==y

Auyi - Lyl Lyl doola
Université Larbi Tébessi - Tébessa

People's Democratic Republic of Algeria
Ministry of Higher Education and Scientific Research
Larbi Tbessi University — Tebessa
Faculty of Exact Sciences,Sciences of Nature and Life
Department: Mathematics and Computer Science

End of study dissertation
For MASTER graduation
Domaine : Mathematics and Computer Science
Study : Computer Science
Option : Information Systems

Theme

&7 oES sCiENS

(ll:xg)ylﬂ

FSESNV

E=MC

alll g eybl pole g Gl polell ayls
xacTEs
e

FACUTE DES SCIENCES &
CES D LA NATUR!

Reliadidity Prediction Approack for Mully-
Agent Systems

Mrs S.Bourouguaa M(CB

Mr F.Hamidane
Mr Y. Menassel

Presented By :
Gueddouche Roumaissa

Before The Jury :

Larbi Tbessi University
MAA Larbi Tbessi University
MAA Larbi Tbessi University

Defence date: Juin 2019

President
Examiner
Supervisor

T OELA VIE



Dedications

The greatest gift that life has given me is my family, on the occasion of my graduation.
To my dear parents

No dedication can express my respect, my eternal love and my consideration for the sacrifices you
have made for my education and my well-being. I thank you for all the support and love you have
given me since my childhood and I hope that your blessing always accompanies me. May this
modest work be the fulfillment of your wishes so formulated, the fruit of your innumerable

sacrifices, although I will never discharge you enough.

They are the best guiders, I hope this work can repay them and I promise them that this is the first

step only, hoping of other accomplishments in the future inshallah.

To my friends

In memory of our sincere and deep friendship and pleasant moments we spent together. Please find

in this work the expression of my deepest respect and my most sincere affection.

GUFDOUCHF ROMATSSA



Thanks

Thanks

It is with great pleasure that we reserve these few lines as a sign of gratitude and profound
gratitude to all those who, from near or far, have contributed to the realization and the outcome of

this work.

First, we thank Allah Almighty, allowed us to carry out this work, and guided us to the path of
knowledge.

Then, we sincerely thank Mr. MENASSEL Yahia, Assistant Professor in the Mathematics and
Computer Science Department of the Faculty of Natural Sciences and Life Sciences at the
University of Tébessa, for his supervision, his assistance, his support, availability and valuable

advice.

Our warm thanks go to Mrs. BOUROUGUAA Salima, PhD and Mr. HAMIDANE Fathi,
Assistant Professor, in the Mathematics and Computer Science Department of the Faculty of
Natural Sciences and Sciences of Nature and Life at the University of Tebessa, for the honor that

they granted us by agreeing to judge our work.

Finally, we warmly thank our teachers for the quality of the teaching they have been kind enough

to give us during our studies to provide us with efficient training.

Thank you to all.

Reliability Prediction Approach for MAS i



Abstract

Abstract

The software’s are created to implement the needs of the customer in reality, and this raises the
need to measure the applicability and accuracy of the software. Software reliability engineering is
based on models and measurements that quantify the software reliability.

In our thesis, we have proposed a reliability prediction method of Multi agent systems integrating
metrics depending on the agent's behavior and MAS characteristics.

For the development of our approach we used machine learning regression algorithm that is
based on finding the correlation between the proposed metrics in order to predict the agent’s

reliability.

Keywords: SRE, Reliability, MAS, Machine Learning.

Reliability Prediction Approach for MAS i



Résumé

Résumé

Le logiciel est créé pour répondre aux besoins réels du client, ce qui impose de mesurer
Papplicabilité et la précision du logiciel. La fiabilité du logiciel est basée sur des modéles et des
mesures pour quantifie la fiabilité du logiciel.

Dans notre mémoire, nous avons proposé une approche de prévision de la fiabilité des systémes
multi-agents (SMA) intégrant des métriques dépendant du comportement de l'agent et des
caractéristiques des SMA.

Pour le développement de de notre approche, nous avons utilisé lalgorithme de régression
d’apprentissage automatique, reposant sur la recherche de la corrélation entre les métriques

proposées afin de prédire la fiabilité des agents.

Keywords: SRE, fiabilité, SMA, apprentissage automatique.

Reliability Prediction Approach for MAS i



din aaiadoald ) A5 Lgiadad L8 (sae (el () ) g o(client) Jueel] ddall clalia ) 4l zali Hull oLl &
el ol o3a A8y aaa3 Al Ll 5 23l e peal jall 4825 A8 45 g

3aania dalail) Gailiad s Jreall sle e 15laie) unliall masi o Slead) Basaie dakaill 48y 5w 48 )l Lia ) oL Sha b
.(Multi-agent Systems) s>l

sl dal e s B Gaiall G 38D alag) ) s Al o YD alaall lasiV) A sa Lieddiul iy phall y glal
e anll 483 g A8 6 gay

A8 55 pall e Dlerl) Baaxie Aalail) ¢ V) alaill comal ll 383 5 A8 65 5o Ausia rAalibe cilals

Reliability Prediction Approach for MAS v



Table of contents

Table of contents

Thanks 1
Abstract i1

Table of contents v

List of figures vii

List of tables X

List of abbreviations

General Introduction

Chapter 1. Software Reliability Engineering

Introduction

1. Software crises

2. Software Reliability

2.1. Factors affecting software Reliability

2.2.1. Fault lifecycle techniques
2.2.1.1. The bathtub curve for Software Reliability

2.2.2. Software reliability models and measurement

2.3. Basic Reliability Metrics

2.4. Software Reliability Growth Models

2.4.1. Non Homogeneous Poisson Process Model

2.4.2. Model Jelinski-Moranda

2.4.3. Goel-Okumoto Model
2.4.4. Generalized NHPP model of Goel

2.4.5. Inflected S-shaped model inflicted

2.4.6. Logistic Growth Curve Model

2.4.7. Musa-Okumoto model

O © W VW W VW VW W 0w 0w oo o »un o & W W wWw = K

2.4.8. Yamada Delayed S-Shaped Model

[y
=

3. Classification Based on Failure History

Reliability Prediction Approach for MAS v



Table of contents

3.1. TBF models:

3.2. FC Models:

3.3. FS models:

3.4. BDI models:

Conclusion

11
11
11
12
13

Chapter 2. Reliability Testing Tools: State of art

14

Introduction

1. Reliability estimation tools

14
14

1.1. CASRE - A Computer-Aided Software Reliability Estimation Tool

1.1.1. The functionalities that CASRE provides:

1.1.2. Advantages of CASRE

1.1.3. Disadvantages of CASRE

2. Reliability estimation and prediction tools

14
14
23
23
23

2.1. SOFTREL - The software reliability process simulator

2.1.1. The Major Components of the Simulator

2.1.2. SOFTREL advantages

2.1.3. SOFTREL disadvantages

2.2. MEADEP - MEAsure and DEPendability

2.2.1. MEADEP modules

2.2.3. MEADEP avantages

2.2.4. MEADEP disadvantages

2.3. SREPT - Software Reliability Estimation and Prediction Tool

2.3.1. Design and architecture of SREPT

2.3.2. SREPT advantages

2.4. SMERFS- Statistical Modeling and Estimation of Reliability Functions for Software
2.4.1. The main functionalities that SMERFS provides

2.4.2. Advantages of SMERFS

2.4.3. SMERFS Disadvantages

3. Comparison

23
24
31
31
31
32
34
34
34
34
36
36
37
43
44

44

3.1. Criterions

3.2. Comparison table

3.3. Tools ranking

Conclusion

44
46
46
47

Chapter 3. Multi Agent Systems

48

Introduction

1. Distributed Artificial Intelligence

48
48

Reliability Prediction Approach for MAS

vi



Table of contents

2. Agent

3. Multi-Agent Systems

3.1. MAS features

3.2. Classification of Multi Agent System
3.3. MAS Application

3.4. MAS Challenges

Conclusion

Chapter 4. Multi Agent System Reliability: Hypothesis & Experimentation

Introduction

1. Hypothesis

1.1. MAS reliability metrics

2. Work environment

2.1. Google Colab

2.1.1. Colab strength

2.2. Programming language: Python

2.2.1. Python strength

3. Experimentation

3.1. Dataset

3.2. Regression algorithm

3.2.1. Multiple Linear Regression

3.3. Code explanation

Conclusion

General Conclusion & Perspectives

Bibliographical References

48
49
50
50
52
53
54
55
55
55
56
57
57
57
57
57
58
58
58
58
59
65

66
67

Reliability Prediction Approach for MAS

vii



List of figures

List of figures

Figure 1.1.
Figure 1.2.
Figure 2.1.
Figure.2.2.
Figure 2.3.
Figure 2.4.
Figure 2.5.
Figure 2.6.
Figure 2.7.
Figure 2.8.
Figure 2.9.

Figure 2.10.
Figure 2.11.
Figure 2.12.
Figure 2.13.
Figure 2.14.
Figure 2.15.
Figure 2.16.
Figure 2.17.
Figure 2.18.
Figure 2.19.
Figure 2.20.
Figure 2.21.
Figure 2.22.

Bathtub curve for software reliability

Software Reliability Engineering Process Overview

CASRE architecture

15

CASRE Main Menu

18

Shows a data file

19

Example on data file with failure count

19

Shows Filters Sub Menu

20

The results of applying the running arithmetic average

20

Model Sub Menu

21

Select Data Range

21

Shows the list of models

22

Shows the select and display model results window

22

Shows the Results

22

SOFTREL execution context

24

Main menu

26

New project panel

26

Prediction general inputs panel

27

27

Tool option

28

Survey Model
Full-scale Survey Model

28

Prediction panel

29

View profiles

29

Trends panel

30

Results comparison

30

Reliability Prediction Approach for MAS

vii



List of figures

Figure 2.23. Layout of MEADEP 31
Figure 2.24. Sample Database 33
Figure 2.25. Example of Event Pie Chart 33
Figure 2.26. MTBE Line Graph 34
Figure 2.27. Architecture of SREPT 35
Figure 2.28. Black-box quantification 35
Figure 2.29. SMERFS home panel 38
Figure 2.30. Data option 38
Figure 2.31. Data addition 39
Figure 2.32. File selection 40
Figure 2.33. Data type 40
Figure 2.34. Input file format 40
Figure 2.35. Execution panel 40
Figure 2.36. Models execution 41
Figure 2.37. Model Applicability Analyses 41
Figure 2.38. Analyses report, 41
Figure 2.39. Execution Summary 42
Figure 2.40. RAW and Predicted Data Plot 42
Figure 2.41. Plot on 3D 43
Figure 3.1. The structure of an agent 49
Figure 3.2. Classification of a multi agent system based on the use of different attributes 51
Figure 3.3. MAS application summary 52
Figure 3.4. MAS challenges summary 53
Figure 4.1. Proposed approach 55
Figure 4.2. Proposed data 58
Figure 4.3. Multiple Linear Regression 53
Figure 4.4. The dataset 60
Figure 4.5. Displaying the null values 60
Figure 4.6. Data information 61
Figure 4.7. Normalized data 61
Figure 4.8. Scatter matrix correlation 62
Figure 4.9. Heatmap correlation 63
Figure 4.10. The categories values 63
Figure 4.11. Intercept and coefficient 64
Figure 4.12. Comparison of the actual and predicted data 64
Figure 4.13. Algorithm evaluation 65

Reliability Prediction Approach for MAS

viil



List of table

List of tables

Table 1.1. Factors affecting software reliability

Table 1.2. Difference between software reliability prediction and estimation models

Table 1.3. Mean Value and Intensity of Various Models

Table 1.4. Overview of Models based on Failure History

Table 2.1. Reliability tools comparison

Table 2.2. Tools ranking

11
12
46
46

Table 3.1. MAS features

50

Reliability Prediction Approach for MAS

ix



List of abbreviations

List of abbreviations

SR: Software Reliability.

SRE: Software Reliability Engineering.

SRGM: Software Reliability Growth Model.

MTTF: Mean Time To Failure.

MTTR: Mean Time To Repair.

MTBF: Mean Time Between Failure.

ROCOF: Rate of OCcurrence Of Failure.

POFOD: Probability Of Failure On Demand.

SOFTREL: SOFTware RELiability process simulator.
CASRE: Computer Aided Software Reliability Estimation tool.
MEADEP: MEAsure and DEPendability.

SREPT: Software Reliability Estimation and Prediction Tool.
SMERFS: Statistical Modeling and Estimation of Reliability Functions for Software.
MAS: Multi Agent System

DALI: Distributed artificial intelligence

ML: Machine Learning

Reliability Prediction Approach for MAS



General Introduction

General Introduction

"In nature and human imagination, anything is possible.”

John Archibald Wheeler

Introduction

Nowadays, software has appeared in all industrial sectors whether in air traffic control, nuclear
reactors, aircraft and hospital patient monitoring systems and even in our homes and the daily
routine.

Software reliability is a major attribute in software quality together with functionality, usability,
performance, serviceability, capability, installability, maintainability and documentation, it is
directly attached to software defects and failures, in an Inverse way more defect leads to less
software reliability. High software reliability has become hard to obtain especially with the huge
growth in software size and complexity, as instance the large next-generation aircraft will have
over one million source lines of software on-board; next-generation air traffic control systems will
contain between one and two million lines [50].

The Software reliability engineering attention is to develop engineering techniques to
quantitatively evaluate Software reliability. In order to forecast reliability, failure data were
integrated in reliability models like jelinsky and Moranda model, Weibull and Gamma model...;
and also, multiple metrics were used like the number of failures in a time period, and time
between failures.

Many software reliability testing tools were developed like SMERFS, CASRE, MEADEP,
SOFTREL, SREPT that were able to estimate and predict software reliability.

Problematic

Although reliability forecasting still now based on reliability models but the most of this model
are based on assumptions that are not realistic like the assumptions that faults are independent
of each other and that correction of a fault never introduces new faults. Based on the different

reliability testing tools, which their aim was to estimate or to predict reliability or both in the

Reliability Prediction Approach for MAS 1



General Introduction

same time, the tools based on both prediction and estimation have shown better results in
reliability measuring.

Because the exhaustive study in the SRGM, we tried to focus on the prediction part. Our concern,
is predicting multi-agent systems reliability, more precisely agent’s reliability because reliable
agents mean reliable MAS, taking into account the complexity of the agents' behavior.

1. On what basis can we predict agent reliability?

2. What approach can we apply?

Manuscript Organization

Our manuscript comprised of three chapters, including this general introduction ending with
general conclusion.

In the first chapter we have presented software reliability engineering defining the reliability
and the different reliability forecasting models and metrics with their classifications.

The second chapter introduces reliability test tools, describing these tools and how they
execute, and comparison of the tools based on criterions, concluding with a ranking of this tools.
The third chapter contains an initiation to the multi agent systems and the agent as an entity.
Fourth chapter defines in the first part an approach to predict the reliability of agents based on
metrics that derived from the agents behaviors, applying the regression algorithm in machine
learning to predict reliability; in the second part we have presented the coding environment and
then explain each step in the code and the obtained results.

We conclude this work by presenting perspectives in this area of research.

Reliability Prediction Approach for MAS 2



Chapter 1 Software Reliability

Chapter 1
Software Reliability Engineering

"The good thing about science is that it's true
whether or not you believe in it."”
Neil deGrasse Tyson

Introduction

The technological revolution is in her peak, with the rapid pace that software and hardware are
managed to pass in the last decades.

We are reaching the point where perfection is more and more demanded in the current and future
developments, especially on the software level because of the huge advance that hardware has
reached. That has opened the way to developing software’s with reliable performance, better
quality especially minus cost and less production time.

In this chapter, we will present some of the software crisis that had big impact, and have
mentioned the factors that jeopardize the reliability. Then we enter the software reliability

engineering that includes the reliability testing measurements and models.

1. Software crises

Due to the increased demand for computer programs in all industry areas [1], the complexity of
the programs developed has increased; the quality of the software became the main challenge
facing programmers and developers.

The world has seen many software crises like:

The THERAC 25 crisis in 1986 which is a radiotherapy system for cancer tumor treatments
caused by the inability of the system to call off a treatment in case of error diagnosis entered by
mistake and an error message improperly displayed [2].

The PATRIOT disaster On February 25, 1991 during the Golf War, an error of 0.000000095
second in precision in every 10th of a second, an enemy missile skipped the patriot defenses
leading to killing 28 innocents [3].

Telephone outage happened in 1991, after modifying three lines of code in a signaling program
containing millions of lines of code, local telephone systems in California and along the east coast

came to a halt [4].

Reliability Prediction Approach for MAS 3



Chapter 1 Software Reliability

Ariane 5, On 4 June 1996, after the Ariane 4 rocket successful launch, Ariane 5's inaugural flight
flew away, while the control software's design flaws were revealed by the faster horizontal drift
speed of the new rocket [5].

All these tragedies were the results of different causes like:

+  Maintenance costs are almost as important as its development cost.

« Passing the delivery deadline.

+ Software inefficiency.

« The poor quality of the software.

« Certain requirements were unapplied.

» The software was never delivered.

2. Software Reliability

Software is defined as a collection of computer programs, procedures, rules and data. Software
features are classified into six main characteristics and 27 sub-characteristics [6].

ISO/TEC 9126 defines this characteristic and sub-characteristic as:

« Functionality: Suitability, accuracy, interoperability, security.

+ Reliability: Maturity, fault tolerance, recoverability.

« Usability: Understandability, learnability, operability, attractiveness.

« Efficiency: Time behavior, resource utilization.

« Maintainability: Analyzability, changeability, stability, testability.

- Portability: Adaptability, installability, replaceability, coexistence.

According to ANSI, “Software Reliability is defined as the probability of failure-free software
operations for a specified of time in a specified environment”. Software reliability engineering is
based on a key characteristic which is software reliability.

IEEE defines Reliability as “The ability of a system or component to perform its required
functions under stated conditions for a specified period of time”.

Software Reliability Engineering (SRE) is so defined as the quantitative study of the operational
behavior of software systems with compliance with user requirements for reliability.

SRE was integrated like standard or current best practice of more than 50 organizations in their
projects and software reports, including AT & T, Lucent, IBM, NASA, Microsoft and many more
in Europe, Asia and the North America [7] but comparing it to the number of the software

producers it is small amount.

2.1. Factors affecting software Reliability

The software development process consists of five phases: analysis, design, coding, testing, and
operation. In each phase, there is factors can affect the software reliability and eventually
software quality [8].

