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Abstract 

The severe landslides affecting Mila Basin (located in the North-East region of 

Algeria) are serious threats not only to the environment and the local populations but 

also inflecting economic burdens to local authorities by the non-ending 

reconditioning and restoration projects. In addition, these landslides affect the current 

landscape evolution and the geodynamics of the basin. Therefore, predicting and 

delineating landslides are crucial tasks to reduce their associated damages. 

However, landslide risk prevention requires prone areas delineation using an 

assessment that can integrate into GIS environments and considering the spatial and 

temporal space component of the basin. This should theoretically provide 

probabilities for both the spatial and temporal components of this hazard in the form 

of susceptibility toward landsliding. That being said, no systematic and accountable 

landslide susceptibility models or even susceptibility maps are available for the basin 

yet, despite the tremendous losses. 

In an attempt to fill this gap, an advanced statistical-based modeling approach 

(i.e. Machine Learning) was used to provide state-of-the-art models capable of 

providing the highest landslide prediction capabilities. The main research workflow 

was rather simplistic as it focuses essentially on elaborating predictive models using 

some advanced techniques that can be integrated successfully in GIS environments in 

order to develop customized models for the basin. A partial focus was given to 

mapping and zoning areas toward landsliding. 

The obtained results highlight the overall benefits of using advanced machine 

learning methods for landslide susceptibility assessment, as the implemented models 

exhibit reasonably good predictive performance (AUC>0.85, Acc> 78% and 

kappa>0.56). The generated landslide susceptibility maps were proven to be useful as 

a technical framework for spatial prediction to develop countermeasures and 

regulatory policies by decision-makers to minimize the damages introduced by either 

existing or future landslides. 

Keywords: Landslide; Susceptibility mapping; Susceptibility assessment; 

Machine learning; GIS; Mila basin; Algeria  
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Résumé 

Les glissements de terrain dans le bassin de Mila constituent non seulement 

une véritable menace aux biens et propriétés de la population de la région mais 

également au développement socio-économique local. Des sommes importantes 

d’argent du contribuable sont consommées chaque année par les projets non-finis de 

réparations, restaurations et remise en service des voix de communications, des 

canalisations et des habitations. En plus, les glissements de terrain sont directement 

responsables de l'évolution du paysage et de la géodynamique naturelle du bassin. 

Par conséquence, prédire et délimiter les zones susceptibles d’être touchées par ce 

sinistre est une des tâches essentielles pour réduire et limiter l’endommagement 

résultant suite à la transgression urbaine sur les zones qui étaient, autrefois,  jugées 

marginales. 

Toutefois, la prévention et l’allègement du risque au glissement de terrain 

nécessite, comme première tâche, une délimitation et une bonne reconnaissance des 

zones exposées à cet aléa. C’est en réalité qu’on appelle l’inventaire, il doit inclure 

également les caractéristiques géologiques, géomorphologiques, structurales et 

physico-mécaniques de l’ensemble du bassin. Ces données spatiales et non spatiales 

sont ensuite statistiquement étudiées pour réduire la redondance puis  intégrés dans 

un environnement SIG. Les séries de calcules dans cet environnement nous donne 

théoriquement des probabilités d’occurrence de l’aléa à travers tout le bassin d’étude  

sous forme d’une carte de susceptibilité au glissement. Malgré les pertes et les 

dommages enregistrées jusqu'à nos jours, aucun model fiable de calcul de la 

susceptibilité au glissement dans le bassin n’a était établi. 

Pour tenter de combler cette lacune et dans un objectif  d’estimation de la 

susceptibilité au glissement dans chaque endroit du bassin, Plusieurs modèles 

sophistiqués et avancés ont été établis, sur la base de l’application des approches 

statistiques à savoir LR, GBM, NNET, RF and SVM (i.e. Machine Learning). 

Cette recherche a été focalisée essentiellement sur l’élaboration des modèles 

prédictives dans l’environnement SIG dans le but de choisir un model fiable et 

efficace pour le calcul de la susceptibilité  spécialement pour la région d’étude. Un 
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intérêt particulier a été donné aux  processus de la cartographie de la  répartition 

spatiale des éléments du relief susceptibles aux glissements. 

Les résultats obtenus, montrent l’intérêt d’utiliser les méthodes de Machine 

Learning dans l'évaluation de la susceptibilité aux glissements des terrains, car les 

modelés montent des performances prédictives intéressantes (AUC>0.85, Acc> 78%,  

et kappa>0.56). Les cartes de la susceptibilité générées, peuvent être très utiles 

comme des documents techniques pour la prédiction spatiale de cet aléa. Elles  

pourront également servir comme document de base dans le but de développer des 

mesures d’allègement et des politiques réglementaires afin d’orienter les plans 

d’aménagement avec le minimum de préjudice. 

Mots clés: Glissement; Cartographie de la susceptibilité; Evaluation de la 

susceptibilité; Machine Learning; SIG; Bassin de Mila; Algérie 
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 ملخص

انزلاقات التربة الشديدة التي يتعرض لها حوض ميلة )المتواجد في المنطقة الشمالية الشرقية للجزائر( تشكل 

الميزانية العامة للمنطقة تتاثر بالاعباء  ايضاخطرا جسيما ليس على المحيط الطبيعي و تجمعات السكانية فقط و لكن 

ان انزلاقات التربة توثرعلى المحيط العام للمنطقة و جيوديناميكية  كماالاقتصادية عن طريق مشاريع الترميم و الاصلاح. 

 .ناجمةمع تحديد مناطق الانزلاق امر في غاية الأهمية لتقليص الخسائر ال حدوثها الحوض. و لهذا السبب فان تنبا وتوقع

حتم بالضرورة تحديد المناطقة المتضررة عن طريق تقدير الحالة و دمجها عملية الوقاية من اخطار الانزلاقات ت  

في بيئات نظم المعلومات الجغرافية مع اخد الاعتبارخصائص الحوض، فانه يمكن نظريا الحصول على معلومات في 

. وعلى هذا فان لانزلاقاقابلية  احتمالات ه الظاهرة على شكلالزمانية و المكانية لهذ الخصائصاحتمالات حول  شكل

الساعة  لحديوجد غير انه لا . احتمالات قابلية الانزلاق ائجالحد منها حسب نتيمكن  المتوقع حدوثها في المستقبلالاخطار

 انزلاق التربة متوفرة للحوض. لات قابليةحتمااوخريطة لااي نموذج 

( التعلم الأليمتطورة مبنية على اسس احصائية ) نماذج هناك مجموعة من التقنيات ولمعالجة هاته المشكلة،  

ر احسن  درجات تنبؤ بانزلاقات التربة. هذا البحث في مجمله بسيط حيث يتوف تساعد على ممتازةنماذج استخدمت لتوفير 

مح بادماجها في نظم المعلومات تعتمد بالدرجة الاولى على تقنيات متطورة تس نماذجيعتمد بصفة عامة على تحضير 

 توقعية خاصة بحوض ميلة مع اهتمام جزي برسم و تقسيم الحوض حسب القابلية لانزلاق التربة. نماذجالجغرافية لتطوير 

في مجال  التعلم الأليالنتائج المتحصل عليها تسلط الضوء على الفائدة العامة من استخدام تقنيات متطورة من 

)المساحة تحت  التوقعية المتحصلة عليها ذات جودة عالية و تمتاز بقدرة توقعية ممتازة نماذجة لان تقديرانزلاقات الترب

. خرائط احتماليات انزلاق التربة المتحصل عليها انها ذات (5.00<معامل كابا، %.8<العامة الدقة ،0..5<منحىال

فاعلية  من حيث القدرة التوقعية وذات فائدة كمنصة تقنية للتوقع الجغرافي و تطوير التدابير المضادة و سياسات تنظمية 

 المستقبلية. أوالقرار لتقليص الخساىر الناجمة عن الانزلاقات الحالية  صناعيمن طرف 

؛ نظم المعلومات التعلم الألي: انزلاقات التربة؛ تخطيط قابلية للانزلاق؛ قابلية الانزلاق؛ حيةكلمات مفتا

  الجغرافية؛ حوض ميلة؛ الجزائر 
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Chapter 1: Introduction 

1.1 BACKGROUND 

Algeria is the largest country in Africa claiming an area of               

approximately. This vast spatial extent is exposed to a variety of natural hazards such 

as Earthquakes (e.g. Boumerdes 2003), Floods (spread widely across the country in 

all four major directions), Landslides (e.g. Mila, Bouira, Medéa), Drought and 

Desertification. The diversity in natural hazards across the country, mandate a strict 

and stringent protection strategy against these hazards. 

Mila basin is particularly a unique case in Algeria. This basin is considered 

(and still) the most vulnerable basin in terms of landslides and floods. Landslides are 

regarded as natural degradation processes produced by natural and human activities 

[1]. Natural factors such as rainfall, earthquake, and volcanic eruption can trigger 

landslide occurrences. This hazard might become worse when human activities also 

contribute to landslide occurrences. 

In Mila basin, different locations were surprisingly found in critical states. The 

economic losses instantiated by the spatial evolution of landslides generate huge 

burdens on local authorities and thus slowing the local development of the basin. In 

fact, most local agencies in Mila basin have less experience related to landslides, the 

preparedness and mitigation activities are not running well in many regions, despite 

the abundant landslides. The lack of required data, landslide hazard experts, limited 

budget, lack of reliable susceptibility analyses and the lack of awareness of the local 

government agencies, are some of the reasons why the mitigation and preparedness 

activities are far from adequate. On the other hand, these activities are obsolete in 

order to reduce the effects of the landslides. 

In reality, there’s exist different nation-wide engineering and hazard mapping 

projects initiated during the 80’s such as ZERMOS (Zones Exposées aux Risques de 

Mouvements de Sol et de Sous-sol) and PER (Plans d’Exposition aux Risques 

Naturels) for the sole purpose of implementing hazards susceptibilities (e.g. 

landslides) by local government agencies in POS (Plans d’Occupation des Sols) and 

PDAUs (Plan Directeur d’Amenagement et d’Urbanisme). 
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One of the main purposes of landslide hazard mapping projects (i.e. ZERMOS 

and PER), is to generate landslide susceptibility maps
1
. These maps, depict the 

spatial probability of occurrences of landslides based on an empirical assumption of 

“past and present landslide failures does not occur randomly or by chance, but 

instead failures follow patterns that share common geotechnical behaviors under 

similar conditioning factors”. This means, correlating all landslides related factors 

that may influence the landslide occurrences with the past distribution of slope 

failures. Practically, the only information required is the landslide spatial distribution 

(i.e. geographical coordinates) and landslide class labels (i.e. from the referent 

landslide inventory) and the related conditioning factors. However, in order to 

generate a landslide susceptibility map there exist two possibilities: 

 Consider the already published methods and models. 

 Build and modify a model from scratch to get better-expected results due 

to the fact that the model will be tailored for the study area. 

In spite of that, the chosen mapping method depends on data availability, 

financial budget, time available for monitoring and observing landslides, detailed 

level of the acquired data, scale analysis and the proposed models and methodology 

for assessing and mapping landslide susceptibility [2]. For decades, models and 

methodology that rely on deterministic and expert-knowledge heuristic in geology, 

geomorphology and soil mechanics were the primary focus for understanding 

landslide phenomenology and its generative process. However, as the hazard get 

more complex over the years due to human activities influencing landslides in very 

different and complex ways, large gamut of models that rely computer science and 

statistic are gaining attention in demystifying and understanding the hazard, 

especially, when each case study have its unique set of properties that differ from one 

to another, making the generalization process harder and difficult to achieve. This is 

practically noticeable, as many local government agencies and researchers tried to 

implement classic deterministic and expert-knowledge heuristic methods and models 

for landslide susceptibility assessment in a small and specific area of interest. 

                                                      

1
 Landslide susceptibility maps are used to define the relative degree of instability of the terrain (for 

more detail see Chapter  2). 



 

 Chapter 1: Introduction 3 

However, despite the fact that these models were only implemented for very specific 

case-studies, these models are known to suffer major drawbacks that can be: 

 The relatively high cost. 

 Limited scope and spatial extent. 

 Relying on subjectivity in defining conditioning factors, weights and 

scoring values. These given values were based on either user export-

opinion or taken values from another location. This kind of subjectivity in 

any given model is substantial and heavily depends on the expert’s 

familiarity with the area. 

 Requiring a significant amount of cooperation and advisement of other 

experts in the field. Thus, introducing, an infinite amount of subjectivity 

that can be inconvenient for a preliminary regional assessment and 

planning
2
. 

As a result, the generated landslide susceptibility maps by these methods suffer 

many weaknesses and uncertainties. However, instead of deterministic and expert-

knowledge heuristic methods, statistical-based methods and models for mapping and 

assessing landslide susceptibility, are very useful and convenient for large-medium 

scale analysis as it rely on fact that “previous, current and future landslide failures do 

not happen randomly or by chance, but instead, failures follow patterns and share 

common geotechnical behaviors under similar conditions of the past and the present” 

[3] and only require, collecting and preparing an accurate database (i.e. a geospatial 

database of landslide inventory
3
 and conditioning factors) with maximum details 

available. Then, models based on these methods are trained and validated using that 

database and afterward, the resulting models are used to generate landslide 

occurrence probabilities [4]. 

                                                      

2
 This involve preliminary levels of risk or disaster management, landscape (regional) planning, route 

selection, insurance management and so forth. 

3
 Relying on landslide inventory map to build a landslide susceptibility map is much more convenient 

to determine the overall landslide pattern that site-specific details and/ or expert opinion. 
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1.2 PROBLEM STATEMENT 

This research is picking interest in landslide susceptibility assessment and 

mapping at a study area located North East of Algeria, called Mila basin. This basin 

is well known for the variety of landslides that are (to a certain degree) non-mapped 

due to the unique heterogeneous properties (i.e. geology, geomorphology and so 

forth, that vary dramatically). This dramatic variance of landslides in the basin, in 

terms of spatial repartition and intensity, became a very serious handicap to the 

urban, local, social and economic development of the basin since 1985. Over the 

years, the ever-increasing rate of this hazard is, in particular, increasing the number 

of the element at risk exposed to landslides, especially at urban zones. As a 

consequence, an increase in the economic burden associated with landslides damages 

it became a major issue for the local development
4
. Over the year, these burdens 

trigger a reaction-chain of two separate issues: 

 Stable areas are becoming more expensive for landlord and project 

development. 

 Constructions in inadequate terrains and/or soils increase the overall 

expenses and the project budget by the exposure of such constructions to 

landslide and land instabilities. 

For these reasons, landslide mitigation processes became an absolute necessity 

that mandate assessing landslides susceptibility in a systematic, fast and evolving 

ways using models that are capable of anticipating the overall patterns of this 

phenomena and thus better understanding and evaluating the overall damages and 

maybe future development projects. Despite the several remedial projects that have 

been carried out over the years, the effect of landslides in term of damages is still 

persisting and sometimes even worse due to the fact these remedies actually focus 

on: 

 Treating the symptoms of the landslides instead of the issue itself without 

considering soil's intrinsic properties. 

 Randomly patching site-specific and in-situ related issues. 

 Relying on subjective expert-opinion which objectively incomprehensible. 

                                                      

4
 some local experts refer to it as an economic threat. 
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 Focusing on expensive and classic methods that are limited either in scope 

or spatial and temporal extent. 

Yet, these remedies tend to ignore: 

 The overall landslide patterns behaviors. 

 Recent advancements in computer science and the new innovative state-of-

the-art landslide models. 

Overall, this research will try to implement statistical-based modeling for 

landslide susceptibility assessment and mapping in GIS compatible environment at 

Mila basin as a case study by relying on Machine learning
5
 using state-of-the-art 

Computer Science models and algorithms instead of well documented and elaborated 

conventional and traditional approaches for landslide susceptibility. Moreover, it is 

important to note that this research will focus on the process of modeling and 

assessing the landslides in the study area, whereas landslide phenomenology, 

evolution process, triggering mechanism, landslides conditioning and triggering 

factors are out of the scope of this analysis because of being well presented and 

discussed in number of research literature and investigation campaigns. 

One important research hint is that landslide typologies observed in the study 

were diverse and entirely different
6
, despite landslide occurrences that are mostly 

linked to Tertiary formations. For this reason alone, it was advised to assess only one 

landslide type at a time, and eventually combine these separate assessments later on 

as suggested by Van Westen, Van Asch [5]. Therefore, the focus was substantially 

giving to “slides” landslides. 

1.3 OBJECTIVES 

Resting on the above-mentioned motifs, this research was shaped to meet the 

standardized requirements [6-11] in terms of methodology of data acquisition and 

manipulation, choices of the advanced modeling approaches for landslide 

assessment, as well as the model evaluation techniques, and finally, the visualization 

choices, all via GIS. These objectives could be structured as follows: 

                                                      

5
 This can be considered as one of the most effective methods for solving non-linear geo-spatial 

problems like landslides susceptibility, using either regression or classification. 

6
 Vary from typical deep-seated earth slides, to shallow earth slides and flows, spreads...etc. 
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 Address the shortage in literature for Mila basin in term of landslide 1.

susceptibility mapping through investigating, implementing, assessing and 

comparing prediction capability of advanced statistical-based models such 

as Machine Learning methods and algorithms 

 The production of useful landslide susceptibility mapping and assessment 2.

frameworks with a reproducible and unbiased optimization process and 

exploit the possibility of automating the process of landslide susceptibility 

mapping or landslide mapping by taking advantage of available resources 

at the local agencies and open source community. 

 Standardizing the procedure regarding landslide assessment in the study 3.

area (i.e. acquisition, scaling, pre-processing, optimization, and evaluation 

procedures) by preparing custom and reproducible algorithms for 

specifically the purpose of landslide assessment in the study area using 

GIS. 

 Implementing a variety of known models and techniques that rely on 4.

statistical modeling approaches, but also experimenting with the state-of-

the-art techniques, advanced methods and unprecedented solutions for 

landslide assessment using GIS.  

 Evaluating models performance and the results obtained using the most 5.

appropriate procedures and methods, in favor of gaining a qualitative and 

quantitative descriptors evaluations of the model's performance using GIS 

in combination with statistical tools. 

 Address the issues of availability, visualization, and publishing of the 6.

detailed results in the form of reproducible, reliable, generic landslide 

susceptibility map per each model using GIS, and web-GIS and estimating 

their applicability for better environmental management and for reducing 

the victims and damages caused by future landslide occurrences. 

1.4 THESIS OUTLINE 

The thesis is structured in seven chapters including this introductory chapter, a 

Bibliography, and two Appendices: 
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 Chapter 1 presents a general introduction, followed by the main 

problematic which is the subject of the thesis. The outlined Objectives and 

the initial observations that inspired the research topic were described in 

the same chapter. 

 Chapter 2 reports theoretical background information on landslides 

phenomenology and emphasizes the philosophy, techniques, methods, and 

approaches used for landslide susceptibility assessment and mapping 

processes. A description of the general knowledge of incorporating spatial 

information (GIS) in landslide susceptibility is presented. A special section 

is devoted to the problems and issues encountered in landslide 

susceptibility processes. These issues will be the main concern of later 

chapters that deal with the susceptibility analysis. 

 Chapter 3 presents an overview of the used methodologies to assess the 

landslide susceptibility while concepts and theories used by these 

methodologies are presented and discussed in details. The discussion is 

supported by simple mathematical illustration with landslide susceptibility 

paradigm in mind. These particular algorithms and methodologies were 

employed in the landslide susceptibility process performed in this research. 

The presented details will be used later to understand characteristics, 

behaviors, limitations, advantages, drawbacks, and the predictive 

capabilities of the landslide susceptibility models. This chapter is also 

concerned with the most appropriate techniques employed for searching, 

optimizing, and evaluating hyperparameters and the performance of the 

susceptibly models. In the last part of the chapter, a detailed research 

workflow was intended to provide a practical guide to landslide 

susceptibility assessment and mapping processes. 

 Chapter 4 intended to provide fundamental background information’s 

about the case study (i.e. Mila basin), followed by a description of the 

main characteristics of landslide typology encountered in the basin. Then, 

a geospatial database that was used as an input dataset was discussed in 

terms of reporting and describing the identified landslides hosted in the 

geodatabase along with the relative conditioning factors used to anticipate 

the landslide susceptibility process. 
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 Chapter 5 reports the results obtained at each step of the implemented 

research workflow (See Chapter 3). Discussions with critical reviews and 

comparisons are carried out for the obtained results as recommended by 

the scientific community. The results are used to set out guidelines for 

decision-makers and planners to be able to implement landslide 

susceptibly mapping and assessment effectively. 

 Chapter 6 concentrates on outlining the main achievements the research 

achieved compared to the primary underlined research objectives. 

 Chapter 7 presents general conclusions drawn from this research. It 

specifically comprises a number of guidelines for the landslide 

susceptibility assessment and mapping extracted from the produced results 

and experience gained during the research. Finally, this chapter gives 

suggestions for further researchers that might benefit from this specific 

research topic. 

 The Bibliography includes an extensive list of references. 

 Appendix A reports the repositories used to host the source code used to 

perform the analysis of this research. 

 Appendix B includes a descriptive statistical table for the landslide 

conditioning factors used in research. 
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Chapter 2: Theoretical Background 

In order to present the problematic of this thesis systematically, it is first 

necessary to define and communicate the basic theoretical background behind the 

landslide phenomenology, the comprehension of qualitative landslide assessment, the 

impact of available technologies which is in service of landslide assessment and the 

way in which GIS is enrolled into it. 

2.1 LANDSLIDE PHENOMENOLOGY 

2.1.1 Definitions and Scope 

The term landslide had evolved over the years gaining various interpretations 

and conceptions depending on the scientific discipline or the research-schools. As a 

result, “landslide” as term expresses more or less either specific or general 

phenomena. From the first-person perspective, a general definition (term, conception 

or description) that encompasses the phenomena would be highly feasible and 

recommended as it offers a simple solution, but overall lacking details. Thus, it 

makes it even more difficult to really understand the landslide phenomena. However, 

the abundant information’s on the aforementioned issue is widely available on 

literature reviews and will not serve any particular interest in this research. 

The following paragraphs provide a brief summary explaining, discussing and 

illustrating the essential landslide terminologies used in the multilingual landslide 

glossary, which should (for uniformity of practice) be adopted when classifying and 

describing a landslide to fully comprehend and understand landslide phenomena 

based on Varnes [10], Cruden and Varnes [12], and Cruden and Couture [13] 

definitions and interpretations, which are one of the most broaden and highly 

endorsed landslide interpretations and definitions worldwide by lead scientific 

communities and consortium such as WP/WLI
7
. 

Landslides are denoted as a gravitational (i.e. under the influential of gravity) 

downward and outward mass-movements of different slope-forming materials (i.e. 

                                                      

7
 The International Geotechnical Societies’ UNESCO Working Party on World Landslide Inventory 

(WP/WLI) was formed for the International decade for Natural Disaster Reduction (1990 to 2000). 
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rocks, debris, earth masses (soils), artificial fills or mix of everything), developed 

along predefined surfaces (i.e. stratification joints, schistosity plan, 

discontinuities…etc.), that are widely known as slip-surfaces
8
 (can vary from simple 

geometry such as planar slip-surface to a higher-order geometry resulting in very 

complex slip-surfaces), on which propagate throughout the mass and clearly separate 

intact bedrock material from the moved material above.  

 

Figure  2.1 Nomenclature for labeling the parts of a landslide adopted in Cruden and Couture [13] and 

Varnes [10]. 

Morphologically an ideal landslide consists of (from top to bottom) crown and 

head separated by scrap; the main body, channeled by flanks; foot terminated by a 

toe; depletion zone and accumulation zone capturing upper-lower portions of the 

landslide (Figure  2.1). Landslides develop mostly in slopes either natural or 

engineered and can vary in terms of size and the affected area, which make 

landslides a hot-topic for various fields such as Geology, Geomorphology, 

engineering fields (e.g. Geological, Geotechnical, Civil Engineering), and Computer 

Science [10, 14-18]. Therefore, detailed descriptions and definitions of landslides 

related terminologies, geometries, and dimensions are shown in Figure  2.2 and 

Figure  2.3 and explained in Table  2.1 and Table  2.2, respectively. 

                                                      

8
 Also known as the surface of rupture. 
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Figure  2.2 Description of landslide parts in profile and plan views. 

 (See Table  2.1 for an explanation of the numbers, Source: After WP/WLI [19]) 

 

Table  2.1 Description of landslide parts in profile and plan views. 

No. Material type Description 

1 Crown 
The practically non-displaced material still in place and adjacent 

to the highest parts of the main scarp (2). 

2 Main Scarp 

A steep surface on the undisturbed ground at the upper edge of 

the landslide, caused by the movement of the displaced material 

(13) away from the undisturbed ground. It is the visible part of 

the surface of rupture (10). 

3 Top 
The highest point of contact between the displaced material (13) 

and the main scarp (2). 

4 Head 
The upper parts of the landslide along the contact between the 

displaced material and the main scarp (2). 

5 Minor Scarp 

A steep surface on the displaced material of the landslide 

produced by differential movements within the displaced 

material. 

6 Main Body 

The part of the displaced material of the landslide that overlies 

the surface of rupture (10) between the main scarp (2) and the 

toe of the surface of rupture (11). 
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7 Foot 

The portion of the landslide that has moved beyond the toe of the 

surface of rupture (11) and overlies the original ground surface 

(20). 

8 Tip The point of the toe (9) farthest from the top (3) of the landslide. 

9 Toe 
The lower, usually curved margin of the displaced material of a 

landslide, it is the most distant from the main scarp (2). 

10 Surface of Rupture 

The surface which forms (or which has formed) the lower 

boundary of the displaced material (13) below the original 

ground surface (20). 

11 
Toe of the Surface 

of Rupture 

The intersection (usually buried) between the lower part of the 

surface of rupture (10) of a landslide and the original ground 

surface (20). 

12 
Surface of 

Separation 

The part of the original surface (20) overlain by the foot (7) of 

the landslide. 

13 Displaced Material 

Material displaced from its original position on the slope by 

movement in the landslide. It forms the depleted mass (17) and 

the accumulation (18). 

14 Zone of Depletion 
The area of the landslide within which the displaced material lies 

below the original ground surface (20). 

15 
Zone of 

Accumulation 

The area of the landslide within which the displaced material lies 

above the original ground surface (20). 

16 Depletion 
The volume bounded by the main scrap (2), the depleted mass 

(17) and the original ground surface (20). 

17 Depleted Mass 
The volume of the displaced material which overlies the rupture 

surface (10), but underlies the original ground surface (20). 

18 Accumulation 
The volume of the displaced material (13) which lies above the 

original ground surface (20). 

19 Flank 

The non-displaced material is adjacent to the side of the rupture 

surface. Compass directions are preferable in describing the 

flanks but if left and right are used, they refer to the flanks as 

viewed from the crown (1). 

20 
Original Ground 

Surface 

The surface of the slope that existed before the landslide took 

place. 
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Figure  2.3 Description of landslide dimensions in profile and plan views. 

 (See Table  2.2 for an explanation of the numbers, Source: Based on Cruden and Varnes [12] and 

WP/WLI [11]) 

Table  2.2 Description of landslide dimensions in profile and plan views. 

No. Material type Description 

1 
The width of the 

Displaced Mass 

The width of the displaced mass,    is the maximum breadth of 

the displaced mass perpendicular to the length of the displaced 

mass,   . 

2 
The width of the 

Rupture Surface 

The width of the rupture surface,   , is the maximum width 

between the flanks of the landslide, perpendicular to the length of 

the rupture surface,   . 

3 Total length 
The total length,  , is the minimum from the tip of the landslide to 

the crown. 

4 
Length of the 

Displaced Mass 
The length of the displaced mass,   , is the minimum distance 

from the tip to the top. 

