) () = (=1)" Dy f (1), (1.8)

2. Let n—1<qg<nandq+p—m >0, then for everyt >0,

3
—~

_ 4\m—p—k q—Fk
L "D f () = w#W@—Zewﬂfww Diz f(T)

2 G—Rtm—k—p+y Y

14



1.1. Basic Fractional Integrals and Derivatives

Proof. l.Letm—1<p<m,n—1<p—q<n<mand by (1.8), we have

Dhttizn = -0 ( ) () amrrno
= () @
- DI,

ks
2. Using (1.7), we can write

L "D f(t) = Di " { I D f (1)}

q+p—m g n—k (T o t)q_kDg}kf(T)
- g { o - e
qt+p—m _ S _ 1\n—k (T =)™~ kD;]'ka(T)

due to the following equality (see [22])

» - (T — )" DI f(T)
Lin Dir (1) -2 =0 ['(q— kj|r1)
k=1 q
O
Lemma 1.1.5. Let p and q be real numbers, if m —1<p<m andn —1< qg<n, then
" (T — )™ D" f(T)
Dr DY f DPELF(t) — S (=1)"* | . (110
T T ( ) t|T ) ’;( ) F(q—k)F(l—k—p)(m k—p—i—l) ( )
Proof. By the semigroup property of fractional integrals and (1.9), we can write
p 1 d\" m pm—p ryq
DipDyr f(t) = i [( D™y Dt\Tf(t)}
" n T —tymr=kDLFH(T
()" [y Sy T 0D
dt = Fg—k)IT'(m—-—k—p+1)
n —r=kDLFH(T
bt - Sy T OO
o (g—kIT(1—k—p)(m—k-p+1)
[

15



1.1. Basic Fractional Integrals and Derivatives

1.1.2 Caputo Fractional Derivatives

Defined via the Riemann-Liouville fractional derivatives.

Definition 1.1.6. The left and right -sided Caputo fractional derivatives of order o« > 0

of a function f, where n = [a] + 1 are

Dy, f(t) = at( ), (left hand), (1.11)

and

n—1 rk
fr(b) :
Df, f(t) = tu,(f(t) -y x (b—t)¥ |, (right hand). (1.12)
k=0
The Riemann-Liouville fractional derivatives and the Caputo fractional derivatives are
connected with each other by the following relations.
If o ¢ N and f(t) is function for which the Caputo fractional derivatives Dg, and Dy,

exist together with the Riemann- Liouville fractional derivatives Dg, and Dy, then

[a] ) (g
DY) = Diuf () = X i oy (= ) (113
and
o] f(k)(b) k—a
D, f(t) = Dy f(t) — kzjom(b— ) e (1.14)

Proposition 1.1.7. If f € C"([a,b],R) and o > 0, then the Caputo derivatives given as
(0% n—« d "
Da‘tf( ) [alt % f(t>

_ Ml_a) / ‘(= 7)ot (i)n f(7) dr, (1.15)

16



1.1. Basic Fractional Integrals and Derivatives

and
(6% n—«x d "
D) = (11 o () 10

N FE:_Y;) /tb(r — ) (i)nf(f) dr. (1.16)

Proposition 1.1.8. For 0 < a < 1. Assume f € C[0,T], g € C*([0,T]) and g(T) = 0.

Then, we have the following formula of integration by parts

[ oDt = [ (76) ~ FO) Diz(t)a. (1.17)
Proof. Definition 1.1.6 and Lemma1.1.2 allow us to write
[ ooy = [t )D“(f( )~ £(0 >)dt
- / dt 15 (£(t) - £(0)) .

Using integration by parts, we obtain

/OT (t) jtfém(f@)—f(m)dt:Ié|;a(f<t>—f<o>)g<t> — /0 I&.ﬁ(f<>—f<o>)jtg<t>dt
(I&.ﬁ(ﬂ)— o0) -+ [ (701 = 1) it

= [ (7) ~ F0)Djirg(t)ar.

Proposition 1.1.9 ([19]). Let 1 < a+8 < 2. If & f is absolutely continuous and & f(0) = 0,
then
D5 Dy, f(t) = D" £ (2).

17



1.1. Basic Fractional Integrals and Derivatives

1.1.3 Hilfer-Hadamard Fractional Integrals and Derivatives

In this part, some results and basic properties of Hilfer-Hadamard fractional calculus
are represented ([1, 23, 24, 34]).

Definition 1.1.10. Let [a,b] be a finite interval of the half-axis R* and 0 < v < 1. We

introduce the weighted spaces of continuous functions

Cy 1ogla, b] = {f :la,b] = R: <log 2)7]”(75) € C[a,b]}, (1.18)
Oiy—y,log[aW b] = {f = Cl—%log[av b] : DZ+f < Cl—%log[a’ b]}» (1'19)
and

C’gv[a, b = {f s a, b)) = R : ok f e Cla,b], 0<kE<n—1, §"f € C,10gla, b]}, (1.20)

where 6 = t% and n € N. In particular, when n = 0 we define

d
dt
Cgv[a, b] = C,106]a, b).

In the space C. 1o]a, b], we define the norm

t Y
1l oot = sup |(log) f(t)|- (1.21)
te(a,b]

a

Definition 1.1.11. The Banach space X?(a,b) (1 < p < o0o,¢ € R) consists of those
real-valued Lebesgue measurable functions f : (a,b) C Rt — R such that

b pdt\ "
1 llxz = </ tf(t) t> < o0, p< oo, (1.22)
[fllxee = ess sup [t°f(t)] < oo. (1.23)
a<t<b

When ¢ = 1/p, we see that X7, (a,b) = L(a,b).

18



1.1. Basic Fractional Integrals and Derivatives

Definition 1.1.12. The Hadamard fractional integrals of order o > 0 of a function f in
Lifa,b] (1 < ¢ <00,0<a<b< +00),are defined by

(I;’;f)(t) — é‘é) /at <log j)a_ f(7) d:, a<t<b, (left hand), (1.24)
and
(I;f,f) (1) = 1“(104) /tb <log Z) : f(r) d:, a <t<b, (right hand). (1.25)

Lemma 1.1.13. Let a >0, > 0 and 1 < p < +oo. Then, if f € XP(a,b) the semigroup
property holds

oI f =T (1.26)

Proof. We prove (1.26) for sufficiently good function f. Applying Fubini theorem, we get

RPN B L U S N (0 SO
Ia+Ia+f(t)—F<a)/a <10glu) F(ﬁ)/a <1g7> F(7)— .

L o e d) T (egt) dedr
_r(a)r(ﬁ)/af( )/T <1gu> <1gT> T (1.27)

The inner integral is evaluated by change of variable y = log £ /log f So

t W
ylog — = (1 —y)log —.
W T

By simple calculation, one has

o) (10a™) (10, 1) L@L(®)
[ () (o) 255

Substituting this relation into (1.27), we have

o« 76 ppy - L A N
e T R
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1.1. Basic Fractional Integrals and Derivatives

Lemma 1.1.14. Let0 < v <1 and 0 < a. If v < «, then the operator 1. is bounded from
Cy10g(a, b) into C(a,b). In particular, it is bounded in C. jo5(a,b).

Proof. Using the definition of left Hadamard fractional integral

a—1
¢ t dr
/ <log> fr)—
a T T
a—1 -y gl
t t d
= sup /<log> <10gT> (logT> f(T)—T
te(ab) | Yo T a a T

AN
< <1og a) 1 f1lc g (ab)-

1Z5+ fllogany = sup
te(a,b)

O

Lemma 1.1.15 ([34]). Let @« > 0, 1 < p < oo and ]l) +$ = 1. If f € L?(a,b) and
g€ le/p(a,b), then

@
t

dt

g (1.28)

b b
| ro@nomT = [@nwe

Definition 1.1.16. Let 0 < a <t < band n — 1 < a < n. The Hadamard fractional

derivatives of order « for a function f are defined by
N 1 d\" rt A dr
020 = (1) [ (est) 07
g (1;;a )(t), (left hand). (1.29)

and

N e I G

= (—1)"5”<Jg-a )(t), (right hand), (1.30)

where § = t4 n = [a] + 1, [o] denotes the integer part of number .

