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Abstract

In this research, we examined the existence and asymptotic behavior of solutions for a Bresse-

Timoshenko system, considering distributed delay and second sound effects.

In a section of this study,we demonstrated the global well-posedness of the initial and bound-
ary value problem, given appropriate assumptions, utilizing Faedo-Galarkin approximations and
several energy estimates.

In the final section, exponential stability was demonstrated through the utilization of Lyapunov
functional and the multiplier technic.

Keywords : Bresse-Timoshenko-type systems, distributed delay term, second sound, well-posedness,

exponential stability, Faedo-Galerkin approximations, Lyapunov functional, energy method.




Résumé

Dans cette recherche, nous avons examiné I'existence et le comportement asymptotique des so-
lutions pour un systéeme de Bresse-Timoshenko, en tenant compte des retards distribués et des
effets du second son.

Dans une partie de cette étude, nous avons démontré que le probleme des valeurs initiales et
des valeurs limites était existe, unique et continue, compte tenu des hypothéses appropriées, en
utilisant les approximations de Faedo-Galarkin et plusieurs estimations d’énergie.

Dans la derniére section, la stabilité exponentielle a été démontrée par l'utilisation de la fonction
de Lyapunov et de la technique du multiplicateur.

Mots clés : Systemes de type Bresse-Timochenko, terme de retard distribué, second son, stabilité

exponentielle, approximations Faedo-Galerkin, fonctionnelle de Lyapunov, méthode d’énergie.
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Arbitrary norm of

The scalar product

Q Open set in R"”
o0 The boundary of domain
lim Limit
LP(2) Lebesgue space with norm |||,
L2(2) Space of integrable square functions
cm™(Q) Space of m times continuously differentiable functions on 2, m € N
C>(Q) mrgNCm(Q)
H The Hilbert.space
Wmr(Q) Sobolev space with norm. ||.[],, ,
WP () is the closure of C*°(€2) in W™P(Q).
H™ Wm2(Q)

J

Partial derivative.

La dérivée généralisée.

Laplace operator.

Gradient of .




General Introduction

In the middle of the seventeenth century, the art of prediction was revolutionized by a major
event in the history of science. This led to the birth of differential equations, and in general,
evolution equations. These equations seek to mathematically predict the evolution of phenomena
by examining their "trends" or "infinitesimal differences". Remarkably, but not surprisingly, these
equations emerged in the wake of the birth of calculus. The pioneers of this revolution were
mathematicians, physicists, and even philosophers: Newton, Leibniz, Huygens... With them, we
were able to master the trajectory of artillery shells, planets, and many other mechanical sys-
tems. Towards the conclusion of the 17th century, the famous Bernoulli brothers studied courses
on differential equations in different cities in Europe. The second scientific revolution occurred
a little less than a century after the invention of differential equations, with the emergence of
evolutionary equations covering an entire domain, a completely unknown function. With Euler,
D’Alembert, Lagrange, Laplace, and others, who dreamed of predicting the elusive movement
of fluids. And this approach will be successful throughout the nineteenth century, including the
Fourier equations that govern heat transfers, the Navier-Stokes equations that are now the ba-
sis of fluid simulations, and the Maxwell equations that govern electromagnetism. Transatlantic
contacts would not have been possible without a deep understanding of partial differential equa-
tions... In 1890, in a visionary essay, Henri Poincaré began to talk about the classification of the
great equations of mathematical physics, anticipating the extraordinary development of partial
theory. Differential equations in the twentieth century.

With the development of computers in the 1950s, many equations were found that could previ-
ously only be studied qualitatively or in certain cases. Precision has continued to increase. Digital
simulation became a major component of science and industry, with the development of numer-
ical analysis and the interface between mathematical theory and arithmetic. This was seen as a
third scientific revolution, which permeated the history of evolutionary equations.

Physically, Linear evolutionary equations are characterized by partial differential equations where
time ¢ serves as one of the independent variables. These equations originate not only from various
mathematical disciplines but also find applications in other scientific domains such as physics,
mechanics, and materials science.

Among these equations, we will focus on the Timoshenko system, Bresse system and Bresse-
Timoshenko system.

The Timoshenko systems

The Timoshenko system is commonly regarded as a representation of the lateral vibration of a

beam while disregarding any damping influences. Specifically, we refer to the model introduced




by Timoshenko in 1921 (referenced in [1]), which is formulated as a set of two interrelated

hyperbolic equations:

PPy = K((px - ¢)x, in (07 L) X R+>

(D)
Ipwtt = (ijz);c + K(pr - 77Z})7 in (O’L) X R-‘m

the symbol ¢ denotes the transverse displacement of the beam, while 1) represents the rotation
angle of the beam’s filament. The parameters p, I,, £/, I and K correspondingly stand for the
density (mass per unit length), the polar moment of inertia of a cross-section, Young’s modulus
of elasticity, the moment of inertia of a cross-section, and the shear modulus, respectively.

The system denoted by reference (1), along with boundary conditions as described in equation

exhibits conservative behavior, ensuring the preservation of total energy as time progresses to-
wards infinity. Various researchers have proposed distinct dissipative mechanisms to stabilize the
aforementioned system, leading to the establishment of multiple findings regarding both uniform
and asymptotic energy decay. Moving forward, we highlight several well-known results con-
cerning the stabilization of the Timoshenko beam. A plethora of publications has addressed the
stabilization of the Timoshenko system using diverse forms of damping. In a study referenced as
[2], Kim and Renardy investigated the Timoshenko system referenced by (1) with two boundary

controls specified in equation

K90<L7t>_K¢ac (Lat) = ay <L7t>zon R—H (2)
Elwaz (L7t> = —5% <L7t>> ODR+,

they succeeded in demonstrating an exponential decay phenomenon concerning the natural en-
ergy of the system refered to as (1). Additionally, they furnished numerical estimations for the
eigenvalues associated with the same system. Feng et al. in [3] achieved a similar outcome while
investigating the stabilization of vibrations within a Timoshenko system. Raposo et al., as docu-
mented in [4], delved into the study of Timoshenko (1) under homogeneous Dirichlet boundary
conditions and two linear frictional dampings. In other words, they scrutinized the following

system:




PPy — k1 (o, —¥), +¢, = 0in (0,L) x Ry, (3)
pl/}tt - k2¢xa} + kl (pr - w) + 1/}75 = 07 in (07 L) X ]R-I-a
(,D(O,t) :SO(Lat) :¢(07t) :w(L>t) :Oa OHR+’

they demonstrated the exponential stability of the Timoshenko system (3). This finding echoes
the result reported by Taylor [5], yet their contribution is distinct, as they emphasize the novelty
of their approach grounded in the semigroup theory pioneered by Liu and Zheng [6].

Soufyane and Wehbe in [7] examined the Timoshenko system (1) incorporating a single internal

distributed dissipation law. In other words, they investigated the following system:
P%t = (K (¢x - gO))m, in (O7L> X ]R-H (4)
Ipy = (Elpz), + K (¢, —¢) = b(z) ¢t, in (0,L) x Ry,
@(Ovt) = 90(L7t) = ¢(0,t) = ¢(Lvt) = 07 OHR+,

where () is a positive and continuous function, which satisfiies

b(z) > by >0, Vo € [ag,a1] C [0, L],

Their demonstration revealed that the Timoshenko system (4) achieves exponential stability solely

under the condition of equal wave propagation rapidities, expressed as (i.e % =
P

where this condition isn’t met, only asymptotic stability has been established. This advancement

) . In cases

builds upon prior research by Soufyane [8] and Shi and Feng [9], who established exponential
decay of the solution for (1) in conjunction with two locally distributed feedbacks.

Rivera and Racke [10] enhanced prior findings by demonstrating exponential decay of the
solution within the system (4). This decay occurs under the condition where the coefficiient of
the feedback allows for an indefinite sign. Additionally, in their work, Rivera and Racke [11]

addressed a Timoshenko-type system formulated as:

Pry — o1 (P, + ‘P)x = 0, (5)
p22/}tt - X (wa’)m + 02 <wa’ + @) + dwt = 07

Within a one-dimensional bounded domain, frictional damping contributes to dissipation, oper-

ating exclusively within the equation governing rotation angle. The authors not only presented




an alternative proof establishing necessary and sufficient conditions for exponential stability in
the linear case but also extended their analysis to demonstrate polynomial stability in a more gen-
eral context. Additionally, their study delved into the examination of global existence for small
smooth solutions and the investigation of exponential stability within the nonlinear framework.
Xu and Yung |1 2] demonstrated a system of Timoshenko beams incorporating pointwise feedback
controls. They searched for information concerning the eigenvalues and eigenfunctions of the
system, leveraging this data to analyze the systtem’s stability.

Ammar-Khodja and colleagues [13] investigated a weaker form of dissipation, introducing a mem-
ory term fot g(t—s)v,, (s)ds into the equation governing rotation angle in (11). Utilizing
multiplier techniques, they established that the system attains uniform stability if and only if con-
dition (9) is met and the kernel ¢ exhibits uniform decay. Specifically, they demonstrated that the

decay rate is exponential (polynomial) if ¢ decays exponentially (polynomially)
P1Pu — K(%; + SO):C - 07 in (O7L> X ]R-H (6)

p2¢tt - b¢mz +/0 g(t - S) 77ij9: (S) ds—‘_K(wz + (10) = 07 in (O7L) X R+,

with homogeneous boundary conditions. They demonstrated that the system (6) achieves uni-
form stability only under the condition where the wave speeds are equal, and ¢ exhibits uniform
decay. Moreover, they established exponential decay if ¢ decays exponentially, and polynomial
decay if g decays polynomiall, They also required some technical conditions on both ¢’ and ¢” to
acquire their findings, Ammar-Khodja and colleagues in [14] explored the decay rate of energy in
a nonuniform Timoshenko beam with two boundary controlls affecting the rotation-angle equa-
tion. Santos [15] also investigated memory-type feedback within a Timoshenko system, showcas-
ing its ability to uniformly stabilize the system with two memory-type feedbacks at a subset of
the boundary, while also determining the energy decay rate, precisely reflecting the decay rate
of relaxation functions. Particularly, under the condition of equal speed wave proppagation,
they derived exponential decay results within an unknown finite-dimensional space of initial
data and demonstrated the necessity of equal speed wave propagation for exponential stability.
However, in cases of unequal speeds, no specifiic decay rate has been addrresed. Recently, Wehbe
et al. in [16] enhanced the findings from [14], establishing nonuniform stability and optimal poly-
nomial energy decay rates for the Timoshenko system with a single dissipation law applied solely
at the boundary:.

Shi and Feng [9] conducted a study on a nonuniform Timoshenko beam, where they demonstrated
that the beam’s vibration decays exponentially with the application of certain locally distributed
controls. In their pursuit, the authors employed the frequency multiplier method to accomplish

their objective.




For Timoshenko systems of classical thermoelasticity, Munoz Rivera and Racke in [17] showed the

system of the form

P1Pw — O (wz + (p)x = 07 in (07 L) X R+7 (7)
p2¢tt —b (77Z}a:ac)x + k <wz + gp) + ’701‘ - 07 in (07 L) X R-‘ra
p39t - keﬂm + f}/wzt - 07 in (07 L) X R+7

where 6 is the difference temperature, ¢ is the displacement and 1 is the rotation angle of filament
of the beam and o, p;, p,, b, k and v are constituve constants. They demonstrated that, for the

bouandary conditions
o(x,t) =9 (x,t) =0 (x,t) =0, forz =0,Land ¢t > 0, (8)
the energy of the system described in (7) exhibits exponential decay if and onlly if
PL_ P2
P ©)]
and condition (9) is sufficient to exponentially stabilize system (7) under the given boundary

conditions
o(x,t) =1 (x,t) =0 (x,t) =0, forz =0,L and ¢t > 0,

and non-exponential stability result for the case of different wave speeds of propagation. Munoz

Rivera and Racke in [11] examined a Timoshenko system represented by the following form:

P1Pu — 01 (90:1: + ¢)x = 07 in (Oa L) X R-‘m (10)
p2¢tt - X (1/}51:):5 + 02 (@x + 1/)) + dwt - 07 in (07 L) X R-H

with homogeneous boundary conditions, they demonstrated that the Timoshenko system de-
scribed in (10) achieves exponential stability when the wave propagation speeds are equal, con-
versely, in cases where the wave propagation speeds differ, the system exhibits only polynomial
stability.

Within the aforementioned system, the heat flux is determined by Fourier’s law. Consequently,
a physical inconsistency arises, revealing an infinite heat propagation speed. This implies that
any thermal disturbance occurring at a singular point instantaneously affects the entire medium.
However, experimental observations have indicated that heat conduction in certain dielectric crys-
tals at low temperatures does not conform to this paradox. Instead, disturbances, predominantly
thermal in nature, proppagate at a finite speed. This intriguing phenomenon observed in dielec-

tric crystals is referred to as second sound.




Numerous theories have been proposed to address this physical paradox. One such theory pro-

poses the replacement of Fourier’s law
q+ kb, =0,
by what is known as Cattaneo’s law
Tq: +q+ k6, = 0.

Alabau-Boussouira [18] expanded upon the findings of [11] to encompass the scenario involving
nonlinear feedback « (¢t) instead of dit, where o is a globally Lipschitz function meeting

certain growth conditions at the origin. Specifically, she examined the following system

pr1Pu —k (0, +1), =0, in (0,L) x Ry, (11)
p277Z)tt - bl/}xx + k ((px + ¢) + O/é/}x = 07 in (07 L) X R_;,_,

with homogeneou boundary conditions. Indeed, if the wave propagation speeds are equal, she
derived a comprehensive semi—explicit formula for the decay rate of energy at infinity. In contrast,
she established polynomial decay in scenarios involving varying speeds of propagation for both
linear and nonlinear globally Lipschitz feedbacks.

