
DEMOCRATIC AND POPULAR REPUBLIC OF ALGERIA 

UNIVERSITY OF CHIKH LARBI TEBESSI –TEBESSA 

FACULTY OF EXACT SCIENCEES AND SCIENCES OF 

NATURE AND LIFE 

 
 
 

 

                    

 

MASTER THESIS -LMD-  

Branch: Systems and multimedia 
 

 
 
 
 
 
 

 

 
 
 
 

Presented by: 

Idriss GABA 

Khalil TITI 

Advisor 
MR. Rafik MENASSEL

 
 
 

 

 

 

 

 

                                  Jury members: 

                                    President: DR. Chawki DJEDDI 

                                     Examiner: MR. Lakhdar LAIMECHE 

   
 

 
 
 
 
 
 
                                                                May 2017 
 
 
                                                                        MAY 2017 

                 Fractal image compression with bat inspired algorithm 



 
 
 
 
 

         
 
 
 

 
Abstract 

 
 
 
 

. 
 
 
 
 
 
 

 



I 
 

Abstract 

 

The redundancy found in the uncompressed images can be reduced by image compression so 

that we can store or transmit images in an economic way. There are many techniques being used 

for this purpose but the digital media is growing fast, therefore it requires more extensive 

research. 

Compression is used to reduce data size which may allow better storage and transfer. Actual 

trends of compression techniques use fractal theory algorithms, which appear to be powerful 

tools to improve image quality. 

On the other hand, heuristics algorithms represent a set of approaches that are used to solve 

hard optimization tasks with rational resources consumption. They are characterized with their 

fast convergence and reduction of research complexity. 

In this paper, we try to combine for the first time a bio-inspired heuristic called “Bat Inspired 

Algorithm” with fractal image compression.  

A comparison is made between our proposed approach and different existing methods i.e. FIC 

with quadtree decomposition, FIC with WPA…etc. Results show improvements in our algorithm 

from different aspects (encoding time, CR, PSNR, MSE). 

Keywords: Image Compression, Metaheuristics, Fractal, Bat inspired algorithm. 
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Résumé 

 

La redondance trouvée dans les images non compressées peut être réduite par compression 

d'image afin que nous puissions stocker ou transmettre des images d'une manière économique. Il 

existe de nombreuses techniques à cet effet, mais les médias numériques augmentent rapidement, 

donc il faut plus de recherches dans ce domaine. 

La compression est utilisée pour réduire la taille des données qui peut permettre un meilleur 

stockage et transfert. Les tendances des méthodes de compression actuelles sont celles des 

algorithmes de la théorie fractale, qui apparaissent comme un outil puissant pour améliorer la 

qualité d'image. 

D'autre part, les heuristiques représentent un ensemble d'approches utilisées pour résoudre des 

tâches d'optimisation difficiles avec une consommation rationnelle des ressources. Ils se 

caractérisent par leur convergence rapide et leur réduction de la complexité de la recherche. 

Dans cette étude, nous essayons de combiner pour la première fois une heuristique bio-

inspirée appelée "Bat Inspired Algorithm" avec la compression fractale d'image. 

Une comparaison est faite entre notre approche proposée et les différentes méthodes 

existantes, telles que : décomposition Quad-tree, WPA etc. Les résultats montrent des 

améliorations dans notre algorithme dans différents aspects (temps de codage, CR, PSNR, MSE). 

Mots clés : Compression d’image, Métaheuristiques, Fractale, Bat inspired algorithm. 
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 الملخص

 

 تخزين يمكننا بحيث الصورة ضغط بواسطة المضغوطة غير الصور في الموجود التكرار تقليل يمكن

 الإعلام وسائل ولكن الغرض لهذا المستخدمة التقنيات من العديد هناك. اقتصادية بطريقة نقلها أو الصور

 .أوسعذات نطاق  بحثا تطلبت فإنها وبالتالي بسرعة، نموت الرقمية

تتجه حاليا نحو  الضغط تقنيات.أفضلبتخزين ونقل  تسمح قد التي البيانات حجم لتقليل ضغطال يستخدم

 .الصورة جودة لتحسين فعالة أداة أنها يبدو والتي كسورية،ال نظريةال خوارزميات ماستخدا

التحسين  مهام حل في تستخدم التي النهج من مجموعة تمثل الاستدلال خوارزميات أخرى، ناحية من

 .وثالبح لصعوبة هاوتقليل السريع بتقاربها تتميز وهذه الخوارزميات. لمواردمعقول ل استهلاك مع الصعبة

 bat" يسمىالبيولوجيا  مستوحى من استدلالبين  مرة لأول، والجمع نحاولس ،المشروع اهذ في

inspired algorithm "لصورةالكسوري ل ضغط مع. 

 FIC with quadtree decomposition, FIC" مثل مختلفة، وأساليب المقترح نهجنا بين مقارنة أجريت وقد

with WPA"  ...الترميز، وقت) مختلفة جوانب من خوارزميتنا في حسيناتت النتائج تظهر. الخ CR، 

PSNR، MSE.) 

 bat inspired algorithmضغط الصور، الاستدلال، كسورية،  الكلمات المفتاحية:
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General Introduction: 

Due to exponentially increasing size of every type of data file, despite the evolving nature 

of storage units, it is still never enough to save all the needed files. Therefore, compression 

exists to remedy this problem and allow for higher number of files to be stored. 

Some types of files are more demanding in terms of storage space than others, primarily 

multimedia files. One of the most important types of media files that are used in almost every 

aspect is images. 

The volume of images poses significant problems in terms of storage and transmission 

over networks with limited speeds. The compression of these data becomes unavoidable. 

Existing compression formats have shown their limitations on images with details such as text 

images and background areas.  

In order to avoid this problem, researchers continue to develop new methods to compress 

images hoping that someday they will achieve a perfect compression technique that 

significantly saves storage space, and does not degrade the quality. 

One of the most known compression techniques is the fractal image compression (FIC), 

this technique was introduced in 1897 by Hutson and Barnsley (reference). FIC is based on 

fractals (self-similarity parts) in order to compress the images. However, this technique’s 

main issue is that it takes too much time on the encoding process. 

In recent years, researchers found new techniques based on a combination between the 

fractal image compression and some optimization metaheuristics in order to reduce the 

encoding time and get better size and quality for images. 

In this study, we are interested in the optimization metaheuristics on fractal image 

compression, by proposing a new approach that combines the bat inspired algorithm with the 

fractal image compression so as to make it faster to encode and get better results in both size 

and quality.   

This document is organized as follow:   

The first chapter is divided into two essential parts. The first part presents the prerequisites 

for understanding the context of image compression. It presents the methods of compression 

of the images of the two families: Lossless (without loss) and Lossy (with loss). The second 

part focuses on the optimization problems and their solutions and defines metaheuristics with 

different examples for them.  



 

In the second chapter, we will discuss the fractal image compression in details, then we 

will indicate the different metaheuristics applied on FIC, and we will site their improvements. 

Next, we will present the Bat inspired algorithm and explain the behavior of bats and the 

technique they use to detect obstacles and preys. Finally, we will discuss our proposed 

approach, which is a combination between this optimization metaheuristic and the fractal 

image compression.  

In the third chapter, we will explain our proposed approach for the objective of improving 

the fractal image compression in many aspects. To do this, we will first indicate our work 

environment, and then we will explain the implementation of our algorithm in details. After 

that, we will choose the best parameters to use in our algorithm by comparing different results 

using different values.  

Finally, a comparison will be made between our algorithm and the different methods. 

We will conclude this manuscript by presenting the potential perspectives of our approach. 
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Chapter: 1   
State of the art 
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Introduction: 

Because of the fast growth of the information age, the necessity for mass storage and fast 

communication links grows. Storing images in less memory leads to a direct reduction in 

storage cost and faster data transmissions. These facts explain the hard work of researchers on 

new image compression algorithms. 

Images are stored on computers as collections of bits, pixels or points form the picture 

elements. Most of these data contain redundancy that can be removed. However, compression 

can be done in a way that the human eye does not detect a degradation on the image. 