5 
Length of the 

Rupture Surface 

The length of the rupture surface, Lr, is the minimum distance 

from the toe of the surface of rupture to the crown. 

6 
The depth of the 

Displaced Mass 

The depth of the displaced mass,   , is the maximum depth of the 

displaced mass, measured perpendicular to the plane containing 

   and   . 

7 
The depth of the 

Rupture Surface 

The depth of the rupture surface,   , is the maximum depth of the 

rupture surface below the original ground surface measured 

perpendicular to the plane containing    and   . 
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Slopes stability is maintained and determined by the equilibrium of two driving 

forces that act upon the slope. Displacement is irreversible deformation that will take 

place if resisting forces are succumbed by driving forces. The driving forces involve: 

increasing slope weight or shear stress (i.e. via water saturation, adding load or 

rearranging of the slope geometry), loss of support (i.e. via erosion and rearranging 

of the slope geometry) or dynamic influences. On the opposite, resisting forces are 

represented by shear strength and cohesion of slope materials, as well as friction 

along a slip-surfaces, which all further depend on the nature and condition of the 

slope materials
9
, but as well on the slope morphology and geometry (i.e. steepness, 

elevation, curvature etc.). 

Conditioning factors are the feature sets, variables or parameters that may 

influence slopes stability by influencing either directly or indirectly the driving 

and/or resisting forces. These factors are able to provide technical background on the 

landslides occurrences. On the other hand, triggering factors are the feature sets 

(variables or parameters) that once the terms of slopes failure are reached and 

satisfied, the landslide process unfolds under the influence of one of these different 

factors or by their combination. It’s important to note that according to Cruden and 

Couture [13], conditioning and triggering factors are regrouped into four 

categories
10

, i.e. geological, morphological, physical and human-induced factors, as 

given in Table  2.3. However, it may not be mandatory to include all factors in each 

landslide assessment it solely depends on a variety of parameters (e.g. the case study 

where few or more factors can be used), as explained by Soeters and Van Westen [2]. 

 

 

 

 

 

                                                      

9
 Refer to: (a) freshness such as weathering degree; (b) structural elements such as the presence of 

joints and fissures; (c) heterogeneity such as contrasts of water permeability or deformability; (d) 

presence and/or absence of vegetation. 

10
 Only a brief outline is given since description of landslide causal factors is not the focus of this 

study. 
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Table  2.3 A brief list of landslide conditioning and triggering factors. 

Geological Factors Morphological factors 

Plastic weak material Tectonic uplift 

Sensitive material Volcanic uplift 

Collapsible material Glacial rebound 

Weathered material Fluvial erosion of the slope toe 

Sheared material Wave erosion of the slope toe 

Jointed or fissured material Glacial erosion of the slope toe 

Subterranean erosion (solution, piping) 
Erosion of the lateral margins 

Deposition loading of the slope or its crest 

Adversely oriented mass discontinuities 

(including bedding, schistosity, cleavage) 

Vegetation removal (by erosion, forest 

fire, drought) 

The contrast in permeability and its effects 

on groundwater contrast in stiffness (stiff, 

dense material over plastic material) 

Adversely oriented structural 

discontinuities (including faults, 

unconformities, flexural, shears, 

sedimentary contacts) 

Physical factors Human-Induced Factors 

Intense, short-period rainfall Excavation of the slope or its toe 

Rapid melt of deep snow Loading of the slope or its crest 

Prolonged high precipitation Drawdown (or reservoirs) 

Rapid drawdown following floods, high 

tides or breaching of natural dams 

Mining and quarrying (open pits or 

underground galleries) 

Earthquake 
Defective maintenance of drainage 

systems 

Volcanic eruption Water leakage from services 

Breaching of crater lakes Vegetation removal (deforestation) 

Thawing of permafrost Irrigation 

Freeze and thaw weathering Creation of dumps of very loose wastes 

Shrink and swell weathering of expansive 

soils 

Artificial vibration (including traffic, pile 

driving, heavy machinery) 

 

Landslide activity is a high valuable parameter that aids in estimate the current 

state (Figure  2.4 and Table  2.4), style (Figure  2.6 and Table  2.6) and distribution 

(Figure  2.5 and Table  2.5) of the activity of the landslide development process. 

Essential, slopes develop progressively and become cyclical as soon as they enter the 

landslide process, which implicates that the relative displacements are at the highest 

peak during the initial activation and tend to decrease per each reactivation cycle, but 

on opposite side, the frequency of the events increases as a landslide progresses 



 

16  Chapter 2: Theoretical Background 

toward an active stage and therefore it is highly important to estimate the state, style 

and the distribution of their current activity in order to scale the future displacement 

rates. Slopes usually have a life cycle that loop (repeatedly cycle) through the first 

failure stage followed by a reactivation stage, which is separated by suspended and 

dormant stages and this repeats per every cycle until the active stage is reached. 

 

Figure  2.4 Classification of the states of activity of landslides. 

(See Table  2.4 for an explanation of  the numbers and states, Source: after WP/WLI [19]) 

Table  2.4 Classification of the states of activity of landslides. 

No. Activity 

state 

Description 

1 Active An active landslide is currently moving. In the example shown erosion 

at the toe causes a block to topple. 

2 Suspended A suspended landslide has moved within the last 12 months but is not 

active at present. In the example shown local cracking can be seen in 

the crown of the topples. 

3 Reactivated A reactivated landslide is an active landslide that has been inactive. In 

the example shown another block topples and disturbs the previously 

displaced material. 
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4 Inactive11 An inactive landslide has not moved within the last 12 months and can 

be divided into 4 states: Dormant, Abandoned, Stabilized and Relict. 

5 Dormant A dormant landslide is an inactive landslide which can be reactivated by 

its original causes or other causes. In the example shown the displaced 

mass begins to regain its tree cover and scarps are modified by 

weathering. 

6 Abandoned An abandoned landslide is an inactive landslide which is no longer 

affected by its original causes. In the example shown the fluvial 

deposition has protected the toe of the slope, the scarp begins to regain 

its tree cover. 

7 Stabilized A stabilized landslide is an inactive landslide which has been protected 

from its original causes by remedial measures. In the example shown a 

retaining wall protects the toe of the slope. 

8 Relict A relict landslide is an inactive landslide which developed under 

climatic or geomorphological conditions considerably different from 

those at present. In the example shown uniform tree cover has been 

established. 

 

 

Figure  2.5 Distribution of the activity of landslides. 

(See Table  2.5 for an explanation of  the numbers  and distribution terms, Source: after WP/WLI [19]) 

                                                      

11 
State (4) inactive is divided into states (5)-(8). 
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Table  2.5 Distribution of the activity of landslides (Source: after WP/WLI [19]). 

No. 
Activity 

style 
Description 

1 Complex 

A complex landslide exhibits at least two types of movement (falling, 

toppling, sliding, spreading and flowing) in sequence. In the example 

shown gneiss and a pegmatite vein toppled with valley incision. Alluvial 

deposits fill the valley bottom. After weathering had weakened the 

toppled material some of the displaced mass slid further downslope. 

2 Composite 

A composite landslide exhibits at least two types of movement 

simultaneously in different parts of the displacing mass. In the example 

shown the limestones have slid on the underlying shales causing toppling 

below the toe of the slide rupture surface. 

3 Successive 

A successive landslide is the same type as a nearby, earlier landslide, but 

does not share displaced material or rupture surface with it. In the 

example shown the later slide    is the same type as    but does not 

share displaced material or a rupture surface with it. 

4 Single A single landslide is a single movement of displaced material. 

5 Multiple 
A multiple landslide shows repeated development of the same type of 

movement. 

 

 

Figure  2.6 Styles of landslide activity. 

 (See Table  2.6 for an explanation of  the numbers and styles terms, Source: after WP/WLI [19]). 
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Table  2.6 Styles of landslide activity. 

No. Activity 

style 

Description 

1 Complex A complex landslide exhibits at least two types of movement (falling, 

toppling, sliding, spreading and flowing) in sequence. In the example 

shown gneiss and a pegmatite vein toppled with valley incision. Alluvial 

deposits fill the valley bottom. After weathering had weakened the 

toppled material some of the displaced mass slid further downslope. 

2 Composite A composite landslide exhibits at least two types of movement 

simultaneously in different parts of the displacing mass. In the example 

shown the limestones have slid on the underlying shales causing toppling 

below the toe of the slide rupture surface. 

3 Successive A successive landslide is the same type as a nearby, earlier landslide, but 

does not share displaced material or rupture surface with it. In the 

example shown the later slide    is the same type as    but does not 

share displaced material or a rupture surface with it. 

4 Single A single landslide is a single movement of displaced material. 

5 Multiple A multiple landslide shows repeated development of the same type of 

movement. 

 

Landslide classification in accordance with a system (Figure  2.7 and Table  2.7 

- Table  2.8) by combining principally material and movement type, complemented 

with the estimation of the activity state and velocity.  

The existing landslide classification system (is convention based on the 

accordance that every landslide could be classified) rely on the process, morphology, 

geometry, movement type and rate, type of material and activity [12, 13, 20]. The 

most widely used classification scheme was formulated by Varnes [20] and is based 

on combining material and displacement mechanism (movement type), 

complemented with the estimation of the activity state and velocity. The scheme was 

set up according to features that may be observed at once or with the minimum 

investigation, and without any reference to the causes of the landslide. However, 

there are exceptions, which make this system more complex (this is the reason 

behind which the local classifications are occasionally preferred), and encourage its 

further refinement, since it suffers from a certain simplification and subjectivity, just 

as any other classification system [21]. 
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Landslide materials define and describe the type of the displaced material in 

the landslide before it was displaced and they are being classified as follows: 

 Rock is a hard or firm mass that was intact and in its natural place before 

the initiation of movement. 

 Soil is an aggregate of solid particles, generally of minerals and rocks that 

either were transported or were formed by the weathering of rock in place. 

Gases or liquids filling the pores of the soil form part of the soil. 

 Earth describes the material in which 80% or more of the particles are 

smaller than 2 mm, the upper limit of sand-sized particles. 

 Mud describes the material in which 80% or more of the particles are 

smaller than 0.06 mm, the upper limit of silt-sized particles. 

 Debris contains a significant proportion of coarse material; 20% to 80% of 

the particles are larger than 2 mm, and the remainder is less than 2 mm. 

Landslide Velocity is a landslide descriptor that is also governed by material 

type and movement mechanism and can vary from extremely slow (mm per year in 

creep) to extremely rapid (    in debris flows) (See Table  2.7). 

Table  2.7 Landslide velocity scale according to WP/WLI [11] and Cruden and Couture [13]. 

class Description Velocity (    ) Typical velocity 

7 Extremely Rapid             

6 Very Rapid               

5 Rapid                

4 Moderate                   

3 Slow                   

2 Very Slow                   

1 Extremely Slow  

 

Displacement mechanism defines the landslide movement typology, which 

identified according to Varnes [20] into six kinematical distinct types: 
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 Falls starts with the detachment of soil or rock from a steep slope along a 

surface on which little or no shear displacement takes place. The material 

then descends largely by falling, bouncing or rolling. 

 Topples are a forward rotation, out of the slope, of a mass of soil and rock 

about a point or axis below the center of gravity of the displaced mass 

 Slides are denoted by slopes failure along one or more, continuous or 

discrete slip surfaces (i.e. the surface of rupture) where all slope motions 

are parallel to these surfaces. Depending on slip surface geometry, there 

exist two types of slides, transitional and rotational: 

o Transitional slides are failures denoted by one or more planar slipping 

surfaces, along which the slope mass is deformed and usually cease 

into separated units while moving downward (i.e. downslope). The 

transitional slide movement is mostly influenced by weak surfaces 

such as bedding, joints, foliations, faults, shear zones and so forth 

o Rotational slides are unlike transitional slides; develop mostly 

incoherent, fine and/or homogeneous soil formations (i.e. clayey, 

shale, marly soil formations, loamy and sandy formations, weathered 

rocks and soils) along concavely upward curved slip surface in more 

or less rotational movements on an axis parallel to the slope geometric 

contour. This usually results in single, multi or even successive 

rotational slides. 

 Flows can be separated into two categories depending on the displacement 

velocity: 

o Rapid movements of slopes material as a viscous mass on which inter-

granular movements predominately overcome shear surface 

movements. 

o Slow, persisting, and spatially continuous deformation of rocks and 

soils of the slope. 
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 There exists a gradual transition from slow to rapid movements depends 

on various conditions such as water content, materials mobility, and the 

characteristic of the initial movement
12

 . 

 Spreads involve liquefaction of slope materials and overall mass by 

saturating less-coherent sediments to liquefaction (i.e. Liquid state). 

Spreads are mostly an extension of cohesive soil or rock mass combined 

with general subsidence of the fractured mass of cohesive material into the 

softer underlying material. The rupture surface is not a surface of intense 

shear. Spreads may result from liquefaction or flow (and extrusion) of the 

softer material. 

 Composite or Complex involves a combination of one more displacement 

mechanism or failure movement types developed within various parts of 

the slope or at different times. 

 

Figure  2.7 Types of landslides. 

(Source: after WP/WLI [19]). 

                                                      

12
 For example, debris flow develops from existing slumps that usually generated during slopes mass 

failure, while advancing downslope. 
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In the end, by combining the two or more terms the overall classifications 

(Table  2.8) would be, for example, Rock-fall, Rock topples, Debris-slide, Debris-

flow, Earth-slide, Earth-spread…etc. 

Table  2.8. Abbreviated types of landslides according to Varnes classification of slope movements 

[10]. 

Type of movement TYPE OF MATERIAL 

Bedrock Engineering Soils 

Predominantly coarse Predominantly fine 

Fall Rock fall Debris fall Earth fall 

Topples Rock topple Debris topple Earth topple 

Slides Rotational Rock slide Debris slide Earth slide 

Translational 

Lateral spreads Rock spread Debris spread Earth spread 

Flows Rock flow Debris flow Earth flow 

(deep creep) (soil creep) 

Complex Combination of two or more principal types of movement 

 

2.2 SUSCEPTIBILITY, HAZARD, VULNERABILITY, AND RISK 

2.2.1 Definitions and Scope 

Similar to the term landslide the terms hazard, susceptibility, susceptibility 

map, and risk are intuitively similar and interchangeable with linguistically 

flexibilities. Therefore, it is pertinent to elaborate and articulate their meaning in the 

analytical, quantitative framework, which is consistent with the internationally 

approved terminology of Geo-Engineering communities. From this section and 

forward, their international approved terminology and articulation will be used only 

as such in order to avoid any misunderstandings. 

Landslide susceptibility (M) is depicted as “a spatial probability of landslide 

occurrence which analyses and handle the spatial distribution and the magnitude 

estimation of a landslide which may or may not potentially occurs in a given area” 

[7]. The landslide magnitude can be expressed by variant landslide descriptors such 

as total area, volume, relative displacement or velocity...etc. However, the 

susceptibility is explicitly one single component that handles the spatial probability 
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in a purely spatial frame, with no temporal component
13

. This introduces other terms 

as potential complements (sometimes partly match) to the term “landslide 

susceptibility”, such as landslide potential, sensitivity, relative hazard, total landslide 

density and so forth [18, 22].  

Landslide hazard (H) can be explained as “the probability of damaging and/or 

landslide occurrence in given an area within a given period of time resulting in 

temporal-spatial probability which also known as the probability of recurrence (  )” 

[10]. Landslide hazard usually considered as the temporal extension to the space 

component of the susceptibility. This explains the confusion between hazard and 

susceptibility. However, as long as the temporal component is noticeable a 

distinction can be made. 

Using both landslide magnitudes (i.e. area, volume...etc.) and the probability of 

its recurrence (  ), it’s possible to estimate using Equation ( 2.1) [7]: 

        ( 2.1) 

 

Where:   is Landslide hazard;   is the landslide susceptibility (i.e. landslide 

magnitude); and    is the probability of landslide recurrence. 

It should be noted that according to Lee and Jones [18], susceptibility can be 

depicted as a special case of the hazard in form of a single stack of single dimensions 

instead of a stack of dimensions (time-series). 

The Element at Risk (ER) is the ensemble of any entity or component of the 

terrain such as human personal, settlements, goods, equipment, infrastructure or even 

the environment that are potentially affected or endangered by a susceptible 

damaging landslide hazard. It may involve the following (but not everything): 

 Human personal, population, settlements. 

 Goods, equipment and objects of personal property. 

 Infrastructure and engineering artwork-crafts 

 Economic activities,  

                                                      

13
 For example, susceptible slopes will be affected more frequently than less susceptible ones and this 

may change in future. The less susceptible may became more highly susceptible 
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 Public services 

 The surrounding environment and environmental valuables. 

The natural hazard exists only is there exist an element at risk pre-subjugated, 

or exposed to a potentially by damaging natural event or phenomena. However, 

natural phenomena remain natural events and/or phenomena unless there’s an 

element at risk present endangered. 

Vulnerability (V) is the measure of exposure toward the hazard by expressing 

the potential exposure damages, which gives the possibility to quantify the degree of 

loss of an element at risk within the affected or endangered area. Depending on the 

element at risk, the vulnerability can vary spatially, temporally and individually and 

even subtypes could be derived for vulnerability at hand [7, 18]. The vulnerability is 

important parameters to estimate the risk using Equation ( 2.2) [7]: 

       ( 2.2) 

 

Where:   is the risk;   is landslide hazard;   is landslide vulnerability. 

Risk (R) can be formulated using Equation ( 2.2) and it’s denoted as a measure 

of landslide occurrence probability by taking into account the severity of its effects. 

In reality, risk comprehension is difficult to conceptualize considering the fact that it 

resides in the future, especially for planning and decision making processes as those 

require a pre-planning estimation to be able to act upon the risk in advance before 

disasters strike. Additionally, while susceptibility and hazard analysis are not 

influenced by the choice of the element at risk, Risk itself is and could be categorized 

and further segregated into different categories according to the element at risk or 

even the process at hand
14

 [7, 18]. 

Landslide susceptibility map (LSM) contains a subdivision of the terrain in 

zones that have a different spatial likelihood that landslides may occur. The 

likelihood may be indicated either qualitatively (as high, moderate-low, and not 

susceptible) or quantitatively (e.g. as the density in number per square kilometers, or 

area affected per square kilometer). Landslide susceptibility maps should indicate the 

                                                      

14
 For example, decision-making require additional subgrouping such as acceptable, tolerable...etc. 
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zones where landslides have occurred in the past and where they may occur in the 

future and possibly also the run‐out zones. 

Landslide inventory is a collection of landslide features in a certain area for a 

certain period, preferably in digital form with spatial information related to the 

location (as points or polygons) combined with attribute information. These 

attributes should ideally contain information on the type of landslide, date of 

occurrence or relative age, size and/or volume, current activity, and causes. 

Landslide inventories are either continuous in time or provide so‐called event‐based 

landslide inventories, which are inventories of landslides that happened as a result of 

a particular triggering event (rainfall, earthquake). 

All terminology is in accordance with the appropriate conventions
15 

[6-11, 16], 

and due to the nature of the subsumed research work, this thesis will mostly 

concentrate on susceptibility assessment, while the hazard and risk will be only 

speculated by their feasibility for further extensions of the research. 

2.3 LANDSLIDE ASSESSMENT 

2.3.1 Concepts, Principles, and Issues 

Landslide assessment can be denoted as “a systematic process of gathering of 

the available or potential information’s, processing and/or modeling using those 

information’s and formulate (forming) a judgment about landslides in a transient 

work-flow” [18] (Lee & Jones 2004). According to Gerath, Jakob [8] that work-flow 

usually consists of: 

 Initiation (i.e. the definition of the objectives, fundamental details, the 

scale of the analysis, assessment type and study area). 

 Acquisition (i.e. gathering of the required information, data and 

background information).  

 Analysis and modeling (of landslide susceptibility and hazard),  

 Evaluation. 

 Recommending and advising (i.e. usually optional).  

                                                      

15
 WP/WLI 
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 Reporting, publishing, and visualizing. 

Despite the fact the all Landslide susceptibility studies share this common 

work-flow template, the choice of assessment approach remain different due to the 

fact that each case study have its unique set of properties that are different from the 

others such as the aspect of the problematic to be solved that highly influence 

choices like modeling approach, micro-processes and sub-stages of the data 

acquisition and analysis. 

Moreover, landslide investigations and landslide assessment revolve around 

several empirical principles and assumptions articulated in the works of (e.g. 

Chacón, Irigaray [22] and Guzzetti, Mondini [21]) such as: 

 Assumptions: 

o Slope failures do not occur randomly or by chance, but as a result of 

the conjunction of different conditions, governed by different physical 

and Geotechnical processes and behaviors. 

o Landslides leave more-or-less distinct footprints (upon activation or 

after a reasonable period of inactivity) that could be mapped in the 

field or remotely. 

o Similar landslides may similarly and share common results (i.e. 

footprints). 

o Implicitly, conditions that are not taken into account in the model do 

not change systematically in time or space (time-space invariant). 

 Principles: 

o The principle of historical recurrence of landslides implies that the 

landslides share common reoccurring behaviors, patterns, and 

locations of the one that got activated in the past. 

o The principle of uniformitarianism (past and present are keys for the 

future) implies that the slope is more likely to fail under the same 

conditions (that resulted in instability) that led to slopes failure in the 

past, the present or even the future, at other, environmentally similar 

locations. 

o Knowledge of landslides of some areas can be generalized and 

expanded to other areas where similar conditions apply. 
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It is crucial to understand the limitations and conditions under which all these 

assumptions apply, and to single-out special cases and exceptions, to reach a 

common and standardized level for the resulting products: landslide inventory maps, 

landslide susceptibility maps, landslide hazard maps and eventually, landslide risk 

maps. These postulates are approved by conventions [6-11, 16], as well as the 

concepts and methodology which are further to be described. 

2.3.2 Issues in Landslide Assessment 

Data Acquisition Issues 

Hitherto, acquiring data for landslide assessment framework is challenging task 

highly affected by the initial case study definition, i.e. required scale, level of detail, 

landslide size, mechanism type, configuration of the terrain, availability of the 

repositories, and they all bring about specific problematic, precision, accuracy and 

certainty issues and so forth. Data acquisition sources usually classified in 

accordance with the type of investigation, methodology, and technology. However, 

experts, e.g. Guzzetti, Mondini [21], speculate and argue between an old, 

conventional and new methods for data acquisition classifications. 

 conventional methods: 7.

The methods under this category have been established for a long time and 

have been proven in practice, but yet suffer from specific limitations. We have: 

 Mining and/or investigating of the historical records, this one of the early 

and necessary steps of any landslide-related endeavor and usually used to 

get familiar with the facts on the landslides in specific study area and its 

soundings (i.e. geology, geomorphology, climatology, seismicity, land 

Use, history of disasters and so forth.), in order to, encompass a wider and 

better perspective on regional and local conditions in action. Principal 

investigation of historical records includes analyses of historical 

topographic and geological repositories, where applicable. Surprisingly, 

newspaper and diary reports
16

 on disastrous events can also be very 

resourceful, especially for hazard analysis. They can contribute to the 

existing databases but must be treated with caution and criticism in order 

                                                      

16
 Social media in particular like Facebook groups, Twitter...etc. 
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to avoid misconceptions, and where applicable, to be confirmed by other 

plausible resources.  

 Field mapping techniques, albeit this being a viable source of information 

by experts and specialist on slope processes (i.e. geologist, 

geomorphologist or engineering-geologist), it remains confined by the 

practitioner’s observational field of view such as perspective and point of 

view
17

 which make it rather difficult for a reliable interpretation of larger 

landslide sites. There exist a high level of uncertainties behind this process 

as the interpretational subjectivity during map design (estimation of the 

landslide shapes and spread and their compilation at different scales), 

which leaves the final result somewhat uncertain. Despite, this issue can be 

tackled by surveying (i.e. boreholes, laboratory testing, in-situ testing, 

geophysical surveys and probing), but this additional counter-measure 

usually introduces additional expenses and constraints to the research 

budget. 

 Visual interpretation of aerial photographs this method relies on using 

stereoscopic-techniques and equipment which will allow for wider area 

coverage with a better perspective with the possibility of analyzing 

different time series and scales. However, it obvious that it will fail under 

the field of vision obstruction such as vegetation, infrastructural and urban 

objects (especially for shallow landslides and debris flows). Similar to 

field mapping, the subjectivity is highly pronounced and noticeable due to 

the individual visual perception capabilities of the practitioner. Luckily, 

standard guidelines (i.e. criteria for landslide recognition) do exist
18

 , and 

it’s able to limit and reduce these uncertainties to a certain extent. 

 New methods: 8.

                                                      

17
 In the case of larger or older landslides, might be obscured by the urban or vegetation cover or by 

more recent geomorphological entities. 

18
 Criteria for geomorphological landslide signature exist and usually include: shape, size, tone, color, 

texture, and pattern of shadows, pattern of objects, overall topography and setting. It is assumed that 

occurrence of landslides cause’s characteristic optical properties of mentioned elements. 
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 The methods under this category involve novel complicated approaches 9.

complemented by software’s and/or hardware in order to exploit the 

maximum potential, we have: 

o Instrumental monitoring techniques or Field instrumentation (in-situ), 

often known as geotechnical instrumentation, which undergone a huge 

leap of enhancements, benefiting from the technological 

advancements achieved in recent years to achieve near-real-time to 

real-time data acquisition and distribution of In-situ measurements of 

displacements with the highest precision (reaching Millimeter 

precision) providing valuable information’s for the assessment of 

landslide activity such as monitoring the physical parameters of the 

triggering event of landslides. This highly valuable information’s if 

combined with real-time data distribution, it possible to develop an 

Early-Warning Systems, crucial for the suppression and mitigation of 

the landslide risk. The major drawback is the equipment cost, together 

with the installation and maintenance requirements, and localized 

information, rarely transferable from one study area to another. 

o Contemporary Remote Sensing techniques (RS), from the most recent 

perspective, RS was the result of the high technological advancements 

achieved in satellite technologies thought several Earth Observation 

programs missions. These missions involve global coverage by multi-

channeled sensors, (i.e. multispectral and hyperspectral sensors for 

visible), infra-red, thermal spectral, as well as microwave sensors with 

unprecedented precision of spectral, temporal and spatial resolution 

reaching sub-metric resolution allowing near-real-time tracking of 

surface deformation and promoting surface-based to sub-surface-

based monitoring at desired temporal frequency (i.e. temporal 

resolution). Thus, allowing gaining more diverse details on the 

geological and physical conditions of the terrain at hand. 

o Benefits of using RS techniques in landslide assessment are multiple, 

including, but not limited to: 

o Synoptic view,  

o Geo-referenced data, 
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o Lower expense of research, 

o Encouraged raster modeling approach, 

o The possibility of quantitative modeling method implementation 

(pixel and object-based classifications implementation, 

o Pixel and object-based classifications through a combination of 

advanced statistics and Machine Learning with GIS) and therefore 

reduced subjectivity in design, the possibility for urgent response and 

Early-Warning Systems for disastrous landslide events, even enabling 

on-screen visual 2-3D analysis, via special hardware and/or software 

configurations [21]. 

o Special attention in the most recent technology is drawn by the 

unmanned vehicles and micro- vehicles, which are capable of 

producing high-resolution imagery at extremely low cost. 

o Limitations, on the other hand, are mostly technical:  

o Unavailability of the specific sensor at the site (particularly, pricey 

and rare airborne and/or terrestrial LiDAR and SAR data),  

o The relatively short operational history of RS programs (only several 

decades, through which the data are not entirely consistent in terms of 

resolution and other technical features), and therefore limited 

applicability for temporal (hazard) framework. 

