

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université de Larbi Tébessi -Tébessa-Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie Département : Mathématiques et informatique

MEMOIRE DE MASTER Domaine: Mathématiques et informatique Filière: Mathématiques Option: Equation aux dérivées Partielles et Applications

Thème:

Analyse dynamique d'un nouveau type de synchronisation chaotique discrète

Présenté par: - BOUDIAR Houria - BOUAKKAZ Maroua

Devant le jury:

ABDELMALEK Salem	M.C.A	Université de Tébessa	Président
MESSOUDANE Hadia	M.C.A	Université de Tébessa	Examinateur
OUANNAS Adel	M.C.A	Université de Tébessa	Rapporteur

Date de soutenance: 25/05/2017

Note :..... Mention :....

Je dédie ce présent travail à, Ma mére, qui depuis ma naissance,n'a cessé de me bercer avec des bons conseils et sans doute celle qui me réconforte et m'encourage dans les moments les plus difficiles de ma scolarité.

Mon père, celuí quí ne se lassait jamais pour aménager tous ses efforts pour que je sois quelqu'un dans la vie. Mos frères : Hamza Mohammed et

Mes frères : Hamza, Mohammed et Ibrahím.

Mes sœurs :Souraya, Aya et Nadjeh que je souhaite la réussite dans a baccalauréat. Mes amies : Houría , Abír, Fatma Zohra , Sara T, Sameh, Hassiba. Et je n'oublie pas : Bouaita, Laid. Tous ceux qui de prés ou de loin m'ont aidé à réaliser ce mémoire.

Remerciements

Le plus grand mercí revient à notre Dieu Allah qui lui seul nous a guidé vers le bon chemin durant notre vie et qui nous a réaliser humble travail.

Nous exprimons nos remerciements avec un grand plaisir et un grand respect à notre encadreur : Mr. OUANNAS Adel. Nous remercions particulièrement Mr. ABDELMALEK Salem et Mm.

MESSOUDANE Hadía qu'ils ont accepté de juger notre travail.

Enfín, un grand mercí à toutes nos famílles, et notre amís proches quí nous ont assuré le support moral et matériel dont nous avions beaucoup besoín ...

Comme nous remercions tous ceux qui ont contribué de près ou de loin à la réalisation de ce travail.

Je dédie ce travail àceux quiont sacrifiés etqui ont donnés le meilleur pour me voir réussir dans tous les côtés de ma vie A mon cher père, que Díeu lui garde A ma chère mère, l'esprit de ma vie, pour ses conseils et ses encouragements. A mon frère Walid et mes joyeuses sœurs : Karíma, Nessríne, Sabah et Zína. A mes chères amíes : Ghanía, Ouahíba, Amna, Aícha, Nadjet, Zína, Souría, khaoula et Houría. A ma bínôme Maroua et tout sa famílle. A tous les étudiants de mathématique et informatique. A toute personne quí m'a aídé du près ou du loín même Avec un petit mot du courage.

ملخص

هذه المذكرة تتناول دراسة مزامنة الأنظمة الديناميكية الفوضوية المتقطعة. اعتمادا علي نظرية الثبات للأنظمة الديناميكية الخطية و نظرية ليابينوف تم تحليل نمط جديد من المزامنة يعتمد على تواجد نوعين مختلفين بين نظامين متقطعين مختلفين في البعد. المحاكاة العددية استعملت لإظهار فعالية النتائج

المتوصل إليها.

كلمات دلالية: مزامنة الفوضى؛ الأنظمة المتقطعة؛ معايير جديدة ؛ مسألة عكسية؛ ثبات ليابينوف.

Résumé

Ce mémoire a pour objet l'étude de synchronisation des systèmes chaotiques discrets. Basé sur la théorie de stabilité des systèmes linéaires et la théorie de Lyapunov, des nouveaux schémas de synchronisation entre des systèmes chaotiques discrets avec des dimensions différentes, sont dérivés. Les simulations numériques sont utilisées pour valider les résultats proposés.

Mots clés: Synchronisation chaotique, systèmes discrets, nouveaux critères, synchronisation généralisée, problème inverse, stabilité de Lyapunov.

Abstract

This thesis, investigate the synchronization of chaotic systems in discrete-time. Based on stability theory of linear systems and Lyapunov theory, new scheme of synchronization using two different type of synchronization between two different dimensional chaotic maps is analyzed. Numerical simulations are used to validate the proposed results.

Key words: Chaos synchronization, discrete-time systems, new criterions, generalized synchronization, inverse problem, Lyapunov stability.

Table des matières

1	Gén	Généralités sur les systèmes dynamiques chaotiques discrets					
	1.1	.1 Notions de base					
	1.2	Stabili	té	2			
		1.2.1	Définitions	2			
		1.2.2	Stabilité des systèmes linéaires discrets	3			
		1.2.3	Stabilité des systèmes non-linéaires discrets	3			
	1.3	Bifurca	ation	4			
	1.4	Chaos	discret	4			
		1.4.1	Définition du chaos	4			
		1.4.2	Caractéristiques du chaos	5			
	1.5	Exemp	oles de systèmes chaotiques discrets	6			
		1.5.1	Système de Lorenz discret	6			
		1.5.2	Modèle de Flow	6			
		1.5.3	Système d'Hitzl-Zele	7			
		1.5.4	Système de Stefanski	8			
2	Synchronisation						
	2.1 Types de synchronisation		de synchronisation	11			
		2.1.1	Synchronisation complète	11			
		2.1.2	Anti-Synchronisation	11			
		2.1.3	Synchronisation projective	11			
		2.1.4	Synchronisation FSHP	12			
		2.1.5	Synchronisation inverse FSHP	12			
		2.1.6	Synchronisation généralisée	12			
		2.1.7	Synchronisation inverse généralisée	12			

		2.1.8	Synchronisation Q-S	13			
	2.2	Métho	de du contrôleur actif	13			
		2.2.1	Avantages de La méthode	14			
3	Coe	Coexistence de FSHPS et IFSHPS en 2-D et 3-D					
	3.1	stence de FSHPS et IFSHPS en 2-D	16				
		3.1.1	Description des systèmes maître-esclave	16			
		3.1.2	Formulation du problème	16			
		3.1.3	Résultats	16			
		3.1.4	Teste numérique	17			
	3.2 Coexistence de la FSHPS et la IFSHPS en 3-D		stence de la FSHPS et la IFSHPS en 3-D	19			
		3.2.1	Description des systèmes maître-esclave	19			
		3.2.2	Formulation du problème	19			
		3.2.3	Résultats	20			
		3.2.4	Teste numérique	21			

Liste des Figures.

- p. 6 Figure 1 : L'attracteur de Lorenz discret pour les valeurs a = 1.25 et b = 0.75.
- p. 7 Figure 2 : L'attracteur de Flow pour les valeurs a = 0.1 et b = 1.7.
- p. 8 Figure 3 : L'attracteur d'Hitzl-Zele lorsque (c, d) = (1.07, 0.3).
- p. 8 Figure 4 : L'attracteur de Stefanski lorsque c = 1.4 et d = 0.2.
- p. 18 Figure 5 : L'évolution des erreurs e_1 et e_2 entre les systèmes (3.9) et (3.10).
- p. 22 Figure 6 : L'évolution des erreurs e_1 , e_2 et e_3 entre les systèmes (3.25) et (3.26).

Introduction générale

Au cours des dernières années, de nombreux chercheurs ont proposé des différents schémas de contrôle pour la synchronisation du chaos [1, 2, 3], mais la plupart des travaux se sont concentrés sur les systèmes chaotiques continues plutôt dans le temps discret [4, 5].

