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RÉSUMÉ

Les principaux sujets de cette étude étaient les systémes différentiels d’ordre fraction-

naire et de différence d’ordre fractionnaire. On propose initialement un contrôle linéaire

pour maintenir la stabilité du systéme Ushio fractionnaire à temps discret, en utilisant

la méthode de Lyapunov et l’opérateur de différence h de Caputo. Les conclusions de

l’étude sont illustrées par des résultats numériques. Par la suite, nous fournissons une

description qualitative du systéme Halvorsen (HCS) avec un dérivé de Caputo d’ordre

fractionnaire. La stabilisation et la synchronisation de FO-HCS identiques sont également

étudiées et nous proposons une solution numérique pour le systéme circulant Halvorsen

d’ordre fractionnaire (FO-HCS) en utilisant la technique de décomposition adomienne

(ADM). En outre, on a développé une méthode de chiffrement d’images en utilisant des

séquences fractionnaires étendues, en exploitant les caractéristiques remarquables du sys-

téme d’ordre fractionnaire. Finalement, il est performant et fiable dans le domaine des

données d’images, comme le démontrent les résultats de simulation et ses résultats. Mots

clés: Systéme dynamique continue, systéme dynamique discret, chaos, systéme chao-

tique d’ordre fractionnaire, contrôle adaptatif, synchronisation, méthode de décomposi-

tion adomienne, cryptage d’images.
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 . أولاً، حن حمذٌن لاًىى ححكن خطً ٌعخوذ على ًهج الشحب الكسشٌتسكض هزا العول على الٌظام الخفاضلً للخشحٍب الكسشي وًظام فشق 

Lyapunov  هؤثشوخصائص Caputo h-difference  لخحمٍك الاسخمشاس فً ًظامUshio الفىضىي فً الىلج الوٌفصل.  الكسشي

 تالكسشٌرو الشحبت   Caputo( بوشخك HCSلخىضٍح الٌخائج. بعذ رلك، لوٌا بىصف ًظام هالفىسسي الذائشي )لذهج  الٌخائج العذدٌت 

كوا  (،ADM) خىاسصهٍتبٌاءً على  الكسشي( بالخشحٍب FO-HCSوخصائصه الٌىعٍت. حن الخشاح الحل العذدي لٌظام هالفىسسي الذائشي )

ًظام الخشحٍب الكسشي لخطىٌش حمٌٍت حشفٍش  الوخطابمت. بالإضافت إلى رلك، حن اسخخذام خصائص FO-HCSوهضاهٌت  اسخمشاسأًٌا ًذسط أٌضًا 

 ثبج ًخائج الوحاكاة أًها فعالت وآهٌت فً بٍاًاث الصىسة.حالصىس باسخخذام الخسلسلاث الكسىسٌت الوىسعت. وأخٍشًا، 

 

، الخحكن ،  الكسشٌت تالشحبالكلواث الوفخاحٍت: الٌظام الذٌٌاهٍكً الوسخوش، الٌظام الذٌٌاهٍكً الوٌفصل، الفىضى، الٌظام الفىضىي رو 

 ، حشفٍش الصىس. Adomian decomposition method خىاسصهٍت، الوضاهٌت

 ملخص



ABSTRACT

The fractional order differential and fractional order difference systems were the primary

topics of this research. A linear control rule for stabilizing the fractional discrete-time

Ushio system that is based on the Lyapunov method and Caputo h-difference operator’s

characteristics is first proposed. The study is accompanied by numerical results that serve

to demonstrate the conclusions. A qualitative description of the Halvorsen circulant sys-

tem (HCS) with a fractional-order Caputo derivative is then provided. We also study the

stabilization and synchronization of identical FO-HCS and provide a numerical solution

for this system using the Adomian decomposition technique (ADM). Furthermore, the

approach for encrypting images using extended fractional sequences was developed by

using the exceptional qualities of the fractional-order system. Lastly, it is effective and

secure in picture data, as shown by the simulation results and its performance.

Keywords: Continuous dynamic system, discrete dynamic system, chaos, fractional-order

chaotic system, adaptive control, synchronization, adomian decomposition method, image

encryption.
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GENERAL INTRODUCTION

A little over three hundred years ago, fractional calculation emerged in correspondence

between L’Hospital and Leibniz. Initially addressing orders like 0.5, it later tackled ar-

bitrary orders in differential equations. While computational difficulties and a lack of

practical applications slowed progress, new computer technologies have enabled broad use

in many domains, including nature, electromagnetic oscillations, system control, and ma-

terial mechanics. Additionally, techniques like fractional wavelet and Fourier transforms,

and fractional image processing, are gaining traction in signal processing research [23].

Fractional-order chaotic systems are derived by substituting the integer differential oper-

ator with the fractional difference operator, these systems can be classified into two main

categories: continuous-time and discrete-time. In this thesis, we are interested in both

chaotic systems, we referred to discrete-time chaotic systems also known as chaotic maps.

Over the years, several different chaotic systems have been proposed in the literature and

applied in different fields including, the Lozi system [60], the generalized Hénon map [42],

the Lorenz map [58], Chen system [103], Chua system [4], Rössler system [115], etc.

Fractional-order chaotic systems have undergone thorough examination across engi-

neering, mathematics, and physics, revealing complex dynamics capable of producing

diverse chaotic behaviors [8], including strange attractors and fractal patterns. This ex-

ploration has spurred the development of novel mathematical resources tailored for exam-

ining their behavior. Various techniques, such as the active control [98] and the adaptive

control method [68], have been extensively documented in the literature to further this

14



understanding. Since its inception, chaotic synchronization has garnered significant atten-

tion from researchers [3], leading to the proposal of various applications including chaos

suppression, dynamical system monitoring, control, and communication purposes [7]. The

goal of chaos synchronization is to align the variables of a slave system with those of a

chaotic master system over time. Numerous methods have been developed for achieving

synchronization, such as complete synchronization [62], lag synchronization [55], anti-

synchronization [52], hybrid synchronization [92], projective synchronization [28], hybrid

projective synchronization [102], modified projective synchronization [56]. Pecora and

Carroll demonstrated the feasibility of synchronizing chaotic systems using a shared pilot

signal [18]. This synchronization has found widespread applications in cryptography and

secure information transmission [31], where synchronization of chaotic systems (master or

transmitter and slave or receiver) is crucial for decrypting messages. Li and Deng have

provided a comprehensive summary of synchronization theory and techniques [54].

The dynamical behaviors of fractional-order chaotic systems have universal signifi-

cance across various disciplines, including mathematics and information security. Many

image encryption techniques based on chaotic systems have emerged in recent years [104],

with the permutation-diffusion mechanism being the most often used. A system with two

1D chaotic maps and a dynamic S-box was presented by Wang et al. However, these

algorithms’ independence from diffusion and permutation processes requires a lot of key

generation repetitions, which makes them vulnerable to attacks using standard plaintext

picture templates. To mitigate these vulnerabilities, Wang et al. [105] introduced a fast

image algorithm based on the Logistic map, performing permutation and diffusion simul-

taneously. This approach reduces the iterative complexity, enhancing resistance against

chosen plaintext attacks, albeit with limitations regarding key space size and scrambling

effectiveness. Existing image encryption algorithms suffer from drawbacks such as reliance

on low-dimensional chaotic systems (e.g., 1D and 2D), posing security risks, and poor ro-

bustness leading to decreased quality of encryption as a result of consequences of limited

accuracy. Addressing these concerns, this thesis proposes an effective method to bolster

image data protection, enhancing security performance while minimizing implementation

costs, thereby contributing significantly to the field of image security.
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This thesis is structured into two primary parts: Fractional difference equations and

fractional differential equations. Let us come more specifically to a quick overview of each

chapter:

Part I comprises chapters 1, 2, and 3.

• Chapter 1: provides an introduction to Discrete Fractional Calculus. This chapter re-

views the terminology and characteristics relevant to discrete fractional calculus, followed

by an introduction to fundamental functions. The chapter then explores the operators

for fractional sum and fractional difference. Additionally, explore the basic ideas behind

the fractional h-difference operator. Finally, the results of stability tests on linear and

non-linear discrete systems of fractional and integer orders are given.

• Chapter 2: delves into chaos theory, focusing on its application to fractional order maps.

Beginning with a brief overview of discrete dynamical systems, this chapter will go fur-

ther into the mathematical theory of chaos by defining and discussing chaotic systems and

their defining properties. The notion of Lyapunov Exponents for integer and fractional

discrete-time systems will be covered. At long last, many paths leading from a normal

dynamic system to chaos will be demonstrated.

• Chapter 3: This chapter presents a novel fractional-order Ushio map that is an exten-

sion of the integer-order Ushio system. First, studying the presence of chaotic behaviors

in the fractional Ushio system. Then, we stabilize the chaotic fractional discrete-time

Ushio system by introducing a one-dimensional linear control rule.

Part II consists of Chapters 4, 5, and 6.

• Chapter 4: In this chapter, the most important and often used forms of fractional inte-

grals and derivatives are defined and discussed, along with their basic features. Further-

more, fractional-order dynamical system stability theorems are addressed. An overview

of the Adomian decomposition approach is provided at the end of the chapter, along with

an example to help understand how it works.

• Chapter 5: discusses chaos and complexity measures of fractional order chaotic systems,

along with their applications.

• Chapter 6: This chapter explains the qualitative features of the Halvorsen circulant
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system (HCS) with a fractional-order Caputo derivative. The fractional order Halvorsen

circulant system (FO-HCS) is proposed to have a numerical solution based on the Ado-

mian decomposition technique (ADM). Complexity, phase diagrams, bifurcation diagrams,

and Lyapunov exponents are some of the methods used to examine dynamics thereafter.

Furthermore, we study the stabilization and synchronization of identical FO-HCS, and

stability theory shows that both may be achieved using adaptive feedback control. In

addition, by capitalizing on the exceptional features of the fractional system, the picture

encryption method is created using the extended fractional sequences. According to the

improved fractional Halvorsen circulant chaotic models, the suggested solution employs

a keystream generator to provide the utmost safety. When it comes to image data, the

simulation’s findings and performance prove that it is secure and reliable.

17



Part I

FRACTIONAL DIFFERENCE

SYSTEMS
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CHAPTER 1
BASICS IN DISCRETE FRACTIONAL CALCULUS

1.1 Introduction

Over the last several years, the theoretical exploration of discrete fractional calculus and

its practical applications has emerged as a pivotal area of research. Fractional-order

derivatives are recognised for their enhanced accuracy compared to integer-order deriva-

tives, attributed to their infinite memory. Presently, numerous definitions of fractional

derivatives exist. This chapter aims to elucidate several definitions, theorems, and funda-

mental properties crucial for our subsequent investigations. We start by introducing basic

functions and revisiting notation and properties pertinent to discrete fractional calculus.

Subsequently, we outline the definitions of fractional sum and fractional difference opera-

tors. Furthermore, we delve into the fractional h-difference operator and its foundational

concepts. Lastly, we offer an overview of recent stability findings concerning linear and

non-linear discrete systems, encompassing both fractional and integer orders.
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1.2 Preliminaries and notions

In this section, we’ll introduce essential definitions and concepts in mathematical analysis

crucial for our work.

Definition 1.2.1. The gamma function, denoted by Γ(z), is defined as follows:

Γ(z) =

∫ ∞

0

e−ssz−1ds,

∀z ∈ C and ℜ(z) > 0 (it can be shown that the above improper integral converges for all

such z).

Definition 1.2.2. We define the falling factorial power for n ∈ N by

s(n) = s(s+ 1)(s+ 2)...(s+ 1− n) =
Γ(s+ 1)

Γ(s+ 1− n)
.

In general, for ν ∈ R we define the generalized falling function by

s(ν) =
Γ(s+ 1)

Γ(s+ 1− ν)
. (1.2.1)

Definition 1.2.3. The binomial coefficient

(
n

k

)
is given as:

(
n

k

)
=

n!

k!(n− k)!
.

Remark 1.2.4. Note that when n ≥ k ≥ 0, then the binomial coefficient can be expressed

as (
n

k

)
=

n!

k!(n− k)!
=
n(n− 1)(n− 2)...(n− k + 1)

k!
=

n(k)

Γ(k + 1)
.

In general, for ν ∈ R we define the generalized binomial coefficient by(
s

ν

)
=

s(ν)

Γ(ν + 1)
. (1.2.2)

Definition 1.2.5. [46] Let g : Na −→ R, where Na = {a, a + 1, a + 2, ...} be a time scale,

a ∈ R. The difference operator for a function G(t) is described as

∆G(t) = G(t+ 1)−G(t) (1.2.3)
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The second-order difference of the function G is defined as:

∆2G(t) = ∆(∆G(t)) = G(t+ 2)− 2G(t+ 1) +G(t). (1.2.4)

In general, the n− th integer difference operator is written by the following mathematical

formula:

∆nG(t) = ∆(∆n−1G(t)) =
n∑

k=0

(
n

k

)
(−1)n−kG(t+ k), t ∈ Na. (1.2.5)

1.3 Fractional sum and difference operators

This section introduces the ν − th fractional sum operator and the ν − th fractional

difference operator, fundamental in discrete calculus. We’ll provide essential tools and

properties associated with them.

1.3.1 Fractional sum operator

Definition 1.3.1. [65] The ν − th discrete fractional sum for a function g : Na −→ R is

given as

∆−ν
a g(t) =

1

Γ(ν)

t−ν∑
s=a

(t− s− 1)(ν−1)g(s).

With t ∈ Na+ν and 0 < ν < 1. Note that the domain of ∆−ν
a g is D{∆−ν

a g} = Na+ν .

The fractional sum stated in Definition 1.3.1 can be generalized as the binomial for-

mula, which is shown by the following proposition:

Proposition 1.3.2. [43] Let g : Na −→ R, and ν > 0 be given with n − 1 < ν < n. For

each t ∈ Na+ν , the ν − th discrete fractional sum is expressed by

∆−ν
a g(t) =

1

Γ(ν)

t−ν−a∑
k=0

(−1)k
(
−ν
k

)
g(t− ν − k).

Theorem 1.3.3. [9] Assume α ∈ R\{−1,−2, ...} and ν > 0. Then

∆−ν
a+α(t− a)(α) =

Γ(α + 1)

Γ(α + ν + 1)
(t− a)(α+ν), t ∈ Na+α+ν

.

Example 1.3.4. Using the theorem 1.3.3, we derive the following sum:

∆
− 1

2
0 1 = ∆

− 1
2

0 t(0) =
Γ(1)

Γ(3
2
)
t(

1
2
) =

2√
π
t(

1
2
).
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1.3.2 Fractional difference operator

Using the ν − th fractional sum, the ν − th fractional difference operator is introduced as

follows:

Definition 1.3.5. [65] Let g : Na −→ R, and ν > 0 be given with n − 1 < ν < n where

n ∈ R, the ν− th fractional difference operator is called also the ν− th Riemann-Liouville

difference operator is given as

∆ν
ag(t) = ∆n∆−(n−ν)

a g(t), t ∈ Na+n−ν . (1.3.1)

Remark 1.3.6. Using the fractional sum operator, the domain of the fractional difference

may be calculated as

D{∆ν
ag} = D{∆n∆−(n−ν)

a g} = D{∆−(n−ν)
a g} = Na+n−ν .

Example 1.3.7.

∆
1
2
0 1 = ∆∆

−(1− 1
2
)

0 1 = ∆∆
− 1

2
0 1 = ∆0(

2√
π
t(

1
2
)) =

1√
π
t(−

1
2
).

Theorem 1.3.8. [65] ∀ν > 0, g ∈ Na, then:

∆ν
a∆

−ν
a+νg(t) = g(t),

where n = ⌈ν⌉+ 1.

Remark 1.3.9. We see that ∆−ν
a is the right invers of the operateur ∆ν

a+ν .

Theorem 1.3.10. [65] ∀ν > 0, g ∈ Na, then:

∆−ν
a+ν∆

ν
ag(t) = g(t)−

n−1∑
r=0

(t− a)(ν−n+r)

Γ(ν − n+ r + 1)
∆r−(n−ν)

a g(a), ∀t ∈ Na+n.

Where n = ⌈ν⌉+ 1.

Remark 1.3.11. We see that generally

∆−ν
a+ν∆

ν
ag(t) ̸= g(t)
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1.4 Caputo difference operator

Definition 1.4.1. [1] Let ν > 0, ν ∈ N. Then ν − th order Caputo fractional diffrence of

a function g defined by:

C∆ν
ag(t) = ∆−(n−ν)

a ∆ng(t) =
1

Γ(n− ν)

t−(n−ν)∑
s=a

(t− s− 1)(n−1−ν)∆ng(s), t ∈ Na+n−ν ,

(1.4.1)

where n = ⌈ν⌉+ 1.

The following theorem presents a rule for composing the Caputo fractional difference

operators with the fractional sum.

Theorem 1.4.2. [1] For n− 1 < ν ≤ n, we have:

∆−ν
a+(n−ν)

C∆ν
ag(t) = g(t)−

n−1∑
r=0

(t− a)(r)

r!
∆rg(a), t ∈ Na, (1.4.2)

where n = ⌈ν⌉+ 1.