Part I: Compression 

1. Data compression: 

1.1. Definition: 

Data Compression is a crucial process that allows the reducing data file sizes, to preserve 

storage space in all electronic devices. It involves encoding data in a smaller bit representation 

than the original. The result of compression can be either lossy, where there is a loss of 

information, or lossless where all data is preserved.  

1.2. Brief history:  

The idea of data compression began about 200 years ago. Represented as Morse code, 

invented in 1838 for use in telegraphy, which is based on using shorter code words for letters 

such as "e" and "t" that are more common in English. Modern work on data compression 

began in the late 1940s with the development of information theory. In 1949, Claude 

Shannon and Robert Fano devised a systematic way to assign code words based on 

probabilities of blocks. An optimal method for doing this was then found by David 

Huffman in 1951. Early implementations were typically done in hardware, with specific 

choices of code words being made as compromises between compression and error 

correction. In the mid-1970s, the idea emerged of dynamically updating code words for 

Huffman encoding, based on the actual data encountered. And in the late 1970s, with online 

storage of text files becoming common, software compression programs began to be 

developed, almost all based on adaptive Huffman coding. In 1977, Abraham 

https://www.wolframscience.com/nksonline/index/names/search.cgi?SearchIndex=Shannon%2C%20Claude%20E.
https://www.wolframscience.com/nksonline/index/names/search.cgi?SearchIndex=Shannon%2C%20Claude%20E.
https://www.wolframscience.com/nksonline/index/names/search.cgi?SearchIndex=Fano%2C%20Robert%20M.
https://www.wolframscience.com/nksonline/index/names/search.cgi?SearchIndex=Huffman%2C%20David%20A.
https://www.wolframscience.com/nksonline/index/names/search.cgi?SearchIndex=Huffman%2C%20David%20A.
https://www.wolframscience.com/nksonline/index/names/search.cgi?SearchIndex=Lempel%2C%20Abraham
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Lempel and Jacob Ziv suggested the basic idea of pointer-based encoding. In the mid-1980s, 

following work by Terry Welch, the so-called LZW algorithm rapidly became the method of 

choice for most general-purpose compression systems. It was used in programs such as 

PKZIP, as well as in hardware devices such as modems. In the late 1980s, digital images 

became more common, and standards for compressing them emerged. In the early 1990s, 

lossy compression methods also began to be widely used. Current image compression 

1.3. Types:  

1.3.1. Lossless data compression: 

1.3.2. Lossy data compression: 

Another type of compression, called lossy data compression is possible if some loss of 

reliability is acceptable. Lossy compression reduces a file by permanently eliminating certain 

information, especially redundant information. When the file is uncompressed, only a part of 

the original information is still there (although the user may not notice it). Lossy compression 

is generally used for video and sound, where most users will not detect a certain amount of 

information loss. Generally, a lossy data compression will be guided by research on how 

people recognize the data in question. For example, the human eye is more sensitive to subtle 

variations in luminance than it is to difference in color. JPEG image compression works in 

standards include GIF (LZW); JPEG (lossy discrete cosine transform, then Huffman or 

arithmetic coding); BMP (run-length encoding, etc.); TIFF (FAX, JPEG, GIF, etc.). Typical 

compression ratios currently achieved for text are around 3:1, for line diagrams and text 

images around 3:1, and for photographic images around 2:1 lossless, and 20:1 lossy [1]. 

With lossless compression, every single bit of data that was originally in the file 

remains after the file is uncompressed. All of the information are completely restored. This is 

generally the technique of choice for text or spreadsheet files, where losing words or financial 

data could pose a problem. The Graphics Interchange File (GIF) is an image format used on 

the Web that provides lossless compression. Lossless compression algorithms usually exploit 

statistical redundancy in such a way as to represent the sender's data more concisely without 

error. Lossless compression is possible because most real-world data has statistical 

redundancy [2] . 

https://www.wolframscience.com/nksonline/index/names/search.cgi?SearchIndex=Lempel%2C%20Abraham
https://www.wolframscience.com/nksonline/index/names/search.cgi?SearchIndex=Ziv%2C%20Jacob
https://www.wolframscience.com/nksonline/index/names/search.cgi?SearchIndex=Welch%2C%20Terry%20A.
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1.4. Compression formats:         

There are as many types of data compression as there are types of files. 

In audio files, there is MP3, M4A, and AMR... etc. 

In video file compression there is MPEG, MP4, 3GP, AVI... etc. 

In addition, image compression types include JPEG, GIF, PNG, and TIFF... etc. Which will 

be the focus of our research. 

2. Image Compression: 

2.1. Definition:  

We can define image compressing as an application of data compression that encodes the 

original image with fewer bits, in other words image compression reduces the amount of 

information necessary for a visual representation close to the original image. 

part by "rounding off" some of this less-important information. Lossy data compression 

provides a way to obtain the best reliability for a given amount of compression. Lossy image 

compression is used in digital cameras, to increase storage capacities with minimum ruin of 

picture quality [2]. 

The ideal goal of this application is to reduce a graphics file size without degrading the 

quality to a mediocre level. Not only does this process allow a higher number of images to be 

stored in a given memory space, it also minimizes the amount of time needed to transfer 

images throughout the WEB [3]. 
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2.2. Image compression Methods:  

2.2.1. Methods for Lossy compression: 

1. Color space: It reduces the color space to the most common colors in the image. 

2. Chroma subsampling: This takes advantage of the fact that the human eye 

4. Fractal Compression: Fractal Image Compression technique identify possible 

self-similarity within the image and used to reduce the amount of data required to reproduce 

the image. Traditionally these methods have been time consuming, but some latest methods 

 

Figure 1.1 Model for compression system [2].  

The selected colors are specified in the color palette in the header of the compressed image. 

Each pixel just references the index of a color in the color palette [4]. 

perceives spatial changes of brightness more sharply than those of color, by averaging or 

dropping some of the chrominance information in the image [4].  

3. Transform coding: This is the most commonly used method. In particular, a 

Fourier-related transform such as the Discrete Cosine Transform (DCT) is widely used. The 

more recently developed wavelet transform is also used extensively, followed by quantization 

and entropy coding [5]. 

promise to speed up the process [5]. 
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2.2.2. Methods for Lossless compression: 

1. Run length encoding: (RLE) is a very simple form of data compression in which 

runs of data (that is, sequences in which the same data value occurs in many consecutive data 

elements) are stored as a single data value and count, rather than as the original run. This is 

most useful on data that contains many such runs: for example, simple graphic images such as 

2. Huffman Encoding: an algorithm for the lossless compression of files based on 

the frequency of occurrence of a symbol in the file that is being compressed. The Huffman 

algorithm is based on statistical coding, which means that the probability of a symbol has a 

direct bearing on the length of its representation. The more probable the occurrence of a 

symbol is the shorter will be its bit-size representation. In any file, certain characters are used 

more than others. Using binary representation, the number of bits required to represent each 

character depends upon the number of characters that have to be represented. Huffman 

compression is a variable-length coding system that assigns smaller codes for more frequently 

used characters and larger codes for less frequently used characters in order to reduce the size 

4. SCZ CODING: is a simple set of compression routines for compressing and 

decompressing arbitrary data. The initial set of routines implement new lossless compression 

algorithms with perfect decompression. The library is called SCZ, for simple compression 

format. SCZ is intended as subroutines for calling within your own applications without legal 

icons, line drawings, and animations. It is not useful with files that do not have many runs as 

it could greatly increase the file size [5].    

of files being compressed and transferred [5].   

3. LZW Compression:  is named after its developers, A. Lempel and J. Ziv, with 

later modifications by Terry A. Welch. It is the foremost technique for general-purpose data 

compression due to its simplicity and versatility. Typically, you can expect LZW to compress 

text, executable code, and similar data files to about one-half their original size. LZW also 

performs well when presented with extremely redundant data files, such as tabulated numbers, 

computer source code, and acquired signals. Compression ratios of 5:1 are common for these 

cases. LZW is the basis of several personal computer utilities that claim to "double the 

capacity of your hard drive" [4].  
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2.3. Different image formats:  

 

As we can conclude from the chart above each type of image format has its strengths and 

weaknesses, which makes them individually advantageous or disadvantageous depending on 

the required purpose. 