20



1.1. Basic Fractional Integrals and Derivatives

Definition 1.1.17. Let 0 < a@ < 1 and 0 < 8 < 1. The Hilfer- Hadamard fractional
derivative of order o and type [ is defined by

(01)(0 = (227 o,
that is,
o s(-a)(, d (1-B)(1-a)
(0 )10 =70 (1) (38201 ) o (1.31)

Lemma 1.1.18. Assume f € C5_[a,b], fora <t <b,0<vy<1and0<a <1. Then D

ezists on (a,b] and Dy on [a,b) and can be represented as

(D2 ) @) = F({(f)a) <log Z) o r(11a) /: <log j) P, (1.32)

(Dg‘,f) (t) = F({@L) <log IZ) h — F(ll—a) /tb <log :;) _af/(T)dT, (1.33)

respectively.

Proof. Since f € Cj_[a,b], we have

- [ #@)ar + fa),

substituting the above relation into (1.29), we obtain

(D3 )<t>=r(11_a)(t;i>/ <log ) | rw
B

Interchanging the order of integration, we have

/<log> /f d—_/f /<log >_adTTdy.
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1.1. Basic Fractional Integrals and Derivatives

The inner integral is evaluated by the change of variable w = log f, we obtain

(P2-1)0) = 15—y ( dt) [ 1 (bg ) ar
o)
P
T (%)

Thus Lemma 1.1.18 is proved. =

1.1.4 Caputo-Fabrizio Fractional Integral and Derivative

In this part certain relevant definitions and some properties of Caputo-Fabrizio fractional

derivative and anti-derivative are represented.

Definition 1.1.19. Let f € C'(0,00) and a € (0, 1) then, the definition of the new Caputo

derivative is given as

a(t—71)

D§S(0) = = [ ¢ 5 () ar (1.34)

The definition above of the fractional derivative operator is called the Caputo-Fabrizio

derivative.
Ifn>1and 0 < a <1 the fractional operator ]D)gft"" of order n + « is defined by

Do f(t) = D, (D"f( )) (1.35)

The anti- derivative of the Caputo- Fabrizio derivative is recalled as

Definition 1.1.20. Let 0 < a < 1. The fractional integral of a function f is given as

CF 8 f(t) = (1— a) f(t) + a/ot () dr. (1.36)
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1.2. Fundamental Examples

Proposition 1.1.21. The fractional differential and integral operators given by the (1.34)

and (1.36) satisfy the following useful relation

FIGDg.f (1) = f(t) — £(0).
Proof. By the Caputo-Fabrizio fractional calculus, we obtain
t
IGDGf(t) = (1 = )Dg,f(2) +a/ DG, f (7)dr
(T v)
- ) dyd
(1 - s+ [ [T ydr
_or—y)
= (1 — a)Dg,f(t) + m/ f’(y)/ =a drdy

=(1- 0|tf /f < - 1>d7'.

1.2 Fundamental Examples

Example 1: Consider f(t) =t, then by Definition

a 1 ¢ a—1
ot = () /0 (t — 1) 7dr.

(1.37)

We introduce the following scaled variable 7 = st and by definition of the Beta function,

we get
« 1 ¢ a—1
0|tt:r(cy>‘/0(t_7—) TdT
ta—i—l 1 .
= 1—5)*""sd
o) /o (1—95)"""sds
ta+1
= B(a,2).
Therefore
Ig‘tt — ﬁta_‘—l.

23
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1.2. Fundamental Examples

D%t

0.8+

0.6

0.4r

0.2H

Figure 1.2 — Simulation of R-L integral, with a = 0.5.

Using (1.7), we can re-write

1
o 4o niin—auo o n n—a+1
1
_ Dn tn—a—i—l
['(a+2) : l
for n — 1 < a < n. Therefore
(?‘tt — mt_a—i_l. (139)
2
1.8f
161
1.4F
124
2
0.8
0.6
0.4
0.2+
% 1 2 3 4 5

Figure 1.3 — Simulation of R-L derivative, with o« = 0.5.
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1.2. Fundamental Examples

The Caputo-Fabrizio of function f is given by

1 oy [t a
Dy f(t) = T emt/O et-a’ dr
_1 _“t< ot >
=—el-a|eTa"—1], O<a<l.
«
So
D§,t = ;(1 — ef—”&t>. (1.40)
2
1.8
1.6
141
121
o
0.8
0.6
0.4
0.2
00 1 2 é 4 5

Figure 1.4 — Simulation of C-F derivative, with oo = 0.5.

Example 2: Let f € C*([0,00)) satisfying

7(t) = (L.41)

Definition of Riemann-Liouville derivative allows us to write

DﬁTf(t) = I‘(l_—la)D/tT(T —1)7 (1 = ;)ndﬂ 0<a<l.

Using the Euler change of variable
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1.2. Fundamental Examples

since we have

Dijrf(t) = m__la)D[ [a- t)l—ay_a<1 . y(T—TﬂH) dy]

_ —B(l—-a,n+1) 1o
- M o) D[(T—t)"’ T ]

Using the following Beta formula

I'(z)l'(y)
B(z,y) = s 1.42
)= Ta+y) (1.42)
we obtain
Iﬁ‘Tf(th(t) _ (1foz+7rl‘)££1(;)a;7771)Tlfa(1 N %)nfa+1’ (1.43)
and
D f(t) = g T—(1 — &)= (1.44)

150

100+

1% (1-/T)"

50

Figure 1.5 — Approximation of function (1 — %

n=10,T = 5.

)7 via Riemann-Liouville integral, o = 0.5,
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1.8. Notion of Blow-up

D® (1-t/T)"

051

_ i

7)" via Caputo derivative a = 0.5, = 10.

Figure 1.6 — Approximation of function (1

Lemma 1.2.1 ([17]). Let f asin (1.41), for 0 <a <1 andn > Fra —1

T
| sy = e,

and .
| o mDg ol = cort o,
where
(- a) 7 Lin—a)) |
Cy = d Cy= .
LTl +ri-2a) " 2T 1 pa [F(n+1—2a)

1.3 Notion of Blow-up

It occurs often that the solution to the nonlinear evolution equation is not able to extend
after some time. This phenomenon is called the blow-up or explosion (in Latin languages)
of the solution. The blow-up is a general term that refers to the fact that some solutions
in a Banach space tend to infinity in norm as ¢ approaches some finite explosion 7" which

depends on the solution. We recall the famous example on ODE is

u = u(t), t>0,

(1.45)
u(0) = uo,
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1.8. Notion of Blow-up

it is immediate that if vy = % for some 7" > 0 then, there exists a unique solution u(t) = ﬁ
in the interval (0,7), we notice that it is smooth function ¢t < 7" and also that u(t) — +o0
ast — 1.

u(t) Graph
140 T

120
100+

80

u(t)

60

40+

20

1

Figure 1.7 — Simulation of function u(t) = 7

when t — T

Definition 1.3.1. Let A C RY and u(t,z) be a solution of a given evolution PDE on the
set 2 :=[0,7] x A. We say that u(t,z) blows up in finite time 7" if such that

lim |u(t, )| = +oo.
t—=T

In this case one has
sup |u(t, z)| = +oo,
e

and T is called the time of blow-up.
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CHAPTER 2

FRACTIONAL PARTIAL DIFFERENTIAL
EQUATIONS USING CAPUTO’S
DEFINITIONS

The fractional calculus is one of the best tools to describe a short memory. In this
Chapter 2, we study the fractional partial differential equations under Caputo operators,
the discussion is based on some classical analysis such as: the semi-group theory, fized
point theorem and the test function method.

2.1 On Generalized Fractional Elastic System with
Fractional Damping

In Section 2.1([4]), we study the problem

Dyu — 2ADu+ A%u = [ulf  (t,z) € (0,00) x Q,
Au(t,z) = u(t,z) =0 (t,z) € (0,00) x 9, (2.1)
uw(0,2) = ug, u(t,x)]t=0 =0 x € (),

where € is a bounded domain 2 C RY with smooth boundary 99, p > 1, % < a <1,
1 < f < 2 and A denotes the Laplacian operator with respect to the x variable. The
operator D,u = Dg,(u(t) — u(0)). The term ADg,u represents a generalized structural
damping.