Dans la pratique, les systèmes chaotiques discrets jouent un rôle plus important que leurs continues-pièces, et attirent de plus en plus d'attention [6]. En fait, de nombreux modèles mathématiques des processus physiques [7, 8, 9], des phénomènes biologiques [10], des réactions chimiques [11] et des systèmes économiques [12], sont bien décrits par l'intermédiaire de systèmes dynamiques chaotiques discrets. Récemment, la synchronisation des systèmes chaotiques discrets a été largement étudié en raison de ses applications potentielles dans la sécurité des communications et la cryptographie [13, 14, 15, 16, 17, 18, 19].

Différentes techniques ont été appliquées avec succès à la synchronisation des systèmes dynamiques chaotiques (hyperchaotiques) discrets . De nombreux types de synchronisation ont été proposées pour la synchronisation chaotique (hyperchaotique) discrète telles que : la synchronisation complète (SC) [20], la synchronisation retardée et anticipée [21, 22], la synchronisation impulsive (SI) [23], l'anti-synchronisation (AS) et hybride synchronisation (SH) [24], la synchronisation projective (SP) [25], la synchronisation projective fonctionnelle (SFP) [26, 27, 28], la synchronisation projective matricielle [29], la synchronisation full state hybrid projective (FSHP) [30, 31], la synchronisation fonction-cascade [32], la synchronisation hybrid fonctionnelle lag projective [33], la synchronisation généralisée [34], la synchronisation inverse généralisée [35], la synchronisation Q-S [36], la synchronisation inverse full state hybrid projective [37], la synchronization $\Lambda - \phi$ [38], la synchronization $\Phi - \Theta$ [39]

Ce mémoire a pour objet l'étude des nouveaux schémas de synchronisation pour les systèmes chaotiques (hyperchaotiques) discrets. Ce mémoire est structuré en trois chapitres. Le premier chapitre est consacré aux notions de base sur les systèmes dynamiques chaotiques discrets. Dans le deuxième chapitre, on trouve les différents types connus dans la synchronisation et la méthode de synchronisation la plus usée. Le troisième chapitre, expose le contenu de notre travail qui consiste en quelques nouveaux résultats sur la synchronisation chaotique discrète.

Chapitre 1

Généralités sur les systèmes dynamiques chaotiques discrets

Le but de ce chapitre est de donner quelques notions de base concernant les systèmes dynamique chaotiques discrets. En fin, quelques exemples de systèmes chaotiques discrets sont cités.

1.1 Notions de base

Définition 1.1 Un système dynamique discrets est représenté par une équation aux différences finies comme suit :

$$x(k+1) = F(x(k), k),$$
 (1.1)

d'où $x(k) \in \mathbb{R}^n, k \in N$ et $F : \mathbb{R}^n \times \mathbb{R}^m \times N \to \mathbb{R}^n$.

<u>Définition</u> 1.2 [40] On appelle "**point fixe**" d'un système dynamique discret (1.1), tout point x tel que

$$F\left(x\right) = x \tag{1.2}$$

<u>Définition</u> 1.3 [41] Si la matrice jacobienne DF(x) n'a pas de valeurs propres dont le module soit égal à +1, x est un point fixe hyperbolique. Si tous les modules des valeurs propres de DF(x) sont égaux à +1, x est point fixe elliptique.

1.2 Stabilité

L'étude du comportement d'un système dynamique discret, correspond à l'étude de stabilité des points fixes. Soit le système dynamique

$$x(k+1) = F(x(k)),$$
 (1.3)

Soit x_f un point fixe du système, on a :

$$x_f = F\left(x_f\right). \tag{1.4}$$

1.2.1 Définitions

<u>Définition</u> 1.4 Le système (1.3) est dit stable au sens de Lyapunov par rapport au point fixe x_f si pour des conditions initiales $x(k_0)$ suffisamment proches du point fixe soit :

$$\forall \varepsilon > 0, \ \exists \delta : \ \|x(k_0) - x_f\| < \delta \Rightarrow \|x(k,k_0,x(k_0)) - x_f\| < \varepsilon, \ \forall k \ge k_0.$$
(1.5)

<u>Définition</u> 1.5 Le point fixe x_f est **attractif** lorsqu'il y a convergence de l'état x vers l'état x_f au bout d'un temps infini, les conditions initiales $x(k_0)$ étant bornées, soit :

$$\forall k_0 \in \mathbb{N}; \ \exists \delta_0(k_0), \ tel \ que: \ \|x(k_0) - x_f\| < \delta_0(k_0) \Rightarrow \lim x(k, k_0, x(k_0)) = x_f,$$
(1.6)

lorsque $\delta_0(k_0) = +\infty$, on dit que le point fixe x_f est globalement attractif.

<u>Définition</u> 1.6 Le point fixe x_f est dit **asymptotiquement** (respectivement globalement asymptotiquement) stable lorsqu'il est à la fois stable au sens de Lyapunov et attractif (respectivement globalement asymptotiquement)

1.2.2 Stabilité des systèmes linéaires discrets

On considère le système linéaire suivant

$$x(k+1) = Ax(k),$$
 (1.7)

<u>Théorème</u> 1.1 1- Si tous les valeur propres de A sont des modules strictement inférieurs à l'unité, alors le point fixe x_f du système (1.3) est asymptotiquement stable.

2- Si la matrice A admet au moins une valeur propre de module strictement supérieur à l'unité, alors le point fixe x_f est instable.

<u>Remarque</u> 1.1 Si certaines valeurs propres de la matrice A sont sur le cercle du rayon de l'unité et les autres à l'intérieur, on ne peut pas conclure quant à la stabilté locale du point fixe x_f .

1.2.3 Stabilité des systèmes non-linéaires discrets

Soit le système non-linéaire suivant

$$x(k+1) = F(x(k)),$$
 (1.8)

d'où $x(k) \in \mathbb{R}^n$ et $F : \mathbb{R}^n \to \mathbb{R}^n$.

Théorème 1.2 S'il existe une fonction $v(x(k)) : \mathbb{R}^n \to \mathbb{R}^+$, dite de Lyapunov, vérifiant : (i) V(0) = 0, (ii) V(x(k)) > 0, $\forall x(k) \neq 0$, (iii) $\Delta v(x(k)) = v(x(k+1)) - v(x(k)) < 0$. Alors le système (1.8) est asymptotiquement stable à l'origine.

Remarque 1.2 La deuxième méthode de Lyapunov permet l'analyse de la stabilité directement à partir des équations qui décrivent le système et ne nécessitent pas la détermination explicite de leurs solutions.

1.3 Bifurcation

Soit le système dynamque non-linéaire suivant

$$x(k+1) = F(x(k), \alpha),$$
 (1.9)

d'où $x(k) \in \mathbb{R}^n, \alpha \in \mathbb{R}^m, k \in N$ et $F : \mathbb{R}^n \times \mathbb{R}^m \times N \to \mathbb{R}^n$.

<u>Définition</u> 1.7 [42] Une bifurcation est un changement qualitatif de la solution x_f du système (1.9) lorsqu'on modifie le paramètre de contrôle α , c'est à dire la disparition ou le changement de stabilité et l'apparition de nouvelles solutions.

Définition 1.8 Un diagramme de bifurcation est une portion de l'espace des paramètres sur laquelle sont représentes tous les points de bifurcation.

1.4 Chaos discret

1.4.1 Définition du chaos

Définition 1.9 [43]Supposons que X est un ensemble et Y un sous-ensemble de X. Y est dense dans X si, pour n'importe quel élément $x \in X$, il existe un élément y dans le sous-ensemble Y arbitrairement proche de x, c'est-à-dire si la fermeture de Y est égale à X : Y = X. Ce qui revient à dire que Y est dense dans X si pour tout $x \in X$ on peut trouver une séquence de points $\{y_n\} \in Y$ qui convergent vers x.