Part II: Optimization metaheuristics 

1. Optimization problems:  

An optimization problem can be defined as a finite set of variables, where the correct 

values for the variables specify the optimal solution. If the variables range over real numbers, 

or technical encumbrances. It was developed because the standard compression routines, such 

as JPEG, GIF, etc., are fairly large, complex, and difficult to integrate-with, maintain, 

understand, have external dependencies [6].  

Table 1.1: Summary of the format [7]. 

 Optimization problems are common in many disciplines and various domains. In 

optimization problems, we have to find solutions, which are optimal or near optimal with 

respect to some goals. Usually, we are not able to solve problems in one-step, but we follow 

some process, which guides us through problem solving. Often, the solution process is 

separated into different steps, which are executed one after the other. Commonly used steps 

are recognizing and defining problems, constructing and solving models, and evaluating and 

implementing solutions [8]. 
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the problem is called continuous, and if they can only take a finite set of distinct values, the 

problem is called combinatorial. In our case, we are dealing with combinatorial optimization 

problems because the number of communities of interests is finite. 

1.1. Combinatorial optimization:  

Two classes of algorithms are available for the solution of combinatorial optimization 

problems:  

1.1.1 Exact algorithms:  

1.1.2. Approximate algorithms:  

2. Metaheuristics:  

Metaheuristics have been established as one of the most practical approach to simulation 

optimization. However, these methods are generally designed for combinatorial optimization, 

and their implementations do not always adequately account for the presence of simulation 

noise. Research in simulation optimization, on the other hand, has focused on convergent 

algorithms, giving rise to the impression of a gap between research and practice. This chapter 

surveys the use of metaheuristics for simulation optimization, focusing on work bridging the 

current gap between the practical use of such methods and research, and points out some 

promising directions for research in this area. The main emphasis is on two issues: accounting 

The combinatorial optimization involves problems in which their set of feasible solutions 

is discrete or can be reduced to a discrete one, and the goal is to find the best possible 

solution. In areas such as routing, task allocation, scheduling, and so forth, most of the 

problems are modelled in the form of combinatorial optimization problems [9]. 

Are guaranteed to find the optimal solution and to prove its optimality for every finite 

size instance of a combinatorial optimization problem within an instance dependent run time 

[10]. 

Often also called heuristic methods or simply heuristics, seek to obtain good, that is, 

near-optimal solutions at relatively low computational cost without being able to guarantee 

the optimality of solutions [10]. 
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2.1. Definition:  

2.2. Examples of metaheuristic algorithms: 

2.2.1. Genetic algorithms:  

This section looks closer at one of the popular metaheuristics for simulation 

optimization, namely genetic algorithm. As an approach to global optimization, genetic 

for simulation noise in the implementation of metaheuristics, and convergence analysis of 

metaheuristics that is both rigorous and of practical value [11]. 

 

Figure 1.2: Optimization Types and solutions [10]. 

A metaheuristic is a set of algorithmic concepts that can be used to define heuristic 

methods applicable to a wide set of different problems. It can be seen as a general-purpose 

heuristic method toward promising regions of the search space containing high-quality 

solutions [10]. 

 A metaheuristic is a general algorithmic framework, which can be applied to different 

optimization problems with relatively few modifications to make them adapted to a specific 

problem [10]. 
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2.2.2. The tabu-search method:  

algorithms (GA) have been found to be applicable to optimization problems that are 

intractable for exact solutions by conventional methods (Holland 1975, Goldberg 1989). It is 

a set-based search algorithm, where at each iteration it simultaneously generates a number of 

solutions. In each iteration, a subset of the current set of solutions is selected based on their 

performance and these solutions are combined into new solutions. The operators used to 

create the new solutions are survival, where a solution is carried to the next iteration without 

change, crossover, where the properties of two solutions are combined into one, and mutation, 

where a solution is modified slightly. The same process is then repeated with the new set of 

solutions. The crossover and mutation operators depend on the representation of the solution, 

but not on the evaluation of its performance. They are thus the same even though the 

performance is estimated using simulation. The selection of solutions, however, does depend 

on the performance. The general principle is that high performing solutions (which in genetic 

algorithms are referred to as fit individuals) should have a better change of both surviving and 

being allowed to create new solutions through crossover [11]. 

Tabu search was introduced by Glover (1989, 1990) to solve combinatorial optimization 

problems and it has been used effectively for simulation optimization, most notably by the 

OptQuest simulation optimization software (April et al. 2003). It is a solution-to-solution 

method and the main idea is to make certain moves or solutions tabu, that is they cannot be 

visited as long as they are on what is called the tabu list. The tabu list Lk is dynamic and after 

each move, the latest solution θk, or the move that resulted in this solution, is added to the list 

and the oldest solution or move is removed from the list. Another defining characteristic of 

tabu search is that the search always selects the best non-tabu solution from the neighborhood, 

even if it is worse than the current solution. This allows the search to escape local optima, and 

the tabu list ensures that the search does not revert back. Tabu search numerous other 

elements, such as long-term memory that restarts the search, with a new tabu list, at 

previously found high quality solutions, and a comprehensive treatment of this methodology 

can be found in Glover and Laguna (1997) [11]. 
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2.2.3. The ant colony optimization:  

2.2.4. The Nested Partition Method: 

2.2.5. Simulated Annealing:  

SA is so named because of its analogy to the process of physical annealing with solids, 

in which a crystalline solid is heated and then cooled slowly until it reaches its most regular 

crystal lattice configuration (i.e., its minimum state energy). When the cooling schedule is 

sufficiently slow, the resulting structure is free of crystal defects. 

SA establishes a connection between this thermodynamic process and the search for 

heuristic solutions for optimization problems. The algorithm starts from a heuristic solution 

and at each iteration tries to improve its value. Improving solutions are always accepted, 

Ant colony optimization is a technique for optimization that was introduced in the early 

1990’s. The inspiring source of ant colony optimization is the foraging behavior of real ant 

colonies. This behavior is exploited in artificial ant colonies for the search of approximate 

solutions to discrete optimization problems, to continuous optimization problems, and to 

important problems in telecommunications, such as routing and load balancing. First, we deal 

with the biological inspiration of ant colony optimization algorithms. We show how this 

biological inspiration can be transferred into an algorithm for discrete optimization. Then, we 

outline ant colony optimization in more general terms in the context of discrete optimization, 

and present some of the nowadays best performing ant colony optimization variants. After 

summarizing some important theoretical results, we demonstrate how ant colony optimization 

can be applied to continuous optimization problems [12]. 

Introduced by Shi and Ólafsson (2000a), the nested partition method (NP) is another 

metaheuristic for combinatorial optimization that is readily adapted to simulation optimization 

problems (Shi and Ólafsson 2000b). The key idea behind this method lies in systematically 

partitioning the feasible region into subregions, evaluating the potential of each region, and 

then focusing the computational effort to the most promising region. This process is carried 

out iteratively with each partition nested within the last. The computational effectiveness of 

the NP method relies heavily on the partitioning, which, if carried out in a manner such that 

good solutions are clustered together, can reach a near optimal solution very quickly [11]. 
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Conclusion of the second part:  

In the second part, we presented the optimization problems and sited its solutions, then we 

went into details in metaheuristics and their methods. 

Conclusion: 

As of yet there are still no ideal image compression techniques that are immune to the 

disadvantages of the previously mentioned formats, also there are many metaheuristics that 

can be used to improve the compression technics. In the second chapter, we try to combine 

metaheuristics with a standard image compression algorithm in order to perform it and get 

better results.   

 

 

 

 

 

 

 

 

 

 

while non-improving solutions are accepted only under given conditions. The probability of 

accepting non-improving moves is indeed proportional to a parameter, defined temperature in 

SA literature, which topically decreases during the execution of the approach. The key feature 

is that SA provides a means to escape from poor local optima, by allowing hill-climbing 

moves. As the temperature decreases, tending toward zero, the worsening moves are accepted 

with less frequency, and the solution tends to a (local or possibly global) optimum [13]. 
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Introduction: 

FIC is a successful technique of lossy image compression, however this method has its flaws, 

mainly the encoding time, and therefore researchers try to optimize it by combining it with 

optimization metaheuristics. 

