
DEMOCRATIC AND POPULAR REPUBLIC OF ALGERIA

UNIVERSITY OF CHIKH LARBI TEBESSI –TEBESSA

FACULTY OF EXACT SCIENCEES AND SCIENCES OF

NATURE AND LIFE

MASTER THESIS -LMD-

Branch: Systems and multimedia

Presented by:

Idriss GABA

Khalil TITI

Advisor
MR. Rafik MENASSEL

 Jury members:

 President: DR. Chawki DJEDDI

 Examiner: MR. Lakhdar LAIMECHE

 May 2017

 MAY 2017

 Fractal image compression with bat inspired algorithm

Abstract

.

I

Abstract

The redundancy found in the uncompressed images can be reduced by image compression so

that we can store or transmit images in an economic way. There are many techniques being used

for this purpose but the digital media is growing fast, therefore it requires more extensive

research.

Compression is used to reduce data size which may allow better storage and transfer. Actual

trends of compression techniques use fractal theory algorithms, which appear to be powerful

tools to improve image quality.

On the other hand, heuristics algorithms represent a set of approaches that are used to solve

hard optimization tasks with rational resources consumption. They are characterized with their

fast convergence and reduction of research complexity.

In this paper, we try to combine for the first time a bio-inspired heuristic called “Bat Inspired

Algorithm” with fractal image compression.

A comparison is made between our proposed approach and different existing methods i.e. FIC

with quadtree decomposition, FIC with WPA…etc. Results show improvements in our algorithm

from different aspects (encoding time, CR, PSNR, MSE).

Keywords: Image Compression, Metaheuristics, Fractal, Bat inspired algorithm.

II

Résumé

La redondance trouvée dans les images non compressées peut être réduite par compression

d'image afin que nous puissions stocker ou transmettre des images d'une manière économique. Il

existe de nombreuses techniques à cet effet, mais les médias numériques augmentent rapidement,

donc il faut plus de recherches dans ce domaine.

La compression est utilisée pour réduire la taille des données qui peut permettre un meilleur

stockage et transfert. Les tendances des méthodes de compression actuelles sont celles des

algorithmes de la théorie fractale, qui apparaissent comme un outil puissant pour améliorer la

qualité d'image.

D'autre part, les heuristiques représentent un ensemble d'approches utilisées pour résoudre des

tâches d'optimisation difficiles avec une consommation rationnelle des ressources. Ils se

caractérisent par leur convergence rapide et leur réduction de la complexité de la recherche.

Dans cette étude, nous essayons de combiner pour la première fois une heuristique bio-

inspirée appelée "Bat Inspired Algorithm" avec la compression fractale d'image.

Une comparaison est faite entre notre approche proposée et les différentes méthodes

existantes, telles que : décomposition Quad-tree, WPA etc. Les résultats montrent des

améliorations dans notre algorithme dans différents aspects (temps de codage, CR, PSNR, MSE).

Mots clés : Compression d’image, Métaheuristiques, Fractale, Bat inspired algorithm.

III

 الملخص

 تخزين يمكننا بحيث الصورة ضغط بواسطة المضغوطة غير الصور في الموجود التكرار تقليل يمكن

 الإعلام وسائل ولكن الغرض لهذا المستخدمة التقنيات من العديد هناك. اقتصادية بطريقة نقلها أو الصور

 .أوسعذات نطاق بحثا تطلبت فإنها وبالتالي بسرعة، نموت الرقمية

تتجه حاليا نحو الضغط تقنيات.أفضلبتخزين ونقل تسمح قد التي البيانات حجم لتقليل ضغطال يستخدم

 .الصورة جودة لتحسين فعالة أداة أنها يبدو والتي كسورية،ال نظريةال خوارزميات ماستخدا

التحسين مهام حل في تستخدم التي النهج من مجموعة تمثل الاستدلال خوارزميات أخرى، ناحية من

 .وثالبح لصعوبة هاوتقليل السريع بتقاربها تتميز وهذه الخوارزميات. لمواردمعقول ل استهلاك مع الصعبة

 bat" يسمىالبيولوجيا مستوحى من استدلالبين مرة لأول، والجمع نحاولس ،المشروع اهذ في

inspired algorithm "لصورةالكسوري ل ضغط مع.

 FIC with quadtree decomposition, FIC" مثل مختلفة، وأساليب المقترح نهجنا بين مقارنة أجريت وقد

with WPA" ...الترميز، وقت) مختلفة جوانب من خوارزميتنا في حسيناتت النتائج تظهر. الخ CR،

PSNR، MSE.)

 bat inspired algorithmضغط الصور، الاستدلال، كسورية، الكلمات المفتاحية:

Table of
contents

IV

Table of contents
Abstract……………………………………………………………………….……...…. I

Résumé……………………………………………………………………….………..... II

 III ………….…………………………………………………………………………الملخص

Acknowledgement……………………………………………………………….……... VII

Dedication……………………………………………………………………...…….…. VIII

List of Figures………………………………………….……………………………….. X

List of Equations………………………………………………………………………... XI

List of Tables……………………………………………………………………………. XII

List of Abbreviations…………………………………………………………………… XIII

General Introduction………………………………………………………………….... 1

Chapter1: State of the art…..…………………………………………………………... 3

Introduction: …………………………………………………………………………….. 3

Part I: Compression…………………………………………………………………….… 3

1. Data compression: ………………………………………………………………….… 3

 1.1. Definition: …………………………………………………...……………………. 3

 1.2. Brief history: ……………………………………………………………………… 3

 1.3. Types: …………………...………………………………………………………… 4

 1.3.1. Lossless data compression: …………………………………………………… 4

 1.3.2. Lossy data compression: ……………………………………………………… 4

 1.4. Compression formats: ……………………………..……………………………… 5

2. Image Compression:……………………………………………………………........... 5

 2.1. Definition:…………………………………………………………………………. 5

 2.2. Image compression Methods:……………………………………………………... 6

 2.2.1. Methods for Lossy compression:……………………………………………… 6

 2.2.2. Methods for Lossless compression:…………………………………………… 7

 2.3. Different image formats:…………………………………………………………... 8

Part II: Optimization metaheuristics……………………………………………………... 8

1. Optimization problems:……………………………………………………………….. 8

 1.1. Combinatorial optimization:………………………………………………………. 9

 1.1.1 Exact algorithms:………………………………………………………………. 9

 1.1.2. Approximate algorithms:……………………………………………………… 9

2. Metaheuristics:………………………………………………………………………… 9

 2.1. Definition:…………………………………………………………………………. 10

 2.2. Examples of metaheuristic algorithms: …………………………………………… 10

 2.2.1. Genetic algorithms: …………………………………………………………… 10

 2.2.2. The tabu-search method: ……………………………………………………… 11

 2.2.3. The ant colony optimization: ……………………………………….…………. 12

 2.2.4. The Nested Partition Method: …………………………………………………. 12

V

 2.2.5. Simulated Annealing:………………………………………………………….. 12

Conclusion of the second part:…………………………………………………………… 13

Conclusion: ……………………………………….……………………………………... 13

Chapter 2: Proposed approach………………………………………………………… 14

Introduction:……………………………………………………………………………... 14

Part I: Fractal image compression and Bat Algorithm……………………………………. 14

1. Fractal image compression:……………………………………………………………. 14

 1.1. Definition:…………………………………………………………………………. 14

 1.2. History: ……………………………………….…………………………………... 15

 1.3. Advantages and disadvantages of fractal image compression: …………………… 16

 1.4. Iterated function system (IFS):…………………………………………………….. 17

 1.5. SELF-SIMILARITY PROPERTY:……………………………………………….. 18

 1.6. Working approach:………………………………………………………………… 18

 1.7. Fractal Image Compression Techniques:………………………………………….. 20

 1.7.1. quad-tree decomposition:……………………………………………………… 20

 1.7.2. Genetic Algorithm (GA):……………………………………………………… 21

 1.7.3. Particle Swarm Optimization (PSO):………………………………………….. 21

 1.7.4. Artificial Bee Colony optimization (ABC):…………………………………… 21

 1.7.5. Embedded Zero tree Wavelet (EZW) coding:…………………………………. 21

 1.7.6. Wolf Pack Algorithm:…………………………………………………………. 22

 1.8. Comparison between Techniques:…………………………………........................ 22

2. Bat-Inspired Algorithm:……………………………………………………………….. 23

 2.1. Behavior of bats:…………………………………………………………………... 23

 2.2. Acoustics of Echolocation:………………………………………………………... 23

 2.3. Bat Algorithm:…………………………………………………………………….. 24

Part II: Bat Algorithm for Fractal Image Compression………………………………….. 26

1. Huffman Coding:……………………………………………………………………… 26

 1.1. Huffman Encoding:………………………………………………………………... 26

 1.2. Huffman Decoding:……………………………………………………………….. 26

2. The proposed algorithm:………………………………………………………………. 27

Conclusion:………………………………………………………………………………. 29

Chapter 3: Results and Discussion…………………………………………………….. 29

Introduction:……………………………………………………………………………... 30

Part I: Implementation…………………………………………………………………… 30

1. Work environment: …………………………………………………………………… 30

 1.1. Hardware:…………………………………………………………………………. 30

 1.2. Software:…………………………………………………………………………... 31

 1.2.1. Definition:……………………………………………………………………... 31

 1.2.2. Work environment:……………………………………………………………. 31

2. Implementation:…..…………………………………………………………………… 32

 2.1. Initialization:………………………………………………………………………. 32

 2.2. Encoding:………………………………………………………………………….. 33

 2.3. Decoding:………………………………………………………………………...... 41

VI

 2.4. Results:…………………………………………………………………………..... 41

Part II: Tests and results………………………………………………………………….. 42

1. Settings of the Bat Algorithm:…………….…………………………………………… 42

1.1. Number of bats:…………………………………………………………………..... 42

1.2. Loudness:………………………………………………………………………….. 43

 1.3. Frequency:………………………………………………………………………… 44

 1.4. The best result:…………………………………………………………………….. 45

2. Bat with different methods of FIC: …………………………………………………… 45

 2.1. Standard FIC:……………………………………………………………………… 46

 2.2. Particle Swarm Optimization:……………………………………………………... 46

 2.3. Wolf pack algorithm:……………………………………………………………… 47

 2.4. Genetic Algorithm:………………………………………………………………... 47

 2.5. Quad-tree Decomposition:………………………………………………………… 48

Conclusion:………………………………………………………………………………. 48

General Conclusion…………………………………………………………………….. 49

References………...…………………………………………………………………….. 50

VII

Acknowledgements

Firstly, we thank god the almighty.