<u>Définition</u> 1.10 [43] f est dite avoir la propriété de sensibilité aux conditions initials s'il existe $\delta > 0$ tel que pour $x(0) \in I$ et tout $\varepsilon > 0$ il existe un point $y(0) \in I$ point et un entier $j \ge 0$ satisfaisant : $l(x(0), y(0)) > \varepsilon \Rightarrow d(F^{(j)}(x(0)), F^{(j)}(y(0))) > \delta$, ou l représente la distance et $F^{(j)}$ la j ieme itération de f.

<u>Définition</u> 1.11 [41] f est dite topologiquement transitive si U et V étant deux ensembles non vides ouverts dans I, il existe $x(0) \in U$ et un indice $j \in Z^+$, tel que pour $F^{(j)}(x(0)) \in V$ ou, de façon équivalente, il existe un indice $j \in Z^+$, tel que pour $F^{(j)}(U) \cap V \neq \emptyset$.

<u>Définition</u> 1.12 [44] Une fonction $f : I \to I$, x(k+1) = F(x(k)), est dite constituée d' une dynamique chaotique si :

- (i) F possède une sensibilité aux conditions initiales,
- (ii) F est topologiquement transitive,
- (iii) L'ensemble des points périodiques de F est denses dans I.

1.4.2 Caractéristiques du chaos

Sensibilité aux conditions initiales

La sensibilité aux conditions initiales est un phénomène découvert pour la première fois, dès la fin du xixe siècle par **Poincaré**, puis a été redécouvert en **1963** par Lorenz lors de ses travaux en météorologie. Cette sensibilité explique le fait que, pour un système chaotique, une modification infime des conditions initiales peut entrainer des résultats imprévisibles sur le long terme. Le degré de sensibilité aux conditions initiales quantifie le caractère chaotique du système [45, 46].

Exposants de Lyapunov

Les exposants de Lyapunov servent à mesurer la divergence possible entre deux orbites issues de conditions initiales voisines et permettent de quantifier la sensibilité aux conditions initiales d'un système chaotique. Le nombre des exposants de Lyapunov est égal à la dimension de l'espace des phases [47, 48, 49]. Soit le système dynamique non linéaire discret suivant :

$$x(k+1) = F(x(k)),$$
 (1.10)

avec $x(k) \in \Re^n$. Nous supposons que la trajectoire émanant d'un état initial x(0) atteint un attracteur. x(k) est ainsi bornée à l'interieur de l'attracteur. L'exposant de Lyapunov est calculé par l'expression suivante :

$$\lambda_{L} = \lim_{k \to \infty} \lim_{\varepsilon \to 0} \frac{1}{k} \sum_{i=0}^{k-1} \ln \left| \frac{dF(x(i))}{dx(i)} \right|,$$
(1.11)

 λ_L , appelé exposant de Lyapunov, mesure le taux moyen de divergence de deux trajectoires distinctes, à partir de deux conditions initiales très proches.

Attracteur étrange

<u>Définition</u> 1.13 [50] Un sous-ensemble borné A de l'espace des phases est un attracteur étrange pour une transformation T de l'espace s'il existe un voisinage U de A, c'est à dire que pour tout point de A il existe une boule contenant ce point et contenue dans \mathbb{R} vérifiant les propriétés suivantes :

1) U est une zone de capture, ce qui signifie que toute orbite par T dont le point initial est dans U est entièrement contenue dans U. De plus, toute orbite de ce type devient et reste aussi proche de A que l'on veut.

2) Les orbites dont le point initial est dans R sont extrêmement sensibles aux conditions initiales.
3) A est un objet fractal.

4) Pour tout point de A, il existe des orbites démarrées dans \mathbb{R} qui passent aussi près que l'on veut de ce point.

1.5 Exemples de systèmes chaotiques discrets

1.5.1 Système de Lorenz discret

Le système de Lorenz discret [51], est donné par :

$$\begin{cases} x_1 (k+1) = (1+ab) x_1 (k) - b x_2 (k) x_1 (k), \\ x_2 (k+1) = (1-b) x_2 (k) + b x_1^2 (k). \end{cases}$$
(1.12)

Le système 1.12 a un attracteur chaotique, voir la figure 1, lorsque a = 1.25, et b = 0.75.

Figure 1 : L'attracteur chaotique de Lorenz discret pour les valeurs a = 1.25 et b = 0.75.

1.5.2 Modèle de Flow

Le modèle de Flow est un système chaotique discret de dimension 2 [51], présenté par :

$$\begin{cases} x_1(k+1) = x_2(k) + ax_1(k), \\ x_2(k+1) = b + x_1^2(k), \end{cases}$$
(1.13)

d'où a = -0.1, b = -1.7. L'attracteur chaotique de Flow est représenté dans la figure 2.

Figure 2 : L'attracteur de Flow pour les valeurs a = -0.1 et b = -1.7.

1.5.3 Système d'Hitzl-Zele

Hitzl et Zele [52], obtiennent le système généralisé d'Hénon

$$\begin{cases} x_1 (k+1) = -dx_2 (k), \\ x_2 (k+1) = x_3 (k) + 1 - cx_2^2 (k), \\ x_3 (k+1) = dx_2 (k) + x_1 (k). \end{cases}$$
(1.14)

La figure 3.6, montre le comportement chaotique du système (3.6) lorsque (c, d) = (1.07, 0.3).

Figure 3 : L'attracteur chaotique d'Hitzl-Zele lorsque $(\alpha,\ \beta) = (1.07,\ 0.3)\,.$

1.5.4 Système de Stefanski

Stefanski [53], a présenté un système discret en 3-D comme suit :

$$\begin{cases} x_1 (k+1) = 1 + x_3 (k) - c x_2^2 (k), \\ x_2 (k+1) = 1 + d x_2 (k) - c x_1^2 (k), \\ x_3 (k+1) = d x_1 (k), \end{cases}$$
(1.15)

d'où c = 1.4 et d = 0.2. L'attracteur hyperchaotique de Stefanski est représenté dans la figure 4.

Figure 4 : L'attracteur hyperchaotique de Stefanski lorsque $c=1.4 \ {\rm est} \ d=0.2.$

Chapitre 2

Synchronisation

L'objectif principal de ce chapitre était de présenter, des différents type de synchronisation et méthode de synchronisation la plus performante.

2.1 Types de synchronisation

On considère un système maître représenté par

$$X(k+1) = F(X(k)),$$
 (2.1)

d'où $X(k) = (x_i(k))_{1 \le i \le n}$ est l'état du système (2.1) et $F : \mathbb{R}^n \to \mathbb{R}^n$. Et un système esclave donné par

$$Y(k+1) = G(Y(k)) + U,$$
(2.2)

d'où $Y(k) = (y_i(k))_{1 \le i \le n}$ est l'état du système (2.2), $G : \mathbb{R}^n \to \mathbb{R}^n$ et $U \in \mathbb{R}^n$ est un vecteur de contrôle à déterminer.

2.1.1 Synchronisation complète

Définition 2.1 [54] Le problème de synchronisation complète est de déterminer le contrôleur U de sorte que

$$\lim_{k \to \infty} \|Y(k) - X(k)\| = 0.$$
(2.3)

d'où ||.|| est la norme euclidienne.

Remarque 2.1 Si F = G, la relation devient une synchronisation complète identique.

Remarque 2.2 Si $F \neq G$, c'est une synchronisation complète non identique.