Regarding the Timoshenko system with delay, the inquiry commenced with the work of Houari

and Laskri in their paper [19], where they examined the following problem

proy (x,t) — K (¢, +1), (z,t) =0,
p277Z)tt (‘T’ t) - O“vba:z (ZE, t) + K (pr + ¢) (ZL’, t) + :ulqu)t (ZL‘, t) + :u27vbt ([E,t - T) = O’ (12)

under the assumption u; > pu, regarding the weights of the two feedbacks, they demonstrated
the well-posedness of the system. Furthermore, for p; > u,, they demonstrated an exponential
decay result in the scenario of equal-speed wave propagation.

Following this, the research presented in [19] was expanded to encompass the scenario of time—
varying delay, expressed as i, (x,t — 7 (t)), by Kirane, Said-Houari, and Anware [20]. Addi-
tionally, in [21], the casee where the damping terrm .41, is substituted by a history-type term
J5° 9(s) Wy, (2t — s) ds (with either discrete delay ji,¢, (x, ¢ — 7) or distributed delay [;° f (s) ¢, (z,t — s)
was addressed. In this study, various general decay estimates were established.

The Bresse systems

The issue concerning the arc, also referred to as the Bresse system, is widely recognized. Elastic
structures of this kind find extensive applications in engineering, architecture, marine engineer-

ing, aeronautics, and various other fields. Specifically, the study of vibration in elastic structures




holds significant importance in both engineering and mathematics. Within the realm of Mathe-
matical Analysis, understanding the properties associated with energy behavior in the respective
dynamic models becomes intriguing. For instance, when considering feedback laws, one may in-
quire about the conditions pertaining to the dynamic model necessary to achieve the decrease in
energy from solutions in time ¢. Consequently, the concept of stabilization has garnered attention
in the examination of dynamic issues concerning elastic structures, as expressed through partial
differential equations.

In the original, the Bresse system comprise three wave equations, with the primary variables
delineating longitudinal, vertical, and shear angle displacements, as depicted (refer to [22]). The

original formulation of the Bresse system is expressed through the following equations:

p1oy = Qi +IN+ I,
Pty = M, —Q+ Fy,
prwe = Np—I1Q + Fs, (13)

These strengths encompass the deformation relationships (stress—strain) indicative of elastic be-

havior, and they are provided by

N = ko(ws —lp),

Q = kg, +lw+1v),

We use N, @@ and M to denote the axial force, the shear force and the bending moment. By
w,p and 1 we are denoting the longitudinal, vertical and shear angle displacements. Here
p, = pA=pl ky=FEA k=FkGAand ! = R'. To material properties, we use p for density, £ for
the modulus of elasticity, GG for the shear modulus, K for the shear factor, A for the cross—sectional
area,/ for the second moment of area of the cross—section and R for the radius of curvature and
we assume that all this quantities are positives. Also by F; we are denoting external forces.

Taking into account the coupling of equations (13) and (14), we get

prow — K (p, + 1w+ 1), — kol (we — lp) = F1,
ptht - bwmx + k (SOI + lw + ¢> = F27
prwie — ko (we — lp), + Kkl (g, +lw + ) = F3, (15)

The system referenced as (15) is undamped, maintaining a constant energy as time progresses.
Numerous authors have explored various damping mechanisms to stabilize this system (refer to

(23] — [29]). Our discussion on stabilizing the elastic Bresse system begins with insights from




Wehbe and Youssef [30], who investigated the system under two locally internal dissipation laws.
They established that exponential stability occurs only if the wave propagation speeds are identi-
cal, otherwise, polynomial stability prevails. Alabau-Boussouira et al. [23] scrutinized the same
system with a globally distributed dissipation law and demonstrated that while exponential sta-
bility isn’t guaranteed, polynomial decay exists, contingent upon specific coefficients’ relations.
Under Dirichlet-Dirichlet boundary conditions, they revealed energy decay rates of t%,and t% if
k = ko. These findings were complemented by Fatori and Montiero [31], who, under Dirichlet—
Neumann-Neumann boundary conditions, demonstrated polynomial energy decay rates of t2
and if £ = ko. Noun and Wehbe [32] extended the research of [23] and [31] by investigating the
elastic Bresse system subject to locally distributed feedback, under either Dirichlet-Neumann-
Neumann or Dirichlet-Dirichlet-Dirichlet boundary conditions. They demonstrated that by con-

sidering damping terms as infinite memories acting in the three equations.

In the study of the thermoelastic Bresse system addressed herein, two significant findings emerge.
Initially demonstrated by Liu and Rao [33], they examined the Bresse system incorporating two
distinct thermal dissipation laws. Their findings indicate an exponential energy decay when
the wave speed of vertical displacement coincides with that of longitudinal or shear angle dis-
placement. Conversely, polynomial decay rates dependent on boundary conditions are observed
otherwise. Under Dirichlet-Neumann-Neumann boundary conditions, energy decay occurs at t%,
while under fully Dirichlet boundary conditions, it diminishes at t7. Recent work by Fatori and
Rivera [34] refines these findings, focusing on a globally dissipative mechanism controlled by a
single temperature. They establish decay rates of ¢3 for both Dirichlet-Neumann-Neumann and
Dirichlet-Dirichlet-Dirichlet boundary conditions. The primary contribution of this study lies in
extending the results of [34], addressing scenarios where the therrmal dissipation law is locallly
distributed within the angle displacement equation. In such cases, the damping coefficient be-
comes a variable function in > (0, L), strictly positive within an open subinterval |a, b] C |0, L]

(where a = 0 or b = L are not excluded), thereby enhancing the polynomial energy decay rate.

A new type of problem arises with the combination of the Timoshenko system [35] and Bresse
system or the curved beam [36]. The coupled system from which we derive Bresse-Timoshenko
is derived from Elishakov [37] and combines principle of D’Alembert of dynamic equilibrium with

hypothesis of Timoshenko to produce the following coupled system

{ P10 — K (0, + 1), =0, (16)

The Cattaneo’s law is one of the most well-known thermoelasticity laws, but it is unable to account




for somee physical properties and cannot answer all questions, therefore, its applications are
limited. This leads us to consider coupling the fiields of strain, temperature, and mass diffusion
using the Gurtin—Pinkin model. Only a few authors have studied the stabilization of the Bresse—
Timoshenko model.

Manevich and Kolakowski [38] obtained the first contribution in that direction where they an-
alyzed the dynamics of a Timoshenko model in which, the damping mechanism is viscoelastic.

More accurately, they deemed the dissipative system presented by

— oy — by + B (p + V) — oty + 11y (0 + ¢)t = 0.

Second, based on Elishakoff’s papers and collaborators and their studies on truncated versions for
classical Timoshenko equations [39], Almeida Junior and Ramos [40] proved that the total energy

for viscous damping acting on angle rotation of the simplified Timoshenko system presented by

{ P12y — B (o, + w)x = 0,
— PPt — wax + 6 (Sox + ¢) + :ulqu)t - 07

There is a great difference in the model from a classical Timoshenko system, as it is consisted

(18)

of three derivatives: two with respect to time and one with respect to space. This happened
because the absence of the second spectrum, or nonphysical spectrum [39], [37], and its damage
consequences for wave propagation speeds [40]. The historical and mathematical observations
can be found in other works [39] and [37]. The similar results are accomplished for a dissipative

truncated version, where the viscous damping acts on vertical displacement

{ plsptt_ﬁ(spx—’_w)x = Oa

The study of the existence and stability of development problems has been the subject of many

(19)

recent works so we indicate some related work, [41] in this work, Guesmia and Soufyane studied

the well posedness and proved the stability for the following system

{ prou — ki (@ + ), + gy + gy (2,0 —11) =0, 20)
P2 — koae + k1 (0 +9) + Aoty + pothy (2,8 — 72) = 0.
In [42], the authors proved the well-posedness and establish uniform stability results for the

following Timoshenko system with a linear frictional damping and an internal distributed delay

acting on the transverse displacement

(21)

P1u — K (e + ), 7190 + f:f Yooy (z,t — s)ds = 0,
Py — by, + K (p, +9) = 0.




In [43],the authors proved the well-posedness and established exponential stability results re-
gardless of the speeds of wave propagation for the following thermoelastic system of Timoshenko
type with a linear frictional damping and an internal distributed delay acting on the displacement
equation
(i — K (0 + ), + ey + J72 s () @, (2t — s)ds = 0,
P2y — Wby + K (9, + ) + 00, = 0,
psbi + qo + 01y, = 0,

Tq: +Bqg+ 0, = 0.

(22)

\

In [44],they established the stability of the following Timoshenko-type-system

(P — K (0, +0), + 110y + [T 112 () 9, (.t — 5)ds = 0,
oty — Wy + K (0, + ) + [y g (t = 5) (a(x)¥,), ds
+s (1) b () f () + 66, = 0, (23)
Pl + kg + 01y, = 0,
Tq + Bq + kb, = 0.

\
In [45], Almeida Junior et al deemed two cases of dissipative systems for Bresse-Timoshenko—

type-systems with constant delay cases. For the first one, the authors established the exponential

decay for the system presented by

(24)

For the second one, the authors also demonstrated the exponential decay for the system presented
by

{ pP1Py — B (‘Px =+ w)z T Pyt Moy (:l:',t - 7') =0,

—PoPuz — Wy + B (0p + ) + pyoy + piothy (2,0 —7) =0,
The authors in [46] deemed two cases of dissipative systems for Bresse-Timoshenko-type systems

with time-varying delay cases. For the fiirst one, the authors showed the exponential decay for

the system presented by

{ P1Pu _ﬂ<()0x+w)z+,u190t+,u290t (z,t—7(t)) =0, (26)

—P2Pttr — bqu):r:ac + 6 (@x + 77Z)) = 07

for the second one, the authors also established the exponential decay result for the system pre-

sented by

{ P12y — B (@, + ¢)x =0 27)

— P2ty — by + B (0, + ) 4 py0y + pioy (2, — 7 (1)) =0




In [47], They used the Faedo-Galerkin approximations and some energy estimates to establish
the global well-posedness of the initial and boundary value problem, and they proved the ex-
ponential decay of dissipative systems for the following Bresse-Timoshenko-type system with

distributed delay, under appropriate assumptions

prwe — K (@, +v), + mwe+ [ 1 (p) @i (2,6 —p)dp = 0, 28)
— P9 Wit — WUz + K (@, +v) = 0.
See other works in [48] and [49].
We escort the paper of [47] but in this present work, we deem the following Bresse-Timoshenko
system of second sound with distrubted delay term
(

proy — K (ox ), + &1

+[& )0t =9 ds = 0. in 0,1) % (0,00),

—P2Prx — bqu)xx + K ((px + ¢) + 703{ = 07 in (07 ]-) X (Oa OO) )

p39t + Kgx + 'th = 07 in (07 1) X (07 OO) )

) 0y = 0,in (0,1 0,00),
Toqt + 0q + K in (0,1) x (0,00) 29)

p(x,0) = ¢g (%), 0,(x,0) = ¢ (x),9(x,0) = ¥y (x),
Yy(x,0) = ¥, (x), in (0,1),

0 (x,0) =0y (x), q(x,0) =qo (x),

pu(x, —t) = fo(x,t),1n (0,1) x (0, 00),

e(0,t) = p(1,t) = ¥(0,1) = ¢(1,t) = q(0,t) = q(1,1) = 0,
6(0,t) = 6(1,t) =0, Vt > 0,

\

where ¢ € (0,00) denotes the time variable and x € J =(0,1) is the space variable, the func-
tions ¢ and ¢ are respectively, the transverse displacement of the solid elastic material and t
he rotation angle, the function 6 is the temperature difference, ¢ = ¢(¢,x) € R is the heat flux,
and py, ps, p3, ¥, To, 0, K, &, and K are positive constants, &, : £ =[r1, 7] — R is a bounded
function satisfying

/|§2 (s)lds < &, (30)

c
where 71 and 75 two reall numbers satisfying 0 < 7; < 75, and we study exponential stability
results and the global well-posednes of a class of Bresse-Timoshenko system-type of second sound

with distributed delay term.




Chapter 1
Preliminary Notations

In this chapter, we recollect some notions of the theory of functional spaces, and some important

inequalities which we use in the next chapters

1.1 Some functional spaces

1.1.1 Banach Space

Definition 1.1 (Normed liinear space) A normed vector space X is a vector space equipped with

a norm ||.|| : X — R that satisfies the following properties:

Lo+ yll < llall + Iy,
2. ||azx|| = |a|.||z||, for any scalar «,
3. /|z|]] > 0, and ||z]| # 0 &= = = 0.

Recall that completeness of a normed vector space X means that all Cauchy sequences in X converge

in X.

Definition 1.2 (Banach spaces) A Banach space is a complete normed vector space.

1.1.2 Hilbert Space

Definition 1.3 (Inner-Product Space) A complex linear space X is called an Inner-Product space
if to each pair of elements x, y of X , there is an associated complex number (z,y) (called the Inner

Product of x and y) with the following properties:

lx4+y+2) = (r,2)+ (y,2),Vz, y, z € X,

Q(x,y) = (yax)a

18
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where the bar denotes complex conjugate.

3.(az,y) = a(z,y), Vo
4. (x,z) > 0,Vx € X, and (z,2) = 0 & = = 0.

Inner-product spaces are special cases of Norrmed linear spaces. This is expressed by the follow-
ing lemma.