We wish to express our most sincere gratitude for all those, close or far, who

have contributed to the completing of this paper, and especially to:

Our advisor, Mr. Rafik MENASSEL, for his constant aid and support, as well as his

beneficial advices, without which we wouldn’t have been able to finish this work.

We also thank the jury members DR. Chawki DJEDDI and MR. Lakhdar

LAIMECHE for having accepted to review and evaluate our project.

 We also would like to address our honest acknowledgements to all the professors

whom have accompanied us throughout our curriculum and have allowed us this

happy event.

VIII

Dedication

To the soul of my dear late father "Allah yarhmou", who so hoped to see
this day, who sacrificed himself for my success, helped me, and taught me
patience and perseverance. I hope that he is proud of me as he always
been. Thank you father, for making me the man I am today.

To the woman who gave me life, the source of tenderness that gave me
love, and courage. My beloved mother, thank you for everything.

To my dear brother and friend: Ali.

To my dearest sisters: Khawla, Tahani, Asma, her husband Sofiane, their
son Mohamed and their newborn baby Awab.

To my uncle Faycel, who took the place of my father, his sons Mohamed,
Dhia, and all his family.

To my uncle Mohamed, who was my biggest supporter, thank you for
everything.
To my aunt Yasmina, who filled me with affection, her son Iskander and
all of her family.

To the rest of my family with all my feelings of respect.

For, Khalil, Mahdi, Oussama, and Amine, who have accompanied me on
my academic journey.

To all of my friends.

To all of my colleagues in the 2017 promotion, and the rest of the
students.

Idriss GABA

IX

Dedication

I dedicate this work to my dear parents, whom have always picked me

up when I was down and encouraged me to go on every adventure,

especially this one. I have become who I am today thanks to your support

and continuous care.

To my brothers: "Ramzi", who helped me, and guided me to achieve

success during all of my studies, and to his beautiful wife "Radhia". To my

best friend "Mohammed".

To my sister "Imen", who I believe embodies all things beautiful and pure.

To my dear sister "Ahlem", the kindest person in the world, and her

beautiful and cute daughter "Jaida", and to the whole family of "Titi", I

wish good health and success in life.

 To my partner "Idriss", I would like our relationship to continue for my

entire life, and may God protect it.

To my Friend (s).

To all those that I love and whom love me.

 Khalil TITI

List of figures

.

X

List of Figures

Figure 1.1 Model for compression system (2) ………………………………………….. 6

Figure 1.2: Optimization Types and solutions (10) ………………………….................. 10

Figure 2.1: example of fractal image fern (15) …………………………………………. 15

Figure2.2: Iterated function simple (16) ………………………………………………... 17

Figure 2.3: self-similarity in Lenna image (17) ………………………………………… 18

Figure 2.4: Partition of Range and Domain blocks (18) ………………………………... 19

Figure 2.5. The proposed Fractal Compression Technique……………........................... 26

Figure 3.1: MATLAB work environment………………………………………………. 30

Figure 3.2: Command window………………………………………………………….. 31

Figure 3.3: example of sparse variable………………………………………………….. 39

Figure 3.4: Compress Lenna with BIA………………………………………………….. 40

Figure 3.5: Compress Cameraman with BIA…………………………………………… 41

Figure 3.6: Lenna with PSO and BIA…………………………………………………… 45

Figure 3.7: Peppers with WPA and BIA………………………………………………... 46

List of

equations

.

IX

List of Equations

fi: Rn→ Rn | i < N (2.1)……………………………………….………………… 14

𝑤1(𝑋) = 𝑤1 (
𝑥
𝑦) = (

𝑎 𝑏
𝑐 𝑑

) (
𝑥
𝑦) + (

𝑒
𝑓) (2.2)…………………………………. 17

T (α,t0,(i,j))best Rk,l (2.3)……………………………………….………. 19

λ =
v

𝑓
 (2.4)…………………………………………………………………….…. 23

MSE =
1

𝑚 𝑛
 ∑ 𝑚−1

𝑖=0 ∑ [𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)]𝑛−1
𝑖=0

2 (3.1)………………………….……... 30

PSNR = 10 log10 [
2552

𝑀𝑆𝐸
] (3.2).. 30

CR =
𝑈𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑧𝑒

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑆𝑖𝑧𝑒
 (3.3)…………………………………………….……….. 30

List of Tables

.

XII

List of Tables

Table 1.1: Summary of the format (7) …………………………………………….. 8

Table 2.1: Different improvements on FIC (15) …………………………………... 22

Table 3.1: results for different Number of Bats……………………………………. 42

Table 3.2: results for different Loudness…………………………………………... 43

Table 3.3: results for different Frequency…………………………………………. 44

Table 3.4: comparison between standard FIC and BIA……………………………. 45

Table 3.5: comparison between PSO and BIA…………………………………….. 45

Table 3.6: comparison between WPA and BIA……………………………………. 46

Table 3.7: comparison between GA and BIA……………………………………… 46

Table 3.8: comparison between Quad-tree Decomposition and BIA……………… 47

List of
abbreviations

.

XIII

List of Abbreviations

GIF: Graphics Interchange File

JPEG: Joint Photographic Experts Group

BMP: BitMaP

PNG: Portable Network Graphics

TIFF: Tagged Image File Format

MPEG: Motion Pictures Expert Group

MP4: Motion Picture 4

AVI: Audio Video Interleave

DCT: Discrete Cosine Transform

RLE: Run length encoding

LZW: Lempel-Ziv-Welch

FIC: Fractal Image Compression

PIFS: partitioned iterated function system

Bpp: bits per pixel

GA: Genetic Algorithm

PSO: Particle Swarm Optimization

ABC: Artificial Bee Colony

EZW: Embedded Zero tree Wavelet

WPA: Wolf Pack Algorithm

BIA: Bat Inspired Algorithm

dB: Decibel

MSE: Mean Squared Error

PSNR: Peak Signal Noise Ratio

CR: Compression Ratio

General
introduction

.

General Introduction:

Due to exponentially increasing size of every type of data file, despite the evolving nature

of storage units, it is still never enough to save all the needed files. Therefore, compression

exists to remedy this problem and allow for higher number of files to be stored.

Some types of files are more demanding in terms of storage space than others, primarily

multimedia files. One of the most important types of media files that are used in almost every

aspect is images.

The volume of images poses significant problems in terms of storage and transmission

over networks with limited speeds. The compression of these data becomes unavoidable.

Existing compression formats have shown their limitations on images with details such as text

images and background areas.

In order to avoid this problem, researchers continue to develop new methods to compress

images hoping that someday they will achieve a perfect compression technique that

significantly saves storage space, and does not degrade the quality.

One of the most known compression techniques is the fractal image compression (FIC),

this technique was introduced in 1897 by Hutson and Barnsley (reference). FIC is based on

fractals (self-similarity parts) in order to compress the images. However, this technique’s

main issue is that it takes too much time on the encoding process.

In recent years, researchers found new techniques based on a combination between the

fractal image compression and some optimization metaheuristics in order to reduce the

encoding time and get better size and quality for images.

In this study, we are interested in the optimization metaheuristics on fractal image

compression, by proposing a new approach that combines the bat inspired algorithm with the

fractal image compression so as to make it faster to encode and get better results in both size

and quality.

This document is organized as follow:

The first chapter is divided into two essential parts. The first part presents the prerequisites

for understanding the context of image compression. It presents the methods of compression

of the images of the two families: Lossless (without loss) and Lossy (with loss). The second

part focuses on the optimization problems and their solutions and defines metaheuristics with

different examples for them.

In the second chapter, we will discuss the fractal image compression in details, then we

will indicate the different metaheuristics applied on FIC, and we will site their improvements.

Next, we will present the Bat inspired algorithm and explain the behavior of bats and the

technique they use to detect obstacles and preys. Finally, we will discuss our proposed

approach, which is a combination between this optimization metaheuristic and the fractal

image compression.

In the third chapter, we will explain our proposed approach for the objective of improving

the fractal image compression in many aspects. To do this, we will first indicate our work

environment, and then we will explain the implementation of our algorithm in details. After

that, we will choose the best parameters to use in our algorithm by comparing different results

using different values.

Finally, a comparison will be made between our algorithm and the different methods.

We will conclude this manuscript by presenting the potential perspectives of our approach.

.

Chapter: 1
State of the art

 State of the art

2

Introduction:

Because of the fast growth of the information age, the necessity for mass storage and fast

communication links grows. Storing images in less memory leads to a direct reduction in

storage cost and faster data transmissions. These facts explain the hard work of researchers on

new image compression algorithms.

Images are stored on computers as collections of bits, pixels or points form the picture

elements. Most of these data contain redundancy that can be removed. However, compression

can be done in a way that the human eye does not detect a degradation on the image.

Part I: Compression

1. Data compression:

1.1. Definition:

Data Compression is a crucial process that allows the reducing data file sizes, to preserve

storage space in all electronic devices. It involves encoding data in a smaller bit representation

than the original. The result of compression can be either lossy, where there is a loss of

information, or lossless where all data is preserved.