2.1.2 Anti-Synchronisation

<u>Définition</u> 2.2 [55] Le problème d'anti-synchronisation est de trouver U de sorte que

$$\lim_{k \to \infty} \|Y(k) + X(k)\| = 0.$$
(2.4)

2.1.3 Synchronisation projective

<u>Définition</u> 2.3 [56] On dit qu'on a une synchronisation projective entre les systèmes (2.1) et (2.2), S'il existe une matrice diagonale $H = \text{diag}(h_1, ..., h_n)$, tels que :

$$\lim_{k \to \infty} \|Y(k) - H \times X(k)\| = 0.$$
 (2.5)

Remarque 2.3 Le cas où tous les h_i sont égaux à 1 représente un cas de synchronisation complète.

<u>Remarque</u> 2.4 Le cas où tous les h_i sont égaux à -1 représente un cas d'anti-synchronisation complète.

2.1.4 Synchronisation FSHP

Définition 2.4 [57, 58, 59, 60, 61, 62, 63] On dit qu'on a une synchronisation FSHP (en anglais full state hybrid projective synchronization) entre le système maître (2.1) et le système esclave (2.2), s'il existe des contrôleurs u_i , $1 \le i \le n$, et des constantes $(\alpha_{ij}) \in \mathbb{R}^{n \times n}$, tels que :

$$\lim_{k \to +\infty} \left| y_i(k) - \sum_{j=1}^n \alpha_{ij} x_j(k) \right| = 0, \quad i = 1, ..., n.$$
 (2.6)

2.1.5 Synchronisation inverse FSHP

<u>Définition</u> 2.5 [65] On dit qu'on a une synchronisation IFSHP entre le système maître (2.1) et le système esclave (2.2), s'il existe des contrôleurs u_i , $1 \le i \le n$, et des constantes $(\beta_{ij}) \in \mathbb{R}^{n \times n}$ de telle sorte que les erreurs de synchronisation

$$\lim_{k \to +\infty} \left| x_i(k) - \sum_{j=1}^n \beta_{ij} y_j(k) \right| = 0, \quad i = 1, ..., n.$$
 (2.7)

2.1.6 Synchronisation généralisée

<u>Définition</u> 2.6 [66] S'il existe un contrôleur U et une fonction $\phi : \mathbb{R}^n \to \mathbb{R}^n$, vérifient :

$$\lim_{k \to \infty} \|Y(k) - \phi(X(k))\| = 0,$$
(2.8)

alors, les systèmes (2.1) et (2.2) se synchronisent aus sens généralisé par rapport à la fonction ϕ .

Remarque 2.5 La synchronisation généralisée est considérée comme une généralisation de la synchronisation complète, l'anti-synchronisation et la synchronisation projective.

2.1.7 Synchronisation inverse généralisée

<u>Définition</u> 2.7 [67] S'il existe un contrôleur U et une fonction $\varphi : \mathbb{R}^n \to \mathbb{R}^n$, vérifient :

$$\lim_{k \to \infty} \|X(k) - \varphi(Y(k))\| = 0,$$
(2.9)

alors, les systèmes (2.1) et (2.2) se synchronisent aus sens inverse généralisé par rapport à la fonction φ .

2.1.8 Synchronisation Q-S

<u>Définition</u> 2.8 [68] Nous disons que les systèmes (2.1) et (2.2) sont en synchronisation Q - S dans la dimension d, s'il existe un contrôleur U et deux fonctions $Q : \mathbb{R}^n \to \mathbb{R}^d$, $S : \mathbb{R}^n \to \mathbb{R}^d$ telle que

$$\lim_{k \to \infty} \|Q(X(k)) - S(Y(k))\|.$$
(2.10)

Remarque 2.6 La synchronisation Q-S est considérée comme une généralisation de tous les types de synchronisations précédentes.

2.2 Méthode du contrôleur actif

Soit deux systèmes chaotiques à synchroniser, maître et esclave, définis par :

$$X(k+1) = AX(k) + f(X(k)),$$
(2.11)

et

$$Y(k+1) = AY(k) + g(Y(k)) + U,$$
(2.12)

d'où $X(k), Y(k) \in \mathbb{R}^n$ sont les état des systèmes maître et esclave, respectivement, $A \in \mathbb{R}^{n \times n}$ est une matrice constante, $f, g : \mathbb{R}^n \to \mathbb{R}^n$ sont des fonction non linéaires et $U = (u_i)_{1 \le i \le n}$ est un contrôleur à déterminer.

<u>Théorème</u> 2.1 [69] Le système maître (2.11) et le système esclave (2.12) sont globalement synchronisés sous la loi du contrôle suivante

$$U = f(X(k)) - g(Y(k)) + V,$$
(2.13)

d'où V est le contrôleur actif, défini par :

$$V = -Le(k), \tag{2.14}$$

d'où $L \in \mathbb{R}^{n \times n}$ est une matrice de contrôle, choisie telles que les valeurs propres de A - L se trouvant à l'intérieur du disque de l'unité.

<u>Preuve</u>. Pour que les deux systèmes se synchronisent, il faut que l'erreur entre les trajectoires des deux systèmes converge vers zéro lorsque le temps tend vers l'infini. Cette erreur est obtenue comme suit :

$$e(k+1) = y(k+1) - x(k+1)$$

= $AY(k) - AX(k) + g(Y(k)) - f(X(k)) + U$
= $Ae(k) + g(Y(k)) - f(X(k)) + U$ (2.15)

En substituant Eq. (2.13) dans Eq. (2.15), Le système d'erreur les systèmes (2.11) et (2.12) peut être écrit sous la forme

$$e(k+1) = (A-L)e(k).$$
 (2.16)

Selon la théorie de la stabilité des systèmes dynamiques linéaires discrets, si les valeurs propres de A - L se trouvant à l'intérieur du disque de l'unité, il est immédiat que $\lim_{k\to\infty} e(k) = 0$. Alors, les systèmes (2.11) et (2.12) sont globalement synchronisés.

2.2.1 Avantages de La méthode

- La technique du contrôleur actif est efficace non seulement pour la synchronisation des systèmes identiques, mais aussi pour la synchronisation des systèmes non identiques

- Cette méthode offre une simplicité remarquable pour l'implémentation de l'algorithme.

Chapitre 3

Coexistence de FSHPS et IFSHPS en 2-D et 3-D

Le présent chapitre expose le contenu de notre travail.

3.1 Coexistence de FSHPS et IFSHPS en 2-D

3.1.1 Description des systèmes maître-esclave

Nous considérons que le système maître est donné sous la forme suivante

$$\begin{cases} x_1 (k+1) = \sum_{j=1}^2 a_{1j} x_j (k) + f_1 (X (k)), \\ x_2 (k+1) = \sum_{j=1}^2 a_{2j} x_j (k) + f_2 (X (k)), \end{cases}$$
(3.1)

d'où $X(k) = (x_1(k), x_2(k))^T$ est le vecteur d'état du système maître, $(a_{ij}) \in \mathbb{R}^{2 \times 2}$ et $(f_i)_{1 \le i \le 2}$: $\mathbb{R}^2 \longrightarrow \mathbb{R}$ sont des fonctions non linéaires. Le système esclave, est donné comme suit

$$\begin{cases} y_1 (k+1) = g_1 (Y (k)) + u_1, \\ y_2 (k+1) = g_2 (Y (k)) + u_2, \\ y_3 (k+1) = g_3 (Y (k)) + u_3, \end{cases}$$
(3.2)

d'où $Y(k) = (y_1(k), y_2(k), y_3(k))^T$ est le vecteur d'état du système esclave, $(g_i)_{1 \le i \le 3} : \mathbb{R}^3 \longrightarrow \mathbb{R}$ et $u_i, i = 1, 2, 3$, sont des contrôleurs.