Lemma 1.1 Let X be a linear space with Inner Product (.,.). Then the expression

|zl = v/ (2, 2), Vo € X,

defines a norm on X.

Definition 1.4 ( Hilbert space) A Hilbert space is an Inner Product space which ( as a Normed
linear space) is complete .

A metric on H given by
|z —yll = V(z—y,2—y),

Hence Inner Product spaces are Normed spaces, and Hilbert spaces are Banach spaces.

Definition 1.5 (Orthogonal complement) For any Subspace M of H, we define the orthogonal
complement by
Mt ={zeH | (x,y) =0,Yy € M},

which is the set of all vectors orthogonal to M.
It is clear that M is a closed subspace. If M is also closed, then H is a direct sum of M and M* :
H=M®&M"

Definition 1.6 Let (H,(.,.)y) be an inner product space, we say that a sequencee (;);c; is orthogo-
nali if
VZ,j € [> i 7é ]7 (xiaxj)H = 07
and a sequence(x;);c; is said to be orthonormal if
Li#]

Vi;jel: (Iiaxj>H—5ij—{ T
0; 1=

1.1. Some functional spaces
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Definition 1.7 A orthonormal sequence (x;);c; in H is said to be an orthonormal basis of H or a
Hilbert basis it satisfies {x;; i € I} = 0. In addition to strong convergence in H we also consider
weak convergence or converges in the sense of inner product, (u,), .y of elements of H we say that it

converges weakly to u if:
(up —u,v)y; — 0 quand n — oo forany v € H,

and we denote by:

Uy — U

Proposition 1.1 If (uy),, .y converges in the norm to u, then it converges weakly to u. The reverse is

not true in general. However if u,, — uand ||u,| — ||u|, then in this case u, L u.

1.1.3 The Sobolev spaces
The L? (Q2) spaces

Definition 1.8 Let 1 < p < oo, and let ) be open set in R™, n € R. Define the standard Lebesgue
space LP (2) by

LP () = {g : Q — R : fis measurable and | / lg(z)[Pdx < oo} :
Q

Notation 1.1 For p € Rand 1 < p < oo, denote by

loller = ( |g<as)|pdx);

if p = oo, we have

() = g: Q) — R: gis measurablee
| and there exists a constant C such that, g(z)| <CaeinQ |

Also, we denote byy
l19]|co = Inf {C, |g(z)] < C a.ein Q}.
Notation 1.2 Let 1 < p < oo, we denote by q the conjugate of pie *+41=1.

q

Remark 1.1 In particularly, when p =2 , L? () equipped with the inner product

(9, B} oy = / 9 (2)h(z) dz,

is a Hilbert space.

1.1. Some functional spaces
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The Sobolev spaces W"? (Q)

Definition 1.9 Let k € Nand p € [1,00]. The WP (Q) is the space of all g € LP (Q) defined as

WP (Q2) = { g € LP (), such that 9*g € LP () for all « € N such that }

o] = S0 a; <k, where 9% = 97 05”...0%

Theorem 1.1 W"? (Q) is a Banach space with their usual norm

||g||WmaP(Q) = Z ||aag||LP(Q)a 1<p<oo, forallge L’ ().

|| <m

Definition 1.10 When p = 2, we prefer to denote by W*? (Q) = H* (Q) and W)” (Q) = HE (Q) for
p € [0, 00| supplied with the norm

ey = | 2 (17l |

o<k

which do at H* (Q) a real Hilbert space with their usual scalar product

U, v = 0%ud“vdzx.
(1o = 3 |

la|<k

The next result provides a basic characterization of functions in Wy? ().
Theorem 1.2 Let u € W'? (Q) . Thenn u € W, () iif and only iif u = 0 on 9.

Remark 1.2 1. The last theorem explains the central role played by the space W;™” (Q) .
Differential equations (or partial differential equations) are often coupled with boundary conditions,
i.e., the value of u is prescribed on 0f).

2. We have the following characterization of H} (Q2)

Hé“(ﬂ):{uer(Q), u=u =...=u*V =0, on@Q}.
It is essential to notice the distinction between

Hg(Q):{ueHz(Q), u=1u =0, on@Q},

and
H2(Q)0H3(Q): {u€H2(Q), u =20, on@Q}.

1.1. Some functional spaces
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1.2 Important Inequalities

1.2.1 Gronwall’s Lemma

If fi(t)(: = 1,2, 3) are nonnegative functions on (0,7"), fi(7), f2(7) are integrable functions,

and f5(7) is nondecreasing on (0,7"), then if

Sofi+ fa < f3+cSsfa,

then
S fi+ fo < expler) fs (1),

where

g7—fi:/Tfi(t)dt7 (i:172)'
0

1.2.2 Cauchy-Schwarz integral inequality

For any u,v € L? (Q2) , we have the following inequality

/Q w(@)o(x)ds < ( /Q u2(x)dx>

which is called Cauchy -Schwarz integral inequality.

[NIE

(/Q 1;2(1;)0@;)é |

1.2.3 Cauchy’s inequality

For any a, b € R, we have
1 1
b < =|a* + =|b*.
ab < saf* + b

1.2.4 Cauchy’s inequality with ¢

The following inequality:
1
ab < %|a|2 5P, abeR

holds for any ¢ > 0.

1.2.5 Young’s inequality

The generalization of Cauchy inequality is called Young’s inequality which is represented by

1 1
ab< laP + 2= p|"%, a,beR, p>1.
p p

1.2. Important Inequalities
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1.2.6 Young’s inequality with ¢

For any ¢ > 0, we have the inequality
1 —1.b s
ab < —]ea]p—l—p—\—]%, a,beR, p>1.
p p €

which is the generalization of Cauchy inequality with «.

1.2.7 Holder inequality

For any u € L* (Q) and v € L7 (Q) we have the following inequality

/Q w(@)o(x)dz < < /Q |u(x)|pdm>; ( /Q |v<x)|”;dx)p;1.

where p > 1 and ]l) + % = 1. This inequality is the generalization of the Chauchy-Schwarz integral

inequality.

1.2.8 Poincare’ inequality

For all u € W} (Q), we have the inequality

/qua: < C’é/uidw.
Q Q

where Cy, is a constant depending only on (.

1.3 Green’s Formula

Suppose that Q is a smooth bounded domain in R", and u,v € C? (Q) .The following are called

Green’s formulas

Ou g~ / (vAu+ VoVu) de, (1.1)
Q
ou ov
/ (U% - u% )dS = /Q(UAU — ulAv)dzx, (1.2)

where dS denotes the surface measure on 0€2. in fact, Green’s formulas (1.1) and (1.2) hold more
generally for u,v € C? (Q) N C* (), provided the integrals over €2 and d) converge.

Special Cases:

1. If we take v = 1 in (1.1), we obtain

—dS / Au dux,
90 8’1)

1.3. Green's Formula
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2. If we take u = v in (1.1) ,we obtain

u%ds = / (ulu + |Vul?) da.
o Ov Q

1.4 Parametric integral

Let
f:R? — R?,

such that f and % be continuous on R? and let o and /3 two derivable functions from R” in R”,

then "parametric integral" I’ define on R? by
B(x)
F(r) = /( | [z, y)dy,
is derivable

Oa ()
Ox

o /ﬁ(x) 2 dp (z)

%F(l’) = - 8l’f(x7y) dy + O f(l‘,ﬁ(l’)) - f(:v,a(x))

Remark 1.3 For a function f that depends only on the second variable, the fundamental theorem of

analysis can be applied as follows

a(r) =a,f(x) =p.

1.5 The Faedo-Galerkin method

In this section we give the Faedo-Galerkin scheme, and for this we give the following definition

1.5.1 The Faedo-Galerkin approximation
Definition 1.11 Let V be a separable Hilbert space and {V, }, .. a family of finite-dimensional
vector spaces satisfying the axioms:

V, CV,dimV, < oo, (1.3)

V,, — V quand n — co. (1.9

In the following sense: there exists U V,, a dense subspacee in V, such that for every u € V,, we can

i=1
find a sequence {uy,} . satisfying: for all n, v, € V,, and u,, — win V as n — oc. The space V,, is

called a Galerkin approximation of orderr n.

1.4. Parametric integral
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1. Definition 1.12 (The scheme of the Faedo-Galerkiin method)

The scheme of the Faedo-Galerkiin method Let P be the exact problem for which we seek to
demonstrate the existence of the solution in a function space constructed on a separable Hilbert
space V, and let u be the solution of the problem P. After choosing a Galerkin approximation
V,, of V, it is appropriate to define an approximate problem P, in the finite—-dimensional space

V,, having a unique solution u,,. The course of the study is then as follows:

(a) We defiine the solution u,, of problem P,.
(b) We establish estimates on u,, ("a priori estimation") to show that u,, is uniformly bounded.

(c) By using the results that u,, is uniformly bounnded, it is possible to extract from {uy}, -
a subsequencee {u,,}, .. that has a limit in the weak topologyy of the spaces involved in
the estimates of step b. Let u be the obtained limit.

Our objective is to construct an approximation procedure that provides us with a demon-
stration of the existence of the solution at the limit. This procedure amounts to approxi-

mating u,(x,t) as a linear combination of basis functions Z;(t), such that
wn(at) = S Cilt) Zi(x) (w,1) € @ x [0, (1.5)
=1

where the C;(t) are then solutions to a system of n linear differential equations.

1.6 Stabilization method (Lyapunov functional)

To establish the desired stability results of the systems, we use the multiplier method. The multi-
plier method is mainly based on the construction of an appropriate Lyapunov function L which

is equivalent to the solution’s energy. By equivalence L ~ E, we mean
aF (t) < L(t) <~yE(t), Vt >0, (a,y>0). (1.6)
To prove the exponential stability, we show that L satisfies
L' (t)<BL(t), Yt >0, 8> 0. (1.7)

A simple integration of (1.7) over (0,¢) together with (1.6) gives the desired exponential stability

result.

1.6. Stabilization method (Lyapunov functional)
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1.7 Stabilization types

There are several types of stabilization, of which
e Strong stabilization: It consists of analyzing simply the decay of energy solutions to 0, i.e

E(t) —0ast— co.

e Exponential (uniform) stabilization: we’re interested in the fastest energy decay, i.e.

when it tends exponentially towards 0, i.e

E(t) < aexp(—yt),Vt >0, (a,y > 0).

e Polynomial stabilization:

E() <at™, vt>0,(a,v>0).

1.8 Time delays

Time delays are a common occurrence in various applications where phenomena are governed
by partial differential equations. These delays introduce a modulation where the evolution of a
system is influenced not just by its current state but also by its past states. Delay differential
equations (DDEs) represent a class of differential equations where the current state of unknown
functions is determined by their values at previous time instance. Mathematically, a simple delay

differential equation for y (¢) € R" takes the form

o) =g(tm),

where v, = {y(7), 7 <t} represents the trajectory of the solution in the past. The functional
operator g takes a time input and a continuous function y, and genratees a real number £y (t) as

its output. Examples of such equation include:
e Discrete / constant delay: 4y (t) =g (t,y(t —7)).
e Time-varying delay: Ly (t) = g (t,y (t — 7 (t))).

e Distributed delay: 4y (t) =g (¢, [ pu(s)y (t — s)ds),
where 7 is the delay in time.

1.7. Stabilization types



Chapter 2
Well-posedness of problem

In this chapter, we will utilize the classical Faedo-Galerkin method to establish the global existence
and we will establish the uniqueness and the continuous dependence on the initial data of the

generalized solution to problem (29) .

2.1 Introduction

Introducing the following new variable
w (x,p,s,t) = ¢, (x,t —ps) in (0,1) x (0,1) x (71,72) x (0,00), 2.1)

then, we obtain
sw; (x,p,s,t) + @, (x,p,s,t) =0. (2.2)

27
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Consequently, the problem (29) is equivalent to

;

p1oy — K (pr + 1/1)x + &1,

+/§2(s)w(x,1,s)ds:O, in (0,1) x (0,00).
L

—PaPix — Wy + K (5 + ) +70x = 0, in (0,1) x (0,00),

P30 + kgx + v = 0, in (0,1) x (0, 00),

Toq: + 0q + kfx =0, in (0,1) x (0,00),

sw, (x,p,s,t) + @, (x,p,s,t) =0, in (0,1) x (0,1) x (71,72) x (0,00),

2.3
< sty (X, p,s,t) + wwp (x,p,8,t) =0, in (0,1) x (0,1) X (71,72) x (0,00), (23
P(x,0) = @y (%), 94(x,0) = ¢y (x), V(x,0) = thy (x),
'th(xv O) - ¢1 (X) , In (07 1) )
0 (x,0) =6y (x), q(x,0) =¢qo(x), in (0,1),
(P(O?t) = Qp(Lt) = ¢(07t> = w(lvt) = Q(()?t) = Q<17t) =0,
0(0,t) =6(1,t) =0, Vt >0,
| @ (x,p,5,0) = fo(x,—ps), in (0,1) x (0,1) x (71,72).
Let V (Q := (0,1) x (0,00)) and W (Q) be the set spaces defined respectively by
(0,90,0,q, ) pe L2(R,H>NH}), ¢, € L? (R, HY), ¢, € L*(R,, L?),
V(Q) L w €L’ (R-&-?Hé N H2)7 7,/),5 €L’ (R+7Hl) ) 97 VRS L? (R-HH(%)?
o 0, g€ L2 (R, L?), w € L2 (Ry, H' ((0,1)* x (11,72))) ’
wi € L2 (RJr?Hl ((07 1)2 X (7'1,7'2))) )
and
W(Q) = {((p,lp,ﬁ,q, w) € V(Q): limw, (T) =1lims; (T) =limv, (T) = limr (T) =limp, (T) = 0} .
T—o0 T—o00 T—o0 T—o0 T—o00
Consider the system
P1 (Qotta u) + K ((90)( + ¢> ’uw) + 51 (wtv u)
+ & (s)wo(x,1,s) ds,u) = 0,
f
P2 (Qotta UX) + b (¢x7 UI) + K ((90x + ¢) ,U)
+’7 (em U) = 07
P3 (Gtvw) + (qx>w) +7 (wtwi) = 07
To (Qt7 Z) + d (Q7 Z) + K (Qxa Z) == 07
S(wt (X,p,S,t) 7925) + (wp (X,p,S,t) 7¢) — 07
S (th (Xa P;S, t) ) ¢) + (wpt (X: p,S, t) :¢) = 07 (24)