In particular, if 0 < ν ≤ 1 then

∆−ν
a+(n−ν)

C∆ν
ag(t) = g(t)− g(a), t ∈ Na+n−ν . (1.4.3)

In the following theorem, we introduce the relation between the Caputo and the

Riemann-Liouville difference operators.

Theorem 1.4.3. [1] Let g : Na −→ R, ν > 0. For n− 1 < ν ≤ n, we have

C∆ν
ag(t) = ∆ν

ag(t)−
n−1∑
r=0

(t− a)(r−ν)

Γ(r − ν + 1)
∆rg(a), t ∈ Na+n−ν , (1.4.4)

where n = ⌈ν⌉+ 1.

In particular, when 0 < ν ≤ 1, we have:

C∆ν
ag(t) = ∆ν

ag(t)−
(t− a)(−ν)

Γ(1− ν)
g(a), t ∈ Na+n−ν . (1.4.5)

Now, we shall give the following theorem that allows us to construct the numerical

formula for the Caputo fractional difference system.
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Theorem 1.4.4. [20] Consider the discrete fractional initial value problem:
C∆ν

aX(t) = g(t+ ν − 1, X(t+ ν − 1))

∆kX(t) = Xk, n = ⌈ν⌉+ 1, k = 0, 1, ..., n− 1.

(1.4.6)

The equivalent discrete fractional equation for discrete fractional problem (1.4.6) is given

by:

X(t) = X0(t) +
1

Γ(ν)

t−ν∑
s=a+n−ν

(t− s+ 1)(ν−1)g(s+ ν − 1, X(s+ ν − 1)), t ∈ Na+n. (1.4.7)

where

X0(t) =
n−1∑
k=0

(t− a)(k)

Γ(k + 1)
∆kX(k).

The numerical formula for (1.4.7) can be designed as follows:

X(t) = X0(t) +
1

Γ(ν)

t−1∑
j=0

Γ(t+ ν − 1− j)

Γ(t+ ν − j)
g(j,X(j)), 0 < ν ≤ 1. (1.4.8)

1.5 Fractional h-difference operator

Definition 1.5.1. Let h > 0 and (hN)a = {a + h, a + 2h, ...}. The difference operator ∆h

is defined by

∆hX(t) =
X(t+ h)−X(t)

h
.

Definition 1.5.2. [12] For arbitrary t, ν ∈ R the h-factorial function is defined by

t
(ν)
h = hν

Γ( t
h
+ 1)

Γ( t
h
− ν + 1)

.

t
(ν)
h read

t

h
to the ν factorial.

Remark 1.5.3. [34] For t ≥ 0 and ν ∈ R, lim
h→0

t
(ν)
h = t(ν).

Definition 1.5.4. [12] Let g : (hN)a → (hN)a+νh the fractional h-sum of order ν > 0 is

given by

h∆
−ν
a g(t) =

h

Γ(ν)

t
h
−ν∑

s= a
h

(t− σ(sh))
(ν−1)
h ∆g(sh), a ∈ R, t ∈ (hN)a+νh, (1.5.1)

where σ(sh) = (s+ 1)h.
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Definition 1.5.5. [34] The Caputo h-difference operator c
h∆

ν
a of a function g(t) is defined

as:

C
h∆

ν
ag(t) = h∆

−(n−ν)
a ∆n

hg(t), t ∈ (hN)a+(ν−1)h. (1.5.2)

For ν /∈ N is the fractional order and n = ⌈ν⌉+ 1.

Lemma 1.5.6. [11] For any discrete time t ∈ (hN)a+(ν−1)h, the following inequality holds

C
h∆

ν
ag

2(t) ≤ 2g(t+ νh)Ch∆
ν
ag(t).

Theorem 1.5.7. [67] Consider the discrete fractional initial value problem:
C
h∆

ν
aX(t) = g(t+ νh,X(t+ νh))

∆kX(t) = Xk, n = ⌈ν⌉+ 1, k = 0, 1, ..., n− 1..

(1.5.3)

The equivalent discrete fractional equation for discrete fractional problem (1.5.3) is given

by:

X(n+ 1) = X0 +
hν

Γ(ν)

n∑
j=0

Γ(n− j + ν)

Γ(n− j + 1)
g(j + 1, X(j + 1)), t ∈ Na+h, (1.5.4)

where

X0 =
n−1∑
k=0

(t− a)(k)

Γ(k + 1)
∆k

hX(k).

1.6 Stability of difference systems

The study of discrete fractional systems’s asymptotic stability is crucial because it ad-

vances our understanding of chaos and provides evidence for the convergence of a system’s

states to zero (or different equilibrium points) as infinity approaches. When discussing

the stabilization and discrete fractional dynamical systems, this is especially crucial. This

section will begin with a brief definition of stability, followed by a discussion of stability

theorems for both linear and nonlinear difference equations in both fractional and integer

orders. Comments and examples are given.
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1.6.1 Stability types

Consider the following vector difference equationx(n+ 1) = g(n, x(n))

x(0) = x0

. (1.6.1)

where x(n) ∈ Rn and g : Rn+1 −→ Rn+1. Suppose that g(n, x(n)) is continuous.

Definition 1.6.1. A point xe is called equilibrium point of (1.6.1) if it satisfies:

g(xe) = xe. (1.6.2)

A system is said to be stable around an equilibrium point if when weak disturbances

are applied, it remains in the vicinity of this point.

Definition 1.6.2. An equilibrium point xe of a discret system is stable in the sense of

Lyapunov if and only if

∀ε > 0,∃δ > 0 : ∥x0 − xe∥ ≤ δ ⇒ ∥x(k)− xe∥ ≤ ε.

Otherwise the equilibrium point is unstable.

Definition 1.6.3. An equilibrium point xe of a discret system is attractive if

lim
k→∞

∥x(k)− xe∥ = 0.

Definition 1.6.4. An equilibrium point xe of a discrete system is asymptotically stable if

it is stable and attractive i.e,

∀ε > 0∃δ > 0 : ∥x0 − xe∥ ≤ δ ⇒ lim
k→∞

∥x(k)− xe∥ = 0.

Asymptotic stability means that not only is the point of equilibrium stable, but that we is

also able to determine a domain close to the point of equilibrium such that any trajectory,

resulting from an initial state x0 belonging to this domain, tends to xe when k lead to

infinity.
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1.6.2 Stability of integer order difference systems

Stability of linear difference system

Consider the integer order difference system:∆x(k) = Ax(k), k ∈ N

x(0) = x0, x0 ∈ R,
(1.6.3)

Where x(k) = (x1(k), x2(k), ..., xn(k))
T ∈ Rn, A is n× n constant matrix.

Theorem 1.6.5. [30] If all the eigenvalues λi of A satisfies |λi + 1| < 1, 1 ≤ i ≤ n, then

the trivial solution of the system (1.6.3) is asymptotically stable on N . Furthermore, if

there is an eigenvalue λ of A with |λ + 1| > 1, then the trivial solution of the system

(1.6.3) is unstable on N.

Example 1.6.6. Consider the following linear system :

∆x(k) =

a a

a a

x(k), k ∈ N, ∀a ∈ R. (1.6.4)

The characteristic equation for A is given by: λ2 − 2aλ = 0. The eigenvalue of A are:

λ1 = 0, λ2 = 2a, by Theorem 1.6.5 the trivial solution of (1.6.4) is asymptotically stable

on N if and only if |a| < 1

2
.

Example 1.6.7. Consider the following linear system:

∆x(k) =

1 6

0 −2

x(k), k ∈ N. (1.6.5)

The characteristic equation for A given by: λ2 + λ − 2 = 0. The eigenvalue of A are:

λ1 = −2, λ2 = 1. Since |λ1| = 2 > 1, by Theorem 1.6.5 the trivial solution of (1.6.5) is

unstable on N.

Remark 1.6.8. Let λi be eigenvalues of A. Assume |λi + 1| ≤ 1, 1 ≤ i ≤ n. If whenever

|λi + 1| = 1 and λi is a simple eigenvalue of A. Then the trivial solution of (1.6.3) is

stable on N. If there is a non simple eigenvalue λ of A satisfying |λ + 1| = 1, then we

can’t conclude.
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Example 1.6.9. Consider the following system:

∆x(k) =

−1 + cos θ sin θ

− sin θ −1 + cos θ

x(k), k ∈ N. (1.6.6)

Where θ is a real constant. For each θ the eigenvalues of the coefficient matrix in (1.6.6)

are:

λ1 = e+iθ−1, λ2 = e−iθ−1. Since |λ1+1| = |λ2+1| = 1 and both eigenvalues are simple,

we have by Remark 1.6.8 that the trivial solution of (1.6.6) is stable on N.

Stability of non linear systems

Consider the following non-linear system:∆x(k) = f(x(k)), k ∈ N

x(0) = x0, x0 ∈ R.
(1.6.7)

Where f : Rn −→ Rn, a continuously differentiable non linear function, suppose that

x = 0 is an equilibrium point for the system (1.6.7).

•Linearisation method (Lyapunov indirect method):

Theorem 1.6.10. [30] Let J be the Jacobian matrix of f at 0:

If all the eigenvalues λi of J satisfies |λi + 1| < 1, 1 ≤ i ≤ n, then the trivial solution of

the (1.6.7) is globally asymptotically stable on N. Furthermore, if there is an eigenvalue

λ of J withe |λ+ 1| > 1, then the trivial solution of the system (1.6.7) is unstable on N.

Example 1.6.11. Consider the following non-linear system:
∆x(k) =

2y(k)

1 + x2(k)

∆y(k) =
x(k)

1 + y2(k)

. (1.6.8)

The jacobian matrix at the origine given is by:

J =

0 2

1 0


The characteristic equation for J is : λ2 − 2, hence the eigenvalues are λ1 =

√
2, λ2 =

−
√
2, it is clear that |λi + 1| = 1 +

√
2 > 1, where i = 1, 2. Then, by theorem 1.6.10 the

trivial solution of (1.6.8) is unstable on N.
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Remark 1.6.12. If some eigenvalues of the Jacobian matrix J are 1, we cannot conclude

about the local stability of the equilibrium point.

•Lyapunov direct method: For the study of the nonlinear stability, the most tradi-

tional method is based on the linearization and the use of the eigenvalues of the linearized

system, Lyapunov proposed a second method, inspired by the idea of mechanical energy of

Lagrange who formulated the principle of stability of mechanical systems. This method,

called Lyapunov’s direct method, is based on the search for a scalar function of definite

sign with real values.

Theorem 1.6.13. [30] If there exists a function V : Rn → R+, which is continuous and

differentiable such that:

• V (0) = 0,

• V (x(k)) > 0, ∀x ∈ Rn\{0},∀k ∈ N,

• ∆V (x(k)) = V (x(k + 1))− V (x(k)) ≤ 0, ∀x ∈ Rn\{0},∀k ∈ N.

Then the trivial solution of (1.6.7) is asymptotically stable, Moreover if:

∆V (k) = V (x(k + 1))− V (x(k)) < 0, ∀x ∈ Rn\{0}, ∀k ∈ N.

Then the trivial solution of (1.6.7) is asymptotically stable.

Example 1.6.14. Consider the following non-linear system [99]:
∆x(k) =

y(k)

1 + y2(k)
− x(k)

∆y(k) =
x(k)

1 + y2(k)
− y(k)

. (1.6.9)

It has an equilibrium point at the origin. which has the origin as only the equilibrium point.

First, we will select the following Lyapunov function: V (x(k), y(k)) = x2(k) + y2(k), this

is clearly continuous and positive definite on R. Therefore, we find out

∆V (x(k), y(k)) = V (x(k), y(k))

(
1

(1 + y2(k))2
− 1

)
< 0. (1.6.10)

Then, by Theorem 1.6.13 the trivial solution of the system (1.6.9) is asymptotically stable.

29



1.6.3 Stability of fractional order difference systems

Stability of linear systems

Now, we investigate the stability of the equilibrium point x = 0 of the ν-th order linear

system of difference equation

C∆ν
ax(t) = Ax(t+ ν − 1). (1.6.11)

Where 0 < ν < 1, a ∈ R is a starting point, A is a an n × n constant matrix. concern-

ing the stability and existence of asymptotic results. The most common theorems used

are Lyapunov stability and the stabilization of the origin equilibrium point. They are

respectively announced in the following theorems.

Theorem 1.6.15. [19] The zero equilibrium of the linear system (1.6.11) is asymptotically

stable if:

λ ∈ {z ∈ C : |z| <
(
2 cos

| arg z| − π

2− ν

)ν

, and | arg z| > νπ

2
},

for all the eigenvalues λ of A.

Example 1.6.16. Consider the following linear fractional discrete system:


C∆ν

ax(t) = −x(t+ ν − 1)

C∆ν
ay(t) = 0.5x(t+ ν − 1)− y(t+ ν − 1)

, (1.6.12)

where 0 < ν < 1, t ∈ Na−ν+1 and the matrix A is given by

A =

−1 0

0.5 −1


The eigenvalues of the matrix A are λ1 = −1, λ2 = −1. Hence

|λj| = 1 <

(
2 cos

| arg z| − π

2− ν

)ν

and | arg λj| = π >
νπ

2
, j = 1, 2.

According to Theorem 1.6.15, the trivial solution of the system (1.6.12) is asymptotically

stable. The time evolution of the states of the system (1.6.12) is shown in Figure 1.1.

30



Figure 1.1: Time evolution of states of the system (1.6.12) for ν = 0.95.

Stability of non linear systems

Concerning the stability and existence of asymptotic results. Most common theorems

used are Lyapunov stability, and the stabilization of origin equilibrium point. They are

respectively announced in the following theorems.

Theorem 1.6.17. [11] The fractional nonlinear discrete system

C
h∆

ν
aX(t) = f(t+ hν,X(t+ hν)), t ∈ (hN)a+(1−ν)h. (1.6.13)

is asymptotically stable if there exists a positive definite and decreasing scalar function

V (t,X(t)) for the equilibrium point x = 0, such that C
h∆

ν
aV (t,X(t)) ≤ 0.

Example 1.6.18. Consider the following non-linear fractional h-difference system
C
h∆

ν
ax(t) = −x(t+ hν)− y(t+ hν)x(t+ hν),

C
h∆

ν
ay(t) = x2(t+ hν)− y(t+ hν),

(1.6.14)

where 0 < ν < 1, t ∈ Na+(1−ν)h.

By using the Lyapunov function V (z1, z2) =
1

2
x2+

1

2
y2 and according to Lemma 1.5.6, we

obtain
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C
h∆

ν
aV ≤ x(t+ hν)Ch∆

ν
ax(t) + y(t+ hν)Ch∆

ν
ay

2(t)

≤ −x2(t+ hν)− y(t+ hν)x2(t+ hν)

+y(t+ hν)x2(t+ hν)− y2(t+ hν)

= −x2(t+ hν)− y2(t+ hν) < 0.

Hence, according to Theorem 1.6.17 the system (1.6.14) is asymptotically stable. The time

evolution of the states of the system (1.6.14) is shown in Figure 1.2.

Figure 1.2: Time evolution of states of the system (1.6.14) for ν = 0.9.

1.7 Conclusion

We provide a few definitions, theorems, and fundamental properties in this chapter that

will be helpful in our future research. We will first go over a few fundamental functions

before reviewing some terminology and discrete fractional calculus-related characteristics.

Subsequently, the operators for fractional addition and fractional difference are defined.

Additionally, the fundamental ideas behind the fractional h-difference operator are pre-

sented. An overview of current stability results for discrete systems with fractional and

integer orders, both linear and non-linear, are given in the final part.
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CHAPTER 2
CHAOS IN FRACTIONAL ORDER MAPS

2.1 Introduction

Chaos in discrete fractional dynamical systems is a fascinating and complex area of study

that intersects mathematics, physics, and engineering. Although the field of chaos in

fractional orders is new, there are many studies that have been published [50][84]. These

systems are characterized by their discrete nature and the use of fractional calculus, an

extension of traditional calculus that deals with derivatives and integrals of non-integer

orders. This approach allows for a more nuanced understanding of systems that display

memory and hereditary properties, which are common in many real-world scenarios. In the

context of chaos theory, these discrete fractional dynamical systems exhibit behavior that

is highly sensitive to initial conditions, leading to unpredictable and seemingly random

outcomes despite being governed by deterministic rules. This chaotic behavior is not

just a theoretical curiosity but has practical implications in various fields, such as signal

processing, control theory, and biological modelling. In this chapter, we will explore the

mathematical theory of chaos in more detail, starting with giving some of the basics

concerning discrete dynamical systems, and then giving definitions and characteristics of
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chaotic systems. The concept of Lyapunov exponents will be discussed for integer and

fractional discrete-time systems. finally, different ways to evolve from a regular dynamic

system toward chaos will be represented.

2.2 Basics of discrete dynamical systems

Chaos does not have a universally accepted mathematical definition, a popularly used

definition was originally given by Devaney in 1989 [37]. Before we can provide a definition

of chaos, we first need to define some necessary notions. We define the discrete dynamical

system can be given as

uk+1 = G(u(k), µ), k = 1, 2, ... (2.2.1)

Where, G is a matrix function, u(k) ∈ U ⊆ Rn is the state vector and µ ∈ V ⊆ Rn is the

parameters vector.