3.1.2 Formulation du problème

On dit que la FSHPS et la IFSHPS co-existe dans la synchronisation du système maître (3.1) et du système esclave (3.2) en 2-D, s'il existe des contrôleurs u_i , i = 1, 2, 3, et des constantes $\alpha_1, \alpha_2, \beta_1, \beta_2, \beta_3$, de telle sorte que les erreurs de synchronisation

$$e_{1}(k) = y_{1}(k) - \alpha_{1}x_{1}(k) - \alpha_{2}x_{2}(k),$$

$$e_{2}(k) = x_{2}(k) - \beta_{1}y_{1}(k) - \beta_{2}y_{2}(k) - \beta_{3}y_{3}(k),$$
(3.3)

vérifie que $\lim_{k \to +\infty} e_i(k) = 0, (i = 1, 2).$

3.1.3 Résultats

Le système d'erreur (3.3), peut être derivé comme suit

$$e_1 (k+1) = R_1 + u_1,$$

$$e_2 (k+1) = R_2 - \beta_1 u_1 - \beta_2 u_2 - \beta_3 u_3,$$
(3.4)

ďoù

$$R_{1} = g_{1}(Y(k)) - \alpha_{1} \sum_{j=1}^{2} a_{1j}x_{j}(k) - \alpha_{1}f_{1}(X(k)) - \alpha_{2} \sum_{j=1}^{2} a_{2j}x_{j}(k) - \alpha_{2}f_{2}(X(k)), \quad (3.5)$$

$$R_{2} = \sum_{j=1}^{2} a_{2j}x_{j}(k) + f_{2}(X(k)) - \beta_{1}g_{1}(Y(k)) - \beta_{2}g_{2}(Y(k)) - \beta_{3}g_{3}(Y(k)).$$

Le système d'erreur (3.4), peut être décrit sous la forme suivante

$$e(k+1) = R + \begin{pmatrix} 1 & 0 & 0 \\ -\beta_1 & -\beta_2 & -\beta_3 \end{pmatrix} \times \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix},$$
 (3.6)

d'où $e(k+1) = (e_1(k+1), e_2(k+1))^T$ et $R = (R_1, R_2)^T$. Supposons que $\beta_2 \neq 0$, on peut citer le résultat suivant.

<u>Théorème</u> **3.1** La FSHPS et la IFSHPS co-existe entre le système maître (3.1) et le système esclave (3.2) se produit, si les conditions suivantes sont vérifiées

(i)
$$(u_1, u_2)^T = \begin{pmatrix} 1 & 0 \\ \frac{-\beta_1}{\beta_2} & \frac{-1}{\beta_2} \end{pmatrix} [(A - C) e(k) - R] \text{ et } u_3 = 0, \text{ d'où } A = (a_{ij})_{2 \times 2} \text{ et } C \in \mathbf{R}^{2 \times 2}.$$

(ii) La matrice de contrôle C est choisie telles que les valeurs propres de A-C se trouvant à l'intérieur du disque de l'unité.

<u>**Preuve.**</u> En utilisant $u_3 = 0$, nous obtenons

$$e(k+1) = R + \begin{pmatrix} 1 & 0 \\ -\beta_1 & -\beta_2 \end{pmatrix} \times \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}.$$
(3.7)

En substituant la loi de contrôle (i) dans Eq. (3.7), le système d'erreur peut être décrit comme suit

$$e(k+1) = (A-C)e(k).$$
 (3.8)

Dans ce cas, la matrice de contrôle *C* est choisie comme la condition (ii). Ainsi, selon le théoreme 1.1, il est immédiat que $\lim_{k\to+\infty} e_i(k) = 0$, (*i* = 1, 2). Par conséquent, les systèmes (3.1) et (3.2) sont globalement synchronisés en 2-D. ■

3.1.4 Teste numérique

On considère le système discret de Fold comme système maître et le système d'Hitzl-Zele comme système esclave. Le système maître est décrit comme suit :

$$x_{1}(k+1) = x_{2}(k) + ax_{1}(k), \qquad (3.9)$$

$$x_{2}(k+1) = b + x_{1}^{2}(k).$$

d'où (a,b)=(-0.1,-1.7). Le système esclave est défini comme suit

$$y_{1}(k+1) = -dy_{2}(k) + u_{1},$$

$$y_{2}(k+1) = y_{3}(k) + 1 - cy_{2}^{2}(k) + u_{2},$$

$$y_{3}(k+1) = dy_{2}(k) + y_{1}(k) + u_{3},$$
(3.10)

d'où u_1, u_2 est u_3 sont des contrôleurs et (c, d) = (1.07, 0.3). Dans cet exemple, Le système d'erreur est défini comme suit

$$e_{1}(k) = y_{1}(k) - \alpha_{1}x_{1}(k) - \alpha_{2}x_{2}(k),$$

$$e_{2}(k) = x_{2}(k) - \beta_{1}y_{1}(k) - \beta_{2}y_{2}(k) - \beta_{3}y_{3}(k),$$
(3.11)

d'où $\alpha_1 = 1$, $\alpha_2 = 2$, $\beta_1 = -2$, $\beta_2 = 3$ et $\beta_3 = -2$. Ensuite, selon notre approche présentée dans le paragraphe 3.1.3, nous obtenons

$$A = \begin{pmatrix} a & 1 \\ 0 & 0 \end{pmatrix}, \tag{3.12}$$

et

$$C = \begin{pmatrix} -0.1 & 1\\ 0 & 0.82 \end{pmatrix}.$$
 (3.13)

Les contrôleurs u_1, u_2 est u_3 sont donnés comme suivants

$$u_{1} = -0.1e_{1}(k) + x_{2}(k) + ax_{1}(k) + 2b + 2x_{1}^{2}(k), \qquad (3.14)$$

$$u_{2} = 0.05e_{1}(k) + 0.05e_{2}(k) - \frac{1}{2}x_{2}(k) - \frac{a}{2}x_{1}(k) - \frac{3}{2}x_{1}^{2}(k) + \frac{3}{2}y_{3}(k) - \frac{3c}{2}y_{2}^{2}(k) + y_{1}(k) + \frac{3}{2}(1-b), \qquad u_{3} = 0.$$

Il est facile de voir que les valeurs propres de A - C se trouvant à l'intérieur du disque de l'unité. Par conséquent, les systèmes (3.9) et (3.10) sont globalement synchronisés en 2-D. Nous obtenons, à l'aide des simulations numériques, les résultats de synchronisation qui sont présentés dans la figure 5.

Figure 5 : L'évolution des erreurs e_1 et e_2 entre les systèmes (3.9) et (3.10).

3.2 Coexistence de la FSHPS et la IFSHPS en 3-D

3.2.1 Description des systèmes maître-esclave

Dans ce cas, les systèmes maître et esclave sont considérés sous les formes suivantes

$$x_i(k+1) = f_i(X(k)), \quad i = 1, 2,$$
(3.15)

$$y_i(k+1) = \sum_{j=1}^3 b_{ij} y_j(k) + g_i(Y(k)) + u_i, \quad i = 1, 2, 3,$$
(3.16)

d'où $X(k) = (x_1(k), x_2(k))^T$, $Y(k) = (y_1(k), y_2(k), y_3(k))^T$ sont les vecteurs d'état du système maître et le système esclave, respectivement, $f_i : \mathbf{R}^2 \longrightarrow \mathbf{R}$, $(1 \le i \le 2)$, $(b_{ij}) \in \mathbf{R}^{3 \times 3}$, $g_i : \mathbf{R}^3 \longrightarrow \mathbf{R}$, $(1 \le i \le 3)$, sont des fonctions non linéaires et u_i , i = 1, 2, 3, sont des contrôleurs.