2.1. Introduction
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where (., .) ;2 () stands for the inner product in L*(Q), (¢,1,0,q, =) is supposed to be a solution
of the problem (2.3) and (u,v,w, z,¢) € W (Q). Evaluation of the inner product in (2.4) and use
of the Dirichlet conditions (2.3), leads to

—p1 (4 Ut)L2(Q) — p1 (o (x,0),u (x, 0))L2(0,1) + K ((px + ) 7uX)L2(Q)
—p (¥, Ut)Lz Q) — & (¥ (x,0),u(x, O)>L2(o,1)

/{2 (x,1,8)ds,u = 0,
L2(Q)
((ptavxt)LQ @ — P2 (¢, (x,0) , vx (%, 0))L2 (0,1) + b(¢x7UX)L2(Q)

K ((px ) ,0) 120y + 7 (0x:0) 12y = 0,

—ps (0, wt)L2 —p3 (0 (x,0),w (x, O))L?(o,l)
(G, w) 12y = 7 (Vs W) 12
=7 (¥ (2,0),w (x, 0))1:2(0,1) =0,
—70 (¢ 2)r2(Q) = To (4, 2) 20,1y + 0 (4, 2) 12(q)
+5 (0x, 2) r2g) = 0,
—s (@ (x,p; s, 1) 7¢t>L2(Q) —s(w(x,p,8,0),9(z,p,s, 0))1;2(071)
(0 (5,0,5.8) . 0) ) = O
—s (@ (X, ,8,1) , ) r2(q) — S (@t (%,0,8,0), 0 (x,0,8,0)) 294
+ (w5t (X, p, 8, ) , ) = 0. (2.5)

Definition 2.1 Functions (p,,0,q,w) € V (Q) are called a generalized solution of system (2.3) if
it satisfies (2.5) for each (u,v,w, z,$) € W(Q).

Theﬁz'l If(p07 % € H&(Oal) N H2(071)79017 % € Hl(oal)a 9o, 90 € H[%(Oal)m fO €
H'((0,1)* x (71,72)) , and fi € H* ((0,1)* x (1,72)), then there is at least one generalized so-
lution in V (Q) to system.(2.3) .

By using Faedo-Galerkin approximations, we prove the global existence of the generalized solu-

tion of system (2.3) . for more detail, we refer to reader to see [46], [50], and [51].

2.1. Introduction
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2.2 Approximate problem

let {u;}, {v;}, {w,}, {#;} be the Galerkin basis, For m > 1, let

L, = span{ui,ug,...;u,},

Ly = span{vy,vg, ..., v, },

Wy = span {wy, wa, ..., w,},

K,, = span{zi, 22, ...,20}, (2.6)

we define for 1 < j <n the sequence ¢, (, p, s) by
¢; (2,0,8) = u; (x), 2.7)

then, we can extend ¢, (z,0, s) by ¢, (z, p, s) over L2 ((0,1)* x (71, 72)) and denote Z™ = span {¢;, ¢y, ..., ¢
Given initial data Yos 1/}0 € H(} (07 1) N H2 (07 1)7 3017¢1 € Hl (07 1) y 40, 90 S H(} (Oa 1) ) an fl €
H* ((0, 1)* x (14, 72)) , define the approximations

on = jil@-m@)uj ),
Y = zn;kjm (t)0; (),
b = Zi;zjm@)wj ).
= me (1) (),
S i;hjm (1), (x. p,5). 2.8)

where the constants £, (t), Kjm (t) , Lim (t) , fim (t), and h;y, (t) are defined by the conditions

Eim () = (@ms i (X)) 1201) 5
kjm (£) = (Y005 (%)) 1201) »
Lim (8) = (0, w; (X)) 20,1y
fim @) = (am 25 (X)) 12(0.1) -
hjm (t) = (@m, &5 (%,0,8)) 1201 » (2.9)

2.2. Approximate problem
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and can be determined from the relations

P1 (@mtt’ ul) + K ((mex + ¢m) ’U’lx) + El (¢mt7 ul)
+ 52 (S) Wm <X7 1a S) d57 Uy = Oa
/

P2 (Lot Vix) + b (Vs Vixe) + I (O + U0r) s 01)

+ (O, vi) = 0,

P3 (Omts wi) + (Gmx, wi) + 7 (Vs wi) = 0,

70 (qmt, 21) + 6 (Gm, 21) + K (Omx, 21) = 0,

s (@t (X, p,8), ¢ (%, p,8)) + (W@, (X, p,8), 0, (%, p,8)) =0,

§ (Wmit (X, 0,8), & (X, p,8)) + (@mpt (X, p,8), 1 (X, p,8)) =0, (2.10)

2.2. Approximate problem
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substitution of (2.8) into (2.10) gives for i =1,..,n

(%) / £ (8) hym (1) &, (%, 9, 9) ds} dx — 0,

L

/Z P2§jm w; (X) vig (X) + 0kjm, (1) vjx (X) Ui (X)
g =t
+KE,, (1) wix (%) v (x) + Kk (t) v; (%) v7 (%)

Flm (1) wix (x) v (x)} dx = 0,

J 3 (ot 610y 500150+ T () 2 0 0

g =t
K () 03 (%) w1 (%) | dx = 0,

[ 3 (ot 02502060+ 853 012 ()2 ()

g =1
Fhlm (1) wix (%) 21 (x)} dx = 0,

[ {06, 2501509

g =t
+hjmp () 0 (%, p, ) &y (%, p, S)}dx =0

[t 06, 50906 (x.p5)

g =1
+himp (1) &; (%, p,s) &) (x, p,8) } dx = 0. (2.11)

2.2. Approximate problem
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From (2.11), it follows that

n

Z {Plf;',m (t) (u; (%), w (X))L2(o,1) + K& (1) (wx (%) wix (X))LQ(O,l)

+K/€jm (t) (Uj (X) y Uiy (X))LQ(O,l) + £1k;m (t) (Uj (X) » Wi (X))L2(0,1)

+/£2 (S) hjm (t) (¢] (Xa P; S) » W (X))LQ(U,I) ds} = 07
L

Z {szgm (t) (uj (%), vz (X)>L2(0,1) + Ok jm (1) (Vi (%) , Vi (X))L2(0,1)

J=1

B () ()00 (%)) 20y + K (8) (07 (30) 00 () o
i (8) (e () 01 () 0y | = O,

n

> {pgl}m (t) (w; (%) ;w1 (%)) 20,1y + K Fjm () (Zjx (%), w01 (%)) 1201

J=1

K (1) (00 (%), 01 () 2oy | = O,

n

> {Tof}m () (25 (%) 21 (%)) 20,1 + 0.fim (8) (25 (%), 20 (%)) 12 0.1

=1

il (8) (w5 (%), 20 () o)} = O,

n

Z {sh;-m (t) (¢; (%, p,8), ¢ (%, p, S))L2(O,1)

J=1

g (6) (6, (5. .5) 61 (%,9.9) 100, } = 0.

n

Z {sh;-lm (1) (gbj (x,p,8), 9, (%, p, S))L2(0,1)

Jj=1

R () (65 (%, 9,8) 61 (%, 9,9)) 120y} = 0 (2.12)

2.2. Approximate problem
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Let
1, j=
(uj (x),u (X))L2(0,1) = 0j = { 0. j£1 )
(ujx (%), uix (X))L2 0,1 = Vi,
(v (%) s wix (X)) 20,0y = Tt
(uj (%), vix (X)) 201y = @i
(vjx (%) vix (X))L2(0 1y = = Y,
(ujx (x),v (X))Lz = Vi,
(U] (%), u (x ))L2(01 = Sjl,
1, 7=
(00 () oy = B = { o

1, 5=1
(w; (%), wy (X))LZ(OJ) 01 { 0. j£1 )
(ij (%), w (X))L2(o,1) = 0j»
(vjx (%), wy (X))L2(071) = Qji,

1,7=1
(2 (%), 20 (X)) 201y = Ot = { 041"
(wix (%), 21 (X))L2(0,1) = le’
1, j=1

(¢j (Xv P S)7¢l (Xa p7s>)L2(0’1) = 5jl = { 07 j;ﬁl .

2.2. Approximate problem
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Then (2.12) can be written as

n

D (i€ (0854 K (750, Ky (1) 05+ &35 (1)

7j=1
+/ 52 (5) hjm (t) leds} =0,

> {pzﬁ;-lm () aji + bkjm (8) o + K&y (O) v + Kk (£) 051

j=1
+7ljm (t) le} =0,

>

Palin (6) G+ 15 im (£) 030 + Vi (D) 2} = 0,
TOf]m 07

S+ 6 ym (1) 83+ il (1) B}

7j=1
n

SH (6) 351+ iy (1) 030} = 0,

1

J

{
>{
{
o

sh (£) 850+ o (¢ )5ﬂ} _ 0. (2.13)

M=1

1

J
We put /52 (s)ds = ¢, we obtain

n

D {21 (O 8+ K& ()75 + K (8) 01+ €k (8) i
j=1
+Ch]’m (t) wﬂ} = 0,

Z {p2§;m (t) aji + bkjm (t) O + K&y, (8) vig + Kkijm () 051

j=1

9l (8) x50} = 0,

n

§j{%zma>z+wqﬁm>gﬂ+v@m<w%§ =0,
{TOf]m 0jt + 0 fjm () i + Kljm (1) 5;1} =0,
J=1
{Sh 9t + hjmp (1) 5ﬂ} =0,
7j=1
S~ {5t (0054 (D03} = 0. (2.14)

2.2. Approximate problem
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with
Eim (0) = (@ (%,0), 45 (X)) 1201y 5
Eim (0) = (P (56,0) 15 (%)) 1201
kim (0) = (¥ (%,0) 05 (%)) 2.1y -
Lim (0) = (0 (x,0),w; (X))L2(0,1) )
fim (0) = (gm (x,0), 2 <X>)L2(0,1) )
hjm (0) = (wm (X7 P O) 7¢j <X’ p; S))L2(0,1) )
R (0) = (@ (%.,0),; (%, £.5)) 1a(q., (2.15)

We obtain a system of differential equations of two orders with respect to the variable ¢ with
constant coefficients and the initial conditions (2.15), consequently, we get a Cauchy problem of
linear differential equations with smooth coefficients that is uniquely solvable. Thus for every m
there exists a function (¢,,, ¥,,, Om, ¢m, @wn) satisfying (2.10) .

2.3 A priori estimate I

Firstly, multiplying the first equation of (2.10) by &, and integrating over .7 = (0,1) , we get

py d

E% <)Oszdx + K/ (()Omx + 77Z}m) ¢mtxdx
J J

+§1/¢3ﬂtdx+ /Spmt/£2 (S) Wm (X7 17S> deX = 0 (216)
J J L

Then, multiplyiing the seccond equatiion of (2.10) by &, and integratiing overr 7 = (0,1), we
get

bd
p2/(pmttwmxtdx + iafwizxdx + K/ (@mx + wm) wmtdx
J J J

+7/0mx¢mtdx = 0, (2.17)
J

2.3. A priori estimate |
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now, substituting: v,,.; = 2@, — Pouxxt + %gomtt + = / &, (s) o (x,1,s)ds, obtained from the
first equation of (2.10) ,we get

papy d 2 Py d /

B = dx + 2= = d

2K dt/‘wmtt + 2 dt th + 2dt wmx X
J J

1
3
+K // (Cpmx + ¢m) 77Z)mtdx + p;{l QO%ntth
0

J

—i—fy/@mxwmtdx + p—[?/@mtt/§2 (s) wwm (x,1,8)dsdx = 0. (2.18)
J L

J
Next, multiplying the third equation of (2.10) by /;,,, and integrating over 7 = (0, 1) , we get

p23 jt 02 dx + / GcOdX — / b, Bedx = 0. (2.19)

J J
Finally, multiplying the fourth equation of (2.10) by f;,, and integrating over 7 = (0, 1) , we get

Tod

5 ¢ dx + 6/qmdx — ﬁ/@mqudx = 0. (2.20)

J J

By combining (2.16), (2.18),(2.19) and (2.20), we get

1d .
5% [plgomt + K (Spmx + 77D ) }(2(;0727“5,5 + pgtpmtx + b¢3nx
J
+039%1 + Toqm dx + £1/g0indx + 5/q72ndx + ’O-Qfgl /gpmttdx
J
T2

+/90mt/ 52 (8) TWm (X7 1, S) dsdx

7 n

?? (pmtt/£2 Wt (X, 1, S) dsdx = 0. (221)

2.3. A priori estimate |
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Now, multiplyiing the fifth equatiion of (2.10) by &, (s) h;,,, and integratiing overr Z x J x K x £ = (0,t)x
(0,1) x (0,1) x (71, 72) , we get

1 / / / sE, (s) 2 (x, p, s, t) dsdpdx

T XKXL

——// / s€, (s (x, p,s,0) dsdpdx

T XKL
= ——/// &, (s)w? (x,1,s,7)dsdxdr
IXTIXL
1

+§ (/52 (s) ds) // ©? _dxdT. (2.22)

L IxJ

Then, multiplying the last equation of (2.10) by &, (s) h;,, and integrating over Z x J x K x £ = (0,1)x

(0,1) x (0,1) x (71, 72), we get
// / s€, (s (x, p,s,t)dsdpdx

T XKL
// / s&, (s (x, p,s,0)dsdpdx
T XKL
= // / €, (s (x,1,s,7)dsdxdr
IxXTIXL
/52 (s)ds // @2 __dxdr. (2.23)
L IxXTJ

2.3. A priori estimate |
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Next, integrating (2.21) over Z = (0, t) and using (2.22) and (2.23), we obtain

By (t) + a—% Jeoas)| [ [ axar
L

IxJ
+2 16 - [ & o2, dxdr
K 1 2 mTT
IxJ
+5// qmdxd7+// %/«Ez @ (7,1, 5) dsdxdT
IxJ IxJ
// (pm‘r‘r/€2 Wmr X,].,S) dsdxdr
IxJ
/// & (s)wy, (x,1,s,7)dsdxdT —
IXTXL
// / &, (s (x,1,s,7)dsdxdr
IxXTIXL
= En(0), (2.24)

where

1 PP
Ep () = 5/ |12+ K (o 0)” + P22,
J
+p2902nxt + bwgnx + p3072n + Toq12n] dx

s ] sle @I o dsdpax

TIXKXL

sz [[ ] sl o)l (x.p.5) dsdpax.