 Surveying is rather experimental for now despite equipment’s has 

experienced faster acquisition time with sufficient precision and tends to 

provide improvements from several aspects. Mostly via Global Navigation 

Satellite System (GNSS) and synergy of Photogrammetric and high-

resolution optical imaging (terrestrial, airborne and satellite). A huge 

benefit for such a method is allowing very precise systematic surveys by 

easily assembled alongside the standard in-situ instrumentations. Despite 

being experimental, the main drawback or limitation of this method
19

 is 

being highly dependent on the terrain physiographic condition (i.e. 

configuration and setting, screening by vegetation cover and urban 

                                                      

19
 In the context of surveying framework. 
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objects), and the engagement of the practitioner, making it time-

consuming, resource-intensive and terrain specific (change this). 

It is probably the most advisable to combine as many of the acquisition 

techniques as possible and never to rely entirely on a single one. Those older, 

conventional methods, especially aerial photography interpretation, are not to be 

neglected among acquisition techniques and should be cherished in the landslide 

assessment practice [21]. Novel techniques, which are developing toward automatic 

(semi-supervised) landslide mapping, will hardly reach sufficient levels of certainty 

since they face different, non-compensable limitations, unlike visual, expert-driven 

interpretation. 

Modeling Approach Issues 

Once the data are fully prepared and preprocessed (i.e. selection and structure), 

they fed directly the proper modeling method. However, the choice of the method 

strongly influences the quality and type of outcomes. Based on the model’s 

predictability we can separate models into two distinct and different cases:  

 Predictive models are the type of models that are generally based on non-

linear supervised classification problems upon spatial and/or temporal 

references (i.e. spatial and/or temporal conditions) that can be related to 

past landslide occurrence (and even several generations of past 

occurrences) within given area to predict future events occurrences and 

localize endangered susceptible zones. These models usually require 

fulfilling general assumptions principles and to apply noted in (see the 

postulates in Chapter  2.3) and specific structure and type of the input data 

such as the availability of thematic preferences called variables or 

conditioning factors and reliable landslide inventory or multi-temporal 

inventory. Even though the resulting model provides numerical, i.e. 

quantitative measurements (usually in form of spatial and/or temporal 

probability of occurrence), relative scoring is yet preferred due to many 
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assumptions that trouble the quantitative way of expressing the landslide 

susceptibility, risk or hazard
20

.  

 Non-Predictive models, this kind of models are very different than 

predictive models as they tend to spatially analyze the relationships among 

the different thematic variables and analyze their overall influence and 

contribution to the landslide susceptibility, hazard or risk by figuring out 

the relation between the condition factors and the landslide occurrence in a 

statistical manner using various statistical relations and methods. These 

models are very simpler, i.e. less computation cost and time compared to 

predictive techniques, but comes up with quantified values of the 

individual impact of each factor. However, these methods tend to decrease 

the certainty by surpassing some of the assumptions that are commonly 

made in the predictive modeling, as they tend to introduce additional 

uncertainties through the data preparation, due to empirical and/or 

arbitrary rearrangement of the raw data (slicing, ranging of continuous 

data into intervals, transforming the data, quantifying non-numerical data 

and so forth). The most important advantage of this approach is the 

quantitative nature, which is relatively easy for comprehension to non-

landslide experts, planners and decision-makers [6]. 

One can alternatively discuss the modeling choice and briefly the problems that 

come with it by accommodating a more conventional perspective. For example, 

based on the method of treating and handling the landslide assessment, we can 

denote: 

 Direct methods are the expert-opinion-driven approach that relies on 

expert evaluation of the direct relationship between conditioning factors 

and landslides occurrences during a survey campaign on the site of failure.  

 Indirect methods rely on mapping and analyzing a different set of 

conditioning factors and their relative contribution to the occurrence of 

                                                      

20
 Some assumptions are taken into account but some of the uncertainties usually remain 

unconsidered, and it is therefore disputable to measure susceptibility and/or hazard in absolute 

quantitative scale. 
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slopes failure resulting in a relationship between the landslide condition 

factors and landslides occurrences. 

In reality, is a combination of both methods is made in order to determine the 

conditions under slopes failures occur. However, the most usual classification of the 

methodological model approaches (Table  2.9) is the following: 

 Heuristic or Expert-driven approach is an expert’s opinion-driven 

approach of weighting conditioning factors that relate to a landslide 

inventory in order to determine landslide zonation. The weighting process 

is achieved through the hierarchical leveling process of the landslide 

conditioning factors [23]. Usually, this process is a combination of direct 

mapping analysis and qualitative map combination. The former, determine 

the susceptibility straightforward in the field which is based on individual 

experience. The Latter, experts use their knowledge to determine the 

weighting value for each class parameter in each conditioning factor. 

 Physically-based or Deterministic approach, highly focus on quantitatively 

generating an index called “stability index” by calculating the “safety 

factors”. This involves some complicated evaluation of safety factors that 

required detailed measurement of a handful of parameters that influence 

slopes. On top of the measurement being in-situ specific, the calculation is 

made on the assumption that whole research area is moderately 

homogeneous and the existing landslide types are simples making this 

approach relatively in-situ specific and only validate over small areas [24]. 

 Overall, the deterministic approach in landslide assessment has been 

pioneered relatively early by Montgomery and Dietrich [25] and there 

have been several succeeding developments involved. They all gradually 

perplexed the model and introduced more variables, by decreasing the 

number of approximations, but their reach inapplicability has been 

disputed, i.e. limited to a very specific, homogeneous ambient and 

conditions, very rarely present in actual terrains. 

 Statistical approach is rapidly evolving and expanding in terms of 

producing an objective landslide hazard assessment [26]. Methods and 

models based on this approach are based on the assumption that “previous, 
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current and future landslide failures do not happen randomly or by chance, 

but instead, failures follow patterns and share common geotechnical 

behaviors under similar conditions of the past and the present” [3], which 

require, collecting and preparing an accurate database, i.e. a geospatial 

database consist of an inventory map of past and present landslide 

occurrences and set and/or combination of conditioning factors, with 

maximum details available. Then, models based on these methods are 

trained and validated using that database and the resulting models are used 

to generate landslide occurrence probabilities in order to forecast the future 

landslide’s areas using past and present landslide occurrences [2, 4]. 

Unlike other landslide assessment approaches
21

, statistical approach, in 

particular, is able to extracts and obtain a relationship that relates landslide 

occurrence to the conditioning factors very efficiently for large scale 

analysis (depending on data availability it may relate the values, 

distributions, aggregations and other data features), which introduce an 

objective prognostic dimension to the implemented model
22

, especially if 

an advanced methods such as Machine Learning (ML) is implemented 

which, can introduce more depth to statistical approach by incorporates a 

broad range of complex learning procedures that are effective in solving 

problems of landslides such as susceptibility assessment. This modeling 

capability can be highlighted in three main areas [27]: 

o The system’s deterministic model is computationally expensive and 

ML can be used as a code accelerator tool. 

o There is no deterministic model but an empirical ML-based model can 

be derived using the existing data. 

o Classification problems. 

 Despite that, it is critical to understand that with recent advancements in 

computer science in the last decade or so, it became much difficult to 

subcategorizing ML under a more general approach such statistical 

approach as the boundaries became more blurry due the fact the ML model 
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 As explained in Chapter  2.3.2. 

22
 Although the prognosis only spatial and not temporal. 
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became interdisciplinary and built on many different concepts, such as 

probability and statistics, artificial intelligence, information theory, as well 

as philosophy, psychology, neurobiology and so forth [28-30]. As this 

debate is totally out of the scope of this thesis research as it depends on the 

field and the problem to solve. However, for Geoscience problems in 

general and landslide susceptibility assessment problems in particular, ML 

are still considered under the umbrella of statistical approach, due to the 

common requirements, limitations and more importantly the lack of clear 

evidence in literature about ML singled-out as a separate independent 

approach by itself or even deserves a slightly higher hierarchical position 

among the other approaches. 

Table  2.9 A brief summary of the available landslide assessment modeling approaches. 

Modeling 

approach 
Description Summary 

Heuristic or 

expert-driven 

Use thematic data (variables such as geological, geomorphological, Land 

use, infrastructure and so forth) and suffer from uncertainty related to the 

subjectivity of the practitioner in both, data preparation and modeling 

itself rending the approach more of “opinion-oriented”23method. 

Statistical 

They can suffer from uncertainty due to the data preparation, but the 

tendency of using advanced techniques, such as Machine Learning 

algorithms, might be helpful due to their capability of canceling-out 

these sources of uncertainty. 

Physically-based 

or Deterministic 

Regard only the simplest mechanisms and introduce numerous 

assumptions into the modeling [25], thus their uncertainty is relatively 

high. In regional scales implement such an approach is not feasible. 

 

In respect to the preceding passages, only heuristic approach methods can be 

qualified as a direct method (it can be an indirect method but to a limited extent). On 

the other hand, only statistical approach methods can be qualified as a predictive 

approach, but could also be enlisted among non-predictive, while the remaining three 

only qualify as non-predictive approaches. Only statistical approach based methods 

seems to be a viable option to use, especially the more advanced (predictive) models 

such as ML turn out to be the most promising and least limited for the exploration 

because physical-based models are capable of delivering the highest prediction 

                                                      

23
 The main problem of this approach is in determining the exactly weighting value. 
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accuracy require a fair amount of detailed data information’s to provide reliable 

results, which is unbelievably expensive and heuristic or expert-driven approach is 

limited and very controversial as it requires expert-opinion, which make the model 

unreliable due to uncertainties and subjectiveness.  

GIS Issues 

During the past few decades, a huge advancements and improvements were 

achieved in computer science, specifically, the computational capabilities making 

GIS more affordable and widely available, especially, when GIS offers more to the 

plate by introducing new unparalleled tools and possibilities for better data 

manipulation and advanced modeling opportunities such as surface features 

extraction (e.g. morphometric evaluation) and creation of novel thematic spatial 

layers, unachievable through conventional and analog practices [31]. This can be 

particularly handful, in large scale landslide analysis
24

 as opposed to site-specific 

analysis
25

.  

This breakthrough in GIS, in particular with the continuous evolution of raster 

formats
26

 led to numerous advanced GIS platforms and modules that speed up the 

process of implementing and introducing newer novel advanced and hardware-

demanding algorithms and techniques such as ML algorithms. These frameworks 

and/or modules are so beneficial as they guarantee the option of working under the 

familiar environment for the single practitioner or assembling a cross-disciplinary 

team of practitioners which result in ensuring better communication, better 

interoperability, better results and eventually extending the overall analytical power 

(of the team). One of the main benefits of GIS is the ability of visualization of both, 

the input data and the resulting models making landslide related information’s 

became much better disseminated and visualized by offering the possibility of not 

only visualizing locally dense spatial information’s in multidimensional 2/3/4-D 

                                                      

24
 Where some conditioning factors are preferred than others as they fully benefit from GIS 

capabilities, e.g. geology, altitude derivatives, landuse...etc.), as opposed to site-specific analyses. 

25
 Because geotechnical parameters are required and sampled through a series of instrumental 

measurements and laboratory tests, it doesn’t not fully benefit from GIS capabilities, 

26
 Made a major breakthrough for implementation of these advanced methods due the fact that raster 

formats are analyzable, synthesizable, decomposable, combinable, scalable, in other words, fully 

spatially operable 32. Bonham-Carter, G.F., Geographic Information Systems for geoscientists-

modeling with GIS. Vol. 13. 1994: Elsevier BV. 398-398.. 
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displays but also the possibility of implementing and using global web-GIS systems 

(i.e. Google Earth, Bing Maps,...etc.) or local GIS portals
27

 [21]. Moreover, the 

possibility of performing geostatistical analysis and database pre-processing in a 

GIS-ready environment helps in determining the relationship between slope failures 

and conditioning factors that used to generate landslide susceptibility maps. 

Furthermore, the usage of different data resources, types and scales introduces 

a lot of issues concerning data quality and compatibility. Thus, makes the process of 

fitting the data for research with specific interest difficult to achieve. Combined with 

the increasing “user-friendliness” of GIS platforms and modules that tend to neglect 

the input data quality issues and rather focus on introducing complex and 

sophisticated data manipulation and model implementation [31]. In reality, no matter 

how the data manipulation or modeling technique became sophisticated, they can 

never truly compensate for the inadequate scale and quality of the input data, due to 

an intrinsic error that is continually replicated within the model. On the other hand, 

data availability and open-source policies are one of the most significant issues in 

research budget design, and lack of affordable data could lead to decreasing in the 

assessment quality, but this is rather financial than a scientific issue to discuss. 

Other Issues 

Despite, the most critical concerns in the landslide assessment framework are 

discussed in the past couple of preceding passages, there is still a suffice of other 

issues in landslide susceptibility assessment problematic, ranging from scientific, 

practical, technical, to social speculations. For example, uncertainty is definitely one 

of the critical issues for reliable landslide models as it can be related to the data, the 

modeling procedure and approach choices event from the case study local 

environmental conditions (i.e. real-world conditions). The former two were partly 

discussed before (see Chapter  2.3.1 and  2.3.2), but some specific details are to be 

emphasized: 

 Fuzziness and randomness are technically omnipresent in the input dataset 

and can be highly pronounced in noised, biased or skewed dataset resulting 

in introducing more uncertainties to the overall uncertainty of the landslide 

susceptibility model. Fuzziness is known for adding local imprecision, 
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 Usually portals of governmental agencies and administrations. 
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while randomness prevents generalizing the regular landslide patterns 

available in the input data distribution. 

 Incompleteness depends on the level of oversimplification in the modeling 

stage. As an example, landslide assessment relies on many fundamental 

assumptions (see the postulates in Chapter  2.3) that highly subjugated to 

different degrees of simplification
28

. Additionally, the inclusion and/or 

exclusion of unimportant conditioning factors in the input dataset highly 

affect the incompleteness. Yet this issue is inevitable from a technical 

standpoint, because till during date, no agreement on whether any data 

shall be excluded, even if biased. On the other hand, some data are not 

excluded on purpose, but due to the lack of resources for the 

corresponding phenomenon or it is simply unforeseen as a pertinent factor 

by mistake or insufficient knowledge [5, 31, 33]. 

 Environmental or real-world uncertainty, are theoretically unpredictable as 

it involves various consequential actions in the past, present or future 

either consciously, subconsciously or unconsciously of different entities 

such as agencies, administrations, public, private, collectives, or 

individuals that may directly or indirectly drive even high-quality 

predictions off the course [18]. 

Another peculiarity due to the resourcefulness of the data comes along with the 

rising popularity of RS products in landslide assessment. Usage of raw products is 

the easiest but irresponsible solution since each one of them contains intrinsic noise, 

which foremost requires determination of its type, quantity, and propagation. 

Subsequently, noise filtering is managed through image preprocessing, i.e. pan-

sharpening, ortho-rectification, co-registration, and radiometric correction, in this 

respective order [34]. Working with initial noise is qualified as a systematic error and 

will affect, perhaps even sabotage the model. However, that leads to a very important 

issue that is concerning obtaining reliable landslide susceptibility maps is the quality 

check of input dataset and output results. Data quality check is obviously the first 

step, particularly due to the plenitude and abundance of resources that limit the 

possibility of standardizing and objectifying the quality check. Carrara and Pike [31] 

                                                      

28
 Highly noticeable in the deterministic approach models. 
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suggest at least two basic quality check requirements should be met for successful 

landslide susceptibility modeling: 

 The appropriate strategy for model performance evaluation. 

 The actual valorization of the model. 

In the end, most of the times practitioners are more involved in their modeling 

choices in order to suit the universal circumstances by assuming that the best model 

is the most complex and robust one [5, 31, 33]. Instead, the above-mentioned result 

and data quality check might be an apt response to the particular problem posed 

before them. 
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Chapter 3: Methods & Procedures 

This chapter is structured into several sections that will focus and depict 

different methodologies and their implementation at different stages of the research, 

i.e. conditioning factors analysis methods, landslide assessment methods, resampling 

strategy methods, model optimization and tuning methods and model performance 

evaluation methods. 

Instead of a general style that could be found elsewhere, in various textbooks 

and articles, this chapter is explaining these different methods in the light of the GIS 

landslide assessment, using respective examples and descriptions, which brings the 

topic closer and more comprehensible, especially outlining the unique features of 

each model and technique used in this research with a specific attention to landslide 

susceptibility paradigm. Furthermore, a special section is devoted to the research 

workflow at the end of this chapter, in order to present and describe additional details 

of the used methodology. 

3.1 CONDITIONING FACTORS ANALYSIS METHODS 

This section of methods is featuring Objective 3 (see Chapter 1.3). 

It’s widely disputable whether a conditioning factor is actually contributing to 

the landslide susceptibility model by enhancing it or biasing it. To solve such an 

issue usually attribute screening or optimization is the perfect candidate for such a 

problem, especially is it’s done correctly
29

. For that reason, Pearson Correlation 

Coefficient analysis and Variable Inflation Factor analysis was opted for this case 

study, for the purpose of evaluating, demonstrating and highlighting the suitability of 

the underlying assumption used to select the conditioning factors based on the non-

independence among factors
30

 and exclude, if exist, the problematic conditioning 

factors. 

                                                      

29
 It is arguable whether it should be used, especially in multivariate framework. 

30
 Mostly to prove their statistical independency to the landslide inventory. 
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3.1.1 Pearson’s Correlation Coefficient 

Pearson’s correlation coefficient (PCC), also referred to as the Pearson 

Product-Moment Correlation Coefficient (PPMCC) or the bivariate correlation, can 

be denoted as the covariance of each pair of conditioning factors divided by the 

product of their standard deviations. For each given paired data 

〈                 〉 consisting of   pairs, the PCC is defined according to Equation 

( 3.1) as: 

      ∑
   

√∑        
   

 
   

√∑        
   

 

   

 ( 3.1) 

 

Where:     is the sample correlation coefficient (also known as the sample 

Pearson Correlation Coefficient);   is the sample size;       are the individual 

sample points indexed with  ;   
 

 
∑   

 
    (the sample mean); and analogously 

for  . 

The obtained values of PCC indicate the extent to which two conditioning 

factors   and   are linearly related. This value varies between -1 and 1. A value of 

      indicates there’s is a total positive linear correlation that implies a linear 

equation that describes the relationship between   and   perfectly, with all data 

points laying on a line for which   increases as   increases. On the other hand, a 

value of        indicates there’s a total negative linear correlation, which 

implies that all data points lay on a line of which   decreases as   increases and 

value of       implies that there is no linear correlation between the two 

conditioning factors. Generally, note that       if and only if   and   lay on the 

same side of their respective means. Thus, the correlation coefficient is positive if   

and   tend to be simultaneously greater than, or simultaneously less than, their 

respective means. The correlation coefficient is negative (anti-correlation) if   and   

tend to lie on opposite sides of their respective means. Researches widely agree that 

        which indicates a high correlation between each pair of data [35]. 

3.1.2 Variance Inflation Factor 

The Variance Inflation Factor (VIF) is the ratio of variance in a model with 

multiple conditioning factors, divided by the variance of a model with one 
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conditioning factor alone. It quantifies and then detects the severity of 

multicollinearity in regression analysis. The VIF estimates how much the variance of 

a regression coefficient is inflated due to multicollinearity in the model according to 

Equation ( 3.2): 

      
 

    
  ( 3.2) 

 

Where:    is the R-squared value and   is the predictor of interest (i.e. 

conditioning factor). Some statisticians suggest using the tolerance (TOL) instead of 

VIF, where TOL is: 

      
 

    
     

  ( 3.3) 

 

VIF values range from 1 to   , and according to Marquaridt [36] VIF values 

can be interpreted as not correlated variables if       ; moderately correlated 

variable if         and highly correlated variable if      . Predictors or 

conditioning factors with       are not safe to use and highly indicate a severe 

multicollinearity [35-38]. 

Sometimes, there’s no reason for concern at all if VIF is too high. For example, 

you can get a high VIF by including products or powers of other variables as 

conditioning factor, say   and   . Usually, dummy variables representing categorical 

variables with three or more categories show high VIFs, but those are usually not a 

problem. However, if VIF is regarded as being too high for variables, the solutions 

are to: 

 Obtain more data, so as to reduce the standard errors. 

 Use techniques designed to work better with high VIFs, such as Shapley 

regression (note that such techniques do not actually solve the VIF 

problem but instead ensure that the estimates are more reliable, i.e., 

consistent). 

 Obtain better data, where the predictors are less correlated (e.g., by 

conducting an experiment) 
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 Recode the predictors in a way that reduces correlations (e.g., using 

orthogonal polynomials instead of polynomials). 

3.2 LANDSLIDE ASSESSMENT METHODS 

This section of methods is featuring Objective 4 (see Chapter 1.3). 

Landslide assessment methods used in this thesis and to be presented in detail 

involve numerous statistical techniques with a particular focus on the ML techniques. 

First of all Machine Learning (ML), represents an emerging field of computer 

science which studies computer algorithms that improve automatically through 

experience [28-30]. Technically, ML models and algorithms
31

 are considered 

“universal approximators” that learn from machine-readable data in order to provide 

multivariate, nonlinear, nonparametric regression or classification analysis. This 

imply that ML-based models are capable to learn the underlying patterns and 

behaviors of a system, i.e. landslides susceptibility, from a one or more sets of 

constructive comprehensive examples that cover the input space (i.e. input dataset) 

called “training dataset” and validate these models against a completely independent 

random subset of the input dataset. Thus, it makes ML as one of the most effective 

methods for solving non-linear Geo-spatial problems like landslides susceptibility 

using either regression or classification. This learning concept is different than any of 

the mentioned modeling approaches (as explained in Chapter  2.3.2), 

Since ML-based models thrive on the benefits of statistical elements and 

depend on the statistical approach foundations. Therefore, it is necessary to acquire a 

significant number of conditioning factors to obtain reliable results. So this makes 

ML models capable of introducing an objective prognostic dimension
32

 to the 

implemented landslide susceptibility model, and depending on the model, it may 

empower some additional predictability to the spatial domain. After all, ML has 

proven to be ideal for addressing large-scale analysis problems where theoretical 

knowledge about the problem is still incomplete [27], especially when prior 

knowledge about the nature of the relationships between the input data and 

                                                      

31 
For example, neural networks, support vector machines, self-organizing map, decision trees, random 

forests, case-based reasoning, genetic programming…etc.
 

32
 Although the prognosis only spatial and not temporal. 
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conditioning factors are not required by the ML-based techniques. That being said, in 

a perfect situation where we had a complete theoretical understanding of landslides, 

ML would be superfluous. 

In literature, several studies have been able to implement and compare ML 

models in landslide susceptibility modeling. Nevertheless, no solid agreement about 

which method or technique is the best for landslide-prone areas prediction has been 

identified [31]. Thus, the prediction accuracy of landslide modeling is influenced by 

not only quality of landslide inventories and influencing factors, but also the 

fundamental quality of the ML algorithm used [4, 39-41]. Therefore, assessing and 

comparing the prediction capabilities of advanced ML methods for landslide 

susceptibility should be carried out. 

3.2.1 Learning Problem 

There’s exist a plethora of algorithms, models and hybrid combinations of 

these techniques, that can be successfully implemented in ML to predict landslides 

and even understand the triggering mechanism behind it due to the modeling 

capabilities offered by ML. Yet, that depends on the learning problem (or task) at 

hand. This can be clustering, classification or regression. Herein, for landslide 

susceptibility analysis the learning problem is strictly classification issue which 

limits the possibilities only to classification-related algorithms that are capable to 

produce classification models. 

First and foremost, explaining the learning problem in more comprehensive 

mathematical details helps in illustrating the landslide assessment framework. This 

will be crucial as it will be helpful in taking full grasp of the upcoming descriptions 

about the different ML algorithms. Essentially, the learning problem in the landslide 

susceptibility analysis framework is an automated procedure that assumes that after 

the initial acquisition of the necessary spatial data, i.e. input dataset, a set of data 

(from the input dataset) that represent the study area called “training dataset” is fed 

to a model that rely on supervised learning approach in order to learn landslide 

patterns in the representative training dataset of study area by relating the learning 

instances found in the training dataset, i.e. landslide presence, and the set of 

conditioning factors prepared for the case study. Afterward, the model generates a 

learning rule that can be extrapolated to the rest of the study area and thus resulting 

in an automated prognosis of the spatial distribution of landslides. 
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That being said, it is necessary to assume that the input data, i.e. appropriate 

conditioning factors (geological, morphometric, environmental) and the referent 

landslide inventory map, are presented in a 2-D raster format. The inventory is used 

as a reference in the evaluation process of the models. The input rasters are spatially 

overlapped in the way that each grid element (i.e. pixel), represents a data instance at 

a given point location in the study area. This obviously initiates a classification task 

classifies that classifies and assigns each pixel into an appropriate landslide category 

using the conditioning factors values associated with that pixel. The task applicable 

only to the remaining area usually called the testing area (the area that has not been 

assessed by an expert). 

To simply things up, if ML models rely on an input of 2D rasters that represent 

the conditioning factors and the referent landslide inventory map
33

 (as required by all 

statistical-based approach methods), so by overlapping the set of conditioning factors 

on top of each other along with the inventory map, it is possible to obtain grid of 

pixels, that for each pixel have set of data instances at given point in the study area. 

This will be the foundation for the supervised classification task that will classify 

each pixel to the appropriate landslide category class
34

 based on the learned landslide 

patterns
35

 from the training dataset. Then, the generated model is used to predict the 

remainder of the study area
36

. Therefore, the corresponding learning problem could 

be formulated mathematically as follows: 

Suppose         , where   are all pixels instances extracted from all 

conditioning factor rasters for the study area and   an n-dimensional real vector of 

               and    represents the value of the     conditioning factor 

associated with the pixel   . Further, let               be the set of   disjunctive, 

predefined landslide classes
37

. A function         is called a classification if for 

                                                      

33
 Hypothetically required, only during the training stage, but also required as a reference during the 

validation stage (i.e. model performance evaluation). 

34
 Depending on the underlined objectives of the landslide susceptibility analysis, landslide classes 

and groups can vary according measurement, activity, state etc....In this case study its binary of “Yes” 

or “No” for landslide presence and absence, respectively. 

35
 Patterns learned from the data instances sets of each landslide pixel. 

36
 Unseen data usually called testing data or area. 

37
 In binary classification (similar to this case),    . 
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each     it holds that          whenever a pixel   belongs to the landslide 

susceptibility class   . If,        is the training set and       testing set, then the 

learning problem (ML model) has the objective to approximate a function  ̂  using 

only the samples instances available in the training set        and a specific learning 

method to approximate as closely as possible to a real, unknown function   . 

3.2.2 Learning Methods 

As mentioned before, ML includes a variety of algorithms and over the last 

decade or so, there has been considerable progress in developing ML-based 

methodologies for many of landslide susceptibility modeling. In fact, in this thesis, 

some advanced state-of-the-art methods and techniques and models regarding 

landslide susceptibility will be presented hereinafter. Furthermore, models and 

methods are presented to demonstrate the efficiency of ML for tackling the landslide 

susceptibility assessment problems. 

Random Forest 

Random forest (RF) is an ensemble approach of decision trees such that each 

tree fits a data subset sampled independently using bootstrapping [42, 43]. In fact, 

RF is able to perform binary classification tasks by growing trees using an input 

vector or dataset. Each tree provides a “vote” for either as “Yes” or “No” class. 

Then, the final classification decision is voted based on overall forest trees votes. 

Yet, the rationale behind trees growing process is rather simplistic. If by assuming 

that   is the number of cases in the training set;   is the number of variables or 

conditioning factors available in the input dataset and   is the number of variables
38

 

drawn randomly out of  , only if “   ” is satisfied. Then, the training sets for 

growing the trees are generated by bootstrapping the original input dataset (i.e. 

random sampling with replacement) to obtain   sample cases, which will ensure 

growing each tree to the fullest and largest extent. Therefore, “no pruning” will be 

available during the trees growing process [44]. 