Factors such as subsystem configuration, operational profile, working languages, and applications
categories, etc., must be taken into account and incorporated in the estimation of software

reliability.

Reliability Prediction Approach for MAS 4



Chapter 1 Software Reliability

In Schneberger (1997), the authors listed the main causes of software errors according to the
project managers. These reasons can be classified in the following eight main categories:

« Modification / addition / definition of a requirement.

+ Programmer or team member experience, turnover.

« Design / scope / complexity changes.

« Coding and test phase problems.

«  New technology / language / tools.

+ Management experience.

«  Upper management influence/bidding and time constrains.

« Data available for use in metrics and models.

Potential factors that can influence the reliability of each component or the application system

are listed in the following table:

Factor Factors affecting reliability
1 Inadequate test.
2 Operations errors.
3 Lack of a consistent quality assurance process.
4 Management change issues.
5 Lower quality source code.
6 Different operating conditions - high levels of use and overload.
7 Hardware failure - hard disks, network equipment, servers, power sources,
memory, CPU.
8 Interactions with external services or applications.
9 Random Events - Security Failures.
10 Problems related to the operational environment.

Table 1.1. Factors affecting software reliability [8].

2.2. Software reliability techniques

Software reliability techniques have known several times that we will try to mention [9]:

2.2.1. Fault lifecycle techniques

It’s actually can be divided into four (04) principal techniques

« Prevention of errors: avoid, by construction, a fault occurrence.

« Elimination of defects: detect, by verification and validation, the existence of faults and
eliminate them.

+ Fault tolerance: provide, by redundancy, a service comply with the specification despite
defects having occurred or occurring.

« Failure/Outage forecasting: to estimate, by evaluation, the presence of faults and
occurrences and consequences of failures.

These techniques were like defense barriers to limit the cost and time of construction all

respecting the user requirements, but fault prevention technique was not able to prove herself.

Reliability Prediction Approach for MAS 5



Chapter 1 Software Reliability

2.2.1.1. The bathtub curve for Software Reliability

In the bathtub curve we will observe the different stages of the failure rate in time:

Period A Period B Peariod C

Ve )
b L gt O
.t g

|
d
:E

Failue Eale

Time

Figure 1.1. Bathtub curve for software reliability [9].

In the last phase, software does not have an increasing failure rate, in this phase, software is
approaching obsolescence; there are no motivation for any upgrades or changes to the software.
Therefore, the failure rate will not change. In the useful-life phase, software will experience a
drastic increase in failure rate each time an upgrade is made. The failure rate levels off gradually,

partly because of the defects found and fixed after the upgrade.

2.2.2. Software reliability models and measurement

Forecasting failures were the goal of SR modeling on both axes’ estimation and prediction.
Estimation which is measuring the current state, and prediction as assessment of the future state
of the reliability of a software system.

SR model specifies the form of a random process that describes the behavior of software failures
with respect to the time. Based on three main reliability modeling approaches:

« The error seeding and tagging approach.

+ The data domain approach.

+ The time domain approach, which is considered to be the most popular one.

The goal of time domain SR modeling is to create curve fitting of observed time-based failure data
by a pre-specified model formula, parameterized with statistical techniques (such as the Least
Square or Maximum Likelihood methods).

The model supply’s an estimate of the existing reliability or predictability of future reliability by
extrapolation techniques.

SR models are generally based on a number of common assumptions, as follows.

1. The operating environment identical to that of the test, the measurement environment is
where the reliability model has been set.

2. In case of default, the fault that causes the failure is immediately deleted.

3. The removal of defects does not cause new ones.

4. The number of defects inherent in the software and the way these faults manifest themselves

to cause failures follow, at least statistically, some mathematical formulas.

Reliability Prediction Approach for MAS 6



Chapter 1 Software Reliability

As the number of defects (as well as the failure rate) of the software system reduces as tests
progress, resulting in increased reliability, these models are often referred to as software

reliability growth models (SRGM) [9].

Determine Reliability Develop
Obiective Operational Profile

A J
—— ¢ Perform Software Testing

v

Caollect Failure Data

v
- Apply Software Rehability
Contimue . Toals :
Testing
v
A

Select Appropriate Software
Relability Models

Nao v
Use Software Reliability Models
to Calcalate Current Reliability

Reliability
Objective
met?

.-

v

> Start to Deploy
v
Validate Reliability in the Field
) )
t Feedback to Next Refease ]

Figure 2.1. Software Reliability Engineering Process Overview [9].

This figure shows an SRE framework in current practice First, a reliability goal is determined
quantitatively from the customer's point of view to maximize customer satisfaction, and customer
use 1s defined by developing an operational profile.

The software is then tested according to the profile, failure data collected and reliability
monitoring during tests to determine the release time of the product. This activity can be
repeated until some reliability level has been reached.

The operational profile is a set of disjointed alternatives operating scenarios of the system and
their probabilities of occurrence.

For better comprehension of the two axes’ we will see the main differences between the two:

Issues Prediction Models Estimation Models

Data Reference Uses historical data. Uses data from the current

software development effort.

When used in | Usually made prior to development or | Usually made later in life cycle

Reliability Prediction Approach for MAS 7



Chapter 1 Software Reliability

development cycle test phases; can be used as early as (after some data have been

concept phase. collected); not typically used in

concept or development phases.

Time frame Predict reliability at some future time. | Estimate reliability at either

present or some future time.

Table 1.2. Difference between software reliability prediction models and software reliability

estimation models [10].

2.3. Basic Reliability Metrics

The choice of the applied metrics depends primarily on the domain of execution and the

requirements of the user and this metrics are the way to quantify software reliability [1].

MEAN TIME TO FAILURE (MTTF): MTTF is defined as the time interval between successive
failures. An MTTF of 300 means that a failure can be waited every 300 units of time. Time
units are totally depending on the system and it can even be specified in the number of
transactions. MTTF is relevant for systems with long transactions.

MEAN TIME TO REPAIR (MTTR): Once the failure has occurred, it is sometimes necessary to
repair the error. MTTR measures the average time needed to track errors causing failure and
repairing them.

MEAN TIME BETWEEN FAILURE (MTBF): The combination of the MTTF and MTTR
metrics is the MTBF metric. MTBF = MTTF + MTTR, an MTBF of 300 indicates that once the
failure has occurred, the next failure should only occur after 300 hours. In this case, the time
measurements are in real time and not the execution time as in MTTF.

RATE OF OCCURRENCE OF FAILURE (ROCOF): ROCOF is the frequency of occurrence
with which unexpected behavior is likely to occur in a time interval. A ROCOF of 0.02 means
that two failures are likely to occur on 100 no operational time unit. It's also called failure
intensity metric.

PROBABILITY OF FAILURE ON DEMAND (POFOD): POFOD is the probability that the
system will fail when a Service request is made. A POFOD of 0.1 means that one out ten
service requests may result in failure. POFOD is an important measure for critical safety
systems.

AVAILABILITY (AVAILABLE): An availability of 0.995 means that every 1000 units of time,
the system will probably be available for 995 of them. The percentage of time that a system is
available for use, taking into account forecasts and unforeseen downtime, and it takes into
account the repair time and the system restart time. If a system is down on average four hours

on 100 hours of operation, its availability is 96%.

2.4. Software Reliability Growth Models
These models refer to models that attempt to predict software reliability from test data. They

show a relationship between error detection data and known mathematical functions, such as

logarithmic or exponential functions.

The model that describes error detection in software reliability is called the software reliability

growth model [11].

Reliability Prediction Approach for MAS 8



Chapter 1 Software Reliability

There are many models we will try to mention some of them:

2.4.1. Non Homogeneous Poisson Process Model
General software reliability models follow the NHPP as follows:

pr{N(t) =n} = Me‘m(t), n=0,1,2....(1)

n!

Where m(t) is mean value function, which is expected number of failures detected by testing time
t. It can be written as: m(t) = fotxl(s)ds. ............................... 2)

Where A(s) is intensity function of failure.

Most of NHPP SRGM is expressed using the differential equation as:
2O — pO[alt) = ME)]eererereeenns (3)

at
Through solution of Equation (3), that make to find unique m(t) using a(t) and b(t). Also, this

process can be applied to assume for software testing.

2.4.2. Model Jelinski-Moranda
Introduced for the first time in 1972, it is a continuous time-independently distributed inter

failure time and independent and identical error behavior model.

2.4.3. Goel-Okumoto Model
It has been proposed by Goel and Okumoto, and is one of NHPP's most popular models in the field

of Software Reliability Modeling and is also known as the Exponential NHPP Model.

2.4.4. Generalized NHPP model of Goel
This is the generalization of the Goel-Okutmoto model, and is proposed by Goel to determine the

situation in which the software failure intensity increases slightly at the beginning and then

decreases.

2.4.5. Inflected S-shaped model inflicted
This model is proposed by ohba and is based on the concept that software reliability growth

becomes an S if the defects of a program are mutually dependent and some defects are not
detectable before others deleted and that this model solves a technical problem in Goel-Okumoto

model.

2.4.6. Logistic Growth Curve Model
This model is designed to predict the economic growth of the population and could also be applied

to the growth of software reliability. The logistic growth curve model is one and has an S-shaped

curve.

2.4.7. Musa-Okumoto model
In this model, a property is incorporated, which is explained by Musa-Okumoto. They observed

that the reduction in the failure rate resulting from repairs resulting from early failures is often

greater because they tend to occur more often than once.

2.4.8. Yamada Delayed S-Shaped Model
It is the model with the modification of the inhomogeneous possession process which makes it

possible to obtain an S-shaped curve for the cumulative number of detected failures, so that the

failure rate initially increases and then fades.

Reliability Prediction Approach for MAS 9



Chapter 1

Software Reliability

Model Name

Mean Value Function

Intensity Value Function

Jelinski-Moranda Model

m(t) =n (1 — exp — Pt).

Ni= (k) p.

Goel-Okumoto Model

m(t) =a 1 — exp — bt,
a>0,b>0

a= expected total number of
fault.

b= fault detection rate.

A (t) =ab xexp — bt.
a>0,b>0

Generalized Goel NHPP

Model

m(t) = a(l-exp([-btc]),
a>0,b>0,c>0

a= expected total number of
faults.

b,c =reflect quality of testing.

A (t) =abctc —1 exp—btc.
a>0,b>0,c>0

Inflected S-Shaped Model

m(t) =a *(1 —exp [-bt ] /1 + vy (v)
xexp —bt ).

y(@)=1l-r/r

a>0b>0,r>0

a= expected total number of
faults.

r = rate of detectable fault.

b =fault detection rate.

A(t)=(abexp [-bt J(1+Bt)/ (1 +8
+exp [ —bt]) 2.
a>0,b>0,8>0.

Logistic Growth Curve

Model

m(t) =a /1 +k * exp—[bt ]
a>0,b>0,k>0

a = expected total number of
faults.

k,b = estimated by fitting the
failure data.

A(t) = ab exp— bt 1 + kxexp —bt 2
a>0b>0k>0

Musa-Okumoto Model

m(t) =ax In (1 +bt ).

a>0,b>0

a = expected total number of
faults.

b = fault detection rate

A(t) =ab (1 +bt).
a>0,b>0

Gompertz Growth Curve
Model

m(t)=akbt

a>0,0<b<0,0<k<1

a= expected total number of
faults.

b= estimated using regression
analysis.

A(t) = abln(k)kexp[-bt] exp [-bt]
a>0,0<b<0,0<k<1

Yamada Delayed S-Shaped
Model

m(t)= a(1-(1+bt) * exp[-bt]),
a>0,b>0

a = expected total number of
fault to be detected

b = fault detection rate

A(t)= ab2t*exp[-bt],
a>0,b>0

Yamada exponential

m(t)=a*(1-exp[-ra(1-exp[ Bt])]).
a>0,b>0,a>0, 6>0

a = total number of fault to be
detected.

a = fault introduction rate

r, B =constants.

A(t)=ara(exp[-ra(1-exp[-Bt])])*exp[-Bt].
a>0,b>0,a>0, >0

Yamada Imperfect
Debugging Model

m(t)=a*b*(exp[at]-exp[-bt]/a +b)
a>0,b>0,a>0

A(t)=a*b*(a*exp[at]+b*exp[-bt]/a +b).
a>0,b>0,a >0

Reliability Prediction Approach for MAS

10



Chapter 1 Software Reliability

a = total number of fault to be
detected.

b =fault detection rate.

a = fault introduction rate.

Yamada Raleigh m(t)=a(1l-exp[-ra (1-exp[- | A(t)=araBt(exp[-ra(1-exp[-Bt2/2])])
Bt2/2])]) *exp [-Bt2/2].
a>0,r>0,a >0, >0 a>0,r>0,a >0, >0

a= total number of fault to be
detected.

a = fault introduction rate.

r, B =constants.

Modified Duane Model m(t)=a{l-(b/b+t)c)} a>0,b>0,c>0 At )=acbc (b+t)-(1+c).
a = total number of fault to be | a>0,b>0,c>0
detected.

Weibull-Type Testing- | m(t)=a(1l-exp[-ba(1-exp{-Bty])])

Effort Function Model a,b,a, B, y >0

a=total number of fault to be
detected

b = fault detection rate
a =Total number of test effort
B = scale parameter.

y = shape parameter.

Table 1.3. Mean Value and Intensity of Various Models [11].

3. Classification Based on Failure History
The existing SWRMs are classified into four main classes on the basis of failure history [12].

+ Time between Failure Models (TBF Models).
«  Fault Count Models (FC Models).

« Fault Seeding Models (FS Models).

« Input domain-based Models (IDB Models).

3.1. TBF models: In this class of models; process under consideration is the time between
failures. He assumed that the elapsed time between the (i-1) and the i-th faults is a random
variable.

The estimates of these parameters are obtained from the observed values of TBF and the TOS

parameter is obtained from the adjusted models.

3.2. FC Models: The random variable of interest is the number of failures (failures) occurring
during specified time intervals, called FC models. It is assumed that the number of failures

follows a known stochastic process. The time is used whether it is calendar or can be a CPU time.

3.3. FS models: In this model, we tested and observed the number of seeded and native faults
counted. The MLE and combinatorial method makes it possible to obtain an estimate of the defect
content of the program before seeding before seeding, and then from the value of the parameter

SWR is calculated.

Reliability Prediction Approach for MAS 11



Chapter 1 Software Reliability

3.4. BDI models: In this model approach, a set of test cases is generated from the entry covering

the operational profile of the input. The input domain is partitioned into a set of equivalent

classes.
1. It’s an independent times between failure.
2. Each fault has equal probability.
3. After each occurrence fault are removed.
Time Between Failure (TBF) Models 4. At the time of correction new faults are introduce.
5. Ex. J-M De-Eutrophication, Schnick and
Wolverton, Goel and Okumoto Imperfect Debugging,
Littlewood-Verall Bayesian Models
1. Fault or failure in specified time interval.
2. Testing during intervals is reasonably
homogenous.
3. Numbers of fault detected during non-overlapping
intervals are independent of each other.
Fault Count (FC) Models
4. Estimate software reliability mean time by fault
count.
5. Ex. Generalized Poisson Model, Goel-Okumoto
NHPP Model, IBM Binomial and Poisson Models,
Logarithmic Poisson Execution Time Model, Musa
Okumoto
1. A known number of faults are “seed”.
2. Seeded faults are randomly distributed in the
program.
Fault Seeding (FS) Models 3. A Program has unknown number of indigenous
faults.
4. Indigenous and seeded faults have equal
probabilities of being detect.
5. Ex. Lipow model, Mills seeding model, Basin
model
1. Test cases are generated from the input covering.
2. Estimate software reliability by failure observed
in test cases.
3. Random testing is used.
Input Domain Based (IDB) Models 4. Input domain can be partitioned into equivalent
classes.
5. Input profile distribution is known.
6. Ex. Bastani Model, Nelson Model, Ramamoorthy

Table 1.4. Overview of Models based on Failure History [12].

Reliability Prediction Approach for MAS 12



Chapter 1 Software Reliability

Conclusion
In this chapter we have viewed or better say entered to the software reliability engineering with

the main definitions of the domain, without a doubt the reliability measuring has become an
important factor in software development industry.
In the next chapter we will detail the reliability metrics and growth models, ending with tools

comparison.

Reliability Prediction Approach for MAS 13



Chapter 2 Reliability Testing Tools: State of art

Chapter 2
Reliability Testing Tools: State of art

"This world is grand and there lies an ocean of undiscovered findings."”

Isaac Newton

Introduction

Forecasting failures were the goal of SR modeling on both axes’ estimation and prediction.
Estimation which is measuring the current state, and prediction as assessment of the future state
of the reliability of a software system.

Software reliability is measured using measurements, models and leading to reliability test tools.
In this chapter we will make a comparison between the most known and used software reliability
tools including CASRE, SMERFS, SOFTREL, MEADEP and SREPT for each tool we will details
the different modules of it and the way it executes, and counting their advantages and dis

advantages; ending with comparison table and tools ranking.

1. Reliability estimation tools
1.1. CASRE - A Computer-Aided Software Reliability Estimation Tool

CASRE as Computer Aided Software Reliability Estimation, it is an extension of the tool
SMERFS. It is a user-friendly reliability estimation tool, where the user can manipulate different
options like selecting a set of failure data or executing a model through a menu.

After the execution the results are presented as failure intensities or inter-failure times in a
graphical form (plots) or in tabular form, the user can also use this window of the results to detect
cumulative number of failures and reliability growth curve.

The models combination grants better predictive reliability estimation, CASRE provides this
option [11]. With the ability to determine user custom combination and add it as a configuration
to the tool. To help the users CASRE applies different techniques to determine the applicability of

a model to a set of failure data [13].

1.1.1. The functionalities that CASRE provides:
« Data modification: includes data editing, smoothing (altering), and data transformation

(logarithmic, exponential, or linear).

Reliability Prediction Approach for MAS 14



Chapter 2 Reliability Testing Tools: State of art

« Failure data analysis (statistics of the failure data).

«  Modeling and measurements: allow users to execute several models on the failure data.

« Display of results: provides the user graphical display models [13].

For further details on this tool we start by giving a global view on its main functionalities in the

Figure below:

To screen, printer, or disk

!