T XKL

and using Young’s inequality, we have

// @mt/ég (s) @, (x,1,s) dsdxdr

IxXT L
1 2
5 &, (s)ds o, -dxdT
IxJ
——// / & (s (x,1,s,7)dsdxdT, (2.25)
IXTXL

2.3. A priori estimate |
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and

2 / / o / €, (8) @ (x,1,5) dsdxdr

IxXT L

—2[)—[2(// / & (s)w?_(x,1,s,7)dsdxdT. (2.26)

L IxJ
+% (gl - /52 (S) dS) // @iTTdXdT
L IxJ
+5// ¢2,dxdT
IxJ
< E,(0),
implies
E,, (t) + 770// ¢ dxdT
IxJ
+(5// ¢2,dxdT + %770// @2 dxdT
IxJ IxJ
< En(0), (2.27)

where 70 =& — /62 (s)ds > 0.
c

So, we have
E.(t) < E,(0), (2.28)

and make use of the following inequality

P / pmdx < py / / 2, (x,7)dxdr

J IxJ
+p1// QO?m_ (X7 T) dXdT + p1/§072n (Xa 0) dX7 (229)
IxJ J

2.3. A priori estimate |
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combining inequalities (2.28) and (2.29), we get

E., )+ pl/cpfndx < E,(0)+ ,01// 9072” (x, 7)dxdT
J IxJ

+0, / / 02, (x,7)dxdT + p, / @2, (z,0) dx,

IxJ J
we put
Put) = En(0) + 01 [ hdx. (2.30)
J
we get
P (t) < P (0) + /Pm (T)dr. (2.31)
A
Applying the Gronwall inequality to (2.31), we obtain
P (t) < P (0) exp (1),
thus, there exist a positive constant C' independent on m such that
P (t) <C, t 20, (2.32)
it follows from (30) and (2.32) that
pl/widx + pl/wfmdx + K/ (Prnx + V)" dx
J J J
+p1p2 2 d 4 2 d b 2 d
K P dX P2 | PmxtdX + 7\/)mx X
J J J
1
+p3/9$ndx + To/ ¢2,dx
J 0
[ ] sle®lwt o) dsdpax
TIXKXL
2 [ sle @12, xp.5) dsdpa
TIXKXL
< C (2.33)
2.3. A priori estimate |
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2.4 A priori estimate II

Firstly, differentiating the first equation of (2.10) and multiplying by &, , and then integrating the
result over J = (0, 1) ,we obtain

py d
é%/gpfmtdx + K/ (Pt T Vint) PrnprxdX
J

J
+§1/%03mdx + /‘Pmtt/gz (s) e (x,1,8)dsdx = . (2.34)
J J L

Next, differentiating the second equation of (2.10) and multiplying by k,,,and integrating over
J =(0,1), we obtaiin

bd
PQ/Wmtttd’mxtth + §a/w3nxtdx + K/ (Lot + Ut) Ve dX
J J J

+7/0mxt1/}mttdx = 07
J

now, substituting: v,,.;s = 2@t — Consextt + %gomm + % / &, (s) @ (x,1,s)ds, obtained from

L
the first equation of (2.10) ,we obtain

Papy d 2 py d 2 b d/ 2

= d = d - d

oK dt/SOmttt X + 9 dt/@mxtt X+2dt (LB <
J J J

po€
+K/ (Pt T Vnt) Vg dx + %/@?ntttdx
J J

+7/0mxt¢mttdx + %/gpmttt/@ (s) @mu (x,1,8)dsdx = 0. (2.35)
J T C

Then, differentiating the third equation of (2.10) and multiplying by [
J =(0,1), we obtain

and integrating over

/
m>

&i/H;tdx + K’/qmtxemtdx - ’Y/wmttemtxdx = 0. (2.36)
J J J
Finally, differentiating the fourth equation of (2.10) and multiplying by f, , and integrating over
J =(0,1), we obtain
%%/qudx + 5/q,,2mdx - n/@mtqmmtdaz = 0. (2.37)
J J J

2.4. A priori estimate
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By combining (2.34), (2.35),(2.36) and (2.37) , we get

1d LY
5% [pl Omte + K (Spmxt + ¢mt> }(2 9072nttt + P290mttx + bwizxt
J
+p3972nt + Toqglt] dx + &/@iwdx + 5/Q72ntdx + p;fl /Wmtttdx
J J J
+/(pmtt/£2 (S) TWmt (X7 17 S) deX
+§§ Spmttt/£2 S) Wt (X,1,8)dsdx = 0. (2.38)
J

Now, differentiating the fifth equation of (2.10) and multiplying by &, (s) h,,,, and integrating over
IxJxKxL=(0,t) x(0,1) x (0,1) x (11, 72) , we get

/// s (s) @, (x, p.s,t) dsdpdx

TIXKXL

——// / s&, (s (x, p,s,0)dsdpdx

T XKXL
= ——/// & (s . (x,1,s,7)dsdxdT
IXTXL
1

+5 /52 (s)ds // @2 _dxdT, (2.39)

L IxJ

then, differentiating the last equation of (2.10) and multiplying by &, (s) h, ,, and integrating over
IxJxKxL=(0,t)x(0,1) x (0,1) x (11, 72) , we get

p_;(/// s&, (s) @, (X, p, s, t) dsdpdx

TIXKXL
// / 552 mtt (X7 pP;Ss, 0) dede
TIXIKXL
_ P2 2
- 2K // / 52 (S) @ nrr (Xv 17 S, T) dsdxdT
IxXIXL
1 P2 /5 / 02 ___dxdr. (2.40)
2K 2 mTTT

IxJ

2.4. A priori estimate
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next, integrating (2.38) over Z = (0, ¢) and using (2.39) and (2.40), we obtain

M)+ (& -5 [6&@ds| [ [ o dxar
L

IxJ

p
+K2 El - /52 // gmeTTdXdT

IxJ
—l—(5// ¢, dxdr
IxJ
// @m‘rv‘/&Q DOmr X, 1,5) dsdxdr
IxJ
// mTTT/£2 S) Wmrr X7 175) dsdxdTr
IxJ
// / & (s . (x,1,s,7)dsdxdT —
IXTXL
// / 52 W onrr X7 1,s, T) dsdxdTr
IxJTXL
where
1 L PP
Mm <t) - 2/ |:p190mtt + K (Somxt + 1/}mt) %wfnttt
J

+P29072nxtt + bwgnxt + 103972nt + Toqﬁu] dx

][ sl @it s dsdpax

T XKXL

p
+ﬁ// / s 1€, (s)] @y (X, p,s) dsdpdx,

TIXKXL

2.4. A priori estimate
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and using Young’s inequality, we have

// (pm‘r‘r/£2 Wt X7 1>S) dsdxdr

IxJ
1 2
— 5 &, (s)ds or -dxdT
IxJ
——// / & (s (x,1,s,7)dsdxdr, (2.42)
IXTXL
and
// SDmTTT/gz wm‘r‘r X, 1 S) dsdxdTr
IxJ
Z /52 dS// meTTdXdT
IxTJ
// / & (s)w . (x,1,s,7)dsdxdr. (2.43)
IXTXL

Which, together with (2.41), yields

T (el - &6 ds) [ [ Grritxar
L

IxJ

6 fewa) [ i

IxJ

< M, (0), (2.44)

implies

t) + 770// SOEnTTdXdT

IxJ
w6 [ [ dedxdr 2 [ [ G pdxr
IxJ IxJ
< My (0), (2.45)

2.4. A priori estimate
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where 70 =& — /52 (s)ds > 0.
Then ‘
Mo (t) <M, (0), (2.46)

thus, there exist a positive constant C' independent on m such that
M, (t) <C, >0, (2.47)

it follows from (30) and (2.47) that

ﬂl/@?nttdx + K/ (N wmt)2 dx
J J

P1P
+ % 903ntttdx
J

+P2/<P72nxttdx + b/wgnxtdx
J J

+P3/972ntdx + TO/QiLth

J J
[ ] sl )k xp.s) dsdpax

TIXKXL

2 [[ ] sley @)@ (x.p.5) dsdpx

TIXKXL
< C (2.48)

2.5 A priori estimate III
Firstly, let u; = —¢,,,xx in the first equation of (2.10), we get

d
&_ cpgntxdx + K/ ((pmxx + wmx) metxxdX
2 dt
J

J

+§1/gofntxdx + /gomtx/£2 (S) mx (x,1,8)dsdx = 0. (2.49)
J J L

2.5. A priori estimate Il
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Then, let v; = —1,,,5, in the second equation of (2.10) , we get

d —— d
pZ/SOmxtt,lvaxxt X+ th/wmxx X

J

1K / (o & ) el

+’7/‘9mxx7vbmxtdx = 07

J

(2.50)

now, substituting: ..., = 2yt — Conscext + %gomxttJr = / &, (s) wmux (X, 1,s) ds, obtained from

the first equation of (2.10) ,we get

+§E/¢mxxdx + K/ Spmxx ¢THX) wm’ddx

+p;§1 /Spglxttdx + V/Gmxxwmxtdx
J J

+§? <lpmxtt/£2 S) Wmxt (X 1 S) dsdx = 0.
J

Next, let w; = —0,,xx in the third equation of (2.10) , we get

P3d

2 dt
J J

Finally, let z; = —¢,.xx in the fourth equation of (2.10), we get

%%/medx+ 5/q,27bxdx + K/mexqudx — 0.
J J

anxdx - ’%/‘megmxxdx + V/wmtxxemxdx = 0.

(2.51)

(2.52)

(2.53)

2.5. A priori estimate Ill
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By combining (2.49), (2.51), (2.52) and (2.53) , we get

1d

2dt
J

+p2(20?ntxx + b¢3nxx + p30%1x + Toqznx} dx

+£1/¢72nxtdx + 5/Q72nxdx + %ﬁl/(pfnxttdx
J J J
+ / . / £ (5) s (x, 1,5) dsdx
J L

+%/g0mxtt/£2 (S) @mxt (X,1,8)dsdx = 0. (2.549)

—&, (8) T mxx in 5" equation of (2.10) , and integrating over Z x J x K x £ = (0,t)x

PP
[plgoinxt + K (gomxx + w ) + %@glxtt

Now, let ¢, =
(0,1) x (0,1) x (71, 72), We get

/ / / s€5 (5) @), (x, p.s.t) dsdpdx

t)x

TIXKxL
——// / s&, (s) @, . (x,p,s,0)dsdpdx
TIXKxL
= ——/// & (s < (x,1,8,7)dsdxdT
IXIXL
1
+§ /52 (s)ds // @2 dxdT, (2.55)
L IxJ
and let ¢, = —&, (S) wmxx: in the last equation of (2.10) , and integrating over Z x J x K x £ = (0,
(0,1) x (0,1) x (71, 72), We get
// / s&, (s) @, (X, p,s,t) dsdpdx
TIXKxL
// / 852 mxt (X7 pP;s, 0) dede
TIxKxL
P2 2
= 2 [ | &@ @ x 157 dsdxar
IxJIxL
+L2 5 2 dxdr (2.56)
2K 2 mXTT

2.5. A priori estimate Il
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Next, integrating (2.54) over (0,¢) and using (2.55) and (2.56), we obtain

o (6) + sl—% [e®as | [ [ Gaxar
L

IxJ
+22 e, — - [ & 2 dxdr
K 1 2 mxTT
IxJ
+5// qudxd‘r+// <pmx,/£2 Wmx (X,1,8) dsdxdT
IxJ IxJ
// Spmx‘rr/£2 wmxt X, 1 S) dsdxdTr
IxJ
/// &, (s . (x,1,8,7)dsdxdT —
IXTXL
// / & (s) @ s (x,1,8,7)dsdxdr
IXTIXL
= ’Cm( )7 (2.57)

where

1 PP
lCm (t) = 5/ |::01(2072nxt + K (mexx + ¢ ) + %ng‘nxtt

J
+1023072nxxt + bz/ﬁnxx =+ p39$nx + TUq?nx} dx

// / s[€; (s)] @ (X, p, s) dsdpdx

T XKL

2 [ [ sl 90 (.9 dspa

TIXKxL

and using Young’s inequality, we have

// (meT\/gQ Wmx X, 1,5) dsdxdr

IxTJ
/|£2 |dS // SDmXTdXdT
IxJ
—5// / 1€, (s)] wfnx (x,1,s,7)dsdxdr, (2.58)
IXTIXL