1.2. Brief history:

The idea of data compression began about 200 years ago. Represented as Morse code,

invented in 1838 for use in telegraphy, which is based on using shorter code words for letters

such as "e" and "t" that are more common in English. Modern work on data compression

began in the late 1940s with the development of information theory. In 1949, Claude

Shannon and Robert Fano devised a systematic way to assign code words based on

probabilities of blocks. An optimal method for doing this was then found by David

Huffman in 1951. Early implementations were typically done in hardware, with specific

choices of code words being made as compromises between compression and error

correction. In the mid-1970s, the idea emerged of dynamically updating code words for

Huffman encoding, based on the actual data encountered. And in the late 1970s, with online

storage of text files becoming common, software compression programs began to be

developed, almost all based on adaptive Huffman coding. In 1977, Abraham

https://www.wolframscience.com/nksonline/index/names/search.cgi?SearchIndex=Shannon%2C%20Claude%20E.
https://www.wolframscience.com/nksonline/index/names/search.cgi?SearchIndex=Shannon%2C%20Claude%20E.
https://www.wolframscience.com/nksonline/index/names/search.cgi?SearchIndex=Fano%2C%20Robert%20M.
https://www.wolframscience.com/nksonline/index/names/search.cgi?SearchIndex=Huffman%2C%20David%20A.
https://www.wolframscience.com/nksonline/index/names/search.cgi?SearchIndex=Huffman%2C%20David%20A.
https://www.wolframscience.com/nksonline/index/names/search.cgi?SearchIndex=Lempel%2C%20Abraham

 State of the art

3

Lempel and Jacob Ziv suggested the basic idea of pointer-based encoding. In the mid-1980s,

following work by Terry Welch, the so-called LZW algorithm rapidly became the method of

choice for most general-purpose compression systems. It was used in programs such as

PKZIP, as well as in hardware devices such as modems. In the late 1980s, digital images

became more common, and standards for compressing them emerged. In the early 1990s,

lossy compression methods also began to be widely used. Current image compression

1.3. Types:

1.3.1. Lossless data compression:

1.3.2. Lossy data compression:

Another type of compression, called lossy data compression is possible if some loss of

reliability is acceptable. Lossy compression reduces a file by permanently eliminating certain

information, especially redundant information. When the file is uncompressed, only a part of

the original information is still there (although the user may not notice it). Lossy compression

is generally used for video and sound, where most users will not detect a certain amount of

information loss. Generally, a lossy data compression will be guided by research on how

people recognize the data in question. For example, the human eye is more sensitive to subtle

variations in luminance than it is to difference in color. JPEG image compression works in

standards include GIF (LZW); JPEG (lossy discrete cosine transform, then Huffman or

arithmetic coding); BMP (run-length encoding, etc.); TIFF (FAX, JPEG, GIF, etc.). Typical

compression ratios currently achieved for text are around 3:1, for line diagrams and text

images around 3:1, and for photographic images around 2:1 lossless, and 20:1 lossy [1].

With lossless compression, every single bit of data that was originally in the file

remains after the file is uncompressed. All of the information are completely restored. This is

generally the technique of choice for text or spreadsheet files, where losing words or financial

data could pose a problem. The Graphics Interchange File (GIF) is an image format used on

the Web that provides lossless compression. Lossless compression algorithms usually exploit

statistical redundancy in such a way as to represent the sender's data more concisely without

error. Lossless compression is possible because most real-world data has statistical

redundancy [2] .

https://www.wolframscience.com/nksonline/index/names/search.cgi?SearchIndex=Lempel%2C%20Abraham
https://www.wolframscience.com/nksonline/index/names/search.cgi?SearchIndex=Ziv%2C%20Jacob
https://www.wolframscience.com/nksonline/index/names/search.cgi?SearchIndex=Welch%2C%20Terry%20A.

 State of the art

4

1.4. Compression formats:

There are as many types of data compression as there are types of files.

In audio files, there is MP3, M4A, and AMR... etc.

In video file compression there is MPEG, MP4, 3GP, AVI... etc.

In addition, image compression types include JPEG, GIF, PNG, and TIFF... etc. Which will

be the focus of our research.

2. Image Compression:

2.1. Definition:

We can define image compressing as an application of data compression that encodes the

original image with fewer bits, in other words image compression reduces the amount of

information necessary for a visual representation close to the original image.

part by "rounding off" some of this less-important information. Lossy data compression

provides a way to obtain the best reliability for a given amount of compression. Lossy image

compression is used in digital cameras, to increase storage capacities with minimum ruin of

picture quality [2].

The ideal goal of this application is to reduce a graphics file size without degrading the

quality to a mediocre level. Not only does this process allow a higher number of images to be

stored in a given memory space, it also minimizes the amount of time needed to transfer

images throughout the WEB [3].

 State of the art

5

2.2. Image compression Methods:

2.2.1. Methods for Lossy compression:

1. Color space: It reduces the color space to the most common colors in the image.

2. Chroma subsampling: This takes advantage of the fact that the human eye

4. Fractal Compression: Fractal Image Compression technique identify possible

self-similarity within the image and used to reduce the amount of data required to reproduce

the image. Traditionally these methods have been time consuming, but some latest methods

Figure 1.1 Model for compression system [2].

The selected colors are specified in the color palette in the header of the compressed image.

Each pixel just references the index of a color in the color palette [4].

perceives spatial changes of brightness more sharply than those of color, by averaging or

dropping some of the chrominance information in the image [4].

3. Transform coding: This is the most commonly used method. In particular, a

Fourier-related transform such as the Discrete Cosine Transform (DCT) is widely used. The

more recently developed wavelet transform is also used extensively, followed by quantization

and entropy coding [5].

promise to speed up the process [5].

 State of the art

6

2.2.2. Methods for Lossless compression:

1. Run length encoding: (RLE) is a very simple form of data compression in which

runs of data (that is, sequences in which the same data value occurs in many consecutive data

elements) are stored as a single data value and count, rather than as the original run. This is

most useful on data that contains many such runs: for example, simple graphic images such as

2. Huffman Encoding: an algorithm for the lossless compression of files based on

the frequency of occurrence of a symbol in the file that is being compressed. The Huffman

algorithm is based on statistical coding, which means that the probability of a symbol has a

direct bearing on the length of its representation. The more probable the occurrence of a

symbol is the shorter will be its bit-size representation. In any file, certain characters are used

more than others. Using binary representation, the number of bits required to represent each

character depends upon the number of characters that have to be represented. Huffman

compression is a variable-length coding system that assigns smaller codes for more frequently

used characters and larger codes for less frequently used characters in order to reduce the size

4. SCZ CODING: is a simple set of compression routines for compressing and

decompressing arbitrary data. The initial set of routines implement new lossless compression

algorithms with perfect decompression. The library is called SCZ, for simple compression

format. SCZ is intended as subroutines for calling within your own applications without legal

icons, line drawings, and animations. It is not useful with files that do not have many runs as

it could greatly increase the file size [5].

of files being compressed and transferred [5].

3. LZW Compression: is named after its developers, A. Lempel and J. Ziv, with

later modifications by Terry A. Welch. It is the foremost technique for general-purpose data

compression due to its simplicity and versatility. Typically, you can expect LZW to compress

text, executable code, and similar data files to about one-half their original size. LZW also

performs well when presented with extremely redundant data files, such as tabulated numbers,

computer source code, and acquired signals. Compression ratios of 5:1 are common for these

cases. LZW is the basis of several personal computer utilities that claim to "double the

capacity of your hard drive" [4].

 State of the art

7

2.3. Different image formats:

As we can conclude from the chart above each type of image format has its strengths and

weaknesses, which makes them individually advantageous or disadvantageous depending on

the required purpose.

Part II: Optimization metaheuristics

1. Optimization problems:

An optimization problem can be defined as a finite set of variables, where the correct

values for the variables specify the optimal solution. If the variables range over real numbers,

or technical encumbrances. It was developed because the standard compression routines, such

as JPEG, GIF, etc., are fairly large, complex, and difficult to integrate-with, maintain,

understand, have external dependencies [6].

Table 1.1: Summary of the format [7].

 Optimization problems are common in many disciplines and various domains. In

optimization problems, we have to find solutions, which are optimal or near optimal with

respect to some goals. Usually, we are not able to solve problems in one-step, but we follow

some process, which guides us through problem solving. Often, the solution process is

separated into different steps, which are executed one after the other. Commonly used steps

are recognizing and defining problems, constructing and solving models, and evaluating and

implementing solutions [8].

 State of the art

8

the problem is called continuous, and if they can only take a finite set of distinct values, the

problem is called combinatorial. In our case, we are dealing with combinatorial optimization

problems because the number of communities of interests is finite.

1.1. Combinatorial optimization:

Two classes of algorithms are available for the solution of combinatorial optimization

problems:

1.1.1 Exact algorithms:

1.1.2. Approximate algorithms:

2. Metaheuristics:

Metaheuristics have been established as one of the most practical approach to simulation

optimization. However, these methods are generally designed for combinatorial optimization,

and their implementations do not always adequately account for the presence of simulation

noise. Research in simulation optimization, on the other hand, has focused on convergent

algorithms, giving rise to the impression of a gap between research and practice. This chapter

surveys the use of metaheuristics for simulation optimization, focusing on work bridging the

current gap between the practical use of such methods and research, and points out some

promising directions for research in this area. The main emphasis is on two issues: accounting

The combinatorial optimization involves problems in which their set of feasible solutions

is discrete or can be reduced to a discrete one, and the goal is to find the best possible

solution. In areas such as routing, task allocation, scheduling, and so forth, most of the

problems are modelled in the form of combinatorial optimization problems [9].

Are guaranteed to find the optimal solution and to prove its optimality for every finite

size instance of a combinatorial optimization problem within an instance dependent run time

[10].

Often also called heuristic methods or simply heuristics, seek to obtain good, that is,

near-optimal solutions at relatively low computational cost without being able to guarantee

the optimality of solutions [10].