In this chapter, we will discuss fractal image compression in general and we will indicate 

the different optimization methods that were created to improve it, and finally we will describe 

our proposed approach in details. 

Part I: Fractal image compression and Bat Algorithm 

1. Fractal image compression:  

1.1. Definition: 

FIC is based on fractals (self-similar parts), which are used in order to compress image. 

Fractal algorithms convert these parts (referred as fractals) or geometric shapes into 

mathematical information, and they called as ‘fractal codes’ which are later used to reconstruct 

an image.  

The following figure demonstrates an example of fractal images. 

The fractal image compression (FIC, in short) is a modern technique for lossy image 

compression; Hutson and Barnsley originally introduced it in 1987. FIC is a technique, which 

is used to encode the image in such a way that it reduces the storage space by exploring the 

self-similarities between different isolated image regions and store only the parameters of 

contract transform instead of the image pixels. This principle allows for the construction of an 

approximation of the original image by detecting the recurrence of the patterns on various 

scales, and tends to eliminate the information redundancy in the source image in order for the 

result to be accurate enough to be acceptable. The FIC is based on an Iterated function system 

f, a finite set of contractions defined on a metric space Rn by the relation [14]: 

fi: Rn→ Rn | i < N                                                      [2.1] 
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 However, an asymmetric process characterizes this technique, and it spends much more 

time in the encoding process in comparison with the decompression process. FIC consists of 

searching for the best match block, mostly on large sized images. That is why this technique is 

better suited for textures and low-resolution patterns. 

1.2. History: 

Figure 2.1: example of fractal image fern [15] 

The conservation of resolution as well as the high ratio of compression have made FIC one 

of most favorable techniques in image encoding. Its history dates back to the 90s where Jacquin 

proposed the first image compression method; its idea is to divide the image onto squared 

domain blocks. The principle of compression proposed is to look for the most matched domain 

block corresponding to each range block, determine the appropriate contract transform and store 

their parameters [14]. 

 The idea was interesting but it remains limited to domestic applications due to high time 

consuming restrictions.  Since that, researchers introduced new ideas in order to reduce the huge 

encoding time; the work of Thomas and Deravi combines range blocks and by utilizing region-

growing method makes them more adaptive with image content [14]. 



                                           Proposed Approach 

 

16 

 

Various other researches were introduced new concepts to improve the search quality such 

the encoding via the Fourier transform, special image features, DCT inner product. The most 

approaches were based on matching error threshold to restrict the searching space.  

1.3. Advantages and disadvantages of fractal image compression:  

Advantages: 

- Good mathematical encoding frame. 

- Resolution-free decoding.  

- High compression ratio. 

Disadvantages:  

- Slow encoding. 

 

 Cardinal proposed a similar idea; it is based on a geometrical partition of the greyscale 

image block feature space. The experimental comparisons with previously published methods 

show a significant improvement in speed with no quality loss. Cardinal thought of employing 

the one-norm of normalized block to circumvent the disproportionate search in block matching. 

By another way, Chong and Pi presented a new adaptive search approach to reduce the 

computational complexity of fractal encoding; in order to exclude many unreserved domain 

blocks to accelerate the compression of fractal images [14].  

Recently, Lin and Wu proposed a search strategy based on image block edge property, which 

demonstrates an acceptable performance.  Furthermore, numerous research papers have been 

published during last decay; they have enhanced the quality of image without improvement in 

resources of coding process [14]. 

Fractal image compression has its merits and demerits compared to the other methods; we 

summarize them as follows [15]: 
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1.4. Iterated function system (IFS): 

Arnaud Jacquin created an enhancement to IFS by using partitioned iterated function system 

(PIFS). This function comprises metric space X, a set of sub domain Di, (I=1..n) and a group of 

contractive mappings Wi: Di            X,I=1…..n. 

Images with IFS are named affine transformations; they can be a mixture of transformations 

(translation, rotation and scaling). Wi is the affine transformation on I           I2 

𝑤1(𝑋) = 𝑤1 (
𝑥
𝑦) = (

𝑎    𝑏
𝑐    𝑑

) (
𝑥
𝑦) + (

𝑒
𝑓

Where a, b, c, d, e and f are coefficient, which determines the rotation, skew and scaling. 

 

 

 

 

Michael Barnsley explained that we can represent an image as a set of mathematical 

equations, in which the basis of FIC is formed as an IFS code. However, because of its 

complexity, this idea became unwieldy [15]. 

)                                            [2.2] 

Figure2.2: Iterated function simple [16]. 
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1.5. Self-similarity property:  

 

As we can observe from the figure above, parts of the image are self-similar with well 

transformed parts, but the entire image is not self-similar. That is why the main purpose of FIC 

is to eliminate the redundancy of these self-similar parts. 

1.6. Working Approach:  

The resulting image will also be partitioned to non-overlapping blocks di with the same size 

of ri which are called domain blocks. After that each changed domain block T (Di,j) will be 

compared to each range block Rk,l, in order to find the most similar domain block to range 

block.  

The self-similarity found in fractals does not exist in a typical image. Because normal images 

contain a different kind of self-similarity. The Lenna figure shows blocks that are similar at 

different scales. For example, a part of her shoulder overlaps a smaller block and they look 

almost identical [17]. 

Figure 2.3: self-similarity in Lenna image [17]. 

Suppose that we have a 128 x 128 image where each pixel is represented between 1 to 256 

levels of grey. The image will be partitioned to non-overlapping blocks ri of size s*s called 

range blocks, then the image is reduced to 64 x 64 by averaging (down sampling and low-pass-

filtering) [18].  
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Finally, Fractal decoding methods consist of the reconstruction of the range blocks from the 

most similar domain block by using the transformations defined in the Fractal Code Book. 

 

 

 

 

 

 

Figure 2.4: Partition of Range and Domain blocks [18] 
Following that, the transformed domain block that is found to be the most similar to the 

range block, is allocated to the same range block, i.e. the position of the domain block and the 

coefficient of the transformation that was applied to the domain block, which are saved into a 

file labeling all the transformation. This file called the Fractal Code Book [18]. 

 T (α,t0,(i,j))best           Rk,l                                                           [2.3] 
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The following algorithm explains the fractal image compression: 

Step 1: Read the binary image 

Step 2: Convert it into gray level image 

Step 3: Divide the image into small blocks without overlapping  

Called As range blocks with S*S size. 

Step 4: Introduce large square blocks, with overlapping called as  

Domain blocks with 2S * 2S size. 

Step 5: for each range block find the matching domain block  

Which closely resembles range block with respect to  

Some metric. 

Step 6: Write out compressed data in form of local IFS code 

Step 7: Apply data compressed algorithm to obtain a compressed  

IFS code. 

 

1.7. Fractal Image Compression Techniques:  

1.7.1. quad-tree decomposition: 

It is one of the partition-based methods. It divides an image into variable size range block. 

In this type of partition, a square image is split into square blocks of equal sizes, and then tests 

each block to check whether each block meets some criteria of homogeneity. If a block meets 

the criteria it is not divided any further, if the block does not meet the criteria, then the block is 

splited into further four blocks and again test is applied to those blocks [19]. This process is 

repeated iteratively until each block meets the criteria resulting in many different sizes of 

blocks. It is represented in a tree like structure, where each node will have four sub nodes. 

Adjustments of Quad-tree size is done by using two parameters, minimum level and maximum 

level. By this method we can increase the compression ratio and reduce the bits used to 

represent an image i.e. bits per pixel (bpp).  
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1.7.2. Genetic Algorithm (GA): 

1.7.3. Particle Swarm Optimization (PSO): 

1.7.4. Artificial Bee Colony optimization (ABC): 

1.7.5. Embedded Zero tree Wavelet (EZW) coding: 

GA is an Algorithm simulating process of natural evaluation, which is applied for 

constraint functions and controlled parameters for optimization. GA is very effective in solving 

non-linear and multiple extreme problems. GA was proposed to get the matching domain block 

for each range block in FIC, which uses the PIFS [20]. Without needing or using an extensive 

search mechanism, GA tries to locate close optimum solutions. 