2.5. A priori estimate Il



Chapter 2. Well-posedness of problem

and

// @mx‘r‘r/&Q Wmxr X; 175) dsdxdT

IxTJ

/|§2 |dS// 2 L dxdT

IxJ

// / £2 W oxr X7 17 S, T) dsdxdT. (259)

IXTXL

Y

Which, together with (2.57), yields

et (6 [ 1) [ [ e

IxTJ

(51 / £ (s ds) /I /J 2 dxdr
+9 / / ¢ dxdT

IxJ
< Kn(0),
implies
t)+ 770// (,072nx7_dXdT
IxJ
+4 / / ¢ dxdT + K% / / @2 dxdT
IxJ IxT
< K (0), (2.60)
where 7o = /’52( )| ds > 0.
c
Then
Ko (1) < Ky (0) (2.61)

2.5. A priori estimate Il
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and make use of the following inequality

/Bl/gp?nxdx + ﬁZ\/SO?nxde
J J
S 51// 9072nx <X7 T) dXdT + BQ// goizxx (X> T) dXdT
IxJ IxJ
+61// @7277,)(7' (X7 T) dXdT + 62// @gnxx‘r <X7 T) dXdT
IxJ IxJ
46, [ G Ot 5, [ (0) (2.62)
J J

Combining inequalities (2.61) and (2.62), we get

]Cm (t) + ﬁl/gpfnxdx + 62/90gnxxdx

J J
< K045, [ [ Phxriaxdr 45, [ [ G xr) dxdr

IxJ IxJ

+51// 02 (X, 7) dxdT + 52// 02 o (X, T)dxdT

IxJ IxXJ
5, / 22 (0)dx + 6, / e (0) dx,
J J
we put
J J
we get
S (1) < S (0) + / S, (r)dr. (2.64)
A

Applying the Gronwall inequality to (2.64), we obtain
Sm (1) <8, (0)exp (T), (2.65)
thus, there exists a positive constant C' independent on m such that

Sm(t) < C,t >0, (2.66)

2.5. A priori estimate Il
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it follows from (30) and (2.66) that

Py / Predx + K / (Prmscx + Vo) dx + 70 / o dx
J J J

+ﬁl/(p$nxdx + 52/307271xxdx + %/@%’mttdx
J J J

+p2/¢i7/xxtdx + b/¢3nxxdx + p3/072nxdx

J J J
+// / s|&, (s)| w2, (x, p,s) dsdpdx

TIXKXL
P2 )
+E// / S |£2 (S)| TWoxt (X, P, s) dsdpdx
TIXKXL
- (2.67)

2.5. A priori estimate Il
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Now, combining inequalities (2.67), (2.48), and (2.33) , we obtain

/90 dX+51/907271de+:01/903nth
J

J

pLp
ot o) [Pt (o4 2 [o2ax
J J

+62/<10$nxxdx+ <P2 + %) /‘P?mttdx
J

J
PP
- 2/()0mtttdx + pQ/SDmxxth
J

+b/¢$nxdx + b/wznxtdx + b/qu)?nxxdx
J

J J

+K / Oy + V)  dx + K / (P + V)’ X

+K/ (‘tpmxt + 77Z}mt)2 dx + pS/andx

J J

+p3/972nxdx + p3/93ntdx
J

J
+70 / godx + 7o / TxdX + To / ¢ dx
J

/// s|&, (s)| @7, (%, p,s) dsdpdx

TIXKXL
n / / / 516, (5)| w2, (x, p 5) dsdpdx
T XKL
P2 2
(1) ] ] sie@lwt e asdpdx
TIXKXL
2 [[ [ 516, @ (x.p.5) dsdpx
TIXKXL
/ / / 516, ()] @2y (x, p, 5) dsdpdx
T XKL
< C, (2.68)

2.5. A priori estimate Il
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IN

using Young’s inequality with ¢, we have

Pl/‘:ofndx + ﬁl/%pgnxdx + Pl/%pfntdx
J

J J

pLp
ot ) [Pt (o + 22 [o2ax
J J

+52/9072nxxdx + <P2 + %) / mxttdx
J J

PP
- 2/()0mtttdx + p2/()0mxxtdx
J

+b / Y2 dx +b / Y2 dx 4+ b / Y2 dx

J J
1
—|—K<1—g>/<pmxdx—|—[( (1—¢) /w dx

1—-) @mxtderK 1—5/wmtdx+p3/02d
J

+p3/9 de+p3/92 dx
J

J
—|—To/q dx—i-To/q de-O--I—To/q?%ndX
J

] sl xps) dsdpa

TIXKXL
T / / / s 1A (5)] 2, (x, p,5) dsdpdx
TIXKxL
p2 / / / s [€, (s)| =5, (x, p, ) dsdpdx
T XKXL
+£2 s|€, (s)| @2 (X, p, ) dsdpd
% 2 Wt (X, p,8) dsdpdx
TIXKXL
/ / / 1€, () @2, (x, . 5) dsdpdx
T XKxL

7

(2.69)
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we choose ¢ = %, and A = 3, — K > 0,such that g, = p, + p, > K, we obtain

N (8) = py / erdx + A / P2 dx + p; / o2 dx
J

‘i‘)\/@mxtdx+ p1t ,01,02 /90 wdx

J J

+6 /SpmxxdX + (pQ p?) A Somxttdx
ppo/ mtttdx + p2/¢mxxtdx
—i—?/dz,?ndx + b/iﬁilxdx
J J
K 2 2 2
—|—— wmtdx +b @Dmxtdx +b Q/mexdx
+,03/9 derpg/&mxder/)3/02 dx

+To/q72ndx + To/qfnxdx + —I—To/q?mdx

[ ] sl )1 xp.5) dsdpd

TIXKXL
—l—// / s €&, (s)| @2, (x, p,s) dsdpdx
TIXKXL
! (1 " &> s[¢, (s)| @7y, (%, p, s) dsdpdx
K 2 mt Y )
TIXKXL
+%// / s|€; ()| oy (%, p,s) dsdpdx
TIXKXL
// / s|€, (s)| @y (%, p,s) dsdpdx
TIXKXL

IN

(2.70)

2.5. A priori estimate Ill
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2.6 Passage to limit

Now, to prove that (2.10) holds, we multiply each of the equation (2.10) by a functions w (),
s;(t), v (t), r (), and p, (t) respectivly, we obtain

P1 (Lot W) Wi (1) + K ((Prx + V) » i) Wi (1) + &y (Yyp, wr) wy (t)

+ & (s)w, (x,1,8) ds,ul) wy (t) = 0,
/

P2 (it Vi) 81 (1) 4+ b (Y Vi) 51 (1) + K (O + ¥3) s 01) 50 (2)

+7 (O, 01) 51 (1) = 0,

P (Ome, wi) 01 (£) + (G, wi) v (8) + 7 (Vs wi) v (1) = 0,

70 (@t 21) 71 () + 0 (s 20) 71 (B) + K (O, 21) 11 (1) = 0,

s (@mt (X, p,8,t) ;&) pi (1) + (@mp (X, p,8,8) @) pi (1) =0,

§ (@it (X, 0,8,1) , &) pu () + (@mpt (X, p,88) , &) pr (£) = 0. (2.71)

Then, summing over / from 1 to m and if we let

l=m l=m
A = Y u () wi(t), v, =Y u(x)s(t),
- -
P = D wi (R (t), m, =Y 2 () (1),
=1 =1
l=m
Om = Z ¢l (Xa P; S) o) (t) ) (2.72)
=1

then, we have

P1 (90mtt’ /\m) + K ((Qomx + 77Z}m> ’ Amx) + 51 (77Z)mt7 /\m)

+ €, (s) o, (x,1,8)ds, \, | = 0,
/ )

P2 (Lontts Ymx) 0 Uiy Yonxe) + K (o + %) - Yom)

+7 (Onx; 7n) =0,

P3 (O ) + (Gmscs b)) + 7 (Cptoes ) =0,

70 (Gmt M) + 0 (G M) + 5 (Omscs M) = 0,

S (@mt (X, P,8, 1), 0m (X, p,8,1)) + (Wpp (X, p,8,1) ,0m (X, p,8,t)) =0,

s (@ (X, p,8,t) ,0m (X, p,8,1)) + (Wppt (X, p,8, 1), 00 (X, p,8,1)) = 0. (2.73)

2.6. Passage to limit
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Now, we integrate over ¢ on (0, c0), we obtain

—P1 (@mt? )LQ( Q) P1 (@mt (X’ O) ’ Am (X’ 0))L2(0,1)
K ((@mx + ) s Amx) 12(@) = §1 (Vs Amt) 12y
_51 (wm (Xa 0) ) Am (X7 0))L2(0,1)

/52 (s) @m (x,1,8)ds, A\, =0,
L L2(Q)
— P2 (Pt met)p(Q) = P2 (Pt (%,0), Vnx (X, 0))L2(0,1)

+0 (¢mx7 /ymx>L2(Q) + K ((Somx + 77Z)m) ’7m>L2(Q)
+fy <6mxvvm)L2(Q) - 07

—p3 (O, Mmt)L2(Q) = p3 (O (%,0), piy (%, 0))L2(0,1) + (Gmx; :Um)LQ(Q)
- (¢mx7 lumt)LQ(Q) -7 <¢mx (X7 O) » M (X7 0))L2(0,1) = 0,

~70 (G, nmt)Lz(Q) =70 (gm (x,0), 1y, (%, O))L?(o,l)
+0 (Gm: M) £2() + 5 (O i) 12 = 0,

—5 (@ (X, p,8,1), 0t (X, p, 8 ,t))Lz(Q

—5(@Wm (X, 0,8,0) ,0m (X,9,8,0)) 120,

+ (Tmp (X, P8, ), 0 (X, P, 8, t))L?(Q) =0,

5 (@ (50 .5.) 0 (%, 0.5. ) )

—5(@Wmt (X, 9,8,0) 0 (X, p, 8, 0))1;2(0,1)

+ (Tmp (X, 9,8,1) , 0 (X, 0,8,1)) 129 = 0

(2.74)

2.6. Passage to limit
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From (2.32),(2.47) and (2.66) , we conclude that for any m € N,

¢, is bounded in L (R, H* N Hy) ,

@t is bounded in L (Ry, H')

@y 1s bounded in L (R, L?)

V,, is bounded in L* (Ry, H* N Hy),

), is bounded in L™ (Ry, H') |

0., is bounded in L™ (Ry, H}) ,

0. is bounded in L™ (R, L?),

g is bounded in L (R, Hy) ,

m¢ is bounded in L (R, L?),

w,, is bounded in L* (Ry, H' ((0,1) x (0,1) X (71,72)))
@, is bounded in L™ (R4, H' ((0,1) x (0,1) x (71,72))) - (2.75)

Thus, we get

¢, weakly in L (R4, H* N Hy) ,

@ weakly in L* (Ry, H')

@i Weakly in L? (R, L?) |

,, weakly in L* (R, Hy) ,

¥, weakly in L* (R, H")

0., weakly in L* (R, Hy)

0 weakly in L? (R, L?)

g, weakly in L? (R, Hj) ,

gme Weakly in L? (R, L?),

w,, weakly in L* (R, H ((0,1) x (0,1) x (1,72))),
@, weakly in L (Ry, H' ((0,1) x (0,1) x (11,72))) . (2.76)

Thus, the limit function (¢, 1,0, ¢, zo) satisfies (2.10) for every (2.72). We denote by @Q,,, the to-
tality of all functions of the forme (2.72) with limw; (T') = lim s; (7)) = lim v, (7)) = limr, (T) =

T—o0 T—oo T—o0 T—o00

limp, (T) = 0. But U®_,Q,, is dense in W () , then the relation (2.5) holds for all (y, %, 0, q, @) €

T—oo

W (Q) . Thus, we have shown that the limit function (¢, v, 6, ¢, ©o) is a generalized solution of
problem (2.3) in V (Q) .

2.6. Passage to limit
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2.7 Continuous dependence on the initial data and unique-

ness

First, we prove the continuous dependence and uniqueness for weak solutions of problem (2.3) .Let
(o, 04, 0u, ¥, 0,q,w,w0;) and (I, Ty, Ty, =, Q, &, I1, I, ) be two global solutions of problem (2.3) with
respect to initial data (¢, ¥y, ¥4, ¥g, 00, 90, O0, ©1) and (T'g, 'y, T'a, Zg, Qo, &y, Po, P1), respectively.
Let

Alt) = ¢-T,
S() = ¢—=
M) = 0-9Q,
R(t) = q-¢,
o(t) = M- . (2.77)

Then, (A, \, M, R, o) verifies (2.3) , and we have
Pt = K (4 D+ 60+ [€(5) @(x Ls)ds = 0

—polix — bAsx + K (Ax + ) + Yy My = 0,

psMi + KRy + Y Aix = 0,

ToR: + R + kM, = 0,

so,+ 0, =0,

5Qu + 0y = 0. (2.78)
Now, multiplying (2.78),, (2.78),, (2.78), and (2.78), by A, A, M;, R, respectively, and integrat-

ing over J = (0,1) (the same arguments as in energy method), we get

th/Azdx—i-K/ (A, +2)Atxdx+£/A2dX

/At/§2 o(x,1,s)dsdx = 0, (2.79)

2.7. Continuous dependence on the initial data and uniqueness
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then,
pap1 d 2 pa d 2 bd 2
Ajdx+ —=— [ A,d —— [ Xad
2Kdt/ T P T
J J
—i—K/Zt (A, +3)dx + V/Et./\/lmdx
J
P21 [ p2 gy + A g 1,s)dsdx = 0, (2.80)
K tt i [ €2(s) 0 (x,1,8)dsdx = .
J J
after that,
2dt/./\/ldx+/<a/./\/l72dx y/Ede_O (2.81)
J
finally,
2dt/7€2dm+6/R2dx—n/MR dx = 0. (2.82)
By combining (2.79), (2.80), (2.81) and (2.82) , we get
1d
5@/ [,01/\? 4K (A + 3)° 4 2 Aft + b2 + pyAZ, (2.83)
T

psM® + ToR?| dx + &, / A?dx +6 / R*dx

J
/At/£2 X7175

/Att/EQ s) o, (x,1,s)dsdx = 0.