 State of the art

9

2.1. Definition:

2.2. Examples of metaheuristic algorithms:

2.2.1. Genetic algorithms:

This section looks closer at one of the popular metaheuristics for simulation

optimization, namely genetic algorithm. As an approach to global optimization, genetic

for simulation noise in the implementation of metaheuristics, and convergence analysis of

metaheuristics that is both rigorous and of practical value [11].

Figure 1.2: Optimization Types and solutions [10].

A metaheuristic is a set of algorithmic concepts that can be used to define heuristic

methods applicable to a wide set of different problems. It can be seen as a general-purpose

heuristic method toward promising regions of the search space containing high-quality

solutions [10].

 A metaheuristic is a general algorithmic framework, which can be applied to different

optimization problems with relatively few modifications to make them adapted to a specific

problem [10].

 State of the art

10

2.2.2. The tabu-search method:

algorithms (GA) have been found to be applicable to optimization problems that are

intractable for exact solutions by conventional methods (Holland 1975, Goldberg 1989). It is

a set-based search algorithm, where at each iteration it simultaneously generates a number of

solutions. In each iteration, a subset of the current set of solutions is selected based on their

performance and these solutions are combined into new solutions. The operators used to

create the new solutions are survival, where a solution is carried to the next iteration without

change, crossover, where the properties of two solutions are combined into one, and mutation,

where a solution is modified slightly. The same process is then repeated with the new set of

solutions. The crossover and mutation operators depend on the representation of the solution,

but not on the evaluation of its performance. They are thus the same even though the

performance is estimated using simulation. The selection of solutions, however, does depend

on the performance. The general principle is that high performing solutions (which in genetic

algorithms are referred to as fit individuals) should have a better change of both surviving and

being allowed to create new solutions through crossover [11].

Tabu search was introduced by Glover (1989, 1990) to solve combinatorial optimization

problems and it has been used effectively for simulation optimization, most notably by the

OptQuest simulation optimization software (April et al. 2003). It is a solution-to-solution

method and the main idea is to make certain moves or solutions tabu, that is they cannot be

visited as long as they are on what is called the tabu list. The tabu list Lk is dynamic and after

each move, the latest solution θk, or the move that resulted in this solution, is added to the list

and the oldest solution or move is removed from the list. Another defining characteristic of

tabu search is that the search always selects the best non-tabu solution from the neighborhood,

even if it is worse than the current solution. This allows the search to escape local optima, and

the tabu list ensures that the search does not revert back. Tabu search numerous other

elements, such as long-term memory that restarts the search, with a new tabu list, at

previously found high quality solutions, and a comprehensive treatment of this methodology

can be found in Glover and Laguna (1997) [11].

 State of the art

11

2.2.3. The ant colony optimization:

2.2.4. The Nested Partition Method:

2.2.5. Simulated Annealing:

SA is so named because of its analogy to the process of physical annealing with solids,

in which a crystalline solid is heated and then cooled slowly until it reaches its most regular

crystal lattice configuration (i.e., its minimum state energy). When the cooling schedule is

sufficiently slow, the resulting structure is free of crystal defects.

SA establishes a connection between this thermodynamic process and the search for

heuristic solutions for optimization problems. The algorithm starts from a heuristic solution

and at each iteration tries to improve its value. Improving solutions are always accepted,

Ant colony optimization is a technique for optimization that was introduced in the early

1990’s. The inspiring source of ant colony optimization is the foraging behavior of real ant

colonies. This behavior is exploited in artificial ant colonies for the search of approximate

solutions to discrete optimization problems, to continuous optimization problems, and to

important problems in telecommunications, such as routing and load balancing. First, we deal

with the biological inspiration of ant colony optimization algorithms. We show how this

biological inspiration can be transferred into an algorithm for discrete optimization. Then, we

outline ant colony optimization in more general terms in the context of discrete optimization,

and present some of the nowadays best performing ant colony optimization variants. After

summarizing some important theoretical results, we demonstrate how ant colony optimization

can be applied to continuous optimization problems [12].

Introduced by Shi and Ólafsson (2000a), the nested partition method (NP) is another

metaheuristic for combinatorial optimization that is readily adapted to simulation optimization

problems (Shi and Ólafsson 2000b). The key idea behind this method lies in systematically

partitioning the feasible region into subregions, evaluating the potential of each region, and

then focusing the computational effort to the most promising region. This process is carried

out iteratively with each partition nested within the last. The computational effectiveness of

the NP method relies heavily on the partitioning, which, if carried out in a manner such that

good solutions are clustered together, can reach a near optimal solution very quickly [11].

 State of the art

12

Conclusion of the second part:

In the second part, we presented the optimization problems and sited its solutions, then we

went into details in metaheuristics and their methods.

Conclusion:

As of yet there are still no ideal image compression techniques that are immune to the

disadvantages of the previously mentioned formats, also there are many metaheuristics that

can be used to improve the compression technics. In the second chapter, we try to combine

metaheuristics with a standard image compression algorithm in order to perform it and get

better results.

while non-improving solutions are accepted only under given conditions. The probability of

accepting non-improving moves is indeed proportional to a parameter, defined temperature in

SA literature, which topically decreases during the execution of the approach. The key feature

is that SA provides a means to escape from poor local optima, by allowing hill-climbing

moves. As the temperature decreases, tending toward zero, the worsening moves are accepted

with less frequency, and the solution tends to a (local or possibly global) optimum [13].

Chapter: 2
 Proposed
approach

.

 Proposed Approach

14

Introduction:

FIC is a successful technique of lossy image compression, however this method has its flaws,

mainly the encoding time, and therefore researchers try to optimize it by combining it with

optimization metaheuristics.

In this chapter, we will discuss fractal image compression in general and we will indicate

the different optimization methods that were created to improve it, and finally we will describe

our proposed approach in details.

Part I: Fractal image compression and Bat Algorithm

1. Fractal image compression:

1.1. Definition:

FIC is based on fractals (self-similar parts), which are used in order to compress image.

Fractal algorithms convert these parts (referred as fractals) or geometric shapes into

mathematical information, and they called as ‘fractal codes’ which are later used to reconstruct

an image.

The following figure demonstrates an example of fractal images.

The fractal image compression (FIC, in short) is a modern technique for lossy image

compression; Hutson and Barnsley originally introduced it in 1987. FIC is a technique, which

is used to encode the image in such a way that it reduces the storage space by exploring the

self-similarities between different isolated image regions and store only the parameters of

contract transform instead of the image pixels. This principle allows for the construction of an

approximation of the original image by detecting the recurrence of the patterns on various

scales, and tends to eliminate the information redundancy in the source image in order for the

result to be accurate enough to be acceptable. The FIC is based on an Iterated function system

f, a finite set of contractions defined on a metric space Rn by the relation [14]:

fi: Rn→ Rn | i < N [2.1]

 Proposed Approach

15

 However, an asymmetric process characterizes this technique, and it spends much more

time in the encoding process in comparison with the decompression process. FIC consists of

searching for the best match block, mostly on large sized images. That is why this technique is

better suited for textures and low-resolution patterns.

1.2. History:

Figure 2.1: example of fractal image fern [15]

The conservation of resolution as well as the high ratio of compression have made FIC one

of most favorable techniques in image encoding. Its history dates back to the 90s where Jacquin

proposed the first image compression method; its idea is to divide the image onto squared

domain blocks. The principle of compression proposed is to look for the most matched domain

block corresponding to each range block, determine the appropriate contract transform and store

their parameters [14].

 The idea was interesting but it remains limited to domestic applications due to high time

consuming restrictions. Since that, researchers introduced new ideas in order to reduce the huge

encoding time; the work of Thomas and Deravi combines range blocks and by utilizing region-

growing method makes them more adaptive with image content [14].

 Proposed Approach

16

Various other researches were introduced new concepts to improve the search quality such

the encoding via the Fourier transform, special image features, DCT inner product. The most

approaches were based on matching error threshold to restrict the searching space.

1.3. Advantages and disadvantages of fractal image compression:

Advantages:

- Good mathematical encoding frame.

- Resolution-free decoding.

- High compression ratio.

Disadvantages:

- Slow encoding.

 Cardinal proposed a similar idea; it is based on a geometrical partition of the greyscale

image block feature space. The experimental comparisons with previously published methods

show a significant improvement in speed with no quality loss. Cardinal thought of employing

the one-norm of normalized block to circumvent the disproportionate search in block matching.

By another way, Chong and Pi presented a new adaptive search approach to reduce the

computational complexity of fractal encoding; in order to exclude many unreserved domain

blocks to accelerate the compression of fractal images [14].

Recently, Lin and Wu proposed a search strategy based on image block edge property, which

demonstrates an acceptable performance. Furthermore, numerous research papers have been

published during last decay; they have enhanced the quality of image without improvement in

resources of coding process [14].

Fractal image compression has its merits and demerits compared to the other methods; we

summarize them as follows [15]:

 Proposed Approach

17

1.4. Iterated function system (IFS):

Arnaud Jacquin created an enhancement to IFS by using partitioned iterated function system

(PIFS). This function comprises metric space X, a set of sub domain Di, (I=1..n) and a group of

contractive mappings Wi: Di X,I=1…..n.

Images with IFS are named affine transformations; they can be a mixture of transformations

(translation, rotation and scaling). Wi is the affine transformation on I I2

𝑤1(𝑋) = 𝑤1 (
𝑥
𝑦) = (

𝑎 𝑏
𝑐 𝑑

) (
𝑥
𝑦) + (

𝑒
𝑓

Where a, b, c, d, e and f are coefficient, which determines the rotation, skew and scaling.

Michael Barnsley explained that we can represent an image as a set of mathematical

equations, in which the basis of FIC is formed as an IFS code. However, because of its

complexity, this idea became unwieldy [15].

) [2.2]

Figure2.2: Iterated function simple [16].