Our target is to find the critical exponent p. for which solutions cannot exist for all time
in the sub-critical case, whereas, in the critical and super-critical cases, global small data
solutions exist.

Throughout this Section, we take g = 2a.
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2.1. On Generalized Fractional Flastic System with Fractional Damping

2.1.1 Existence and Uniqueness of Solutions

In this part, we discuss the existence of mild solutions of the semilinear equation with

a time fractional structural damping (problem 2.1).

Definition of Mild Solutions

Definition 2.1.1. The Wright function ®,(6) is defined by

) -0 k
20 =2 k!F(—Lk J>r —ay 'R

(Mainardi G- Forenflo, 2010 [31]).

Let X = L*(Q) be a Banach space, A = A : D(A) C X — X is the infinitesimal
generator of Cy semi-group 7'(t)(t > 0).

Definition 2.1.2 ([45]). Let ug € X, P,(t) and S,(t) two operators defined as follow
Pa(t)up — / " B, (0)T(t°0)ug db, (2.2)
0
and

Sa(t)uo = a / T 00,(0)T(t°0)uo db. (2.3)

0

Lemma 2.1.3 ([45]). The operators P,(t) and S,(t) satisfy the following properties

(1)Let1<p<q<oo,and%: — 2 < = then

2w

1_1
P g

N F(l —N/QT’)

|| P (t)to|| Loy < (4ﬂta)57m“%|lm(w)- (2.4)
(2) Let 1 < p < q< o0, if%:%—%<%, then
-~ I'(2—N/2r
I5: 0ol < al4mt)F 2 RS ol (29

Lemma 2.1.4 ([45]). Assume f € C((0,T), L*(Q)), let
w(t) = /Ot(t LS, (t — ) f(5)ds,
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2.1. On Generalized Fractional Flastic System with Fractional Damping

then, w € C([0,T], L*(Q)).

Considering the following in-homogeneous equation corresponding to (2.1)

Difiu — 2ADg,u + A’u = f(t,2), (t,z) € (0,00) x €,
Auft, ) = ult,2) = 0, (o) € (0.00) x 09, (26)
uw(0,z) = ug(x), w(t,z)|=0 = ui(x) =0, z € (.

First, we present the following Lemma that will be used to give the definition of a mild

solution to the problem we study.

Lemma 2.1.5. Let 1 < a <1, ug € L*(Q) and vo = (Dg\tu‘t—o — Aug) € L*(Q). Then the
problem (2.6) admits a unique mild solution u € C([0,T], L*()) given by

u(t, z) =P, (t)uo(x +/ V¥ So(t — ) Pa(s)vods
+ / )4 LS,(t — ) /05(3 — 7)1 S (s — 7) f (7, x)d7ds, (2.7)

where P,(t) and S,(t) were defined as in (2.2) and (2.3) respectively.

Proof. By Proposition 1.1.9, the problem (2.6) is re-written into two abstract Cauchy prob-

lems
0|tv Av = f(tv x)? (t,:)j) € (0’ OO) X Qv
u(t,z) =0, (t,z) € (0,00) x 99, (2.8)
U(O,l‘) = Uo(x)a S Q>
and

D,u — Au = v(t, z), (t,z) € (0,00) x £,

u(t,x) =0, (t,z) € (0,00) x O, (2.9)
u(0,2) = uo(x), req,
which means
vo(z) = Dgu|  — Auy. (2.10)
t=0
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2.1. On Generalized Fractional Flastic System with Fractional Damping

If f e C(0,T],L*(Q)) and vy € L*(2), then by [45] the problem (3.15) has a unique
mild solution v € C([0, T}, L*(?)) is given by

v(t,x) = P,(t)ve(z +/ )4 1S, (t — 5) f(s, 7)ds. (2.11)
Similarly, if v € C([0,T], L*(Q2)), then the mild solution of problem (2.9) is expressed by
u(t, ) = Py(t)uo(x +/ )48 (t — s)v(s, x)ds. (2.12)
Substituting (2.11) into (2.12), we get
u(t, z) =Py (t)uo(x +/ )¥ 1 So(t — 8) Pa(s)vods
+/ )o18, (¢ — 5) /OS(S—T)alsa(s—T)f(T, ©)drds. (2.13)

O

Definition 2.1.6. Let 1 < a < 1, ugp € L*(2) and vy € L*(Q2). We say that v is a mild
solution of (2.1), if u € C([0,T], L*(Q2)) and satisfies

u(t,x) =P, (t)ug(x +/ V¥ 1S (t — 5) Pa(s)vods
+/ )2LS (t — 5) /OS(S—T)O‘1Sa(s—7')\u(7',$)\pd7ds, (2.14)

where P, (t), S,(t) were defined as (2.2), (2.3) and vy was specified in (2.10).

Theorem 2.1.7. Let 3 < a < 1 and (ug,vo) € L*(Q) x L*(). Then there exists Trpax > 0
such problem (2.1) has a unique mild solution u € C([0, Tax), L*(Q)).

Proof. We apply the Banach fixed point theorem to prove the local existence of a unique

mild solution. Let
B = C(0,T), L*($2)).
For T' > 0, E is a Banach space endowed with the norm

|ul[z = sup HU()HL2(Q)
te(0,7)
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2.1. On Generalized Fractional Flastic System with Fractional Damping

Define the operator G as
Gu(t) =Po(t)uo(z) + / )2LS0 (1 — 8) Pa(t)vo(2)ds
a 1 ® a—1 P
+ / Sa(t — s) / (s = 7)* " Sa(s — 7)|ulP (1, x)drds. (2.15)
0

For each u(t) € Bg(R), where R = 2(||uo|| 2()+T*||vo| 12())- Then G(u) € C([0,T), L*(Q)).
First, we prove G maps Bg(R) into itself. By using (2.4) and (2.5), we have

|G (@) (®)l|z2) = |[Palt)uo(a +/ YO LS, (t — 5) Pa(t)vo(z)ds
Oé 1 _ s _ a—1 _ p
—l—/ Sa(t S)/O (s = 7)* " Sals — 7)|ulP(T)drds @)
0471
<[[Patyu] 0y + / [Sutt = 8)Patt)on(@)] ., o s

+/ (t—s) cHHsa t—s) /S(S—T)aflsa(s—f)mw(f) drds

0 0 L2(Q)

1
< luol| 2@ + mTQHUoHL?(Q)
1 t a—1 5 a—1 p

gy €= [ = s dras

R 1 e

We choose T" small enough such that

1

TQQRpfl <
I'2a+1)

N | —

Second, we show that G is a contraction map. For u,v € Bg(R), we have

G0 = G W e = || [ (6 =927 Salt = 5) [(s = 7)*8als = 1) (ul(r) = ol (7))

< [t =9 [ = Sals = )l (7) — P ()] g s
< /Ot(t—s)o‘_l [ s =7 (1 () = TP )]

1 20 pp—1
< m:ﬁ RP Y — v|s.
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2.1. On Generalized Fractional Flastic System with Fractional Damping

Due to the following inequality
[ u@)]” = @) | < C)lu(t) —v@I(u®) P +[o@) ).

We choose T such that

1

—_— _qPeprlo.
(204 1)

Therefore, G is a strict contraction on Bg(R). According to the Banach fixed point theorem.
Then problem (2.1) admits a unique mild solution u € C([0, Tiax), L*(Q)), where

Tnax = SUp {T >0 | there exists a mild solution u € C([0,T), L*(Q)) to (2.1)}.

2.1.2 Blow-up and Global Existence

We investigate under what conditions the solutions of (2.1) blow-up or exist globally.