Eberhart and Kennedy [21] have created the PSO technique that is used for computation. 

PSO is a general-purpose optimization algorithm, which is also used for the concept of fitness. 

PSO based on the analogy of the group of birds. It gives mechanism that individuals in the 

group communicate and exchange information, which is similar to insect and human being 

behavior.  PSO is a low-cost algorithm and can be employed in a small number of lines of code 

because it only needs basic mathematical operations whereas a full FIC search can find the 

exact best domain block for each corresponding range block. It is very time consuming, 

however. 

An iteration-based technique that was broadly defined by Dervis Karaboga in 2005, ABC 

is an algorithm that bases itself on the behavior of honeybees. It is an optimization tool, which 

provides a population based search procedure where each individual called food positions are 

altered by artificial bees with time aiming to find out the food source with large nectar amount. 

ABC consists of three types of bees (a) employed bee, (b) onlooker bee and (c) scout bee. The 

onlooker bees that are waiting in the hive receive information from the employed bees regarding 

the nectar sources that have been discovered before. Onlooker bees choose an exploitable food 

source based on the information received from the employed bees. Scout bees quest for a food 

source randomly within the environment in order to find nourishment [22].   

Shapiro introduced EZW. It is a wavelet-based technique used for compression [23]. 

EZW mainly operates on 2-D images. It provides a high compression ratio and better quality of 

a reconstructed image but yields lower PSNR. Here, the entire coefficient corresponding to the 
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same spatial location is organized in a tree-like structure. These trees have parent-child 

relationships among the co-efficient of sub-bands having spatial orientation.  

1.7.6. Wolf Pack Algorithm: 

1.8. Comparison between Techniques:  

Methods 
Improvements on fractal image 

compression 

quad-tree decomposition 

- Can increase the compression ratio. 

- Reduce the bits used to represent an 

image (bits per pixel). 

Genetic Algorithm (GA) 

- Huge reduction in searching space and 

time. 

- Achieves high PSNR. 

Particle Swarm Optimization (PSO) - Reduce the encoding time. 

Artificial Bee Colony optimization (ABC) - Reduce the Compression time. 

Embedded Zero tree Wavelet (EZW) coding - Improve the visual quality. 

Wolf Pack Algorithm(WPA) 
- Achieves high Compression Ratio. 

- Improve the Compression Time. 

As we can conclude from this table, there is still no perfect method, which improves time, 

quality and compression ratio together. Each of these method implemented has its strengths and 

weaknesses depending on their use. 

The Wolf Pack Algorithm (WPA, in short) [14], is one of this family (bio-inspired) of 

algorithms that employed in order to approximate solutions for various optimization problems. 

WPA is a population-based metaheuristic stirred by the social hunting comportment of wolves. 

It consists essentially in making wolves hunt, find the trace of prey and capture it under the 

command of a chief wolf.    

 

Table 2.1: Different improvements on FIC [15].
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2. Bat-Inspired Algorithm:  

2.1. Behavior of bats: 

Echolocation is a type of sonar used by bats not only to detect their preys’ location and how 

fast they are moving, but also to circumvent obstacles and pinpoint their resting crevices in the 

dark. Bats unleash loud sound pulses and await the echo that reflects back from their 

surroundings. The pulses they emit can have varying properties and can be linked closely to the 

hunting strategies of bats.  

2.2. Acoustics of Echolocation: 

Given that the speed of sound in the air is characteristically v = 340 m/s, the wavelength λ 

of the ultrasonic sound bursts with a continual frequency f: 

λ =
v

𝑓

For a typical frequency between 25 kHz to 150 kHz, wavelengths range between 2 to 14mm 

and are equal in order as the bats’ prey sizes.  

Bat Algorithm (BA) is a new metaheuristic technique proposed by Xin-She Yang in 2010, 

based on the echolocation performance of bats. The capability of echolocation of bats is 

fascinating as they can find their prey and distinguish different types of insects even in complete 

darkness [24].  

Being the only mammals that can truly fly, and having an advanced ability of echolocation 

makes bats intriguing animals. Scientists estimate there is roughly 996 different species of bats, 

and that accounts for up to 20% of all mammals on the planet [24].  

Although pulses remain often between 25 kHz and 150 kHz in a constant frequency, 

individual pulses only remain up to 8 to 10 ms. Bats produce between 10 and 20 ultrasonic 

sound bursts every second, each of which remain between 5 and 20 ms. However, when bats 

are hunting for their prey, and they are close by, they can speed up their pulse emission rate to 

a threshold of 200 /secs. Such a short sound burst is a testament to the fantastic ability of the 

signal processing of bats [24].  

                                                                 [2.4] 
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Bats’ echolocation can be formulated in an objective optimized function to create new 

algorithms of optimization. 

2.3. Bat Algorithm: 

As the bats select the best solutions, they generate a local solution around the selected best 

solutions. 

 

 

 

 

 

 

The pulses that bats produce can reach an impressive loudness of 110 dB, but auspiciously 

enough, these pulses remain in the ultrasonic domain. Pulse loudness can take various levels 

such as very loud when bats are hunting and low to a quiet sound when they are aiming for their 

prey. Such short pulses usually have a roaming range of few meters that depend on the 

frequency [24].  

Research indicates that bats construct a three-dimensional layout of their surroundings by 

using the time delay between their ears, the variations of echo loudness and the interval between 

echoes’ emission and detection. Bats have the ability to not only measure the distance and 

itinerary of their targets, but also their traveling speed and what kind they are [24].  

In reality, Bats use all their senses as a combination to maximize the efficient detection of 

prey and smooth navigation. However, only echolocation and its accompanying behaviors are 

treated here.  

Bats fly randomly in a search space Ri using velocity Vi at position (solution) Xi. They emit 

pulses at a fixed wavelength λ with varying frequency f and loudness A (varies from a large 

positive A0 to a minimum constant value Amin) to search for the prey [24]. 
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The following algorithm explains the behavior and movement of bats: 

Objective function f(x),   x=(x1,..., xd)T  

Initialize the bat population xi (i=1,2,...,n) and vi  

Define pulse frequency fi at xi 

Initialize pulse rates ri and the loudness Ai 

while (t <Max number of iterations)  

Generate new solutions by adjusting frequency 

and updating velocities and locations/solutions  

if (rand > ri)  

Select a solution among the best solutions 

Generate a local solution around the selected best solution  

end if  

Generate a new solution by flying randomly  

if (rand < Ai & f(xi) < f(x∗))  

Accept the new solutions  

Increase ri and reduce Ai 

end if 

Rank the bats and find the current best x∗  

end while  

Postprocess results and visualization 
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Part II: Bat Algorithm for Fractal Image Compression 

Fractal image compression is a modern technique used for lossy image compression. 

However, this technique’s main problem is that it takes a large amount of time. Moreover, the 

approaches that were suggested to reduce time negatively affect the quality. 

To remedy that, researchers have discovered a new way to improve the fractal compression 

encoding by combining fractal algorithm with other coding methods (ex: FIC with quad-tree 

decomposition, Wolf Pack Algorithm for FIC). 

Therefore, our proposed work is based on this new technique, in which a combination 

between the Bat-inspired algorithm and fractal image compression is made in order to improve 

the quality and compression time. 

The following schema demonstrates our proposed algorithm. 

 

Figure 2.5. The proposed Fractal Compression Technique. 

1. Huffman Coding: 

1.1. Huffman Encoding:  

The Huffman encoding algorithm begins with creating a list of all the symbols in a 

descending order of their occurrences; the next step is to construct a binary tree with a symbol 

at every leaf (from the bottom to the top). Each step of this procedure, two symbols with the 

smallest occurrence are selected, added to the top of the partial tree, deleted from the list and 

replaced with another symbol signifying the two original symbols [42]. After reducing the list 

to only one auxiliary symbol that represents the entire symbols, the Huffman tree is complete. 
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1.2. Huffman Decoding:  

The algorithm for decoding is simple.  

- Start at the root and read the first bit off the input (the compressed file).  