Definition 2.2.1. Let u be a point and let G be a map. The orbit of u under G is the set

of points {u,G(u), G2(u), ...}. The starting point u for the orbit is called the initial value

of the orbit.

Definition 2.2.2. Let G be a map on Rn. We designate u∗ a periodic point of period k

if Gk(u∗, µ) = u∗ where k is the smallest positive integer satisfying this condition. The

orbit with initial point u∗ (which consists of k points) is termed a periodic orbit of period

k. We frequently employ the abbreviated terms period-k point and period-k orbit.

Definition 2.2.3. A trajectory represents the sequence of states traversed by a dynamical

system over time, depicting the evolution of the system’s state based on its governing maps

and initial conditions. This sequence of states can be envisioned as a trajectory through

the system’s state space.

Definition 2.2.4. The collection of all potential states of a dynamic system is called its

phase space. It can also be defined as an abstract space in which each variable represents

a dimension n necessary for the description of the system at a given moment, the degree

of freedom characterizing the phase space. It represents the order which is equal to the

dimension of the state space.
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Definition 2.2.5. We call a phase portrait a graph which gives the appearance of Tra-

jectories in phase space.

2.3 Concept of chaos theory

The concept of chaos was initially introduced in the examination of discrete dynamical

systems by Li and Yorke in 1975 [64]. Various other definitions followed. Until the

late 1980, the exploration of chaotic dynamics was predominantly confined to research

literature. Devaney’s book, ”An Introduction to Chaotic Dynamical Systems,” published

in 1986 [37], served as a milestone, popularizing chaos as a mathematical concept and

integrating it into university textbooks, including Holmgren’s [44].

A dynamical system is described simply as a pair (X,F ), where F : X −→ X represents a

map from a topological or metric space X to itself. So, let us get an eye on this property

before citing the definition of chaos.

2.3.1 Mathematical definitions of chaotic attractors

Definition 2.3.1. Let (X, d) be a metric space and G a continuous map on X. We say that

the topological dynamical system (X,G) has the property of sensitive dependence on

initial conditions if there exists δ > 0 such that, for any x ∈ X and any neighborhood

U of x, there exists y ∈ U and k ≥ 0 such that |Gk(x)−Gk(y)| > δ.

Definition 2.3.2. Let X be a metric space. The function G : X −→ X is said to be

topologically transitive if for any pair of non-empty open sets U , W ⊂ X, there exists

k ∈ N such that Gk(U) ∩W ̸= ∅.

Definition 2.3.3. A subset I ⊂ X is said to be dense in X if for every z ∈ X there a

exists sequence (zn)n∈N ∈ I such that limn→∞zn = z.

In the following, we present the definition of chaos

Definition 2.3.4. Let G be an application. Suppose the corresponding dynamical system

has an attractor A. This system is said to be chaotic on its attractor if
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1- G possesses sensitive dependence on initial values.

2- G : A −→ A is topologically transitive.

3- The set of periodic points of G is dense in A.

2.3.2 Characteristics of chaotic maps

• Sensitivity to initial conditions

Sensitivity to initial conditions also known as the butterfly effect, refers to the rapid and

unpredictable divergence in a system’s behavior due to small variations in the initial con-

ditions. This concept, a key finding of the 20th century, reveals that even deterministic

systems can exhibit inherent unpredictability. In the 1960, meteorologist Edward Lorenz

[59] discovered that in his computer-based weather model, which used twelve variables,

Small differences in initial conditions could lead to significantly different weather out-

comes. He noted that two states, initially almost identical, could evolve into markedly

distinct states over time. Lorenz pointed out that since any real system would have some

level of observational error, making precise predictions for a distant future state is im-

possible. This observation, particularly relevant to weather forecasting, highlights the

limitations in achieving highly accurate long-term forecasts due to the natural inaccuracy

and incompleteness of weather observations.

• Positive Lyapunov exponent

It requires nonlinear systems to separate or mutually approximate motion paths and then

assess the total effect of this. When the Lyapunov exponent is positive, it means that the

distance between neighboring orbits is growing exponentially and that there is informa-

tion loss between those places. We will talk about chaotic degrees later on, but a bigger

Lyapunov exponent indicates a more substantial loss of information.

• Strange attractor

The term ’Strange Attractor’ is used to describe an attractor (a region or shape to which

points are ’pulled’ as the result of a certain process) that displays sensitive dependence

on initial conditions (that is, points which are initially close on the attractor become

exponentially separated with time).

Definition 2.3.5. A bounded subset A of the phase space is a strange attractor for a trans-
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formation T of the space if there exists a neighborhood U of A, i.e. for every point in

A, there exists a ball containing this point and contained in R satisfying the following

properties:

1. Attractor: U is an absorbing zone, which means that every orbit by T whose initial

point is in U is entirely contained in U . Additionally, every orbit of this type becomes

and remains as close to A as desired.

2. Sensitivity: The orbits whose initial point is in R are extremely sensitive to initial

conditions.

3. Mixing property: For any point in A, there exist orbits starting in R that pass as

close as desired to this point.

Definition 2.3.6. Suppose A ⊂ Rn is an attractor. Then, we say that A is a strange

attractor if it is chaotic.

We give below some examples of strange attractors:

2.4 Examples of strange attractors

2.4.1 Fractional Lozi map

The fractional version of the Lozi map [50] is given as follows
C∆ν

ax(t) = −a|x(t+ ν − 1)|+ y(t+ ν − 1)− x(t+ ν − 1) + 1

C∆ν
ay(t) = bx(t+ ν − 1)− y(t+ ν − 1)

, (2.4.1)

where 0 < ν < 1, t ∈ Na+1−ν .
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Figure 2.1: The Lozi attractor for (x0, y0) = (0, 0), ν = 0.98, a = 1.7 and b = 0.5.

2.4.2 Fractional Rössler map

The fractional version of the Lozi map [49] is given as follows

C∆ν
ax(t) = b1x(t+ ν − 1)(1− x(t+ ν − 1))

−b2(z(t+ ν − 1) + b3)(1− 2y(t+ ν − 1))− x(t+ ν − 1)

C∆ν
ay(t) = b4y(t+ ν − 1)(1− y(t+ ν − 1)) + b5z(t+ ν − 1)− y(t+ ν − 1)

C∆ν
az(t) = b6(1− b7x(t+ ν − 1))((z(t+ ν − 1) + b3)(1− 2y(t+ ν − 1))− 1)− z(t+ ν − 1)

,

(2.4.2)

where 0 < ν < 1, t ∈ Na+1−ν and (b1, b2, b3, b4, b5, b6, b7) = (3.8, 0.05, 0.35, 3.78, 0.2, 0.1, 1.9)

2.5 Lyapunov exponent

The average multiplicative separation rate between a derivative product explains the sep-

aration rate between any point x and the closest fixed point x∗. This measure indicates

whether two orbits will remain near or will be infinitely distant. The term Lyapunov

number has been used to express this rate. Then, the Lyapunov exponent can be defined

as the natural logarithm of the Lyapunov number. The LEs give a tool to measure the

sensitive dependence on the initial conditions. In particular, one positive value of LEs
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Figure 2.2: The Rössler attractor for (x0, y0, z0) = (0.1, 0.2,−0.5), ν = 0.903.

means that the system is in chaos.

2.5.1 Definition of Lyapunov exponents in integer-order maps

Considering the following difference equations define the discrete dynamical system.

x(n+ 1) = f(x(n)), (2.5.1)

f is a nonlinear continuous differentiable function, and x is the phase space vector. To

clarify what LE is, we begin with an initial condition that belongs to the discrete dynamical

system’s trajectory x, and a neighborhood point of the trajectory x′, where the initial

distance (δx0) is extremely small. Let (δxn) be the distance after n iteration. The

sensitivity to initial conditions can be quantified as

∥δxn∥ ≈ ∥δx0∥enλ, (2.5.2)

where λ is the maximum Lyapunov exponent (MLE), which describes the rate at which

two close initial points of a dynamical system diverge or converge. The MLE can be

estimated for long iterations as follows:

λ = lim
n→∞

1

n
ln

∥δxn∥
∥δx0∥

. (2.5.3)

The maximum LE alone does not fully characterize the instability of a m-dimensional

dynamical system. There are m exponents (equal to the dimension of the phase space)

39



which are customarily ranked from largest to smallest, as

λ1 ≥ λ2 ≥ ... ≥ λm.

By taking into account a small m-dimensional sphere of initial conditions in the phase

space of the discrete dynamical system (2.5.1), rather than just one nearby initial condi-

tion, we can go beyond equation (2.5.3) to determine all m-Lyapunov exponents. This

is reflected by the tangent space given by the Jacobian matrix of the system (2.5.1), the

corresponding matrix partial derivatives are given by the chain rule

Dxf
n(x(0)) = J(fn−1(x(0)))× J(fn−2(x(0)))× ...× J(f(x(0)))× J((x(0))), (2.5.4)

Consequently, the separation of two initial points x(0) and x′(0) after discrete-time n is

then become

δxn ≃ Dx0f
n(x(0))δx0. (2.5.5)

Oseledec (1968) then states in [69] that we can characterise the average rate of growth as

λ1 = lim
n→∞

1

n
ln ∥Jn(x(0))u∥. (2.5.6)

The limit exists for almost all x(0) and for almost all tangent vectors u it is equal to

the maximum Lyapunov exponent λ1. Additionally, if we indicate by ai(n, x) the ith

eigenvalue of Jn arranged in a way that a1(n, x) ≥ a2(n, x) ≥ ... ≥ am(n, x). The ith

Lyapunov exponent, λi(x), is then defined as

λk = lim
n→∞

1

n
ln |λ(n)k |, k = 1, ...,m. (2.5.7)

Because we are unable to compute the matrix Jn, which necessitates the calculation of

the product (2.5.5), it is exceedingly challenging to determine the Lyapunov exponents

analytically. For chaotic attractors, the components of matrix Jn grow very large even

after just a few iterations, while for periodic attractors, they remain null. As a result,

numerical computation becomes crucial to avoiding this problem [27]. Numerous tech-

niques have been proposed for calculating LEs, such as the Wolf method [109] and the

QR decomposition method [100] (where Q is an orthogonal matrix and R is an upper

triangular matrix). In situations where the vectors are frequently renormalized via the
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GramShmidt process, the Wolf algorithm is most frequently employed. However, because

fractional-order discrete systems take into account all of the previous variable values, the

Wolf method does not apply to them, in contrast to integer-order dynamical systems. This

led to the creation of a more practical new algorithm for estimating fractional discrete

systems’ Lyapunov exponents. Recently, in [110] Wu and Balaneau explored applying the

Jacobian matrix algorithm to discrete fractional maps. In the remaining portion of this

section, we go into further detail about the algorithm and numerical computation.

2.5.2 Lyapunov exponents in fractional-order maps

The fractional order difference equations with the ν-Caputo operator are given by
C∆ν

ax(t) = g(x(t+ ν − 1)

∆k(a) = xk, m = ⌈ν⌉+ 1 k = 0, 1, ...,m− 1.

(2.5.8)

Where g(t) = (g1(t), ..., gm(t))
T is a vector-valued nonlinear function, x(t) = (x1(t), ..., xm(t))

T

the state vector and the fractional order value m − 1 < ν ≤ m To set up the tangent

map corresponding to the above system, we would need at first the Jacobian matrix of

the right side which is given by

G(n) =


∂g1
∂x1

(n)
∂g1
∂x2

(n) ...
∂g1
∂xm

(n)

...
...

...
...

∂gm
∂x1

(n)
∂gm
∂x2

(n) ...
∂gm
∂xm

(n)

 . (2.5.9)

Then, the Jacobian matrix J(n) is defined by

J(n) =


a11(n) a12(n) ... a1m(n)

...
...

...
...

am1(n) am2(n) ... amm(n)

 . (2.5.10)

where J(0) = I is the identity matrix. Each element of the matrix J can be calculated

by multiplying the matrix G(n) with the matrix J(n), ie:

J =


∂g1
∂x1

(n)
∂g1
∂x2

(n) ...
∂g1
∂xm

(n)

...
...

...
...

∂gm
∂x1

(n)
∂gm
∂x2

(n) ...
∂gm
∂xm

(n)

×


a11(n) a12(n) ... a1m(n)

...
...

...
...

am1(n) am2(n) ... amm(n)

 . (2.5.11)
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Then, The tangent map system is given as follows

a11(n+ 1) = a11(0) +
1

Γ(ν)

n∑
j=0

Γ(n− j + ν)

Γ(n− j + 1)
a11(j)

∂g1
∂x1

(j) + a12(j)
∂g1
∂x2

(j) + ...+ a1m(j)
∂g1
∂xm

(j),

...
....................

...
...

...

amm(n+ 1) = am1(0) +
1

Γ(ν)

n∑
j=0

Γ(n− j + ν)

Γ(n− j + 1)
am1(j)

∂gm
∂x1

(j) + am2(j)
∂gm
∂x2

(j) + ...+ amm(j)
∂gm
∂xm

(j).

(2.5.12)

According to the discrete equation (2.5.12), the tangent map holds a discrete memory

effect. Therefore, the LEs of the fractional order discrete-time system can be derived

from the following equation

λk = lim
i→∞

1

i
ln |λ(i)k |, k = 1, ...,m. (2.5.13)

By using the spectrum’s sign to determine the stability of the FODTSs, we can effectively

carry out this method going forward, the next theorem illustrates this objective.

Theorem 2.5.1. [61] When the average Lyapunov exponent is positive, it indicates a

chaotic system, when it is negative, it indicates a periodic orbit; and when it is zero,

it indicates a bifurcation, which means the orbits are moving periodically.

2.6 Bifurcation diagrams

A system’s dynamic behaviour varies along with its parameter changes. Small quantitative

changes in the system’s states are usually produced by small changes in the parameter.

A bifurcation is a specific change in the map’s behavior. Thus, the fundamental change

in the dynamics of nonlinear systems under parameter variation is described by the bi-

furcation phenomenon. It is regarded as a tool that aids in understanding equilibrium

loss and the effects it has on complex behavior because of this. Bifurcation diagrams

facilitate the swift identification of qualitative shifts in the asymptotic solution by por-

traying specific properties of a dynamical system’s solution about a control parameter.

Bifurcations encompass various types, such as Hopf, Pitchfork, Transcritical, Saddle-node,

Period doubling, and Neimark−Sacker. Typically, A bifurcation diagram is a portion of

the parameter space on which all bifurcation points are represented (see Figure 2.3).
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Figure 2.3: The bifurcation diagram of the logistic map.

2.7 Routes of chaos

What triggers a system to devolve into chaos remains a mystery. Regular dynamic systems

may progress toward chaos in a variety of ways. Let us pretend for a second that the

control parameter does influence the investigated dynamics. By adjusting this parameter,

the system may go from a steady state to a periodic one; thereafter, it can follow a

transition scenario and become chaotic after reaching a particular threshold. Various

examples show how a fixed point may devolve into chaos. Rather than being a gradual

process, the bifurcation is the hallmark of a fixed point’s move to chaos. When two

dynamic regimes abruptly diverge in terms of quality, this is called a bifurcation. Theory

predicted all of these possibilities, and many tests have verified them. An early physics

model for studying chaos was the Rayleigh-Benard thermal convection, which involves a

fluid layer being subjected to a vertical temperature differential between two horizontal

plates. Since then, chaos theory has been validated in other domains. We will quickly go

over a few distinct kinds of evolution.
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2.7.1 By period doubling

The most well-known example of this transition scenario is when, as the control parameter

of the experiment is increased, the frequency of the periodic regime doubles, then is

multiplied by 4, 8, 16,...etc. As the doublings get closer together, we move closer to a

point of accumulation where we might theoretically obtain an infinite frequency; at this

point, the system deviates into chaos. At this point, the system degenerates into chaos.

Robert May has specifically studied it in population dynamics using the logistic map,

Xn+1 = rXn(1−Xn). The sequence either converges to a fixed point or diverges, where r

is a parameter that affects. As soon as an exceeds 3, the system bifurcates, which causes

it to alternate between two values near the fixed point. This is referred to as a period

2 attractor cycle. These two attractors continue to move away from the fixed point and

are increased until a new bifurcation happens. Each point splits, giving us a period 4

attractor cycle.

2.7.2 By intermittency

Through intermittency, this scenario is distinguished by the irregular appearance of chaotic

bursts in a regularly oscillating system. After a certain amount of time, or ”regularity,”

the system maintains a periodic or nearly periodic regime before abruptly destabilizing

and erupting into chaos. After that, it stabilizes once more before later igniting another

burst. It has been noted that as one moves further away from the critical value of the con-

straint, the frequency and duration of the chaotic phases tend to increase. Intermittency,

in particular, presupposes that there is no attractor nearby and that the limit cycle, which

corresponds to the periodic state from which this transition phenomenon arises, bifurcates

sub-critically. In the Rossler system, this is what is seen.