Lemma 2.1.8 ([30]). Let Br(0) =z € RN : |z| < R} and Qr = QN Bg(0) for large
R. We introduce @y the first eigenfunction of —A with X the first eigenvalue on Qg

—Apy(x) = Apa(x), x € Qpg,
pa(x) > 0, x € Qp, (2.16)

p2ll Lo (p) = 1,

there exist C'y and Cy independent of R such that
CiR? <A< R (2.17)

The weak solution of the problem (2.1) is defined as follows:
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2.1. On Generalized Fractional Flastic System with Fractional Damping

Definition 2.1.9. Let T > 0 and 3 < a < 1. A weak solution for the Cauchy problem (2.1)
is a function u € LP((0,T), L*(2)) satisfies

! D2 2T AD¢ ! A?
/O/QU HTP — /O/QU t|T90+/0 /QU ©

T T T
:/ / |u|p90+/ /UOD?G“(P_Q/ /UOAD?[T% (2.18)
0 Ja 0 Ja 0o Ja

for each ¢ € sz([o, T] x ) compactly supported and ¢(T,.) = ¢(T,.) = 0.
Theorem 2.1.10. Assume ug € L*(Q2) and uo(x) > 0. If

4o

lepelag— >
p<lty o

then any solution to (2.1) blows-up in a finite time.

Proof. By contradiction. We assume that the solution wu is globally if (2.18) holds for any
T > 0. Let

o(t,x) = 1(t)pa(w),

n
where 9 is the first eigenfunction of —A and ¢;(t) = (1 - 7’;) where n > “E22a — 1.

Equality (2.18) actually reads

T T T T
/0 /Q U802Dt2\0f901 —2/0 /Q ulApsDijppr +/0 /Q wp1 A%, :/o /Q lulPo+T+J7,

R R R R
(2.19)

where

T
I:/ / Uoszf\ofﬁpl = CTl*za/ UpP2,
0 Qr Qr

and

T
j = 2/ / UO(—A)QOQD;TT()Ol = )\CTlia/ UpP2-
0 JQr Qr
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2.1. On Generalized Fractional Flastic System with Fractional Damping

Under the condition uy > 0, the Eq.(2.19) becomes

T T T T
/ / [ulPe < / / U902Df|0%¢1 + 2/\/ / up2Dirpr + )\2/ / UPp2p1
0 Jog 0 Jog 0 Jog 0 Jog

=T +I,+1s. (2.20)

Using the Young inequality with parameters pandp’ = ]%, we have

T
</0 /Q |U|901/p<ﬁ_1/p902D§|0%801
R

1 T
<6p/o /Q [uf? // patpr” ‘Dt|T901 , (2.21)
R
T 1 1
I2<2A/0 /Q |ul @' /P o™ P 0y D o
R
T
<CR? [ [ Julere 7o, Dirion
R
T
:/0 /Q |u|901/pCR_290_1/p802DﬁTg01
R
1 T
g610/0 /Q [ul? // <P2901 t|T%01 ; (2.22)
R

and

T
<A2// |ulp P P00
o Jag
T
<OR‘4/ / |ulp PPy
0 Qr

T
= / / IU|s01/”OR‘4s0‘1/psozs01

6p / /QR [ul"e + O / / P2¢P1- (2.23)
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2.1. On Generalized Fractional Flastic System with Fractional Damping

Taking into account the above relations (2.21), (2.22) and (2.23) in (2.20), we find

<1 - ) / / [ulPe < O/ / Pap1” ‘Dt|T901 + R / / 902901 t|T801
+ R_4p,/ / Y201
0 Jog
r =z 2 |V -2 =
< O/o /(2802@117 Dt|T<P1‘ + R / / p201” t\T@l
. T
YR / / 0201 (2.24)
0o Jao
Note that, for 0 < a <1 and 1 < 2a < 2, then
o n—2a
Dt|T901(t) =CT™ (1 - %) )
% n-a
Dt|T§01(t) =0T (1 - %) :
We take R = T and we introduce the following scaled variables
t
= and € = |;i|, T> 1
It appears that
T ) P’
/0 /QMP / / 21" ‘Dt|T901 +T7% / / P21’ t\TSOl‘
+Tﬁ4p// /902901
0o Jo
< CT2—4ap’—|—N + CT2—(2+2a)p’+N + CT2_4PI+N. (225)
Therefore, if a solution of (2.1) exists globally, then taking 7" — +o0, we get
. T p
fim [} fy e =0
Consequently, © = 0. This leads to a contradiction. O]

We are now in a position to state and prove the global existence of solutions of (2.1).

Theorem 2.1.11. Let 3 < o < 1. If p > 1+ 5=2— and ||uo|| Lo () sufficiently small,
where q. = N(g U then the mild solution of (2.1) exists globally.

Proof. We apply the contraction mapping principle to prove the global solution of (2.1).
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2.1. On Generalized Fractional Flastic System with Fractional Damping

Clearly, from p > 1 + ﬁ, we see that

—1< =, 2.26
P 1 (2.26)
for L = chc - % < % We can deduce
-~ I'(1 = N/2r)
Pa t < 4 ta 2r PN qc < .
[ Pa(t)uol 20y < (47L%) T(1— aN/2r) [to]| e (@) < 00
Let

Y = { € C((0,00), LX) ¢ sup [u(t)12(0) < R}-

We define the operator G as

G(w)(t) =Pa(t)uo(x +/ )2 LG, (£ — ) Pa(s)vods

+ / )18t — 5) /O‘S(s—T>a-1sa<s—T>|u<s,x>rpds,

for each u € Y. It is easy to notice that the operator G is well defined on Y. According to

(2.5) we get

) - Gl

-|
< [t =[5 = Suls = Dl () = ol ()] g s

(7) = [0(7)]] 1 g 7
<0 [(e=9 [ls =¥ ()t + 10t ) () — o)
u(r) — v(r)

1
< ORv-12o-ok / (1 —w)* "% dullu(r) — v(r)
0

L*(Q)

/Ot(t _ )G, (t— s) /Os(s — 1), (s — ) [[ul? (7) — [v]? (7)]drds

L2(Q)

t

<[ [(s =tk

0

L2(Q)

ds

12(Q)

t
< CRv! / (t — s)0 sk
0

LX)

1
< CRr-'g2o—ok / (1-— w)a_lwa_%deu(T) — (1)
0

L(Q)
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2.2. Fractional Wave Equation with Structural Damping

< CRp—lww“u o,
Y

If we choose R small enough such that CRP™! < %, then we get

1
<l =1l

HG(u) —G)

Y

2.2 Fractional Wave Equation with Structural Damp-
ing

This part based on the paper of Kirane and Laskri ([25]). Consider the following Cauchy

problem

{Détalu + (=A)7u + (=A)° (D) = I, |ul’,  (t,2) € (0,00) x RY, (2.27)

u(0,7) = up, us(0,2) = uy(x), =€ RY,
whereu = u(t,z),p > 1,0 <y <ay < a3 <1,0<0 < <1and ISEO‘ is the Riemann-

Liouville fractional integral of order 1 — «. The fractional Laplacien operator is defined

as

(—A)‘Su(t,x) _ C(];f, (5) /RN U(‘Z.qﬁ ;‘ﬁii;y)d ’

where C'(IV, ) is a positive normalizing constant depending on N and é. The term (—A)”Dgiu

represents a generalized structural damping.

2.2.1 Main Results

Lemma 2.2.1 ([13]). Let ¢p € C*(RY) be a function defined as

1 2] <1,
Y(z) = { (2.28)
(14 (|z| — 1)1/ 2| > 1.
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2.2. Fractional Wave Equation with Structural Damping

Then, for all x € RN

[(=2)"¢(z)] < ¢(). (2.29)
Firstly give the definition of a weak solution of (2.27).

Definition 2.2.2. Let 0 < a; < 1, p > 1. For ug,u; € LY (RY), the function u € L} (Qr)

loc

is a weak solution of problem (2.27) if

| wpiet [ u(-ayo+ [ u(-a)Djo

= [ nlro+ / o D36 (0) + / mDo+ [ u(-A Do, (2:30)
for Qr :==[0,T] x RN, ¢ > 0, ¢ € C([0,T] x RY) with ¢(T,.) = 0.
Theorem 2.2.3. Assume that ug =0, u; € L*(RY) and uy; > 0. If

22+ —7)
UELN + 2y — 204 — 2)4

1<p<p>l<::( +1,

then any solution to (2.27)blows up in a finite time.