Model

| Edit I | Summary
1 Statistics Results
Bias {ui‘,l
Trend (y, )
l - Model Sensiiivity
_ Failura Data i Models | Evaluation [ 1o Noise
{imerailura times, Bl
allure fraquenc| Execution PL, AIC{*)
L Control
-------- =--—
, Y
- Model -
! Smoothing )} _ _|_m]| Combination
1
X Model
Data 1 Evaluations
™1 Transformation [ '
: »| Plotting [
' - B Bias (u)
1
1

Component modals,
waighting schemes

-

To screen, printer, or disk
Figure 2.1. CASRE architecture [13].

Data modification

« Editing: Casre allows the users to custom or create the failure data history. with easy to use
interface with the ability of choosing time between failures or test interval lengths manually,
with the possibility to choose preferred editor

« Smoothing: To handle the noisy data, it uses the next smoothing techniques: Sliding
rectangular window, hann window, polynomial fit, and specific cubic-polynomial fits (e.g. B-
Spline, Bezier Curve).

« Data Transformation: Is very important part it concerns the result display, we need to select
performing operations like logarithmic, exponential, or linear transformations of the failure
data for better or more understandable results, as example we have the following operations:

» log(a * x(1)) + b); x(3),

exp(a * x(1) +b),

x(1) ** a,

x(@) + a,

x() * a.

YV V VYV V

» user-specified transformation.

Failure data analysis
The "Summary Statistics" allows users to display the failure data summary statistics, including

the mean and median of the failure data, 25% and 75% hinge points, skewness, and kurtosis.

Reliability Prediction Approach for MAS 15



Chapter 2 Reliability Testing Tools: State of art

Modeling and measurement
It has two modeling functions. The "Models" block executes single software reliability models on a
set of failure data. The "Model Combination" block, allows users to execute several models on the
failure data and combine the results of those models.
The block labeled "Model Evaluation" allows users to determine the applicability of a model to a
set of failure data:
«  Single Model Execution: with the following models:

(1) Bayesian Jelinski-Moranda Model (BJM) [14], [15].

(2) Brooks and Motley Model (BM) [16].

(3) Duane Model (DU) [17], [18].

(4) Geometric Model (GM) [16].

(5) Goel-Okumoto (GO) [19].

(6) Jelinski-Moranda (JM) [20], [21].

(7) Keiller-Littlewood Model (KL) [22], [23].

(8) Littlewood Model (LM) [ 24].

(9) Littlewood non-homogeneous Poisson Process.

(10) Lattlewood-Verrall (V) [25].

(11) Musa-Okumoto (MO) [26].

(12) Generalized Poisson Model (PM) [16].

(13) Schneidewind’s Model (SM) [27].

(14) Yamada Delayed S-Shape Model (YM) [28].
CASRE allows users to choose the parameter estimation method (maximum likelihood, least
squares, or method of moments), Model outputs include:
- Current estimates of failure rate/ inter-failure time.
- Current estimates of reliability.
- Model parameter values, including high and low parameter values for a user-selectable
confidence estimated bound.
- Current values of the pdf.
- The probability integral transform ut.

- The normalized logarithmic transform of ut, yi.

«  Combination Models: the users can set their own models combination results according to
several combination schemes. The resulting combination models could be further used as the
component models to form another combination model.

«  Model Evaluation: help users decide which model or combination models could be applied to a
specific failure data set by using statistical methods:

- Computation of prequential likelihood (PL) function (the "Accuracy" criterion).

- Determination of the probability integral transform ui , (plotted as the u-plot - the "Bias"
criterion).

- Computation of yi to produce the y-plot (the "Trend" criterion).

- Noisiness of model predictions (the "Noise" criterion).

Reliability Prediction Approach for MAS 16



Chapter 2 Reliability Testing Tools: State of art

Display of results

CASRE graphically displays model results in the following forms:

- Inter-failure time /failure frequencies, actual and estimated.

- Cumulative failures, actual and estimated.

- Reliability growth, actual and estimated.

Both current and estimated quantities are available on the same plot. Users are able to control
the range of data to be plotted as well as the usual cosmetic aspects of the plot (e.g. X and Y
scaling, titles), multiple plots could be simultaneously displayed.

It allows users to save them on a file or to be printed, and also includes the ability of saving the
used data to produce a plot to a file that can be imported by a spreadsheet, a DBMS, or a

statistics package for further analyses.

CASRE On-screen

The Main Steps to Use CASRE are [29]:

Step 1. Create a set of failure data.

Step 2. Start CASRE.

Step 3. Open a set of failure data.

Step 4. Change the failure data.

Step 5. Apply filters and smoothing operations to the data.
Step 6. Apply trend tests to the failure data to determine whether or not software reliability
models should be applied.

Step 7. Apply models to the failure data.

Step 8. View the model outputs.

Step 9. Print failure data and model results.

Step 10. Save failure data and model results to disk.

Step 1: Create a set of failure data

The Failure data files has a specific format, we can create it using word processor or text editor.
We have two kinds of failure data: Time between failures and Failure count, with different
formats. Two types of inputs:

«  Time between failures:

Seconds

4 9 1
5 6 7
6 50 2

The first line represents the time units for the data file (seconds, minutes, hours, days weeks,
months, years). In the case of second unit the subsequent lines are:

- The first column is the current failure number.

- The second column represents the time that has passed since the last failure was observed.

- The values in the second column are measured in the time units given in the first line of the file.

- The third column indicates the severity of the failure on a scale of 1 to 9.

Reliability Prediction Approach for MAS 17



Chapter 2 Reliability Testing Tools: State of art

« Failure count:

Minutes

3 4 10 4
4 8 20 3
5 1 30 7

The first line represents the time units for the data file.

In the case of second unit the subsequent lines are:

- The first column gives a sequential test interval number.

- The second column specifies the number of failures that were observed during a given test
interval.

- The third column gives the length of the test interval. Test interval lengths do not have to be
equal.

- The fourth column indicates the severity of the failure on a scale of 1 to 9.

Step 2: Install and run CASRE
The CASRE main window should then appear as shown

= CASRE B o | ﬂ

File Edit Filters Trend Model Setup Plot  Help

Figure 2.2. CASRE Main Menu.
Step 3: Opening a Data File
« Go to File -> Open
Browse to the directory where the file is located and select it to open it.
When a failure data file is opened, the text of the file is shown in the main window, while a plot of

the data is shown in the graphic display window (see figure 2.3).

Step 4: Change the failure data

We can change from a data type from one to another using external application (see figure 2.4).

Reliability Prediction Approach for MAS 18



Chapter 2 Reliability Testing Tools: State of art

% ~lel

Error Seconds Since Severity -
No.  Last Failure

1 1.440000e+004 1 k. Time between failures: tbe_tst2.dat ﬂﬂ
g :::gggg:gg: : Flot Results Display  Settings Copy Help
4 1.440000e+004 2 [+ Fawoaa
5 1.440000e+004 3
6 1.440000e+004 2 :
7 1.440000e+004 2 R I
a 1.440000e+004 3
9 1.440000e+004 2
10 1.440000e+004 1
1 1.440000e+004 1
12 1.440000e+004 1
13 1.440000e+004 3 8.0000e+005
14 1.440000e+004 3
15 1.060920e+004 2
16 1.060920e+004 1 "
17 1.060920e+004 2 =
18 1.060920e+004 3 ]
19 1.060920e+004 1 5 0000e4005 o -
20 1.060920e+004 1 " :
21 1.060920e+004 2 @
22 1.060920e+004 1
23 1.060920e+004 3 =
24 1.060920e+004 3 2
25 1.060920e+004 1
26 1.060920e+004 2 E D T -
27 1.060920e+004 1 2
28 1.060920e+004 1 =
29 1.060920e+004 1 *
30 1.060920e+004 1
n 1.060920e+004 1
32 1.060920e+004 1 E e Ao -
33 1.060920e+004 1
34 8.765280e+003 2
35 8.765280e+003 3 e
36 8.765280e+003 3
37 8.765280e+003 2
38 8.765280e+003 1 0 000064000 o - |
39 8.765280e+003 1 T
40 8.765280e+003 1 =
N 9r6suea003 1 Faiure manber
43 8.765280e+003 2
44 8.765280e+003 1 2
. .
Figure 2.3. Shows a data file.
z -ls|x
Test  Number of Hours in a Severi
Intvl  Failures Test Interval i k. Failure counts: fc_test.dat ﬂﬂ

Plot Results Display Settings Copy Help

1.400000e+001 5.600000e+001
1.900000e+001 5.600000e+001
2.300000&+001 5.600000e+001
1.200000e+001 5.600000e+001

; [+ Fawoms
3

1

5 2.200000e+001 5.600000e+001

6

7

8

9

25.00 o -

1.200000e+001 5.600000+001
1.300000¢+001 5.600000¢+001
1.9000006+001 5.600000¢+001
1.000000¢+001 5.600000€+001
10 5.000000¢+000 5.600000e+001
11 5.000000e+000 5.600000e+001
12 5.000000e+000 5.600000¢+001
13 7.000000¢+000 5.600000€+001
14 7.000000¢+000 5.600000€+001
15 1.000000¢+000 5.600000e+001
16 3.000000e+000 5.600000e+001
17 1.000000e+000 5.600000¢+001
18 2.000000¢+000 5.600000e+001
19 0.000000¢+000 5.600000e+001 N,
20 2.000000¢+000 5.600000e+001
21 9.000000e+000 5.600000e+001
22 1.000000e+000 5.600000e+001 1
23 0.000000e+000 5.6000006+001 N/A
24 0.000000e+000 5.500000e+001 N/A
25 0.000000e+000 5.500000e+001 N/A :
26 1.000000e+000 5.600000e+001 1 b
27 1.000000e+000 5.600000e+001 1

20.00 o

15.00 4 - 4

10.00 -4

Number of Failures

--F

S04 -

I DR

TestInterval Humber

Figure 2.4. Example on data file with failure count.

Step 5: Filters and smoothing operations

As shown in figure 2.5:

« Shaping and scaling filters for changing the shape of the failure data curve.

+ A filter for changing the time units for a failure data set. For example we can change between
data form seconds to minutes.

+ A Hann window for removing noise from the failure data.

+ The capability of selecting a subset of the failure data based on severity classification.

« A filter for rounding the failure data to the nearest whole number.

Reliability Prediction Approach for MAS 19



Chapter 2 Reliability Testing Tools: State of art

=
+ CASRE
File Edit Filkers Trend Model Setup Plot  Help
Error < Shaping and scaling W
MNo. L scaling and offset. ..
Pawer...

1 Logatithmic., ..

2 Exponentiation...

3

4 Change time units. ..

5 Smoothing

b )

Hann window

7

i} Subset data

9 Select severity. ..
10

11 Round
12
13
14 —
15 1.060920e+004 2

16 1.060920e+004 1

Figure 2.5. Shows Filters Sub Menu.
Step 6: Apply trend tests.
« Determine whether a set of failure data exhibits reliability growth.
+  Running Arithmetic Average of Time Between Failures/Failure Counts.

« Laplace Test

-

L]

Test  MNumber of Arithmetic I : - : . E- - . -

Intwl Failures Mean k. Running Arithmetic Mean: EUVICATAJOB~1\SENG4 2~ 1\SENG42-~... - |0 ﬂ
Plot Results Display Settings Copy  Help

1 1.400000e+001 1.400000e+001 [+ Fav o

2 1.900000e+001 1.650000e+001

3 2.300000e+001 1.866667¢+001

1 1.200000e+001 1.700000e+001 20.00 =

5 2.200000e+001 1.800000e+001

6 1.200000e+001 1.700000e+001 17.50 o

7 1.300000e+001 1.642857e+001

8 1.900000e+001 1.675000e+001

9 1.000000e+001 1.600000e+001 g '3

10 5.000000e+000 1.490000e+001 2

11 5.000000e+000 1.400000e+001 % 1250

12 5.000000e+000 1.325000e+001 5

13 7.000000e+000 1.276923e+001 £

14 7.000000e+000 1.235714e+001 £ 00

15 1.000000e+000 1.160000e+001 2

16 3.000000e+000 1.106250e+001 £ 750

17 1.000000e+000 1.047059e+001 S

18 2.000000e+000 1.000000e+001 2 . . . : : : .

19 0.000000e+000 9.473684e+000 e B : : : : ; :

20 2.000000e+000 9.100000e+000 5 5 5 : : : 5

21 9.000000e+000 9.095238e+000 Y N A A A SR

22 1.000000e+000 8.727273e+000 : ! : : : : :

23 0.000000e+000 8.347826e+000 : : : : : : :

24 0.000000e+000 §.000000e+000 e pr R gt N gt T

25 0.000000e+000 7.680000¢+000 T T T T T T T

26 1.000000e+000 7.423077e+000 T est Interval Humber o -

27 1.000000e+000 7.185185e+000

Figure 2.6. The results of applying the running arithmetic average.

The graph shows a decreasing in the failures count.

Step 7, 8: Apply Reliability Model and View Results
Let us look at model results and model evaluation statistics for the following scenario (see figures:

2.7, ..., 2.11).

Reliability Prediction Approach for MAS 20



Chapter 2 Reliability Testing Tools: State of art

« Failure data: Same as that used before (time between failures data).

« Data Range: We've selected point’s 100-194 as the interval to which to apply the data.

« The Parameter Estimation End Point is 150.

« No of future failures is 20.

+  Models selected: We'll be looking at the results of the Musa Basic, Musa-Okumoto, Linear-LV,
and Quadratic-LLV models.

= CASRE
File Edit Fiters Trend Model Setup Plot Help

Error Seconds Sinc  Select and run models. ..

No. Last Failure Define combination »
1 1.440000e+0

2 1.440000e+0 Parameter estimation...
3 1.440000e+0 Select data range...

4 1.440000e+0 Predictions...

5 1.440000e+004 3

b6 1.440000e+004 2

7 1.440000e+004 2

8 1.440000e+004 3

9 1.440000e+004 2

10 1.440000e+004 1

11 1.440000e+004 1

12 1.440000e+004 1

13 1.440000e+004 3

14 1.440000e+004 3

15 1.060920e+004 2

16 1.060920e+004 1

17 1.060920e+004 2

18 1.060920e+004 3

3
)
3

Figure 2.7. Model Sub Menu.

The first move is to click Model from the Main Menu.

=3
b
L L]

Error Seconds Since Severity

No. Last Failure Specify Data Range ﬂ
1 1.440000e+004 1
2 1.440000e+004 1 Specify the failure data points over
3 1.440000e+004 1 which any selected models will operate.
4 1.440000e+004 2
5 1.440000e+004 3 First data point:  [100
[ 1.440000e+004 2
7 1.440000e+004 2 Last data point: m
8 1.440000e+004 3 -
9 1.440000e+004 2 Parameter esti-
150
10 1.440000e+004 1 mation end point:
11 1.440000e+004 1
12 1.440000e+004 1
13 1.440000e+004 3 | ‘
14 1.440000e+004 3 Cancel Help oK
15 1.060920e+004 2
16 1.060920e+004 1

Figure 2.8. Select Data Range.

Model -> Select and run Models...

Then a new dialog will show up (see the next figure).

Reliability Prediction Approach for MAS 21



Chapter 2 Reliability Testing Tools: State of art

Error Seconds Since Severity

No. Last Failure Select and Execute Models ﬂ

Selecting Models for Execution

1 1.440000c+004 1
2 1.440000+004 1 Available Models Models to Run
3 1.440000c+004 1 _
4 1.440000e+004 2 DLCrSM Cincagly,
5 1.440000c+004 3 ELC
6  1.440000c+004 2 Geomelric l:l
7 1.440000e+004 2 FMoranda
8 1.440000c+004 3 mLc Basi
] 1.440000e+004 2 usa basic
10 1.440000c+004 1 m;go"é'g“““ g
11 1.440000e+004 1 (TBE]
12 1.440000c+004 1 Quadratic LY
13 1.440000e+004 3 uLc
14 1.440000c+004 3
15 1.060920c+004 2 Help Cancel oK
16 1.060920e+004 1
17 1.060920c+004 2
18 1.060920c+004 3
19 106092004004 1 Select and Run All Models |
20 1.060920c+004 1
21 1.060920c+004 2
. :

ncnnan..nna

Figure 2.9. Shows the list of models.

From the Graph Window select -> "Select model results”

Select and Display Model Results ﬂ
Models for which Select Model Results to Display
predictions cannot be
displayed Models executed Results to display
Linear LY
Musa Basic

Musa-Okumoto
Quadratic LY

|
o0

Help Cancel

Figure 2.10. Shows the select and display model results window.

Then the result will be displayed, in figure bellow

| k= Time between failures: E:\CASREV3\DATA\tbe tst2.dat | ﬂ
Plot  Results Display  Settings Copy Help
+ Raw Data =2 Paint at infinity
m Linear Ly
Musz Basio

+ hhza-Okumnoto

1.0000e+00 = -

.0000e+005 -l - 4= === - - R R L PP fmm e Fmmmeme e e -
GLO000EHI0 el - - = e e e

4000024005 o - 4o m e oo e b b e Lo

Time hetween failures - Seconds

2.00002+005 o - 1<~ =< = c oo :

0.0000e+000 = -

-
0=

Fallure number

Figure 2.11. Shows the Results.

Reliability Prediction Approach for MAS 22



Chapter 2 Reliability Testing Tools: State of art

It shows the results of the Musa Basic, Musa-Okumoto, Linear-LV, and Quadratic-LLV models

selected in the previous steps.

1.1.2. Advantages of CASRE

CASRE have several advantages that we will mention [30]:

« Increased time of execution: Fast execution of tasks especially for the ones with diagramming
and associated specifications, and with rate of improvement from 355 to more than 200%.

« Increased Accuracy: Due to the debugging and error checking, that’s key component in early
bug detection and removal.

¢ Reduced Lifetime Maintenance: because of the overall quality of the systems and
documentation. The efforts and costs associated with maintenance are reduced , and thanks to
CASRE's reengineering tools, it makes this process more efficient, less time consuming and
less expensive by updating to latest version .

« Documentation: A lot of documents produced during the construction life cycle for better
comprehension end explanation of the tool.

« Facility of the use: CASRE easy to use and understand by the users, and it leads to less
training time and better acceptance of the tool.

1.1.3. Disadvantages of CASRE

« Necessitate significant work in the analysis phase to extract customer needs.

+ Difficult to customize.

+ Require training for maintenance personnel.

« Does not support cohabitation with other systems.