As mentioned above, Bootstrapping [45, 46] formulate a fundamental building 

block for RF, that can be defined as: “a general-purpose sample-based statistical 

method in which several (non-disjoint) training sets are obtained by drawing 

                                                      

38
 Held constant during the forest growing. 
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randomly, with replacement, from a single base dataset” [47], where the general 

procedure is described in Algorithm  3.1. 

Algorithm  3.1 Bootstrap procedure for classification 

 

Using Bootstrap on input dataset of   samples, the probability of each instance 

being selected is    , this implies that after   draws a given instance have the 

probability        not being selected (following Equation ( 3.4)), which mean that 

each sample contains roughly       of the instances [47]. 

    
 

 
                 ( 3.4) 

 

In literature, RF is able to provide a robust error rate with respect to outliers in 

predictors due to features random selection at each split node by depending on two 

data objects namely, Out-Of-Bag (OOB) and proximities [44]: 

 OOB data is used to get both variable importance estimations and an 

internal unbiased OOB error (the classification error) as trees are added to 

the forest, while bagging is used to randomly select samples of variables as 

the training dataset for model calibration. For each variable, the function 

determines model prediction error if the values of that variable are 

permuted across the OOB observations [48]. 

 Proximities, on the other hand, are used to replace missing data, locating 

outliers, and producing illuminating low-dimensional views of the data and 
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can be only calculated only after each tree is fitted on for each pair of 

cases then normalized by dividing over the total number of fitted trees [42, 

44, 49]. 

In the original paper on RF, it was shown that the forest error rate depends on 

the correlation between any two trees in the forest and the strength of each individual 

tree in the forest
39

. As a result, reducing   reduces both the correlation and the 

strength. Increasing it increases both. Somewhere in between is an “optimal” range 

of  . Using the OOB error rate, a value of   in the optimal range can quickly be 

found. This is the only adjustable parameter to which random forests are somewhat 

sensitive. 

Gradient Boosting Machine 

Gradient Boosting Machine (GBM) or simply Gradient boosting is an 

ensemble of weak learners (WL)
40

 typically regression trees or decision trees, that 

cast boosting as a numerical optimization problem by adding weak learners using a 

functional gradient descent associated with the whole ensemble to minimize the loss 

function [51-55]. The rationale behind GBM is that the learning process 

consecutively introduces weak learners using a functional gradient descent in a stage-

wise additive approach sequentially allowing the algorithm to enhance the overall 

accuracy simply by readjusting previous error terms when new weak learners are 

added [54]. Thus, it makes GBM particularly attractive and compelling not only 

because of the practical performance, but also the several theoretical and algorithmic 

features introduced such as the freedom of choice of base learners and criterion for 

updating the weights of the training samples. Thus, introducing different boosting 

algorithms models platforms [56-58]. 

Boosting which is the essence of GBM is in fact repeatedly using WL 

algorithms and models as a base on differently weighted versions of the training data 

                                                      

39
 Increasing the correlation increases the forest error rate and a tree with a low error rate is a strong 

classifier. Therefore, increasing the strength of the individual trees decreases the forest error rate. 

40
 A weak learner (WL) is a learning algorithm capable of producing classifiers with probability of 

error strictly (but only slightly) less than that of random guessing (0.5, in the binary case). These 

concepts are rooted in the theory of PAC (probably approximately correct) learning 50. Valiant, 

L.G., A Theory of the Learnable. Commun. ACM, 1984. 27(11): p. 1134-1142.. On the other hand, a 

strong learner (SL) is formally defined in a similar way as weak learner, is able (given enough training 

data) to yield classifiers with arbitrarily small error probability. 
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and yielding a sequence of WL that are combined into an ensemble. The weighting 

of each instance in the training data at each round of the algorithm depends on the 

accuracy of the previous classifiers. Thus, allowing the algorithm to focus its 

attention on those samples that are still incorrectly classified. This was proved by 

Schapire [58] in Algorithm  3.2. 

Algorithm  3.2 Boosting procedure for classification. 

 

Historically, GBM was recast in a statistical framework first by under the name 

of ARCing algorithms [59] involving three elements: 

 (1) Loss function to be optimized based on the objective function to be 

solved; 

 (2) Weak learner to make predictions specifically a decision trees that are 

constructed in a greedy manner by choosing the best split points based on 

specific scores; and  

 (3) an additive model to add weak learners to minimize the loss function, 

therefore a weighted combination of classifiers that optimizes the cost 

using gradient descent in function space [60, 61]. 

Logistic Regression 

Logistic regression (LR) is a particular case of the generalized linear model 

[62] configured to provide a binary form of result. The ability to find the best fitting 
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function to describe the nonlinear relationship between the presence or absence of 

landslides and a set of conditioning factors combined with practically zero 

hyperparameters to tune in makes LR so compelling to be a baseline model in 

susceptibility analysis mapping. Basically, logistic regression relates the probability 

of landslide occurrence to a link function (in this case “logit”) assumed to contain the 

conditioning factors on which landslide occurrence may depend, where the 

relationship between the occurrence and its dependency on conditioning factors can 

be expressed by Equation ( 3.7): 

  ̂  
 

      
  

     ( 3.5) 

 

where  ̂ is the probability of a landslide occurrence and has a range of [0, 1] on 

an S-shaped curve;   is a linear fitting equation that involves the supplied set of 

landslide-related variables in the form of the following Equation ( 3.8): 

                       ( 3.6) 

 

where    is the intercept of the model;    is the partial regression coefficients; 

and    is the conditioning variable. 

Artificial Neural Network 

An artificial neural network or shortly neural network (NNET) is a black-box 

model defined as a “computational mechanism able to acquire, represent, and 

compute a mapping from one multivariate space of information to another, given a 

set of data representing that mapping” [63]. 

Most NNET models are composed of simple and highly interrelated processing 

units (neurons) that are in permanent connection with each other. Generally, neurons 

are located in different layers, and NNET are characterized on the basis of the 

number of layers and the training procedures (depending on the characteristics and 

performance the training procedure used to carry out the learning process in a neural 

network, can vary widely). Connections between processing units are physically 

represented by weights, and each neuron has a rule for summing the input weights 

and a rule for calculating an output value. More than one layer of neurons can be 
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included in the perceptron in order to cope with non-linearly separable problems, and 

a multilayer perceptron (MLP) can be obtained (Figure  3.1). 

 

Figure  3.1 General architecture of NNET. 

The learning problem in neural networks is formulated in terms of the 

minimization of a loss function   . This function is in general, composed of an error 

and regularization terms. The error term evaluates how a neural network fits the data 

set. On the other hand, the regularization term is used to prevent overfitting, by 

controlling the effective complexity of the neural network. The loss function   is, in 

general, a non-linear function of adaptive parameters such as biases and synaptic 

weights, (which can be conveniently grouped together into a single n-dimensional 

weight vector  ). 

 

Figure  3.2 Representation of the loss function     . 
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As we can see in Figure  3.2, the point    is minima of the loss function. At 

any point  , we can calculate the first and second derivatives of the loss function. 

The first derivatives are grouped in the gradient vector, whose elements can be 

written as: 

        
  

   
           ( 3.7) 

Similarly, the second derivatives of the loss function can be grouped in the 

Hessian matrix: 

        
   

       
             ( 3.8) 

The problem of minimizing the continuous and differentiable functions of 

many variables has been widely studied. Many of the conventional approaches to this 

problem are directly applicable to that of training neural networks, which means, the 

learning problem for neural networks is simply searching for the parameter vector    

at which the loss function   takes a minimum value. The necessary condition 

mandate, that if the loss function of the neural network is at a minimum, then the 

gradient is the “zero vector”. As a consequence, it is not possible to find closed 

training algorithms for the minima. Instead, we consider a search through the 

parameter space consisting of a succession of steps. At each step, the loss will 

decrease by adjusting the neural network parameters. This way of training NNET we 

start with some parameter vector (often chosen at random). Then, we generate a 

sequence of parameters, so that the loss function is reduced at each iteration of the 

algorithm. The change of loss between two steps is called the loss decrement. The 

training algorithm stops when a specified condition, or stopping criterion, is satisfied. 

In this study, we are considering the “hill-climbing” procedure that belongs to 

a class of algorithms that are based on Newton’s method but does not require the 

Hessian matrix of second derivatives of the objective function to be computed. 

Instead, it is updated by using gradient vectors; these are called “quasi-Newton” (or 

secant) methods. Newton’s method is a second-order algorithm because it makes use 

of the Hessian matrix. The objective of this method is to find better training 

directions by using the second derivatives of the loss function. However, the 

Application of Newton’s method is computationally expensive, since it requires 

many operations to evaluate the Hessian matrix and compute its inverse. Alternative 
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approaches, known as “quasi-Newton” or variable matrix methods are developed to 

solve that drawback. 

These methods, instead of calculating the Hessian directly and then evaluating 

its inverse, build up an approximation to the inverse Hessian at each iteration of the 

algorithm. This approximation is computed using only information on the first 

derivatives of the loss function. The Hessian matrix is composed of the second 

partial derivatives of the loss function. The main idea behind the quasi-Newton 

method is to approximate the inverse Hessian by another matrix  , using only the 

first partial derivatives of the loss function. Then, the quasi-Newton formula can be 

expressed as: 

                               ( 3.9) 

The training rate   can either be set to a fixed value or found by line 

minimization. The inverse Hessian approximation   has different flavors. Two of the 

most used are the Davidon–Fletcher–Powell formula (DFP) and the Broyden–

Fletcher–Goldfarb–Shanno formula (BFGS). Yet, BFGS is regarded as one of the 

best procedures for solving nonlinear optimization problems (in the absence of 

constraints) and weight adjustment [64], because using a general algorithms from 

unconstrained optimization seems the most fruitful approach [65], which lead to a 

faster convergence and provide a better results with less complication and parameters 

to tune in. 

 

Figure  3.3 The activity diagram of the quasi-Newton BFGS NNET training process. 

Improvement of the parameters is performed by first obtaining the quasi-Newton training direction 

and then finding a satisfactory training rate. 
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Compared to conjugate gradient and the popular gradient descent coupled with 

vanilla backpropagation or one of its variants used in most landslide susceptibility 

studies, the quasi-newton BFGS NNET had proven to be way faster to converge and 

provide a better results with fewer complications and parameters to tune in and the 

exact Hessian does not need to be computed and inverted like Newton methods. 

Support Vector Machine 

Support vector machine (SVM) is one of the new mathematical tools, which is 

used as a universal constructive learning procedure based on the statistical learning 

theory rather than loose analogies with natural learning systems developed by 

Corinna Cortes and V.Vapnik [66]. SVM provides non-linear solutions to regression 

and classification problems by transforming the input variables in a large-dimension 

space, whose inner product is given by positive definite kernel functions, then trained 

using dual optimization techniques with constraints [67]. Recently several researches 

have shown very competitive results if not excellent performance of SVM on 

different problems of regression and classification; with just a minimum amount 

tuning required [e.g. 40, 66, 67, 68, 69-76] 

More details of SVM mathematical classification description can be found in 

[77] [78-83]. However, we are outlining the basics following Scholkopf, Mika [81] 

notations 

First, Let’s consider a set of training points               where       be 

the input vectors in input space, with corresponding binary labels which            

(i.e.    takes   if    is in class   and takes    if    is in class  ). Typically, SVM is 

designed for two-class problems where both positive and negative objects exist. For 

two-classes classification problems SVM seek to find a hyperplane in the feature 

space that maximally separates the two target classes [73]. The goal of the two-class 

SVMs is to find an optimal separating hyperplane with the maximal margin between 

the training points for class    and class   . Which means, a discriminant function 

can be easily defined as : 

              ( 3.10) 
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Where:             is a vector of   elements,   is the feature space 

dimension;   is a scalar;       is the inner dot ( ) product of   and  . Therefore, 

the classification rule is: 

           (       )  {
                    
                    

 ( 3.11) 

 

Second, let       be the corresponding vectors in feature space, where       is 

the implicit kernel mapping or precisely the feature function that map training 

vectors    into a higher (maybe infinite) dimensional space, and let         

     
        be the kernel function, implying a dot ( ) product in the feature space. 

The optimization problem for an SVM is: 

    
   

 
 

 
   

 

  ∑   

 

   

  ( 3.12) 

Subject to constraints: 

                         ( 3.13) 

 

Where:   is the separating hyperplane normal vector in feature space and 

    is a regularization parameter (penalty parameter) controlling the penalty for 

misclassification. Formally, the Equation ( 3.14) is referred to as “the primal 

equation” that can be solved by the Lagrangian, so a dual problem can be derived 

into Equation ( 3.16), which is a quadratic optimization problem that can be 

efficiently solved using algorithms such as “Sequential Minimal Optimization” 

(SMO) [80]. 

         
 

 ∑   

 

   

 
 

 
∑   

 

     

               ( 3.14) 

Subject to constraints: 

        ( 3.15) 

 

During the SVM optimization process, many    converge to zero and the 

remaining    instance whose    satisfying      are called support vectors    . 

However, to simplify SVM general procedure, let’s assume that all non-support 



 

 Chapter 3: Methods & Procedures 57 

vectors have been eliminated, so that      is now the number of support vectors 

and          is for all  . With this formulation, the normal vector of the separating 

plane   can be expressed as: 

   ∑   

 

   

     ( 3.16) 

 

Since       is defined implicitly,   can only exist in feature space and cannot 

be computed directly. As a result, the classification rule      of a new query vector   

can only be determined by computing the kernel function of   with every support 

vector following a decision rule expressed as: 

           ∑   

  

   

              ( 3.17) 

 

Where:    is the number of support vectors,   is the bias term representing the 

offset of the hyperplane along its normal vector, determined during SVM training 

[84], and         is the kernel function being one of the following four basic 

kernels: 

 

                
   

                      
       

                                                
 

 

                       
      

 ( 3.18) 

 

Where:   is an appositive parameter controlling the radius   (i.e. kernel width), 

and   is the polynomial degree. 

3.3 RESAMPLING STRATEGY METHODS 

This section of methods is featuring Objective 3 & 4 (see Chapter 1.3). 

A modeling approach of certain problem is an absolute approximation of the 

problem that may not capture the true underlying model behind the data, which 

means that models are subjected to bias and errors during different stages of the 

modeling process and since modeling is a data-driven approach, so a proper 

assessment a model predictive capabilities, obligate supplying an independent testing 



 

58  Chapter 3: Methods & Procedures 

dataset to ensure model correctness, but as in most modeling cases (especially in 

landslide studies as observations are scares and hard to obtain), a common approach 

is performing a resampling on the input dataset, which divide the input data into a 

training dataset for fitting models and testing dataset to validate the models 

depending on the used strategy [85]. 

Resampling methods can be efficiently used for: 

 Tuning of Hyperparameters, as most models (modeling techniques) require 

some sort of fine-tuning to certain parameters called hyperparameters. 

Thus, optimizing those hyperparameters to an optimum will highly lead to 

achieving a model with the highest quality possible. 

 Accuracy Assessment, it's commonly known that accuracy plays a 

detrimental effect on the modeling process and its optimization so the 

introduction of error and bias during the modeling process will render the 

obtained model (or results) irrelevant (or non-reliable to a certain degree). 

 Model Selection, selecting the most appropriate model is highly related to 

how the assessment was performed, in which the most reliable is screened 

based on assessment results during the modeling process (by favoring 

certain candidate model over another). 

3.3.1 Basics and Statistical Properties 

Assuming, we have a fitness function  , a set of input points             

with a decision variable           
 , where parameters       and the associated 

function values           . The goal is the approximation of   by finding a 

meta-model using the information either contained in or extracted from  . Therefore, 

fitting function rules  ̂    can be achieved by Equation ( 3.19). However, the 

approximation degree of  ̂  to the real fitness function   is questionable. In fact, a 

proper definition of loss function      ̂     must be introduced, but in general, 

aggregation of these loss values is reported using functions like “mean” or “median”. 

If we assume that the loss function is defined (which depend on the problem to be 

solved), the risk associated with fitness model function is expressed as in Equation 

( 3.20): 

  ̂   ̂       ( 3.19) 
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        ∫ ∫  

   

                      ( 3.20) 

     ̂     ∫ ∫  

   

    ̂                   ( 3.21) 

   ̂  ̂      ∑
     ̂     

    
         

 ( 3.22) 

   ̂  ̂      ∑
     ̂     

    
         

 ( 3.23) 

 

In Equation ( 3.20),        is the joint Probability Density Function (PDF) of 

decision space and function values, and by incorporating the estimator  ̂  of   into 

Equation ( 3.20) (because models are often based on data) to get what’s called 

“generalization error” (GE) or “conditional risk associated with the predictor” (See 

Equation ( 3.21)), and since the GE directly depends on the data used to fit the models 

then the underlying distribution   of the input dataset would be difficult to know or 

even efficiently estimated so we can replace it by either a test subset    to get 

Equation ( 3.22), but if we incorporate the input dataset   itself we can get 

resubstitution error (Equation ( 3.23)). 

It should be noted that using the input dataset to train the model and estimate 

the GE (as detailed in Equations ( 3.19) ~ ( 3.23)) is inconvenient, because of the 

biased estimation of the generalization error. In that case, a model selection will be 

unintentionally biased toward adaptive and complex models. To solve this issue, 

splitting the input dataset into training set        and of course a testing set       so 

that                              , will ensure fitting the model using 

       to obtain  ̂       and at same time calculate the GE using the test 

subset      . This approach of training-testing subset is well known as “Hold-out” or 

“Train-Test Split”. 

   ̂           ̂  ̂      
        ( 3.24) 

   ̂       
 

 
∑   ̂

 

   

  ̂         ( 3.25) 
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From a statistical standpoint, this approach is trivial, because the test subset 

observations are independent of those in the training subset, so in this case, the GE 

can be estimated by Equation ( 3.24). However, splitting the input dataset comes with 

two important shortcomings: 

 First, a large input dataset   must be supplied so we can have enough 

observations in both the training subset to build an adequate model and the 

test subset to fully obtain statistical valid performance results. 

 Second, a large number of sample observations are difficult to obtain in 

most cases let alone landslide inventory samples. 

Solving those issues can be possible by resampling the input of the dataset 

using resampling techniques (i.e. cross-validation, bootstrapping, and subsampling). 

These resampling techniques and strategies partition
41

 the input dataset ( ) to 

generate training sets    and testing sets (             ), in such way that a 

single model is trained for each training set, then predictions are made based on the 

corresponding testing set resmaple2 and the loss function value               of 

each model is calculated. Later, the   individual loss function values are aggregated 

into a performance indicator   by performance measures    (i.e. mean, 

median…etc.). As a result, the GE quality will mostly depend on: 

 The training-testing sets size compared to the original input dataset  . 

 The number of subsamples   drawn by the resample strategy. 

 The dependency structure between the subsamples   . 

All resampling strategies share the common general framework procedure 

detailed above and depicted in Figure xx, where the GE estimation for Hold-Out 

method in Equation ( 3.24) can be generalized to Equation ( 3.25). As explained 

before, the GE estimation is data-driven based on the input dataset, which implies 

that both training and testing sets sample size must reasonable, considering the 

totality of samples available to ensure the GE estimation cant neither be pessimistic 

nor optimistic. 

                                                      

41
 Maybe repeatedly depend on the method. 
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3.3.2 Cross-Validation 

Cross-validation (CV) [86], is one of the well-established and commonly used 

resampling strategies. By translating Equations ( 3.19) to ( 3.23) into Algorithm  3.3, 

we can obtain an implementable common generic procedure layout shared between 

most resampling strategies, but what differs in most of the cases is the training-

testing subsets (  subsets) generation process (line 1 of Algorithm  3.3). In fact, CV 

uses a simple procedure to generate the   subsets (Algorithm  3.4). Essentially, the 

input dataset is partitioned into   equal (or nearly equally) sized subsets called 

“folds” and then a     folds are used to fit the model and the remaining fold are 

used to validate the model. This process is repeated   times for all possible     

combinations and this ensures that each        is used precisely once as validation 

subset. 

Algorithm  3.3 Generic resampling procedure. 

 

Algorithm  3.4 Subsets procedure for  -fold CV. 

 

Generally, for problems where the input dataset may contain categorical 

variables or the target variable is also categorical (classification problems), Stratified 
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Cross-Validation (SCV) is used. The rationale behind SCV is the insurance a good 

data-representation during resampling by rearranging the input dataset data in a way 

that the sample's distribution of each fold matches (or as close as possible to) the 

distribution of the input dataset using a process called “Stratification”. 

3.3.3 Overfitting 

One of the most common and troublesome issues in all ML algorithms and 

models is the random error or noise that can be also known as “Overfitting”, which is 

directly related to overall GE of the classier model and the training dataset produced 

by resampling strategy [29]. This noise can be explained as, the problem of 

underperforming (decrease in overall performance) during the validation-testing 

stage while gaining high performance during the training stage (Figure  3.4). 

Overfitting is highly pronounced when: 

 The overall performance is decreasing while the model complexity is 

increased (Figure  3.4b). 

 A large amount of data is fed and used to build the model. 

This means the model is rather learning the noise than generalizing the problem 

at hand (i.e. the learning becomes too specialized and the algorithm does not 

generalize well enough). Two possible ways of dealing with overfitting are: 

 First, optimizing the generalization power of the algorithm.  10.

 Second, generating training and testing splits which will have balanced 11.

class distributions, i.e. the sizes of all classes will remain proportional in 

both splits (i.e. Stratification). 

The former (case 1), is hard to achieve, due to various reasons that can vary 

depending on the implemented algorithms (i.e. limitation and drawbacks). The latter 

(case 2), is not always feasible in spatial modeling, due to the abundance of one class 

and scarcity of another or several other classes
42

. This is especially pronounced if the 

Test-Train splitting sampling strategy (i.e. Hold-Out split) is adopted. Therefore, 

selecting a resampling strategy requires a technique that takes overfitting into 

consideration and minimizes (even partially) the overfitting effect by involving a 

                                                      

42
 That’s usually the case for landslide susceptibility studies. 
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specific resampling strategy that balances the trade-off model complexity for its 

fitness, i.e. the model’s variance against its bias (Figure  3.4b). 

  

Figure  3.4 The overfitting problem of ML models. 

The functions are showing an evident rise of the erroneous returns in testing mode despite the rise in 

data feed (amount of training and testing data or complexity of the model). 

 

3.4 MODEL OPTIMIZATION AND TUNING METHODS 

This section of methods is featuring Objective 2 (see Chapter 1.3). 

Models and algorithms tend to vary dramatically depending on the approach. 

Yet, exploring model full potential requires correctly tuning a variety of incidental 

parameter choices and settings [87]. In rare cases, the hand-tuning of the optimal 

hyperparameters is enough to rely on trial-and-error methods such (i.e. Grid search, 

Random search, Gradient-Based Optimization). However these methods and 

techniques were considerably simplistic and easy to implement, and yet they produce 

very poor results that lead to: 

 Costly evaluations. Especially, if the computational budget is limited. 

 Wrong assessments about the implemented models whether they are 

genuinely bad or simply badly tuned [88]. 

To avoid such common problems, a state of art technique called Sequential 

Model-Based Optimization (SMBO), also known as Bayesian optimization that can 

efficiently optimize and work on a strictly reduced budget for function evaluations 
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and hyperparameter optimization of expensive black-box models and obtain better 

results in fewer experiments than traditional techniques, was considered. The 

excellence in performance in SMBO is related to: 

 The ability to reason about the quality of experiments before they are run 

[89-92]. 

 Benefiting from the “adaptive capping” to avoid long runs [93]. 

First to explain how SMBO work, let’s assume that an expensive black-box 

function       with  -dimensional input space           and a 

deterministic output       . Each    is a parameter with constraints box that can 

be bounded for numeric values (i.e.     [      ]    where:    and    are the lower 

and upper bounds), or finite set   of categorical values (i.e.             ). These 

constraint boxes, formulate the     parameter space. The aim is to minimize the 

target value   (i.e.     ) by fulfilling Equation ( 3.26): 

          
   

     ( 3.26) 

 

SMBO optimization, basically approximate the expensive black-box function 

     and iteratively update and refine using meta-models called “surrogate models” 

in-lieu-of expensive optimizing stimulator of the expensive function   by regression 

models, which are computationally cheap to evaluate. Since the surrogate models are 

regression models, they are capable of direct estimation  ̂    of the true value      

and an estimation of the prediction standard error (i.e.  ̂    or      or      , which 

called spread posterior distribution
43

 of  ̂   . Obviously, since      is expensive to 

evaluation (i.e. according to the assumption above), which means the evaluations 

of     , if (for sure) have a budget constraint that can be: 

 Termination criteria (i.e. time elapsed, an optimization threshold was 

reached). 

 The total number of evaluations is exhausted. 

                                                      

43
 In statistic,      and       also called local uncertainty estimators and used to measure “The 

trustworthiness” of the prediction. 
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The general approach of SMBO illustrated in details in Algorithm  3.5, and can 

be summarized into six main steps procedures: 

 Vector of an indexed set (i.e. called initial design)              of 1.

         points    sampled from   (i.e.    ) and          is the 

associated target value of  . At each point of the indexed set,   is 

evaluated and yield the outcome of the target value   in a vector 

of        . This vector will be the input for the initial surrogate model  ̂ 

(i.e. in the next step (2)). 

 Fit the surrogate model at each evaluation point    and its target value    2.

using the previously indexed vector  . 

 An acquisition function   (i.e. called infill criterion) suggest a set of point 3.

                   defined on   . The acquisition function  , 

operate on the surrogate model  ̂ to propose and determine points that are 

“promising” for optimization based on  ̂ . The proposed points can have: 

a) Good “exploitation” values (i.e. improving the expected 

objective function   value); 

b) Good “exploration” values (i.e. high potential to improve 

the quality of the surrogate model); 

c) A balanced combination of the above (i.e. (a) and (b)). 

 The proposed points by   are evaluated using   and the new vector 4.

                 added to the design  . 

 Check the budget whether if the budget was exhausted. If “yes”, move to 5.

step 6, otherwise return to step 2. 

 Return the proposed solution of the optimization problem in form of vector 6.

contains the best points. 
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Algorithm  3.5 General procedure of SMBO optimization approach. 

 

3.4.1 Initial Design 

The initial design is an indexed set of points carefully sampled from the input 

search space   for the purpose to evaluate against the expensive function   and 

generate the initial surrogate model  ̂. The total number of points in the initial design 

  needs to be optimum. In other words, if the number of samples in   doesn’t 

cover  , the fitting the surrogate model would be poor in best-case scenarios which 

subsequently lead to suboptimal point proposition by  ̂that would negatively 

influence the progress of the optimization. In some cases, building the surrogate 

model  ̂ is impossible, if  ̂ is too low. On the other hand, a large initial design 

helpful to get insight into the search space landscape, but the overall budget must be 

reduced to cope with the large design  , which is in some cases a bad practice. There 

exist multiple methods to generate an initial design sample from the search space like 

manual sampling, random sampling, coarse grid designs, or by the method used in 

this case study, the space-filling fashion of Latin Hypercube designs (lhs). 

3.4.2 Surrogate Model 

Surrogate models are meta-models are actually the sampling algorithm to 

propose new points    that lead to “optima”. Technically, surrogate models are 

replacement for more expensive stimulators of the expensive black-box function  . 

In fact, optimizing the surrogate model is in lieu of   simulator much cheaper (i.e. 

computational and time budgets). Selecting the appropriate surrogate model  ̂ 

depend not only on the computational budget available but also the current structure 

of input space  . There exist three cases for  : 

   is purely numeric (   );  1.
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   is purely categorical, hierarchical or Boolean space; 2.

   is a mixed search space (a combination of cases 1 and 2). 3.