2.7.3 By quasi-periodicity

The Lorenz model (1963) was used as an example in Ruelle and Takens’ (1971) theoretical

work to highlight the scenario via quasi-periodicity. Numerous experiments have sup-

ported this theory, including the well-known Rayleigh-Bénard in a small box experiment
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in thermo-hydrodynamic convection and the Belousov-Zhabotinsky reaction in chemistry,

among others. The ”competition” of different frequencies in the dynamical system leads

to this path to chaos. If we alter a parameter in a system that exhibits periodic behavior

at a single frequency, a second frequency emerges. The behavior is periodic if the ratio

between the two frequencies is logical. However, if the ratio is irrational, the behavior

is quasi-periodic, and the trajectories in this situation cover a torus’ surface. A third

frequency then appears when we alter the parameter once more, and so on until chaos.

Additionally, there are systems that go straight from two frequencies to chaos.

2.8 Conclusion

This chapter aims to provide a concise overview of key concepts in chaos theory within

nonlinear discrete dynamical systems of fractional order ν. It introduces fundamental

mathematical concepts and numerical tools essential for analyzing these irregular geomet-

rical entities, laying the groundwork for the analysis and numerical simulations presented

in our thesis. To clarify the findings, examples are given.
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CHAPTER 3
THE FRACTIONAL DISCRETE USHIO SYSTEM: CHAOS

AND STABILIZATION

3.1 Introduction

Developing control strategies for achieving stabilization is critical to chaotic systems re-

search. The primary objective is to derive a one-dimensional control law that asymptoti-

cally brings both map trajectories to zero, thereby stabilizing chaotic systems. Fractional

discrete chaotic systems have recently attracted more attention than ever before. There

has been a lot of focus on studying control mechanisms that can successfully stabilize the

chaotic dynamics at the origin. [79], [78], [47], [51], [114]. In this chapter, we provide a

novel Ushio map of fractional order, extending the integer-order Ushio system proposed

by T. Ushio in 1995 [97] as a contraction map. We first study the presence of chaotic

behaviors in the fractional Ushio system, and then we stabilize the chaotic fractional

discrete-time Ushio system by introducing a one-dimensional linear control law.
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3.2 The fractional Ushio system

According to [97], the Ushio map was first suggested in the following way:x(k + 1) = dx(k)− x3(k) + y(k)

y(k + 1) = 0.5x(k)

, (3.2.1)

where d is a bifurcation parameter. Due to its properties, the Ushio map finds applica-

tions in various fields [112], [33] beyond mathematics, including engineering, physics, and

computer science. Researchers have used it to explore complex behaviors in systems and

to develop methods for controlling or harnessing chaos in practical scenarios. Studying

the dynamical behaviors of the fractional version was motivated by this.

Herein, by exploiting the Caputo h-difference operator in (3.2.1), the fractional Ushio

map given as follows:
C
h∆

γ
ax(t) = −x3(t+ hγ) + (d− 1)x(t+ hγ) + y(t+ hγ)

C
h∆

γ
ay(t) = −y(t+ hγ) + 0.5x(t+ hγ)

, (3.2.2)

Using phase portrait, bifurcation diagram, and the greatest Lyapunov exponents, we

demonstrate that the fractional Ushio map is chaotic in the section that follows.

3.3 Chaotic behavior of fractional-order Ushio map

3.3.1 Phase portrait

According to Theorem 1.5.7, the equivalent implicit discrete formula corresponding the

fractional-order Ushio map (3.2.2) can be written in the form:
x(n+ 1) = x(0) +

hγ

Γ(γ)

n∑
j=0

Γ(n− j + γ)

Γ(n− j + 1)
((d− 1)x(j + 1)− x3(j + 1) + y(j + 1))

y(n+ 1) = y(0) +
hγ

Γ(γ)

n∑
j=0

Γ(n− j + γ)

Γ(n− j + 1)
(0.5x(j + 1)− y(j + 1))

,

(3.3.1)

with x(0) and y(0) serving as the initial conditions. In this context, the Ushio system’s

chaotic behavior is investigated using the implicit system in equation (3.3.1) with the

initial conditions (x(0), y(0)) = (0.1,−0.3) and d = 1.9, as seen in Figure 3.1.
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Figure 3.1: Phase portrait of the FO Ushio map (3.2.2) for (a) γ = 1,(b) γ = 0.95,(c)

γ = 0.82.

3.3.2 Bifurcation diagram and largest Lyapunov exponent

While phase portraits are valuable for examining the characteristics of solutions, but are

not adequate to achieve a thorough understanding. At this stage, the proposed fractional-

order Ushio map (3.2.2) is reported using a bifurcation diagram and Lyapunov exponents.

To check and ensure the chaos and to compare the results to guarantee the dynamical

behaviors of the novel fractional map, we vary the bifurcation parameter d in the range

[0, 2] and keep the same initial conditions (x(0), y(0)) = (0.1,−0.3). The bifurcation

diagram and largest Lyapunov exponents are established in Figures 3.2 and Figures 3.3

respectively. For the value γ = 1, it is observed that chaotic behavior emerges when d

exceeds 1.61. With γ set at 0.95, as depicted in Figure 3.2(b), the threshold for chaos

shifts, beginning at d ≥ 1.66. Conversely, for γ = 0.82, Figure 3.2(c) indicates that chaos

begins to manifest at d ≥ 1.6, and the states proceed towards infinity when d surpasses 2.

From these observations, it is inferred that a decrease in d leads to a transition from chaotic

to stable behavior. However, the largest Lyapunov exponent changed its sign twice to the

negative, indicating that he briefly displayed chaotic behavior toward periodic cycles and

48



the opposite as shown in Figures 3.3. Additionally, it is noted that the fractional order

map exhibits similar functioning and behavior patterns as its integer-order counterpart.

Figure 3.2: Bifurcation diagram of the FO Ushio map (3.2.2) for (a) γ = 1,(b) γ = 0.95,(c)

γ = 0.82.

Figure 3.3: Largest Lyapunov exponent of the FO Ushio map (3.2.2) for (a) γ = 1,(b)

γ = 0.95,(c) γ = 0.82.
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3.4 Chaos stabilization scheme

To demonstrate a discovery on the stabilization of the dynamics of the fractional Ushio

system (3.2.2) at zero, this section aims to create a linear control law. By adding a new

time-varying parameter L(t), the goal of ”stabilization” is to reduce one of the system’s

states to zero in a reasonable amount of time.

Theorem 3.4.1. [113] The one-dimensional control law (3.4.1) can stabilize the two-dimensional

fractional Ushio system (3.2.2).

L(t) = −1.5y(t)− dx(t), t ∈ (hN)a+(1−γ)h. (3.4.1)

Proof. The controlled fractional Ushio system involves the time-varying control parameter

L(t) and is given by
C
h∆

γ
ax(t) = −x3(t+ hγ) + (d− 1)x(t+ hγ) + y(t+ hγ) + L(t+ hγ)

C
h∆

γ
ay(t) = −y(t+ hγ) + 0.5x(t+ hγ)

, (3.4.2)

where t ∈ (hN)a+(1−γ)h. Substituting the proposed control law (3.4.1) into (3.4.2) yields

the simplified dynamics
C
h∆

γ
ax(t) = −x(t+ hγ)− x3(t+ hγ)− 0.5y(t+ hγ)

C
h∆

γ
ay(t) = −y(t+ hγ) + 0.5x(t+ hγ)

. (3.4.3)

Now, we need to demonstrate that (3.4.3) has a trivial solution that is globally asymptot-

ically stable. If this is the case, we can determine that the controlled system described in

equation (3.4.2) is certain to converge to zero in all of its states. The Lyapunov approach,

which was previously summarized by Theorem 1.6.17, which is can be applied to this

issue. To observe this, one must take into consideration the next Lyapunov function:

V (x(t), y(t) =
1

2
(x2(t) + y2(t)). (3.4.4)

So, we can deduce the following statement by using the fractional Caputo h-difference

operator on (3.4.4).

C
h∆

γ
aV (x(t), y(t) =

1

2
(Ch∆

γ
ax

2(t) +C
h ∆γ

ay
2(t)), t ∈ (hN)a+(1−γ)h. (3.4.5)
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By using Lemma 1.5.6, we get

C
h∆

γ
aV (x(t), y(t)) ≤ x(t+ hγ)Ch∆

γ
ax(t) + y(t+ hγ)Ch∆

γ
ay(t)

= −x2(t+ hγ)− x4(t+ hγ)− 0.5x(t+ hγ)y(t+ hγ)

+0.5x(t+ hγ)y(t+ hγ)− y2(t+ hγ)

= −(x2(t+ hγ) + x4(t+ hγ) + y2(t+ hγ)) < 0.

This suggests that the linear control law (3.4.1) efficiently stabilizes all states of the sys-

tem (3.2.2) at the origin. As illustrated in Figure 3.4, the phase space and the evolution

of all states of the controlled system (3.4.2) are plotted to verify the efficacy of the es-

tablished controller. All chaotic dynamics of the fractional Ushio system described in

(3.4.2) stabilize at zero under the linear control law given in (3.4.1), as shown by such

diagrams.

Figure 3.4: Time evolution the system (3.4.2) by using the control law (3.4.1) with γ =

0.95 and d = 1.

3.5 Conclusion

This chapter has advanced the field of research by introducing accurate linear control

strategies to stabilize the behavior of certain fractional maps defined using the Caputo

h-difference operator. The main accomplishment has been demonstrated through the

validation of a novel theorem, which relies on the use of appropriate Lyapunov functions.

As the control law developed in this study is both one-dimensional and linear, it offers
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a cost-effective and simple implementation. To conclude, The efficacy of each of the

suggested control strategies has been shown using the simulation results.
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Part II

FRACTIONAL DIFFERENTIAL

SYSTEMS
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CHAPTER 4
OVERVIEW OF FRACTIONAL-ORDER DIFFERENTIAL

OPERATORS

4.1 Introduction

Gottfried Wilhelm Leibniz’s work on calculus indeed laid foundational aspects for differen-

tial calculus, and his interaction with l’Hôpital brought to light intriguing questions about

the nature of calculus that would provoke thought and further development in the field for

centuries. Leibniz’s notation and conceptual framework for calculus were revolutionary,

introducing a formal way to talk about infinitesimals and the change between quanti-

ties. The discussion between Leibniz and l’Hôpital about fractional derivatives, where

l’Hôpital asked about the case when the derivative is
1

2
, touches on what we now refer to

as fractional calculus. Leibniz’s response, acknowledging the potential paradox while also

foreseeing ”useful consequences” emerging from it, underscores his profound insight. He

seemed to understand that while the concept challenged the mathematical understanding

of the time, it held the potential for significant advancements. Many areas of mathematics

and the hard sciences have found use for fractional calculus, which investigates the pos-

sibility of taking real or complex number powers of the differentiation operator. It allows
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for the generalization of classical calculus, providing new methods to solve differential

equations, model complex systems, and describe phenomena in physics, engineering, and

beyond, where traditional models are insufficient. This chapter covers various types of

fractional integrals and derivatives, presenting definitions and fundamental properties of

the most significant and commonly utilized types. Additionally, stability theorems for

fractional-order dynamical systems are discussed. The chapter concludes with an intro-

duction to the Adomian decomposition method, supplemented by an illustrative example

to elucidate the method’s application.

4.2 Riemann-Liouville fractional integral

Cauchy is frequently credited with the famous formula that reduces the calculation of the

n-fold integral of a function f(t) to a single integral of convolution type. Based on the

Riemann-Liouville method, this eventually results in the concept of the fractional integral

of order ν (ν > 0). We begin by reviewing the assumption that the n-fold integral of a

function f is continuous over the interval [a, b], where b > 0. Remembering that F (y, t)

is jointly continuous allows us to begin by saying that∫ y

a

dy1

∫ y1

a

F (y1, t)dt =

∫ y

a

dt

∫ y

t

F (y1, t)dy1. (4.2.1)

Specifically, only in cases where F (y, t) is a function of a variable t can (4.2.1) be expressed

as ∫ y

a

dy1

∫ y1

a

f(t)dt =

∫ y

a

f(t)dt

∫ y

t

dy1 =

∫ t

a

(y − t)f(t)dt, (4.2.2)

This is the two-fold integral simplified to one integral formula. The following formula for

the 3-fold integral reduced to a single integral is obtained through a similar approach.∫ y

a

dy1

∫ y1

a

dy2

∫ y2

a

f(t)dt =

∫ t

a

(y − t)2

2
f(t)dt. (4.2.3)

We can deduce the Cauchy formula of n-fold integral for x > a, n ∈ N∗

Jn
a f(y) =a D

−n
y f(y) =

∫ y

a

dy1

∫ y1

a

dy2 . . .

∫ yn−1

a

f(t)dt =
1

(n− 1)!

∫ t

a

(y − t)n−1f(t)dt.

(4.2.4)
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Utilizing the Gamma function, this formula can be expressed as

Jn
a f(y) =a D

−n
y f(y) =

1

Γ(n)

∫ t

a

(y − t)n−1f(t)dt. (4.2.5)

Changing n to a positive real number ν in equation (4.2.5) is possible since the gamma

function gives an analytical extension of the factorial to all positive real values. Therefore,

the fractional integral of Riemann-Liouville of order ν > 0 may be defined in the following

way:

Jν
a f(y) =

RL
a D−ν

y f(y) =
1

Γ(ν)

∫ t

a

(y − t)ν−1f(t)dt, y > a, ν > 0. (4.2.6)

Remark 4.2.1. If f ∈ L1[a, b] with ν > 0, then the integral Jν
a f(y) exists for almost every

y ∈ [a, b]. Furthermore, the function Jν
a f itself is also belongs to L1[a, b].

Some basic properties

• ∀λ1, λ2 ∈ R

Jν
a (λ1f(t) + λ2g(t)) = λ1J

ν
a f(t) + λ2J

ν
a g(t). (4.2.7)

• h is a continuous function for x ≥ a then

lim
ν→0

Jν
ah(x) = h(x). (4.2.8)

and

Jq
a(J

ν
ah(x)) = Jν

a (J
q
ah(x)) = Jq+ν

a h(x). (4.2.9)

•

Jν
aC =

C

Γ(ν + 1)
(t− a)ν , (4.2.10)

were C is constant.

•

Jν
a (s− a)α =

Γ(α + 1)

Γ(α + ν + 1)
(s− a)ν+α. (4.2.11)
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4.3 Riemann-Liouville fractional derivatives

We next go on to the corresponding differential operators. The following identity is first

reviewed, which is relevant to a function ϕ with a continuous nth derivative on the interval

[a, b]:

Dnϕ = DmDm−nϕ, (4.3.1)

where n, m ∈ N, such that m > n.

Let’s now assume that n is not an integer. Given the preceding sections, the right-

hand portion of (4.3.1) holds significance. As a result, the Riemann-Liouville fractional

differential operator is defined as follows.

Definition 4.3.1. Let ν ∈ R+ and m = ⌈ν⌉. The Riemann-Liouville fractional differential

operator of order ν is defined by

RL
a Dν

t ϕ = DmJm−ν
a ϕ. (4.3.2)

Equivalently, we have

RL
a Dν

t ϕ(t) =


1

Γ(m− ν)

dm

dtm

∫ t

a

(t− s)m−ν−1ϕ(s)ds, m− 1 < ν < m

dm

dtm
ϕ(t), ν = m

(4.3.3)

Some basic properties

• Composition with integer-order derivatives.

Dn(RL
a Dν

t ϕ(t)) =
RL
a Dν+n

t ϕ(t). (4.3.4)

RL
a Dν

t (ϕ
(n)(t)) =RL

a Dν+n
t ϕ(t)−

n−1∑
j=0

ϕj(a)(t− a)j−n−ν

Γ(j − n− ν − 1)
. (4.3.5)

• Composition using fractional-order Derivatives. Take the two fractional Riemann-

Liouville operators RL
a Dν

t and RL
a Dα

t with m = ⌈ν⌉ and n = ⌈α⌉ then

RL
a Dα

t (
RL
a Dν

t ϕ(t)) =
RL
a Dν+α

t ϕ(t)− (t− a)−α−j

Γ(−α− j + 1)

m∑
j=1

[RL
a Dν−j

t ϕ(t)]t=a (4.3.6)

RL
a Dν

t (
RL
a Dα

t ϕ(t)) =
RL
a Dν+α

t ϕ(t)− (t− a)−ν−j

Γ(−ν − j + 1)

n∑
j=1

[RL
a Dα−j

t ϕ(t)]t=a (4.3.7)
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Remark 4.3.2. In overall, the Riemann-Liouville fractional operators RL
a Dα

t and

RL
a Dν

t do not commute, except when ν = α. For α ̸= ν, we have

RL
a Dα

t (
RL
a Dν

t ϕ(t)) =
RL
a Dν

t (
RL
a Dα

t ϕ(t)) =
RL
a Dν+α

t ϕ(t), (4.3.8)

only if both sums in the right-hand sides of (4.3.6) and (4.3.7) vanish. For this, we

have to require the conditions

[RL
a Dν−j

t ϕ(t)]t=a = 0, j = 1, 2, ...,m, (4.3.9)

and

[RL
a Dα−j

t ϕ(t)]t=a = 0, j = 1, 2, ..., n. (4.3.10)

If ϕ(t) has a sufficient number of continuous derivatives, then the conditions (4.3.9)

and (4.3.10) are equivalent to

ϕ(j)(a) = 0, j = 0, 2, ..., n− 1, (4.3.11)

ϕ(j)(a) = 0, j = 0, 2, ...,m− 1. (4.3.12)

As conclusion the ν−th and α−th Riemann-Liouville fractional derivatives commute

if

ϕ(j)(a) = 0, j = 0, 2, ..., r − 1. (4.3.13)

Where r = max(n,m).