-If it is zero, follow the bottom edge of the tree;  

-if it is one, follow the top edge. Read the next bit and move another edge toward the leaves 

of the tree.  

-When the decoder arrives at a leaf, it finds there the original, uncompressed symbol, and 

the decoder emits that code.  

-The process starts again at the root with the next bit. 

2. THE PROPOSED ALGORITHM: 

Our algorithm steps are as follows: 

Step 1: Bats fly randomly on the image using loudness L and frequency F. 

Step 2: Bats compare each block to its neighbors to see if it meets some criterion of 

homogeneity depending on loudness and frequency. If they meet a criterion (color_level_block 

– color level neighbor <= frequency), they create a domain block with size L*L that has only 

one value (average of the domain block). 

Step 3: The iterations stop when bats search the entire image.  

Step 4: After decomposing the image into domain blocks, the position of bats Xi and the 

block size blksz. will be stored in a sparse S. 

Step 5: In this step, we try to find the best solution by eliminating the solution with the 

smaller block. 

The codes have to be determined by the encoder before starting the compression, the 

determination is based on the probabilities of the occurrence of symbols. The probabilities 

have to be stored on the output as side information, in order to make any Huffman decoder 

capable of decompressing data [41].  
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Step 6: Huffman encoding is used to store the data (positions, block sizes and values) in 

order to calculate the compression ratio.  

Step 7: Then, Huffman decoding is utilized to restore the image data of the compressed 

image, after which we reconstruct it. 

The following algorithm explains the workings of our approach: 

Algorithm Fractal-with-bats 

Begin 

Initialization: 

Generate bats (Number_bats = 1..N) 

Loudness L; 

Frequency F; 

While not (stopping criteria) 

For each bat  

If similarity = 1 

Create domain block; 

  Store position in vectors I,J; 

  Store block sizes in vector blksz; 

Else 

  Store position in vectors I,J; 

  Store block sizes in vector blksz; 

End-if 

End-while 

Search for best solutions; 

Store the positions and block sizes in a sparse S; 

End.  
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Conclusion: 

In this chapter, we presented fractal image compression and its algorithm, then we sited 

different optimization methods created to improve it, after which we described the optimization 

metaheuristic (the bat inspired algorithm), and finally we introduced our proposed method, its 

properties and optimizations. In the following chapter, we will exhibit our implementation and 

compare the results with other methods. 
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Introduction: 

In order to carry out this project, it is necessary to choose technologies to simplify its 

implementation. For this, after completing the conceptual study in the previous chapter, we 

will discuss the implementation part in the following. We begin by presenting the hardware 

and software environment, then, realization of our application, and finally a comparison of 

our method with other FIC methods is done. 

The criteria we used in the comparison are as follows: 

 Encoding time. 

 Decoding time. 

 MSE (Mean Squared Error) presented with this formula: 

MSE = 
1

𝑚 𝑛
 ∑  𝑚−1 

𝑖=0 ∑ [𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)]𝑛−1
𝑖=0

 PSNR (Peak Signal Noise Ratio) which is calculated by this formula: 

PSNR = 10 log10 [
2552

𝑀𝑆𝐸

CR = 
𝑈𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑧𝑒

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑆𝑖𝑧𝑒

Part I: Implementation 

1. Work environment:  

1.1. Hardware: 

 Desktop PC with the following specifications: 

AMD FX™-6100 Six-Core Processor 3.30 GHz. 

32 GB RAM. 

Windows 10 64 bit. 

 Dell laptop with the following specifications: 

Intel Core i3-3217U 1.80 GHz 

4 GB RAM. 

Windows 10 64 bit.  

 2                            [3.1] 

]                                            [3.2]

  Compression ratio : 

                                               [3.3] 
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1.2. Software: 

The code was implemented with MATLAB 2013a version 8.1. 

1.2.1. Definition: 

MATLAB (MATrix LABoratory) is a built up around vectors and matrices. MATLAB 

is fourth-generation programing language and it is one of the easiest programming language 

for writing mathematical programs. In addition, MATLAB possesses a number of toolboxes 

that are used for processing signals, processing images, optimization...Etc. 

1.2.2. Work environment: 

The following figure shows the MATLAB work environment, which contains five 

important windows. 

 

Figure 3.1: MATLAB work environment. 
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 Current Directory Contents: shows the contents of the current working folder. 

 Editor: allows editing MATLAB programs and functions. 

 Command Window: uses to type the command and shows the result of programs 

writing in the Editor. 

 Workspace: displays the variables that are defined, and what type of variable each is. 

 Command History: shows the commands that are already used.  

2. Implementation: 

2.1. Initialization: 

The first step in the creation of our algorithm is to instruct the user to input the variables 

needed. These variables are listed below: 

 Resolution of the image: the user inputs the height and the width of the image in order 

to resize it. 

 Number of bats: this variable indicates how many bats will be spread onto the image in 

every iteration (the number of bats must be a divisor to Size=width x height). 

 Loudness: this user-input variable is used to determine the size of the block that will be 

scouted by bats. 

 Frequency: it regulates the level of homogeneity between pixels in the scouted block. 

 

 

Figure 3.2: Command window. 
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2.2. Encoding: 

The encoding process goes through multiple steps beginning with the bat decomposition 

and ending with the Huffman encoding. 

Step 1: Bat decomposition: 

S = Batdcmp(Ima,Loudness,Number_bats,Frequency); %%Bat decomposition 
 

This function decomposes the image into small blocks depending on the similarity criteria, 

then it affects the results into a sparse S, This sparse contains the position of blocks and their 

sizes. 

The first step of the Bat decomposition is to initialize bats and spread them on the image. 

 Creating bats: 

Bats = create_bats(SM,SN,Number_bats); %% Create Bats and set their 

Random positions  
 

The input variables in this function are width, height and number of bats. 

function final = create_bats(m,n,number_bats) 

resultat = cell(m,n);  

final = cell(m*n/number_bats,number_bats); 

for i = 1:m 

    for j = 1:n 

        resultat{i,j} = [i,j]; 

    end 

end 

Cell =resultat(randperm(numel(resultat))) ; 

for i = 1:m*n/number_bats 

    for j = 1:number_bats 

        final{i,j} = Cell{i+((j-1)*(m*n/number_bats))}; 

    end 

end 
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In the beginning, an empty cell is created, the size of which is defined as: the number of 

rows= width * height / number of bats while the number of columns = number of bats. 

After the cell is filled with the ordered positions of the entire image’s pixels, the shuffling 

process begins. The cell is transformed into a vector, which is then shuffled using the 

randperm function. The resulting shuffled vector is transformed back into a cell.  

 Start the decomposition : 

for Iteration = 1 : (SM*SN)/Number_bats 

    for Number = 1:Number_bats 
 

In this step, we start a nested loop, the first one is the iteration loop and the second one is 

a loop to browse the bats. 

After that, bats’ positions (m,n) will be restored from the cell that was previously created. 

X = Bats{Iteration,Number}; 

m = X(1); 

n = X(2); 
 

Afterwards, a Search function is used in order to test if this position is already browsed 

or not. 

if (Search(m,n,Coordinates)==0) %% check if the pixel already 

used  
 

The input variables in this function are m, n and Coordinates, which contains the 

positions of pixels that are already used. 
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function rech = Search(m,n,Coordinates) 

rech = 0; 

[L,C] = size(Coordinates); 

for i = 1:L 

    if (m == Coordinates (i,1) && n == Coordinates ( i,2)) 

        rech = 1; 

        return 

    end 

end 
 

Next, if this position does not exist in Coordinates, the bat starts to test the similarity by 

using the compare_gray function. 

comp = compare_gray(m,n,Ima,Loudness,Frequency); %% check 

the similarity  
 

The input variables in this function are m, n, Ima (The image), Loudness, and 

Frequency. 
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function compare_den = compare_gray(m,n,ima,Loudness,Frequency) 

compare_den = 1; 

app = double(ima(m,n)); 

for i = 2:Loudness 

    V1 =ima(m:(m+i)-1,(n+i)-1); 

    V1 = V1'; 