For case (1), kriging (i.e. Gaussian process) is recommended and should be 

used because it provides state-of-the-art performance; for case (2) and (3) dummying 

the input space   would be great solution and therefore use “Kriging”, but with 

recent years, Random forest (RF) prove to be a viable alternative (option) due to its 

ability to digest most types of the input spaces directly without any pre-processing. 

3.4.3 Infill Criteria 

The infill criteria   is actually well known as the acquisition function, which 

used to guide the SMBO optimization process by evaluating the goodness of fit of 

each “candidate” point, then if the “candidate” point if good enough, this point will 

be evaluated against the objective function  ̂. Generally, the acquisition function   is 

contrasted in pair-wise fashion by combining the posterior mean ( ̂) and the posterior 

spread ( ̂) 
44

 in single “well balanced” numeric formula. Both  ̂ and   ̂ are directly 

estimated by the surrogate model  ̂. 

To better understand the purpose behind combining  ̂ and  ̂, we need to 

understand the functionality of each term. “Local uncertainty” estimators (i.e.  ̂ 

and   ̂) are used as an “exploration” indicator. In fact, higher values for (i.e.  ̂ or   ̂) 

highly indicate less explored regions in   the search space landscape which means 

less certainty about the true landscape of the search space due to either lack or 

presence of few points nearby or close to those regions. On the other hand,  ̂ is used 

as an “exploitation” indicator, lower values are more promising as they indicate a 

low true function value of  . So   is a balanced trade-off between two conflicting 

criterion’s (i.e. “exploitation” and “exploration”) by considering promising regions 

(i.e. points) with a low posterior mean (i.e.       
   

 ̂   ) and high posterior spread 

(i.e.       
   

 ̂   ). 

Acquisition functions   are called “utility” function and can be interpreted in 

Bayesian Decision Theory as “evaluating an expected loss associated with   at 

                                                      

44
 Also known as the posterior standard deviation and sometimes, posterior variance   ̂ is used 

instead, but both are usually considered as “local uncertainty estimator”. 
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point . The best point with the lowest expected loss is returned and selected as an 

optimization solution for  ”. Essentially the role of the acquisition function   is to 

guide the optimization process for global convergence (i.e. finding the optimum). 

Typically,   are defined with maximization perspective (i.e. positive pure 

maximization (      ); or negative pure maximization (      ) where these 

promising regions, correspond to “potentially” better objective function values. The 

maximized   is used to propose (select) the next point at which to evaluate against  . 

Probability of Improvement (PI): 

Probability of improvement (PI) is considered as the first utility function   

designed for the Bayesian Optimization Framework Thanks to the early work of 

(Kushner). Assuming that                 is the lowest (minimal) value of   

recorded, so far, which means     (PI Acquisition function) will likely evaluate 

points    that most likely improve upon this value (i.e.     ). This corresponds, to a 

utility function      (i.e. utility function is simply negative loss function) associated 

with evaluating   at given point     and   : 

      {
           

           
 ( 3.27) 

 

By Equation ( 3.27), it’s clear that the reward unit reception in case of      turn 

out to be for       and no reward otherwise. Therefore, the probability of 

improvement acquisition functions the expected utility function of  . 

     {
 [          ]

       
 ( 3.28) 

 

Where      
      ̂   

    
 and       is denoted as the Cumulative Distribution 

Function of the Standard Normal Distribution (CDF). 

The point    with the best-expected utility function (i.e. highest probability of 

improvement) is chosen as “global optima”. However, this can lead to bad results as 

    is highly biased toward exploitation (pure minimizations of the posterior 

mean  ̂   ). On top of that, the odd system behavior of the utility function is 

indicative odd behaviors and limitation like stuck in “local optima” and under-

explored landscape region globally due to the odd of the reward system of 
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improvement upon the current minimum (i.e.     ) independent of the size of 

improvement. 

Expected Improvement (EI): 

An alternative solution to     would be an acquisition function that takes into 

account not only the probability of improvements but also the overall magnitude (i.e. 

size) of the improvement that a point can probably yield. B. Mockus and Mockus 

[94], Frean and Boyle [95] proposed a maximization by taking into account the 

maximal value of   observed so far (i.e.     ) where     (i.e. Expected Improvement 

acquisition function) evaluate   at each point    in expectation to improve upon      

the most. This corresponds to the following utility function: 

 
                      ( 3.29) 

 

Where: the reward reception is strictly equal to the “improvement”      

     only if          , otherwise no reward reception. Therefore, the expected 

improvement acquisition function is then the expected utility as a function of   : 

 
     (    ) {

                                    
        

 ( 3.30) 

 

Where:      
      ̂   

    
 and      and      are denoted by B. Mockus and 

Mockus [94] as the Cumulative Distribution Function (CDF) and Probability Density 

Function (PDF) of the Standard Normal Distribution, respectively. The point    with 

maximal     will be selected. 

The two conflicting terms of CDF and PDF are balanced and can be interpreted 

explicitly encoding trade-off between exploration and exploration. The former can be 

maximized by minimizing the posterior mean  ̂   . The second latter can be 

maximized by maximizing the posterior spread     . 

Upper & Lower Confidence Bounds (UCB/LCB): 

The early work of Cox and John [96] introduced the Sequential Design 

Optimization (SDO) algorithm that proposes and selected points based on the 

confidence bounds of the posterior mean  ̂    and weighted posterior spread     . 
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The upper confidence bound (UCB) is described in terms of maximization of   

rather than minimizing like the lower confidence bound (LCB) (Equation ( 3.31)). 

However, in most literature, LCB is used instead of UCB as the term is ingrained in 

literature as a standard term. 

    {
      ̂         
      ̂         

 ( 3.31) 

 

Where:   is constant the denoted as parameter that control “Exploration vs. 

Exploration” trade-off, and should be    . If    ,      and      coincides with 

the predicted mean value. The larger   is chosen, the more attractive unexplored 

regions of the search space become. 

Surprisingly, the confidence-bound acquisition functions cannot be interpreted 

similarly to computing an actual expected utility function like     and    . 

Nonetheless, the confidence bound acquisition functions are known for the strong 

theoretical results that under certain conditions the iterative application of this 

acquisition function will converge to true global optima of  . 

3.4.4 Infill Optimization 

Optimizing the acquisition function infill criterion   is technically the process 

of points    that yield the best value according to  . In reality, optimizing   is 

inexpensive especially with cheap surrogate models  ̂ compared to optimizing the 

original function   directly so the evaluations can be spent lavishly. Some branches 

and bounds are proposed for this task by various researches e.g. jones. However, a 

very generic approach called “Focus Search” proposed by Bischl, Richter [88] 

outlined in Algorithm  3.6, has proven to be efficient and effective since it is able to 

handle and digest all the available sorts of the search space   (i.e. numeric, 

categorical or mix search space). 
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Algorithm  3.6 Focus Search infill optimization procedure. 

 

The algorithm first start by generating moderate to large random design than 

the surrogate model  ̂ is used to evaluate all design points to determine the most 

“promising” points. Next, with help of these “promising” points, the focus search is 

able to “focus” and “shrink” the search space   around these points to randomly 

sample new points out of the focused search space. The shrinkage procedure (i.e. 

focus procedure) is iterated        times and the whole procedure is restarted          

to avoid “local optima”. Finally, the best point    from all iterations and restarts is 

returned. 

3.4.5 Termination 

The termination criterion for SMBO can vary dramatically depending on the 

user, used approach and the computational budget available. Usually, the total 

number of evaluations of the objective function   or the total number of the iteration 

is used. However, other criterions that depend on the available time budget can be 

used to point where the termination of the optimization is ended only when the 

available time budget is exhausted. Depending on the case, a predefined objective 

value can be set as a termination criterion and even a combination of the criterions 

can be implemented at once. 
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3.4.6 Final Best Points Returning 

At the end of the optimization where the budget is exhausted and/or met the 

final solution    is returned either the best-observed point during optimization, or a 

final surrogate model  ̂ is performed on all the evaluated points (i.e. points in   and 

the proposed points by  ) is  ̂ is known to be noisy. 

3.5 MODEL PERFORMANCE EVALUATION METHODS 

This section of methods is featuring Objective 5 (see Chapter 1.3). 

Evaluating model's performance is a delicate subject, as it depends on the 

learning problem, task at hand and most importantly the underlined goals of the 

analysis. Luckily, most performance metrics (at least the one implemented in 

classification problems) rely on correctly and incorrectly classified landslide 

instances and the relation between them. Correctly and incorrectly classified 

landslide instances, are usually depicted using what we call “confusion matrix”
45

 or 

“contingency table” (Table  3.1). 

Confusion matrix is a specific table layout
46

 that allows visualization of the 

performance of an algorithm by introducing different classification hits and errors 

metrics or measures such as True Positives (TP), True Negatives (TN), False 

Positives (FP) and False Negatives (FN) that are based the positive class (the 

landslide presence i.e. landslide class of “Yes” or 1) and the negative class (landslide 

absence i.e. Non-landslide class of “No” or 0). The sum of pixels instances that have 

been “correctly” classified in the positive class are known as the True Positives (TP) 

and the sum of pixels instances that have been “falsely” classified in the positive 

class is known as False Positives (FP). On the other hand, the sum of pixels instances 

that have been “correctly” classified in the negative class and the sum of pixels 

instances that have been “falsely” classified in the positive class are known as True 

Negatives (TN) and False Negatives (FN), respectively. 

 

                                                      

45
 The name convention, stems from the fact that it makes it easy to see if the system is confusing two 

classes (i.e. commonly mislabeling one as another). 

46
 The confusion matrix layout consist of two dimensions (“actual” and “predicted”), and identical sets 

of “classes” in both dimensions (each combination of dimension and class is a variable in the 

contingency table). Each row of the matrix represents the instances in a predicted class while each 

column represents the instances in an actual class (or vice versa). 
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Table  3.1 Confusion matrix and appropriate error measures. 

 Landslide Inventory 

True False 

model 
Positive TP (True Positive) FP (False Positive) 

Negative FN (False Negative) TN (True Negative) 

 

Herein, the following subsections will describe the performance metrics that 

will help to highlight the spatial predictive capabilities and express models full 

potential in landslide susceptibility assessment: 

3.5.1 Accuracy 

The Overall Accuracy (ACC) is used to assess models accuracy and can be 

denoted as the fraction (ratio) or the counts of correctly classified events of both 

landslide and non-landslide instances
47

, following Equation ( 3.32): 

             ̂  
 

        
∑  

          

   

  ̂      ( 3.32) 

 

Where:  ̂  is the predicted value of the     sample,    is the corresponding true 

value, and          is the total number of samples. Because ACC, focus on True 

values reported in the confusion matrix (i.e. TP and TN), Equation ( 3.32) can be 

simplified into Equation ( 3.33): 

          
     

           
 

     

        
 ( 3.33) 

 

That being said, ACC usually expressed in float (decimal) format ranging from 

1 (correctly classify all events) to 0 (fail to classify any events). 

3.5.2 The area under the ROC Curves 

The Area under the ROC Curves (AUC) is the probability of a classifier to 

correctly anticipate the occurrence or non-occurrence of predefined events [97-100]. 

                                                      

47
 Model predictions instances of both landslide and non-landslide classes claims to be different than 

the existing in the reference (i.e. the inventory). 
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This is proven to be convenient because maximizing AUC is basically equivalent to 

maximizing the ACC of the classifier. AUC can be computed mathematically by the 

trapezoidal rule of integral calculus as shown in Equation ( 3.34): 

     ∑                       

 

   

 ( 3.34) 

 

Where,    indicates 1-specificity and    is the sensitivity. 

This value of AUC varies from 0.5 (very poor performance) and 1.0 (perfect 

performance). Kantardzic [101] and Tien Bui, Tuan [102] a value of          

   , indicate a very good discrimination ability of the model, and values of      

    suggest an excellent classification models. On the other hand,             

indicates a good predictive model, and              suggest an average 

classification model. A value of         signifying that the ability of the 

performance used the models has no power to distinguish. 

It is important to highlight that the ROC curves are used explicitly to calculate 

the area under the ROC curve (AUC), but can be used to diagnose both the 

sensitivity-specificity trade-off and the classifier ability when cut-off threshold 

varies. 

3.5.3 Cohen Kappa Index 

Cohen Kappa Index ( -index), represents the measure of agreement between 

compared entities, rather than the measure of classification performance [103].  -

index is very convenient for comparison of maps with the same classes
48

 [32], as it is 

able to measure landslide models reliability by calculating the proportion of observed 

agreement beyond that expected by chance, using Equation ( 3.35): 

   
     

    
   

    

    
 ( 3.35) 

 

Where:   is the empirical probability of agreement on the label assigned to any 

sample (the observed agreement ratio), and    is the expected agreement when both 

                                                      

48 
As it commonly the case in ML-based classification experiments. 
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annotators assign labels randomly.    is estimated using a per-annotator empirical 

prior to the class labels.    and    the are easily calculated from confusion matrix 

according to Equations ( 3.36) and ( 3.37): 

 
   

     

        

           

 ( 3.36) 

 

     
     

        
 

     

        

    
     

        
 

     

        

 ( 3.37) 

 

The possible values of  -index are ranging between -1 and 1. A value of  -

index    indicates a complete agreement then, If there is no agreement among the 

raters other than what would be expected by chance (as given by   ),  -index   . It 

is possible for the  -index to be negative, which implies that there is no effective 

agreement between the two raters or the agreement is worse than random. However, 

according to Landis and Koch [103], the strength of agreement given the  -index 

magnitude is for 0.8–1.0 almost perfect, 0.6–0.8 substantial, 0.4–0.6 moderate, 0.2–

0.4 fair, 0–0.2 slight, and ≤ 0 poor. 

3.6 RESEARCH WORKFLOW 

This section is featuring Objective 3 (see Chapter 1.3). 

This section, focus on presenting the proposed methodology used to conduct 

this research. The research was performed using five ML models (i.e. Gradient 

Boosting Machine (GBM), Logistic Regression (LR), Artificial Neural Network 

(NNET), Random Forest (RF), and Support Vector Machine (SVM)). Model's 

hyperparameters were tuned and configured using Sequential Model-Based 

Optimization (SMBO). The analysis was programmed from scratch in an R 

environment
49

 because: 

 The high flexibility R offer. 

 Reduction of the error and bias that can be introduced either by evaluating 

models in different software or platforms that may respond differently. 

                                                      

49
 The source code is available at Github (See Appendix B). 
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The upcoming subsections are dedicated to explain and describe the details and 

procedures used in this each step of the research rather informally, according to the 

overall concept of the proposed methodology of this research shown in Figure  3.5. 
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Figure  3.5 The overall concept of the proposed methodology for this research. 

(A) Construct a spatial database that will serve as an input dataset for the study from the landslide 

inventory map and the landslide conditioning factors; (B) Analyzing and optimizing landslide 

conditioning factor based on Pearson Correlation Coefficients and Variance Inflation Factors analyses 

results; (C) Model configuration and implementation using the appropriate model hyperparameters 

optimization strategy;(D) Model training, validation, and comparison using the appropriate 

performance indicator metrics; (E) Landslide susceptibility maps generation, assessment, and 

evaluation based on the appropriate assessment-evaluation strategy. 
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3.7 TRAINING AND TESTING DATASETS PARTITIONING 

First and foremost, a geospatial database (see Chapter  4.3) was constructed 

from 16 factors and a landslide inventory map using various sources in QGIS, Saga. 

Since the implemented models can handle mixed space variables (i.e. numeric and 

categorical) efficiently, there was no need to dummy the data (i.e. numeric decoding 

of categorical variables), only the target class (i.e. landslides) was set to “Yes” label 

if samples are landslide positive, otherwise, it’s set to “No”. While this database is 

mainly used to as input dataset to train landslide susceptibility models, an 

independent testing dataset must be used to properly assess and validate the trained 

models, otherwise, the trained models will have no scientific meaning (Tien Bui et 

al. 2016a). However, selecting the size of the training area is very delicate, and 

requires particular strategies. An optimal approach is to build a sufficiently accurate 

model with a smaller number of training examples. Thus, lead to reducing expert 

engagement. On the other hand, the practical value of a model in the landslide 

assessment framework lies in the model’s prediction power, which implies a more 

meaningful training sampling strategy. On top of that, landslide samples are scares 

and hard to obtain. Therefore, resampling the input dataset into training and testing 

sets would be mandatory to obtain reliable results. Additionally, the implemented 

models and algorithms require fine-tuning some of its hyperparameters
50

. For that 

purpose, repeatedly cross-validating the input dataset would be effective since the 

instantiation is done once, so the same training and testing sets are used for (1) 

hyperparameters tuning, (2) model selection, and (3) performance assessment. 

In this case study, the input dataset was randomly resampled into 5 times 

repeated 10 k-folds cross-validation approach (Figure  3.5A), aimed at optimizing 

models hyperparameters and optimizing the final models. It’s important to 

understand that the implemented resampling approach is a trade-off in term of speed, 

accuracy, computational cost and complexity, but also effective it reduces: 

 The variance introduces by simple k fold cross-validation. 

 The split randomness that comes with holdout-split resampling (test-train 

split). 

                                                      

50
 Expect for LR. 
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This would allow the input dataset to be used for three different purposes: 

 Tuning models hyperparameters. 

 Train models with this subset using after optimal parameters are found. 

 Models validation, assessment, and comparison. 

It is important to mention that the training area has been selected by sampling 

instances randomly and uniformly throughout the area. 

3.8 ANALYZING AND OPTIMIZING LANDSLIDE CONDITIONING FACTORS 

It’s common for input datasets used in landslide susceptibility analysis to have 

high correlation among certain conditioning factors that lead to a faulty modeling 

with erroneous system analysis [104], so a possible solution can be performing a 

multicollinearity analysis to evaluate the suitability of the underlying assumption 

used to select the conditioning factors based on the non-independence among them. 

To detect and quantify multicollinearity among the chosen variables, PCC [105] can 

be performed, but in most cases, PCC is not usually sufficient, then VIF is 

implemented. 

3.9 MODELS CONFIGURATION AND IMPLEMENTATION 

As mentioned before, the experiment has not been too detailed, which has also 

reflected the optimization of the modeling parameters. Practically, A simple 

procedure was conducted for estimating “mtry”, “interaction.depth”, “n.trees”, 

“num.trees” and “size” hyperparameters, as these hyperparameters are the only with 

the option of user-parameter estimation according to specific instructions and 

guidelines. Otherwise, the remaining hyperparameters are exactly bounded to the 

allowed (or default) values (or range of values) by each package used to implement 

each model. Overall, these hyperparameters were summarized along with values, 

short descriptions, and the package used to implement each model in Table  3.2. 
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Table  3.2 The overall hyperparameters set used by each model along with its respective values. 

Model Package Parameter Definition Value 

GBM 

“Generalized 

Boosted Regression 

Models” Formerly: 

“gbm” package, 

[106] 

distribution The loss function Bernoulli 

Shrinkage Learning rate 
From 0 

to 1 

bag.fraction 

The fraction of the training 

set observations randomly 

selected to propose the next 

tree 

0.5 

(default) 

train.fraction 
Observations fraction that is 

used to fit the GBM 

1 

(default) 

n.trees Total number of trees 
From 25 

to 210 

interaction.depth 
Maximum depth of variable 

interactions 

From 1 

to 8 

n.minobsinnode 

Minimum number of 

observations in the trees 

terminal nodes 

20 

(default) 

LR 
“stats” package, 

[107] 
link Model link function logit 

NNET 

“Feed-Forward 

Neural Networks 

and Multinomial 

Log-Linear” 

Formerly: “nnet” 

package, [108] 

Maxit 
Maximum number of 

iterations 

150 

(default) 

MaxNWts 
The maximum allowable 

number of weights 

10000 

(default) 

Rang 
Initial random weights on [-

rang, rang] 

0.5 

(default) 

Hess 

Find the Hessian of the 

measure of fit at the best set 

of weights 

TRUE 

(default) 

Size 
Number of units in the 

hidden layer 

From 4 

to 33 

Decay 
Penalty term  or weight 

decay 

From 0 

to 1 

RF 

“A Fast 

Implementation of 

Random Forests 

ranger” Formerly: 

“ranger” package,  

[109] 

Replace Sample with replacement 
FALSE 

or TRUE 

respect.unordered.

factors 

Handling of unordered 

factor covariates 

TRUE 

(default) 

sample.fraction 
The fraction of observations 

to sample 

From 

0.632 to 

1 

num.trees Number of trees 
From 25 

to 210 

mtry Number of variables From 2 
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to 8 

SVM 

“Misc Functions of 

the Department of 

Statistics, 

Probability Theory 

Group, TU Wien” 

Formerly: “E1071” 

package, [110] 

kernel kernel function 

radial or 

polynom

ial 

Cost regularization cost 

From 2-

15 to  

215 

(default) 

gamma (if kernel 

=: “radial”) 
kernel width 

From 2-

15 to  

215 

(default) 

degree (if kernel 

=: “polynomial”) 
Polynomial degree 

From 1 

to 16 

(default) 

 

For the number of variables in each tree (interaction.depth and mtry), various 

heuristics suggested by packages that provide GBM and RF were used to set the 

optimum value (Table  3.3). These heuristics suggest that ranges of 1 to 8 and 2 to 8 

would be accurate for “interaction.depth” and mtry. The additive nature of GBM, 

allows for the one-way interaction variable in each tree (                   ), 

on the contrary, RF does not allow one-way interactions, only two-way interactions 

or more (      ). On the other hand, instructions of the used packages and some 

experimental researches, e.g. [e.g. 111, 112], the total number of trees to fit (n.trees 

for GBM and num.trees for RF), was set to an exponential value using a base of 2 

(            ) on which the optimal value is between    and    . 

Table  3.3 The heuristics proposed by the package instructions to set the optimum number of variables 

for GBM and RF. 

Package 
Suggested Value 

mtry interaction.depth 

gbm N.A 
√  , but often the search space is set between 1 and 

√   

ranger √   = 4 N.A 

xgboost 6 6 

h2o 2 to 8 2 to 8 

randomForest √  = 4 N.A 

  : the total number of variables (i.e., 16 in this research) 
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Furthermore, the number of nodes in the hidden layer (“size”) for NNET was 

set in a range of 4 to 33 according to empirical suggestions proposed by different 

authors summarized in Table  3.4. 

Table  3.4 The heuristics proposed to compute the optimum number of hidden layer nodes for NNET 

(modified from and Kavzoĝlu [113]). 

Proposed by Heuristic hidden nodes 

Hecht [114]       33 

Ripley [115]            8 or 9 

Paola and Schowengerdt 

[63] 
            

 
 

  (  
    )   

     
 9 

Wang [116]         11 

Aldrich, Van Deventer 

[117] 

  

         
         7 

Aldrich, Van Deventer 

[117] 

  

         
        10 

Kaastra and Boyd [118] √      4 

Kanellopoulos and 

Wilkinson [119] 
    32 

  : number of input nodes (i.e., the total number of variables of 16 in this study);   : 

number of output nodes ;   : Number of training samples;  : the noise factor (varies 

between 4 and 10) is an index number representing the percentage of false measurements in 

the data or degree of error 

 

In the end, SMBO was implemented using an initial design grid of size 40 with 

30 iterations budget, and the lower confidence bound (    ) as infill criterion for 

optimizing the implemented models and they respective hyperparameters (Table  3.2). 

3.10 MODELS VALIDATION AND EVALUATION 

Different performance metrics can be implemented for quantitative 

comparison; however, landslide susceptibility problems are strictly classification 

problems where quality and confidence in probabilities toward land sliding is critical. 

Therefore using a performance metric to assess prediction robustness is necessary 

and for this reason, the area under the ROC curves (AUC) will be implemented as 

the only metric for the objective functions in hyperparameters tuning and one of 
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three overall performance indicators of the landslides predictive models. 

Additionally, the overall performance and the predictive capabilities of the tuned 

models was assessed using not only the robustness of the prediction using AUC as it 

is not enough, the accuracy and reliability of trained models also assessed using the 

overall Accuracy (ACC) and Cohen kappa index ( -index), respectively. 

Moreover, model performance results were tested using nonparametric 

statistical procedures for statistical significance to evaluate and compare landslide 

susceptibility models against each other using the Wilcoxon signed-rank test at the 5 

% significance level for each pair of models to individually detect differences in 

model performances. Basically, the Wilcoxon signed-rank test relies on a null 

hypothesis (i.e., there are no differences between the performances of the landslide 

models), on which values called          and           are used to determine the 

probability of rejecting or accepting the null hypothesis [102]. If          is lower 

than the significance threshold (i.e.             ) and z.value exceed its critical 

values (i.e.               or              ), it’s safe to assume that the null 

hypothesis is not valid and can be rejected and therefore a significant difference 

between the two compared models exist, otherwise (i.e.              and 

                   ) it’s safe to assume the opposite. 

3.11 LANDSLIDE SUSCEPTIBILITY MAP GENERATION AND ASSESSMENT 

Apart from the performance metrics, sufficiency analysis must perform to 

assess the sufficiency and accuracy of predictive models that produce landslide 

susceptibility maps. This analysis is based on the assumption that: “A model is 

sufficient and accurate when there is an increase in the landslide density ratio when 

moving from low to high susceptible classes and high susceptibility classes covers 

small areas extent” [4, 40, 120-122]. 

The sufficiency analysis can be performed based on reclassifying the 

continuous probability grids (ranging from 0 to 1) generated for the study area 

generated by each susceptibility model into five standard categories of relative 

susceptibility as described in Table  3.5. The Standard deviation method was chosen 

to classify the susceptibility. The class breaks were determined by the supported 

mean value. Subsequently, by overlying the landslide inventory; it’s possible to 

generate a summary statistic for each class (landslide density and area extent). 
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Table  3.5 Probability intervals for landslide susceptibility classes. 

Susceptibility 

Class 
Very Low Low Moderate High Very High 

Probability 

Range 

From 0 

to 0.05 

From 0.05 to 

0.30 

From 0.30 to 

0.60 

From 0.60 to 

0.75 

From 0.75 

to 1 

 

It’s important to understand that only the highest and lowest susceptibility 

classes, i.e. Very High and Very Low, were regarded for sufficiency evaluation 

against the referent Landslide Inventory. This was inspired by the fact that existing 

landslides and Non-landslides should be marked as a priority zone (preferably as 

Very High and Very Low susceptibility class). 
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Chapter 4: Case Study 

This chapter is featuring the Objectives 2 & 3, and indirectly all the others (see 

Chapter 1.3). 

 

The problematic of landslide susceptibility, in the context established 

throughout this thesis, was practically unattended in this study area in the past. There 

has been a host of practical considerations, mainly small geotechnical projects and 

reports, tightly related to the landslide problematic for various purposes, mainly site-

specific ones, for construction design, few studies at regional scales for urban and 

regional planning, or just some plenary researches targeted at different geological 

aspects were carried. Thus indicate, that this research is just barely scratching the 

surface in term of the landslide hazard and susceptibility problematic. 

Nevertheless, there was a national plan for nation-wide engineering and hazard 

mapping in a scale
51

 of 1:200000 by the end of the 20th century. These maps should 

have matched the existing geological map on the same scale, but the idea was not 

realized to date. Such a situation with data availability affected the initial stage of 

this research, but the case study area turned resourceful after recompiling and 

merging separate patches and sheets of the data from CAD files to GIS Layers. 

It is important to outline, that this study area has been researched for three 

years and there have been different aspects where the elaborated work was published. 

4.1 BACKGROUNDS 

 The following paragraphs will focus on presenting the essential backgrounds 

about Mila basin rather informally; in order to stay committed to the main 

problematic of this research. Details such as geology, hydrogeology and so forth, 

about the study area are well documented and presented in comprehensive details in 

different literature (e.g. [123-137]). 