Proof. We assume the contrary. Let

Bt w) = Dy @t x) = Dyr” (e1(t)ea())

where ¢ (t) and po(z) = (T~%2x) are defined as in (1.41) and (2.29). According to (2.30)

and Lemma 1.1.4, we have
/Q |U|p95+/ U1902Dt1|;a1_7%01
T
= /Q upa D™ o + / Y0 Dy ipr + / A oDy (2.31)
T

Therefore, by Lemma 1.2.1, we get

PG CT*(arv)/ d
[, et [ wr(@)pa(a)dr

< [, Tl (22D85 o1+ DI ol (AY ol + D1 (=AY al).
T
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2.2. Fractional Wave Equation with Structural Damping

Using the Young inequality with parameters pandp’ = -Z, we obtain

p—1’

[t 0T [ @)pa(a)da

/

R
1 6Pt L
g—/ ulPo + p/pD2+a1—v P
6 Jo ulP@ o Jo, P91 1Dy een
6¥'

P

1 ~ 6p’—1 o, - i , B /
+6p/Q |ul"@ + p, /Q 037 o (=AY ol | DYl (2.32)
T T

/

T
1 - -1 —p! —p! / oo —
+ 6p/@ ul’ @ + —; /Q 037 PP P (— DY o | DY o P
T T

Using Lemma 2.2.1, it holds
[ er(a) PRI =A gl < T+
R

Passing to the scaled variables

t |$| OZ1—|—1
T—?,g—m,G— o and T>>].

Hence

(1 — 1) / lu|P@ + C’T_(O‘l_w/ uy(x)po(z)dx
P/ JQr RN

<C (T—p’(2+a1—v)+%+1 + T—p’(06+1+a2—w)+%+1 + T—p’(90+1—w)+%+1)

/N

C (Tfp’(2+a1*'y)+%+1 + 2Tfp’(00+17'y)+%+1)

OV Grer=+ i, (2.33)

N

Under the condition u(z) > 0, we obtain
L u[P@ < CT P Crei=+5 41, (2.34)
P JQr

Since

22+ a1 —7)
< — 1
P (7a1;1N+2’y—2041—2)++ ’

we have to distinguish two cases.
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2.2. Fractional Wave Equation with Structural Damping

In case p < px : if a solution of (2.27) exists globally, then taking 7" — +o00, we get

lim lulP@ < 0.
Qr

T—00

Contradiction the fact that [5° [pn |u[P® = 0.
In casep = p* : we repeat the same calculation as above by taking ¢y (x) = 2/1(%),
where 1 < B < Tand when T goes to infinity we don’t have B goes to infinity at the

same time, employing the Holder’s inequality instead of Young’s, we obtain

DX < BT vg) " 2.35
ulpa D™ o1 < BTv ufPg) . (2.35)
Qr Qr

Using Lemma 2.2.1 and the Holder inequality, we have

1/p
/ |u(—A)5g02|Dt1|;a2_7s01 < CT—(9(5—0)+Q2)BQ5_§ (/ |u|PS5> ’ (236)
T Qr
and
o 1—’y 20’—ﬂ ~ 1/p
| -8y ealbipe < B ([ ) (2.37)
T Qr
Combining (2.35), (2.36) with (2.37), we get
1/p
/ lu|P@ + C’T_(O‘l_w/ uy(x)po(z)dr < CB (/ |u|pcﬁ)
Qr RN Qr
oo ([ )"
T

Thus, passing the limit as7" — 4ooand then where B — 400, with o < %(1 — ]i) we

have
lim lulP@ < 0.
Qr

T—oo

This leads to a contradiction.
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2.3. Time—Space Fractional Diffusion System

2.3 Time—Space Fractional Diffusion System

This part is concerned with the study of the following system ([7])

Dgjpu + (—A)ry = IS|;71|U|7”, (t,z) € (0,00) x R,

(2.38)
Diiv + (=A)%0 = Iy, *[ul?,  (t,2) € (0,00) x RY,
supplemented with the initial conditions
u(0,2) = ug(x), =€ RV,
ol) (2.39)

wherep > 1,¢> 1,0 < a; < 1 and 0 < §; < 1. The operator (—A)? is defined as a power

of Laplacian operator —A.

2.3.1 Nonexistence Results

Theorem 2.3.1. Assume that uy > 0, vy > 0. If

Pq pq

Qg 1 ’ a1 1
d2qp’ + q + o’

1 (1 1y 1 (1L
N/2<max{q@2+@1 (1 ) p@1+@2 <1 >}7

019'p
where ©; = 1+a;—~;. Then system (2.38)—(2.39) admit no global nontrivial weak solutions.

Proof. The proof proceeds by contradiction. Let
6L, ) = Dig " ¢(t,x) = Dig (e1(t)ga(@)), i = 1,2,

where ¢; is defined as in (1.41) however with condition n > {pfl@z} and @o(x) =

(0 (TLf'/2) is defined above.
The weak solutions to system (2.38) — (2.39) reads as

/Q |v|pg5—|—/Q uOQOQDal““(pl:/Q ugpgDa1+171901+/62 u(—A)‘Slgpngﬂlgol, (2.40)
T T T T
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2.3. Time—Space Fractional Diffusion System

and

/ |U’q@+/ U0<P2Da2+1_72¢1=/ USOQDO‘QH_W%-F/ v(=A)2pD 20, (2.41)
Qr Qr Qr Qr

Using the Holder inequality, we obtain

A Ve
/ UQOQDO”H_%S% < (/ |u|q ) (/ 902(1011 1 Doc1+1 %80 ’q) , (2_42)
Qr

and

!

1/q / , =L N L
| oat=aried e < ([ ure) ([ e iAo D el )
T Qr Qr

(2.43)
Taking into account the above relation (2.42) and (2.43), we find
1/q
Rl T T A ) (2.4
RN Qr Qr
we have set
-1 AV , , =L A Ve
= ([ ewel Do) ([ A el o D))
Qr Qr
Similarly, we get
1/p
e [ et [ i< ([ pie) B (2.45)
RN Qr Qr

with

=1 . A P .y . 1/p
B= ([ el D1l ) ([ o Ayl T ID )
Qr Qr

Therefore, as ug, vg = 0, we obtain

[ bres ([ ) A (2.46)
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2.3. Time—Space Fractional Diffusion System

and

[ e < ([ wre) s (247
Qr Qr

Now, combining (2.46) and (2.47), we write

1,L
(bTWV¢> < BiA,

(2.48)
1—p—1q .
(bTWP¢> < APB.
Using Lemma 1.2.1 and making the change of variables
v =ET% with 6, = 2L in A,
01
¢ =ETF with 6, = 22 in B.
02
We obtain the estimates
(bﬂww <7,
(2.49)
1—L
(Jortun) " <
where
1 6N 1 1 6N
L=(-(1 - (24D )=-( - (4
= (e BT ) - e -+ 2O 4,
and
1 60N 1 1 6N
lo ={—(1 — —(—+1)-—-(1 — —(—+1).
o= (~rar - LT D) - e+ LY
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2.3. Time—Space Fractional Diffusion System

Hence, by taking the limit as 7" — oo in (2.49), we obtain

fOOO fRN |U’p¢ < 07

Jo© Jrw [ul'® <0,

which is a contradiction. Then (u,v) cannot be a global solution. O
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CHAPTER 3

FRACTIONAL SOBOLEV TYPE EQUATION
USING HILFER- HADAMARD’S
DEFINITIONS

In Chapter 3 ([8]), we mainly consider semilinear equation with Hilfer- Hadamard frac-

tional derivative

Dji’ﬂu—ADsi’Bu—Au:f(u), t>a>0, x€qQ,

’LL(t,.I) = 07 t>a> 0, T € (9(2, (31)
(Dc(ﬁrl)(lal)u> (a,2) = up(z), z € qQ,

where €2 be an open bounded set with sufficiently smooth boundary 02 and 0 < as < ay <
1. D;ﬁ"ﬁ (1 = 1,2) is the Hilfer- Hadamard fractional derivative of order «; and of type £.
For simplicity, we formulate most of our assertions for the model case f(u) = |ul?, p > 1.
The equation (3.1) is a generalization of the well-known pseudo-parabolic equation of first
order. The integer derivative is replaced by a fractional derivative in the sense of Hilfer-
Hadamard. The second Hilfer-Hadamard fractional derivative of the Laplacian is allowed
to be different from the first one.