3.2.2 Formulation du problème

Le problème, de la co-existence de la FSHPS et la IFSHPS entre le système maître (3.15) et le système esclave (3.16) en 3-D, est de trouver des contrôleurs u_i , i = 1, 2, 3, et des constantes $(\gamma_i)_{1 \le i \le 2}, (\delta_i)_{1 \le i \le 3}, (\epsilon_i)_{1 \le i \le 2}$, de telle sorte que les erreurs de synchronisation

$$e_{1}(k) = y_{1}(k) - \gamma_{1}x_{1}(k) - \gamma_{2}x_{2}(k), \qquad (3.17)$$

$$e_{2}(k) = x_{2}(k) - \delta_{1}y_{1}(k) - \delta_{2}y_{2}(k) - \delta_{3}y_{3}(k),$$

$$e_{3}(k) = y_{3}(k) - \epsilon_{1}x_{1}(k) - \epsilon_{2}x_{2}(k),$$

vérifie que $\lim_{k \to +\infty} e_i(k) = 0, (i = 1, 2, 3).$

3.2.3 Résultats

Le système d'erreur (3.17), peut être écrit comme suit :

$$e_{1}(k+1) = T_{1} + u_{1},$$

$$e_{2}(k+1) = T_{2} - \delta_{1}u_{1} - \delta_{2}u_{2} - \delta_{3}u_{3},$$

$$e_{3}(k+1) = T_{3} + u_{3},$$
(3.18)

ďoù

$$T_{1} = \sum_{j=1}^{3} b_{1j}y_{j}(k) + g_{1}(Y(k)) - \gamma_{1}f_{1}(X(k)) - \gamma_{2}f_{2}(X(k)), \qquad (3.19)$$

$$T_{2} = f_{2}(X(k)) - \delta_{1}\sum_{j=1}^{3} b_{1j}y_{j}(k) - \delta_{1}g_{1}(Y(k)) - \delta_{2}\sum_{j=1}^{3} b_{2j}y_{j}(k) - \delta_{2}g_{2}(Y(k)) - \delta_{3}\sum_{j=1}^{3} b_{3j}y_{j}(k) - \delta_{3}g_{3}(Y(k)), \qquad (3.19)$$

$$T_{3} = \sum_{j=1}^{3} b_{3j}y_{j}(k) + g_{3}(Y(k)) - \epsilon_{1}f_{1}(X(k)) - \epsilon_{2}f_{2}(X(k)).$$

Le système d'erreur (3.18), peut être décrit sous la forme suivante :

$$e(k+1) = T + M \times U,$$
 (3.20)

d'où
$$e(k+1) = (e_1(k+1), e_2(k+1), e_2(k+1))^T, T = (T_1, T_2, T_3)^T, U = (u_1, u_2, u_3)^T$$
 et
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & 0 & 0 \\ -\delta_1 & -\delta_2 & -\delta_3 \\ 0 & 0 & 1 \end{pmatrix}.$$
 (3.21)

Supposons que $\delta_2 \neq 0$, alors nous choisissons le contrôleur U comme suit :

$$U = \begin{pmatrix} 1 & 0 & 0 \\ -\frac{\delta_1}{\delta_2} & \frac{1}{\delta_2} & -\frac{\delta_3}{\delta_2} \\ 0 & 0 & 1 \end{pmatrix} [(B-L)e(k) - T],$$
(3.22)

d'où $B = (b_{ij})_{3\times 3}$ et $L \in \mathbb{R}^{3\times 3}$ est une matrice de contrôle. En substituant la loi de contrôle (3.22) dans Eq. (3.20), le système d'erreur peut être décrit comme suit :

$$e(k+1) = (B-L)e(k).$$
 (3.23)

Pour analyser la stabilité des zéro solutions du système (3.23), nous considérons la fonction de Lyapunov

$$V(e(k)) = e^{T}(k)e(k),$$
 (3.24)

alors nous obtenons

$$\Delta V(e(k)) = e^{T}(k+1)e(k+1) - e^{T}(k)e(k)$$

= $e^{T}(k)(B-L)^{T}(B-L)e(k) - e^{T}(k)e(k)$
= $e^{T}(k)\left[(B-L)^{T}(B-L) - I\right]e(k).$

Dans ce cas, la matrice de contrôle L est choisie tels que la matrice $(B-L)^T(B-L) - I$ est définie négative. Ainsi, selon le théoreme 1.2, il est immédiat que $\lim_{k \to +\infty} e_i(k) = 0$, (i = 1, 2, 3), et par conséquent, les systèmes (3.15) et (3.16) sont globalement synchronisés en 3-D.

<u>Théorème</u> 3.2 La FSHPS et la IFSHPS co-existe entre le système maître (3.15) et le système esclave (3.16) se produit, si les conditions suivantes sont vérifiées

(i)
$$(u_1, u_2, u_3)^T = \begin{pmatrix} 1 & 0 & 0 \\ -\frac{\delta_1}{\delta_2} & -\frac{1}{\delta_2} & -\frac{\delta_3}{\delta_2} \\ 0 & 0 & 1 \end{pmatrix} [(B-L)e(k) - T].$$

(ii) la matrice de contrôle L est choisie tels que la matrice $(B - L)^T (B - L) - I$ est définie négative.

3.2.4 Teste numérique

Ici, nous considérons le système discret de Lorenz comme système maître et le système de Stefanski comme système esclave. Le système maître est décrit comme suit

$$x_{1}(k+1) = (1+ab) x_{1}(k) - bx_{1}(k) x_{2}(k),$$

$$x_{2}(k+1) = (1-b) x_{2}(k) + bx_{1}^{2}(k).$$
(3.25)

d'où (a,b) = (1.25, 0.75). Le système esclave est donné comme suit

$$y_{1}(k+1) = 1 + y_{3}(k) - cy_{2}^{2}(k) + u_{1},$$

$$y_{2}(k+1) = 1 + dy_{2}(k) - cy_{1}^{2}(k) + u_{2},$$

$$y_{3}(k+1) = dy_{1}(k) + u_{3},$$
(3.26)

d'où $U = (u_1, u_2, u_3)^T$ et (c, d) = (1.4, 0.2). Dans cet exemple, le système d'erreur est donné par

$$e_{1}(k) = y_{1}(k) - \gamma_{1}x_{1}(k) - \gamma_{2}x_{2}(k), \qquad (3.27)$$

$$e_{2}(k) = x_{2}(k) - \delta_{1}y_{1}(k) - \delta_{2}y_{2}(k) - \delta_{3}y_{3}(k), \qquad (3.27)$$

$$e_{3}(k) = y_{3}(k) - \epsilon_{1}x_{1}(k) - \epsilon_{2}x_{2}(k), \qquad (3.27)$$

d'où $\gamma_1 = 1, \gamma_2 = 2, \delta_1 = 3, \delta_2 = 2, \delta_3 = 1, \epsilon_1 = -1$ et $\epsilon_2 = -2$. Alors, selon notre approche présentée dans le paragraphe 3.2.3, nous obtenons

$$B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0.2 & 0 \\ 0.2 & 0 & 0 \end{pmatrix},$$
 (3.28)

et

$$L = \begin{pmatrix} -0.44 & 0 & 1 \\ 0 & -0.7 & 0 \\ 0.2 & 0 & -0.13 \end{pmatrix},$$
 (3.29)

Les contrôleurs u_1, u_2 est u_3 sont donnés comme suivants

$$u_{1} = 0.44e_{1}(k) - 1 - y_{3}(k) + cy_{2}^{2}(k) + (1 + ab) x_{1}(k) - bx_{1}(k) x_{2}(k) + (3.30)$$

$$2(1 - b) x_{2}(k) + 2bx_{1}^{2}(k)$$

$$u_{2} = -0.66e_{1}(k) - 0.45e_{2}(k) - 0.065e_{3}(k) + 3y_{3}(k) - 3cy_{2}^{2}(k) + dy_{2}(k) - cy_{1}^{2}(k)$$

$$-2(1 + ab) x_{1}(k) + 3bx_{1}(k) x_{2}(k) - \frac{9}{2}(1 - b) x_{2}(k) - \frac{9}{2}bx_{2}^{2}(k) + 7$$

$$u_{3} = 0.13e_{3}(k) + dy_{1}(k) + (1 + ab) x_{1}(k) - bx_{1}(k) x_{2}(k) + 2(1 - b) x_{2}(k) + 2bx_{1}^{2}(k)$$

Par des calculs simples, nous pouvons montrer que $(B - L)^T (B - L) - I$ est une matrice définie négative. Par conséquent, dans ce cas, les systèmes (3.25) et (3.26) sont globalement synchronisés

en 3-D. L'évolution des erreurs est illustrée dans la figure 6.