                                                      

51
 PER and ZERMOS. 
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Geography 

Mila Basin is situated in the northeastern part of Algeria between longitudes 

of         and        , and latitudes of           and            and covering an 

area of approximately           distributed over 42 municipalities (mostly over 

the central parts of the Mila and Constantine provinces). Geographically, the study 

area is fully surrounded by mountain ranges such as M’Cid Aicha and Sidi Driss 

from the North; Djebel Ossmane and Grouz by the South; Djebel Akhal, Chettaba 

and Kheneg from the East; and Djebel Boucherf and Oukissene by the West 

(Figure  4.1). 

 

Figure  4.1 The geographical location of the study area. 

Landuse and Vegetation 

Landuse is mostly for bare lands, cereals crops or wild herbs. This low-density 

vegetation is making the basin a hotspot for agriculture investments and farming 

industry (i.e. cattle breeding, poultry, stock farming...etc.). However, such vegetation 

accelerates land degradation and instabilities by soil erosions. 
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Climate 

In Mila basin, usually, the wet season is relatively short compared to a long dry 

season. The local climate can be divided into two separate entities: 

 Semi-arid with a mild winter denoted by significance difference in 

temperature (reaching       and below     during summer and winter, 

respectively) and reaching an average of 500 mm/year (Figure  4.2). 

 Sub-humid fresh climate (typical for a mountainous landscape) 

surrounding the first entity and denoted by relatively dry and hot dry 

season, fresh and humid wet season. The precipitation mean is fluctuating 

between 900 and 1200 mm/year [127, 135]. 

 

Figure  4.2 The mean rainfall map of the study area. 

Hydrology and Hydrogeology 

The study area is technically a high elevated basin (mean elevation 

surpasses      ), which is part of a much larger watershed called “Kébir Rhumel”. 

This basin, i.e. Mila basin, is characterized by asymmetrical elongated geometrical 



 

88  Chapter 4: Case Study 

form (along the East-West direction) drained by a dense and hierarchical 

hydrographic network in N-S direction depending on the stream (Figure  4.3) [131]. 

 

Figure  4.3 The hydrographic network map of Mila basin. 

 In terms of hydrology, the hydrographic network streams are mostly depleted 

of water during the dry season. This renders the streams with less useful to the 

overall local economy. However, during wet season everything change and the 

overwhelming flow
52

 highly contribute to soils erosion. This case, in particular, 

exposes human settlements and constructions near the hydrographic network streams 

to the risk of land instabilities. 

On the other hand, from a hydrogeological perspective, the study area does not 

possess any important aquifer. However, theoretically,
53

 there exist formations with 

to formulate and (or be) aquifers for groundwater bodies such as: 

 Quaternary formations with mainly Alluvium deposits. 

                                                      

52
 Especially during intense rainfall. 

53
 Mila basin highly suffers from lack of underground data such as hydrogeology due to the nature of 

geology. 
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 Sand, sandy and/or sandstone deposits available in the Mio-Pliocene 

formations, especially if it is deposited in lenses. 

 Lacustrine limestones have a high potential of retaining high capacities of 

water
54

. 

 High infiltration zones such as shear zones (Major tectonic accident like 

faults) are suitable areas for water infiltration and seepage where different 

springs and resurgences can upsurge randomly (frequently observed during 

foundation excavation for infrastructure project, i.e. Beni Haroun dam, 

RN27 and RN79 maintenance...etc.) 

Seismicity 

Seismicity in the study area is moderate according to CRAAG (Le Centre de 

Recherche en Astronomie Astrophysique et Géophysique). Mila basin is located 

within Zone II (Figure  4.4) and is characterized by moderate seismic activities. 

However/Moreover, the basin has suffered previously on multiple occasions from 

various intensive seismic events that vary in terms of magnitude (Figure  4.4). But 

overall, the upper parts of the basin are previously affected by seismic activities in 

the past
55

 [133]. 

                                                      

54
 Can vary depending on factors such as fracturing and karstification states. 

55
 Especially in the NW and South-east of the basin. 
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Figure  4.4 Seismic maps with the historic seismic events of the last 50 years of the study area. 

  (Merghadi, Abderrahmane [138] Edited, after CGS). 

Geology 

Notably, the study area belongs to a paleogeographic domain known as 

“domain tellien”, which is technically, the oriental segment of a “chaîne” formally 

known as “chaîne des maghrébides”. This chaîne was set up by the “Alpine 

Orogeny” during the Miocene epoch in north-western Africa
56

 [128]. More 

specifically, a larger Neogene basin known by the “Constantinois basin” 

encompasses the study area and as stated before
57

, several mountainous ranges that 

belong to different paleogeographic domains surround the study area and constitute 

the basin bedrock [126]. 

 

 

                                                      

56
 For that purpose, it’s known as “la chaîne alpine d’Afrique du Nord”. 

57
 See Chapter  0 4.1. 
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Figure  4.5 The geological map of the study area. 

In terms of tectonic activities, the study area shows a tectonic complexity due 

to some severe conjugation of folds, faults, and thrusts of different ages and styles 

that are the results of two main tectonic events. The first phase was the “Atalsic 

phase”, which is responsible for forming major recumbent fold structures oriented in 

a NE-SW direction. The second was the “Alpine phase”, which is responsible for 

breaking and sliding existing formations one over the other to form gigantic thrust 

faults, which resulted in a thrust belt of structures oriented in N-S direction. 

According to Coiffait [126], there exist two general systems of lineaments for 

the basin based on the orientations of the structures generated by the aforementioned 

major tectonic events: 

 The diagonal system, with NE-SW and NW-SE orientations. This system 

is dated to the late Eocene. This system is directly responsible for creating 

and generating some important structures (i.e., folds and Horst-Graben) in 

the basin. These structures were the source of the detritus materials during 

the Neogene. 
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 N-S, E-W lineament system, also known (also known as “Vertical 

lineament system”). This system belongs to a recent compression phase 

that is responsible for the current morpho-structure of the study area. 

Essentially the local geology of the study area consists of different 

lithostratigraphic units (Table  4.1 and Figure  4.5) and can be summarized into two 

groups, called “series” [126]: 

 Substratum/Bedrock series, which formulate both the lower base and the 

bedrock of the basin and consist of Triassic to Paleogene formations. 

 Post-nappes series constitute a cover to the bedrock series and consist of 

Neogene to Quaternary formations. These series, in particular, were 

slightly affected by recent neotectonic deformations. 

Table  4.1 The geological formations present in Mila Basin. 

Unit Period Epoch Description 

Post-nappes 

Quaternary 

Alluvium, colluvium, scree, detritus 

deposits and slopes formations like 

terraces. 

Neogene 

Predominantly detritus composed of 

clay, marl, limestone, 

conglomerates, sandstones, sand, 

lacustral limestone and evaporitic 

formations. 

Substratum 

Paleogene 
Eocene 

Limestone, cherty limestone, and 

platted marls. 

Paleocene Opaque to somber marls 

Cretaceous 

Upper and Mid-

Upper Cretaceous 
Marl dominance58. 

Lower Cretaceous 
Mainly marly limestone and neritic 

limestone. 

Jurassic 

Mostly thick carbonate formations 

(dolostone, limestone, and cherty 

limestone). 

Triassic Evaporitic and clayey deposits. 

 

                                                      

58
 Variation are ranging from different horizons of gray marly limestone, alternating marl, and 

limestone, blueish marl, massive bars of limestone, to alternating marl, cherty limestone, and thin 

micritic limestone all surmounted by grey marls with conglomerate interbeds. 
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In general, the study area is predominantly covered by clayey formations. The 

existing mineralogical units were summarized according to some researcher's 

previous works (e.g. Zouaoui [137], Chettah [125], and Athmania, Benaissa [123]) 

into Table  4.2. 

Table  4.2 The mineralogical groups existing in Mila Basin. 

Group Mineral Description 

Clay 

minerals 

Illite 

Less sensitive toward water content variation (shrink-

swell due to water presence). In terms of size and 

dimension, it varies between 3.96 A° to 7.63 A° and can 

reach sometimes 8.59 A°. 

Montmorillonite 

Highly sensitive to water content variation. Generally, 

montmorillonite minerals are well structured resulting in 

highly cohesive soils during the dry season. However, 

during the wet season with the high amount of water 

content infiltrate deep soils montmorillonites mineral 

become vulnerable to water and in the end resulting in 

solifluction [139]. 

Kaolinite 

Similar to Illite minerals of being less sensitive toward 

water content variation. in fact, Kaolinite minerals are 

counted as the least sensitive toward water content 

variation in clay minerals family [123]. 

Chlorite 

Are the most predominant clay minerals in the study 

area, which generated from the weathering process of the 

Biotite minerals. Generally speaking, soils with a high 

percentage of Chlorite (surpass 15%) are counted as 

susceptible to landsliding (due to high shrink-swell 

capacity) [123]. 

Saponite Similar to Chlorite, Saponites, and Vermiculites minerals 

are Highly sensitive to water content variation, but with 

lower percentages than the remaining clay minerals (i.e. 

Illite, Montmorillonite, Kaolinite and Chlorite) 
Vermiculite 

Other 

minerals 

Quartz 

These minerals are generally found with clay minerals in 

different percentages that differ depending on the 

location samples are sampled/drawn from [123, 125]. 

Feldspar (Low 

percentages) 

Sulfate minerals (e.g. 

Gypsum, 1 to 3%) 

Carbonate minerals 

(e.g. Calcite and 

Siderite, 10 to 29%) 

Ferruginous minerals 

(up to 6%) 
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Geomorphology 

Geomorphological speaking, Mila basin is composed of multiple terrains of 

carbonate formations emerging deep within the existing heterogeneous Neogene 

formations. These structures are the result of the tectonic heritage of the pre-

disposition (i.e. pre-sedimentation) of the Neogene detritus formations. Such 

configuration is responsible for the morphological heterogeneous terrains in terms of 

the observed spatial morphological entities [137] (Figure  4.6). 

 

Figure  4.6 The geomorphological map of the study area. 

For example, the mountainous landscape of ridges and hills that encompass 

rugged channels and pits is the most observed landscape. This prominent pattern is 

generally stretching over large proportions (Table  4.3), especially northern parts of 

the study area where the terrains elevate rapidly. 

Table  4.3 The existing morphometric features present in Mila Basin. 

Feature Percentage (%) 

Planar 11.581 
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Pit 0.257 

Channel 41.625 

Pass (saddle) 0.806 

Ridge 45.494 

Peak 0.237 

 

According to PDAU (Plan Directeur d’Amenagement et d’Urbanisme)
59

 

reports, this prominent landscape is essentially characterized by reddish hills and 

ridges with hummocks and/or undulated terrains of bare to less vegetated lands. 

During, the wet season, substantial green vegetation covers these terrains, whereas, 

during the tillage period only the reddish-brown color of the Neogene formations 

(i.e. clay and marl), is noticeable. 

4.2 LANDSLIDES IN MILA BASIN 

Landslides are a highly pronounced issue in the study area noticeable by the 

consistent symptomatic indications of the phenomena through man-made 

constructions such as roads, pavements, slopes, embankments, powerlines, and 

water-sewage pipelines. The dramatic variance of landslides in the basin, in terms of 

spatial repartition and intensity, is a very serious handicap to the urban, local, social 

and economic development of the basin since 1985. Over the year, the ever-

increasing rate and magnitude landslides, increased the number of the element at risk 

exposed to landslides, especially in the urbanized areas. Different remedial actions 

and innervations were proposed and highlighted relating instable areas but they were 

not fully compatible, as they did not consider soils intrinsic properties, landslides 

characteristics, landslides behaviors and patterns, rending these remedies either 

insufficient or incompatible (Figure  4.7). 

Despite the remedial projects that have been carried out in the recent years, the 

effects of landslides in term of damages are still persisting and sometimes even 

worse, as these remedial actually focus on treating the symptoms of landslides rather 

than the landslides issue itself without consideration of soils intrinsic properties or 

landslide patterns behaviors. 
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 Published in 2007-2008 for Wilayas of Mila and Constantine. 
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Figure  4.7 Example of incompatible remedial actions and innervations. 

The pile sheet walls were implemented to stop the continuous deformation of the slope mass. 

However, stabilizing the slope would be appropriate, rather than fixing landslides symptoms (Source: 

Mila municipality, Location Mila, date: October 2015). 

 

Climatic, geological, geomorphological and human-related characteristics of 

the basin are in favor of landslides of different shapes, sizes, and types. These 

predisposition factors, along with the already complex landslide failure mechanism, 

are complicating this hydro-geomorphological phenomenon, which leads an 

unexpected evolution of landslides in both spatial and temporal space components. In 

general, common indicators and evidence of landslides can manifest sometimes in 

form of scares or continuous slope deformations (e.g. solifluction and creeps) that 

indicate a deeper and profound dynamics, which needs to be treated with caution and 

special attention. Usually, disregarding and ignorance about the conditioning and 

triggering factors of landslides tend to lead to very complex and critical situations. 

For example, outside or inside urbanized areas in Mila basin (i.e. cities, 

villages,...etc.), are all experiencing the same symptomatic indicators and evidences 

such as roads failures, fractures and/or leakage in pipelines 
60

(i.e. water and sewage), 

without any concerns to the causes or the potential issues these problems or the 

                                                      

60
 They can be out of service for extended periods of time that can reach couple of weeks. 
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symptoms may indicate or even influence (e.g. sewage seeping and saturating slopes) 

(Figure  4.13a-d). 

The study area possesses dynamic diversity, in term of landslides that can vary 

from simple erosions to extremely complex and dangerous types of landslides like, 

composite landslides (i.e. complex landslides), or even flows and spreads that 

develop inside gullies and bad-lands. Overall, this diversity is related not only, to the 

highly dynamic physical proprieties of the basin, but also the human-related factors. 

These factors are highly contributing to the ever ending complex scenarios by 

introducing landslide mechanisms that are difficult to predict and generalize 

(Figure  4.9). The landslide displacement mechanisms observed in the study area can 

be summarized as the following (for more theoretical details see Chapter  2.1): 

 Slope deformation (Solifluction), is frequent in the coherent tender plastic 

formations
61

 that tend to exhibit continuous deformations and suffer from 

the swelling and shrinking tendencies, but never practically revert to its 

original state. This is noticeable when runoff-water infiltrates the upper 

permeable formations, especially in streams (river banks bed) (Figure  4.8). 

 

Figure  4.8 Solifluction of slopes near streams. 

Runoff-water infiltrates the upper permeable formations and the slope mass fails gradually under its 

own weight in downslope movement (Source: Chettah [125], Location: Mila; Date: Unknown). 

                                                      

61
 Mostly clayey and marly formations but sometimes with or without sand. 
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 Slides
62

: 

o Rotational slides, this is typical for clayey formations that vary from 

few meters, up to hundreds of meters in length (> 200 m), and can 

vary in width from 10 ~ 30 meters [139]. For instance, multiple and 

successive overlapping rotational landslides tend to impregnated 

slopes with symptomatic indicators and evidence such as scars, that 

indicate a complex dynamics of conjugated rotational landslides. In 

most cases, removal of pins and abutments available in slopes feet and 

toes, exacerbate and increase slopes failure rate (Figure  4.9). This 

scenario can be accelerated with open ponds and superficial water 

runoff, which generated mostly from leakages of failed sewer and 

drainage systems that suffer from leaks and ruptures. In some cases, 

the leakage can worsen the process by introducing important and 

significant gullies. Additionally, the scouring of slopes and 

embankments
63

 is noticeable in marly-clayey formations. The 

overwhelming majority of the landslides are shallow, sometimes 

successive and deep-seated unless slopes abutments and pins are 

removed. 

 

Figure  4.9 An example of a landslide where the slope fails due to scouring. 
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 See Figure  4.13 in Chapter  4.3.1 for some examples. 

63
 Scouring is the process of cutting slope’s feet and/or toes. 



 

 Chapter 4: Case Study 99 

(Source: Chettah [125], Location: Mila; Date: Unknown) 

o  

o Overall, rotational slides often presented in different generations that 

can be nested and embedded successively one inside the other. As 

consequence, this will be reflected on the slope surface by generating 

a chaotic landscape (i.e. embossing, dents, ripple, waves, and creeps) 

marked by numerous counter-slopes and ridges (Figure  4.10) and 

small to moderate gullies with fresh notches (cuts) and depletion that 

favor lateral subsidence’s. 

 

Figure  4.10 A chaotic landscape example generated by a successive deep rotational landslide. 

Dents, ripple, waves, and creeps marked by numerous counter-slopes, ridges and gullies with fresh 

notches (cuts) and visible depletion that lateral subsidence’s (Location: 185 Log; Date: March 2016, 

Source: Mila and Constantine municipalities). 

o Planar slides is explicitly found in streams precisely Oueds and 

Chaâbats, where materials slide in downward movement inside the 

riverbed (especially during floods) along successive sub-vertical to 

parallel slipping-surfaces to the streams hillslopes geometrical plans. 

This process happen when there is an undermining and sapping of 

concave streams banks by running water. In some extreme case, 

landslides can further progress when successive subsidences occur 

downstream. These types of slides are usually of hundreds of meters 

in length and 1.5~2 meters in width [139] and mostly simple but 
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sometimes can evolve into a hybrid of landslides of debris flow during 

an exceptional rainfall precipitation period and floods. 

 Flows, spreads, and Falls, can vary depending on original slopes materials 

(see Chapter  2.1, from debris flow to mudflow, rock slope spread, 

sensitive clay spread...etc.), as they are generally sparse and less-spread 

over the study area and mostly limited in form and size as they scatter 

around edges of streams, downslopes (Figure  4.11a), or if slopes ridges 

and peaks are Limestone formations (Figure  4.11b). 

  

(a) Debris Flow (Location: Oued Elkherba; Date: 

Unknown) 

(b) Debris Fall (Location: Mila, Date: Unknown) 

Figure  4.11 Landslide examples of spreads and flows available in Mila basin. 

(Source: Chettah [125]) 

 

According to survey campaigns achieved by local authorities (2003-2017), it 

was reported that slopes in the study area fails under a conjunction of both 

predisposition factors (i.e. geology, lithology geomorphology, faults...etc.) and 

triggering factors (i.e. intense and persistent meteorological events, human 

activities,...etc.) resulting in landslides of different sizes and types. These Reports 

suggest that: 

 Long and persistent periods of intense to moderate rainfall, are the main 

culprit in triggering and/or reactivating existent deep-seated landslides due 
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to the high amount of water infiltrating underground. On the contrary, 

short and intense to moderate rain storms and/or precipitation, are 

indirectly affecting slopes stability by an intensive erosive process. 

 Rainfall variation turns out to be very significant for this study area as a 

large amount of precipitation is recorded during the short wet season. 

Thus, slopes are highly vulnerable during that period of time of the 

relatively short wet season. 

 Human related activities can exacerbate sliding when drainage systems fail 

or when urban development increases runoff near steep slopes. 

Additionally, expanding infrastructures such as road and settlement areas 

are in some cases considered as influencing or triggering factors
64

. Some 

evidence shows that cutting the gentle slope for building settlement turns 

out to be a triggering factor for landslides. 

 Water in general, has an explicit influence on slopes geotechnical and 

mechanical properties, especially if absorption and permeability of slopes 

soils are relatively high.  

 Landslide typologies are different and include mostly: (1) translational 

slides hosted in the shallow deteriorated mantle of the Neogene complex 

formations and/or stratified Quaternary formations; and (2) Shallow to 

deep-seated slides hosted in Tertiary formations, wherein the landslides are 

rainfall-triggered, while sometimes triggered by the erosion-groundwater 

dynamics. 

4.3 GEOSPATIAL DATABASE 

Constructing the geospatial database is one of the most crucial steps in 

successful landslide susceptibility modeling. This process usually consists of 

constructing an inventory database of landslides from historic events (past and 

present) and conditioning factors database that control and determine the failure 

mechanism and the triggering process. 

                                                      

64
 Case of RN27 and RN79. 
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The geospatial database is prepared as a GIS database that contains all 

necessary information’s regarding geographic location, features, conditioning factors 

and relative statistics, about the 578 mapped landslides. The conditioning factors and 

landslide inventory available in the geospatial database are acquired from different 

sources and they are represented in 2D GIS thematic raster layers, entailing different 

levels of generalization and different scales. Subsequently, a generalization to 

common 30 m cells raster resolution is plausible
65

 (Fell et al. 2008), considering the 

fact that the most critical data have reasonably, a small scale that turned out to be too 

detailed for the research purpose (e.g. Geological map are 1:50000). Therefore, the 

geospatial database has been recompiled and resampled (either by up-sampling or 

down-sampling) to an optimal 30 m raster resolution. As a matter of fact, an 

additional generalization (by aggregating similar classes) took place over such 

inputs. Finally, assembling of the geospatial database into an input dataset has been 

prepared by QGis, SagaGIS and R. The resulting database was stored in HDF, JSON 

and Array formats, which proved to be efficient in absence of a fully integrated 

standardized solution for data exchange between ML modules and GIS platforms. 

4.3.1 Inventory Map 

A detailed landslide inventory map has been compiled for the period of January 

1985–December 2017 with only slide failure types have been elaborated 

(Figure  4.12) using mainly: 

 Historical records provided publicly by the local agencies (i.e. 

municipality of Constantine and Mila) with a 531 landslide event. 

 Google Earth Pro® software 47 landslide events were detected and 

mapped (from 2000 to 2017). 

On the other hand, the non-landslide samples were easily obtained by random 

sampling a unique 578 sample site (equal to the total number of landslide samples) 

from public stability maps available at DUC (Direction d’Urbanisme et 

Construction) using PAW (Plan d’Amenagement de Wilya) and PDAU. 
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 30 meters scale is usually acknowledged as optimal scale for regional analysis. 
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Figure  4.12 The landslide inventory map of the study area. 

The validity of the compiled inventory database (landslide and non-landslide 

samples) has been verified on the field, using extensive field inspections (especially 

for the landslides that have been mapped with lower certainty) by practicing 

conventional engineering-geological mapping methodology and low-accuracy 

navigation device (still sufficient for 30 m inventory). These field inspections were 

limited to the smaller landslides only, i.e. only those observable on the field. 

Otherwise, Aerial Photography provided by Google Earth was used to validate and 

check the mapped sample events. The aforementioned verification methodology 

implies evidencing of the landslides, but also to find evidence which could support 

the activity estimation, as well as estimation of the triggering mechanism, landslide 

depth and type (in order to conform to the adopted classification system). However, 

these observations and measurements
66

 during field inspections are standard, limited 

in scope, have not been systematically carried and the data have been collected 

                                                      

66
 Measurement of landslide morphology and metrics, depth estimation, tension cracks, object 

deformations...etc. 
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randomly
67

. Also, field revisits served the purpose of only ensuring some particular 

occurrences with adjacent to the available landslide event samples (Figure  4.13). 

Annual revisits allowed visual monitoring of particular occurrences. 

  

(a) RN 79a, (Type: Deep-Rotational landslide; 

Date: October 2011) 

(b) Sibari (Type: Shallow-Planar landslide; Date: 

February 2008) 

  

(c) Mila (Type: Deep-Rotational landslide; Date: 

September 2013) 

(d) Grarem (Type: Planar landslide; Date: June 

2015) 

Figure  4.13 Landslide examples used in the landslide inventory. 

(Source: Mila and Constantine municipalities, Location: see Figure  4.12). 
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 Especially one provided by local governmental agencies was inconsistent and lack details in most 

case. 
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(e,f) Mila (Type: Deep-Rotational landslide; Date: October 2017) 

  

 

(g, h and i) Didouche Mourad (Type: Deep-Rotational landslide; Date Left: August 2003, Date Right: 

September 2005, Date Bottom: March 2016). 

Figure  4.13 (continued). 
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The main landslide characteristics were described according to WP/WLI [11] 

(See Table  2.4) standard recommendations. Common indicators of the active sliding 

can be found in geomorphological, hydrogeological, botanical evidence, as well as in 

deformations of the man-made structures. For instance, fresh scars opened tension 

joints locally filled with water, local pounds and hummocky topography are strong 

evidence of recent activities in the depletion and accumulation zones. Also, fresh 

fissures in the buildings or paved roads, disarrangement of the fences and staircases 

(as most fragile constructions), and tilted tall objects such as poles or trees are further 

supporting the activity assumption. Information from the members of the local 

community is also appreciated, especially for the dating of the landslide events, 

estimating the water table levels in aquifers, estimating the activity rate, estimating 

the trigger and assessing the damage produced by single or multiple events. 

Although slides dominate throughout the study area, several flows spreads, and 

falls are also present, particularly in the northern part where steeper slopes and 

narrower valley channels, exist. Since, these types have entirely different 

phenomenology (geometry, dynamics and mechanism) it is logical to assume that 

different conditioning factors will have a different effect in each type of movement. 

Thus, leads to different and separate investigations. However, the emphasis was on 

susceptibility analysis and the proposed methodology required an analogous type of 

subject to model. Therefore, in order to remain consistent with the current 

methodology, the other landslides types (flows, spreads, falls and so forth), have 

been excluded from the inventory, and only slide type of failure was kept and 

elaborated. Furthermore, the landslide inventory has been somewhat simplified in 

order to enhance the statistical representativeness of landslide vs. non-landslide 

categories. In this context, original landslide classes (WP/WLI classification) have 

been unified. 

4.3.2 Conditioning Factors 

In susceptibility analysis, landslide conditioning factors need to be operational, 

complete, non-uniform, measurable, and non-redundant [140, 141]. However, the 

selection process of landslide factors is very subjective comes with difficulties (i.e., 

the study case, scale of the analysis, and data availability, general guidelines for GIS-

based studies,…etc.), which explain the variations in landslide susceptibility 
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modeling studies in term of the conditioning factors used for the analysis. However, 

despite the fact that there are no clear guidelines about the proper factors to use for 

such a kind of analysis [141], the conditioning factors ( Appendix B) were selected 

for this case study based on: 

 Field survey observations. 

 Survey campaign reports achieved by local authorities. 

 The most commonly used factors in the literature for landslide 

susceptibility analysis [e.g. 142, 143, 144]. 

 Geo-environmental factors of the study area that may directly or indirectly 

affect landslides and can be used as predisposing factors [33].  

 The scale of the analysis and data availability for the case study [145]. 

In this case study, a total of 16 conditioning factors that describe Mila basin 

terrain attributes, such as factors regarding geo-morphometric ground surface 

morphology, hydrological, geotechnical and subsurface, geological and 

environmental features, as well as some derived synthetic features; were considered 

as suitable for this thesis. 

Geo-morphometric Data 

Geo-morphometric or topographic data parameters were generated from the 

Digital Elevation Model (DEM) of the study area at near 30 meters cell resolution 

from NASA Shuttle Radar Topography Mission Global 1 arc second (SRTMGL1) 

mission
68

. The DEM resolution of 30 was chosen for two basic reasons: 

 The sufficiency of 30 meters resolution DEM, considering the overall 

extent of this case study landslide susceptibility analysis  

 The adequate support and compatibility that 30-meter grid size would 

provide regarding other data sources used for this case study (e.g. 

geological map at 1:50000 scale). As a result, all geo-morphometric and 

hydrological DEM derivatives are kept at the same 30 m resolution as the 

source DEM.  
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 For more details see. 
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The geomorphometric parameters used in this case study are listed as follows 

(Figure  4.14a-d): 

 Altitude – a float raster (Figure  4.14a), suggesting that the linear increase 

in potential energy with altitude is associated with higher susceptibility to 

landslides in the higher elevated grounds. It actually, represents the DEM 

of the terrain, described earlier. 