 Proposed Approach

18

1.5. Self-similarity property:

As we can observe from the figure above, parts of the image are self-similar with well

transformed parts, but the entire image is not self-similar. That is why the main purpose of FIC

is to eliminate the redundancy of these self-similar parts.

1.6. Working Approach:

The resulting image will also be partitioned to non-overlapping blocks di with the same size

of ri which are called domain blocks. After that each changed domain block T (Di,j) will be

compared to each range block Rk,l, in order to find the most similar domain block to range

block.

The self-similarity found in fractals does not exist in a typical image. Because normal images

contain a different kind of self-similarity. The Lenna figure shows blocks that are similar at

different scales. For example, a part of her shoulder overlaps a smaller block and they look

almost identical [17].

Figure 2.3: self-similarity in Lenna image [17].

Suppose that we have a 128 x 128 image where each pixel is represented between 1 to 256

levels of grey. The image will be partitioned to non-overlapping blocks ri of size s*s called

range blocks, then the image is reduced to 64 x 64 by averaging (down sampling and low-pass-

filtering) [18].

 Proposed Approach

19

Finally, Fractal decoding methods consist of the reconstruction of the range blocks from the

most similar domain block by using the transformations defined in the Fractal Code Book.

Figure 2.4: Partition of Range and Domain blocks [18]
Following that, the transformed domain block that is found to be the most similar to the

range block, is allocated to the same range block, i.e. the position of the domain block and the

coefficient of the transformation that was applied to the domain block, which are saved into a

file labeling all the transformation. This file called the Fractal Code Book [18].

 T (α,t0,(i,j))best Rk,l [2.3]

 Proposed Approach

20

The following algorithm explains the fractal image compression:

Step 1: Read the binary image

Step 2: Convert it into gray level image

Step 3: Divide the image into small blocks without overlapping

Called As range blocks with S*S size.

Step 4: Introduce large square blocks, with overlapping called as

Domain blocks with 2S * 2S size.

Step 5: for each range block find the matching domain block

Which closely resembles range block with respect to

Some metric.

Step 6: Write out compressed data in form of local IFS code

Step 7: Apply data compressed algorithm to obtain a compressed

IFS code.

1.7. Fractal Image Compression Techniques:

1.7.1. quad-tree decomposition:

It is one of the partition-based methods. It divides an image into variable size range block.

In this type of partition, a square image is split into square blocks of equal sizes, and then tests

each block to check whether each block meets some criteria of homogeneity. If a block meets

the criteria it is not divided any further, if the block does not meet the criteria, then the block is

splited into further four blocks and again test is applied to those blocks [19]. This process is

repeated iteratively until each block meets the criteria resulting in many different sizes of

blocks. It is represented in a tree like structure, where each node will have four sub nodes.

Adjustments of Quad-tree size is done by using two parameters, minimum level and maximum

level. By this method we can increase the compression ratio and reduce the bits used to

represent an image i.e. bits per pixel (bpp).

 Proposed Approach

21

1.7.2. Genetic Algorithm (GA):

1.7.3. Particle Swarm Optimization (PSO):

1.7.4. Artificial Bee Colony optimization (ABC):

1.7.5. Embedded Zero tree Wavelet (EZW) coding:

GA is an Algorithm simulating process of natural evaluation, which is applied for

constraint functions and controlled parameters for optimization. GA is very effective in solving

non-linear and multiple extreme problems. GA was proposed to get the matching domain block

for each range block in FIC, which uses the PIFS [20]. Without needing or using an extensive

search mechanism, GA tries to locate close optimum solutions.

Eberhart and Kennedy [21] have created the PSO technique that is used for computation.

PSO is a general-purpose optimization algorithm, which is also used for the concept of fitness.

PSO based on the analogy of the group of birds. It gives mechanism that individuals in the

group communicate and exchange information, which is similar to insect and human being

behavior. PSO is a low-cost algorithm and can be employed in a small number of lines of code

because it only needs basic mathematical operations whereas a full FIC search can find the

exact best domain block for each corresponding range block. It is very time consuming,

however.

An iteration-based technique that was broadly defined by Dervis Karaboga in 2005, ABC

is an algorithm that bases itself on the behavior of honeybees. It is an optimization tool, which

provides a population based search procedure where each individual called food positions are

altered by artificial bees with time aiming to find out the food source with large nectar amount.

ABC consists of three types of bees (a) employed bee, (b) onlooker bee and (c) scout bee. The

onlooker bees that are waiting in the hive receive information from the employed bees regarding

the nectar sources that have been discovered before. Onlooker bees choose an exploitable food

source based on the information received from the employed bees. Scout bees quest for a food

source randomly within the environment in order to find nourishment [22].

Shapiro introduced EZW. It is a wavelet-based technique used for compression [23].

EZW mainly operates on 2-D images. It provides a high compression ratio and better quality of

a reconstructed image but yields lower PSNR. Here, the entire coefficient corresponding to the

 Proposed Approach

22

same spatial location is organized in a tree-like structure. These trees have parent-child

relationships among the co-efficient of sub-bands having spatial orientation.

1.7.6. Wolf Pack Algorithm:

1.8. Comparison between Techniques:

Methods
Improvements on fractal image

compression

quad-tree decomposition

- Can increase the compression ratio.

- Reduce the bits used to represent an

image (bits per pixel).

Genetic Algorithm (GA)

- Huge reduction in searching space and

time.

- Achieves high PSNR.

Particle Swarm Optimization (PSO) - Reduce the encoding time.

Artificial Bee Colony optimization (ABC) - Reduce the Compression time.

Embedded Zero tree Wavelet (EZW) coding - Improve the visual quality.

Wolf Pack Algorithm(WPA)
- Achieves high Compression Ratio.

- Improve the Compression Time.

As we can conclude from this table, there is still no perfect method, which improves time,

quality and compression ratio together. Each of these method implemented has its strengths and

weaknesses depending on their use.

The Wolf Pack Algorithm (WPA, in short) [14], is one of this family (bio-inspired) of

algorithms that employed in order to approximate solutions for various optimization problems.

WPA is a population-based metaheuristic stirred by the social hunting comportment of wolves.

It consists essentially in making wolves hunt, find the trace of prey and capture it under the

command of a chief wolf.

Table 2.1: Different improvements on FIC [15].

 Proposed Approach

23

2. Bat-Inspired Algorithm:

2.1. Behavior of bats:

Echolocation is a type of sonar used by bats not only to detect their preys’ location and how

fast they are moving, but also to circumvent obstacles and pinpoint their resting crevices in the

dark. Bats unleash loud sound pulses and await the echo that reflects back from their

surroundings. The pulses they emit can have varying properties and can be linked closely to the

hunting strategies of bats.

2.2. Acoustics of Echolocation:

Given that the speed of sound in the air is characteristically v = 340 m/s, the wavelength λ

of the ultrasonic sound bursts with a continual frequency f:

λ =
v

𝑓

For a typical frequency between 25 kHz to 150 kHz, wavelengths range between 2 to 14mm

and are equal in order as the bats’ prey sizes.

Bat Algorithm (BA) is a new metaheuristic technique proposed by Xin-She Yang in 2010,

based on the echolocation performance of bats. The capability of echolocation of bats is

fascinating as they can find their prey and distinguish different types of insects even in complete

darkness [24].

Being the only mammals that can truly fly, and having an advanced ability of echolocation

makes bats intriguing animals. Scientists estimate there is roughly 996 different species of bats,

and that accounts for up to 20% of all mammals on the planet [24].

Although pulses remain often between 25 kHz and 150 kHz in a constant frequency,

individual pulses only remain up to 8 to 10 ms. Bats produce between 10 and 20 ultrasonic

sound bursts every second, each of which remain between 5 and 20 ms. However, when bats

are hunting for their prey, and they are close by, they can speed up their pulse emission rate to

a threshold of 200 /secs. Such a short sound burst is a testament to the fantastic ability of the

signal processing of bats [24].

 [2.4]

 Proposed Approach

24

Bats’ echolocation can be formulated in an objective optimized function to create new

algorithms of optimization.

2.3. Bat Algorithm:

As the bats select the best solutions, they generate a local solution around the selected best

solutions.

The pulses that bats produce can reach an impressive loudness of 110 dB, but auspiciously

enough, these pulses remain in the ultrasonic domain. Pulse loudness can take various levels

such as very loud when bats are hunting and low to a quiet sound when they are aiming for their

prey. Such short pulses usually have a roaming range of few meters that depend on the

frequency [24].

Research indicates that bats construct a three-dimensional layout of their surroundings by

using the time delay between their ears, the variations of echo loudness and the interval between

echoes’ emission and detection. Bats have the ability to not only measure the distance and

itinerary of their targets, but also their traveling speed and what kind they are [24].

In reality, Bats use all their senses as a combination to maximize the efficient detection of

prey and smooth navigation. However, only echolocation and its accompanying behaviors are

treated here.

Bats fly randomly in a search space Ri using velocity Vi at position (solution) Xi. They emit

pulses at a fixed wavelength λ with varying frequency f and loudness A (varies from a large

positive A0 to a minimum constant value Amin) to search for the prey [24].

 Proposed Approach

25

The following algorithm explains the behavior and movement of bats:

Objective function f(x), x=(x1,..., xd)T

Initialize the bat population xi (i=1,2,...,n) and vi

Define pulse frequency fi at xi

Initialize pulse rates ri and the loudness Ai

while (t <Max number of iterations)

Generate new solutions by adjusting frequency

and updating velocities and locations/solutions

if (rand > ri)

Select a solution among the best solutions

Generate a local solution around the selected best solution

end if

Generate a new solution by flying randomly

if (rand < Ai & f(xi) < f(x∗))

Accept the new solutions

Increase ri and reduce Ai

end if

Rank the bats and find the current best x∗

end while

Postprocess results and visualization

 Proposed Approach

26

Part II: Bat Algorithm for Fractal Image Compression

Fractal image compression is a modern technique used for lossy image compression.