Our objective is to find the range of p for which non-trivial solutions cannot exist all

the time. This leads us to shed some light on the interaction of the nonlinear source term
with AD*?"u. The analysis is based mainly on the test function method [32].

3.1 Blow-up of Solutions

First, we give the definition of a weak solution of (3.1), then we prove the non-existence

of non-trivial solutions.
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3.1. Blow-up of Solutions

Definition 3.1.1. Let ug € Cyp(2) 0 < as < oy < 1 and § = a3 + § — oy The function
ueCy ([a,b], Co(R2)) is a weak solution for the problem (3.1), if

1—~,log

T T T T
//4@%%&@—//ﬂMmg%ﬁw—//“mmmmz//|m%ﬁm,@m
QJa QJa QJa QJa
for all compactly supported test function @ € Ct{ f([a, T] x Q).

Theorem 3.1.2. Let uy € Cp(Q2) and ug > 0. If

O{2N+1

l<p<
P (OéQN—f-]_ —2042>7

then the problem (3.1) does not admit global non-trivial solutions in the space C)__ 1. ([a, b], Co(£2)).

Proof. We assume the contrary. Let ® € C§°(]0,00)) be a decreasing function satisfying

1, 0<o<1,
®(0) =
0, o=2
We define the function ¢(¢,x) as follows
. pi1t
P(t,x) = 1(f) 2(7), (3.3)

with ¢1(t) € C'([a,00)), p1(t) = 0 and ¢ (t) is non-increasing such that

1, O0<a<t<OT, 0<60<l1,

p1(t) = { (3.4)

for T' > a > 0 and we choose

w@%zﬁcﬁby: “2;?1 (3.5)

Equality (3.2) actually reads

T g dt T g dt T dt
/Q / gog(x)gol(t)Dagﬁu?dx —/Q A(pQ(:c)gol(t)DaJr’ﬁu?dx —/Q Agog(x)wl(t)u?dx
1Ja 1Ja

~ [ [ wre@enT

1Ja

dx. (3.6)
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3.1. Blow-up of Solutions

where Q; == {z € Q : |z|| < 27*2}. From the definition of Dg"fu, we can re-write the

above equation as

d dt
20 (1 L) (z0-m0-en, ) 2
/91 , @)l di ¢

o { d o \di T dt
-, Agpz( Yor (t )IfS )<tdt> (I(l A )u> ?da: —/ A@g(a:)cpl(t)u?da:
1 Ja

, dt
:/Q/ [ulpalx)pr(t) S de. (3.7)

1—y
By Definition 1.1.10, we have <log (’;) D), u is continuous on [a, T| implies that

t\'
‘(log ) D) u| <
a

for some positive constant M (the constant M will be a generic constant which may change

M, Vté€ [a,T],

at different places). Therefore

[l

p/

T *pl(lf')’)
@ < Mp’/ tlfp’ logf ﬂ
t a a t
oo —-p'(1-7)
e [oorogl) "
a a t

where % + z% = 1. We introduce the following scaled variable

w=(p —1)log (t/a).

Then

P’ _
dt MV g7
7<(p 1p1’y/wp1 e Vdw

MP al—P
<
(p — 1)1=P (-7

r1—p(1-9)) < oo. (3.8)

49



3.1. Blow-up of Solutions

Consequently, (Daﬁu) (t) e X? /1 Jp- Thus it follows from Lemma1.1.15 that

d
/ / I’gl O‘l)gpl(t)d A=A =)y dtda
Q1 Ja

et

_ d T dt
- A%(Q;)IfE a2)90 (t )d Iﬁ A=y dtda —/ Aps(z)or1(t)u—dx
Q1 Ja t Q1 Ja t

= [ [ reawonoan (3.9)

Using integration by parts in (3.9), we obtain

T

[ w)[(I?‘f‘“”sm<t><:f§i-5>“-“”u><t,x)] iz

t=a

B(1—o1) (1-8)(1—a1)

— |, Aeala) [(I?Sl“”’sol)<t><151‘5>“‘°‘2)u><t, x)] )

t=a

d 5(1—as) (1-8)(1—as) dt
+ o /. Acpg( )dtI o1(t) L, udtdgz:—/Ql ; Ao () (t )u dzx
dt
- /Q / |u|p@2(x)¢1(t)7dx. (3.10)

Since ¢; € C'|a, b], then there exists a constant M > 0 such that |p;(¢)| < M. Hence

ﬁ(l—ai)—l
o M T T dr
7202, (1) < —/ log — —
Zr 210 C(B(1 —ay)) Je & T

M T 5(1 0‘1)
< 1 - 9
T3 — o) + 1)( o t)

where 7 = 1, 2. We notice that

B(1—cu) B(l—a;) _
(T o)(T) = Jim T30 (1) = 0, (3.11)
and
<I(§1+ B)(1—a1) )(a+,x> _ <Dfﬁl)(1al)u> (a+,x) = ug(). (3.12)
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3.1. Blow-up of Solutions

It is noticed from Lemma 1.1.14 that

AN
|<10g ) u(t,.)| < M,
a
for 1 —v < (1 —6)(1 — az). We can deduce

1-8)(1—«
F(-A1-as)

( t)(l—ﬁ)(l—oa)—l dr
log — u—

) T
’7_1 t (1 6)(1 OQ
<M<logt> / <logt> d—
a a T T
B

y—1+(1
< M(log a) . (3.13)

Therefore
(Iﬁi‘ﬁxl‘”’u) (a,x) = 0. (3.14)
Taking into account the above relations (3.12) and (3.14) in (3.10), we find

B(1—a1) (1-B)(1—a1)
B /Ql a 902 dtIT7 1 (pl(t):z’-oﬁ ' udtdx

d a a T dt
+ A(,OQ(x)—Ig(} 2)901(25)2((1}r Bl-e: udtdx—/ Aps(z)p1 () u—dz
Q1 Ja dt Q1 Ja t
T
= [ ] WPe@ien G+ [ @@ @t (3.15)
Let
ﬂl o 1 ﬁ 1— Oc1
/Q1 ) oz dtIT_ 1)g01(t)IC(L+ ) udtdz,
and

T d « - —a2
Ay = /Q Aga(w) 2T oy (TP s,
1 Ja
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3.1. Blow-up of Solutions

Multiplying A; and Ay by t/t, we notice that

« — —a dt
A = //902 <—t>Iﬁ(1 Doy (8P I)Ude,

and

T d N 1y di
_/91 a A%(x)(_tﬁ)IB(l o (TP L

Definition 1.1.16 allows us to write
8\ (1— dt
Al = / 902 ( D, B(l “”sm)(t)l,ﬁi pa al)ufdxa
21 Ja t
and

T —B(l—« — —« dt
AQ = —/Q AQOQ(QZ) (ID;B(I 2)@1> (t)IC(Li A 2)U7d$
1 Ja

According to Lemma 1.1.18 and (3.4), we get

T B(l—a;)—1
1— l—ai
(DTﬁ( )%) (t) = 1 ) /t < ) o (s)ds

e

In regards to (3.20), we obtain

and
T - - - dt
Ay :/Q Apo () (Ig(_l ﬁégm)(t)léi s 2)u7dx.
1Ja

Note that dp, € LP(]a,T]) and by the same arguments as in the proof of

(D) (t) € X¥

1/p?

22

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)



3.1. Blow-up of Solutions

we may show that

(1-8)(1-ai) '
T u € Xﬁl/p,

. l—fy
since Z ;. u € Ci_10g]a, T1.