2. Reliability estimation and prediction tools
2.1. SOFTREL - The software reliability process simulator

SOFTREL mechanism is more based on incorporating the users and computers in all
development phases to study the reliability of the life cycle and the effects between different
phases, it also admit that testing requires the preparation and utilization of test cases, and that
repairs must follow identification and isolation.

Configured to simulate processes having constant event rates per causal unit, It is considered as
framework for experimentation, data generation for comparison with actual collected project data,
The input to SoftRel is one file that define the dt time slice, and a model that shows the data
structure contains about 70 traits of the software project and its reliability process, and a list of
activity, schedule, and resource allocations.

Also, internally, the set of status monitors at any given time are stored in a data structure called
facts, which records the overall clock time, the time and resources consumed by each activity (42
measures in total), and a snapshot of 48 measures of project status. The output is one file
contains the facts series of each dt interval of time [31]. SoftRel simulates two kinds of failure

events, defects in specification documents and faults in code.

Reliability Prediction Approach for MAS 23



Chapter 2 Reliability Testing Tools: State of art

Project
Characteristics
Model Resource and
Traits Schedule
f,f Input
File
SoftRel
/  Facts
vs Time
/  Output /

Figure 2.12. SOFTREL execution context [31].
2.1.1. The Major Components of the Simulator
To equal the goal values given in the model, SoftRel is initialized by setting sizes of items for
construction, integration, and inspection, but the model values are considered only approximate.
We have 14 major components in the simulator:
a. Document Construction: both documentation and there integration, it is approximated to be
piece-Poisson, with constant average rates per working day sited in the model, not surpass the
target values.
Defects are injected with a constant probability per unit of documentation. At each injection of a
default, the document risk rises according to the fault detection characteristic.
b. Document Integration: Based on document reusability by applying small changes like:
deletion of undesirable parts, addition of new material, the defects are created as a result of each
sub-activity.
Documentation is integrated per average regular paste per day and the defects are injected with a
regular probability per unit of documentation. The danger increases each defect according to the
fault detection assumed characteristic.
c. Document Inspection: has a similar type to documents construction, it is a goal-limited
piecewise-Poisson approximation Documents inspected at mean regular paste per workday.
Inspected units are dived to new documents and reused documents in proportion to the relative
amounts of documentation in these two categories.
The defect discovery rate is proportional to the current collected document hazard and the
inspection efficiency.
d. Document Correction: The staff level set the rate of the defect correction, and it may lid to
add new defects the actual corrections are made according to the efficiency of the correction of
defects, not to exceed the actual number of defects discovered, and can change the alter the

documents total.

Reliability Prediction Approach for MAS 24



Chapter 2 Reliability Testing Tools: State of art

e. Code Construction: With same steps like document building however, the average rate at
which mistakes are created is performed by the usual fault the density that is the consequence of
coding, and by the density of not discovered defects in documentation and by the amount of
missing documentation.

Each fault injected increases the risk of code. But while document defects are only discovered by
inspection, code defects are detected both by inspection and by test, and different rates.

f. Code Integration: Has the same structure as document integration, the difference that code
units replace document units and coding rates replace documentation rates. Each fault increases
the code hazard.

g. Code Inspection: Reflects the document inspection process, but the number of faults
discovered will not passe the total number of as-yet undiscovered faults. The rate of fault
discovery is proportional to the current accumulated fault hazard and the inspection efficiency.
The discovered faults may not yet have been removed at the time of discovery, the number of
newly discovered faults is assumed to be in proportion to the number of as-yet undiscovered
faults.

h. Code Correction: Apply the same algorithm given for document correction, translated to code
units. Fault risque is reduced in the correction of a fault, and can increase in case of new faults
are added by the correction process. Documentation alterations are produced at assumed regular
mean pace per attempted correction.

i. Test preparation: Produces a number of test cases in each dt, in proportion to the test
preparation rate, which is a constant average number of tests per workday.

J. Testing: The testing activity simulation consists of two parts:

If a test crushes in effect, the crush times indicator decrements and the time and effort
increment. If a crush is not in effect, failures occur at the modeled rate; the number observed is
computed as a binomial process that is regulated by the probability of observation.

The failure rate function returns a value relative to the current risque level. The function
consumes computer resources and test cases, the latter at a mean constant rate.

k. Fault Identification: The total number of failures analyzed does not pass the number of
failures observed. Failures are analyzed at a mean workday pace, because of the failures still
remaining in the system.

The identification of faults is limited in number. The isolation process is regulated by the fraction
of faults remaining undiscovered, the adequacy of the analysis process, and the probability of
faithful isolation.

l. Fault Repair: The attempted repairs number cannot pass the number of faults identified by
inspections and testing, plus faults corrected after inspection, and the identified for rework by
validation and retesting.

Of those attempted, a select number will really be repaired, while the rest will wrongly be
reported as repaired. Repairs are assumed here to be made on faults identified for rework first.

A select number of new faults may be generated by the attempt, and code units may be changed.

Reliability Prediction Approach for MAS 25



Chapter 2 Reliability Testing Tools: State of art

m. Validation of repairs: Validation of repair attempts occurs at a steady pace assumed to be
average per workday.

The number of defective repairs detected is a selected number determined by the probability that
the validation will recognize an unrepaired failure, if any, and the probability unrepaired defects
are among those repair attempts are validated.

n. Retesting: There is an average constant number of retests per workday and consumes
computer resources at the planned rate per day, without any new test cases generation, because

the original test cases are assumed available for regression.

As example we will run FRESTIMATE TOOL to show the process execution [32], with the
following steps:

Step1: open file: We can open an existing file.

Figure 2.13. Main menu.

After we create a new project (see figure 2.14) another panel will display (figure 2.15), in this
panel we need to select a model for predicting defects, after it another panel will open for more

inputs.

foe Tooh Heg

Gowd] iy | Te tlta? | il |

ety m:lml sy I'-"-Hl f
o el |

ek i onedel o

pedctngidmbecty |Irekastny model -]

Figure 2.14. New project panel.

Step 2: Enter General inputs and size.
When starting a new prediction, you will need to enter a size prediction to see any results [7]. The
other inputs have default values which should be reviewed and modified. There are wizards to

help you enter these inputs.

Reliability Prediction Approach for MAS 26



Chapter 2

Reliability Testing Tools: State of art

| File

-Bounds on defect d

Prediction general inputs — |- =]

Size inputs required to predict .n:iéiéctsﬂailure rate/freliabilityfavailability

Select the unitz of measure for defect density ksLOC '] Size wizard

i Humber of Components ]|1 Total hurnber of function points ].]
n Total KSLOC ig Total effective function points i.]
;I'EcbuéaleefoE]ctwe KSLOC o Critical Function Points T
Critical EKSLOC ig Size ermor %50 % Size ermor due to phase %50 %

Update Comporett 1nfo 1 I Use componient info Components List \-"iewi Compotents wizard

: 5 — Owverride
Languags 1Higher Order Languages _:_J Code expansioriratio |3 L default

Inputs required to predict failure rate/M T TF freliabilitp/availability -

Afiverage operating howurs [duty cycle] per month 730 Dty cvcle wizard i tonths to nest i1 2

; : major releasze
Fielded growth rate (G del] between defects and failures 15 .
Grawth period
T esting growth rate [00] between defects and failures ig and [ YWizard

Application type jDerense average

Inputs required to predict availability - Inputs required to predict reliability

MTSWH i-| i] MT 5w R wWizard Required mission duration 13
- Inputs required to predict testing defects/MTBI -
Ratio of unigue defects found in testing v after delivery h o

MTTF at deliven 51 50 MTTF after growth period 1300 “wizard
- Frestimate metrics
Import Size/Complesity J

Percent severe defects fielded 413 Wwizard | Mumber months growth after testing ends ]43

_:_J Hdel confidence |2 575

Frirt
R atio of interruptions that don't require a conrective action to those that do 51 o —J

Tools

Help

General | Survey | Filer | Defect | Failure| MTTF | Reliability Availability.-l-[ends Harbite ‘Compare Cost Test data/ | Field Print
inputs | inputs for | report | profie | rate | profile | profle | profile | P | Results | scenarios|  growth | Data |
this model] profile ] ]Select an Estrapolation _:J

Select a model for

predicting defects model default

Hefect density prediction [all defect types]

Industry madel £+ 5
Defect 002 |Sharteut modsl B see 0300 02 e gp) i
denzity Fullzcale model dersity as & bounds

Fiome Labs model predicting end of test defects
Uze companents

Rome Labs model predicting star of test defects —
Clasest database match =

m

15

Usze my ratio of testing to

Between level 2 and 3 Bounds 0% - [~ fielded defects instead of

Heszults for all defect types that result in comrective action

Figure 2.

C:\Program Files [xB6)\Frestimate Manager's Edition\demoprog. mdb

16. Tool option.

— [Hominal [UpperBound [Cower Bound Defect density Mominal |Upper Bound [ Lower Bound
Start of test defect density 059 0ES 052 predictions are in 117 1.305 1.035
End of test defect density 032 037 027 tems of defects 636 733 533
Start of test defects 12 13 1 E’E’iECStLDDnEme 4 262 2% 232
End of test defects B 7 5 Languags 142 165 13
Failure rate predictions | | |
End of test failure rate 8.843e6 1.027e7 T4166  Fgiue rate 1.952e8 22668 1.637e8
Failure rate at next release 1.914e5 2181e5 1.534e5  predictions are in 4.223e6 48136 3.384e8
Average failure rate during release 3.362e5 3.905e5 2825 tems of failures 7.42e6 861766 £.223e6
MTTF predictions . . . per Billion Hours I .
End of test MTTF 113.084 97.375 134.835 5.124 4412 E.11
MTTF at next releasa 5225333 4585473 ES20.E97  WTTE/MTEI 23773 207773 295,469
Average MTTF during release 2974 254 2561.096 3546.355  predictions are 134.771 116.05 160694
MTBI predictions | in terms of | |
End of test MTEI 22817 19.475 26,957, hours 1.025 882 1.222
MTBI at nest release 1045.067 917.095 1304.133 47.355 41,556 59.034
Avwerage MTE| during release 534,851 B12.2149] 709.271 26.954 23.21) 32123
Fieliability predictions |
End of test reliability 93.17003e-2 92.11277e-2 94.23942e-2
Reliability at next release 99.84702e-2 99 82569e-2 99877392
Average reliabilty duning releaze 93.7313%-2 93.68812e-2 93.77467e-2
A ailability predictions |
End of test avalability 94 91168e-2 94.13894=-2 95.69722e-2
Availability at nest releage 93.88411e-2 99.86796=-2 93.90711e-2
Average availability during release 99.79658-2 99 763042 93.82934e-2

Reliability Prediction Approach for MAS

27



Chapter 2

Reliability Testing Tools: State of art

In the Tool option (figure 2.16) we select the model of predicting defects, and then select the

“Survey Inputs for this Model”, we will be then directed to the survey for the selected model, with

three kind of surveys “Full scale model”, “Full scale model B”, “Full scale model C”.

ALL prediction surveys were developed by a research organization that collected and organized

lots of defect data from many real projects.

n SoftRel Shortcut Survey Model

Requirements understood without specialized training or end

user domain experience

Small/incremental/spiral release (< 10% of existing code Ma i

chanaed or added]

All software engineers are domain experts ‘ez =)

Small organization [<8 software people total) Somewhat 7]

Maintenance release [no new features only bug fixes) Unknown )

Formal unit testing Mo ]

Every phaze of lifecycle is scheduled and executed including  [yas 7

reqs, design, unit test and system test

Systems testers on project during requirements Samewhat ]

New releaze. language, 05, product line, techrology Unknown v

Unsupported language or 05 Ma 7
Mest Help Clear Al J Frint page ‘

Predicted percentile 50

Figure 2.17. Survey Model.

The defect density is predicted by how many of each you check yes. The prediction formula can be

viewed by pressing the Help button.

This is one page of the Full-scale model survey (see figure 2.18). Some surveys have one question,

some have a few questions and some have many questions.

b softRel Fullscale Survey Model le2| G
Thete iz & defined team slructuns No =1
Prerequizites that must be in place for answenng this question
Mode than 1 peizon on project
DO178B cross reference Mot exphcitly referenced
CMM cross reference
Rl'._me Laboratory TR-32-52 crose D facio
IEC 61508-3 cross ieference Mot exphcitly referenced

|r ; Switch to List Impaort Expost
[Hss} g | i Save | Fra page View Suvey | Suvey
Tolal number of questions 73 This question number 1
Thi: shon the below
Vet e el Sweriess 255
Filter scoee B
Predicted percentils 50

Figure 2.18. Full-scale Survey Model.

Reliability Prediction Approach for MAS

28



Chapter 2

Reliability Testing Tools: State of art

Step 3. View results, profiles, trends.

Survey | Fiter | Defest | Failwz| MTTF | Refiabiity  Avalabiiy T,em,sl Heports! Compare | Cost | Testdata/ | Field | B
inputs for | report | profile | rate | profile | profile profile | Results | scenarios | growth Data
this model | profile | lSeIect an Extrapolation j
Seloit s nodal for ) U;E my ratio of testing to
predicting defects [Industy model | satelites Bounds  [g0% | L fr\nenldd:lﬂdd:':ﬁ:s nstead of
Bounds on defect density prediction [critical defects] 1~ Bounds on defect density prediction (all defect types]—
Defect 001 See om0z 0 oma Defect 044 See 0174 100 Ot e g ERR g
density density dersity density a8 % bounds
Results filtered for ciitical defects only Results for all defect types thal result in corrective action
[ Maminal [Upper Bound  [Lower Bound | Defect density Nominal |Upper Bound [ Lower Bound
 Start of test defect density | 018 01 predictions are in 716 B .518
End of test defect density i .00g 002 terms of defects 174 236 113
 Start of test dgfecls 5/ B i 285 364 206
End of test defects 1] 2 9 94 45
Fallure rate predictions g -l i/ -l
End oftest falur rote SdBed  BTTeZ Ao e 3020 52e) 243D
Failure rate at nest release 1.658e-3, 1.955¢-3 114383 predictions are in 98322 116le1 E792s2
tverage [l ate duing release | 463203 6.265e-3 29993 temzof faillres 2751e1) 3720e 1.781e1
MTTF predictions : par Hour i
Endof e HTTF 142 14w = )
MITE ot e eloase B4132 51157 MTTEMTE 10171 14724
Average MTTF during release 215912 15963 predictions are 3635 5614
in terms of
End of test MTEI eall 57 g s 013 ol 0z
MTEI at next release 021 25573 .509 431 736
Average MTEBI during release 10 TBEE 7961 182 134 281
End of ot ety Szl TRl
Reliabiity at nest release 98.68464e-2  98.44837e-2
Awerage reliability during release 95.38253-2; BN e2
 Availabilty prediction . |
End of test availability 885 | £9%-2|
Auvailability st next release | SHE?PIUTeZ 99.61057e2
Awerage avalability during relsase 99.0822e-2 98.7626e-2
C:AProgram Files\F M 's Edition\d: -mdb

Figure 2.19. Prediction panel.

The results are filtered by criticality, we can save the exact page using ‘print’ option, or we can

also save this as a report ‘.txt’ using the ‘REPORTS’ option.

fiw Tpale Hep

Grwral Sureey. | bocly| Defect | Falee] WTTF | Flekataty | Avidabily l:-m-l Codt | Testdaind | Fokd

wpl  noutsfor iepor | pechils | rate | profle  pealis MTIWEMHMMMBMM
. =l

I Shaw profis or erdee growdh pesod

Miorih aien ooy | Dalocts [ Lipgem bmarc Liowwst Bounc | Crbical [iofocts | Lippes boure| Lo bosrc
THEM g 266 [T T F3]
V7 &) &2 T 25 78 1,537 17|
] 1= - 2501 = 178 113
i M EE fr T | ng 1843
T = 2 Md 672 1513
& 1am nr 2 (= 1
fl asid  Stan 435 116 £4
) Fe 2 407 10 ey
i meE 1604 a8 170
) L7 1. - 5 820 1502
11 6 = 22115
[ T -

MTTHEe2  LNENel WMl
Avaladity 8 reed selamin el WEMIed MGl
Avecage pealabilty dergishnin | WS ITed W IEMHel  WITEded

Cpmnduc g\ SWAFRE S TIMATE \ 38 Mondn Wnmaprog. medh

i |

Bourek
dednch typet ]

a2 deleck tppes thal panell in comechive ot

s resy i o |esaineg 1

'm_;| T Feided] hnbects initnad of
rroeied ek
S’ oosdty
L boardi 2 jup L6873
m % s

Hezmial | ipponi Benrd [ oo Eizarad

[ETH e 1360
15m 2E13 O
BN 15 T
IE =7 3
e (T3 11731
b ] 153503 2 ¥6Te-3
17512 TS A Bl
2172 1284 BES
100362 [T ores
5712 k] NI
4 I8 17
o0 127 W5
1424 ESE B

Figure 2.20. View profiles.

Reliability Prediction Approach for MAS

29



Chapter 2

Reliability Testing Tools: State of art

A profile is a metric with respect to some particular point in time.

b=

Selsct a trend

Unreliability
Unavailability
Defect profile
Critical defect profile

Component defect density
Component critical _delect density

Cost Test datad
scenarios | growth

Field

Data Pririt

Use my ratio of testing to

inds !SD"/.-, vj [ fielded defects instead of

rnodel default

Testing defect profile 0 2432559 b ypes]
U 2528 261 E Size Growth
275250; lz¢] bouncs 10 e 15
Critical B 2945811 e e
M-I_rF B 3118507 idefect types that result in corrective action
3 3301733
In hﬂurs N 3595 153 | Mominal | Upper Bound | Lower Bound
B 4020 532 2143 2.381 1315
B 4516385 23 £19 A28
B 5062068 481 533 129
0 5673671 17 133 %
B 6359.188
z 1.604e8 1.89%8 1.308e8
Months after delivery 34766 40335 270505
6.097e6 72266 4.9746
Expoitimage | Copy image T
ki |l gfubuag[d Print ] 6.236 5.266 7.644
288,151 247 981 369.666
The critical operational MTTF prediction is larger than those in our database. You may want 164.015! 138504 201.047
to investigate the prediction general inputs,
1.247 1.053 1.529
ATE ot . . G 099539 TEaT B2r 5763 49,595/ 73933
Average MTEI during release 723923 £11.326 887.379 32.803 2r.7i 40.209
Reliability predictions .
End of test reliability 94352762 9334783e2) 95366392
Reliability at next ielease 99.67428:-2 99.85393e-2 99901992
Average reliability during release 99.77923e-2 997386222 998159862
|| Availabilty predictions
End of test availability 95.78066e2  95.04201e2  9R.53088e2
Avallability at nest release 99.90476e-2 99889342 99.92674e-2
Average availability during release 99832732 99.80205e-2 99.8F355e-2|
C:AProgiam Files [xB6])\Fi M. ‘s Edition\d .mdb

Figure 2.21. Trends panel.