However, this technique’s main problem is that it takes a large amount of time. Moreover, the

approaches that were suggested to reduce time negatively affect the quality.

To remedy that, researchers have discovered a new way to improve the fractal compression

encoding by combining fractal algorithm with other coding methods (ex: FIC with quad-tree

decomposition, Wolf Pack Algorithm for FIC).

Therefore, our proposed work is based on this new technique, in which a combination

between the Bat-inspired algorithm and fractal image compression is made in order to improve

the quality and compression time.

The following schema demonstrates our proposed algorithm.

Figure 2.5. The proposed Fractal Compression Technique.

1. Huffman Coding:

1.1. Huffman Encoding:

The Huffman encoding algorithm begins with creating a list of all the symbols in a

descending order of their occurrences; the next step is to construct a binary tree with a symbol

at every leaf (from the bottom to the top). Each step of this procedure, two symbols with the

smallest occurrence are selected, added to the top of the partial tree, deleted from the list and

replaced with another symbol signifying the two original symbols [42]. After reducing the list

to only one auxiliary symbol that represents the entire symbols, the Huffman tree is complete.

 Proposed Approach

27

1.2. Huffman Decoding:

The algorithm for decoding is simple.

- Start at the root and read the first bit off the input (the compressed file).

-If it is zero, follow the bottom edge of the tree;

-if it is one, follow the top edge. Read the next bit and move another edge toward the leaves

of the tree.

-When the decoder arrives at a leaf, it finds there the original, uncompressed symbol, and

the decoder emits that code.

-The process starts again at the root with the next bit.

2. THE PROPOSED ALGORITHM:

Our algorithm steps are as follows:

Step 1: Bats fly randomly on the image using loudness L and frequency F.

Step 2: Bats compare each block to its neighbors to see if it meets some criterion of

homogeneity depending on loudness and frequency. If they meet a criterion (color_level_block

– color level neighbor <= frequency), they create a domain block with size L*L that has only

one value (average of the domain block).

Step 3: The iterations stop when bats search the entire image.

Step 4: After decomposing the image into domain blocks, the position of bats Xi and the

block size blksz. will be stored in a sparse S.

Step 5: In this step, we try to find the best solution by eliminating the solution with the

smaller block.

The codes have to be determined by the encoder before starting the compression, the

determination is based on the probabilities of the occurrence of symbols. The probabilities

have to be stored on the output as side information, in order to make any Huffman decoder

capable of decompressing data [41].

 Proposed Approach

28

Step 6: Huffman encoding is used to store the data (positions, block sizes and values) in

order to calculate the compression ratio.

Step 7: Then, Huffman decoding is utilized to restore the image data of the compressed

image, after which we reconstruct it.

The following algorithm explains the workings of our approach:

Algorithm Fractal-with-bats

Begin

Initialization:

Generate bats (Number_bats = 1..N)

Loudness L;

Frequency F;

While not (stopping criteria)

For each bat

If similarity = 1

Create domain block;

 Store position in vectors I,J;

 Store block sizes in vector blksz;

Else

 Store position in vectors I,J;

 Store block sizes in vector blksz;

End-if

End-while

Search for best solutions;

Store the positions and block sizes in a sparse S;

End.

 Proposed Approach

29

Conclusion:

In this chapter, we presented fractal image compression and its algorithm, then we sited

different optimization methods created to improve it, after which we described the optimization

metaheuristic (the bat inspired algorithm), and finally we introduced our proposed method, its

properties and optimizations. In the following chapter, we will exhibit our implementation and

compare the results with other methods.

Chapter: 3
 Results and
discussion

.

 Results and Discussion

30

Introduction:

In order to carry out this project, it is necessary to choose technologies to simplify its

implementation. For this, after completing the conceptual study in the previous chapter, we

will discuss the implementation part in the following. We begin by presenting the hardware

and software environment, then, realization of our application, and finally a comparison of

our method with other FIC methods is done.

The criteria we used in the comparison are as follows:

 Encoding time.

 Decoding time.

 MSE (Mean Squared Error) presented with this formula:

MSE =
1

𝑚 𝑛
 ∑ 𝑚−1

𝑖=0 ∑ [𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)]𝑛−1
𝑖=0

 PSNR (Peak Signal Noise Ratio) which is calculated by this formula:

PSNR = 10 log10 [
2552

𝑀𝑆𝐸

CR =
𝑈𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑧𝑒

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑆𝑖𝑧𝑒

Part I: Implementation

1. Work environment:

1.1. Hardware:

 Desktop PC with the following specifications:

AMD FX™-6100 Six-Core Processor 3.30 GHz.

32 GB RAM.

Windows 10 64 bit.

 Dell laptop with the following specifications:

Intel Core i3-3217U 1.80 GHz

4 GB RAM.

Windows 10 64 bit.

 2 [3.1]

] [3.2]

 Compression ratio :

 [3.3]

 Results and Discussion

31

1.2. Software:

The code was implemented with MATLAB 2013a version 8.1.

1.2.1. Definition:

MATLAB (MATrix LABoratory) is a built up around vectors and matrices. MATLAB

is fourth-generation programing language and it is one of the easiest programming language

for writing mathematical programs. In addition, MATLAB possesses a number of toolboxes

that are used for processing signals, processing images, optimization...Etc.

1.2.2. Work environment:

The following figure shows the MATLAB work environment, which contains five

important windows.

Figure 3.1: MATLAB work environment.

 Results and Discussion

32

 Current Directory Contents: shows the contents of the current working folder.

 Editor: allows editing MATLAB programs and functions.

 Command Window: uses to type the command and shows the result of programs

writing in the Editor.

 Workspace: displays the variables that are defined, and what type of variable each is.

 Command History: shows the commands that are already used.

2. Implementation:

2.1. Initialization:

The first step in the creation of our algorithm is to instruct the user to input the variables

needed. These variables are listed below:

 Resolution of the image: the user inputs the height and the width of the image in order

to resize it.

 Number of bats: this variable indicates how many bats will be spread onto the image in

every iteration (the number of bats must be a divisor to Size=width x height).

 Loudness: this user-input variable is used to determine the size of the block that will be

scouted by bats.

 Frequency: it regulates the level of homogeneity between pixels in the scouted block.

Figure 3.2: Command window.

 Results and Discussion

33

2.2. Encoding:

The encoding process goes through multiple steps beginning with the bat decomposition

and ending with the Huffman encoding.

Step 1: Bat decomposition:

S = Batdcmp(Ima,Loudness,Number_bats,Frequency); %%Bat decomposition

This function decomposes the image into small blocks depending on the similarity criteria,

then it affects the results into a sparse S, This sparse contains the position of blocks and their

sizes.

The first step of the Bat decomposition is to initialize bats and spread them on the image.

 Creating bats:

Bats = create_bats(SM,SN,Number_bats); %% Create Bats and set their

Random positions

The input variables in this function are width, height and number of bats.

function final = create_bats(m,n,number_bats)

resultat = cell(m,n);

final = cell(m*n/number_bats,number_bats);

for i = 1:m

 for j = 1:n

 resultat{i,j} = [i,j];

 end

end

Cell =resultat(randperm(numel(resultat))) ;

for i = 1:m*n/number_bats

 for j = 1:number_bats

 final{i,j} = Cell{i+((j-1)*(m*n/number_bats))};

 end

end

 Results and Discussion

34

In the beginning, an empty cell is created, the size of which is defined as: the number of

rows= width * height / number of bats while the number of columns = number of bats.

After the cell is filled with the ordered positions of the entire image’s pixels, the shuffling

process begins. The cell is transformed into a vector, which is then shuffled using the

randperm function. The resulting shuffled vector is transformed back into a cell.

 Start the decomposition :

for Iteration = 1 : (SM*SN)/Number_bats

 for Number = 1:Number_bats

In this step, we start a nested loop, the first one is the iteration loop and the second one is

a loop to browse the bats.

After that, bats’ positions (m,n) will be restored from the cell that was previously created.

X = Bats{Iteration,Number};

m = X(1);

n = X(2);

Afterwards, a Search function is used in order to test if this position is already browsed

or not.

if (Search(m,n,Coordinates)==0) %% check if the pixel already

used

The input variables in this function are m, n and Coordinates, which contains the

positions of pixels that are already used.

 Results and Discussion

35

function rech = Search(m,n,Coordinates)

rech = 0;

[L,C] = size(Coordinates);

for i = 1:L

 if (m == Coordinates (i,1) && n == Coordinates (i,2))

 rech = 1;

 return

 end

end

Next, if this position does not exist in Coordinates, the bat starts to test the similarity by

using the compare_gray function.

comp = compare_gray(m,n,Ima,Loudness,Frequency); %% check

the similarity

The input variables in this function are m, n, Ima (The image), Loudness, and

Frequency.

 Results and Discussion

36

function compare_den = compare_gray(m,n,ima,Loudness,Frequency)

compare_den = 1;

app = double(ima(m,n));

for i = 2:Loudness

 V1 =ima(m:(m+i)-1,(n+i)-1);

 V1 = V1';

 V = unique([V1,ima((n+i)-1,m:(m+i)-1)]);

 for j = 1 : length(V)

 x = double(V(j));

 comp = abs(app-x);

 if (comp <=Frequency)

 compare_den = i;

 else

 if(compare_den == i)

 compare_den = i-1;

 end

 return

 end

 end

end

The first step is to start a loop depending on the loudness, starting with the minimum

value of loudness 2, then we create a vector V1 containing the pixels that we want to compare

with the input pixel, after that we will test if each pixel of 2x2 has any similarity with the

input pixel. If the test is false, the function will stop and the compare_gray value will be 1. If

the similarity test is true, compare_gray variable will be 2 and then it will test again on 3x3

size and so on so forth until either the compare_gray value is equal to loudness or similarity

is not found and the compare_gray value equals the last size in which a similarity is found.