Aftdx

Now, multiplying (2.78). by |&, (s)| e (x, p,s) and integrating over J x I x £ =(0,1) x (0,1) x

2dt/// s[€, (s)] @” (x, p,s) dsdpdx

TIXKXL

/152 (s)|ds /Afdx
L

J

(11, 72), We obtain

—|—%// 1€, (s)] 0° (x,1,8)dsdx = 0. (2.84)

TI XL

2.7. Continuous dependence on the initial data and uniqueness [§]
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Then, multiplying (2.78), by |£, (s)| o, (x, p,s) and integrating over J x K x £ =(0,1) x (0,1) x

2Kdt/// s[€; (s)] @ (x, p,s) dsdpdx

TIXKXL

Y ( e <s>ds) [z
L J

—l—p—;(// &, (s)] 07 (x,1,s)dsdx = 0. (2.85)

T XL

(11, 72), we obtain

By combining (2.83), (2.84) and (2.85) , we obtain

9o - —(51—1/52 sds) /Afdx

J

P2 ( _ _/|§2 |ds) /OlAftdx
— [ A [ €5 (5)0(x,1,8)dsdx — 6 [ R*dx
I /

2 [8u [ & (5) @ (x.1.5) dsax
J

5[ [ 6@l x15) asax

T XL

1 T2
22 [ [l ) gt x 15) dsax
0 T1
—T]O/Afdx - no%//\ftdx — 5/R2dx <0
J

J J

VAN

IN

c(/[A2+(A + 22+ AL+ AZ, 4+ 32+ M2+ R dx

/// s|€; (s)| @° (x, p,s) dsdpdx

TIXIKXL

+/// Sﬁz(S)Q?(XaPaS)dePdX>- (2.86)

TIXIKXL

2.7. Continuous dependence on the initial data and uniqueness
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By integrating (2.86) over (0,t) , we obtain

E{)-E0) < ¢ /[I\At|l2+ 1A% + D)7 + 1Al + 1Axell” + [1Sl” + M + [ RIP] dr

+/// s|§2(S)|||Q(X,va)||2dsdpd1-+/// s|€, (5)| |, (z. p, )||? dsdpdr | |

IxXKXL IxXKXL

implies,

E@) < EO+cf [A0+ 1+ DI+ JAul?
A
Al MU+ S + [RIF] dr

sef[ [ sle®llet ps) dsdpdr

IXKXL

e / / / 516, (5)| e, (x, p,5)|* dsdpdr. (2.87)

IXKXL

On the other hand, we have

1
E(t) = 5 / A7+ K (A + )7+ PR 4 g, A2 852+ py MP + 7oR | dx

/// s[€2 (s)| @° (x, p, s) dsdpdx

TIXKXL

sz [[ ] sleo)let xp.5) dsdpax

TIXKXL
L . PaP P
QIIHD,(p17}( ;(17p27b p37707l? 1)

X< (AP + 1A+ NI+ Al + Al + 15 + M + IR

T / / s16; ()| o (x. p.5)|* dsdp

KxL

" / / S16, ()] e (x., p. )| dsdp | .

KxL

v

2.7. Continuous dependence on the initial data and uniqueness
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implies,
E@t) = mo (JAd” + 11 (A + NI+ [Awl® + [ Asel* + ]l + M + R

[ [ sl&6) e tx.p.s)I dsdp

KxL

[ [ sleo)lle e s>2dsdp) . 289

KxL

So, we have
mo (A + 1A+ DI + [ Aw]l* + 1 Ase ]

+||Ex||2+||M||2+||R||2+//S|£2 (s)| lle (x. p,8)|” dsdp

KxL

+f [sle6)lexp S>2dsd,,)

KxL

IA

B(0)+c [ [IAP + I+ DI + 1Aal
A

A ” + IMI” + 120 + IRI] dr

sef[ [ sleo)lletxp.s) dsdpar

IXKXL

sef[ [ sl ol tx.p.s)I dsdpar. (2.89)

IXKXL

Applying Gronwall’s inequality to (2.89) , we get
A A+ 11 A+ M+ 1A+ Al + I+ M+ IR

+[ [ sle: 6l e p.s)]* dsdp

KxL
= [ [ sl& ) e p.5) | dsdp
KxL
< L Ew)exp i), (2.90)
mo

where M = &
This shows that solution of system (2.3) ,depends continuously on the initial data and unique..

2.7. Continuous dependence on the initial data and uniqueness



Chapter 3
Exponential stability results

In this chapter, we will prove exponential stability results for problem(2.3) under the assumption
(30). To achieve our goal, we utilize the energy method.to construct an appropriate Lyapunov

functional, resulting in a proof of exponential stability.

3.1 The energy functional
In this section, we introduce the following lemma needed for the proof of our main result
Lemma 3.1 Define the energy of solution as

1 Pap
E(t) = 5/ [ms&? + K (o + )" + %1 Or + Pap + bk + s + Totf] dx

// / s|€, (s)| = (x, p, s) dsdpdx

TIXKXL

s [ ] sl )l xp.s) dsdpdx,

T XKL

64
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satisfies

where 1, =

AN
—
Q.. =
5 |
| o
>,
—
o w
Q.
"

< 0,

& — [ & (s)lds | > 0.
/

Proof. First, multiplying (2.3),, (2.3),, (2.3); and (2.3), by ¢,, ¢, § and ¢,respectively, and inte-

grating over J =

then,

next,

finally,

d
gldt dx+K/g0tx (oy + ) dx + &, /gﬁdx

/gpt/£2 w (x,1,s)dsdx = 0,

’a / Urnud+ / Y2dx + K / Uy (o + ) dx

w1 [vdnax =0,

5 d

2dt
J

6?dx — k / Orqdx — 7 / 0y, dx = 0.

7—20;1 q2dx+5/q2dx+/~f/q9xdx = 0.
J J J

(0,1), using integration by parts and the boundary conditions, we obtain

3.1

(3.2)

(3.3)

3.4

3.1. The energy functional
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now, substituting v, = 2o, — @y + %%t + = / &, (s) w: (x,1,s)ds into first integral of (3.2)

and using the integral by parts, we get

papy d 2 py d /2
PaPr @[ 2qx 4 P20 d
2Kdt/(’0 +2dt tx+2dt Pxdx

J
K [0 ot 0y dxsn [opax 82 [ohax
J J J
‘f‘%/%t/ﬁz (s) o (x,1,8)dsdx = 0, (3.5)
J L

summing (3.1),(3.3),(3.4) and (3.5) , we obtain

1d

pap
5@/ [fw? + K (o + 1) + %w?t

J
0002 + Y% + p30” + To?]

/ dx—|—5/ dx—i—/gpt/ﬁz w (x,1,s)dsdx

+§1% thdx“‘ (ptt/gg @, (x,1,s)dsdx = 0. (3.6)
J

Second, multiplying (2.3), by (=0 [§, (s)|), integrating the product overr J x K x £ =(0,1) x
(0,1) x (71,72), and recall that = (x,0,s) = ¢,, yield

m/// s|€, (s w(xp,)cls,olpclx—(/g2 ds)/gofdx

T XKXL

5 [ [l o) = x5 dsax < o, 3.7

I XL

now, differentiating and multiplying (2.3); by (=, |, (s)|) , integrating the product over J x K x £ =

(0,1) x (71, 72) , we get

] | sleiwt xp.s) asapax - L2 ( [ <s>ds) [ hax
c 7

TIXKXL

/ Az ()| w? (x,1,8)dsdx = 0, (3.8)
T XL

3.1. The energy functional m

(0,1
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A combination of (3.6), (3.7) and (3.8), gives
1d
2 dt

2dt/// s|&, (s)| @” (x, p,s) dsdpdx

TIXIKXL

QKdt// / s|&, (s |Wt (x, p,s) dsdpdx

T XKL

- /y§2 )| ds j/godx—(5/2dx

N / & )lds | | [ohax
J
/(pt/|£2 |wxlsdsdx——// &, (s)] * (x,1,s) dsdx

pap
(0168 + K (o + 1) + PZELGE o2+ by + gt + Tog? | dx

TIxL
_%/gptt/gz(s)wtxlsdsdx——// &, (s)| @? (x,1,s) dsdx,
J L TIxL
where
1d P2p
E(t) = 52 [plsO?vLK(soer@/))Q + = P
J

P02 + 0% + p36” + Tog’] dx

th/// s |€, (s)| @ (x, p, s) dsdpdx

TIXIKXL

2Kdt/// s|&, (s)| @7 (x, p,s) dsdpdx, (3.9

TIXKXL
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and

;ZtE() B (51% (/{2(s)ds)) /sofdx—é/cfdx
£ 7

J

%(a%(/ex@dﬁ)/wa
J

/%&/52 o (x,1,s)dsdx
=5 [ &)= ix1.5) dsax

TIXL

—% gptt/§2 (s) @y (x,1,s)dsdx
J

/ &, (s)| @? (x,1,s) dsdx.

TIXL

Meanwhile, using Young’s and Cauchy Shwarz’s inequalities, we have

/@t/£2 X7 ]-a S) deX

T XL

and

_%/%t/& (s) @ (x,1,s)dsdx
J L

< 22 le6lwxsdsax s L2 (/e d)/ dx.

T XL

<5/ [ 1eel= <x1s>dsdx+—(/£2 ds) /Olso?dx,

(3.10)

(3.11)

(3.12)
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Now, substituting (3.11) and (3.12) into (3.10), we obtain

d
GEO < — (6| [le@lds) | [etax—s[dax
L J J

L2 (sl - ( / & (s)ds>) / Pidx
7 J

< - no/sO?dX — 5/q2dx - %no/widx, (3.13)
J J J

where 7, = (51 - / 1€, (s)] ds) > (.then we obtain that £ is decreasing. m
L

3.2 Lyapunov functional and main results

In this section, we construct a Lyapunov functional £ equivalent to E. For this, we will prove
several lemmas with the purpose of creating negative counterparts of the terms that appear in the

energy.

Lemma 3.2 The functional

Fl (t) = —%/gp?dx - K/Sptxgpxd)g (3-]—4)
J

J

satisfies

1
Fl () < —K/gpfxdx~|— c (1 + —) /goftdx—i— sl/widx
€1
J J

J

te / / €, (s)| =2 (x, 1, 5) dsdx. (3.15)

T XL
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Proof. A simple differentiation of Fj (t), using parametric integral, (2.3),, integration by parts,

Young’s and Poincaré inequalities, we gett

Fll (t) = /thtdx K/%tw dx — K/Sptxdx

/gptt/£2 (x,1,s)dsdx

K2
< -K / Prdx + p; / prdx + - / erdx + € / Yidx
J J ! J J
o [axr 2 [l 5) o0 (. 1.5) dsax
J 1 T XL
<

1
—K/gp?xdx—i—c (1 + 8—> /‘Pftdx—i-&l/?ﬂidx
7 v s
+// &, (s)| = (x,1,s) dsdx.

I XL

where ¢ = max (%, 2p1> and

/Sptt/sQ X7 17 S) deX

- / o / VIE OIVIE @ (x,1,5) dsdx
L

J

2 2

< [Jeu|| [le61as] | [i66)= x1sas) | ax
J L L

< g/w;idx%/ [e9s [ 16,9 (x1.5)ds | ax
J L L

< 2 A1 2

< o [t 5 [ [ 1g0)] w2 x1.5) dsax
J P T XL
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Lemma 3.3 The functional

B(t) = pl/sosotder%/wde
J

J
RST prdx + py [ Ppipidx
2K t tx¥r'x )
J J

satisfies
, b K P1P
B < -5 [vidx=3 [ o+ 0 ax— 20 [
J J J

+p2/¢fmdx+ % 6*dx + pl/gofdx

J J J
+c// &, (s)| @? (x,1,s) dsdx.