Therefor, we conclude that Lemma 1.1.15 is satisfied

t
/Q wa(x)0p (t (Zﬂ(l al)I(l B1-e) )(t,x)idw, (3.23)
Ay = / " Apa()n (1) (Ifﬁ‘“”zii—@“—”)u) (t, x)afdx. (3.24)
1 Ja
Lemma 1.1.13 yields
dt
/ / wa(x)op (t (Iiﬁ“ >(t,x)tdx, (3.25)
dt
A :/Q Agog(a:)égol(t) (I;f‘Qu) (t,x)de. (3.26)
1 Ja

By Definition 1.1.12 and the property of (1, we have

1 T t
Al < Fl—Oélfﬂ ; soz(il?)|5901(t)|/ (10 >
- 1 1
So1 (D) [y dt
/Q [t “f/;t’(z; o |so”p)<t L (3.27

A similar analysis for Ay, we get

d @d:p
t

!5901 \ u(s, 2)]y/"(s) | dt
4 R —
2 F(l — o) /A91 9T| o1/ (t s ds t da
[0p1(2)] ey l/7 di
< 2 —d 2
AQ, 9T| ‘ 1/p<t) | | ( ) t xz, (3 8)
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3.1. Blow-up of Solutions

where

AQyi={xeQ: T L ||z| <27*}.
We obtain from (3.15), (3.27) and (3.28)

/ /TIUI”sOQ(x)% (t)— d:c+/ 0o(2) (T2 1) (a)uo () de

|5801 | 1 [e%1 1/p dt
/Q1 /9T 1/p | | ( ,iL’) t dx

s [ae <>|"5 T R [ R N N O

AQ, Jor 1/ VP ()

The condition ug = 0 yields

r dt
/Q / !UIpsﬁz(w)sol(t)—dx
‘5901 ’ 1 o 1/p dt
/91 /9T 1/17 | | (ta ZL‘)?dl'

+/AQ/ [A¢ ||61/p((?)|< Zo "l ”p)(t )~ da:+/ / | Agps( )Isol()ud da.
(3.29)

It is easy to prove that

juei’”] € X2,

since u(t,.) € Ci_10gla, T']. Thus, we can apply Lemma1.1.15 to obtain

[ [ lresien s
< [, Lyt ( 'ZZO/L(( ))'><>| ull?

1—ao ‘5()01 (t)| 1/p dt
* e, aTlsz(x)!<IT s@i/p(t)>()| s /pd d +/ / Apa(@)lr(Hu-da.
(3.30)
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3.1. Blow-up of Solutions

Using Young inequality with parameters pand p’ = ﬁ, we have
/ / ( 17041 |6901(t)‘>< )’ ‘ 1/p
a Jor (1)

6P -1 T
x
% /Q 1 /9 . pa(z)

6P 1 T
x
% /Q ) /9 . pa(z)

! [0 (1) ydt
A T " rdt
/AQl 9T| (’02(x)|< T gp}/p(t) (t)[uloy ;07

<o [ [ b tgatn) Lan +
N Uu T )—ax
6p Jo, Jer PLE)P2 t

: Cupp dtd i ! P'/PIA
< — t = / -
Gp/gl | e Ope(@)pdrt —= | [ eal@) T A0

Pt
—dzx
t
! i
t

w50
T— 1/p<t)

Tt 101 (1)]
o1/ (t)

<o [ [ llortes@) S+
N u xTr)—ax
6p Ja, Jer PLLE) P2 t

1 T dt
S L llPert)ea(@) T+

dz, (3.31)

Pt
—dzx

t

“a

t
(3.32)

51 (2)]
0

az [001(2)]
Iilf* 1/p
¥1 (t)

1—a2
T

(e T .y :
T oo, 2@ A )P
1

?

and

T dt
Lo | 18ea@len(tu e
dt

1 T dt (e T : :
S o L o) Te + = [ ) A @) a(1) G (33

Using inequalities (3.30), (3.31), (3.32) and (3.33), we obtain the inequality

o i

L 1/ [ |z 0220 t
o Jor ¥ - 1/1’(15) t
6p 1 W ’ _ |(5901(t)| p/dt
T )7 A () P [T L
5 o S e Al
6" ! T : o dt
2 [ @)y A @ (1) e (3.34)
1Ja
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3.1. Blow-up of Solutions

We introduce the following scaled variable
! T>1
T== :
T’
It shows that

/T
oT

001 ()]
01" (t)

1—ay
T

L ([ e Ol
t TPl — o) Jor \ Ji &% Sﬁi/p(S) s

t
A R R =IO Y
= — / / log — ds
(1 —owy) Jo \Jrr 7T gp}/”(s)
for i = 1,2. Another change of variable r = % yields
1 T Y, P'd 1 1 Y P g
([ (o) ) 0 P (o) L) gy
0 T 7T ©01'F(s) T 0 T T 0P (1) T

Since ¢; € C'[a, o), we assume without loss of generality that

Y

dr
.

i (r)]

1 r\ ¢
/ log ) dr < M,
v ( 7)ot

for M > 0. Then Eq (3.35) becomes

1 1 1 r\ " oL (r)] P dr 1
. log ) 1AV, 4T .
(1 — o) /0 </7' < o8 7') Sﬂi/p(r) dr T < C/0 ar

Putting # = 1 — e~ with T' > a > 0, we obtain

T
/9T

for some positive C' independent of 7T'.

17041'
T

p/
530/2(”" @< oo, (3.36)
¥1 (t) t

Next, using the change of variable y = %, we get

I

/ T p—1
" dp = TeeN—2e0p / lfb(y)]
1<llyli<2

p
p—1

Aps(x) dy

A[@@)Y

[, e
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3.1. Blow-up of Solutions

r(p—1)—2p

F(y)] Ty

g TN —202p", (3.37)

/
pd.%' g Ta2N72a2p’/

I<]lyll<2

Apy ()

/AQ1 Pa(w) P

Combining (3.34), (3.36) and (3.37), we get
1 T dt —TrhasN asN—2asp’ asN—2asp’+1
— ulPs(x)p1(t)—dr < Ce™ " TN 4 CT*? W4 T 2w 3.38
2p Jao t
1 Ja

when 7' — 400, we obtain

lim e 172N =0,

T—400
and
lim TazN—Qagp’—l—l =0
T—>+o0 '
Therefore
i [ [ b (pa() e = 0 (3.39)
ngoﬂlauwlngtw—. )
This leads to a contradiction. O]
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CHAPTER 4

FRACTIONAL DIFFUSION-WAVE
EQUATION USING CAPUTO-FABRIZIO’S
DEFINITIONS

In 2015, Caputo and Fabrizio [9] have proposed new definition of fractional derivative,
in order to eliminate the singular kernel in the fractional derivative. In 2016, they presented
some applications of the new derivative [10]. The corresponding fractional integral has been
defined by Losada and Nieto ( 2015) [29].

Fundamental solution of diffusion-wave equation time-fractional derivative have been
studied by various authors. For example: Fujita [16] proved the existence and the uniqueness

of the solution of the following problem

ru_ o
ote  9xb’

<o, <2

When a = 1 and § = 2, the above equation reduces to the heat equation and the wave
equation if & = 8 = 2. So, the results obtained offer an interpretation of both phenomena.
In 2006, Sun and all [41] presented the numerical solution to a fractional diffusion-wave.
They proved stability and L., convergence by the energy method. In this part, we suggest
a novel approximation of the Caputo-Fabrizio fractional derivative of order a (1 < v < 2).
Our novel discretization is found by using discrete fractional derivative at ¢t = ¢, with a

new coeflicients.

4.1 Existence of Solutions

In this Section, we apply Picard-Lindelof method to prove the existence and the unique-

ness of the solution.
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4.1. Existence of Solutions

We consider the following time-fractional diffusion-wave equation

Ou(x,t)

Dg\tu(‘ru t) = o2

+q(z, 1) (4.1)
Over region 2 = [0, L] x [0,7], 1 < a < 2 with the initial conditions
uw(z,0) = f(x), w(z,0)=0, (4.2)
and homogeneous boundary conditions
u(0,t) = u(L,t) = 0. (4.3)

Obviously, the Caputo-Fabrizio operator Dé"lt is the composition of Dg“;l and %, ie.