 Results and Discussion

37

if (comp~=1)

for im = m:m+(comp-1)

for jn = n:n+(comp-1)

Coordinates =[Coordinates; im,jn];

 if (im~=m || jn~=n)

 blksz = [blksz;-2];

 else

 blksz = [blksz;comp];

 end

 end

 end

else

Coordinates =[Coordinates; m,n];

blksz = [blksz;1];

end

Following, if the result variable (comp) from the previous function equals 1 then only the

position of the current pixel will be stored in Coordinates and the block size will also be 1,

otherwise we store the position of the pixels that create a block, which starts from the current

position with size comp*comp and store the block size that is equal to comp.

After this step, the bats will have scouted the entire image and all the positions and the

block sizes will have been stored.

 Choose the best solution:

The Coordinates matrix contains redundant positions, thus, in order to eliminate the

worst solution we use the rech_repetition function.

Coordinates= rech_repetition(Coordinates,blksz);

The input variables in this function is Coordinates which contains the redundent

positions and blksz which contains the block sizes.

 Results and Discussion

38

function rechrep = rech_repetition(Coordinates,blksz)

[L,C] = size(Coordinates);

for i = 1:L

 for j = 1:L

 if (i~=j)

 if (Coordinates(i,1) == Coordinates(j,1) &&

Coordinates(i,2) == Coordinates(j,2))

 if (blksz(i) < blksz(j))

 Coordinates(i,1) = 0;

 Coordinates(i,2) = 0;

 else

 Coordinates(j,1) = 0;

 Coordinates(j,2) = 0;

 end

 end

 end

 end

end

rechrep = Coordinates;

As we can see, this function starts with a test, if it finds a redundant position it will

determine the best solution by finding which of them has the bigger block size. The position

with the worst solution will become (0, 0).

 Results and Discussion

39

 Deleting the unnecessary positions

I = [I;Coordinates(:,1)];

J = [J;Coordinates(:,2)];

for z = 1:length(I)

 if(I(z)==0)

 blksz(z)=0;

 end

 if(blksz(z)==-2)

 blksz(z)=0;

 I(z) = 0;

 J(z) = 0;

 end

end

I = nonzeros(I);

J = nonzeros(J);

blksz = nonzeros(blksz);

This process begins with separating x, y from Coordinates matrix and affecting them to

I, J, Then we search for the positions with a value of 0 in order to make the value of the block

sizes of these positions 0 as well.

Next, we locate the block sizes with the value -2 and give them a value of 0 instead.

Finally, we use the predefined function nonzeros to delete theses values from the vectors

(I, J, blksz).

 Affect the data on a Sparse

S = sparse(I,J,blksz);

We created a sparse where we saved the I and J positions as well as the block sizes.

 Results and Discussion

40

Figure 3.3: example of sparse variable.

Step 2: Calculate the mean value:

This phase consists of calculating the mean value of the block

[i,j,blksz] = find(S); %record x and y coordinates and blocksize

blkcount=length(i); %Number of total blocks

avg=zeros(blkcount,1);%record mean values

for k=1:blkcount

 avg(k)=mean2(Ima(i(k):i(k)+blksz(k)-1,j(k):j(k)+blksz(k)-1));

 %find mean value of each block

end

avg=uint8(avg);

We extract the positions and the block sizes from the previously created sparse, and then

we perform a loop on the image and calculate the mean value of each domain block that was

created.

Step 3: Huffman Encoding:

[sp,comp,symbols,data,dict] = Huffencod(i,j,blksz,avg);

 Results and Discussion

41

Huffman encoding is a predefined function that creates a tree where the bottom contains

the most redundant values, and then becoming less redundant the more we approach the top of

the tree.

2.3. Decoding:

Step 1: Huffman decoding:

Through Huffman encoding, we retrieve data and the dictionary in order to recover the

positions I, J, the block sizes and the mean values.

[inew,jnew,blksznew,avgnew] = Huffdecod(comp,data,dict);

Step 2: Reconstructing the Image:

Using the positions (I, J), the block size and the mean values, we created a loop to

reconstruct the image.

for k=1:blkcount

 outim(i(k):i(k)+blksz(k)-1,j(k):j(k)+blksz(k)-1)=avg(k);

end

2.4. Results:

In order to display the performance of our program, we compress 2 standard test images:

Lenna and Cameramen, with 256 gray levels.

 Original image Bat Decomposition Decompressed image

 Figure 3.4: Compress Lenna with BIA.

 Results and Discussion

42

 Original image Bat Decomposition Decompressed image

Figure 3.5: Compress Cameraman with BIA.

The processing parameter are follows: the resolution of the image: 256*256, the number of

bats: 256, Loudness: 4, Frequency: 70.

Part II: Tests and results

1. Settings of the Bat Algorithm:

In this part, we will adjust our algorithm with different values of variables (number bats,

Loudness, Frequency) and we will use the standard test images Cameraman and Lenna of size

32 X 32.

1.1. Number of bats:

The Images has a resolution of 32x32, loudness value 3 and frequency 40.

Image
Number

of bats

Time

compression

Time

decompression

Compression

ratio
PSNR MSE

Camera

man

2 0.488 0.705 1.385 31.608 10.088

4 0.459 0.707 1.366 30.934 8.563

8 0.452 0.729 1.372 31.216 9.417

16 0.451 0.749 1.349 30.934 8.879

32 0.509 0.843 1.355 29.827 10.045

64 0.472 0.919 1.365 30.412 10.405

128 0.478 0.749 1.348 31.895 9.663

256 0.475 0.883 1.335 30.989 8.899

 Results and Discussion

43

512 0.457 0.750 1.392 29.997 9.870

Lenna

2 0.518 0.739 1.303 30.629 14.440

4 0.548 0.727 1.315 30.083 15.612

8 0.505 0.716 1.311 30.071 14.929

16 0.514 0.713 1.306 29.984 15.348

32 0.563 0.784 1.299 30.452 15.037

64 0.562 0.779 1.298 31.228 13.887

128 0.512 0.715 1.306 30.669 15.603

256 0.518 0.709 1.320 30.389 16.118

512 0.520 0.702 1.321 29.856 14.710

Table 3.1: results for different Number of Bats.

As we can conclude from the table above, in the Cameraman picture the best two values

for number of bats are 4 and 8. However, 8 is better than 4 in the encoding time, compression

ratio and PSNR.

In the Lenna picture, the best values are 8 and 512. In this case the value 8 is better than

512 in the compression time.

Considering the results of this test, the Best value is 8.

1.2. Loudness:

We took the same images with a resolution of 32x32, 8 as a number of bats, and 40 as

frequency.

Image Loudness
Time

compression

Time

decompression

Compression

ratio
PSNR MSE

Cameraman

2 0.453 0.720 1.267 33.788 6.531

3 0.452 0.729 1.372 31.216 9.417

4 0.458 0.721 1.376 33.022 7.807

5 0.469 0.702 1.355 30.220 9.375

6 0.438 0.727 1.359 30.119 9.027

7 0.460 0.723 1.348 28.971 9.130

 Results and Discussion

44

8 0.442 0.727 1.279 34.284 5.600

9 0.455 0.736 1.220 30.813 6.962

10 0.468 0.757 1.205 33.859 5.012

11 0.472 0.755 1.187 33.548 4.362

Lenna

2 0.530 0.735 1.248 31.781 14.848

3 0.505 0.716 1.311 30.071 14.929

4 0.537 0.726 1.324 29.230 16.853

5 0.586 0.751 1.299 30.536 14.382

6 0.519 0.713 1.244 30.812 13.766

7 0.516 0.715 1.223 31.290 12.190

8 0.503 0.756 1.228 31.032 11.917

9 0.495 0.740 1.204 32.213 9.056

10 0.492 0.761 1.194 31.873 8.372

11 0.488 0.737 1.192 32.050 9.695

Table 3.2: results for different Loudness.

From this table, in the Cameraman picture the best two values for Loudness are 2 and 8. However,

8 is better than 2 in compression time, compression ratio, PSNR and MSE.

In the Lenna picture the best values are 8 and 7, but in this case 8 is better than 7 in both the

compression time and MSE.

 Based on this test’s results, the best value is 8.

1.3. Frequency:

The Images are 32x32, Number bats is 8 and Loudness is 8.

Image Frequency
Decomposition

time

Time

compression

Time

decompression

Compression

ratio
PSNR MSE

Cameraman

20 0.119 0.490 0.714 1.118 40.341 1.526

30 0.113 0.458 0.698 1.209 33.576 4.4806

40 0.109 0.442 0.727 1.279 34.284 5.600

50 0.140 0.460 0.738 1.357 29.463 11.990

 Results and Discussion

45

60 0.125 0.435 0.706 1.422 26.887 15.954

70 0.183 0.453 0.716 1.586 23.701 22.989

80 0.187 0.467 0.702 1.722 23.769 33.415

Lenna

20 0.091 0.495 0.755 1.066 42.199 1.904

30 0.106 0.512 0.735 1.099 35.522 4.947

40 0.098 0.503 0.756 1.228 31.032 11.917

50 0.117 0.514 0.718 1.359 27.649 23.370

60 0.160 0.549 0.745 1.590 23.577 39.059

70 0.161 0.521 0.717 1.850 22.204 50.050

80 0.295 0.646 0.720 2.064 20.869 58.349

Table 3.3: results for different Frequency.

As we can observe from the table, in the Cameraman image, the best frequency values are

30 and 40. However, the value 30 decreases the decompression time and has less MSE.

In Lenna, the two best values are 20 and 30, in this case the value 30 have better

compression ratio than the value 20.

Depending on the results of the two images, the best frequency is 30.

1.4. The best result:

Finally, the results from these tests, the best parameters of the BIA are as follows:

 Number of bats: 8.

 Loudness: 8.