4.4 Caputo’s fractional derivative

The theory and practice of integrals and derivatives with fractions, as well as their uses

in pure mathematics (e.g., solving differential equations of integer order, defining new

function classes, and summing series), has been significantly shaped by the definition

4.3.1 of fractional differentiation of the Riemann-Liouville type. However, to align with

the requirements of modern technology, the well-established pure mathematical approach

needs to undergo key modifications. Fractional derivatives find extensive application in

numerous publications, notably within the theory of viscoelasticity and hereditary solid
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mechanics, where they offer a more precise depiction of material properties. The de-

velopment of beginning conditions for fractional-order differential equations is a natural

consequence of mathematical modeling’s advancement with improved rheological models.

Definitions of fractional derivatives are necessary for applied issues to use physically com-

prehensible initial conditions, such as f(a), f ′(a), etc. The Riemann-Liouville approach

produces undesirable beginning conditions at the lower terminal t = a, where they include

things like the limit values of the Riemann-Liouville fractional derivatives. For example

lim
t→a

(RL
a Dν−1

t f(t)) = b1,

lim
t→a

(RL
a Dν−2

t f(t)) = b2,

. . .

lim
t→a

(RL
a Dν−m

t f(t)) = bm.

bk, k = 1, 2, ...,m, are constants given. Even though these types of initial value may be

handled theoretically, initial value difficulties still arise.

Even though initial value problems with these kinds of initial conditions can be math-

ematically solved (see, for instance, the solutions provided in [91]) and this book, their

solutions are piratically and pointless since such initial conditions have no known physical

interpretation. Here, we see a disagreement between the demands of practical application

and the refined and well-established mathematical theory. In 1967, M. Caputo first pro-

posed a specific solution to this conflict in his paper [16], followed by his book [17] two

years later. More recently, El-Sayed [29] proposed a similar solution in Banach spaces.

Definition 4.4.1. Let ν ∈ R+ and m−1 < ν < m. Caputo’s fractional differential operator

of order ν is defined as

C
aD

ν
t f(t) = Jm−ν

a

dm

dtm
f(t) =

1

Γ(m− ν)

∫ t

a

f (m)(τ)dτ

(t− τ)ν+1−m
, (m− 1 < ν < m). (4.4.1)

Remark 4.4.2. In a natural setting, the Caputo derivative of the function f(t) becomes

the conventional m− th derivative of the function f(t) as ν approaches m. In particular,

if m − 1 ≤ ν < m and f(t) is a function with m + 1 continuous bounded derivatives in

[a, T ] for all T > a, then

lim
ν→m

(CaD
ν
t f(t)) = lim

ν→m
(
f (m)(a)(t− a)m−ν

Γ(m− ν + 1)
+

1

Γ(m− ν + 1)

∫ t

a

(t− τ)m−νf (m+1)(τ)dτ)
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= f (m)(a) +

∫ t

a

f (n+1)(τ)dτ = f (m)(t), m = 1, 2, ....

Caputo’s method offers a significant advantage: the initial condition for a fractional dif-

ferential equation involving Caputo derivatives retains the same form as differential equa-

tions of integer order. Specifically, it encompasses the limit values of the derivatives of

integer-order unknown functions at the lower terminal t = a.

properties of Caputo derivative

• Let λ, γ ∈ R
C
aD

ν
t (λf(t) + γh(t)) = λCaD

ν
t f(t) + γCa D

ν
t h(t).

• Interpolation

If m = ν then the definition (4.4.1) implies that

C
aD

ν
t f(t) = J0

a

dm

dtm
f(t) =

dm

dtm
f(t).

• Composition

Let n ∈ N and m = ⌈ν⌉, we have

C
aD

ν
t (

C
aD

n
t f(t)) =

C
a D

ν+n
t .

• if F continuous on [a, b], then

C
aD

ν
t J

ν
aF (t) = F (t).

• if F ∈ Cm[a, b], then

Jν
a

C
aD

ν
t F (t) = F (t)−

m−1∑
i=0

F (a)(i)

i!
(t− a)i.

4.5 Stability of fractional order differential systems

Fractional-order systems introduce a new dimension to control theory, enabling the anal-

ysis and control of systems with dynamics described by fractional (non-integer) order dif-

ferential equations [10]. These systems offer a more accurate representation of real-world
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processes by incorporating memory and hereditary features. A cornerstone of control

theory, stability analysis checks that, given certain circumstances, a system stays within

its bounds and converges to its target state. Methods such as Lyapunov stability theory

and frequency-domain analysis are employed to analyze the stability of fractional-order

systems, which exhibit various types of stability including asymptotic and exponential sta-

bility. Overall, stability analysis in fractional-order systems is crucial for understanding

the behavior of complex dynamical systems and designing robust control strategies.

4.5.1 Stability of fractional order linear systems

We consider the following fractional differential linear system

C
aD

ν
t xi(t) = A(xi(t)), i = 1, ..., n. (4.5.1)

Where C
aD

ν
t refers to the Caputo operator of order ν, m = ⌈ν⌉, (x1(t), x2(t), ..., xn(t)) is

the state vector, and A is a constant matrix.

Theorem 4.5.1. [66] The fractional-order linear system described by (4.5.1) is asymptoti-

cally stable if and only if

| arg λi| >
νπ

2
, i = 1, 2, ..., n. (4.5.2)

λi, i = 1, 2, ..., n, are the eigenvalues of the matrix A.

Example 4.5.2. Consider the following linear system
C
0D

0.5
t z1(t) = −z1(t),

C
0D

0.5
t z2(t) =

1

3
z2(t).

(4.5.3)

The matrix A given by

A =

−1 0

0
1

3


The eigenvalues of the matrix A are:

λ1 = cos(π) + i sin(π), λ2 =
1

3
(cos(π) + i sin(π)).
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It is clear that | arg λ1| = | arg λ2| = π >
0.5π

2
=
π

4
.

According to Theorem 4.5.1, the trivial solution of the system (4.5.3) is asymptotically

stable.

4.5.2 Stability of fractional order nonlinear systems

Direct method(Linearization)

Now consider a nonlinear fractional system given by

C
aD

ν
t xi(t) = hi(xi(t)), i = 1, ..., n. (4.5.4)

C
aD

ν
t is the Caputo operator of order ν, m − 1 < ν < m, (xi(t))i=1,...,n ∈ Rn is the state

vector and the function hi : Rn → R has seconds continuous partial derivatives at an

equilibrium point x∗.

Theorem 4.5.3. [6] The fractional order nonlinear system described by (4.5.4) is asymp-

totically stable if only if

| arg(eig(J |∗x))| >
νπ

2
, i = 1, 2, ..., n. (4.5.5)

Where J |∗x is the Jacobian matrix of a system (4.5.4) at the equilibrium point x∗ and

eig(J |∗x) are the eigenvalues of the Jacobian matrix at the origin.

Example 4.5.4. Consider the following fractional nonlinear system
C
0D

1
2
t y1(t) = −y2(t) + y1(y

2
1(t) + y22(t)− 1),

C
0D

1
2
t y2(t) = y1(t) + y2(y

2
1(t) + y22(t)− 1),

(4.5.6)

the system (4.5.6) have only equilibrium point (y∗1, y
∗
2) = (0, 0). The Jacobian matrix at

the origin is given by

J |x∗=0 =

−1 −1

1 −1


The eigenvalues of the Jacobian matrix are:

λ1 = −1 + i, λ2 = −1− i.

One might easily conclude that | arg λ1| = | arg λ2| =
3

4
π >

π

4
. Based on Theorem 4.5.3,

This means that the system’s (4.5.6) trivial solution is asymptotically stable.
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Lyapunov method

The fundamental theorem of Lyapunov’s method for stability, when extended to frac-

tional systems, remains conceptually similar to that for integer-order systems but with

adaptations to account for the fractional derivatives. The core idea is to demonstrate the

stability of an equilibrium point of the system by finding a suitable Lyapunov function

associated with the system that helps in assessing its stability. Here’s a generalized form

of Lyapunov’s stability theorem for fractional-order systems:

Take the following equation that represents a fractional-order dynamical system:

C
aD

ν
t x(t) = f(x(t)), i = 1, ..., n. (4.5.7)

f : Rn → Rn is a vector field assumed to be locally Lipschitz continuous. Let x = 0 be

an equilibrium point of the system (4.5.7).

Theorem 4.5.5. [21] If there exists a positive definite function V (x(t)) such that C
aD

ν
t V (x(t)) <

0, ∀t > 0, the trivial solution of the fractional order system (4.5.7) is asymptotically stable.

Theorem 4.5.6. [5] ∀t > 0 we have

1

2
C
aD

ν
t (x

T (t)x(t)) ≤ xT (t)CaD
ν
t x(t). (4.5.8)

Example 4.5.7. Consider the following fractional-order system:

C
aD

ν
t x(t) = −x3(t), (4.5.9)

with 0 < ν ≤ 1. We consider the Lyapunov function

V (x) =
1

2
x2.

This function is positive definite and by using the Theorem 4.5.6 we get

C
aD

ν
t V (x(t)) ≤ xCaD

ν
t x(t) = x(−x3(t)) = −x4(t) < 0.

by Theorem 4.5.5 for fractional-order systems (4.5.9), we can conclude that the equilibrium

point x = 0 is asymptotically stable.
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4.6 Adomian decomposition method

The inverse operator method (ADM), also called the Adomian decomposition method

(ADM), was developed for solving both linear and nonlinear differential equations by

American physicist Adomian in the 1980s [2]. First, the equation must be divided into

constant, linear, and nonlinear components. Next, the solution must be divided into

infinite parts. It has been used recently for fractional-order chaotic systems [40], with

developments like the fractional-order chaotic fast iterative algorithm and Lyapunov ex-

ponent spectrum algorithms, among others [101]. High-precision approximate solutions

are provided by ADM [15], which has been successfully applied to fractional-order chaotic

systems because it preserves the system nonlinearities. This method has several advan-

tages over other conventional numerical methods in many areas. On the other hand, in

comparison to other techniques, ADM produces chaos at much lower orders. For example,

the lowest recorded order in the literature for chaos utilizing ADM in the Chen system is

0.24. Conversely, for the same system, the Adams-Bashforth-Moulton method requires a

minimum order of 0.64 [96].

4.6.1 Algorithm description

The fractional-order chaotic system is described as:

CDq
t0Φ(t) = LΦ +NΦ + g(t), (4.6.1)

where Φ(k)(a) = ak, k = 0, ..., n − 1, represents the initial condition of the system,

Φ(t) = [Φ1(t),Φ2(t), ...,Φn(t)]
T is the state vector, g(t) = [g1(t), g2(t), ..., gn(t)]

T is con-

stant vector, LΦ and NΦ represent the linear and the nonlinear terms respectively.

We apply the integral operator, to both sides of equation (4.6.1) we obtain

Φ = Jq
t0LΦ + Jq

t0NΦ + Jq
t0g(t) + ψ, (4.6.2)

where

ψ =
n−1∑
k=0

ak(t− t0)
k

k!
.
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The solution of the system (4.6.1) given as

Φ(t) =
∞∑
i=0

Φi.

The nonlinear term is given as [25]
Λi

j =
1

i!

[
di

dτ i
N(νji (τ))

]
τ=0

νji (τ) =
i∑

k=0

(τ)kΦk
j , i = 0, 1, 2, ...,∞, j = 1, 2, ..., n.

(4.6.3)

Then, the nonlinear term can be expressed as

NΦ(t) =
∞∑
i=0

Λi(Φ1(t),Φ2(t), ...,Φi(t)).

The numerical solution of system (4.6.2) can be expressed as follows

Φ(t) =
∞∑
i=0

Φi = Jq
t0L

∞∑
i=0

Φi + Jq
t0N

∞∑
i=0

Λi
j + Jq

t0g(t) + ψ.

where Φi is calculated by

Φ0 = Jq
t0g(t) + ψ

Φ1 = Jq
t0LΦ

0 + Jq
t0NΛ0(Φ0)

. . .

Φi = Jq
t0LΦ

i−1 + Jq
t0NΛi−1(Φ0,Φ1, ...,Φi−1)

. . .

, (4.6.4)

4.6.2 Algorithm example

Consider fractional-order memristor laser chaotic system

CDq
tx1 = −ax1 + bx1x2 − |x3|A sin(2πfx4)

CDq
tx2 = −(1 + c+ (x1)

2))x2 + c− 1

CDq
tx3 = A sin(2πfx4)

CDq
tx4 = 1

. (4.6.5)
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where a, b, c, A, f , are the bifurcation parameters, and q ∈ (0, 1). The ADM is used to

parse this new autonomous FO memristive laser chaotic system, the linear and nonlinear

terms in this system can be broken down and expressed as
Lx1

Lx2

Lx3

Lx4

 =


−ax1

−x2 − cx2

0

0

 ,

Nx1

Nx2

Nx3

Nx4

 =


bx1x2 − |x3|A sin(2πfx4)

−(x1)
2x2

A sin(2πfx4)

0

 ,

gx1

gx2

gx3

gx4

 =


0

c− 1

0

1

 .
(4.6.6)

According to equation (4.6.3), the nonlinear term can be expressed as
A0

1−1 = bx01x
0
2

A1
1−1 = b(x11x

0
2 + x01x

1
2)

A2
1−1 = b(x21x

0
2 + 2x11x

1
2 + x01x

2
2)

(4.6.7)



A0
1−2 = A|x03| sin(2πfx04)

A1
1−2 = A(2πfx14 cos(2πfx

0
4)|x03|+ x13 sin(2πfx

0
4)sgn(x

0
3))

A2
1−2 = A(2πfx24 cos(2πfx

0
4)|x03| − 2π2f 2 sin(2πfx04)|x03|

+0.5(x13)
2 sin(2πfx04)sgn(x

0
3)) + x23 sin(2πfx

0
4)sgn(x

0
3)))

+x13x
1
4πf cos(2πfx

0
4)sgn(x

0
3)

(4.6.8)


A0

2 = −(x01)
2x02

A1
2 = −x12(x01)2 − 2x02x

1
1x

0
1

A2
2 = −x22(x01)2 − x12x

1
1x

0
1 − 2x02x

2
1x

0
1 − x02(x

1
1)

2

(4.6.9)


A0

3 = A sin(2πfx04)

A1
3 = 2Aπfx14 cos(2πfx

0
4)

A2
3 = 2A(πfx24 cos(2πfx

0
4)− π2f 2(x14)

2 sin(2πfx04))

. (4.6.10)
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According to the initial conditions of this system, the state variables are expressed as

x01 = x1(t0)

x02 = x2(t0)

x03 = x3(t0)

x04 = x4(t0)

. (4.6.11)

Let c01 = x01, c
0
2 = x02, c

0
3 = x03, c

0
4 = x04, that is, c

0 = [c01, c
0
2, c

0
3, c

0
4]. According to equation

(4.6.5) and the properties of R-L integral operator, the following formula is obtained:

x11 = (−ac01 + bc01c
0
2 − A|c03| sin(2πfc04))

(t− t0)
q

Γ(q + 1)

x12 = (−c02 − cc02 − (c01)
2c02 + c− 1)

(t− t0)
q

Γ(q + 1)

x13 = (A sin(2πfc04))
(t− t0)

q

Γ(q + 1)

x14 =
(t− t0)

q

Γ(q + 1)

. (4.6.12)

Let the system parameters be assigned to the corresponding variables.

When c11 = −ac01 + bc01c
0
2 − A|c03| sin(2πfc04), c12 = −c02 − cc02 − (c01)

2c02 + c − 1, c13 =

A sin(2πfc04), x
1
4 = 1 then x1 = c1

(t− t0)
q

Γ(q + 1)
can be obtained. According to equation

(4.6.5), the coefficients of the last two terms of the derived system are expressed as



c21 = −ac11 + b(c11c
0
2 + c01c

1
2)− A(2πfc14 cos(2πfc

0
4)|c03|+ c13 sin(2πfc

0
4)sgn(c

0
3))

c22 = (−c12 − cc12 − c11(c
0
1)

2 − 2c01c
1
1c

0
2 + c− 1)

c23 = 2Aπfc14 cos(2πfc
0
4)

c24 = 1

(4.6.13)
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c31 = −ac21 + b(c21c
0
2 + c11c

1
2

Γ(2q + 1)

Γ2(q + 1)
+ c01c

2
2)− A(2πfc24 cos(2πfc

0
4)|c03|

−2π2f 2(c14)
2 sin(2πfc04)|c03|+ 0.5(c13)

2 sin(2πfc04)sgn(c
0
3)

+c23 sin(2πfc
0
4)sgn(c

0
3) + c13c

1
4πf cos(2πfc

0
4)sgn(c

0
3)
Γ(2q + 1)

Γ2(q + 1)
)

c32 = −c22 − cc22 − c22(c
0
1)

2 − c12c
1
1c

0
1

Γ(2q + 1)

Γ2(q + 1)
− 2c02c

2
1c

0
1 − c02(c

1
1)

2 + c− 1

c33 = 2A
(
πfc24 cos(2πfc

0
4)− π2f 2(c14)

2 sin(2πfc04)
)

c34 = 1

. (4.6.14)

Therefore, the solution of the fractional-order memristor laser chaotic system (4.6.5) is

obtained as

x̃j(t) = c0j + c1j
(t− t0)

q

Γ(q + 1)
+ c2j

(t− t0)
2q

Γ(2q + 1)
+ c3j

(t− t0)
3q

Γ(3q + 1)
, j = 1, 2, 3. (4.6.15)

4.7 Conclusion

This chapter briefly introduces fractional-order differential operators, covering essential

concepts, theorems, definitions, and examples.