Press the Trends button. Select any one of the trends from the list. The trends are graphical

representations of the profiles and results. You can save them as a bitmap or copy to clipboard or

print; we can select or even reduce the result metrics, by using the ‘FILTER REPORT’ option.

Step 4: Compare the results to others in our DB.

If we select the ‘Compare RESULTS’ option in the previous panel, it allows us to compare results

of different projects in the same domain.

|II Compare wuﬂwlicalinn type to database

ol |

our project -
Piedicted- 'SuveyA  SuveyB  SEICMMi  Opportuniies  Dbstacles mﬂfs‘:{ut
percentie  scoe o] of assembler]
% 285 0s 25 3 25 0.250
Compare by [Peicentie -]
Peicentle |Surveyd  |SuveyB  [SEICMMi | Opposturities] Obstacles  [Actusl defect denzity « |
5 7 8 45 3 0 1804 i |||
5 A 1481 1 ] 1 181554 |
5 275 5 2 2 2 182857 b
5 % 13 15 15 3 227195274 |
5 7 1215 15 2 1 238574
5 2763 12 15 5 2 24 '.
5 x5 E z z 2 5732 |
5 pc| 512 1 4 1 2B7603
5 2 EXE 1 4 1 294118
5 ® 125 15 25 1 EL
5 167 865 1 25 3 Poces i
i
'
<] | |
heel i 4

Figure 2.22. Results comparison.

Reliability Prediction Approach for MAS

30



Chapter 2

Reliability Testing Tools: State of art

It allows us to conclude decision and get a better view, and see similar projects.

2.1.2. SOFTREL advantages

Designed for real word systems.
Test of reliability of each activity.
Project documentation.

Provides practical feedback for the users.

Provides higher reliability due to overlapping tests.

2.1.3. SOFTREL disadvantages

Time and resources consuming.
Excessive calculations.

Necessitate experts’ helps of the domain.

2.2. MEADEP - MEAsure and DEPendability

MEADEP is a failure data-based dependability analysis and modeling tool of critical systems,

Dependability measures created, have two sources either directly obtained from data, such as

failure rate and event distribution, or evaluated by combined use of failure data and

dependability models.

It consists of four software modules: a data preprocessor for converting data from different

formats to MEADEP format, a data analyzer for graphical data presentation and parameter

estimation, a graphical modeling interface for building block diagrams (including the exponential

block, Weibull block, and k-out-of-n block) and Markov reward chains, and a model solution

module for availability/reliability calculations with graphical parametric analysis.

The result of MEADEP consists of results obtained from data and results evaluated from models

[33].

Figure 2.23 illustrate the components of MEADEP. All modules are integrated with the graphical

| Graphical User Interface

I ry Y

J

r/- — Data
\Source Data —»|Pre-Processor
— (DPP)

Model
Generator
(MG)

e
e

.

odel Librany™
x’\_ Files _/J
‘*M"—Graphice:l'b

‘\J{g{u_:udeling File

/ MEADEP T Text
\x_Da.tabase A odehng F|Ig)

~Tatch Proc™, | Data Editor Mode?
pecmcatlcun ™ & Analyzer |4 | b Evaluator
l\ (DEA) (ME)
F'arameteh __i .
7 Results ¢ Results
'\, from Data/’ . from Model ./

Note: Rectangles reprazent software modules. Ellipsss reprezent data files.

Figure 2.23. Layout of MEADEP [33].

user Interface (GUI).

Reliability Prediction Approach for MAS

31



Chapter 2 Reliability Testing Tools: State of art

« The data preprocessor module (DPP) interacts with the user to convert source data to
MEADEP internal data. Source data can be manually generated structured reports, usually in
database format or computer-generated event logs.

« The Data Editor and Analyzer (DEA) module is used to edit internal data. Data and perform a
statistical analysis of the data. The parameter values estimated from the data in this module
can be inserted in the text modeling file generated by another module, the model generator
MG) [33].

« The MG module provides a graphical user interface that allows the user to draw model
diagrams and then generate text modeling from the diagrams file that contains the
appropriate model specifications for the solution. Template diagrams can be imported from
library files containing predefined templates to save development time.

+ The Model Evaluator (ME) module produces results based on: the specifications and

parameters of the model in the text modeling file.

2.2.1. MEADEP modules

a. The DEA module: Works on data converted by the DPP module and performs statistical
analysis. It has three categories of functions: data editing, graphical analysis, and parameter
estimation.

In addition to individual parameter estimates, it can generate multiple parameters and
confidence intervals by processing a query file.

The module can also plot, over a histogram, five different analytical probability distribution
functions determined by the sample mean and sample variance: exponential, gamma, Weibull,
normal and lognormal. Meanwhile, the estimated parameters for these functions as well as the
results of the Chi-Square and Kolmogorov-Smirnov goodness-of-fit tests [34] are provided on the
screen.

b. The MG module: Is a graphical “drag and drop” interface for constructing dependability
models. A model is developed hierarchically, from the top level to the bottom level, forming a tree-
structure. Each node in the tree is diagram of serial or parallel reliability blocks, a diagram of
weighted blocks, or a diagram of Markov reward chain.

The user can navigate from one diagram to another to build models.

c. The ME module: Has two principal functions: edit the text modeling file (publisher) and
evaluate the model (evaluator). The editor allows the user to review templates and settings, and
then see immediately the effects of the revisions on the results.

The evaluator provides regular results and parametric analysis. For the regular results, the
modeling file is evaluated once and the results of all the diagrams (models) listed in the
specification are generated.

In parametric analysis, the user specifies a loop and several sets of results are generated

graphically for one or more diagrams.

2.2.2. MEADEP on screen
The MEADEP installation program will guide you through the process and at the end of the
installation [34].

Reliability Prediction Approach for MAS 32



Chapter 2

Reliability Testing Tools: State of art

In the end of the installation you should find the following MEADEP modules: Data Editor &

Analyzer, Data Pre-Processor, Model Evaluator, Model Generator, and User’s Manual.

a» Channel - Data Editor & Analyzes
Fie Detabase-Opsistion RecoctOpeistion  Fiskd-Opeistion  Graphicaléndyss  StabsticeEsimaion  BatchProcessing Miew Hep

|| ol v n] 7[R

For Help, press F1

Event 1D ’—“ Type: ,—Haldware el l—]
[strig) Jsting] [1 o1 mare]

Dale: 1995./02/01 Tirmea: o0:00:00 Duration: I]

[ypyromyad]) |hbemre 5] [haurz]

Lacaticr: Subeystem: Comparent: |DFU

[Erng] |#ting) [stiifg]

Cauge: Critic:alicy: Cowziage: I]

[string] etring) Do)

Holes :I
[strrg]

UseiField1: | UszerField2 I

[strrg] [etring|

UzeField3: UzerFieldd: I

Istrral [strial

Nurrber of 1gcords i cunent selection: 12 Indzs of curentrecoit 1

Figure 2.24. Sample Database [34].

Click on the Data Editor & Analyzer (DEA) icon on the desktop, after the DEA main form

appears, choose the “Open” command under the File menu and then follow the instructions below:

1. In the “Open” box, go to the C:\MEADEP\Example directory (unless you specify otherwise),

pick the database file called “Plant.mdb” and then click the “Open” button.

2. In the “Choose Table Name” box, choose the “Channel” table and click “OK”.

It contains an example database, contains information on component failures in an assumed

digital safety system in a plant for a period of two years (1995/1/1 to 1996/12/31). This form

contains 12 records that holds information’s about the possible failures. We can draw this

information’s using the DEA graph capabilities:

« Select the “Event Pie Chart” option in the Graphical-Analysis menu.
+ Under “Select a field by which to draw chart” choose “Component” and click“OK”.

«  Specify “4” for the number of top items and click “OK”.

Channel - Event Distribution by Component

16780 (2/12)

16.7% {2/ 12)

13.3% (4712)

23.3% (4/12)

10

(=] |

Fower
0s

Figure 2.25. Example of Event Pie Chart [34].

Reliability Prediction Approach for MAS

33



Chapter 2 Reliability Testing Tools: State of art

We can also draw an MTBE Line Graph (Mean Time Between Events Line Graph).

Channel

300
- .
§ 2500\
as) .,
2 AN
5 200 . R
‘e F—
2 T &
5 1501 _ - n
2 ] L] » " —
£ 100} " e
.  ———— ¢

——
5 t t

Mar% May95 Jul® Sep93 Nov9 Jan9 Mar9 May96 Jul9 Sep 96

—®— Lower Bound L Mean —&— Upper Bound

Figure 2.26. MTBE Line Graph [34].

1. Select the “MTBE Line Graph” option in the Graphical-Analysis menu.

2. Choose a value of 0.8 for the confidence level, also, enter the amount of time to be considered in
the calculation.

For this example, let us pick a time interval from January 1, 1995 to December 31, 1996. Finally,
enter “3 months” for the time between plotted points and click “OK”.

2.2.3. MEADEP avantages

- Based on measurements dependability.

+ Dedicated for critical systems.

« Ability to handle sensitive parameters.

2.2.4. MEADEP disadvantages

« For expert users.

« Require previous domain analysis.

« Executed on windows OS only.

2.3. SREPT - Software Reliability Estimation and Prediction Tool
SREPT developers knew the importance of keeping track of the software quality during the entire
life cycle development of the software. It has several techniques adequate to each phase. All of it
goes under a unified framework for software reliability estimation and prediction. SREPT
combines the capabilities of the existing tools in a unified framework [35].
SREPT supports the following two approaches to software reliability prediction—the black-box-

based and the architecture-based approaches.

2.3.1. Design and architecture of SREPT
a. Approaches based on a black box

Black box approaches treat the software as a whole regardless of its internal structure. The

following measures can be obtained to help predict the black box:

+  Software/process product metrics include number of lines of code, number of decisions, loops,
the average length of the variable names and other static attributes of the code, or

characteristics of the process.

Reliability Prediction Approach for MAS 34



Chapter 2 Reliability Testing Tools: State of art

Test coverage is defined as the ratio of potential failure sites exerted by test cases divided by

the total number of potential failure sites in the study [35].

Inputs Processing Outputs
I— Saftware
Product/Process Estimaie of the
Metrics rumber of fawlts
B ]
L
A
c Predicted
1. failure intensity
K Test coverage 2. # faults
. 3. reliability after release
o
X
Predicred

A Sequence of ENHPP o« | I failure intensity
P Interfailure times model % mﬁmy aﬁ'c:f:jem
P <. coverage
g Interfailure Optimization Predicted release time
A Times & Rel == & ENHFP and
c Criteria Model Predicted coverage
H

. NHCTMC [12] Predicted

Failure intensity 1. failure Intensity
Debugging policies Discrete-event 2. # faults remaining
simulation {16] 3. reliability after release

A
R
Cc —
H
1 Arch - Analytical
T refitectre | modeling (147
E
c |  Predicied Reliability
T and
u Perfi
R
E Failure bekavior “a—{ Discrete-event
A af comp tmulation (15]
P L
P
R

Figure 2.27. Architecture of SREPT [36].

BLACK-BOX BASED QUANTIFICATION |

AN

PRODUCT/ | TEST ' INTERFAILURE,
PROCESS COVERAGE | TIMES
| METRICS | | DATA
| TEST COVERAGE | TEST COVERAGE
AND PRODUCT/ | AND INTERFAILURE

PROCESS METRICS TIMES BASED MODEL
BASED MODEL | _

.

Figure 2.28. Black-box quantification [36].

+ Inter-failure time data refers to the times observed between failures during software testing.
When product / process metrics are available, the total number of defects in the software can be
estimated using the fault density approach or the regression tree model. In the fault density
approach, experience from similar projects in the past is used to estimate the fault density (FD) of
the software as: FD = total number of faults + number of lines of code.

Now, if the number of lines of code in the current software is INL, the expected number of faults

can be estimated as: FD = NLFD.

Reliability Prediction Approach for MAS 35



Chapter 2 Reliability Testing Tools: State of art

« The regression tree model is a goal-oriented statistical technique that attempts to predict the
number of failures in a software module based on static complementarity metrics.

We use historical data sets to build the tree which is then used as a forecasting device for the

current project. Inter-failure times data obtained from the test phase can be used to parameterize

the ENHPP model (non-homogeneous enhanced Poisson process) to obtain estimates of the

intensity of the failure, the number of remaining faults, the reliability after the publication and

coverage of the software.

Coverage functions include Exponential, Weibull, S-shaped, Log-logistic [36].

b. Architecture Based Approach

Software reliability predicted using the internal software control structure. This assumes

additional importance in assessing the reliability of modern software systems that are not

monolithic entities, but are likely to consist of several modules distributed around the world.

SREPT can predict reliability based on:

« Architecture of the Software: specify how the different modules in the software interact, and
are given by the inter-modular transition probabilities, or in a very broad sense, the
operational profile of the software.

The architecture of the application can be modeled as a DTMC (Markov chain in discrete time),

CTMC (Markov chain in continuous time), SMP (Semi-Markov process) or DAG (directed acyclic

graph).

The state of the application at any time is given by the module running at that moment, and state

transitions represent the transfer of control between the modules.

s Failure Behavior: This specifies the behavior in case of module failure and that interfaces
between modules, in terms of probability of failure (or reliability) or failure rate (constant /
time dependent). Transitions between modules may be either instantaneous or there may be

an overhead in terms of time.

2.3.2. SREPT advantages
+ User friendly.
« Graphics supporting.

« Estimation and prediction tool.

2.4. SMERFS- Statistical Modeling and Estimation of Reliability Functions for Software
The Statistical Modeling and Estimation of Reliability Functions for Software (SMERFS) is one of
earliest tools that proved his efficiency, it incorporates eight different models, due their
performance in comparative studies and for embedding collected data from homogeneous testing
domains. IT incorporates eight different models, four using as input data the time between error
occurrences and four using the number of detected errors per testing period.

The former includes: Littlewood and Verrall’s model [37], Moranda’s geometric model [38], John
Musa’s execution-time model [39], and an adaptation of Goal’s non-homogeneous Poisson process
(NHPP) model to time between-error data [39].

The latter models include: The generalized Poisson model [35], Goel's NHPP model [40], Brooks
and Motley’s model [41], and Norman Schneidewind’s model [42].

Reliability Prediction Approach for MAS 36



Chapter 2 Reliability Testing Tools: State of art

The process of determining the parameters of these models based on maximum likelihood and

least squares.

2.4.1. The main functionalities that SMERFS provides [43, 44]:
« Data input.

« Data edit.

« Unit conversions.

« Data transformations.

- Data statistics.

« Plot(s) of the raw data.

«  Model applicability analyses.

+ Execution of the models.

The previous represents the SMERFS structure, which gives us more general idea on the

different steps that can be established with this tool.

Data input
Smerfs offers two ways to enter the input data by a previously created ASCII file or the computer
keyboard, with the ability to append new data on the currently executed; a different dataset

cannot be analyzed only at the end of the program.

Edit module
In case of error during data input or discovered errors in the error vector values this module
allows altering it instead of destroying the entire data file a various modification options can be

performed like insert, combine, changing or deleting specified elements.

Unit conversions module

It concerns the time unit’s transformation from unit to another, its useful in handling with
history files, with a specified scale:

a. 60.0 for seconds to minutes.

b. 60.0 for minutes to hours.

c¢. 24.0 for hours to days.

d. 07.0 for days to weeks.

e. 04.0 for weeks to months.

f. 12.0 for months to years.

Transformation module

It allows the scaling of a software error data vector. With Five types of transformations are
allowed as well as options for restoring the data vector in its unprocessed state and listing the
data. The available transformation options are: LOG (A* X(I) + B), EXP(A * X(I) + B), X **A, X+A,

X * A, restore the data, and list the current data.

Statistics module
This module generates summary statistics of the software error data, and its automatically

generated without the user interferes.

Reliability Prediction Approach for MAS 37



Chapter 2 Reliability Testing Tools: State of art

From the obtained values we mention: MEDIAN OF THE DATA, LOWER & UPPER HINGES,
MINIMUM AND MAXIMUM, NUMBER OF ENTRIES, AVERAGE OF THE DATA, SKEWNES
& KURTOSIS...

Raw data module

'Raw data' expression is to distinguish real data and not predicted by the tool, this module
generates plots of this data, which are the result of an internal tracer.

The internal plotter produces very coarse graphics to help the user during a quick interactive

review of the data.

Model applicability module

SMERFS performs analyses to determine the models applicability on the failure data

All four analyses Accuracy (Prequential Likelihood), Bias, Noise, and Trend) have been
implemented for the execution time models. Only the Accuracy has been implemented for the

interval data models.

SMERFS on screen
We will try to demonstrate the main steps that we will apply:
Step 1: Running SMERFS.

B sMERFS 3 Lo [ . |

File Data Conversions Transformations Executions Setup Help

Figure 2.29. SMERFS home panel.

B s el o e
File _Cnnwrshns Transformations  Executions Setup  Help
MNew b
Append L
Plots L]

Figure 2.30. Data option.

Reliability Prediction Approach for MAS 38



Chapter 2 Reliability Testing Tools: State of art

The header toolbar contains all the options from data, transformation, execution ...etc.

Step 2: Choosing the data set.

The first thing we need to enter a data set
«  Select “Data” from the toolbar.

+  Select “New”.

+  Select “File”

.y

SMERFS 3 I_ =i ul=d
File !D.lta] Conversions Transformations Executions Setup Help
[ [0 3 Drata Entry
Append ] File
Plots ¥

Figure 2.31. Data addition.

If we choose “Data Entry” instead of “File” and specify the data, Data Type and Error History
manually, The SMERFS package contains data samples that we can execute or we can create our
own data using NOTEPAD, Respecting the SMERFS data format which can be software, system

or hardware time between error or interval counts as example we have:

For Software “Time Between Errors” the format is:

Column 1 Column 2
“Elapsed Time” “0” to denote a software failure
1.00000 0
1.50000 0
2.00000 0
2.50000 0
For Software “Interval Counts” the format is:
Column 1 Column 2
“Software Error Count” “Interval length” usually normalized to 1 (1

day, week ,,,etc.)