 Frequency: 30.

2. Bat with different methods of FIC:

Now we will compare our Algorithm using the best values previously mentioned with the

different methods that were created to improve fractal image compression.

 Results and Discussion

46

2.1. Standard FIC:

Image

Encoding time (sec) Compression ratio
PSNR

(db)

FIC BIA FIC BIA FIC BIA

Method

1

Method

2
/

Method

1

Method

2
/

Method

1

Method

2
/

Lenna 600 55 29.56 1 2.66 1.388 27 21 32.540

Table 3.4: comparison between standard FIC and BIA.

The tested image is Lenna with resolution 128x128. From this comparison, we notice the

huge optimization in our algorithm in the case of the encoding time, compression ratio and the

PSNR compared to the standard fractal image compression.in different words our algorithm

has improved the standard FIC from all aspects.

2.2. Particle Swarm Optimization:

 Original image With PSO With BIA

Figure 3.6: Lenna with PSO and BIA.

Image
Compression ratio PSNR

PSO BIA PSO BIA

Lenna 1.89 1.481 34.39 33.281

Barbra 1.89 1.450 32.98 33.599

Table 3.5: comparison between PSO and BIA.

 Results and Discussion

47

In this test, we used the test images Lenna and Barbra with size 256x256. From the table

above the PSO has better Compression ratio. In the case of PSNR, the two methods has close

results.

2.3. Wolf pack algorithm:

 Original image With WPA With BIA

Figure 3.7: Peppers with WPA and BIA.

Image
Compression ratio Encoding time

WPA BIA WPA BIA

Boat 1.109 1.552 2.83 3.15

Building 1.110 1.431 1.98 2.65

Pepper 1.111 1.195 2.04 1.896

Table 3.6: comparison between WPA and BIA.

In this test, three 64x64 test images (Boat, Building, Pepper) were used. We can observe an

obvious superiority on compression ratio; however, the encoding time in WPA is a little

better.

2.4. Genetic Algorithm:

Image

Compression ratio PSNR

GA BIA GA BIA

Single

level

Two

Level
/

Single

level

Two

Level
/

Lenna 1.277 1.117 1.350 26.16 30.22 35.580

Table 3.7: comparison between GA and BIA.

 Results and Discussion

48

The image used in this test is 256x256 Lenna. The results shows that BIA is way better

than GA in both compression ratio and PSNR.

2.5. Quad-tree Decomposition:

Image

Compression

ratio
PSNR Compression time MSE

Quad-

tree
BIA Quad-tree BIA Quad-tree BIA Quad-tree BIA

Cameraman

32x32
1.532 1.279 22.715 34.284 0.423 0.458 37.625 4.4806

Lenna

32x32
1.095 1.099 22.213 35.522 0.480 0.512 61.021 4.947

Cameraman

64x64
2.212 1.458 23.472 29.291 0.983 2.868 32.261 7.529

Lenna

64x64
1.442 1.293 23.294 33.416 0.753 2.314 47.460 9.115

Table 3.8: comparison between Quad-tree Decomposition and BIA.

As we can notice from this table, the Quad-tree has the superiority in the compression time

and the compression ratio, but when it comes to the quality, the BIA surpasses the Quad-tree.

Conclusion:

In this chapter, we explained the implementation of our algorithm following it with

example pictures of our results, then we made tests in order to find the best criteria for our

algorithm, finally we compared the results with different optimization methods.

General

conclusion

.

 General Conclusion

49

General conclusion:

The amount of information increases faster than the storage capacity. Therefore, we need

to compress data during the transfer too. This field has a long life ahead of itself. New

important algorithms are born every year.

Any compression attempts to eliminate redundancy, either by a different, but reversible,

structuring that allows to restore the original (lossless compression), or by removing some of

the information considered useless or irrelevant (lossy, irreversible methods). Irreversible

methods offer a much higher compression ratio than lossless methods; Of course, sometimes

it is out of the question to lose the information. One of the most known lossy methods is the

fractal image compression, a method that uses self-similarity to eliminate redundancy on the

image.

We have proposed a new approach for improving the fractal image compression by

combining it with a metaheuristic known as bat inspired algorithm (BIA).

Our proposed approach is divided into many steps. First, the encoding process starts with

decomposing the image into domain blocks. The next step is to use the Huffman encoding to

store the data pixels. In the decompression process the image’s data will be restored using

Huffman decoding, and then the image will be reconstructed using these data. The last step is

to calculate the standard quality measurements (PSNR and MSE) as well as the compression

ratio.

Compared with other optimization metaheuristics, our algorithm offers better results in

many aspects, mainly encoding and decoding time, size and quality.

Perspectives:

Below are some perspectives that can be drawn out of our contribution:

 Attempting to test our approach with a large number of documents.

 Increase the compression ratio; reduce the encoding and decoding time of our

approach.

 Combining our proposed approach with other optimization metaheuristics.

 Apply our method on colored images.

References

50

References

1. Wolfram, Stephen. A New Kind of Science. Wolfram Media, 2002. p. 1069.

2. Mahmud, Salauddin. An Improved Data Compression Method for General Data. March 2012,

International Journal of Scientific & Engineering Research, Vol. 3, p. 1.

3. Wei-Yi.An Introduction to Image Compression. Taipei : s.n., p. 1.

4. A, Subramanya. Image Compression Technique. Feb-March 2001, Potentials IEEE, Vol. 20, pp.

19-23.

5. Hannah, David Jeff Jackson & Sidney Joel. Comparative Analysis of image

CompressionTechniques. 7 –9 March 1993. pp. 513-517.

6. SCZ - Simple Compression Utilities and Library. scz-compress.sourceforge.net. [Online]

November 26, 2008.

7. Aguilera, Paula. Comparison of different image compression formats. p. 3.

8. Rothlauf, F. Design of Modern Heuristics. Springer-Verlag Berlin Heidelberg : s.n., 2011.

9. Moslem Shahsavar, Amir Abbas Najafi,Seyed Taghi Akhavan Niaki.Mathematical Problems in

Engineering. Vol. 2011.

10. R.J. Moraga, G.W. DePuy. Metaheuristics: A Solution Methodology for Optimization

Problems. A.B. Badiru. G.E. Whitehouse Handbook of Industrial and Optimization Problems,

2006.

12. Blum, Christian. Antcolony optimization: Introduction and recent trends. Barcelona, Spain,

October 11, 2005, Universitat Politècnica de Catalunya, p. 1.

13. D. Henderson, S.H. Jacobson, and A.W. Johnson. The theory and practice of simulated

annealing. F. Glover and G.A. Kochenberger. Boston : Kluwer Academic, 2003. pp. 287–320.

14. R.Menassel, B.Nini, T.Mekhaznia, Wolf Pack algorithm for a fractal image compression,

MedPRAI-2016, Tebessa, Algeria, November 22nd-23rd 2016.

15. Veena.K, Bhuvaneswari.P, Various Techniques of Fractal Image Compression - A Review,

International Journal Of Engineering And Computer Science ISSN: 2319-7242. Volume 4 Issue

3 March 2015, Page No. 10984-10987

16. Jacquin AE. Image Coding Based on a Fractal Theory of Iterated Contractive Image

Transformations. IEEE Trans Image Process. 1992. P :18–30.

11. Ólafsson, S.Nelson and Henderson, Metaheuristics: Handbook on Simulation, Handbooks in

Operations Research and Management Science VII. 2006. pp. 633-654.

51

17. Gaganpreet Kaur, Manjinder Kaur, Fractal Image Compression using Soft Computing,

International Journal of Computer Trends and Technology (IJCTT) - volume4Issue4 –April

2013.

18. Miroslav Galabov, Fractal Image Compression, International Conference on Computer

Systems and Technologies - CompSysTech’2003.

19. Veenadevi .S. V and A.G. Ananth. Fractal image compression using Quad-tree decomposition

and Huffman coding, signal and image Processing: an international journal (SIPIJ) vol.3, no. 2,

April 2012.

20. Suman K. Mitra, C. A. Murthy, and Malay K. Kundu. Technique for Fractal Image

Compression Using Genetic Agorithm. IEEE Transactions On Image Processing, VOL. 7,

NO.4, APRIL 1998.

21. Y. Chakrapani and K. Soundararajan. Implementation of fractal Image compression employing

particle swarm optimization. World journal of modeling simulation, vol.6, 2010, no.1.pp 40-46

22. D. Karaboga, B. Basturk. A powerful and efficient algorithm for numerical function

optimization: artificial bee colony (ABC) algorithm, Journal of Global Optimization, Vol. 39,

2007, pp. 459- 471

23. R. Sudhakar, M.R. Image compression using coding of wavelet Coefficients- a survey,

ICGST_GCCIP Journal, vol.5, no.6 pp 25- 38, June 2005.

24. Xin-She Yang. A New Metaheuristic Bat-Inspired Algorithm (2010).

	03.pdf
	02.pdf
	01.pdf
	01-page de garde.pdf
	02-Abstract titre.pdf
	03-Abstract.pdf
	04-Table of contents titre.pdf

	05-Table of contents 2 DONE.pdf
	06-Acknolegement.pdf
	07-Dedication-1.pdf

	08-List of figures titre.pdf
	09-List of figures.pdf
	10-List of equations titre.pdf
	11-list of equations.pdf
	12List of Tables titre.pdf
	13-List of tables.pdf
	14-List of abbreviations titre.pdf
	15-List of Abbreviations DONE.pdf
	16-General introduction titre.pdf
	17- General Intro.pdf
	18-titre chapter1.pdf
	19-Chapter 1.pdf
	20-Chapter 2 titre.pdf
	21-Chapter 2 DONE.pdf
	22-Chapter 3 titre.pdf

	22Chapter 3 DONE (2).pdf
	23-General conclusion titre.pdf
	24-Conc General.pdf
	25-References titre.pdf
	26-References DONE (1).pdf