 Slope angle (Slopes) – a float raster (Figure  4.14b), is highly important due 

to the fact that slope stability is directly related to landslide 

phenomenology (i.e. direct physical relationship). If the slope angle is ( ), 

then the greater ( ), the higher the possibility of slopes instability and 

vice-versa. However, that depends largely on lithology, rock type and 

resistance of the lithological units (e.g. in solid rock, the slopes are 

expected to be stable even with a steep slope angle, while clayey slopes do 

not need a steep angle to host instability), but in general, steep weathered 

formation slopes are highly susceptible toward landsliding. From the 

morphometric point of view, slope angles is considered as DEM first-

derivatives and can be computed directly from the DEM by Degree 

Polynomial (DP) slope algorithms (also called D8 algorithm), referring to 

a smoothing window of size 9 (3x3 filter). Subsequently, the value of each 

pixel is defined by the mean of the surrounding 8 pixels [146]. 

 Slope aspects (Aspects) – a float raster (Figure  4.14c), which refers to the 

spatial exposure of the ground elements (e.g. azimuth) by controlling the 

micro-climatic parameters such as exposure to sunlight, wind, rainfall 

intensity, and the slope material properties. Slope aspects are directly 

computed from DEM by DP-D8 algorithms in a counter-clockwise fashion 

(ranges from 0° to 360°), suggesting that susceptibility to landslides 

accentuate from SW to NW quadrant, since the diurnal solar path 

influences moisture in slopes and topsoil mantle thickness. Thus, NW 

slopes are the most inconvenient (with the highest moisture content and 

the thickest mantle detritus), while SW is the least susceptible. 

 Landforms – a float raster (Figure  4.14d), derives a classification for the 

landscape based on three-part geometric signatures (i.e., slopes, convexity 
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and surface texture) as the most common form of landslide progression on 

the slope, as suggested by [147].  
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(a) Altitude 

 

(b) Slope Angle 

Figure  4.14 Geo-morphometric conditioning factors 
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(c) Slope Aspects 

 

(d) Landforms 

Figure  4.14 (continued). 
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Hydrological Data 

Water, in general, is undoubtedly playing a primordial role in the triggering 

process of landslides and decrease slopes stability by effects such as: 

 Increasing or decreasing the shear strength, cohesion, permeability and the 

overall mass of the slope. 

 Weathering of slopes materials, 

 Eroding of slopes footing, 

 Saturating slopes. 

These effects, influence slopes stability balance and can either increase or 

decrease landslides depending on water presence. Thus, the following parameters 

were used to express the hydrological effect on the landslide susceptibility in the 

study area: 

 Rainfall – is a float raster (Figure  4.15a), that was generated from the 

Annual Mean of Precipitation (AMP) for the period of 1985 to 2017, using 

the Inverse Euclidean Distance Weighted (IDW) method. Rainfall is one 

of the triggering factors for landslides and considered and one of the most 

dangerous factors on slopes stabilities (especially upslope), because slides 

often occur following persistent periods of intense to moderate rainfall, 

where a high amount of water runoff water infiltrate and saturate 

formations and soils located beneath slopes (especially steep slopes, and 

can also introduce groundwater levels fluctuations depending of the 

amount of water infiltrated). On the other hand, short and intense to 

moderate rainstorms and precipitations, less amount of water infiltrated 

deep underground but affects slope stability indirectly by an intensive 

erosive process generated by the high amount of dissipated water on the 

surface ground. 

 Topographic Wetness Index (TWI) – is float raster (Figure  4.15b), and 

represents a morphometric parameter
69

 that pinpointing the effect of local 

topography on certain locations and the size of the saturated source area of 
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 From morphometric point of view, TWI is DP/D8 second order DEM-based derivative. 
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run-off generation by defining terrain retention (i.e. moisture distribution), 

which is correlated with the hydrogeological conditions, that influence 

surface run-off and infiltration [148]. Therefore, by expressing water 

retention distribution throughout the study area, TWI influence slope 

stability by fact that effective stress decrease in saturated slopes, and thus 

areas with higher TWI values as relatively more prone to instabilities. 

According to Beven and Kirkby [149] and Moore, Grayson [150], TWI 

can be calculated by the topographic water retention potential given by a 

relation of the upslope drainage area and slope gradient, using Equation 

( 4.1): 

        
  

    
  ( 4.1) 

 Where:    is the specific catchment area (    ) and   is the local slope 

in degree ( ). 

 Distance to Hydrographic Network (WDist) – is a float-buffer raster 

(Figure  4.15c), which introduces the influence of linear erosion on the 

slope stability, since deformation and failure processes develop 

regressively upslope under the vertical and lateral influence of the linear 

erosion. In narrow upper sections of the valleys, vertical erosion 

dominates, steepening the slopes and destabilizing rock masses. On the 

other hand, lower sections tend to develop lateral erosion, widening the 

valley bed, once again pushing slopes off the balance. The foregoing 

discussion suggests that areas closer to the streamlines are more affected 

than remote ones, thus buffering out the landslide susceptibility toward the 

ridges of local watersheds. Distance to the hydrographic network was 

computed from vectorized hydrographic streams network using IDW in 

SagaGIS. 

Precipitation data and hydrographic networks were provided by ANRH 

(L’Agence Nationale des Ressources Hydrauliques) and ONM (Office National de 

Meteo). 

 

 



 

114  Chapter 4: Case Study 

 

(a) Rainfall 

 

(b) Topographic Wetness Index. 

Figure  4.15 Hydrological conditioning factors. 
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(c) Distance to Hydrographic Network 

Figure  4.15 (continued). 

 

Geological Data 

Geological data for the study area were compiled from a total of seven hard-

copy maps covering the study area and each is a 1:50000 scale provided by ASGA 

(L’Agence du Service Géologique de l’Algérie). These maps were further simplified 

to meet the requirements of this case study
70

. Therefore, the generalization to a raster 

map with a 30 m resolution was justifiable. The map was also used to derive the 

synthetic data such as the Euclidean distance buffer to geological structures 

(Figure  4.16a-c). 

 Lithology – a discrete (i.e. categorical) raster (Figure  4.16a), that 

represents the outcropping lithology derived after the geological maps, as 

mentioned above. The map depicts 7 lithological units namely, Alluvium, 

Claystone, Colluvium-Detritus Deposits-Scree, Limestone, Marl, Neogene 

Complex, and Sandstone that are different in their physical and mechanical 

behaviors. Thus, differently prone to instabilities,  
                                                      

70
 In order to enhance the statistical representativeness. 
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 Stratigraphy – a discrete raster (Figure  4.16b), that represent the 

stratigraphy of the outcropping lithology derived after geological map, as 

mentioned above. The map depicts 7 chronostratigraphic units namely, 

Quaternary, Neogene, Paleogene, Upper Cretaceous, Upper-Mid 

Cretaceous, and Lower Cretaceous and Triassic-Jurassic. 

 Distance to Faults (FDist) – is a float-buffer raster (Figure  4.16c), and 

represent the distance from the available geological structures such as 

faults and joints in the geological map using IDW in SagaGIS. Since faults 

and joints, were considered as zones of weakest shear resistance (limited 

only to a residual shear resistance) and also affected by the infiltrated 

water and fill material, it is logical to assume that instabilities are more 

prone in the areas closer to these structures. In more seismically active 

areas such parameters could be much more appreciated since the shear 

resistance faces further effects, related to the fault dynamics. 
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(a) Lithology 

 

(b) Stratigraphy 

Figure  4.16 Geological conditioning factors. 
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(c) Distance to Faults 

Figure  4.16 (continued). 

 

Geotechnical Data 

Geotechnical data were directly from obtained Mila and Constantine local 

agencies, i.e. municipalities, at 30 meters resolution. This data vary in term of the 

overall influence on landslide occurrences, but certainly, introduce relative 

interpretation on the geotechnical context of the landslides distribution patterns at the 

study area. 

 Soil Textures (Texture) – a discrete raster (Figure  4.17a), that represents 

the available soil units
71

 available in the study area according to the 

relative proportion of sand, silt, and clay content. The soil textures types 

were assigned according to USDA54 classification
72

 and six soil units that 

are different in their physical, mechanical and geotechnical behavior were 

obtained, i.e. Sandy Clay, Clay Loam, Silty Clay Loam, and Sandy Clay 

                                                      

71
 From geotechnical engineering standpoint. 

72
 Rely on the relative proportion of clay, sand, and silt. For more details check the following website. 
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Loam. In general, soils with a high percentage of clay form very stable 

aggregates resistant to detachment, but so sensitive to water. On the other 

hand, lighter soils like sandy soils or coarse loams are easy to detach as 

they have low organic matter content, resulting in their inability to form 

very stable aggregates (Das and Agarwal 2002). Hence, soils with a high 

content of sand and clay, steeper slopes, and intensive rainfall, which 

constitutes the most dominant factors of the landslide, cause severe 

damage to the land (Patanakanog 2001).  

 Depth to Bedrock (DepthBR) – is a float raster (Figure  4.17b), that forms 

one of most the important factors for assessing the stability of the soil and 

landslide susceptibility of the land. With the increase in soil depth to 

bedrock, the tendencies of the soil to absorb moisture also increase. Thus, 

reducing the runoff rate. Hence, shallow soil is considered to be more 

unstable and prone to landslide than the deep soil. 

 Bulk Density (BDensity) – is float raster (Figure  4.17c), that in general 

have tight relationship with soil properties, such as soil textures and depth 

to bedrock, especially in areas that are affected by landslides where this 

parameter can help in understanding the interaction between the soil 

structure and the geotechnical behavior of the slopes
73

. 

 

  

                                                      

73
 One example is saturated hydraulic conductivity, which depends on water leaching due to the macro 

porosity, which, in turn, is related to soil texture, particle arrangement (structure) and bulk density. 

The free passage of water is crucial to reduce runoff (Gomes et al., 2011). 
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(a) Soil Texture 

 

(b) Depth to Bedrock. 

Figure  4.17 Geotechnical conditioning factors. 
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(c) Bulk Density 

Figure  4.17 (continued). 

Environmental Data 

Environmental information’s particularly regarding parameters that may 

influence landslides slopes stabilities and landslide distribution. These informations, 

besides natural environment-oriented information, are human-related one way or 

another, and it’s rarely incorporated in landslide susceptibility analysis, due to 

various reasons (e.g. the lack the data). The following parameters were used to 

express the environmental effect on landslide susceptibility in the study area: 

 Landuse (Landuse) – a discrete raster (Figure  4.18a), which considered 

one of the most influential parameters on landslides occurrence. 

Theoretically, barren land and shifting cultivation are more prone to 

landslides than other landuse units. It could happen because there is no 

deep root that can hold the soil. Contrarily, forest areas tend to decrease 

the landslide occurrences due to the natural anchorage provided by the tree 

roots. Landuse classes are categorized into Artificial Surfaces, Forests, 

Grasslands, CropLand and Bareland. 



 

122  Chapter 4: Case Study 

 Soil types (Soils) – a discrete raster (Figure  4.18b), represent the available 

soil units
74

 available in the study area. The map depicts 6 soil units, i.e. 

Calcisols, Cambisols, Luvisols, Leptosols, Podzols, Regosols, Vertisols. 

These units are drastically different in their water retention and root 

cohesion behaviors. Thus differently prone to erosion, which directly 

and/or indirectly instabilities. 

 Distance to Roads (RDist) – is a float-buffer raster (Figure  4.18c), and 

represent the distance from the roads network using IDW in SagaGIS. 

Human-induced factors may raise the probability of landslide occurrences. 

Cutting the toe of a steep slope and filling along the road are the common 

human activities on the hilly areas which increase the susceptible area to a 

landslide. It is convinced; when the many landslide events were nearby 

cutting road areas (e.g. RN 79a and RN27). Therefore, the best way to 

contain the effect of road factors in landslide study is by making a buffer 

on the upslope part. 

 

  

                                                      

74
 From agriculture-engineering standpoint. 
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(a) Landuse 

 

(b) Soil Type 

Figure  4.18 Environmental conditioning factors. 
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(c) Distance to Roads 

Figure  4.18 (continued). 

4.4 DATA SUMMARY 

Detailed descriptions of all used factors in the geospatial database, their class’s 

breaks, and categories are given in  Appendix B. A general statistics for the 

conditioning factors were expressed in terms of frequency statistics using overall 

terrain data such as the percentage of the overall area extent covered by each class 

and landslide percentage in each distinct class. It is common practice, for ranging (to 

reclassify it into different intervals) numeric conditioning factors and quantifying 

nominal conditioning factors. In order to avoid subjective quantification, the 

reclassification process (the class intervals and the total number of classes) of the 

continuous factors (altitude, slopes, rainfall, and so forth) into different intervals, was 

performed automatically using the Geometrical Intervals
75

 reclassification method 

due to the non-uniform distribution of the data in these factors. On the other hand, 

the categorical or nominal factors (i.e. Lithology, Stratigraphy, and so forth) remain 

                                                      

75
 This method, rely on data distribution, standard deviation and the supported mean value in order to 

determine class breaks. 
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intact due to the fact that classes are unique and predefined by the nature of the factor 

itself. Thus, they do not require any reclassification. 
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Chapter 5: Results and Discussions 

In this Chapter, a special focus was given to reporting and discussing the main 

results obtained from the analysis of the implemented landslide susceptibility models 

(Chapter  3.2.2). The following Sections contain results and outcomes of the landslide 

susceptibility analysis modeling according to the implemented research workflow 

(Chapter  3.6). The suitability of each given model and the generated landslide 

susceptibility maps are also discussed. 

5.1 RESULTS 

Herein, this section will focus on reporting the results of all of the proposed 

models (See Chapter  3.2.2) in the same order following of subsection reported in the 

workflow (See Chapter  3.6). 

5.1.1 Analyzing and Optimizing Landslide Conditioning Factors 

In a comparative study, constructing the necessary conditioning factors does 

not necessarily imply that it is suitable for use as an input dataset for models. In fact, 

it is crucial to check the integrity of the input dataset by performing some sort of 

analysis (i.e., Pearson’s correlation coefficient analysis, and multicollinearity 

detection) before conducting the modeling, mainly to ensure: 

 The non-independence among conditioning factors to the landslide 

inventory. 

 Determine the suitability of the underlying assumption behind choosing 

the factors. 

In this research, PCC and VIF analyses were performed against 16 

conditioning factors by taking into account the aforementioned criteria. Values in the 

PCC correlogram (Figure  5.1) are lower than the critical threshold of (0.7). The 

highest PCC recorded was between TWI and the Slope angles pair at 0.54. In fact, a 

high correlation is expected between the generated variables and the source variables 

(i.e., TWI, Slopes, and Altitude that were derived from the DEM). On the other hand, 

the VIF results (Figure  5.2), show that all factors should be used since the highest 

value is less than the theoretical critical value of 5 [35-38]. 



 

 Chapter 5: Results and Discussions 127 

 

  

Figure  5.1 Correlogram based on Pearson correlation matrix of numerical conditioning factors. 

   

Figure  5.2 Variance inflation factor analysis results in landslide conditioning factors. 

5.1.2 Model Training 

During tuning, hyperparameters need to be carefully optimized, so as much 

accuracy models can be achieved, the model selection will be reliable. In general, the 

tuning process must be a formal and quantified part of model evaluation. Yet, in 
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most cases, personal experience and intuition heavily intervene by influencing the 

process in ways that are hard to quantify or describe [87]. For that reason, there has 

been no intervention in the optimization process, as further model optimization was 

limited to SMBO, which is one of the best techniques for optimizing numerous 

hyperparameters at once, for the purpose of objectifying the simulation as much as 

possible.  

In the midst of the training process, the optimal hyperparameters are carefully 

optimized by SMBO for all models76 according to Table  5.1 using the following 

procedures: 

 Set a single objective function for each learner using “smoof” [151] with 

AUC to maximize it as a single performance criterion. 

 Use “lhs” package [152] to set an initial design grid that covers the 

supplied search space of each model parameter by drawing a Latin 

Hypercube Sample Design (LHS) using a Column wise Pairwise (CP) 

algorithm to generate an optimal design with respect to the S optimality 

criterion [153]. 

 During every single iteration, a new point is being proposed through LCB 

infill optimization of the estimated standard error. This error is usually 

obtained by a surrogate model that is either kriging-based for a purely 

numeric space or random forest for a mixed search space. 

 Select and return the optimum values of the desired hyperparameters based 

on the highest AUC (Table  5.1). 

Table  5.1 The optimum parameters obtained by the tuning process. 

Model Hyperparameter Optimal Value 

GBM 

Shrinkage 0.020  

n.trees 570 

interaction.depth 8 

NNET 
Size 29 

Decay 0.809 

                                                      

76
 Of all the implemented models in this case study, i.e. GBM, LR, NNET, RF and SVM, only LR is 

straightforward and doesn’t require tuning. 
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RF 

Replace FALSE 

sample.fraction 0.953 

num.trees 1012 

mtry 5 

SVM 

kernel radial 

cost 28.382 

gamma 2−8.398 

degree N/A 

 

According to the tuning results reported in Table  5.1, it turned out these values 

were the optimal hyperparameters (parameter of choice) for the final susceptibility 

model. In fact, these parameters achieved the best and highest performance (in terms 

of AUC) for each respective model. For example, GBM achieved the best 

performance by (0.02), (570), and (8) as Shrinkage, n.trees and interaction.depth, 

respectively. While, NNET achieved optimal AUC with (29) and (0.809) as Size and 

Decay, respectively. On the other hand, (FALSE), (0.953), (1012) and (5) as 

Replace, sample.fraction, num.trees, and mtry, respectively, achieved the best AUC 

possible for RF, but (      ) and (       ) as cost and gamma concerning SVM. 

5.1.3 Model Evaluation and Comparison 

Given the optimal hyperparameters sets (see Table  3.2 and Table  5.1), were 

used to train each respective model. Afterward, the predictive performance 

capabilities and the quality of the resulting models were evaluated using the input 

dataset based on performance indicator metrics like AUC, ACC, and the Kappa 

index. 

The Overall performance results (Figure  5.3 and Table  5.2), show that all the 

models have a “substantial agreement” between the observed and the predicted 

landslides expressed in term of a kappa index ranging between 0.5605 and 0.6405. 

The AUC and ACC values range from 0.8575 to 0.8967, and 0.7803 to 0.8203, 

respectively, indicating that all the models have “very good” predictive capabilities. 

In particular, the ensembles models that benefit from a divide-and-conquer approach 

such as RF and GBM yielded significantly better results than traditional methods like 

NNET, SVM, and LR. In fact, GBM was the highest-ranked model in terms of the 

performance of the AUC, ACC, and Kappa index with values of 0.8967, 0.8203, and 
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0.6405, respectively (Table  5.2). RF held the second-highest ranked model with 

performances similar to GBM with values of 0.8957, 0.8178, and 0.6356 for AUC, 

ACC, and kappa, respectively. NNET, on the other hand, was able to achieve the 

highest performance after the ensemble tree models, followed up by SVM. In 

contrast, the LR performance was consistently lower than the rest of the models in 

every metric, with values of 0.8575, 0.7803, and 0.5605 for AUC, ACC, and kappa, 

respectively. 

Table  5.2 The overall performances of the trained landslide models. 

Metrics 
Model 

GBM LR NNET RF SVM 

Acc 0.820 0.780 0.809 0.817 0.802 

Kappa Index 0.640 0.560 0.619 0.635 0.605 

 

 

Figure  5.3 The stacked receiver operating characteristic (ROC) curves of the implemented models. 

Despite the brief quantitative report concerning the overall performance results, 

presented in Table  5.2 and Figure  5.3, some additional pair-wise statistics have been 

calculated for better understanding the differences in the performance capabilities of 

each model against each other. In fact, in order to determine if the differences in 

performance between the five landslides susceptibility models are statistically 
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significant, a systematic pairwise comparison using the Wilcoxon signed-rank test at 

the 5% significance level was conducted (Table  5.3). 

The results show that there is a systematic difference in the performance results 

between each pair of models except for the GBM and RF pair, where the difference 

in performance was found to be statistically insignificant (that is,              

and                    , so, the null hypothesis was accepted). Overall, this 

plausible result rather goes in its favor of both GBM and RF as the best models for 

the data at hand in this study. 

Table  5.3. The pairwise comparison of the five landslide susceptibility models using the Wilcoxon 

signed-rank test. 

No. Pairwise comparison                   Significance 

1 GBM vs. RF -0.579 0.562 No 

2 GBM vs. LR 6.111 0.000 Yes 

3 GBM vs. NNET 3.606 0.001 Yes 

4 GBM vs. SVM 5.266 0.000 Yes 

5 RF vs. LR 6.149 0.000 Yes 

6 RF vs. NNET 2.905 0.004 Yes 

7 RF vs. SVM 4.025 0.000 Yes 

8 SVM vs.LR 5.589 0.000 Yes 

9 SVM vs. NNET -3.223 0.001 Yes 

10 NNET vs. LR 5.995 0.000 Yes 

5.1.4 Generating Landslide Susceptibility Map 

Once the final models were evaluated and validated, the tuned models were 

used to successfully predict and generate landslide occurrence in the study area in the 

form of probability grids ranging from 0 to 1, then they were reclassified into five 

susceptibility classes (Table  3.5). The implemented models successfully generated 

susceptibility maps that can be acknowledged as plausible as they overall produce a 

fine and smooth prediction surfaces that correspond very apparent with the spatial 

trends of the actual landslides that indicate that the dispersion is very limited 

(Figure  5.4). Thus, indicate that no potential post-processing (e.g. majority filtering, 

neighboring smoothing...etc.) is required. 
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(a) GBM 

 

(b) RF 

Figure  5.4 The generated landslide susceptibility maps. 
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 (c) NNET 

 

(d) SVM 

Figure  5.4 (continued). 
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(e) LR 

Figure  5.4 (continued). 

 

In the case of a landslide susceptibility assessment, the models usually 

evaluated by probabilistic performance metrics such as AUC, ACC, and Kappa 

index, but this actually is not enough. Models with close or even similar performance 

results (for example, GBM and RF have no statistical significance in the performance 

difference in this case study) and they do not necessarily generate similar predictive 

output surfaces. The spatial predictive output surface is critical for assessing the 

quality of landslide susceptibility models. Overall, by performing a sufficiency 

analysis on the predictive output surface in the form of summary statistics (that is, 

landslide density distribution and the area extent covered by each susceptibility 

class), it is possible to gain an insight into the model’s quality by: 

 The spatial predictive output surface details 

 The results of the landslide distribution analysis. 

In fact, Once the final models are evaluated and benchmarked against the outer 

testing instance, the next phase is to use them successfully to predict the study area, 
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this step resulted in a positive class (landslide occurrence) probability grids, which 

reclassified according to Table  3.5 into five susceptibility classes toward landsliding 

(Figure  5.4). Then, by overlapping the landslide inventory and the reclassified 

susceptibility maps (Figure  5.5), a sufficiency analysis summary statistic was 

obtained in the form of a landslide density distribution (Figure  5.5a) and the total 

area extent covered by each susceptibility class (Figure  5.5b). The results are 

satisfying because they fulfill two spatial conditions: (1) the landslide pixels should 

be located at the very high and high susceptible classes and (2) the extent of the areas 

covered by the very high and high susceptible classes should be as small as possible. 

All the reclassified models show an increase in the landslide density ratio distribution 

in positive trend when moving from low to high susceptible classes, with GBM 

scoring the best results
77

 of approximately 75.61% and 14.52% for landslide density 

occurrences and the area extent covered by the highest susceptibility class (that is, 

“very high”). RF scored 74.39% and 6.99% followed by NNET with 68.34% and 

14.28%, SVM with 68.17% and 9.90%, and LR with 56.23% and 9.29%. 

 

 

                                                      

77
 For Landslide susceptibility assessment only “Very High” class has been regarded as the base for 

assessing the models. 
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(a) Landslide density distribution by susceptibility zones 

 

 (b) The total area extent covered by susceptibility zones 

Figure  5.5 The sufficiency analysis of the susceptibility maps. 
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A positive indicator of the classification capability of the generated models is 

that they do not show any landslide events in the “Very Low” susceptibility class 

(that is, if the landslide density is null, then the class is absent) or they only show a 

very small percentage (<0.70% of the total landslide events) (Figure  5.5a). In 

general, the “Very Low” and “Low” susceptibility classes are grouped pixels with 

low probabilities toward landslides, which mean that those pixels have higher 

confidence probability toward stability. Therefore, having a lower percentage (or 

even better, an absence) of the lower susceptibility classes indicates higher 

confidence in the misclassification error (equal to 1−ACC) achieved by those 

models. Further, they indicate that the misclassification error achieved was near the 

classification threshold (for binary equal-proportions, the classifications threshold is 

0.5) and not at the extremes. These results have revealed similar, but somewhat 

better insight into the overall performance capabilities of each susceptibility model 

(i.e. for this case study) compared to the results of probabilistic performance metrics 

such as AUC, ACC and Kappa index. However, despite the fact that majority of the 

actual landslide instances fall into the “Very High” susceptibility class, the 

“somehow” dominance of the “Very low” class (Figure  5.5a) in term of Area extent 

covered by each class is very disturbing as it shows that study area is (at maximum) 

31% mostly stable, while similarly the most adverse/opposite class, i.e. “Very High” 

zones occupy at least about 7% of the total area which high considering the scale of 

the analysis. Thus, reflecting the engrave danger the study area is facing in terms of 

the landslide. 

 Results of both landslide densities (Figure  5.5a) and the area covered by each 

susceptibility class (Figure  5.5b) within each landslide susceptibility model were 

satisfying with similar outcomes to model evaluation and comparison, yet fulfill the 

two spatial conditions mentioned earlier. All models show an increase in landslide 

density ratio when moving from low to high susceptible classes, with RF scoring the 

best results of approximately (90.83%) and (6.74%) for landslide density occurrences 

in the higher susceptible classes (both “High” and “Very High”) and the area extent 

covered by only the “very high” susceptibility class, followed up by GBM with 

(89.44%) and (15.66%), SVM with (87.89%) and (12%), NNET with (86.33%) and 

(14.13%), and LR with (82.53%) and (11.36%). 
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5.2 DISCUSSIONS 

The most effective way to reduce casualties and economic losses resulting 

from landslides are landslide risk planning and management; therefore, high-quality 

landslide susceptibility maps are an important tool [154]. However, it is still a 

challenge to produce high accuracy landslide susceptibility maps at a regional scale 

due to the complex nature of landslides and it is widely recognized that the 

prediction quality of landslides is dependent on the algorithm used. Thus, although 

various methodologies for producing landslide susceptibility maps have been 

developed, and yet the prediction accuracy of these methods is still debated [116]. 

On the other hand, it usually practical to experiment landslide prediction simulation 

that approximate predict future landslide pattern. Therefore, in the present study, five 

classifications algorithms (GBM, LR, NNET, RF, and SVM) were investigated and 

compared for landslide susceptibility mapping at Mila Basin. 

The results obtained in this study (see Figure  5.3 and Table  5.2) show that all 

the implemented models achieved high performance
78

 (AUC > 0.85, Acc > 78% and 

kappa > 0.56). However, two ensemble trees models (GBM and RF) yielded the 

highest prediction results compared to the others. This better performance is 

confirmed to be statistically significant with the used Wilcoxon signed-rank test. 

This finding is in agreement with the results from recent studies i.e., in ([155-158]) 

that reported that the ensemble models outperform single ML models. In contrast to 

GBM and RF, LR consistently yields the lowest results compared to the other 

implemented models. This finding is in line with the literature where LR achieves the 

worst, if not the poorest, performance of all models [100, 102, 122, 144, 159]. 

The better-fit and higher performance of GBM and RF compared to LR, 

NNET, and SVM in this research is due to the divide-and-conquer approach that the 

ensemble technique implements in both models (i.e., benefiting from aggregating 

weak learners to solve the issue). In fact, the main causes of error in the landslide 

modeling at the basin scale in this study is due to noise and the uncertainty that 

existed in the landslide conditioning factor maps (which were collected from various 

sources and scales). It is still difficult to eliminate noise and uncertainty, though 

                                                      

78
 It could be speculated that the balanced methodology used in this research, i.e. SMBO can also 

resulted in high performance. 
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several fuzzy modeling approaches have been proposed. However, ensemble 

learning, RF, and GBM, which use random sampling with replacement strategy, 

could minimize these due to their diversity and stability [160], which are two key 

issues of ensemble learning. Thus, both RF and GBM are capable models that work 

well over noise and uncertainty environments [161] such as landslide modeling, and 

therefore, they are very pleasant, robust, and better than the other models in this 

study for predicting the future landslide pattern. 