Figure 6 : L'évolution des erreurs e_1 , e_2 et e_3 entre les systèmes (3.25) et (3.26).

Conclusion générale

Pour arriver aux buts cités, nous avons commencé par présenter des chapitres préliminaires sur les systèmes dynamiques chaotique discrets et la théorie de synchronisation en évoquant les grands axes tels que : les types et la méthode du contrôleur actif.

D'après la présentation de nos résultats, nous sommes parvenus à :

1- Nous pouvons trouver d'autres critères de synchronisation

2- Il est possible d'observer et de développer de nouveaux types de synchronisation généralisée.

3- Basé sur des théorèmes simples à vérifier, les approches proposées sont rigoureuse.

4- Les résultats dérivés peuvent être appliqués aux des classes plus larges des systèmes chaotiques discrets.

4- La complexité des schémas proposés dans ce mémoire, peut utilisés dans la sécurité des communications et la cryptographie.

Bibliographie

- Pecora, L.M., Carroll, T.L. (1990), "Synchronization in chaotic systems," Phys. Rev. Lett., Vol. 64(8), pp. 821-824.
- [2] Boccaletti, S., Kurthsc, J., Osipovd, G., Valladaresb, D.L., Zhouc, C.S. (2002), "The synchronization of chaotic systems," Phys. Repor. Vol. 366, pp.1–101.
- [3] Boccaletti, S. The Synchronized Dynamics of Complex Systems, Published Elsevier, 2008.
- [4] **Pikovsky, A., Rosemblum, M., Kurths, J.** *Synchronization : A Universal Concept in Nonlinear Sciences*, Cambridge University Press, 2001.
- [5] González-Miranda, J. M. Synchronization and Control of Chaos. An introduction for scientists and engineers, Imperial College Press, 2004.
- [6] **Strogatz, S.H.** Nonlinear Dynamics and Chaos : With Applications to Physics, Biology, Chemistry, and Engineering. Studies In Nonlinearity, Westview Press, 2001.
- [7] Matsumoto, T., Chua, L. O., Kobayashi, K. (1986), "Hyperchaos : laboratory experiment and numerical confirmation," IEEE Transactions on Circuits and Systems, CAS-33 Vol. (11), pp. 1143-1147.
- [8] **Stoop, R., Meier, P. F.** (1988), "Evaluation of Lyapunov exponents and scaling functions from time series," Journal of the Optical Society of America B, Vol. 5(5), pp-1037-5.
- [9] Stoop, , R., Peinke, J., Parisi, J., Röhricht, B., .Hübener, (1989), "R.P. A p-Ge semiconductor experiment showing chaos and hyperchaos," Physica D, Vol. 35, pp. 425-435.
- [10] Eiswirth, M., Kruel, Th.-M., Ertl, G., Schneider, F. W. (1992), "Hyperchaos in a chemical reaction," Chem. Phys. Lett., Vol. 193(4), pp. 305.
- [11] Eduardo, L., Ruiz-Herrera, A. (2012), "Chaos in discrete structured population models," J. Appl. Dyn. Syst., Vol. 11(4), pp. 1200–1214.

- [12] **Zhang, W.B.** *Discrete Dynamical Systems, Bifurcations, and Chaos in Economics*. Elsevier, Boston, 2006.
- [13] Aguilar-Bustos, A. Y., Cruz-Hernández, C. (2006), "Synchronization of discrete-time hyperchaotic Systems through extended Kalman filtering," Nonlinear Dyn. Syst. Theory, Vol. 6(4), pp 319–336.
- [14] Aguilar Bustos, A. Y., Cruz Hernández, C., López Gutiérrez, R. M., Posadas Castillo, C.
 (2008), "Synchronization of different hyperchaotic maps for encryption," Nonlinear Dyn. Syst. Theory, Vol. 8(3), pp. 221-236.
- [15] Aguilar Bustos, A. Y., Cruz Hernández, C. (2008), "Synchronization of discrete-time hyperchaotic systems : An application in communications," Chaos Solitons Fractals, Vol. 41(3), pp. 1301-1310.
- [16] C., Cruz Hernández, Lopez Gutierrez, R. M., Aguilar Bustos, A. Y., Posadas Castillo,
 C. (2010), "Communicating encrypted information based on synchronized hyperchaotic maps," Int. J. Nonlinear Sci. Numer. Simul, Vol. 11(5), pp. 337-349.
- [17] Liu, W., Wang, Z.M., Zhang, W.D. (2012), "Controlled synchronization of discrete-time chaotic systems under communication constraints," *Nonlinear Dyn.*, Vol. 69, pp. 223–230.
- [18] Inzunza González, E., Cruz Hernandez, C. (2013), "Double hyperchaotic encryption for security in biometric systems," Nonlinear Dyn. Syst. Theory, Vol. 13(1), pp. 55-68.
- [19] Filali, R.L., Benrejeb, M. and Borne, P. (2014), "On observer-based secure communication design using discrete-time hyperchaotic systems," Commun. Nonlinear. Sci. Numer. Simulat., Vol. 19(5), pp. 1424-1432.
- [20] Ouannas, A. (2014), "Some synchronization criteria for N-dimensional chaotic dynamical systems in discrete-time," Journal of Advanced Research in Applied Mathematics, Vol. 6(4), pp. 1-9.
- [21] Chai, Y., Lü, L., and Zhao, H.Y., (2010), "Lag Synchronization Between Discrete Chaotic Systems with Diverse Structure," Appl. Math. Mech-Engl., Vol. 31(6), pp. 733-738.
- [22] Yin, L., and Tianyan, D., (2010), "Adaptive Control for Anticipated Function Projective Synchronization of 2D Discrete-time Chaotic Systems with Uncertain Parameters," J. Uncertain Syst., Vol. 4(3), pp. 195-205.
- [23] Yanbo. G, Xiaomei. Z, Guoping. L, Yufan Z. (2011), "Impulsive synchronization of discretetime chaotic systems under communication constraints," Commun. Nonlinear. Sci. Numer. Simulat., Vol. 16, pp. 1580-1588.