(e a— a
DG u(z,t) = D, ' u(w, t).
ot
Setting v = %u, we have the following formulation

a— A?u(x,
Do Yo(z,t) = # +q(m, ), (4.4)

v(z,t) = Zu(z,t), v(z,0)=0.

By applying the anti- derivative operator ¢¥ 1§}, on the both side of Eq.(4.4), we get

v(z,t) =(2—a) x {W—i—q(x,t)} +(a—1) x /Ot{a%é(;’y) —i—q(a:,y)}dy. (4.5)

For simplicity, we consider the following projected function as the space variable is being

neglected
u(z,t) = F(t), q(z,t) = G(t).

Then, Equation (4.5) can be re-write as

v(z,t) =(2—a) X {828};275) + G(t)} +(a—1) x /Ot {8281:7(2@ + G(y)}dy. (4.6)
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4.1. Existence of Solutions

For more simplicity, we defined the operator H as following

O?F(t)

H(FH) ==

+ G(t).
Let
C[C,’U] = [t0_07t0+6] X [FO_UaF0+U]a L= sup ||H(Fat)||

Cle,v]
IF@)) = sup |F(t)]. (4.7)

tE[to—C,to—‘rC}

We define the Picard’s operator P : C[c,v] — C|c,v] as
¢
P(DF() = (2= ) H(F, 1)+ (a=1) [ H(F.y)dy.
First, we prove P is well posed. By using (4.7) we have

IPDF@) < 2= )| HEO) +(@—1) [ [HF,)]dy

<(2—-a)L+ (a—1)cL.
We choose ¢ small enough such that
(2—a)L+ (a—1)cL < L.
Second, we show that operator P defines a contraction. We have the following relation
|Pour () - P0Gl = (2= (E0) - HG.0) + (0 = 1) [ () = HG

<@2-q)

H(F,t) - H(G,t)H la—1) /Ot

H(Fy) - H<G,y>de

< M{(2=a)+ (a—1)c}l|F - G|
Due to the following inequality

[H(E,t) — H(G,1)]

< M||F -G
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4.2. An Application

We choose ¢ such that
M{(Z—Oé) + (a — 1)0} < 1.

Therefore, P is a strict contraction on Clc, v]. According to the Banach fixed point theorem,

then problem (4.1) — (4.3) admits a unique solution.

4.2 An Application

In this section, we investigate the approximate numerical solution of problem (4.1),
using implicit finite differences. To achieve this aim, we need to numerically approximate
to the Caputo-Fabrizio derivative.

For some positive integers N, M, the gird sizes in time for finite difference technique
is defined by K = ﬁ, the grid points in the time interval [0,77] are labeled t; = jK,j =
0...T'M, while the grid points in the space interval [0, L] are numbers z; = ih where h = %
it is grid sizes in the space. Denotes uZ the approximate value of u(x;,t;) and f* is the value
of f(x;). Define

n n—1
o , u'—u

o' T K
The standard central difference scheme

uf ™t — b

k+3 i i 2
et % O(K). 4.8
% s (45)
The approximate numerical of Caputo-Fabrizio derivative ]D)S‘ﬁlv(x, t) obtained by the fol-

lowing formula

1 ti (a—1)(t,—7) 8’0($' 7')
. _(a=1D)(g—7) (2
D ula ) = g [ e TEE T T
t a— b — T 3 t s — A
L[ e flien) et e BuleT)
2—alh , or t1 or
! 2
t a— -7 3
. /;e—%f%(fﬂmﬂ
0 or
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4.2. An Application

1 23 (a=1)(t T>a is T mil  _(a=D=1) Ju(x;,
DYy, 1) = U o~ () | Z/ el dulea 7))
1

ol Y 2 —« or or
2
0 (a=1)(tx=7) Qv (x5,
_ e_ 2—017 71}(% )dT]
t;l 87—
2
k-1 3
1 ty (a=1)(t,—T) R— Uk'*§
— e O(K)\|d
Q_Q[/tk—ée [ K " ( )]T
0o_ "3

- / e [—K ; om] dT]

! 1
1 A g eenwen [0 =0 ov(x;, T v tE
+ Z/ +3 e*zfolzC i i + ( ) Y i arl
¢ K or K

NG

2 —Q m=0 mf%
(4.9)
Denote that u; ' = u? — Kv? for i > 0. Then
2~ 2 0 2
Substituting (4.8) and (4.10) into (4.9), we get
k—2 t _ _ 0 _ _
+ u; k (a=1)(tp—7) 1 (a—1)(tp—T)
DS (s, ty) / Sl M / SR OK)d
o (it 2_@[ ] e e (K)dr
k—1 m+1 2 m—1 tm 1 (a—1)(tg,—7)
z( ) [ e
- m=0 t ,%

il el (o= ov(x;, T) UWr% - U'm_%

=2 /m+2 ns i dr. (4.11)

a =t or K
Setting

1 ' 7(‘*‘1)(;1“_%7%) ; 7(a—1)(t2k—tm+%) 7(a—1)(t2k—tm7%)
= a — — e —« s m.oc — e —a — e —« ,
SK (O{ _ ]_)K2 ) wk, s
m—&-% m—%
m+2 _leonmn (Ou(m, T) v P -y ir
1 or K

IO
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4.2. An Application

Therefore
k-1
Dfjulzi, tk) = sk (uf —2uf 4 u§_2> W + Sk Y (u?‘“ —2u" + u,m_1>dm7a
m=0
+O(K?®) + R. (4.12)

Also, the second partial derivative with respect to x at the grid point (i, k) given as

OPulws, ty)  ul —2uf +ul
D = i O(h?). 4.13
= L o) (413)

Using (4.12) and (4.13) to discretize problem (4.1) at point (x;,t) as

k—1
Sk (uf —2uf "t + Ui-”) Wha +SK Y (u?”l —2u]" + u;”l)dm,a +R
m=0
k k k
Uiy — 2wy + up
— il s Lt gF + O(K? + h?). (4.14)

The first initial condition, can be written as
w(z;,0) = f(x;) = fi i=0...N. (4.15)
Approximating the second initial condition, we obtain
wy (s, to) ~ ——"— =0, i=0..N. (4.16)

By means of the similar method used in [41]. It is easy to proof that |R| = O(K?).
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4.2. An Application

x 10
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& 10000f
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Figure 4.1 — Numerical simulations of Equation (4.1) for ¢t € [0,1], a = 1.5 up(z) = (1 —z)?
and g(x,t) = 0.
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CONCLUSIONS AND PERSPECTIVES

" In most sciences one generation overlaps what another has build and what one has
established another undoes. In mathematics alone each generation adds new story to the
old structure.” Hermann Hankel

As seen in previous Chapters, the question coming to the mind is :
What is a fractional calculus?

This question has been asked trying to define criteria for which functional operators
should be called fractional derivatives.

I- Mathematically Speaking, this is a valid question. Any term used in maths

should have a precise definition. Also, we can define something more general than

individual formulae

.= [ 'K (7 f(r)dr (4.17)

If K(t,7) is

e Power functions

I°S0) = 5 [ =7

It represents Riemann—Liouville.

» Scale logarithmic function

1 t

0 = oy [ () s 2

It represents Hadamard fractional integral.
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e One parameter Mittag-Leffler function

[gitf(t) Bla) /t Ea( I (t — T)a>f(7)d7.

:1—a0 1l -«

Atangana—Baleanu fractional integral.
The criteria selected of definition must be approached by convenience and appli-
cations, most researchers use Caputo fractional derivatives, but each researcher can
apply his/her criteria and technique he/she prefers in class. Each class can also cover
many different systems and processes. Despite these developments, we can not say
that this definition is more suitable than this one.

II- Applications, the overall structure is not yet clear.

Perspectives

The fractional calculus is an immense field of study, it develops every day. In fact, the
existence and uniqueness of solution of the direct problem is not a major problem. In future
our field of interest is to study fractional inverse problems because the results of this one

are totally different from the problems of the classical case.
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