20.0 1.0
18.0 1.0
45.0 1.0
62.0 1.0
63.0 1.0

In our case I will use a sample from the SMRF TOOL package; a window will show up. In this
window we can choose the data files for the execution, another window will be opened (figures:
2.32 and 2.33). This window is to specify the data type executed with two options time between

failure data or interval data counts. We will choose TBF.

Reliability Prediction Approach for MAS 39



Chapter 2

Reliability Testing Tools: State of art

- Cuvrir u |
Regarder dans : || SMERFS3 | = & eF E
Nom ’ Modifié le Type
|| hard_thf.53D 13/03/200212:27  Fichier 53D
L soft_int.s3d 06/03/2002 16:39 Fichier 530
| soft_tbf.53D 12/03/200212:42  Fichier 53D
| system_thf.530 06/03/2002 11:44 Fichier 530

4

M |

Mom du fichier : |

Quvrir

Types de fichiers :

| Smerfs Data (~.530)

[ Quwiir en lecture seule

O]
| Annuler |

.

Figure 2.32. File selection.

Specfy Data Type to be Processed

—Data Types

& Time-Between-Failure Data

7 Interval Data Counts

Ok

Cancel

Help:

Pl

Figure 2.33. Data type.

Input File Format

T mp— e

COLUMM 1

COLUMN 2 COLUMMN 3

COLUMM 4

ITirne Between Failure Units ;I IFaiIure Type Flag

;l ISeverity Lewvel

COLUMMN & COLUMN B

INumber of HAw Failures
COLUMM 7

LI IHM Effectiveness Factor ;I

ot Applicablel

COLURMMN 8 COLUMM 9

INot Applicabls

Help

LI INot Applicable

;I INot Applicabls

o]

| Cancel |

File Fead Status |

Figure 2.34. Input file format.

In window shown in figure 2.34 we can indicate a parameter to each column. We click ok to

proceed.

Step 3: Execution option.

"B SMERFS 3

ol @

| File Data Conversions Tﬂmfnmﬂinml&uminmi Setup Help |

Numerical Method b | v | Maximum Likelihood
Severity Level Reduction 4 Least Squares
Model Execution |

I

Figure 2.35. Execution panel.

Reliability Prediction Approach for MAS

40



Chapter 2 Reliability Testing Tools: State of art

In Execution we can choose the Numerical Method wanted Maximum Likelihood or Least
Squares in choose the Maximum Likelihood method.

To choose the models we click: Execution, Numerical Method and Model Execution.

Time-Between-Failure Model Executions

Software Reliability Models Hardware Reliability Models
W Geometric Model r
W Jelinski/Moranda Model -
W Littlewood and Yerrall Linear Model .
[ Littlewood and Yerrall Quadratic Model ::
[ Musa's Basic Model m
[ Musa's Logarithmic Model System Reliability Madels
[ Mon-homogeneous Poizzon Model W
[~ Select Al Software Models o
(* Model Applicability Analyses
Statistics | ’Tl Cancel Help

Figure 2.36. Models execution.

In this window we select the models and we can use the model Applicability Analyses option, for

accuracy comparison of models.

Model Applicability Analysis

- Applicability Analyzes -

el g

u]
¥ Accuracy ¥ MNoise
Cancel
[ Biaz I Trend
Help
[~ Select Al

Figure 2.37. Model Applicability Analyses.

In this panel we can select the model Applicability Analyses methods.

Processing Status Report of Selected Applicability Analyses and Models

Accuracy Bias Noise Trend Models
Geometric Model: v o v [ v
JelinskifMoranda Model: ™ m ~ - ~
Littlewood and Verrall Linear Model: v o ~ [ r
Littlewood and Yerrall Quadratic Model: [ m I I I
Musa's Basic Model: o m o - o
Musa's Logarithmic Model: B m B - B
Mon-homogeneous Poisson Model: r r r r r

Figure 2.38. Analyses report.

Then the result of the Accuracy Analyses is presented in figure 2.38, the selected models are

applicable.

Reliability Prediction Approach for MAS 41



Chapter 2

Reliability Testing Tools: State of art

Execution Summary for Software Time Models

HazFate:
IIF:

CIF:
IMTBMF:

THOF:
TNOFR:

Purf Lew:
K5 Dist:

CMTEMNF:

|CHN| TR | O O I 2

o Ji- Jjo- Jio Jio- Jfjo o

O T O (I | |

o Jor Jio i o o o

N TR | O ) | O 2
05614 nia n'a n'a n'a ria n'a

{06432 01735 [20610: |0 i o |nde0e

[n.0124 00057 [o.o2ec o 0 jo |oooze
nfa nfa  nfa  nfa |0 nfa  n/a

{8217 |375.20 |3z2821 |0 Jo Jo n‘a
n‘a Im n'a n'a ID— nfa  |30.431

e |n.452: nfa  nfa

0.980F [0.984F n/fa nfa

e |1.4311
ID ID.SEZE

oz [ o[ O

]
]
| ©

| ©

[

Saftware Data Statistics

Murnber of Entries: 29

Average of the Data: 13.94

Median of the D ata: 135
Lower Hinge:

Upper Hinge:

Mirimum:

b airminn: €

EENENEFE

Standard Deviation:

Y ariance: 103

Skewness: 0. 700!

Furtosis: 0.334
Frint | Help |
Plot | ok |

Figure 2.39. Execution Summary.

In the execution summary panel, the green values are successful fit for, and the red values not

applicable models, we click on Plot to draw the graph.

In the right column we have the software Statistics with multiple values like:

+ The median of the data: It represents the value such that 50 percent of the data have values

below it; analogously, 50 percent of the values are greater.

 The minimum and maximum values are, respectively, the smallest and largest values in the

data base; the number of entries simply shows the number of points in the data base.

« The lower and upper hinges represent a breakup of each of the two sections of the data,

determined by the median, into two equal parts. They both are a measure of the spread of the

data.
Step 4: The plot.

EEEHEE

i o e

5
BE

BEEbEEEbokeEaSeaEEsEERERaEE

"

EoEE
BHBEER

e

i

Lot |

i e SR

Raw and Predicted Data Plot

1

LT

B

-

Bese

T

LT

mit

—f

- g—

B— =

Figure 2.40. RAW and Predicted Data Plot.

Reliability Prediction Approach for MAS

42



Chapter 2 Reliability Testing Tools: State of art

In the left side we can scroll to see the models selected values and the TBF and Severity level in

time. In the top of the panel we have few options like the 3D-glasses. And we can see other

options like print and ZOOM option to know the exact coordination’s of any point in the plot and

other options.

(e ———

»
=]
g

[FUne M SevertyLevel [MGeonetic [M1{ &5 [mm[=]ea (2| BJULIE 58] @[]

1.00 1.00 1.78
= e = Raw and Predicted Data Plot
25 o 258
25 1 s
0 0 e
by 2m <
o 0 w2 | tom
& 3 52

m 1 o
e 2m e

a5 o 7%
10 s a12
1200 0 1045
1m0 o e w000
150 0 e

130 e 15
2100 180 1801
22,50 100 2083 =

2500 100 2364 L
28.00 1.00 27.08
30.00 1.00 31.03 50,00

i

I

l

90,00

\

\

!

\

[

70,00

l

~J.
o/
P

3650 100 %56
200 100 07
4750 100 558
.00 100 5348
51.00 100 61.28 30,00
51.00 100 7021
53,00 100 8045 20,00

s

f f f f
o B 12 12 28 30
Failure Number

Figure 2.41. Plot on 3D.

2.4.2. Advantages of SMERFS
From the features of the SMERFS we mention [43]:

Maintainability: Ensure it by complying with the structured programming standards in a
Naval Surface Weapons Center (NSWC) publication, this document direct code generation
toward top-down design.

Additionally, the document contains scenarios with details author, purpose, description,
Restrictions, local glossary, errors, associated subprograms, references, language declarations,
and formats.

Complete Reliability Analysis Environment: IT aims the completeness of the output, with the
eight models, additional modules integrated like data input, data edit, transformations of the
data, general summary statistics of the data, plots of the originally collected data, plots of the
original and predicted values according to the fitted model, and a goodness-of-fit module to aid
in determining the model adequacy.

Interactive in Nature: Giving the user the experience of control was important factor, and this
experience was guided by the choices that the user makes while the program execution and it
was established by SMERFS interactive mode.

Through various menus and questions, and the user inputs a response via the terminal
keyboard. Free-format input of user responses was elected in order to reduce potential
operational errors.

Error Detection Capability: The program has a complete error detection code in place.

This significant it was designed with the ability to emit information error message and still
guided by the user, if it enters an illegal value response to a prompt or to the numeric

procedure it can jeopardize the select of the proper model.

Reliability Prediction Approach for MAS 43



Chapter 2 Reliability Testing Tools: State of art

Machine Transportability: Is designed to be compatible with all operating systems. It has been
written in perfect accordance with FORTRAN V declarations approved by ANSI. This should
minimize the transportability difficulties of the machine, but not eliminate all the problems.
Therefore, SMERFS has been divided into two sections, a library and a "pilot".

Currently, two of these drivers are available, one for a VAl 11/ 780 with an operating system
(OS) VAX / VMS 4.4 and the other for a 170865 CDC with a NOS 2.2 OS. For all other system,
the only driver modifications would be the Date and Time functions, possibly the graphs
package, and the input/output instructions for special I/O’ characteristics imposed by the

operating system.

2.4.3. SMERFS Disadvantages

3.

complexity of the program construction
More chances of the human error.

Lack of specification due to the number of models embedded.

Comparison

The reliability tools comparison is a way of showing the point of strength and weakness of the

compared tools and common points also. There are different articles who worked such

comparisons with different aspects and criterions like [29][52]. In this part we will do a

comparison between the tools viewed and detailed in the previous part.

3.1. Criterions

Based on different criterions that we will explain first:

Language: A programming language is a vocabulary and set of grammatical rules for
instructing a computer or computing device to perform specific tasks. Both tools CASRE and
SMERFS uses FORTRAN language which is mostly wused in numeric
computation and scientific computing, SOFTREL created with C language an efficient
procedural programming language, MEADEP coded with CV++ language which is Visual C++
a Microsoft implementation language of C++, SREPT coded with java which is class based

object-oriented language.

Operating system: The OS factor is very important because it reflects the tool
transportability. MEADEP, SOFTREL, SREPT executed on WINDOWS environment, CASRE
and SMERFS UNIX-WINDOWS environment.

Number of models: This means the evaluation models and the reliability test models. CASRE
has 14 models plus 2 evaluation models, SMERFS with 8 models plus 4 evaluation models,
MEADEP based on Markov chain model, SREPT based on ENHPP model, SOFTREL based on

piecewise-Poisson Markov processes with explicitly defined event rate functions.

Models for Estimation/Prediction: Estimation is done with the failure data of the software
but the prediction is done throw surveys or measurements evaluation, CASRE is an estimation

tool, SOFTREL, MEADEP, SREPT, and SMERFS are hybrid tools.

Reliability Prediction Approach for MAS 44



Chapter 2 Reliability Testing Tools: State of art

« Phase of application: The first approach is assessment of the system in a later phase,
typically, by test like CASRE and SMERFS the second approach modeling of a system in the
design phase which used mostly in the reliability prediction during the system life cycle like
MEADEP, SOFTREL and SREPT.

« Input type: Mostly there are three sources of input to apply reliability estimation or
prediction. SMERFS incorporates eight different models, four using as input data the time
between error occurrence’s and four using the number of detected errors per testing period.
CASRE input in the form of inter-failure times or failure frequencies. SREPT input consist of
Complexity Metrics, Inter-failure Times & Release Criteria, Inter-failure times, Architecture,
failure behavior of components. Input to SOFTREL consists of a single file that specifies the dt
time slice, about 70 traits of the software project and its reliability process, and a list of
activity, schedule, and resource allocations. Input to MEADEP are Data structured failure
reports containing information on failure time, location, type, impact and other failure

characteristics and reliability blocks.

« Input format: Can be an ASCII input data set (contains multiple fields: set of values
consisting either of the time between discoveries of defects or the number of defects discovered
per time period, or can be one of inter-failure times data only, inter-failure times and coverage
data, or estimated faults and coverage data) like: CASRE, SMERFS, SOFTREL, SREPT. Or
like MEADEP (which can be in a variety of formats such as ASCII Delimited Text, Access,
dBASE, Paradox, etc.).

«  Output type: All the tools output has similarity points and differences due to the model’s
nature applied in each model. CASRE output consists of inter-failure times/failure frequencies
actual and estimated, cumulative failure actual and estimated, and reliability growth actual
and estimated. For SREPT the output is estimation of the number of faults, failure intensity,
fault remaining, reliability, estimated coverage. SOFTREL output is in form of facts data
structure consists of products CPU, resources, fault, failure and outage values. MEADEP
output is failure rate, recovery rate, and coverage, Time Between Events, Time to Recovery
(TTR) distributions, event distribution, Mean Time Between Events distributions. Finally,
SMERFS output consist of Total number of faults, Number of faults remaining, expected

reliability for a specified time, Number of failures expected in a specified time.

« User friendly: We mean by it the ease flow of the tool use, by the available menus and their

simplicity, which is a common option between all the tools.

« Graphics: This option is very important. MEADEP and SREPT both offer this option with

multiple views of the results like histogram graphs, pie chart graphs and line graphs...etc.

Reliability Prediction Approach for MAS 45



Chapter 2 Reliability Testing Tools: State of art

3.2. Comparison table
In the next part we will summarize all the above criterions for each tool in a table:

Tools CASRE SMERFS | SOFTREL SREPT MEADEP
Parametre
Application Phase TEST Life Cycle
Models Type Estimation Hybrid
Language FORTRAN FORTRAN C JAVA VC++
Operating System UNIX/WIDOWS WINDOXS
Number of Models 16 14 2 1 1
Failure data 4 v v v v
Input
Type [Architecture X X X v X
Parametre X X v v v
Input Format ASCII TXT *
Reliability v v v v v
Output
type : | Total Failure v v/ v/ v/ X
Remaining
Failure v v v v X
Graphics : X3 X3 X 2 v 0 v 2
USER FRIENDLY
Table 2.1. Reliability tools comparison.
X :no.
v yes.

* : ASCII Delimited Text, Access, dBase, Paradox, etc.

Hybrid: Estimation and prediction tool.

3.3. Tools ranking

Tool Ranking
SREPT 1
MEADEP 2
SOFTREL 3
SMERFS 4
CASRE 5

Table 2.2. Tools ranking.

This ranking is based on the previous tools study, and mainly on our criterions that we set in the

comparison; as we see the hybrid tools has better outcomes than the estimation tools.

Reliability Prediction Approach for MAS 46



Chapter 2 Reliability Testing Tools: State of art

Conclusion
In this chapter, we detailed each tool going through their main functionalities with their

interfaces, advantages and disadvantages.

We concluded with comparison between the tools, proposing parameters for comparison. As a
conclusion, the reliability testing tools showed their performance in the industry, as obvious
result the hybrid tools that are based on both estimation and reliability prediction gives better
results due to the early detection and faults avoid in the design phase with the prediction models
and then validation of this results with the estimation models in the test phase leading to

reduction in time and cost consumed in the software construction.

Reliability Prediction Approach for MAS 47



Chapter 3 Multi Agent Systems

Chapter 3
Multi Agent Systems

"It is strange that only extraordinary men make the discoveries
which later appear so easy and simple.”

Georg C. Lichtenberg

Introduction
Multi-agent systems (MAS) have received considerable attention and have been developed in

different disciplines to solve complex problems by subdividing them into smaller tasks.

In this chapter we have entered to the Distributed artificial intelligence (DAI) then to one of his

subfields Multi Agent Systems concentrating on the agents as an entity.

1. Distributed Artificial Intelligence

Distributed artificial intelligence (DAI) is a subfield of Artificial Intelligence that is used to solve
complex real-world problems [45].

It comprises three different areas. These are parallel Al, Distributed problem solving (DPS) and
Multi-agent systems (MAS).

Multi-agent systems deal with the behavior of the computing entities available to solve a given
problem. In a multi-agent system, each computing entity is referred to as an agent [46].

According to P.G. Balaji and D. Srinivasan ‘MAS can be defined as a network of individual agents
that share knowledge and communicate with each other in order to solve a problem that is beyond
the scope of a single agent.’

2. Agent

According to Russell, 1997 an agent is an entity that perceives its environment and act on it. And
according to IBM, Smart agents are software entities that perform operations in the place of a user
or another program, with some kind of independence or of autonomy, and to do that they use some
kind of knowledge or representation of goals or desires of the user.

The goal of each agent is to accomplish his task with conditions as a deadline. the agent first detects

the environment settings. With this data, the agent can acquire knowledge about the environment.

Reliability Prediction Approach for MAS 48



Chapter 3 Multi Agent Systems

It can use the knowledge of his neighbors. This knowledge as well as the history of previous actions
undertaken and the objective are fed by an inference engine that decides the appropriate action to

be taken by the agent [47].

Agent 2
Goals |]|i5[nr}f| Meighbour
T cnovw leds
Agent 1 _ Sense i | A
- . = Action
Goals | | History | | Weighbour | | ‘ Inference ‘ ‘--
- knowledpe .
Sense ) i .
Action
I Inference —

Figure 3.1 The structure of an agent [47].

From these previous definitions we conclude that agent is a smart entity that is driven by it goals
with the ability to react and analyze his environment. through the features that it has like [46]:

« Sociability: This is the ability of change information between agents as form of a request.

« Autonomy: the ability to perform actions independently.

« Proactivity: based on its history, the detected parameters, and information from other agents to
predict the possible future actions, as a result, agents take better actions to serve their goals.
An agent works alone is able to take actions (autonomy), the actual profit of the agents can only to
be exploited when they work in collaboration with others agents. The result of this collaboration is

multi-agent systems (MAS).
3. Multi-Agent Systems
The agents play different roles in MAS but all for serving a common goal that all share, it's more

obvious with the MAS main features:

Features Categories
Leadership Leader-follow
Leaderless
Decision function Linear
Non-linear
Heterogeneity Heterogeneous
Homogenize
Agreement parameters First order
Second order
High order
Delay consideration Time delay
Without time delay
Topology Static topology
Dynamic topology
Data transmission frequency Time triggered
Event triggered

Reliability Prediction Approach for MAS 49



Chapter 3 Multi Agent Systems

Mobility Static agents
Mobile agents

Table 3.1. MAS features [47].