68



CHAPTER 5
COMPLEXITY ANALYSIS OF FRACTIONAL-ORDER

CHAOTIC SYSTEMS

5.1 Introduction

Since its introduction in the 1980s, the idea of complexity has gained significant atten-

tion in modern scientific research. Many definitions and understandings of complexity

exist today as a result of the varied viewpoints that researchers with different academic

backgrounds have used to examine the concept. There are currently at least 45 differ-

ent definitions of complexity, which represent the varied perspectives of many researchers.

Examples of these definitions include Kolmogorov complexity, temporal complexity, space

complexity, and semantic complexity. Entropy is a valuable tool for characterizing com-

plexity since it measures a system’s degree of disorder or chaos. Entropy is the foundation

of many contemporary definitions of complexity. In 1865, Clausius was the first to apply

the notion of entropy to the field of physics. This first definition was created to quantify

the chaos in a thermodynamic system and is referred to as thermodynamic entropy. In

conclusion, complexity is a complex idea that is defined and addressed differently by dif-

ferent scholars. Entropy plays a significant role in many modern definitions of complexity,
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especially in its use in quantifying disorder in systems. In this chapter, we give some im-

portant definitions and notions about FO continuous dynamical systems, and then we will

discuss the chaos and Complexity measure algorithms. In the end, fractional continuous

chaotic systems will be presented along with their applications.

5.2 Fractional order continues-time dynamical systems

FO continuous-time systems represent a modern and versatile approach to modeling dy-

namical systems that exhibit complex behaviors beyond what traditional integer-order

systems can capture. In these systems, Non-integer orders of differentiation or integra-

tion are used in fractional calculus to explain the change of a system’s state over time.

Different branches of science and engineering may now more accurately and fluidly model

real-world events because of this break from conventional integer-order calculus. We need

to establish a few key principles before we can define complexity analysis. The following

form is provided for the FO continuous dynamical system, which will be defined first.

C
aD

ν
t u = F (t, u), (5.2.1)

where u ∈ Rn, F is defined on a suitable subset V ⊂ Rn+1 and ν = [ν1, ν2, ..., νn]
T are

the FO, 0 < νi ≤ 1, (i = 1, 2, ..., n) ( we adopt this restriction of FO ν because fractional

equations in this range require only one initial condition to guarantee the uniqueness of

the solution). When ν1 = ν2 = ... = νn, the system (5.2.1) is called a commensurate

order system, otherwise, it is an incommensurate order system. If the function F depends

explicitly on it, then (5.2.1) is called a non-autonomous system; otherwise, it is called an

autonomous system.

For any t > 0, we say that u∗ is an equilibrium point of the Caputo fractional dynamical

system (5.2.1) if and only if F (t, u∗) = 0.

5.3 Brief overview of chaos

One of the most important subfields of nonlinear research is chaos theory, which deals

with the complex, apparently chaotic, external motion of deterministic systems caused by
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internal nonlinearity. In contrast to regular motion, which is scale-dependent, nonlinear

systems often exhibit chaos in their natural motion. As research into chaotic systems has

progressed, the field of chaos science has acquired theoretical frameworks and mathemat-

ical implications that are both deep and rich. Furthermore, it has been increasingly used

in engineering and has grown to be a crucial aspect of contemporary science. The swift

advancement of computer technology has accelerated the development of chaos theory

and its applied research, encouraging its intersection and application with other subjects.

In chemistry, physics, electronics, medicine, biology, engineering, economics, and other

technological and scientific domains, chaos, for instance, has a significant theoretical and

applied status. Thus, it has made a substantial contribution to several scientific domains.

The famous scientist Ford [38] asserted at the inaugural International Chaos conference

that the three major scientific revolutions of the 20th century were quantum physics, chaos,

and relativity. The following were his main arguments: Quantum mechanics shattered

Newton’s dream of controlled measuring methods, chaos shattered Laplace’s predictable

illusion, and Einstein’s theory of relativity shattered the illusion of absolute space and

time. Understanding and describing the dynamic behaviors of chaotic systems may lead

to a better understanding of the complex and multidimensional human condition.

Remark 5.3.1. All the notions, tools, and characteristics of chaos in the FOD maps in

part one are similar in the FOC systems.

5.4 Fractional-order chaotic systems

5.4.1 Fractional-order Lorenz chaotic system

The Fractional-order Lorenz chaotic system is a standard chaotic system, described by

the following equation: 
C
aD

ν
t x1 = 40(x2 − x1)

C
aD

ν
t x2 = x1(10− x3) + 25x3,

C
aD

ν
t x3 = x1x2 − 3x3

(5.4.1)
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Recently, Jia et al. [45] analyzed the dynamics of fractional-order Lorenz chaotic systems

with the FO q = 0.9, the phase diagrams of the FO Lorenz chaotic attractor on different

planes are shown in Figure 5.1.

Figure 5.1: FO Lorenz chaotic attractors: (a) x1 − x2 plane, (b) x1 − x3 plane, and (c)

x2 − x3 plane.

5.4.2 Fractional-order Rössler chaotic system

Rössler system proposed by Rössler OE in 1976, As one of the classic continuous chaotic

systems, the system has been extensively investigated, specifically, the integer-order chaotic

was examined in [90]. The corresponding FO Rössler system is written as
C
aD

ν
t x = −y − z

C
aD

ν
t y = x+ 0.55y,

C
aD

ν
t z = 2 + z(x− 4)

(5.4.2)

Taking the order q = 0.8, the attractor of the FO Rössler system is obtained as shown in

Figure 5.2.

5.4.3 Fractional-order Lorenz-Stenflo chaotic system

Stenflo proposed the Lorenz-Stenflo system in 1996 [93], which consists of four nonlinear

ordinary differential equations. In a revolving environment, it simulates the propagation

of waves with limited amplitude and gravity. The FO Lorenz-Stenflo system is represented
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Figure 5.2: Attractor of the FO Rössler system (5.4.2).

by the following equations: 

C
aD

ν
t x = y − x+ v

C
aD

ν
t y = 0.7x− xz − y

C
aD

ν
t z = xy − 26z

C
aD

ν
t v = −x− v

, (5.4.3)

The attractor of the FO Lorenz-Stenflo system is obtained as shown in Figure 5.3 with

the order q = 0.7.

5.5 Complexity measure algorithms

The complexity of a chaotic system is defined by how close a chaotic sequence is to a

random sequence when correlation methods are used. Indicative of growing complexity,

closeness enhances the associated application system’s security. The inherent complexity

of chaotic systems embodies chaotic dynamics. Both structural and behavioral complex-

ity may be shown via chaotic sequences, with the latter being quantifiable. Examining

the size of the probability of new patterns within very short periods is one approach to

estimating the likelihood of generating a new pattern. Various computational complexity

techniques exist for chaotic pseudo-random sequences, many of which, such as the approx-

imate entropy (ApEn) algorithm [88], are grounded in the Kolmogorov method, Shannon
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Figure 5.3: Attractors of the FO Lorenz-Stenflo system (5.4.3): (a) x− y plane, (b) x− z

plane, (c) x− v plane, (d) y − z plane, (e) y − v plane and (f) z − v plane.

entropy, and fuzzy entropy (FuzzyEn) algorithm [24]. Describing the dynamics of chaotic

systems often involves assessing their complexity. The phase diagram, bifurcation dia-

gram, and Lyapunov exponent have effects comparable to those of this approach. In this

context, the C0 method and the spectral entropy (SE) algorithm are introduced.
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5.5.1 Spectral entropy complexity algorithm

According to [95], the spectral entropy complex method can be described as follows: it

may use the Fourier transform to create an energy distribution and then use the Shannon

entropy to get the corresponding SE.

Step 1: Continuous Fourier transformation (CFT)

X(f) =

∫ +∞

−∞
x(t)e−2jπftdt, (5.5.1)

Where x(t) is the state of the system X(f) is the Fourier Transform of x(t).

Step 2: Power Spectral Density (PSD)

S(f) = |X(f)|2, (5.5.2)

The PSD S(f) represents the distribution of power across different frequencies f .

Step 3: Normalization of PSD

Normalize the PSD values S(f) to ensure they are comparable across different systems or

observations.

Step 4: Entropy Calculation

The entropy H of the normalized PSD values S(f) can be computed using Shannon

entropy or other entropy measures:

H = −
∫ +∞

−∞
p(f) log(p(f)). (5.5.3)

Where p(f) represents the normalized PSD values.

Step 5: Complexity Calculation

Derive complexity measures from the entropy values. For example, taking the exponential

function of the entropy:

SEC = exp(H). (5.5.4)

These formulas provide the mathematical framework for computing SEC for a continuous

dynamical system. However, practical implementations may involve numerical methods

for computing integrals and handling continuous data. Additionally, interpretations of

complexity in continuous systems may require additional analysis and consideration of

the system’s dynamics.
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5.5.2 C0 complexity algorithm

It is possible to determine the complexity of a sequence (C0) by separating it into its

regular and irregular parts and then measuring the proportion of the sequence’s irregular

parts. This is the algorithm that uses this technique for computing [94].

Step 1: Fourier transforms on discrete sets yN , n = 1, ..., N .

Y (k) =
N−1∑
n=0

y(n)e−j 2π
N

nk =
N−1∑
n=0

y(n)W nk
N , k = 0, 1, 2, ..., N − 1. (5.5.5)

Step 2: eliminate of irregular parts. The definition of the mean square value of the

amplitude spectrum Y (k), k = 1, ..., N − 1 is

GN =
1

N

N−1∑
k=0

|Y (k)|2. (5.5.6)

Add a control parameter r. If the square value spectrum components are more than rGN ,

then replace them with zero. The elements whose square values are less than or equal to

rGN , known as the irregular parts, should be modified as follows:

Ȳ (k) =

Y (k) if |Y (k)|2 > rGN

0 otherwise.

. (5.5.7)

Step 3: Fourier inverse transformation for the sequence Ȳ (k)

ȳ(n) =
1

N

N−1∑
k=0

Ȳ (k)ej
2π
N

nk =
1

N

N−1∑
n=0

Ȳ (k)W−nk
N , k = 0, 1, 2, ..., N − 1. (5.5.8)

Step 4: Define C0 complexity as

C0(r,N) =
N−1∑
n=0

|y(n)− ȳ(n)|2/
N−1∑
n=0

|y(n)|2. (5.5.9)

Remark 5.5.1. For any time series, the C0 complexity ranges between 0 and 1. Hence, C0

complexity can be used as a randomness finding complexity of a time series.

5.6 Chaos synchronization

Several researchers from many domains have been intrigued by the phenomena of synchro-

nization because of its potential applications in the realm of nonlinear sciences [73][70].
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It stems from the concept of ”synchronous”, meaning sharing a common time, and in-

volves the coordination of dynamics between two or more systems, In other words, when

a master system’s time-dependent variables are time-matched with those of a dynamical

slave system, the process is called synchronization. There are few literature that has

taken into account the dynamics synchronization problems in the field of chaotic systems

with integer order, in the discrete time chaotic systems [71][76][83], in continuous time

chaotic systems [14][36][74]. Similar to in chaotic systems with fractional order including

the discrete time chaotic systems [13][48][47], and in the continuous time chaotic systems

[26][75][81]. Recently, synchronization schemes between integer order and fractional order

chaotic systems inspired a great deal of motivation [85][77][80]. A real-life example of

synchronization is synchronization of satellites. Satellites in a constellation often need to

operate in synchrony to achieve various objectives such as global coverage, accurate posi-

tioning, communication, and remote sensing. For instance, in a GPS (Global Positioning

System) satellite constellation, each satellite needs to be synchronized precisely with the

others to ensure accurate positioning information for users on Earth. These satellites orbit

the Earth at high speeds and altitudes, and precise timing synchronization is essential for

the signals they transmit to be received and processed correctly by GPS receivers on the

ground. In this section, we present different synchronization types between fractional-

order chaotic systems.

The general form of the master-slave is given as follows
C
aD

ν
t U(t) = F1(U(t)),

C
aD

ν
t V (t) = F2(V (t)) + C(t),

(5.6.1)

where U(t) = (U1(t), U2(t), ..., Un(t))
T ∈ Rn is the master state vector and V (t) =

(V1(t), V2(t), ..., Vm(t))
T ∈ Rm is the slave state vector. F1 : Rn → Rn, F2 : Rm → Rm are

non-linear functions and C(t) is the control vector to be determined.

Definition 5.6.1. Synchronization is used to understand the sensitivity based on the initial

conditions. It has been proven that synchronizing two or more chaotic systems proves the

ability to follow closely the same movement of these dual systems together.
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5.6.1 Different synchronization types

Full (Complete) synchronization

Complete synchronization (CS) [86] occurs when there is a complete coincidence between

the state variables of the two systems that are synchronized.

Definition 5.6.2. We consider the master-slave pair (5.6.1), the complete synchronization

error is defined by

e(t) = V (t)− U(t). (5.6.2)

In this case the control C(t) is chosen so that

lim
t→∞

∥e(t)∥ = 0, (5.6.3)

where ∥.∥ is the euclidean norm.

Remark 5.6.3. If F1 = F2, then the synchronization is called identical complete synchro-

nization. Otherwise, it is called non-identical complete synchronization.

Anti-synchronization

In synchronization, two or more dynamical systems adjust their states over time so that

they behave in a coordinated manner. However, in anti-synchronization [35], the systems

adjust their states in such a way that they become exactly opposite or out of phase with

each other.

Definition 5.6.4. We consider the master-slave pair (5.6.1), The error system can be

defined as follows

e(t) = V (t) + U(t), (5.6.4)

and verifies

lim
t→∞

∥e(t)∥ = 0, (5.6.5)

Projective synchronization

In projective synchronization [72], the state variables of the two systems are not iden-

tical, but there exists a linear transformation (projection) between them, such that the
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trajectories of the systems are synchronized up to this transformation. This implies that

the overall behavior or shape of the trajectories in phase space remains the same, even

though the states themselves may differ.

Definition 5.6.5. The master-slave pair (5.6.1) are said to be projective synchronized, if

there exists non zero vector α = (αi)1≤i≤n such that

lim
t→∞

∥Vi(t)− αiUi(t)∥ = 0, (5.6.6)

Generalized synchronization

This type of synchronization is a generalization of many types of synchronization [26]. In

this case, if there exists a controller C(t), and a continuous function Ψ : Rn → Rn such

the error system

e(t) = V (t)−ΨU(t), (5.6.7)

goes towards zero. Then, the master-slave system is synchronized under the generalized

synchronization.

Q-S synchronization

We say that the Q-S synchronization [82] is achieved between the master-slave pair (5.6.1),

if ther exists a control C(t) and tow functions, Q : Rn → Rd and S : Rm → Rd, such that

the error system satisfies

lim
t→∞

∥e(t)∥ = lim
t→∞

∥Q(U(t))− S(V (t))∥ = 0. (5.6.8)

5.7 Application of fractional chaotic systems in image en-

cryption

The possibility that image encryption based on FO chaotic systems might provide very

high levels of security for both transmission and storage has attracted a lot of interest.

There has been extensive usage of traditional chaotic systems in encryption techniques

due to their sensitivity to beginning circumstances and unpredictability. Nevertheless, FO
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chaotic systems are already well-suited for cryptography applications, but the inclusion

of non-integer orders makes them considerably more complicated and unpredictable. It

is common practice to use the chaotic dynamics produced by FO chaotic systems to

encrypt images by first converting them into a scrambled or encrypted version of the

original. The encryption technique uses the FO system’s chaotic trajectories to randomly

alter the picture data or scramble the pixel values. Unauthorized users without the correct

decryption keys will see the encrypted picture as random noise, thanks to this mechanism.

For high-entropy encryption key generation, FO chaotic systems are a good fit because of

their benefits, such as being very sensitive to system settings and beginning circumstances.

Their bigger key space, made possible by their continuous dynamics, further fortifies them

against cryptanalytic assaults of all kinds. In conclusion, FO chaotic system based image

encryption offers a potential method for protecting picture data in several contexts, such

as communication, cloud storage, and multimedia systems. These encryption algorithms

provide strong security against unwanted access and guarantee the secrecy and integrity

of critical picture data by making use of the intrinsic complexity and unpredictability of

FO chaotic systems.