    V = unique([V1,ima((n+i)-1,m:(m+i)-1)]); 

    for j = 1 : length(V) 

        x = double(V(j)); 

        comp = abs(app-x); 

        if (comp <=Frequency) 

            compare_den = i; 

        else 

            if(compare_den == i) 

                compare_den = i-1; 

            end 

            return 

        end 

    end 

end 
 

The first step is to start a loop depending on the loudness, starting with the minimum 

value of loudness 2, then we create a vector V1 containing the pixels that we want to compare 

with the input pixel, after that we will test if each pixel of 2x2 has any similarity with the 

input pixel. If the test is false, the function will stop and the compare_gray value will be 1. If 

the similarity test is true, compare_gray variable will be 2 and then it will test again on 3x3 

size and so on so forth until either the compare_gray value is equal to loudness or similarity 

is not found and the compare_gray value equals the last size in which a similarity is found. 
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if (comp~=1) 

for im = m:m+(comp-1) 

for jn = n:n+(comp-1) 

Coordinates =[ Coordinates; im,jn]; 

             if (im~=m || jn~=n) 

              blksz = [blksz;-2]; 

              else 

                   blksz = [blksz;comp]; 

             end 

            end 

      end 

else 

Coordinates =[ Coordinates; m,n]; 

blksz = [blksz;1]; 

end  

Following, if the result variable (comp) from the previous function equals 1 then only the 

position of the current pixel will be stored in Coordinates and the block size will also be 1, 

otherwise we store the position of the pixels that create a block, which starts from the current 

position with size comp*comp and store the block size that is equal to comp.  

After this step, the bats will have scouted the entire image and all the positions and the 

block sizes will have been stored. 

 Choose the best solution: 

The Coordinates matrix contains redundant positions, thus, in order to eliminate the 

worst solution we use the rech_repetition function.  

Coordinates= rech_repetition(Coordinates,blksz); 
 

The input variables in this function is Coordinates which contains the redundent 

positions and blksz which contains the block sizes. 
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function rechrep = rech_repetition(Coordinates,blksz) 

[L,C] = size(Coordinates); 

for i = 1:L 

    for j = 1:L 

        if (i~=j) 

            if (Coordinates(i,1) == Coordinates(j,1) && 

Coordinates(i,2) == Coordinates(j,2)) 

                if (blksz(i) < blksz(j)) 

                    Coordinates(i,1) = 0; 

                    Coordinates(i,2) = 0; 

                else 

                    Coordinates(j,1) = 0; 

                    Coordinates(j,2) = 0; 

                end 

            end 

        end 

    end 

end 

rechrep = Coordinates; 
 

As we can see, this function starts with a test, if it finds a redundant position it will 

determine the best solution by finding which of them has the bigger block size. The position 

with the worst solution will become (0, 0). 
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 Deleting the unnecessary positions 

 

I = [I;Coordinates(:,1)]; 

J = [J;Coordinates(:,2)]; 

for z = 1:length(I) 

    if(I(z)==0) 

        blksz(z)=0; 

    end 

    if(blksz(z)==-2) 

        blksz(z)=0; 

        I(z) = 0; 

        J(z) = 0; 

    end 

end 

I = nonzeros(I); 

J = nonzeros(J); 

blksz = nonzeros(blksz); 
 

This process begins with separating x, y from Coordinates matrix and affecting them to 

I, J, Then we search for the positions with a value of 0 in order to make the value of the block 

sizes of these positions 0 as well. 

Next, we locate the block sizes with the value -2 and give them a value of 0 instead. 

Finally, we use the predefined function nonzeros to delete theses values from the vectors 

(I, J, blksz).  

 Affect the data on a Sparse 

S = sparse(I,J,blksz); 
 

We created a sparse where we saved the I and J positions as well as the block sizes. 
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Figure 3.3: example of sparse variable. 

Step 2: Calculate the mean value: 

This phase consists of calculating the mean value of the block 

[i,j,blksz] = find(S); %record x and y coordinates and blocksize 

blkcount=length(i);  %Number of total blocks 

avg=zeros(blkcount,1);%record mean values 

for k=1:blkcount 

    avg(k)=mean2(Ima(i(k):i(k)+blksz(k)-1,j(k):j(k)+blksz(k)-1)); 

    %find mean value of each block 

end 

avg=uint8(avg); 
 

We extract the positions and the block sizes from the previously created sparse, and then 

we perform a loop on the image and calculate the mean value of each domain block that was 

created. 

Step 3: Huffman Encoding: 

[sp,comp,symbols,data,dict] = Huffencod(i,j,blksz,avg); 
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Huffman encoding is a predefined function that creates a tree where the bottom contains 

the most redundant values, and then becoming less redundant the more we approach the top of 

the tree. 

2.3. Decoding: 

Step 1: Huffman decoding:  

Through Huffman encoding, we retrieve data and the dictionary in order to recover the 

positions I, J, the block sizes and the mean values.  

[inew,jnew,blksznew,avgnew] = Huffdecod(comp,data,dict); 
 

Step 2: Reconstructing the Image:  

Using the positions (I, J), the block size and the mean values, we created a loop to 

reconstruct the image.  

for k=1:blkcount 

    outim(i(k):i(k)+blksz(k)-1,j(k):j(k)+blksz(k)-1)=avg(k); 

end 
 

2.4. Results: 

In order to display the performance of our program, we compress 2 standard test images: 

Lenna and Cameramen, with 256 gray levels. 

    Original image                       Bat Decomposition              Decompressed image 

                                         

 Figure 3.4: Compress Lenna with BIA. 
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    Original image                       Bat Decomposition              Decompressed image 

                                           
 

Figure 3.5: Compress Cameraman with BIA. 

The processing parameter are follows: the resolution of the image: 256*256, the number of 

bats: 256, Loudness: 4, Frequency: 70. 

Part II: Tests and results 

1. Settings of the Bat Algorithm:  

In this part, we will adjust our algorithm with different values of variables (number bats, 

Loudness, Frequency) and we will use the standard test images Cameraman and Lenna of size 

32 X 32. 

1.1. Number of bats: 

The Images has a resolution of 32x32, loudness value 3 and frequency 40. 

Image 
Number 

of bats 

Time 

compression 

Time 

decompression 

Compression 

ratio 
PSNR MSE 

Camera

man 

 

2 0.488 0.705 1.385 31.608 10.088 

4 0.459 0.707 1.366 30.934 8.563 

8 0.452 0.729 1.372 31.216 9.417 

16 0.451 0.749 1.349 30.934 8.879 

32 0.509 0.843 1.355 29.827 10.045 

64 0.472 0.919 1.365 30.412 10.405 

128 0.478 0.749 1.348 31.895 9.663 

256 0.475 0.883 1.335 30.989 8.899 
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512 0.457 0.750 1.392 29.997 9.870 

Lenna 

 

2 0.518 0.739 1.303 30.629 14.440 

4 0.548 0.727 1.315 30.083 15.612 

8 0.505 0.716 1.311 30.071 14.929 

16 0.514 0.713 1.306 29.984 15.348 

32 0.563 0.784 1.299 30.452 15.037 

64 0.562 0.779 1.298 31.228 13.887 

128 0.512 0.715 1.306 30.669 15.603 

256 0.518 0.709 1.320 30.389 16.118 

512 0.520 0.702 1.321 29.856 14.710 

Table 3.1: results for different Number of Bats. 

As we can conclude from the table above, in the Cameraman picture the best two values 

for number of bats are 4 and 8. However, 8 is better than 4 in the encoding time, compression 

ratio and PSNR. 

In the Lenna picture, the best values are 8 and 512. In this case the value 8 is better than 

512 in the compression time.  

Considering the results of this test, the Best value is 8. 

1.2. Loudness: 

We took the same images with a resolution of 32x32, 8 as a number of bats, and 40 as 

frequency. 