3.1. MAS features

Leadership: done by agent that plays the role of leader which, it defines the roles of agents,
the MAS also can be leaderless in this case the agent's acts autonomously based on its own
goals.

Decision function: MAS is classified as follows: linear and nonlinear. In linear MAS, the
decision of an agent is proportional to the detected parameters of the environment, In non-
linear MAS, the decision of the agent is not proportional to the measurements detected
because of the non-linearity of entry into the decision-making process.

Heterogeneity: On the basis of the heterogeneity of MAS agents, we have: homogeneous
and heterogeneous. A homogeneous MAS includes agents who all have the same features
and functionality, while heterogeneous MAS include agents with various characteristics.
Agreement parameters: In some applications of MAS, agents need to agree on particular
parameters known as metrics. Based on the number of metrics, MAS are classified as first,
second or higher order.

Delay consideration: Agents can face multiple sources of delay to perform Tasks. MAS
can be classified in two groups, namely with or without delay, most real-world applications
experience significant delays.

Topology: MAS topology can be static or dynamic. In a static topology, the position and
relationships of an agent remain unchanged throughout the life of the agent. In dynamic
MAS topology, an agent's position and relationships change as the agent moves, leaves, or
joins. MAS, or establishes new communications.

Data transmission frequency: Agents detect the environment and share the detected
data with other agents either in a time or event triggered way, in the time triggered, it
continuously sends the data to other agents. In MAS triggered by an event, when a
particular event occurs, the agent sends the collected data to other agents.

Mobility: Static or mobile agents, a static agent is always located in same position in the
environment, while mobile agents can move in the environment, a mobile agent can be

hosted by other agents and use their resources.

3.2. Classification of Multi Agent System

The classification of MAS is a difficult task as it can be done based on several different attributes
such as Architecture, Learning, Communication, Coordination.

A general classification encompassing most of these features is shown in the figure bellow [46].

Internal Architecture: multi-agent system, it may be classified as two types [46]:

1. Homogeneous structure

2. Heterogeneous structure

Reliability Prediction Approach for MAS 50



Chapter 3

Multi Agent Systems

a) Homogeneous Structure: all agents forming the multi-agent system have the same internal

architecture. Internal architecture refers to the Local Goals, Sensor Capabilities, Internal states,

Inference Mechanism and Possible Actions. environment. There may be overlap in the sensor

inputs received. In a typical distributed environment, overlap of sensory inputs is rarely present.

b) Heterogeneous Structure: the agents may differ in ability, structure and functionality, Based

on the dynamics of the environment and the location of the particular agent.

Agent systerm
|
| | ; |
Architecture Protocol Charagctegrtlstlcs
—| Intemnal KAOS
FIPA | |
Homogeneous Reasoning Perception Action
Heterngenentis
. Learning Complete —1 Communication
L | Multiagent Partial
Local
~ Hierarch fxed -
crarchy Network
—Holonic Adaptve Mobile
— Coalition || Megotiation
L | Active Method
i _ Blackbuad
Reactive
Broker
| COonsequence-
based Mediatar
Goals
Single
Multiple

Figure 3.2 Classification of a multi agent system based on the use of different attributes [46].

Reliability Prediction Approach for MAS

51



Chapter 3 Multi Agent Systems

3.3. MAS Application

MAS Applications

Figure 3.3 MAS application summary [47].

The MAS are impended in multiple fields that we can mention like [47]:

. COMPUTER NETWORKS: The complexity of computer networks increases dramatically
because of the emergence of new technologies and proliferation devices connected to the Internet.
Agents are widely used to overcome this complexity. Due to the wide range of MAS applications in

networks

. ROBOTICS AGENTS: Cena et al. Argued that there are two main challenges in robotics, namely:

1- cooperation and coordination between the robots

2- plan their movement path.
The authors then proposed a method using material and software agents to overcome the

challenges.

. MODELING AGENTS FOR COMPLEX SYSTEMS: Modeling complex dynamic systems is
expensive and involves high processing overhead due to the demand for powerful modeling
platforms and high complexity Flexibility, autonomy and scalability offered by agents makes agent-

based modeling a low-cost, low-resource solution for modeling complex systems.

. AGENTS IN THE CITY AND BUILDING ENVIRONMENTS: The use of agents for the

management of cities and buildings has received considerable attention from researchers. In a city,

Reliability Prediction Approach for MAS 52



Chapter 3 Multi Agent Systems

unorganized freight distribution increases the cost, pollution and congestion. Khayyat and Awasthi
proposed an agent-based approach to this challenge using six agents, namely: RFIDG, retailer,

supplier, carrier, network agents and the city.

. AGENTS IN INTELLIGENT GRIDS: Agents are used to address the multiple challenges of
smart grids, including balancing generated and generated resources. The energy demanded, the

negotiation between the energy consumer and the producer on the price of energy.

3.4. MAS Challenges
MAS challenges are typically application-specific [47]:

Organization

Challenges

Connectivity

Task : :

Figure 3.4 MAS challenges summary [47].

Even with the increasing applicability of MAS in multiple disciplines, important research
indicates that the following challenges must be addressed:

. coordination between agents: The agents actions reflects on the environment and therefore
the decision made by other agents. Coordination control refers to management agents to achieve

collaboration their goals.

. learning: In MAS, each agent decides autonomously action to achieve its objective according to
several measures. Agents can use machine learning algorithms to discover and predict changes to

the environment, adapt to unexpected situations, and thus form multi-agent learning systems.

. fault detection: faulty agents can infect the agents in collaboration with him, that’s why
Detecting and isolating of defective agent is a fundamental task with. Current methods to detect
and isolate defects (FDI) are mainly centralized, where a center to detect and then isolate the

defective agents.

Reliability Prediction Approach for MAS 53



Chapter 3 Multi Agent Systems

. task allocation: Task Allocation refers to assigning tasks to agents considering cost, time and
communication costs and treatment overhead. The division of tasks can be centralized or

decentralized.

. Localization: Remember that each agent has a limited view (only his neighbors) MAS topology.
With this limited view, locate a particular agent, namely localization, can be difficult. An agent can
be located based on: 1) having resources known as resource localization, (2) specific services, or (3)

have a specific identity.

. Agent organization: Organization refers to how agent communications and the connections are

defined.

. security: Security is very difficult in MAS because of decentralization, sociability and mobility.

Conclusion

in this chapter we entered to the Distributed artificial intelligence (DAI) then we focused on one of
his subfields which is Multi Agent Systems and also focusing on the Agents as an autonomous

Entity and his behavior, we have citate the MAS features, Applications and challenges.

In the next chapter we will show case our hypothesis on MAS reliability Prediction.

Reliability Prediction Approach for MAS 54



Chapter 4 Multi Agent System Reliability: Hypothesis & Experimentation

Chapter 4
Multi Agent System Reliability:
Hypothesis & Experimentation

"There is no law except the law that there is no law."

John Archibald Wheeler

Introduction

The need for reliable programs has become crucial with all the technological revolution we are
experiencing. In this chapter, we want to manifest it in multi-agent systems, we propose our
hypothesis. Finally, we finish with the experimentation.

1. Hypothesis
Due to the complex construction of the agent, we focus on how to predict agent reliability

integrating agent behavior into the prediction process.

We created our own metrics based on the agent definition and the SMA definition, as well as on
their different characteristics. The results of the forecast can be validated with a selected
reliability growth model based on the agent failure data. To explain the approach, we introduce

the following figure:

machine learning

*  Survey > algonthm —* Predicted Results
(regression)
Designer
Validation
Failure data Reliability growth

model

Estimated
reliabilly growth

Figure 4.1. Proposed approach.

Reliability Prediction Approach for MAS 55



Chapter 4 Multi Agent System Reliability: Hypothesis & Experimentation

In our approach we are not depending on failure data only, we tried to add different measures to
better judge reliability. We choose the designer to answer the survey, because the questions are
more relevant to the coded behavior of the agent and his environment.

The survey contains, the metrics that we have proposed to measure the agent reliability as form
of questions with predefined answers also include entering data on the agent code. Then we apply
supervised machine learning algorithm regression, it predicts discrete outputs like our data,
because we have multiple categories (variables) and we will work with multiple linear regression.
As a result, we got the predicted mean time between failures. We can validate the predicted
result with the failure data that is processed with the reliability growth model giving an
estimated reliability growth of the agent; the choice of the appropriate model is based on the
obtained failure data from the agent to get the appropriate fit model.

1.1. MAS reliability metrics

The metrics are inspired from the agent behavior and MAS's environment, which can be used to

measure the agent reliability; we tried to capture the metrics from the different definitions of the

agent and MAS as bellow:

Definition 1: “An agent is an entity that perceives its environment and interacts with it "(Russell,

1997);

« The rate of sending/receiving messages: the agents are capable to interact with each other
throw sending and receiving messages, which very important metric to evaluate the ability of
communication of agents.

« Environment perception rate: the ability of an agent to perceive his environment means his
ability to use the resources needed to achieve his goal.

Definition 2: “An agent is a computer system, located in an environment that acts autonomously to

achieve the goals for which it was designed” (Wooldridge and Jennings, 1995).

« Agent statue: We mean by whether it works autonomously or collaborating with other agents.

+ Goal accomplishment: the most important factor that we can with it measures the agent
reliability.

Definition 3: “Intelligent agents are software entities that perform operations in place of a user or

another program, with some kind of independence or autonomy, and to do that they use some kind

of knowledge or representation of goals or desires of the user"(The IBM agent).

« Mobility: whether static or mobile agent that can percept multiple environments and react
with other agents to serve his goal.

« MAS topology: can be static or dynamic, unlike static in dynamic topology, the agent moves,
leaves, or joins. MAS, or establishes new communications.

Definition 4: “An agent is an autonomous entity, real or abstract, which is able to act on itself and

on its environment, who, in a multi-agent universe, can communicate with other agents, and whose

behavior is the consequence of his observations, knowledge and interactions with other

agents“(Ferber, 1995).

« Proactive: The agent must exhibit proactive and opportunistic behavior, while being able to

take the initiative at the right time.

Reliability Prediction Approach for MAS 56



Chapter 4 Multi Agent System Reliability: Hypothesis & Experimentation

With this different metrics we can predict the agent reliability in accomplishment of his goal.

2. Work environment

2.1. Google Colab

Our work environment is Google Colab or "the Colaboratory", which is a free cloud service hosted

by Google to encourage research on machine learning and artificial intelligence for academics or

experts [48].

2.1.1. Colab strength

« Python 2.7 and Python 3.6 support.

«  Free GPU acceleration.

« Pre-installed libraries: All major Python libraries like Scikit-learn, Matplotlib and others are
pre-installed and ready to be imported.

« Built on top of Jupyter Notebook.

« Allow Collaboration between developers to use and share Jupyter notebook among each other
using google drive.

« Available documentation.

+ Google Colab notebooks are stored on the drive.

2.2. Programming language: Python

Python is a high-level programming language widely used for versatile programming. Python is
an excellent, object-oriented, interpreted and interactive programming language. It includes
modules, classes, exceptions, high-level dynamic data types, and dynamic typing.

There are interfaces for many system calls and libraries, as well as for various windowing
systems. Python can also be used as an extension language for applications written in other
languages that require easy-to-use scripting or automation interfaces [49].

2.2.1. Python strength

« It’s simple to learn.

« Open source programming language.

« Clear syntax.

+ Capability of interacting with almost all the third-party languages and platforms.

Reliability Prediction Approach for MAS 57



Chapter 4 Multi Agent System Reliability: Hypothesis & Experimentation

3. Experimentation

In This section, we will explain the regression algorithm and our dataset. Concluding with the

code of the experimentation and the obtain results.

3.1. Dataset
We have based our experimentation on theoretical data; to obtain the data for the

experimentation we need a study case on the agent’s behavior in MAS.

communication proactive statu goal mobility topologie number_failures code_size mean_tbf
communicates proactive collaborative achieved mobile dynamic-topo 280 1000 100
no not_proa collaborative not_achieved mobile dynamic-topo 160 500 2
communicates proactive autonomous not_achieved static static-topo 199 255 1
no not_proa collaborative not_achieved mobile dynamic-topo 215 455 3
no proactive collaborative achieved static dynamic-topo 150 580 30
communicates not_proa autonomous not_achieved mobile static-topo 121 700 5
communicates not_proa collaborative achieved mobile dynamic-topo 330 830 30
no not_proa collaborative achieved static dynamic-topo 250 760 70
communicates proactive autonomous achieved static static-topo 116 580 70
communicates not_proa autonomous achieved static static-topo 150 160 60
communicates not_proa autonomous achieved static static-topo 440 200 50
communicates proactive autonomous achieved mobile dynamic-topo 280 590 90
achieved 165 400 30

Figure 4.2, Proposed data.

This table contains the data on the metrics previously explained in addition to number of failures
detected in the code test and the code size, our target value to predict reliability is the mean time
between failures which is an important indicator of the reliability.

Mean time between failures defined as [11]:

MTBF = MTTF + MTTR, an MTBF of 300 indicates that once the failure has occurred, the next
failure should only occur after 300 hours; Where: MTTF is defined as the time interval between
the successive failures, And MTTR measures the average time it takes to track the errors causing
the failure & to fix them.

3.2. Regression algorithm

3.2.1. Multiple Linear Regression

We used the multiple linear regression algorithm because this algorithm consists of a target
variable/result (or dependent variable) to predict from a given set of predictors (independent
variables).

we can use it to find out which factor has the highest impact on the predicted output and how

different variables relate to each other. That is known with the correlation.

Using these sets of variables, we generate a function that maps the inputs to the desired outputs

[50].

Reliability Prediction Approach for MAS 58



Chapter 4 Multi Agent System Reliability: Hypothesis & Experimentation

predictor, xvariable' N
independent variahle, coefficient
explanatory wariable

— |||30 + |31 + X7 + ..+ Bl) 3\'1)}+

|
linear predictar

response, dependent variable, randam error,
observation, "y-variahle’ "noise”

Figure 4.3. Multiple Linear Regression [51].

To evaluate the performance of algorithm, three evaluation metrics are commonly used [51]:

1. Mean Absolute Error (MAE) is the mean of the absolute value of the errors. It is calculated as:
n
%ZlActual — Predicted|
i=1
2. Mean Squared Error (MSE) is the mean of the squared errors and is calculated as:
n
%ZIActual — Predicted|?

i=1

3. Root Mean Squared Error (RMSE) is the square root of the mean of the squared errors:

n

1
EZIActual — Predicted|?

i=1

3.3. Code explanation
In this part we will go through all the steps of the code execution to the final result, with each

code segment we will incorporate a comment to explain briefly how it works.

Step1: importing libraries

import pandas as pd

import numpy as np

from pandas import DataFrame

import matplotlib.pyplot as plt

import seaborn as seabornInstance

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression
from sklearn import metrics

$matplotlib inline

import seaborn as sns

from pandas.plotting import scatter_matrix

Comment: Scikit-learn provides a range of supervised and unsupervised learning algorithms via a
consistent interface in Python and our used libraries are included in her stack like [58]:

« Pandas: Data structures and analysis.

«  NumPy: Base n-dimensional array package.

«  Matplotlib: Comprehensive 2D/3D plotting.

Reliability Prediction Approach for MAS 59



Chapter 4 Multi Agent System Reliability: Hypothesis & Experimentation

« IPython: Enhanced interactive console.

Step2: Uploading the dataset file.

from google.colab import files
uploaded = files.upload()

Comment: files.upload (), allows you to upload from the device, which is very useful in case of

constant changes in the dataset.

Step 3: reading the data.

dataset = pd.read_csv('dd.csv', delimiter=";")
dataset.head ()
dataset.shape -> (13, 9)

Comment: After reading the data with panda csv reader, we poste our data with the head function
it only displays the first columns, to know the data dimensions we use the shape function. Our

data comprises 13 lines and 9 columns.

communication proactive statu goal mobility  topologie number_failures code size mean_tbf
0 communicates proactive collaborative achieved mobile  dynamic-topo 260 1000 100
1 no not_proa collaborative not_achieved mobile  dynamic-topo 160 500 2
2 communicates proactive autonomous not_achieved static static-topo 199 255 1
3 no not_proa collaborative not_achieved mobile  dynamic-topo 215 455 3
4 no proactive collaborative achieved static  dynamic-topo 150 580 80

Figure 4.4. The dataset.

Step 4: Identifying the Nan values and removing theme.

dataset.isna () .sum()

[+ communication
proactive
statu
goal
mobility
topologie
number failures
code size
mean_thf
dtype: inté4d

v s B TR S, SR S Iy

Figure 4.5. Displaying the null values.

dataset.dropna (inplace=True)
dataset .describe ()

Reliability Prediction Approach for MAS 60



Chapter 4

Multi Agent System Reliability: Hypothesis & Experimentation

C»

count

mean
std
min
25%
50%
T5%

max

Step5: Data normalization.

number_failures
12.000000

224 250000
96.703037F
116.000000
150.000000
207.000000
280.000000

440.000000

code_size

12.000000
555.000000
261.855269
150.000000
405.000000
580.000000
715.000000

1000.000000

mean_tbf
12.000000
51.750000
38.614941
1.000000
4.500000
65.000000
82.500000

100.000000

Figure 4.6. Data information.

dl=pd.get_dummies (dataset.communication)
dataset2=pd.concat ([dataset,dl],axis="columns')
dataset2=dataset2.drop (['communication', 'no'],axis="'columns')

d2=pd.get_dummies (dataset.statu)
dataset3=pd.concat ([dataset2,d2],axis="'columns’')
dataset3=dataset3.drop(['statu', 'autonomous'],axis="'columns')

d3=pd.get_dummies (dataset.proactive)
dataset4=pd.concat ([dataset3,d3],axis="'columns"')
dataset4=dataset4.drop ([ 'proactive'],axis="columns"')

d4=pd.get_dummies (dataset.goal)
dataset5=pd.concat ([dataset4,d4],axis="'columns"')
dataset5=dataset5.drop(['goal', 'not_achieved'],axis="'columns')

d5=pd.get_dummies (dataset.mobility)
dataset6=pd.concat ([dataset5,d5],axis="'columns"')
dataset6=dataset6.drop(['mobility', 'static'],axis="'columns"')

d6=pd.get_dummies (dataset.topologie)
dataset7=pd.concat ([dataset6,d6],axis="'columns’')
dataset7=dataset7.drop (['topologie', 'static-topo'],axis="columns')

dataset7=dataset7.drop ([ 'number_failures', 'code_size', 'mean_tbf'],axis="columns')

dataset7=pd.concat ([dataset7,dataset . .number_failures],axis="'columns')
dataset7=pd.concat ([dataset7,dataset.code_size],axis="'columns')
dataset7=pd.concat ([dataset7,dataset .mean_tbf],axis="'columns')

dataset?7
C communicates collaborative not_proa achieved mobile dynamic-topo number_failures code_size mean_tbf
0 1 0 1 1 1 280 1000 100
1 0 1 0 1 1 160 500 2
2 1 0 0 0 0 0 199 255 1
3 0 1 0 1 1 215 455 3
4 0 0 1 0 1 130 580 80
5 1 0 1 0 1 0 121 700 5
6 1 1 1 1 1 330 880 90
7 0 1 1 0 1 250 760 70
8 1 0 0 1 0 0 116 580 70
9 1 0 1 1 0 0 150 160 60
10 1 0 1 1 0 0 440 200 50
1" 1 0 0 1 1 1 280 590 90

Figure 4.7. Normalized data.