5.8 Conclusion

We started by discussing chaos in fractional-order continuous-time dynamical systems,

providing examples of such systems. Then, we introduced complexity measures like the

spectral entropy (SE) algorithm and C0 algorithm and synchronization concept was pre-

sented. Application of fractional chaotic systems in image encryption were treated re-

cently.
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CHAPTER 6
THE FRACTIONAL-ORDER HALVORSEN CIRCULANT

SYSTEM AND ITS APPLICATION ON IMAGE

ENCRYPTION

6.1 Introduction

In recent years, there has been a surge of interest in utilizing fractional calculus [22]

to analyze chaotic systems, sparking investigations into their behavior and applications

featuring non-integer order characteristics. Numerous chaotic models in three dimensions

have been extensively studied in the literature, including the Tigan, Chen, Cai, Chen-Lee,

Lorenz, Rössler, Lu, and Liu systems. This exploration holds significant implications for

science and engineering, particularly in control systems and chaos theory, with notable

applications such as memristors [87], encryption [53], and information protection [32].

This chapter delves into the FO Caputo derivative and its application to the Halvorsen

circulant system (FO-HCS), offering a numerical solution via the Adomian decomposi-

tion method (ADM). Dynamics analysis techniques such as phase diagrams, bifurcation

diagrams, complexity assessments, and Lyapunov exponents are employed to understand
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FO-HCS behavior. Additionally, synchronization and stabilization of FO-HCS are ex-

plored, showcasing the application of stability theory in synchronization and adaptive

control. Furthermore, we leverage extended fractional sequences to enhance image en-

cryption methods, capitalizing on the unique properties of fractional-order systems. Our

proposed method employs a keystream generator based on the improved FO-HCS chaotic

behavior, ensuring maximum security for image data. Simulation results demonstrate the

safety and reliability of this approach for handling image data.

6.2 The Fractional-order Halvorsen circulant system

The FOHCS is suggested using the Caputo differential operator as follows:
C
0D

q
tx = −ax− by − bz − y2

C
0D

q
t y = −ay − bz − bx− z2

C
0D

q
t z = −az − bx− by − x2

, (6.2.1)

where 0 < q ≤ 1, a, b ∈ R are the system parameters.

6.2.1 Solution of the fractional-order Halvorsen circulant system

The numerical solution of the FOHCS (6.2.1) obtained by using ADM is indicated by

xn+1 =
5∑

j=0

kj1h
jq

Γ(jq + 1)

yn+1 =
5∑

j=0

kj2h
jq

Γ(jq + 1)

zn+1 =
5∑

j=0

kj3h
jq

Γ(jq + 1)

, (6.2.2)

where h, Γ represent the integration step size and the Gamma function, and kji (.) are

defined as

k01 = x(n), k02 = y(n), k03 = z(n).
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k11 = −ak01 − bk02 − bk03 − (k02)

2

k12 = −ak02 − bk01 − bk03 − (k03)
2

k13 = −ak03 − bk02 − bk01 − (k01)
2

, (6.2.3)



k21 = −ak11 − bk12 − bk13 −
Γ(2q + 1)

Γ2(q + 1)
k12k

0
2

k22 = −ak12 − bk11 − bk13 −
Γ(2q + 1)

Γ2(q + 1)
k13k

0
3

k23 = −ak13 − bk12 − bk11 −
Γ(2q + 1)

Γ2(q + 1)
k11k

0
1

, (6.2.4)



k31 = −ak21 − bk22 − bk23 −
[
Γ(2q + 1)

Γ2(q + 1)

]
k22k

0
2 −

[
Γ(2q + 1)

Γ2(q + 1)

]
(k12)

2

k32 = −ak22 − bk21 − bk23 −
[
Γ(2q + 1)

Γ2(q + 1)

]
k23k

0
3 −

[
Γ(2q + 1)

Γ2(q + 1)

]
(k13)

2

k33 = −ak23 − bk22 − bk21 −
[
Γ(2q + 1)

Γ2(q + 1)

]
k21k

0
1 −

[
Γ(2q + 1)

Γ2(q + 1)

]
(k11)

2

, (6.2.5)



k41 = −ak31 − bk32 − bk33 −
Γ(2q + 1)

Γ2(q + 1)
k32k

0
2 −

Γ(3q + 1)

Γ(q + 1)Γ(2q + 1)
k22k

1
2

k42 = −ak32 − bk31 − bk33 −
Γ(2q + 1)

Γ2(q + 1)
k33k

0
3 −

Γ(3q + 1)

Γ(q + 1)Γ(2q + 1)
k23k

1
3

k43 = −ak43 − bk32 − bk31 −
Γ(2q + 1)

Γ2(q + 1)
k31k

0
1 −

Γ(3q + 1)

Γ(q + 1)Γ(2q + 1)
k21k

1
1

, (6.2.6)



k51 = −ak41 − bk42 − bk43 −
Γ(4q + 1)

Γ2(q + 1)
(k42k

0
2 + k32k

1
2)−

Γ(4q + 1)

Γ(q + 1)Γ(3q + 1)
(k32k

1
2 + (k22)

2)

k52 = −ak42 − bk41 − bk43 −
Γ(4q + 1)

Γ2(q + 1)
(k43k

0
3 + k33k

1
3)−

Γ(4q + 1)

Γ(q + 1)Γ(3q + 1)
(k33k

1
3 + (k23)

2)

k53 = −ak43 − bk42 − bk41 −
Γ(4q + 1)

Γ2(q + 1)
(k41k

0
1 + k31k

1
1)−

Γ(4q + 1)

Γ(q + 1)Γ(3q + 1)
(k31k

1
1 + (k21)

2)

.

(6.2.7)

6.2.2 Dynamics analysis of FOHCS

Change the value of q in the FOHCS (6.2.1) in this section. Given that this parameter

may be changed, we would preferably analyze its dynamical properties in this component.

The FO q is assumed to be changed between 0.55 and 1.0 with a 0.05 step size. The

parameters will also be held constant, and we will assume that the initial conditions are

0.2, 0.6, and 0.2. In 6.1(b), you can see a depiction of the relevant bifurcation diagram.
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It is seen that the system is mostly chaotic when 0.65 ≤ q < 1. The complexity of the

system may be partially described by using the largest Lyapunov exponent, and Figure

6.1(a) displays a range of LEs. At q = 0.65, a positive LE is realized in the FOHCS,

resulting in the system’s chaotic behavior. As demonstrated in Figure 6.1(c), the positive

LE causes the chaotic behavior, as indicated by tacking q = 0.65. In addition, Figure 6.2

displays the attractor with a clear FO. The attractor displays strange behavior and its

chaotic nature becomes apparent when q ≥ 0.65.

6.2.3 Complexity of FOHCS

Simultaneously, change q from 0.55 to 1 using a step size of 0.01 and a from 1 to 5. Based

on the SE and C0 complexity, Figures 6.3 show the chaos diagram in this q−a parameter

plane. There is With an increase in order q, the FOHCS complexity exhibits a decreas-

ing trend. Practical applications benefit from the more noticeable trend of decreasing

complexity C0 and SE, as well as the high complexity region that is seen. As a result,

the FOHCS system is an appropriate model for real-world applications. It shows how

the chaos diagram may be used in practical settings to choose parameters for FOHCS

systems.

6.2.4 Complexity with variation a and q

One could think of a system’s nonlinear dynamic behavior as an investigation into the

system’s complexity. Examining if a chaotic sequence is near a random sequence is a

complex task. If it approaches a random sequence more closely, the system’s complexity

is probably quite high. Figure 6.4 displays the C0 complexity and SE complexity of the

system concerning FO q when the system’s parameters match those studied in Figure 6.1.

Large complexity is correlated with smaller order and vice versa, as seen in Figure 6.1,

where the FO q, the LLE describes the dynamic properties. Next, we discovered that the

C0 and SE complexity algorithms were used in the research of Figure 6.4. A comparative

study of the two algorithms revealed that while they can both reflect the same dynamical

behavior, the C0 complexity can better characterize the dynamic phenomenon.

84



Figure 6.1: dynamics of FOHCS: (a) LEs (b) bifurcation diagram, and (c) LEs with

q = 0.65.

Figure 6.2: FOHCS attractor with different value of q.

Figure 6.3: Chaos diagram of FOHCS on q-a plan: (a) SE complexity, (b) C0 complexity.
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Figure 6.4: FOHCS complexity: (a) SE complexity with q = 0.65, (b) C0 complexity with

q = 0.65, (c) C0 complexity with a = 1.27, and (d) SE complexity with a = 1.27.

6.2.5 Chaos control

This section presents two strategies for controlling the FOHCS. The primary objective of

the first strategy is to stabilize the system by ensuring that all of its states converge to

zero in due time. A master and a slave FOHCS are made to asymptotically follow the

same trajectory using the second controller, whose objective is complete synchronization.

Stabilization law.

In this subsection, we’re diving into the world of FOHCS stabilization. Now, in control

theory and dynamical systems, stabilization is like keeping a system on track making sure

its behavior stays close to zero as time goes on. To achieve this with the FOHCS (6.2.1),

we’re proposing a three-dimensional control law.
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Theorem 6.2.1. [39] The following 3D control law can stabilize the FOHCS (6.2.1).
L1 = bz + by + y2

L2 = bz + z2

L3 = x2

, (6.2.8)

Proof. The controlled FOHCS is given by
C
0D

q
tx = −ax− by − bz − y2 + L1

C
0D

q
t y = −ay − bx− bz − z2 + L2

C
0D

q
t z = −az − by − bx− x2 + L3

, (6.2.9)

Replacing (6.2.8) by (6.2.9) we obtain
C
0D

q
tx = −ax

C
0D

q
t y = −ay − bx

C
0D

q
t z = −az − by − bx

, (6.2.10)

we have to show that the trivial solution in equation (6.2.10) is globally asymptotically

stable. After this is proven, we will conclude that all of the states in the controlled system,

which is represented by equation (6.2.10), will eventually converge to zero. We can achieve

this task by using the assumptions that were previously presented in Theorem 4.5.1. We

can write equation (6.2.10) as follows:

C
0D

q
t (x(t), y(t), z(t))

T = A(x(t), y(t), z(t))T .

Where

For matrix A, the eigenvalues are as follows: λ1 = −a, λ2 = −a, λ2 = −a. The
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requirements of theorem 4.5.1 are met by the eigenvalues of the matrix A. It is then

shown that the trivial solution is stable. As such, the states given by equation (6.2.1) are

stabilized effectively. This suggests that the application of the proper control law given

in equation (6.2.8) at the origin results in an effective stabilization of all states within

the system represented by equation (6.2.10). As we can see, the states in Figure 6.5 are

moving towards zero.

Figure 6.5: Time evolution of the system of the FOHCS (6.2.1) using the control law

(6.2.8).

Synchronization of fractional HCS.

The synchronization of chaotic systems is another crucial component. This notion is based

on the idea of adding one or more appropriate controllers to the so-called ”slave system”.

A distinct chaotic system known as the ”master system” is used to coerce the slave system

into mimicking its behavior as the clock ticks toward infinity. Under these conditions,

we think about two fractional Halvorsen circulant chaotic systems. We will look at the

possibility of using a three-dimensional controller to bring these two fractional systems

into harmony. The two systems of master-slave relationships are outlined below:
C
0D

q
txm = −axm − bym − bzm − y2m

C
0D

q
t ym = −aym − bxm − bzm − z2m

C
0D

q
t zm = −azm − bym − bxm − x2m

, (6.2.11)
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and 
C
0D

q
txs = −axs − bys − bzs − y2s + U1

C
0D

q
t ys = −ays − bxs − bzs − z2s + U2

C
0D

q
t zs = −azs − bys − bxs − x2s + U3

, (6.2.12)

(U1, U2, U3) ∈ R3 is a control vector to be determined. The error that occurs between the

slave and master systems is

(e1(t), e2(t), e3(t))
T = (xs(t), ys(t), zs(t))

T − (xm(t), ym(t), zm(t))
T

Theorem 6.2.2. [39] According to the three-dimensional control law described by (6.2.13),

the pair of master-slave fractional Halvorsen circulant chaotic systems are synchronized.
U1 = y2s − y2m + be2 + be3

U2 = z2s − z2m + be1 + be3

U3 = x2s − x2m + be1 + be2

, (6.2.13)

Proof. The error system can be derived as follows
C
0D

q
t e1(t) = −ae1 − be2 − e2(ym + ys)− be3 + U1

C
0D

q
t e2(t) = −ae2 − be1 − e3(zm + zs) + U2

C
0D

q
t e3(t) = −ae3 − be2 − e1(xm + xs) + U3

, (6.2.14)

substituting the control law (6.2.13) into the system (6.2.14), we get
C
0D

q
t e1(t) = −ae1

C
0D

q
t e2(t) = −ae2

C
0D

q
t e3(t) = −ae3

, (6.2.15)

the system (6.2.15) can be written as follow:

C
0D

q
t (e1(t), e2(t), e3(t))

T =M(e1(t), e2(t), e3(t))
T

where
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The matrix M has three equal eigenvalues −a. According to Theorem 4.5.1, We were

able to demonstrate that the error system (6.2.15) moves in the direction of the origin.

In conclusion, it is shown that the master (6.2.11) system and slave (6.2.12) system

can accomplish the desired synchronization with the proposed control rules in the form

(6.2.13). Figure 6.6 shows up the simulation results.

Figure 6.6: Error synchronization of the FOHCS (6.2.1).

6.3 The technique of encryption and decryption

6.3.1 Chaotic sequence generator

Floating point numbers represent state values in chaotic systems; therefore, sequences

constructed from these values are unsuitable for direct image cryptography applications.

Normalize the chaotic state value of an image with grey level L to an integer between 0

and L− 1. The outcome of the transformation is a chaotic pseudorandom sequence that

can be implemented in an image cryptosystem. This study employs two distinct equations

to convert the chaotic state’s values to integers:

pi = floor(xi × 10r)mod L,
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pi = floor(xi × 2c)mod L.

6.3.2 RSA Algorithm

Two keys are utilized by the RSA, a widely recognized asymmetric encryption algorithm:

a public key for encryption and a private key for decryption. The inverse also holds: data

encrypted with the public key cannot be decrypted without the corresponding private key.

Due to its dual-key architecture, RSA is classified as asymmetric. It is based on the Euler

theorem of number theory, and its security is contingent on the difficulty of factoring

enormous numbers. Digital signatures and data encryption are two of the applications

of RSA. The RSA process entails the encryption of plaintext using the recipient’s public

key. Once the ciphertext is received, it is decrypted by the receiver using their private

key. This mechanism guarantees secure communication as access to the private key is

restricted to the receiver alone. By decreasing the amount of key transmission in the

communication channel, this mechanism improves security.

Algorithm: RSA Algorithm

Input Select two different prime numbers p and q

1. Calculate Euler function, ϕ(n) = (p− 1)(q − 1)

2. n = p× q

3. Randomly select public key e, 1 < e < ϕ(n), and gcd(ϕ(n), e) = 1

4. Calculate the private key d.e ≡ 1mod ϕ(n), d = e−1(mod ϕ(n))

d.e ≡ 1mod ϕ(n), d = e−1(mod ϕ(n))

Encryption method

5. for each plaintext m, calculate c = memod n

Decryption method.

6. for each ciphertext c, calculate m = cdmod n

Output: The public key, which consists of n and e and the private key, which is d.
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6.3.3 Encryption and decryption process

Image Encryption Process

Step 1: Select the prime numbers p and q in order to compute c = p × q and ϕ(c) =

(p− 1)(q − 1).

Step 2: The RSA algorithm is utilised to produce the keys (d, c) and (e, c).

Step 3: Integers (r1, r2, r3) that are selected at random are regarded as confidential in-

formation. Subsequently, these values are employed in conjunction with a key (e, c) to

compute Ci = reimod c, where i = 1, 2, 3. Subsequently, the values that ensue are trans-

mitted to the receiver.

Step 4: :The equation (6.3.1) is utilised to calculate the parameter values x0, y0, and z0

for the fractional chaotic HCS.
x0 = sqrt(log(C1 + r1))

y0 = sqrt(log(C2 + r2))

z0 = sqrt(log(C3 + r3))

, (6.3.1)

To generate pseudorandom sequences S,X, and R, substitute parameters x0, y0, and z0

into equations (6.2.1) and convert the values generated into the range of 0 to 255:
S = mod (floor((s+ 100)× 1010), 256)

X = mod (floor((s+ 100)× 1014), 256)

R = mod (floor((s+ 100)× 1016), 256)

, (6.3.2)

Step 5: To acquire image B, nonrepetitive permutations are executed on image A using

the key stream X. Run a permutation using plaintext.

Step 6: Finding an encrypted image matrix E using transformed C is the last step.

Image Decryption Process

The decryption of an image is the inverse operation of encryption; it operates as follows:

Step 1: The receiver decrypts the original image using a private key(d, c) and the cipher-

text information Ci, ri = Cd
i mod c, i = 1, 2, 3. The parameters x0, y0, and z0 of the
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Figure 6.7: Encryption flowchart.