T XL

(3.16)

(3.17)

Proof. A simple differentiation of F5(t), using parametric integral, (2.3),, (2.3), integration by

3.2. Lyapunov functional and main results
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parts, Young’s, Cauchy Schwarz and Poincaré inequalities, we get

F(t) = / da;—K/ 0, + 1) dx—/ /52 w (z,1,5) dsdx

”}? gottdx—b/dexﬂ/ew dx -+ p, [ chdx
J

(ptt/§2 (x,1,s)dsdx

< —K/ ot ) /Wd /sottdxm/sofdx
J J
—i—;b 0*dx + — /¢2dx—|—p2/g0txdx
J
K
—1—5/ Oy + 1) dx—i—gl// &, (s)| ™% (x,1,8) dsdx
T XL
P1P2 v2d 51/72
+2K // 1€, (s)] =2 (x,1,s) dsdx
T XL
< ——/ )’ x——/zp?d plp? ftdx

K
+P2/S01:2xdx + Pl/@?dx + % 6%dx

J J J
te / / €, ()| @ (x., 1, 5) dsdx,
I XL

where ¢ = 71 (1 + plp2> ,

—/90/52 (s) @ (x,1,s) dsdx
J L

= g/gpider%// €, (s)] @* (x,1,s) dsdx
J I XL

< g/(soxﬂb dx+—// €, (s)| @ (x, 1, ) dsdx,
J TXL
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and
/gptt/EQ (x,1,s)dsdx
J L
< 9 [etaxs 3t [ [ e (x1.5) dsax
J T XL
u

Lemma 3.4 The functional

F(t) = —PgTo/C]/ t) dydx
J

—T0oY / qydx, (3.18)

J

satisfies

b
Fit) < —%/%H Z/widx
J

J

+c/q2dx. (3.19)
J
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Proof. A simple differentiation of Fj (t), using parametric integral, (2.3),, (2.3),, integration by

parts, Young’s, Poincaré and Cauchy Schwarz inequalities, we get

Fy(t) = p35/q/ 0 (y,t)dydx — pgﬁ/Qde—i— Toﬁ/q2dx
0
J

J J

—l—’yé/wqu — ’yﬁ;/w,ﬁdx
J J

2 z 2 2
< psd /q2dx /(/ H(y,t)dy) dx —p3/<a/62dx+7'0/<a/q2dx
J J 0 J J
2
+ 1= C/¢idx+7—5/q2dx+—(%> /¢idx+8—4/92d
2 2 %4 2
J
5)?2
< @/2d+ /(/ﬁy, dy) dx — p3I€/9dX+Toﬁ/qu
J J J
W[ 2ax+ 2 [y2ax + 25 [ o2
+2/qu+4/wwdx+ 4/de
J J J
2 c ‘ ’ 2 b [ o
< ¢ qu—i—; 0, (y, t)dy | dx — psk de—i_i Pedx
J J 0 J J
—I—%/QQdX
J
2 C 2 2 2 b 2
< ¢ qu—i—a (0 (z,t)" —60(0,1)7) dx — pgr 9dX+Z Pedx
J J J J
/03 2
4 f°dx
J
< c/ de+p§’7“/92dx 3”3“/9% n /¢2dx
J
<

- 92dx+c/ 2dx + - /¢2dx

ENES QY

2
Where 84 — C — P3k 760 _|_ (’yﬁ) —

Lemma 3.5 The functional

O =[] [ sew(-sp)e (5)]w" (x.p.5) dsdpax

T XKL

(3.20)
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satisfies

Fi(t) < —m// I s|w2xls)dsdx+§1/ 2 (t) dx

I XL

[ ] sley ()= ix.p.5) dsdpx (3.21)

TIXKXL

Proof. A simple differentiation of F} (¢), using parametric integral and (2.3),, we get

B = [ [ 16605 w5 xp.s)] dsdpdx

TIXKXL
- / / / sexp (—sp) € (3)] = (x, p, s) dsdpdx
TIXKXL
= // €, (s l/a exp (—sp) w? (x, p,s)| dpdsdx
TIXL

- / / / sexp (~sp) €, (s)| @ (x, p,s) dsdpdx

T XX L

= // &, (s)] [exp (—s) @” (x,1,s) — @ (x,0,s)] dsdx

T XL

-// / sexp (—sp) €, ()] 2 (x, p, ) dsdpdx,

T XKL
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results

Usling the equalilty <o (x,0,s) = ¢, (t) and —exp(—sp) < —exp(—s) < —exp(—7,) for alll

0<p<1 and 7, <s< Ty, wWegett

Fy(t)

= [ [ e Glew -9 @ s dsax+ [ [ e, ()42 (1) dsdx

TIXL T XL
[[ ] sexpi-sple s)l = x.pus) dsdpax
TIXIKXL
< —// 1€, (s)| exp —72)w2(x,1,s)dsdx+£/gof(t)dx
TIxL
[ | sewrie @)= xp.s) dsdpdx
TIxXKxL
< —ew(-m) [ [l s|w2(x,l,s>dsdx+51/so§<t>dx
T XL
—ep(-ry) [[ [ sl )] (x.pus) dsdpax
TIXKxL
< —-m // 1€, ()] @” (x,1,8) dsdx + £, /gof (t)dx
T XL
o [ ] sl )= ix.p.s) dsdpax
TIXKxL

where m; =exp(—72). ®

Lemma 3.6 The functional

satisfies

/// sexp (—sp) €, (s)| @7 (x, p, s) dsdpdx,

TIXKXL

Fi(t) < —m1// r s\w%<x1s)dsdx+sl/soft<t>da:

T XL

/// s1€5 (s)| =} (x, p,s) dsdpdx.

TIXKXL

(3.22)

(3.23)
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Proof. A simple differentiation of F; (t), using parametric integral and (2.3),, we get

B0 = [ | 6l o) @t xp.)] dsapax

TIXKxL
_/// sexp (—sp) &, (s)| @? (x, p,s) dsd pdx
TIXKxL
= // €, (s ’/8 exp (—sp) @} (x, p,s)] dpdsdx
T XL
_ / / / sexp (—sp) |€, (5)| @2 (x, p,s) dsdpdx
TIXKxL
= // &, (s)] [exp (—s) @} (x,1,s) — @} (x,0,s)] dsdz
T XL
_// / sexp (—sp) &, (s)| @} (x, p,s) dsdpdx,
TIXKXL
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Using the equality o, (x,0,s) = ¢, (t) and —exp(—sp) < —exp(—

0<p<1 and 7y <s< 7y, Weget

F5 (t)

where m; = exp (—

IN

IN

/ / 1€, (s)| [exp (—s) @7 (x,1,8) — ¢}, ()] dsdx

T XL

_// / sexp (—sp) €, (s)| =} (x, p, s) dsdpdx

TIXKXL

_// €, (s)] exp (—s) w2 (X,l,s)dsdx—i-// €2 (s

IxL TIxL

[ | sew-sp) e )] (x.p.5) dsdpx

TIXKXL

I XL

[ ] sew9)166)] = (xp.s) dsdpax
T XKXL

// 1€, (s)] exp ( Tg)wt (x,1,s) dsdx—l—ﬁ/g}tt
TIXL

- / / / sexp (—72) |6, (5)| w7 (x. p.'s) dsdpdx

TIXKXL

T XL

—ewp(-ra) [[ [ 51665 (x.p.5) dsdpax

T XKXL

[ [ e s)1 w2 1 s)dsdx+51/so;i<t>dx

T XL

/// s[€, (s)| =} (x, p,s) dsdpdx,

T XKXL

’7'2). u

s) < —exp (—7,) for all

)| iy (t) dsdx

_// €, (3)] exp (—s) w7 (x,1,s)dsdx+£1/s0?t () dx
J

—exp (—72 // &, (s)| w? (x,1 s)dsdx—kﬁ/goft(t)dx

Next, we define a Lyapunov functional £ and show that it is equivalent to the energy functional

E to prove the next theorem.

Theorem 3.1 Assume that (30) holds, then there exist positive constants ¢, and ¢y such that the

3.2. Lyapunov functional and main results
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energy functional (3.9) satisfies
E (t) < lyexp (—lt), Yt > 0. (3.24)
Proof. We define a Lyapunov functional
L(t)=NE(t)+ NiFy (1) + Ny (Fy () + F3 (1)) + Na (Fa () + F5 (1)), (3.25)

where N, Ny, Ny, Ny > 0, by differentiating (3.25) and using (3.13), (3.15), (3.17), (3.19), (3.21)
and (3.23) , we have

L'(t) = NE' (t)+ NiF(t)+ Na (Fy () + F3 (t)) + Ny (Fy () + Fi ()

!
2
< = [Nng — Napy — N4&] /(pfdx

J
p P1P 1
_ |:N§2770 + Ngﬁ — Nlc <]_ —+ 5_1) — N4§1:| /gD?th
— [N — ¢Ns] /quX
J
- (MK - Nop)] [ Fhdx
J
b b
— |:N2§ - N1€1 - N2Z_l:| /widx
J
K
—N2?/ (ox + ¢)2 dx
J
—NQ@/Q%IX
4
J
_ [Nyms — Nyc — Nyd] / / €, (s)| @2 (x, 1,5) dsdx
T XL

—Nymy / / & (s)| @2 (x,1,5) dsdx

T XL

—N4m1// / s|&, (s)| @? (x,1,s) dsdpdx

TIXKXL

Nam [ [ sl 0)] 5 (x.p.5) dsdpax,

TIXKXL
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By setting
b

Once N, is fixed, we then choose NV, large enough such that

€1

v, = NiK — Nyp, > 0.
Then we choose N, large enough so that

vs = miNg >0,
Yo — N4m1—N16—NQC>O.

Thus, we arrive at

L'(t) < —(Nnyg—c) /wfdx— (N%no+vo—0> /sf)?tdx
J

J
_vl/widx - 72/ ((ipx + ¢)2 dx — 73/92(1)(
— (N —¢) /qux
J
_'74/%2:th - 76// &, ()] w? (x,1,s)dsdx
J T XL
_75// 1€, (s)] 7 (x,1,s) dsdx
T XL

[ [ sles @I 1) dsdpdx

TIXKXL
o [[ [ sl x 1.5 dsdpax (3.26)

T XKXL

where v, = Ny2£2 v = No2 v, = N & and v; = No28% .On the other hand, if we let

Z(t) = NiFy () + N (Fa (t) + F3 (1)) + Ny (Fu (t) + F5 (1)),
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then

IA

IA

|NVEY () + No (Fo (8) + F3 () + Na (Fu (2) + F5 (1))]
Ni|Fy ()| + No | Fy (t)| + No |F3 (t)| + Ny |Fy (t)| + Ny |F5 (t)]

Nl%/(pde—FNlK/thngxldX
J J

+sz1/ i, | dx + Nz%/sfdx
J J

+N2—§1’0 2 [ pidx + Nap, / oy Prx| dx
oK
J

J

+N2P37'0/‘Q/ 9(y7t)dy‘dX+Nz/|qwldX
0
J J

N[ ] stew sp) I (5)] 0 (x.pos) dsdpax

T XKL

V[ st sp) I (5)] 5 x.pos) dsdpax

TIXKXL
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Exploiting Young’s, Poincaré, Cauchy-Schwarz inequalities, we get

A N.
1Z (1) < [N1—1+ 2"1+NW2} /so?dx

2 2 22K
NlK N2p2 / 9
+ { 2 + 5 O dx
N.
—l—TQC/widx + /gotztdx
J J
N1K N A N
J{ gt NS M} /(@x+¢)2dx
2 2 2 2
J
L (NapsTo | o / P 4 NepsToC /92 A
2 2 2
J J
N[ ] sle ) (x.p.s) dsdpd
TIXKXL
N [[ ] sl 62 () dsdpa
T xKxL
< 0/ [0F + @i+ e + 02+ (90 +U) + 07+ 0] da
J
wef[ [ sl e xp.) dsapax
TIXKXL
sef[ [ sl xp.5) dsdpa
TIXKXL
< cE(t).
Consequently
Z()] = L)~ NE®)] < cE (),
implies
—cE(t) < L(t) = NE(t) < cE(t),
which yields

(N—c)E({t)<L({t)<(c+N)E(t).
Now, we choose N large enough so that

N%no—c>O,Nno—c>0,N6—c>0,N—c>0,
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we obtain

where 7, and 7, are positive constants.

Hence

L' (t) < _77/90th 78/90ttdx 71/¢2dx

/wxﬂb ) dx — w/w dx

Q

J J
_’79/ dX—73/6’ dx
—76// A2 ()| w? (x,1,s) dsdx
T XL
15[ [ Pal)]? (x,1,5) dsdx
T XL
—75// / s|Xz (s)| @ (x, p,s) dsdpdx
TI XKL
—’75// / s|As (s)| @7 (x, p, s) dsdpdx
TIXKXL

S _77/ [(pt‘i‘@tt‘i‘ﬁptx"’wx‘i‘(s%-l-?ﬂ) +q° +92]da:
0

o[ [ sl o) = (. p.5) asapa

TIXKXL

-1 / / / s|&, (s)| @’ (x, p,s) dsdpdx

TIXKXL

Where 7] = max (’717 Y2, 7V3 Yas V5 Ve V70 V8o 79) > 0.
A combination (3.27) with (3.28) gives,

(1) <—nE(t) < —-LL(1).
T2
We choose h; = o, we get
L (t) < —0L(t), Vit > 0.

(3.27)

(3.28)

(3.29)
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A simple integration of (3.29) over (0, ¢) and using (3.28), we obtain
L(t) < L(0)exp (—4it), ¥Vt >0,
implies
E (t) < 62 exXp (-glt) s \ > O,

because
mE(t) < L(t) < L(0)exp (—lit), YVt >0,

where /(, = %)) < EE(0). =

3.2. Lyapunov functional and main results



General Conclusion and Perspectives

In conclusion, this thesis focused on investigating the global well-posedness
(the existence, uniqueness, Continuous dependence on the initial data) and
exponential stability of solutions of a Bresse-Timoshenko type system with
distributed delay and second sound. This system models a vibratory motion of
a beam named the Bresse-Timoshenko beam under the effect of temperature
(we demonstrate the existence of the solution and the type of stability of this
beam).

To achieve the desired outcomes, the study commenced by examining the
global well-posedness of the initial and boundary value problem under specific
assumptions using Faedo-Galarkin approximations and energy estimates.
Subsequently, the research explored the exponential stability, established
through the Lyapunov functional and multiplier technique.

Looking ahead, thereis a keen interest in further exploring practical
applications, including the utilization of numerical methods for approximating
solutions and conducting numerical simulations for this particular type of
problem.
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