Reliability Prediction Approach for MAS

61



Chapter 4 Multi Agent System Reliability: Hypothesis & Experimentation

Comment: We normalize data from string to numerical data, using the dummies function from
panda, then we drop the main column and one of the dummies columns, after that we concatenate

the selected column to the normalized data set.

Step6: Identifying the correlation between columns.

corr=dataset7.corr ()
axes =pd.plotting.scatter_matrix(dataset7,alpha=0.2,figsize=(10,10) ,s=80)
corr = dataset7.corr () .as_matrix()
plt.title('Correlation Between Features',6 x=-5,y=13, fontsize=25)
# to change fontsize
plt.xticks (fontsize =10, rotation =0)
plt.yticks (fontsize =10)
for ax in axes.ravel():
ax.set_xlabel (ax.get_xlabel (), fontsize = 12, rotation 60)
ax.set_ylabel (ax.get_ylabel (), fontsize = 12, rotation 60)
# put the correlation between each pair of variables on each graph
for i, j in zip(*np.triu_indices_from(axes, k=1)):
axes|[i, jl .annotate ("%.3f" S%corrli, 31, (0.8,0.8), =xycoords="axes
fraction", ha="center", va="center")

4.70 0.234 0250 0004 4.59 0233 0.05]3 0249

c&'E 0:169 0.004 0333 0843 o7y 0563 15§

g 0239 G164 L.02 0.174 40158 0374
V]

& .35 0124 0.384 02189 0937

0507 0073 0529 0.043

’ é?* .;’ﬁ & - ? - g - §
F J h $ & F
s & & § &
F 4 & &

Figure 4.8. Scatter matrix correlation.

Reliability Prediction Approach for MAS 62



Chapter 4 Multi Agent System Reliability: Hypothesis & Experimentation

Plt.figure(figsize=(14,6))
sns.heatmap (corr, annot=True)

-09

Figure 4.9. Heatmap correlation.

Step 7: Splitting the data to train set and test set.

X=dataset7[['communicates', 'collaborative', 'not_proa', 'achieved', "'mobile’', "'
dynamic-topo', 'number_failures', 'code_size']].values

y = dataset7['mean_tbf'].values

print ('X="',X)

> Xx=[[ 1 1 @ 1 1 1 280 1008]
[ @& 1 1 @ 1 1 168 580]
[ 1 @ @ @ @ @ 199 255]
[ @ 1 1 @ 1 1 215 455]
[ @& 1 @ 1 @ 1 158 5808]
[ 1 e 1 @ 1 @ 121 78]
[ 1 1 1 1 1 1 338 888]
[ @& 1 1 1 @ 1 258 760]
[ 1 @ @ 1 @& @8 116 580]
[ 1 @ 1 1 @ @ 150 160]
[ 1 @ 1 1 @& @8 448 280]
[ 1 e @ 1 1 1 280 590]]

Figure 4.10. The categories values.
print ('y="',y)
Y=[100 2 1 3 80 5 90 70 70 60 50 90]
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2, random_sta

te=0)

Reliability Prediction Approach for MAS 63



Chapter 4 Multi Agent System Reliability: Hypothesis & Experimentation

Step 8: running the regression.

regressor = LinearRegression|()
regressor.fit (X_train, y_train)
print ('regressor intercept=', regressor.intercept_)

print ('Coefficients: \n', 'Communication proactive statu goal\n', regressor.

coef_)
print (' mobility topologi number_failures code_size')

[» regressor intercept= -25.46483618684878
Coefticients:
Communication proactive statu goal
[ 2.91479166e+81 1.64863905e+81 -2.11281538e+808 6.8742603%:+81
-4.87427867e+88 1.64863995e+81 -3.46879571e-82 1.65483252e-82]
mobility topologi number failures code size

Figure 4.11. Intercept and coefficient.

Step 9: Prediction execution.

y_pred = regressor.predict (X_test)
df = pd.DataFrame ({'Actual': y_test, 'Predicted': y_pred})
dfl = df.head(25)

dfl.plot (kind='bar', figsize=(8,6))

(
plt.grid(which="major', linestyle='-', linewidth='0.3', color='coral')
plt.grid(which="minor', linestyle=':', linewidth='0.3', color='black"')
plt.show ()
N Actual
N Predicted
m -
m p
40 -
20 4
u -

=]

Figure 4.12. Comparison of the actual and predicted data.

Reliability Prediction Approach for MAS

64



Chapter 4 Multi Agent System Reliability: Hypothesis & Experimentation

Step 10: Regression evaluation.

Print ('Mean Absolute Error:', metrics.mean_absolute_error (y_test, y_pred))
Print ('Mean Squared Error:', metrics.mean_squared_error (y_test, y_pred))
print ('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)))

Mean Absolute Error: 8.29€902937163253
Mean Squared Error: 82.61323887242098
Root Mean Squared Error: 9.88918251948001

Figure 4.13. Algorithm evaluation.

Comment: Our root mean squared error is 0.8% bigger than the mean absolute error. That means

that our algorithm was not very accurate but can still make reasonably good predictions.

Conclusion

Investments in multi-agent systems have reached billions of dollars, demonstrating the need for
reliable agents. That shows the importance of the early prediction of the MAS reliability, leading
to more accurate results, less cost and less development time.

In this chapter, we accomplished the agent prediction using machine learning algorithm
regression, integrating metrics inspired from the agent behavior and MAS environment.

Next, we will conclude our manuscript.

Reliability Prediction Approach for MAS 65



General Conclusion & Perspectives

General Conclusion & Perspectives

"Your imagination is your preview of life’s coming attractions.”

Albert Einstein

Conclusion

Reliability measurement has been an active area of research for decades; software reliability
modeling has attracted a lot of research attention in the estimation (measurement of the current
state) as well as the prediction (assessment of the future state) of the reliability of a software
system.

The time domain approach, proved its effectiveness by performing an adjustment of the curve of
observed failure data as a function of time with a model formula and parameters. Models can
then provide an estimate of existing resources reliability or predictability of future reliability by
extrapolation techniques.

Software reliability tools that provides both estimation and prediction had more effective results,
that reflects on the development process of the software’s in term of time consumption and cost
reduction and correctness level.

In our hypothesis we tried to focus on the reliability prediction of multi agent systems,
introducing metrics based on the behavior of the agents and MAS characteristics like agent
mobility, ability to communicate, MAS topology, number of failures detected and number of code
lines ...etc. In the experimentation we developed our idea using machine learning regression
algorithm to determine the correlation between our proposed metrics and to predict the reliability

of agents.

Perspective

As perspective, to lack of time we have built our experimentation on theoretical data, that is only
obtained through a study case of long duration to analyze a MAS community and agent behavior
as units to obtain and enhance our dataset; and even further we could validate the results

obtained in the prediction by adopting an appropriate SRGM.

Reliability Prediction Approach for MAS 66



Bibliographical References

Bibliographical References

[1] Humphrey, W. S., “The Future of Software Engineering”, Watts New Column, News at SEI,
vol. 4, no. 1, March, 2001.

[2] Israelski, E. W., Muto, W. H., “Human Factors Risk Management as a Way to Improve
Medical Device Safety: A Case Study of the Therac 25 Radiation Therapy System”. The Joint
Commission Journal on Quality and Safety, 30(12), 689—-695, 2004.

[3] Marshall, E., “Fatal error: how Patriot overlooked a Scud.”, Science, vol. 255, no. 5050, p.
1347, Academic OneFile, 1992.

[4] Pauchant, T., Mitroff, I., and Lagadec, P., “Toward a systemic crisis management strategy:
learning from the best examples in the US, Canada and France.”, Industrial Crisis Quarterly,
Elsevier, 1991.

[6] Le Lann, G. (n.d.), “An analysis of the Ariane 5 flight 501 failure-a system engineering
perspective.”, Proceedings International Conference and Workshop on Engineering of Computer-
Based Systems, 1997.

[6] Ho-Won, J., Seung-Gweon, K., and Chang-Shin, C., “Measuring Software Product Quality: A
Survey of ISO/IEC 9126.”, IEEE Software, 2004.

[7] Musa, J. D., “Software Reliability Engineering: More Reliable Software Faster and Cheaper.”,
(2nd Edition), Author House, 2004.

[8] Zhang, X., Pham, H., “An analysis of factors affecting software reliability. Journal of Systems
and Software, 50(1), 43—-56, 2000.

[9] Michael, R. L., “Software Reliability Engineering: A Roadmap.”, Computer Science and Engineering
Department the Chinese University of Hong Kong, Future of Software Engineering (FOSE'07)0-
7695-2829-5/07 $20.00 © 2007 IEEE.

[10] Reliability Analysis Center, “Introduction to Software Reliability: A state of the Art
Review.”, RAC, 1996, consulted on: http://rome.iitri.com/RAC/.

[11] Durga, P., Pallavi, “Software Reliability: Models.”, International Journal of Computer
Applications (0975 — 8887), Volume 152 — No.9, October, 2016.

Reliability Prediction Approach for MAS 67



Bibliographical References

[12] Aman, J., Yukti, M., “Metrics and Models for Software Reliability: A Systematic Review.”,
ITM University Gurgaon-12200 1, International Conference on Issues and Challenges in
Intelligent Computing Techniques (ICICT), IEEE, 2014.

[13] Rosenberg, L., Hammer, T., and Shaw, J., Unisys/NASA GSFC, “Software Metrics and
Reliability.”, IOSR Journal of Computer Engineering (IOSR-JCE), 1998.

[14] Lyu, M. R., Nikora, A., “CASRE - A Computer-Aided Software Reliability Estimation Tool.”,
Conference: Computer-Aided Software Engineering, IEEE, August, 1992.

[15] For, E.H., Singpurwalla, N.D., “An Empirical Stopping Rule for Debugging and Testing
Computer Software.”, Journal American Statistics Association, vol. 72, pp. 750-757, December,
1977.

[16] Joe, H., Reid, N., “Estimating the Number of Faults in a System.”, Journal of the American
Statistical Association, 80(389):222-226, March, 1985.

[17] Langberg, N., Singpunvalla, N.D., “A Unification of Some Software Reliability Models via the
Bayesian Approach.”, Technical Report TM-66571, George Washington University, 1981.

[18] Duane, dJ. T., “Learning Curve Approach to Reliability Monitoring.”, IEEE Transactions on
Aerospace, vol.AS-2, pp. 563-566, 1964.

[19] Goel, A., Okumoto, K., “Time-dependent error-detection rate model for software reliability
and other performance measures.”, IEEE Trans. on Reliability, R-28(3): 206- 211 (1979).

[20] Sona, A., Guru, S.M., and Agam, P. T., “Jelinski — Moranda Model for Software Reliability
Prediction and its G.A. based Optimised Simulation Trajectory.”, D. E. I. Dayalbagh, Agra, pp.
399-404, 2002.

[21] Jelinski, Moranda, P.B., “Software Reliability Research.”, In Statistical Computer
Performance Evaluntion, ed. W. Freiberber, pp. 465484, Academic, New York, 1972.

[22] Shooman, M., “Operational Testing and Software Reliability During Program Development.”,
In Proceedings 1973 IEEE Symposium on Computer Software Reliability, pp. 51-57, New York,
April, 1973.

[23] Keiller, P.A., Littlewood, B., Miller, D. R., and Sofer, A., “Comparison of Software
Computing.”, pp. 128-134, 1983.

[24] Littlewood, B., “Stochastic Reliability Growth. A Model for Fault-Removal in Computer
Programs and Hardware Designs.”, IEEE Transactions on Reliability, vol. R-30, pp. 313-320,
October, 1981.

[25] Littlewood, B., Verrall, J. L., “A Bayesian Reliability Growth Model for Computer Software.”,
Journal Royal Statistics Society C, vol. 22, pp. 332-346, 1973.

[26] Musa, J.D., Okumoto, K., “A Logarithmic Poisson Execution Time Model for Software
Reliability Measurement.”, In Proceedings Seventh International Conference on Software
Engineering, pp. 230-238, Orlando, Florida, 1984.

[27] Schneidewind, N.F., “Analysis of Error Processes in Computer Software.”, In Proceedings
International Conference on Reliable Software, pp. 331-346, Los Angeles, 1975.

[28] Yamada, S., Ohba, M., and Osak, S., “S-Shaped Reliability Growth Modeling for Software
Error Detection.”, IEEE Transactions on Reliability, vol. R-32, pp. 475- 478, December, 1983.

[29] Manohar, S., “Software Reliability Testing Tools: An Overview and Comparison.”,
International Journal of Advanced Trends in Computer Science and Engineering, ISSN: 2319-
7242, Volume 5, Issue Page No. 18886-18891, November, 2016.

Reliability Prediction Approach for MAS 68



Bibliographical References

[30] University of Phoenix Technology and Mathematics, “Advantages and Limitations of CASE
Tools.”, In Petruska Site, 15/02/2019.

[31] Tausworthe, R. C., Lyu, M. R., “A Generalized Software Reliability Process Simulation
Technique and Tool.”, Published 1071-9458/94, IEEE, December, 1994.

[32] “Benefits of Frestimate Software.”, http://www.softrel.com/About Frestimate.html.

[33] Dong, T., Myron, H., Jeffrey, M., and Jady, H., “MEADEP — A Dependability Evaluation
Tool for Engineers.”, In IEEE Transactions on Reliability, 1998.

[34] User’s Manual, “A software Tool for System Dependability Measurement, Modeling and
evaluation.”, consulted on: http://www.reliability-safety-software.com/downloads/download-
documents/.

[35] Kishor, S., Trivedi, “SREPT: A Tool for Software Reliability Estimation and Prediction.”,
Proceedings of the International Conference on Dependable Systems and Networks, (DSN’02) 0-
7695-1597-5/02, IEEE, 2002.

[36] Srinivasan, R., Swapna, S. G., and Kishor, S. T., “SREPT: software reliability estimation and
prediction tool.”, Elsevier Science B.V, 2000.

[37] Littlewood, B., Verrall, J. L., “A Bayesian reliability growth model for computer software.”,
Royal Statistical Society, 22(3):332-346, January, 1973.

[38] Moranda, P., “Predictions of software reliability during debugging.”, Proc. Reliability and
Maintainability Symp., Washington, D.C., p. 327, 28-30 January 1975.

[39] Musa, J., “A theory of software reliability and its applications.”, Software Engineering, SE-
1(3):312-327, IEEE Trans. 1975.

[41] W. D. Brooks and R. W. Motley (1975), Analysis of Discrete Software Reliability modems.
Rome Air Development Center Technical Report, RADC-TR-80-84, April 1980. [31] N. F.
Schneidewind, Analysis of error processes in computer software, Sigslan Notices 10(6):337 346
(1975).

[42] Xie, M., Zhao, M., “The Schneidewind software reliability model revisited.”, Proceedings
Third International Symposium on Software Reliability Engineering, Research Triangle Park,
NC, USA, 7-10 October, 1992.

[43] William, H. F., Oliver, D. S., “A Tool for Statistical Modeling and Estimation of Reliability
Functions for Software: SMERFS.”, The Journal of Systems and Software 8, 8(1):47-55, January,
1988.

[44] William, H. F., Oliver, D. S., “Statistical Modeling and Estimation of Reliability Functions
for Software: SMERFS.”, User's guide, September, 1993.

[45] Maevsky, D., Maevskaya, E., Shapa, L., and Stetsyuk, D., “Program Tools for Estimation of
the Green Software Reliability.”, ITM Web of Conferences 9, 03008, 2017.

[46] Balaji, P. G., Srinivasan, D., “An Introduction to Multi-Agent Systems.”, Studies in
Computational Intelligence, 1-27, 2010.

[47] Dorri, A., Kanhere, S., and Jurdak, R., “Multi-Agent Systems: A survey.”, IEEE Access, DOI:
10.1109/ACCESS.2018.2831228., April, 2018.

[48] Lall, V., “Google Colab—The Beginner’s Guide.”, consulted on : https:/medium.com/lean-in-
women-in-tech-india/google-colab-the-beginners-guide-5ad3b417dfa, April 1, 2018.

Reliability Prediction Approach for MAS 69



Bibliographical References

[49] Content Strategist - Ivy Pro School, “Why Python is the preferred language for Machine
Learning?”, consulted on: https://ivyproschool.com/blog/2017/08/21/why-python-is-the-preferred-
language-for-machine-learning/, August 21, 2017.

[60] Sunil, R., “Commonly used Machine Learning Algorithms (with Python and R

Codes).”,consulted on : https://www.analyticsvidhya.com/blog/2017/09/common-machine-learning-
algorithms/, September 9, 2017.

[61] Robinson, S., “A Gentle Introduction to Scikit-Learn: A Python Machine Learning Library.”,
consulted on: https://stackabuse.com/linear-regression-in-python-with-scikit-learn/, February 06,
2018.

[62] Dmitry Maevsky*, Elena Maevskaya, Ludmila Shapa and Dmitry Stetsyuk,” Program Tools
for Estimation of the Green Software Reliability”, ITM Web of Conferences 9, 03008 (2017) AMCSE
2016.

Reliability Prediction Approach for MAS 70