Halvorsen circulant system are subsequently computed utilizing equation (6.3.1)

Step 2: By replacing the parameters x0, y0, and z0 in equations (6.2.1) and (6.3.1), pseu-

dorandom sequences S ′, X ′, and R′ are produced. The range of values that are generated

is 0 to 255. 
S ′ = mod (floor((s′ + 100)× 1010), 256),

X ′ = mod (floor((s′ + 100)× 1014), 256),

R′ = mod (floor((s′ + 100)× 1016), 256),

, (6.3.3)

Step 3: To produce picture B′, nonrepetitive permutations are applied to image C ′ using

the key stream X ′. Make a permutation with plaintext.

Step 4: Get the original picture matrix P ′ by transforming A′.

6.4 Simulations

To ensure the security and effectiveness of the proposed image cryptosystem. It is assumed

that several pictures, including standard experimental images, have been subjected to

thorough examination. The results of the tests are then compared to the results obtained

using the standard methods and approaches. A range of grayscale pictures, including

medical images, are chosen as examples of plaintext images to demonstrate the visual
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effect of encryption. No personally identifiable information about the matching plaintext

photographs is revealed by the encryption results, as demonstrated in Figure 6.8, and

the encrypted images are fully compatible with the originals. The results show that

both the encrypted and original images work flawlessly. According to the results of the

research, the proposed algorithm-based image cryptography system provides accurate

picture decryption and efficient image encryption.

Figure 6.8: Image Encryption and Decryption process

6.4.1 Histogram

The distribution of an image’s different grayscale values is shown by its histogram. A

histogram may help as understand how the image’s intensity is distributed. An evenly

distributed range of intensities is unusual in important photographs. To withstand various

statistical assaults, the encrypted picture must have a uniform distribution. This research

offers a comparative analysis of the histograms to evaluate the effectiveness of the proposed
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technique. The results and related histograms of the encryption approach are shown in

Figure 6.9. The recommended method’s encrypted picture features a histogram with three

channels because of the dimension modification stage. The histogram demonstrates that

the three encrypted picture channels have very similar intensity distributions. All sorts of

statistical attacks can’t break the proposed picture encryption method, as shown in the

study and comparison.

Figure 6.9: Histogram of correlation and coefficient

6.4.2 Adjacent pixel correlation

There is usually a strong correlation between the values of nearby pixels in plaintext

pictures that successfully communicate information. To ensure that the encryption process

does not allow for the recovery of both the plaintext and the cipher text, it is necessary

to disrupt this substantial connection. Using the original and encrypted pictures, we

randomly picked 104 surrounding pixels to determine the correlation strength in the x, y,

and z axes. The correlation coefficient is calculated using the following formula:
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The variables x and y stand for two neighboring pixel values. In Figure 6.10, we can see the

outcomes of the correlation test. Along the x, y, and z axes, the pixels of the plaintext

picture are scattered equally. Hence, there is a close connection between the plaintext

picture and the image proper. The ciphertext picture seems to have randomly distributed

pixels after encryption as if all links between them had been obliterated. Simultaneously,

the process is the same for all the photographs in the standard collection, irrespective of

their size. All the data about the correlation coefficients are shown in Figure 6.10. These

coefficient values are rather low for the encrypted text pictures.

Figure 6.10: Correlation adjacent pixels in the original and encrypted images.

6.4.3 Key analysis

The proposed image cryptosystem’s security features, including its key space size and key

variation sensitivity, will be investigated. The fundamental components of the proposed
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image cryptosystem are the system parameters and starting settings. The key space of

the proposed system is around 2697, which is much larger than the 2100 required by theory,

as shown in Table 6.1, which is approximately 10210 = (1010)21 ≈ 2697. If this is not the

Table 6.1: Key space comparison.

Proposed [41] [107] [57] [89] [111] [63]

Keyspace 2697 2425 2256 2256 2312 2154 2509

case, the method is very vulnerable to brute force assaults. Additionally, to determine

how sensitive the decryption key is in picture encryption, the mean square error MSE

between the original and decrypted pictures is computed. The MSE value is zero when

the correct decryption keys are used, as shown in Figure 6.11. Additionally, when one key

is changed, all keys are updated simultaneously. That the original and encrypted images

are different and that the decoded picture does not include any discernible information is

supported by this. The sensitivity of each key is further shown by this.

Figure 6.11: Key sensitivity analysis with using correct key
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6.4.4 Entropy analysis

With increasing information entropy, an image’s visual information communication ca-

pabilities deteriorate. More viewable information means less information entropy in an

encrypted picture. Compared to a clear image, an encrypted one should have a much

higher information entropy. The theoretical value, which is calculated as 8,

E = −
k∑

j=1

p(yi) log2 p(yj), (6.4.1)

the probability of the gray value yj is denoted as p(yj). The experiment determines

the information entropy by first creating unique 3D cubes from test images and then

encrypting each one separately. To summarize, the information entropy of the ciphertext

image cube is much greater than that of the plaintext cube, reaching a maximum of

7.9998 and being quite near to the theoretical value, as shown in Table 6.2. This data

suggests that the proposed encryption method outperforms competing methods in terms

of security.

Table 6.2: Image correlation coefficient

Image Original Encrypted Entropy

H V D H V D

MRI-1.00 0.9955 0.9951 0.9912 -0.0075 0.0017 0.0124 7.9996

MRI-1.00 0.8300 0.8376 0.8040 -0.0186 0.0241 0.0151 7.9987

MRI-1.10 0.9963 0.9960 0.9928 -0.0182 -0.0075 -0.0158 7.9998

MRI-1.01 0.9537 0.9721 0.9341 0.0014 -0.0102 0.0007 7.9993

MRI-1.00 0.9755 0.9875 0.9650 -0.0197 0.0214 -0.0308 7.9991

MRI-1.11 0.9756 0.9864 0.9639 0.0001 0.0077 -0.0083 7.9992

MRI-1.01 0.9963 0.9959 0.9927 0.0050 -0.0007 0.0137 7.9997

MRI-1.11 0.7273 0.7239 0.6890 -0.0041 -0.0228 -0.0006 7.9901

MRI-1.01 0.5128 0.6579 0.3391 0.0053 0.0356 0.0142 7.9993

MRI-1.11 0.6031 0.7346 0.4783 -0.0127 -0.0182 0.0197 7.9993

[108] - - - -0.0125 0.0433 0.0400 7.9970

[106] - - - - 0.0053 -0.0008 0.0084 7.9993
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6.4.5 Different attack

By examining the plaintext output of various encryption processes, the differential attack

approach leverages this information to target the cryptographic algorithm. This implies

that two distinct ciphertext images will be produced from even little modifications to the

plaintext image’s pixel structure. The Blocked Average Change Intensity (BACI), the

Uniform Average Change Intensity (UACI), and The Number of Pixels Conversion Rate

(NPCR) are the two metrics used to assess an image’s resistance to differential attacks.

These are frequently employed to assess the ciphertext image on a qualitative level. The

BACI, UACI, and NPCR can be calculated as follows if the ciphertext pictures C1 and

C2 are produced by encrypting a plaintext image that varies by one bit:

NPCR =

∑
ij D(i, j)

M ×N
× 100%. (6.4.2)

D(i, j) =

1, c1(i, j) ̸= c2(i, j)

0, otherwise

. (6.4.3)

UACI =
1

M ×N

∑
ij

|c1(i, j)− c2(i, j)|
255

× 100%. (6.4.4)

BACI =
m

(M − 1)× (N − 1)
× 100%. (6.4.5)

Where M and N are the width and height of the image, respectively. For each pixel

position (i, j), if the pixel values in the corresponding positions of two ciphertext images,

C1(i, j) and C2(i, j), are the same, then the value of d(i, j) is 0, otherwise, it’s 1. This

helps us identify changes in pixel values between the two images. To measure how much

the images differ, we use a statistic called the Non-Parametric Change Ratio NPCR.

σ2
u =

(Q+ 2)(Q2 + 2Q+ 3)

18(Q+ 1)2Q(M ×N)
.

To determine the BACI, UACI, and NPCR values at the pixel level, we used a sig-

nificance threshold of σ = 0.05. In terms of the photographs, their respective critical

values are as follows: 26.8129% and 99.6099%, 43.48696% and 30.6439%, and 99.6099%

and 33.5530%. The results of the tests for BACI, UACI, and NPCR are shown in Table
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6.3. according to several different pictures. Although the currently available encryption

algorithms do not completely satisfy the requirements of the BACI, UACI, and NPCR

tests, the solution that has been suggested is successful in all three of these tests. In

addition to being able to survive a wide range of assaults, the algorithm is capable of

meeting the needed image security criteria.

Table 6.3: BACI, UACI, and NPCR results for complete encryption

Plaintext image 1 ROUND 2 ROUND

BACI(%) NPCR(%) UACI(%) BACI(%) NPCR(%) UACI(%)

MRI-1.00 26.8118 99.6066 33.5531 30.6231 99.6002 43.4858

MRI-1.01 26.7635 99.6022 33.4547 30.6437 99.6090 43.4526

MRI-1.10 26.7473 99.6257 33.4222 30.5874 99.6162 43.5017

MRI-1.11 26.7654 99.6097 33.4541 30.6157 99.5941 43.4776

MRI-1.00 26.7596 99.6047 33.4062 29.2014 99.5992 42.0315

MRI-1.01 26.7896 99.6120 33.4708 29.2136 99.6085 41.9806

MRI-1.10 26.7662 99.6021 33.4834 29.2377 99.5971 42.0222

MRI-1.11 26.7708 99.6146 33.4623 29.2084 99.6119 42.0272

MRI-1.01 26.8028 99.6130 33.4753 30.4372 99.6072 43.2066

MRI-1.10 26.7917 99.6128 33.4503 30.4407 99.6153 43.2679

[116] 26.7701 99.6089 33.4633 - - -

[108] - - - - 99.5565 33.9306

Figure 6.12: The impact of varying ciphertext image intensities on decrypted images.
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6.4.6 Robustness analysis

To determine how well our strategy works when there is noise, we do an analysis. Applying

Poisson, salt & pepper, and speckle noises to the ciphertext picture yields noise intensities

of 0.02 for speckle noise, 0.05 for salt & pepper noise, and 0.1 for Poisson noise. Figure 6.12

shows the results of the tests. Remarkably, even with a noise level of 0.1 for salt & pepper

noise, the encrypted picture can still be identified, proving the algorithm’s robustness.

6.4.7 Evaluation of known-plaintext and chosen-plaintext attacks

Methods for encrypting images are investigated about known plaintext and selected plain-

text assaults. Attackers may utilize both black-and-white and color photos to crack algo-

rithms; these pictures can also gauge how strong a certain cryptosystem is. The changes

to the replacement and shift parameters are determined by the image being evaluated.

The significance of these pictures in evaluating the resilience of the suggested cryptosys-

tem to various kinds of assaults is shown in Figures 6.10 and 6.13. Like the test cases

using black and white photographs, the generated ciphertext pictures have a consistent

distribution in their histograms and are readable. According to Table 6.2, the correlation

coefficients have decreased significantly, and the entropies of the two images are getting

close to 8. Based on these results, it is reasonable to assume that the suggested method

can withstand both known and selected plaintext attacks.

Figure 6.13: Results of encryption for every black and white image.
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6.5 Conclusion

In this chapter, we study a novel nonlinear control approach for synchronizing two FO-

HCS based on the ADM algorithm. For lower derivative orders q, it is shown that the

FOHCS, which shows chaos in its states, has a favorable dynamical feature with increasing

complexity. We verify its chaotic behavior by looking at the LEs, bifurcation diagram,

and phase space. In addition, we investigated image encryption.
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GENERAL CONCLUSION AND PERSPECTIVES

We studied in this thesis some fractional-order dynamical systems in discrete-time and

continuous-time and studied some dynamical behaviors. We divided the thesis into

two main parts: First, we investigate fractional difference equations, we provide a one-

dimensional linear control law for the stabilization of the fractional discrete Ushio system

after studying and detecting chaos. Second, in fractional differential equations, we ex-

plain the dynamics, where we use phase portrait, bifurcation, Lyapunov exponents, and

complexity to confirm the existence of chaos in the FOHCS. Then, two controllers are

proposed, the first one is for stabilization and the second is used to achieve complete

synchronization between a pair of FOHCS, then goes on to discuss how this system can

be used to construct an image encryption method. For future works, we will continue

to investigate more interesting systems study fractional discrete systems of high dimen-

sions, and applied in secure communication technology as well as audio and video chaotic

encryption.
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[90] O. E. Rössler. An equation for continuous chaos. Physics Letters A, 57(5):397–398,

1976.

[91] S. G. Samko. Fractional integration and differentiation of variable order. Analysis

Mathematica, 21(3):213–236, 1995.

[92] K. Sebastian Sudheer and M. Sabir. Hybrid synchronization of hyperchaotic lu

system. Pramana, 73:781–786, 2009.

[93] L. Stenflo. Generalized lorenz equations for acoustic-gravity waves in the atmo-

sphere. Physica Scripta, 53(1):83, 1996.

[94] K. Sun, S. He, C. Zhu, and Y. He. Analysis of chaotic complexity characteristics

based on c0 algorithm. Acta Electronica Sinica, 41(9):1765–1771, 2013.

[95] K.-H. Sun, S.-B. He, Y. He, and L.-Z. Yin. Complexity analysis of chaotic pseudo-

random sequences based on spectral entropy algorithm. 2013.

[96] M. Tavazoei and M. Haeri. Unreliability of frequency-domain approximation in

recognising chaos in fractional-order systems. IET Signal Processing, 1(4):171–181,

2007.

[97] T. Ushio. Chaotic synchronization and controlling chaos based on contraction map-

pings. Physics Letters A, 198(1):14–22, 1995.

113



[98] S. Vaidyanathan, A. T. Azar, K. Rajagopal, and P. Alexander. Design and spice

implementation of a 12-term novel hyperchaotic system and its synchronisation

via active control. International Journal of Modelling, Identification and Control,

23(3):267–277, 2015.

[99] F. Verhulst. Nonlinear differential equations and dynamical systems. Springer Sci-

ence & Business Media, 2006.

[100] H. F. von Bremen, F. E. Udwadia, and W. Proskurowski. An efficient qr based

method for the computation of lyapunov exponents. Physica D: Nonlinear Phe-

nomena, 101(1-2):1–16, 1997.

[101] H. Wang, K. Sun, and S. He. Characteristic analysis and dsp realization of fractional-

order simplified lorenz system based on adomian decomposition method. Interna-

tional Journal of Bifurcation and Chaos, 25(06):1550085, 2015.

[102] S. Wang, Y. Yu, and M. Diao. Hybrid projective synchronization of chaotic frac-

tional order systems with different dimensions. Physica A: Statistical Mechanics

and its Applications, 389(21):4981–4988, 2010.

[103] S.-P. Wang, S.-K. Lao, H.-K. Chen, J.-H. Chen, and S.-Y. Chen. Implementation

of the fractional-order chen–lee system by electronic circuit. International Journal

of Bifurcation and chaos, 23(02):1350030, 2013.

[104] X. Wang and Q. Wang. A novel image encryption algorithm based on dynamic

s-boxes constructed by chaos. Nonlinear Dynamics, 75:567–576, 2014.

[105] X. Wang, Q. Wang, and Y. Zhang. A fast image algorithm based on rows and

columns switch. Nonlinear Dynamics, 79:1141–1149, 2015.

[106] X. Wang, Y. Wang, S. Unar, M. Wang, and W. Shibing. A privacy encryption

algorithm based on an improved chaotic system. Optics and Lasers in Engineering,

122:335–346, 2019.

114



[107] X. Wang, W. Xue, and J. An. Image encryption algorithm based on tent-dynamics

coupled map lattices and diffusion of household. Chaos, Solitons & Fractals,

141:110309, 2020.

[108] X. Wang and H. Zhao. Fast image encryption algorithm based on par-

allel permutation-and-diffusion strategy. Multimedia Tools and Applications,

79(27):19005–19024, 2020.

[109] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano. Determining lyapunov

exponents from a time series. Physica D: nonlinear phenomena, 16(3):285–317,

1985.

[110] G.-C. Wu and D. Baleanu. Jacobian matrix algorithm for lyapunov exponents of

the discrete fractional maps. Communications in Nonlinear Science and Numerical

Simulation, 22(1-3):95–100, 2015.

[111] Y. Xian and X. Wang. Fractal sorting matrix and its application on chaotic image

encryption. Information Sciences, 547:1154–1169, 2021.

[112] S. Yamamoto, T. Hino, and T. Ushio. Dynamic delayed feedback controllers for

chaotic discrete-time systems. IEEE Transactions on Circuits and Systems I: Fun-

damental Theory and Applications, 48(6):785–789, 2001.

[113] H. Yousfi, A. Gasri, and A. Ouannas. Stabilization of chaotic h-difference systems

with fractional order. Nonlinear Dyn. Syst. Theory, 468, 2022.

[114] A. Zarour, A. Ouannas, C. Latrous, and A. Berkane. Linear chaos control of frac-

tional generalized henon map. Nonlinear Dynamics and Systems Theory, 21(2):216–

224, 2021.

[115] W. Zhang, S. Zhou, H. Li, and H. Zhu. Chaos in a fractional-order rössler system.
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