Generally, GBM models offer similar or even better performance results than 

RF, but the large number of sensitive parameters and the tendency to easily over-fit 

makes it difficult to implement it right out the box compared to RF, which is easier to 

implement and less prone to both over-fitting and outliers. Additionally, some studies 

[e.g. 162] have found that GBM performs exceptionally well when the 

dimensionality is low (≈4000 predictors). Above that, RF has the best overall 

performance. Notably, the results obtained by SVM for typical binary landslide 

susceptibility problems are very satisfying. Even if it is lower than GBM, RF, and 

NNET, it is still relevant compared to the results produced by similar studies [e.g 

102, 143, 144, 163, 164]. NNET, on the other hand, unsurprisingly outperforms 

SVM and LR, but fails to capture the underlying model of the input data like RF and 

GBM, simply because neural networks need a large number of observations. 

However, in the case of landslides, the observation events are scarce and very hard to 

obtain
79

 . On top of samples being scarce, the most recent landslide susceptibility 

studies [100, 144, 165] do not benefit from the full potential of NNET by 

implementing NNET models with vanilla “Backpropagation” or one of its variances 

for the weight adjustments. In fact, Back-propagation based NNET are extremely 

slow to converge, which leads to a long execution time and a heavy computational 

load, not to mention both a large number of parameters to tune in and the special 

input data preparation required. Unlike Back-propagation NNETs, the implemented 

feed forward BFGS NNET are faster to converge with fewer hyperparameters to tune 

in and provided arguably better results than similar studies that implemented NNET 

[100, 144, 165]. 

                                                      

79
 Obviously, the modeling performance increase with the increase of the overall number of landslide 

samples but, such strategy is not practical in life real situations that require not only experts and 

agencies commitments but also decent financial budget. 
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Theoretically speaking, the spatial pattern generalization which is provided by 

the ML algorithm and models, has led to a significant accuracy, but it is also 

apparent that the optimization strategy (SMBO) along with resampling strategy plays 

a crucial role. The implemented workflow methods explore all possible instances for 

each model and fine-tune it to the maximum, which eliminates bias and subjectivity 

and focuses on yielding results for any spatially correlated phenomenon, not just 

landslide distribution. For these reasons the expectations were not too optimistic, 

which has been proven right. The models rather served as a demonstration of the 

predictive capabilities
80

 of the implemented models in landslide modeling in 

particularly in susceptibility assessment, which have proven to provide valuable 

results for some later decision-making process. 

In the end, in order to achieve a statistically meaningful procedure, it is 

convenient to comment on the strengths and weaknesses of each model as it is 

widely accepted that no single or particular model can be depicted as the most 

suitable for all case scenarios. For example, the LR model is simple, fast, easy to 

implement, and is only able to capture the linear relationship between the 

conditioning factors and the landslide susceptibility. The merit of LR is that it does 

not compulsorily require normal distribution data. Additionally, both continuous and 

discrete data types can be used as an input for the LR model combined with the fact 

that LR models, in general, don’t require heavy computational budget (CPU, 

Memory and Time) compared to the other models, but that is probably not of great 

importance for the task of predictive landslide mapping, outside the disaster 

management framework (where very quick but plausible solutions are needed). 

However, landslides are complex phenomena with non-linear mechanisms. SVMs 

are useful non-linear classifiers whose goal is not only to correctly classify landslide 

instances but also to keep the distance between instances and keep the separation of 

the hyperplane at a maximum. This makes SVM models appealing for susceptibility 

evaluation considering the number of hyperparameters to tune in. In addition, since 

the solution for the SVM separating hyperplane is found from the convex quadratic 

programming optimization problem, it is guaranteed that the solution is globally 

optimal. Therefore, the SVM is a good replacement for Artificial Neural Networks 

                                                      

80 
If implemented with appropriate optimization and resampling strategy. 
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which are usually stuck at local optima and are very difficult to train. However, if 

those hyperparameters are inappropriately set, SVM will often lead to unsatisfactory 

results. NNET models are very effective for simulating non-linear complex 

phenomena with multiple conditioning factors (preferably continuous input dataset). 

However, being a black box model and a large number of samples required to obtain 

a reliable model are the only downsides to this kind of model. Ensemble tree models 

(GBM and RF) offer excellent performance with decent interpretability and a 

moderate number of hyperparameters to tune in but require a considerable time 

budget (they require a lot of time to converge, especially if used on large-scale 

analyses). Though some studies (such as in Vorpahl, Elsenbeer [166]) highly 

recommend RF and GBM due to the outstanding performance, they suggest that a 

rather fast and simple model, such as LR would be much better than advanced ML 

models. 

5.3 SUMMARY 

As a summary for this chapter we conclude the following: 

 The implemented models turned out to be relatively accurate, as expected 

from ML-based models. 

 Models were able to produce relatively reliable prognosis, with a slight 

underestimation, while still being reasonably simple and GIS-integrated. 

 The model can be characterized as underestimating in terms of landslide 

instances, but yet following logical trends of landslide occurrence. 

 The comparison among the five implemented models in terms of the 

results demonstrates that the implemented models are able to provide very 

pleasant and robust results with GBM and RF being optimal for predicting 

the future landslide pattern. 

 In some cases, the Occam’s razor directly applies, so that the simplest 

solution – the simplest modeling method can provide an optimal solution. 

It would provide the optimal balance between the quality and complexity 

of the model [6, 18]. 
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Apart from these points, the experiment design was valid (selection of the 

splits, optimization of the parameters, preprocessing of the inputs were apparently 

correct) as shown in the workflow. 
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Chapter 6: Main Achievements 

Since the previous chapters have been rather voluminous and the information 

turned abundant and very detailed, some essential achievements and their relation to 

the initial research objectives are to be clarified in the following paragraphs. The 

objectives (structured as in Chapter  1.3) have been compiled by the following 

achievements: 

This chapter will focus on explaining briefly the essential achievements 

fulfilled in this research and their relation to the initial research objectives (see 

Chapter  1.3): 

 

 Address the shortage in literature for Mila basin in term of landslide 1.

susceptibility mapping through investigating, implementing, assessing and 

comparing prediction capability of advanced statistical-based models such 

as Machine Learning methods and algorithms 

 

For this case study, a special highlight to the unique features, caveats, 

advantages, and drawbacks of the statistical approach in general and 

Machine learning in specific was outlined with specific attention to 

landslide susceptibility paradigm. In-depth analysis, assessment, and 

comparison are performed for each model and technique used in this 

research. Therefore, it could be said that Objective 1 has been appreciated 

consistently throughout this thesis. 

 

 The production of useful landslide susceptibility mapping and assessment 2.

frameworks with a reproducible and unbiased optimization process and 

exploit the possibility of automating the process of landslide susceptibility 

mapping or landslide mapping by taking advantage of low-cost data 

resources available at the local agencies and open source community. 
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Open source solutions, such as SagaGIS, GDAL, R, and others, have been 

fully exploited in the processing and modeling of the landslide 

susceptibility mapping and assessment framework. SMBO in particular 

was implemented for objectively automating the tuning process of the 

implemented model. In addition, the data that have been used were 

obtained for free from local agencies. These data turned sufficient for 

conducting the proposed methodology and utterly rounds-up Objective 2 

of this thesis. 

 

 Standardizing the procedure regarding landslide assessment in the study 3.

area (i.e. acquisition, scaling, pre-processing, optimization, and evaluation 

procedures) by preparing custom and reproducible algorithms for 

specifically the purpose of landslide assessment in the study area using 

GIS. 

 

Although each case study may be different than others and even the same 

case study may vary over time thus exactly the input dataset may not be 

the same. Additionally, the used data are sometimes available in different 

time series mishandled, and sometimes the quality (i.e. resolution) of these 

images might not always satisfy the requirements. Therefore, standardizing 

and homogenizing the process for landslide assessment by a standard 

procedure
81

 will ensure that all models will underwent the same processing 

procedure, and increase not only the objectiveness but also the 

reproducibility of the results and thus gaining confidence in using the 

results safely as demanded local agencies. These procedures are clearly 

explained (see  Chapter 3: Chapter 3 and Chapter  2.3), which leads to a 

conclusion that the Objective 3 (see Chapter  1.3), has been fully perceived 

throughout the thesis. Thus, the Objective 2 was partially fulfilled. 
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 Providing the source code for the custom algorithms is one of the most efficient ways for 

reproducible experiment. 
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 Implementing a variety of known models and techniques that rely on 4.

statistical modeling approaches, but also experimenting with the state-of-

the-art techniques, advanced methods and unprecedented solutions for 

landslide assessment using GIS.  

 

Mila basin has been mostly and extensively elaborated in terms of classic 

and in-situ landslide studies, but no similar investigation performed over 

this area before. Thus, a different gamut of ML-based models and 

techniques have been intentionally implemented and elaborated with the 

GIS paradigm
82

, which would supplement the next investigations, 

conducted by other practitioners. The resulting models are to present 

transient relative values over the area, pinpointing landslide-endangered 

zones and safe zones. In this sense, the fulfillment of Objective 4 has been 

asserted. 

 

 Evaluating the model's performance and the results obtained using the 5.

most appropriate procedures and methods, in favor of gaining qualitative 

and quantitative descriptors evaluations of the model's performance using 

GIS in combination with statistical tools. 

 

                                                      

82
 Keep in mind, typical details about the landslides phenomenology such as the triggering 

mechanism, distribution…etc., are out of the scope of this research, as they are widely presented and 

discussed in other authors work. 
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The evaluation of the individual models for this case study has been 

always given by several performance indicator metrics, such as ACC,  -

index, ROC curves and AUC. Nevertheless, the evaluation of the modeling 

performance predictive capability has been addressed by the sufficiency 

analysis of the generated susceptibility maps. An appropriate method, for 

model comparison (see Chapter 3) was based not only on pure model 

performance (e.g. ACC, AUC and so forth.) but also statistical significance 

between each pair of models. These evaluation procedures are counted as 

the most appropriate procedure for model evaluation since it will allow for 

qualitative and quantitative evaluation of the model. Thus, the Objective 1 

was partially fulfilled and Objective 5 has been practically fulfilled. 

 

 Address the issues of availability, visualization and publishing of the 6.

detailed results in the form of reproducible, reliable, generic landslide 

susceptibility map per each model using GIS, and web-GIS and estimating 

their applicability for better environmental management and for reducing 

the victims and damages caused by future landslide occurrences. 

 

Visualization of the most of the models has been given by separate maps 

(see Chapter 3 and Chapter  2.3), while some of the insignificant results 

have not been visualized on purpose, the predictive models have been 

additionally featured as interactive web-maps and made publicly available 

(Figure  5.4). Their applicability is left for discussion of those who find 

them appealing or useful for their particular needs (planning, modeling, 

mapping, managing…etc.). Therefore, the final objective of this thesis, 

Objective 6, has also been completed.
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Chapter 7: Conclusions 

This thesis rounds-off, summing up a detailed methodological for framework 

proposal for mapping landslide susceptibility using non-conventional approaches 

such as GIS and statistics using efficient and advanced modeling techniques and 

methods. These have been tailored specifically according to underlined research 

motifs and objectives, which have been consistently followed. The thesis focus on 

Mila Basin on which the proposed methodology has been fully employed, tested and 

discussed. It outputs a handful of different interpretable models, which have to 

depend on the underlined goals, motifs and objectives of the research, limitations, 

drawbacks, benefits, caveats and different practical relevancies that need to be taken 

into account and consideration, are highlighted. 

7.1 BENEFITS AND DRAWBACKS 

Although this research had been conducted and gained some result, some 

benefits and drawbacks have to be mentioned as follow: 

 An obvious relationship between the complexity of the implemented 

models and their GIS integration, in which the difficulty of implementing 

such a model would be increased proportionally to the complexity of the 

model. Thus, rending the simple models fairly used and implemented. Yet, 

this limits to a certain degree the overall benefit from advanced models 

due to the fact that either manual handling, or an additional programming 

effort and skills for data manipulation outside the GIS environment. 

However, despite the fact that Statistical based-models such as ML tend to 

provide excellent results, they generally
83

 computationally expensive and 

unsuitable for quick predictions. Obviously, this wouldn’t be an issue in 

the modern era of the outstanding advancement in computer science, 

software solutions, parallel and cloud computing, which should maximize 

the performance and shortens the processing time. Therefore, It plausible 

to assume that complex models nowadays are eventually becoming 

                                                      

83
 Some exceptions exist. For example, models like LR. 
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obsolete with the easy deploying systems, but then even more complex 

models will take over with new demands and new challenges posed to the 

hardware and software solutions. 

 In this particular research, it has been inferred that:  

o Linux as an operating system is more computational and programming 

friendly
84

 compared to the Microsoft Windows as it only user-

friendly: 

o ArcGIS is the most robust GIS platform, but fails to follow up the 

module development as fast as its open-source counterparts (GDAL, 

SagaGIS, QGIS...etc.);  

o R is very customizable and very flexible, plus it is practically GIS-

integrated, but not too user-friendly and not so robust for handling 

large datasets like C and C++ and therefore some under-the-hood 

optimization needs to be performed.  

Overall, a combination of various solutions is still necessary, but holistic 

solutions are perceivable and R is one solid example of it. 

 Another critical issue that has been discussed briefly (in Chapter  2.3 and 

Chapter  3.2) and can be considered a drawback is the model's evaluation. 

It is very hard to evaluate the predictions in a landslide susceptibility 

scenario
85

 due to the fact that only present (and past) landslides can be 

available. Future landslides on the other hand, are foreseeable, and 

therefore cannot be taking into account. Moreover, it is obvious that all 

performance indicators are not necessarily correct as it may be deceiving, 

because of the predictive nature of the model should not be suppressed by 

the strict performance metrics. Some of the performance evaluation 

methods (i.e. non-parametric tests or sufficiency analysis) are taking into 

account the difference in performance or the micro differences in each 

particular landslide susceptibility class. These approaches could re-endorse 
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 Tools for compiling and developing optimized libraries are very easy in Linux compared to 

Windows. 
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 Unlike hazard risk assessment scenarios where the prognosis relates to the specified time series 
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the model which has been underestimated. It is probably the most 

objective evaluation method, thus far. 

 It turn out that there is an important benefit from up-scaling to be 

discussed, tilling of the area into several sub-areas is not beneficial as it is 

important to mention that ML-based models would be affected and 

compromised by such solution. Experiences drawn from this research, 

suggest that the area with 1~ 4.5      points (pixels) is a fair upper limit 

for the size for the study area, while the lower limit could be 100000. 

These limits apply only to particular circumstances
86

. 

 From the implemented models, only the two ensemble tree models (RF 

and GBM) were proven the most suitable models for this case study when 

comparing them to the remaining models (NNET, SVM, and LR), as they 

significantly outperformed the rest of the models based on the excellent 

performance results achieved. Despite that, the remaining three models are 

considered viable options, as they are adequately capable of satisfactory 

performance compared to similar studies. 

 The achieved results demonstrate that there is a significant difference 

between the implemented models. Even if the obtained results are 

underlined with a clear objective of comparing and assessing those 

models, finding the most suitable model for the case study was very 

challenging as it does not depend solely on the performance results, but 

also on the high level of uncertainty behind landslide modeling and the 

limitation and caveats that come with each model. 

 There still some difficulties and uncertainties behind landslides modeling 

and producing accurate results, due to the fact that the modeling processes 

is heavily depended on the tuning details, the used approach and the 

supplied data [4, 39-41]. Despite the invested efforts in hazard modeling 

and landslide susceptibility specifically, an absence of solid agreement 

about the suitability of a given technique or method for landslide-prone 

areas prediction is still present [31]. Therefore, assess and compare the 
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prediction capabilities of advanced ML methods for landslide 

susceptibility should be carried out. 

 ML-based inherent one critical disadvantage of from the statistical 

approach which is requiring a significant number of conditioning factors to 

obtain reliable results. 

 Finally, the data are sparse and very hard to come by, especially when 

local agencies don’t collaborate on projects and work using unified 

standards (different software, different formats, resolution…etc.) making 

the process of obtaining and normalizing the data very difficult. For this 

reason, only data from local municipalities are used for the conditioning 

factors involved in building the susceptibility maps. However, it is 

desirable to once again underline that high quality of input data can 

guarantee a plausible result, even by using the simplest modeling 

solutions, while on the other hand, no model, no matter how sophisticated 

cannot help if the input data are poor in quality. 

 Difficulties also arise from purely technical causes, such as the lack of 

independent, long-lasting, institutionalized landslide agencies on a national 

level, which would focus on all the aspects of landslide problematic, 

including their assessment and provide the research continuity. At present, 

individual projects at universities or institutes are treating this problem, but 

only during the project lifetime. At best, there are cases where multi-scaled 

and nation-wide researches are involved, but most commonly landslide 

assessment is disconnected into separate case-studies and focused on very 

specific project objectives, rather than revealing of the fundamental 

breakthroughs in landslide knowledge [5, 31]. 

7.2 APPLICABILITY 

The results obtained in this research highlight the effectiveness of all Five ML 

technique classifiers, especially ensemble tree models such as the GBM and RF 

algorithms for the assessment of landslide susceptibility. However, depending on the 

purpose each model can find its purpose at some level of the assessment that can 

vary from the preliminary to the detailed research stage. Yet, the most beneficiary 
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that can substantially benefit from each model is the detailed landslide mapping 

analysis. 

Despite the overwhelming advantages of such models in landslide 

susceptibility framework, they are not for the purpose of replacing conventional 

mapping but rather supplement it in different stages of the landslide hazard map 

development
87

 as they are in the current stat a semi-products of landslide 

assessment
88

 . On top of that, finding the most suitable model for the case study is 

very challenging as it does not depend solely on the performance results, but also on 

the high level of uncertainty behind landslide modeling and the limitation and 

caveats that come with each model.  

Summing up, the obtained landslide susceptibility maps by the implemented 

models can successfully pinpoint the critical areas and guide the practitioners 

towards more efficient mapping rending the resultant susceptibility maps as 

preliminary planning framework for planners or as a technical framework for 

countermeasures and regulatory policies by decision-makers to minimize the 

damages introduced by either existing or future landslides by the Mila and 

Constantine municipalities. Thus, each model output (depending on purpose) can 

easily find their purpose in regional, small scale planning, urban planning, strategic 

planning, but also some preliminary insurance analysis, planning of detailed research 

or sampling, updating the inventories, tracking changes and so forth. 

7.3 RECOMMENDATIONS AND FURTHER NOTICES 

 Based on this research, some recommendations have been suggested as much 

more needs to be done to achieve reliable semi-automated landslide mapping and 

landslide susceptibility assessment for future studies which adapting this research 

and for mitigation plans: 

First, there are only 16 (sixteen) factors used in building the landslide 

susceptibility maps. Introducing more richness to the input data pool by i.e. several 
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factors related to influence landslide occurrences
89

 that can be added into the model 

from new resources of inputs is one of the milestones for further model refinement. 

Expert-based inputs could significantly contribute to more accurate analysis, 

especially if they are focusing on the terrain features
90

. For instance, a landslide is 

area-based, thus having this kind of information on each event it opens the possibility 

of generating additional synthetic inputs, such as statistical parameters (variances, 

means, standard deviations, etc.) of other inputs. This would offer the whole new 

source of relations between the landslide occurrence and the input data. Similarly, 

inputting geological domains as quasi-homogeneous areas in terms of stratigraphy 

and lithology has been proven useful in landslide assessment. Unfortunately, such 

inputs require serious additional engagements of experts, local agencies and 

resources which can turn insurmountable problems (e.g. generating of geological 

quasi-homogeneous domains require extensive RS and field techniques and qualified 

experts to generate it, although there are some trends toward creating simple domains 

automatically).  

Moreover, multi-temporal inputs
91

 are very desirable but unfortunately, they 

are rarely available if not impossible to come by, they actually help in overhauling 

the susceptibility assessment to a hazard or risk framework. Such an integrated 

approach does sound optimal, and with the present development of RS systems, it is 

realistic to expect that in a couple of decades from now it will be much easier to 

model landslide hazard and risk. Another idea for more precise modeling is either 

introducing more landslide events or includes more precise landslide events such as 

landslide source areas in the inventory, i.e. to discern between the source and 

accumulation areas of the landslide body at inventory level, and to train the model 

only over the areas which have suffered the conditions leading to failure.  

Furthermore, the implemented models in this research (i.e. LR, GBM, NNET, 

RF, and SVM) are counted as most advanced techniques which theirs rely on 

statistical-based approach for landslide susceptibility assessment, produced very 

                                                      

89
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90
 Geological or Engineering-geology. 
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accurate results due to the fact that their generalization power is getting fully 

exploited (with the current research workflow). It will be better to not hesitate with 

exploring and challenging other advanced ML algorithms and techniques if proven to 

be effective. For example, experimenting with ensembles of classifiers in the form of 

classifiers chains by combining different techniques in the same manner as GBM and 

RF would theoretically produce more robust and readily post-processed models 

should be expected therein. 

All these comments are proposing the ideas for improvements in the 

susceptibility or spatial landslide prediction. However, the susceptibility map shows 

that many regions of the study area are in high susceptibility. It is too difficult to 

make communities staying out of these areas. Slope stabilization methods should be 

implemented to reduce the possibility of landslide occurrences. Structural mitigation 

activities such as sub drains, retaining wall, gabion…etc.; are assumed can diminish 

the mass movement. Biotechnical mitigation such as planting the deep root 

vegetation can also be an effective way of slope stabilization. In addition to structural 

mitigation, non-structural mitigation can also reduce the effect of the mass 

movement. Increasing the awareness of local communities to mitigate the mass 

movement is believed as the key to reducing the occurrences and the effects of the 

landslides. 

In the end, assuming that at one point, the most optimal solution for 

susceptibility framework will be reached, it would then be an entirely new challenge 

to deal with the hazard and risk frameworks, which is the author’s remote objective, 

from the current stand-point. 
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Appendices 

Appendix A 

This appendix is featuring Objective 6 (see Chapter  1.3). 

 

 All scripts source codes used in this experiment are available on-line in 

Github (https://github.com/aminevsaziz/lsm_in_Mila_basin) or 

(https://github.com/aminevsaziz/lsm_in_Mila_basin). 

 A reproducible container is available for this research repository is 

available on-line on (https://github.com/aminevsaziz/lsm_in_Mila_basin) 

  

 

  

https://github.com/aminevsaziz/lsm_in_Mila_basin
https://github.com/aminevsaziz/lsm_in_Mila_basin
https://github.com/aminevsaziz/lsm_in_Mila_basin
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Appendix B 

Table  7.1 The spatial relationship between the landslide conditioning factors 

and landslides. 

Conditioning 

factors 
Class 

Class 

Percentage 

(%) 

Landslide 

Percentage 

(%) 

Altitude (m) 

 

60 - 326.047 8.79 19.55 

326.047 - 597.105 36.06 48.79 

597.105 - 813.952 28.97 18.51 

813.952 - 1,003.694 18.64 7.79 

1,003.694 - 1,722 7.56 5.36 

Slope angles 

(Slopes) (°) 

 

0 - 5.543 26.67 21.11 

5.543 - 11.394 39.88 37.89 

11.394 - 18.16987664 23.33 28.37 

18.169 - 27.101 8.30 10.90 

27.101 - 78.530 1.83 1.73 

Slope Aspects 

(Aspects) 

 

Flat 0.76 1.04 

1st Quadrant (0° to 90°) 23.71 26.30 

2nd Quadrant(90° to 180°) 28.20 25.26 

3rd Quadrant(180° to 270°) 22.59 21.45 

4th Quadrant(270° to 360°) 24.75 25.95 

Landforms 

 

Steep slope, fine texture, high convexity 13.06 16.09 

Steep slope, coarse texture, high convexity 16.18 16.26 

Steep slope, fine texture, low convexity 5.85 6.92 

Steep slope, coarse texture, low convexity 10.67 13.67 

Gentle slope, fine texture, high convexity 3.17 4.15 

Gentle slope, coarse texture, high convexity 24.29 11.59 

Gentle slope, fine texture, low convexity 2.22 1.73 

Gentle slope, coarse texture, low convexity 24.56 29.58 

Rainfall 

(mm/Year) 

 

403 - 593.263 8.52 3.98 

593.263 - 711.030 50.81 21.28 

711.030 - 901.294 31.08 67.65 

901.294 - 1,208.684 9.60 7.09 

Topographic 

Wetness Index 

(TWI) 

0.034 - 3.550 3.35 5.19 

3.550 - 5.481 50.11 48.10 

5.481 - 8.997 44.91 45.16 
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8.997 - 15.402 1.63 1.56 

Distance to 

Hydrographic 

Network (m) 

(WDist) 

0 - 300 10.79 18.86 

300 - 750 34.42 21.63 

750 - 1,500 25.68 27.16 

1,500 - 3,000 17.02 26.12 

3,000 - 5856 12.09 6.23 

Lithology 

 

Alluvium 5.33 7.44 

Claystone 4.06 2.94 

Colluvium-Detritus Deposits-Scree 9.44 7.61 

Limestone 8.22 7.61 

Marl 9.54 7.79 

Neogene Complex 56.05 59.86 

Sandstone 7.36 6.75 

Stratigraphy 

 

Quaternary 10.52 14.01 

Neogene 56.84 61.42 

Paleogene 12.38 6.40 

Upper Cretaceous 7.57 4.50 

Upper-Mid Cretaceous 8.61 9.86 

Lower Cretaceous 2.62 2.77 

Triassic-Jurassic 1.45 1.04 

Distance to 

Faults (m) 

(FDist) 

0 - 581 30.17 22.32 

581 - 4,784.550 61.89 61.25 

4,784.550 - 8192 7.94 16.44 

Soil Texture 

(Texture) 

Clay 19.01 25.43 

Sandy Clay 1.69 1.38 

Clay Loam 59.08 60.03 

Silty Clay Loam 0.80 1.73 

Sandy Clay Loam 19.42 11.42 

Depth to 

Bedrock  (cm) 

(DepthBR) 

49 - 574.750 22.04 19.03 

574.7502397 - 761.629 33.81 34.43 

761.6293378 - 1,287.379 39.62 42.91 

1,287.379578 - 2,766.481 4.46 3.63 

2,766.481936 - 7,479 0.07 0.00 

Bulk Density 

(Kg/m3) 

(Bdensity) 

1,209 - 1,394.941 6.92 2.42 

1,394.941 - 1,463.333 25.29 32.01 

1,463.333 - 1,521.039 41.07 40.83 

1,521.039 - 1,754 26.72 24.74 
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Landuse 

Water Bodies 1.47 3.98 

Artificial Surfaces 13.96 17.99 

Forests 7.56 6.92 

Grasslands 4.75 6.23 

CropLand 26.13 23.70 

Bareland 46.12 41.18 

Soil type 

 

Calcisols 9.80 1.21 

Cambisols 15.50 19.72 

Luvisols 50.17 58.65 

Leptosols 13.08 9.00 

Podzols 5.22 5.88 

Regosols 3.78 2.25 

Vertisols 2.46 3.29 

Distance to 

Roads 

networks (m) 

(RDist) 

 

0 - 908.103 25.70 40.31 

908.103 - 2,612.509 30.19 28.89 

2,612.509 - 5,811.481 32.09 24.74 

5,811.481 - 11957 12.02 6.06 

 

 

 

 

 

 

 

 