Image Loudness 
Time 

compression 

Time 

decompression 

Compression 

ratio 
PSNR MSE 

Cameraman 

 

2 0.453 0.720 1.267 33.788 6.531 

3 0.452 0.729 1.372 31.216 9.417 

4 0.458 0.721 1.376 33.022 7.807 

5 0.469 0.702 1.355 30.220 9.375 

6 0.438 0.727 1.359 30.119 9.027 

7 0.460 0.723 1.348 28.971 9.130 
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8 0.442 0.727 1.279 34.284 5.600 

9 0.455 0.736 1.220 30.813 6.962 

10 0.468 0.757 1.205 33.859 5.012 

11 0.472 0.755 1.187 33.548 4.362 

Lenna 

2 0.530 0.735 1.248 31.781 14.848 

3 0.505 0.716 1.311 30.071 14.929 

4 0.537 0.726 1.324 29.230 16.853 

5 0.586 0.751 1.299 30.536 14.382 

6 0.519 0.713 1.244 30.812 13.766 

7 0.516 0.715 1.223 31.290 12.190 

8 0.503 0.756 1.228 31.032 11.917 

9 0.495 0.740 1.204 32.213 9.056 

10 0.492 0.761 1.194 31.873 8.372 

11 0.488 0.737 1.192 32.050 9.695 

Table 3.2: results for different Loudness. 

From this table, in the Cameraman picture the best two values for Loudness are 2 and 8. However, 

8 is better than 2 in compression time, compression ratio, PSNR and MSE. 

In the Lenna picture the best values are 8 and 7, but in this case 8 is better than 7 in both the 

compression time and MSE. 

 Based on this test’s results, the best value is 8. 

1.3. Frequency:  

The Images are 32x32, Number bats is 8 and Loudness is 8. 

Image Frequency 
Decomposition 

time 

Time 

compression 

Time 

decompression 

Compression 

ratio 
PSNR MSE 

Cameraman 

 

20 0.119 0.490 0.714 1.118 40.341 1.526 

30 0.113 0.458 0.698 1.209 33.576 4.4806 

40 0.109 0.442 0.727 1.279 34.284 5.600 

50 0.140 0.460 0.738 1.357 29.463 11.990 
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60 0.125 0.435 0.706 1.422 26.887 15.954 

70 0.183 0.453 0.716 1.586 23.701 22.989 

80 0.187 0.467 0.702 1.722 23.769 33.415 

Lenna 

 

20 0.091 0.495 0.755 1.066 42.199 1.904 

30 0.106 0.512 0.735 1.099 35.522 4.947 

40 0.098 0.503 0.756 1.228 31.032 11.917 

50 0.117 0.514 0.718 1.359 27.649 23.370 

60 0.160 0.549 0.745 1.590 23.577 39.059 

70 0.161 0.521 0.717 1.850 22.204 50.050 

80 0.295 0.646 0.720 2.064 20.869 58.349 

Table 3.3: results for different Frequency. 

As we can observe from the table, in the Cameraman image, the best frequency values are 

30 and 40. However, the value 30 decreases the decompression time and has less MSE. 

In Lenna, the two best values are 20 and 30, in this case the value 30 have better 

compression ratio than the value 20.  

Depending on the results of the two images, the best frequency is 30. 

1.4. The best result: 

Finally, the results from these tests, the best parameters of the BIA are as follows: 

 Number of bats: 8. 

 Loudness: 8. 

 Frequency: 30. 

2. Bat with different methods of FIC:  

Now we will compare our Algorithm using the best values previously mentioned with the 

different methods that were created to improve fractal image compression. 
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2.1. Standard FIC: 

Image 

Encoding time (sec) Compression ratio 
PSNR 

(db) 

FIC BIA FIC BIA FIC BIA 

Method 

1 

Method 

2 
/ 

Method 

1 

Method 

2 
/ 

Method 

1 

Method 

2 
/ 

Lenna 600 55 29.56 1 2.66 1.388 27 21 32.540 

Table 3.4: comparison between standard FIC and BIA. 

The tested image is Lenna with resolution 128x128. From this comparison, we notice the 

huge optimization in our algorithm in the case of the encoding time, compression ratio and the 

PSNR compared to the standard fractal image compression.in different words our algorithm 

has improved the standard FIC from all aspects. 

2.2. Particle Swarm Optimization: 

    Original image                       With PSO                           With BIA 

                           
 

Figure 3.6: Lenna with PSO and BIA. 

Image 
Compression ratio PSNR 

PSO BIA PSO BIA 

Lenna 1.89 1.481 34.39 33.281 

Barbra 1.89 1.450 32.98 33.599 

Table 3.5: comparison between PSO and BIA. 
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In this test, we used the test images Lenna and Barbra with size 256x256. From the table 

above the PSO has better Compression ratio. In the case of PSNR, the two methods has close 

results.   

2.3. Wolf pack algorithm: 

    Original image                       With WPA                           With BIA 

                           
 

Figure 3.7: Peppers with WPA and BIA. 

Image 
Compression ratio Encoding time 

WPA BIA WPA BIA 

Boat 1.109 1.552 2.83 3.15 

Building 1.110 1.431 1.98 2.65 

Pepper 1.111 1.195 2.04 1.896 

Table 3.6: comparison between WPA and BIA. 

In this test, three 64x64 test images (Boat, Building, Pepper) were used. We can observe an 

obvious superiority on compression ratio; however, the encoding time in WPA is a little 

better.  

2.4. Genetic Algorithm: 

Image 

Compression ratio PSNR 

GA BIA GA BIA 

Single 

level 

Two 

Level 
/ 

Single 

level 

Two 

Level 
/ 

Lenna 1.277 1.117 1.350 26.16 30.22 35.580 

Table 3.7: comparison between GA and BIA. 
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The image used in this test is 256x256 Lenna. The results shows that BIA is way better 

than GA in both compression ratio and PSNR.  

2.5. Quad-tree Decomposition: 

Image 

Compression 

ratio 
PSNR Compression time MSE 

Quad-

tree 
BIA Quad-tree BIA Quad-tree BIA Quad-tree BIA 

Cameraman 

32x32 
1.532 1.279 22.715 34.284 0.423 0.458 37.625 4.4806 

Lenna 

32x32 
1.095 1.099 22.213 35.522 0.480 0.512 61.021 4.947 

Cameraman 

64x64 
2.212 1.458 23.472 29.291 0.983 2.868 32.261 7.529 

Lenna 

64x64 
1.442 1.293 23.294 33.416 0.753 2.314 47.460 9.115 

Table 3.8: comparison between Quad-tree Decomposition and BIA. 

As we can notice from this table, the Quad-tree has the superiority in the compression time 

and the compression ratio, but when it comes to the quality, the BIA surpasses the Quad-tree.  

Conclusion: 

In this chapter, we explained the implementation of our algorithm following it with 

example pictures of our results, then we made tests in order to find the best criteria for our 

algorithm, finally we compared the results with different optimization methods. 
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General conclusion: 

The amount of information increases faster than the storage capacity. Therefore, we need 

to compress data during the transfer too. This field has a long life ahead of itself. New 

important algorithms are born every year. 

Any compression attempts to eliminate redundancy, either by a different, but reversible, 

structuring that allows to restore the original (lossless compression), or by removing some of 

the information considered useless or irrelevant (lossy, irreversible methods). Irreversible 

methods offer a much higher compression ratio than lossless methods; Of course, sometimes 

it is out of the question to lose the information. One of the most known lossy methods is the 

fractal image compression, a method that uses self-similarity to eliminate redundancy on the 

image. 

We have proposed a new approach for improving the fractal image compression by 

combining it with a metaheuristic known as bat inspired algorithm (BIA). 

Our proposed approach is divided into many steps. First, the encoding process starts with 

decomposing the image into domain blocks. The next step is to use the Huffman encoding to 

store the data pixels. In the decompression process the image’s data will be restored using 

Huffman decoding, and then the image will be reconstructed using these data. The last step is 

to calculate the standard quality measurements (PSNR and MSE) as well as the compression 

ratio. 

Compared with other optimization metaheuristics, our algorithm offers better results in 

many aspects, mainly encoding and decoding time, size and quality. 

Perspectives: 

Below are some perspectives that can be drawn out of our contribution:  

 Attempting to test our approach with a large number of documents. 

 Increase the compression ratio; reduce the encoding and decoding time of our 

approach. 

 Combining our proposed approach with other optimization metaheuristics. 

 Apply our method on colored images. 
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