- [24] Filali, R.L., Hammami, S., Benrejeb, M. and Borne, P. (2012), "On synchronization, antisynchronization and hybrid synchronization of 3D discrete generalized Hénon map," Nonlinear Dyn. Syst. Theory, Vol. 12(1), pp. 81-95.
- [25] Xin, B., Wu, Z. (2015), "Projective synchronization of chaotic discrete dynamical dystems via linear state error feedback control," Entropy, Vol. 17, pp. 2677-2687.
- [26] J, Y-L., Xin, L., Yong, C. (2008), "Function projective synchronization of discrete-time chaotic and hyperchaotic systems Using Backstepping Method," Commun. Theor. Phys., Vol. 50, pp. 111–116.
- [27] Li, Y., Chen, Y., and Li, B., (2009) "Adaptive control and function projective synchronization in 2D discrete-time chaotic systems," Commun. Theor. Phys., Vol. 51, pp. 270–278.
- [28] Li, Y., Chen, Y., and Li, B., (2009), "Adaptive function projective synchronization of discrete-Time chaotic Systems," Chin. Phys. Lett., Vol. 26 (4), pp. 040504-4.
- [29] **Ouannas, A. (**2014**)**, "Synchronization of discrete chaotic systems via double scaling matrix in different dimensions," J. Appl. Math. Comput., Vol. 3 (7), pp. 1-5.
- [30] **Ouannas, A.** (2014), "On full-state hybrid projective synchronization of general discrete chaotic systems," J. Nonlinear Dynamics, Vol. 2014, Article ID 983293, pp. 1-6.
- [31] **Grassi, G. (**2012**)**, "Arbitrary full-state hybrid projective synchronization for chaotic discrete-time systems via a scalar signal," Chinese Phys. B , Vol. 21, pp. 060504-5.
- [32] An, H.L., Chen, Y. (2009), "The function cascade synchronization scheme for discrete-time hyperchaotic systems," Commun Nonlinear Sci Numer Simulat., Vol. 14, pp. 1494–1501.
- [33] Diao, M., Yu, Y-G., Wang, S., Yu, J-Z. (2010), "Hybrid lag function projective synchronization of discrete chaotic systems with different orders," Inter. J. Nonl. Sci. Num. Simu., Vol. 11 (7), pp. 503–508.
- [34] **Grassi, G. (**2012**)**, "Generalized synchronization between different chaotic maps via deadbeat control," Chinese Phys. B , Vol. 21 (5), pp. 050505-5
- [35] Ouannas, A., Odibat, Z. (2015), "Generalized synchronization of different dimensional chaotic dynamical systems in discrete time," Nonlinear Dyn. DOI 10.1007/s11071-015-2026-0.
- [36] **Yan, Z.Y.** (2005), "Q-S synchronization in 3D Hénon-like map and generalized Hénon map via a scalar controller," Phys. Lett. A., Vol. 342, pp. 309-317.
- [37] **Ouannas, A., Al-sawalha, M.M. (**2015**)**, "On inverse Full State Hybrid Projective Synchronization of Chaotic Dynamical Systems in Discrete-Time," Inter. J. Dyn. Control, 2015.

- [38] Ouannas, A. (2015), "A new generalized-type of synchronization for discrete-time chaotic dynamical Systems," J. Comput. Nonlinear Dyn., Vol. 10(6), pp. 061019-8.
- [39] Ouannas, A. and Al-sawalha, M.M. A new approach to synchronize different dimensional chaotic maps using two scaling matrices. Nonlinear Dynamics and Systems Theory 15 (2015) 400-408.
- [40] **Yoshizawa, T.** *Theory and the Existence of Periodic Solutions and Almost Periodic Solutions.* Applied Mathematical Sciences Series, Publisher Springer-Verlag New York, 1975.
- [41] Wiggins, S. Introduction to Applied Nonlinear Dynamical Systems and Chaos, Texts in Applied Mathematics, Springer-Verlag New York, 2003.
- [42] Guckenheimer, J. Holmes, P. Nonlinear Osciators, Dynamical Systèmes, and Bifurcations of Vector Fields. Applied Mathematical Sciences. Springer verlag édition, 1983.
- [43] Lakshmanan, M., Rajaseekar, S. Nonlinear Dynamics Integrability, Chaos and Patterns. Advanced Texts in Physics, Publisher Springer-Verlag Berlin Heidelberg, 2003
- [44] **Devaney, R.L.** *An introduction to chaotic dynamical systems*. In Adission-wisley, Redwood City, CA 37.
- [45] Mira, C., Gardini, L., Bugola, A., Cathala, J-C. Chaotic dynamics in two-dimensional noninvertible maps. World Scieniific, 1996.
- [46] Alligood, K.T., Sauer, T.D. et Yorke, J.A. Chaos : an Introduction to Dynamical Systems, Springer-Verlag édition, 1996.
- [47] **Rosenstein, M., Collins, J., Deluca, C.** (1993), "A practical method for calculating largest Lyapunov exponents for small data sets," Physica, Vol. 65, pp. 117-134.
- [48] Wolf, A., Swift, J., Swinney, H., Vastano, J. (1985), "Determining Lyapunov exponents from a time series," Physica, Vol. 16, pp. 285-317.
- [49] Parker, T.S., Chua, L.O. Pratical Numerical Algorithms For Chaotic Systems. Edition Springer-Verlay, 1989.
- [50] Grebogi, C., OTT, E., Pelikan, S., Yorke, J.A. (1984), "Strange attractors that are not chaotic," Physica D, Vol. 13, pp. 261-268.
- [51] Itoh, M., Yang, T., Chua, L.O. (2001), "Conditions for impulsive synchronization of chaotic and hyperchaotic systems," Int. J. Bifurcation Chaos Appl. Sci. Eng., Vol. 11, pp. 551-8.
- [52] Hitzl, D.L., Zele, F. (1985), "An exploration of the Hénon quadratic map," Physica D, Vol. 14(3), pp. 305–326.

- [53] K. Stefanski, (1998), "Modelling chaos and hyperchaos with 3D maps," Chaos Solitons Fractals, Vol. 9(1-2), pp. 83-93.
- [54] Lu, J. (2008), "Generalized (complete, lag, anticipated) synchronization of discrete-time chaotic systems," Commun. Nonlinear. Sci. Numer. Simulat., Vol. 13 (9), pp. 1851-1859.
- [55] Adeli, M., Zarabadipoor, H. (2011), "Anti-synchronization of discrete-time chaotic systems using optimization algorithms," International Journal of Electronic Signals and Systems, pp 143-147.
- [56] Xin, B., Wu, Z. (2015), "Projective synchronization of chaotic discrete dynamical systems via linear state error feedback control," Entropy, Vol. 17, pp. 2677-2687.
- [57] Hu M, Xu Z, Zhang R (2008) Full state hybrid projective synchronization in continuous-time chaotic (hyperchaotic) systems. Commun Nonlinear Sci Numer Simul 13 :456–464
- [58] Zhang Q, Lu J (2008) Full state hybrid lag projective synchronization in chaotic (hyperchaotic) systems. Phys Lett A 372(9) :1416–1421
- [59] Hua M, Xua Z, Zhang R, Hua A (2007) Parameters identification and adaptive full state hybrid projective synchronization of chaotic (hyperchaotic) systems. Phys Lett A 361(3) :231– 237
- [60] Hua M, Xua Z, Zhang R, Hua A (2007) Adaptive full state hybrid projective synchronization of chaotic systems with the same and different order. Phys Lett A 365(4) :315–327
- [61] Chu Y-D, Chang Y-X, Zhang J-G, Li X-F, An X-L (2009) Full state hybrid projective synchronization in hyperchaotic systems. Chaos Solitons Fractals 42(3) :1502–1510
- [62] Wang X-Y, Song J (2009) Adaptive full state hybrid projective synchronization in the unified chaotic system. Mod Phys Lett B 23 :1913–1921
- [63] Wang X-Y, Zhu L-B (2011) Adaptive full state hybrid projective synchronization of unified chaotic systems with unknown parameters. Int J Mod Phys B 25 :4661–4666
- [64] Hua M, Xua Z, Zhanga R (2008) Full state hybrid projective synchronization of a general class of chaotic maps.Commun Nonlinear Sci Numer Simul 13(4) :782–789
- [65] A. Ouannas, G. Grassi, Inverse Full State Hybrid Projective Synchronization for Chaotic Maps with Different Dimensions, Chiness Physics B, Vol. 25 (9), pp. 090503-6, 2016.
- [66] Ma, Z., Liu, Z., Zhang, G. (2007), "Generalized synchronization of discrete systems," Appl. Math. Mech., Vol. 28 (5), pp. 609-614.
- [67] Ouannas, A., Odibat, Z. (2015), "On inverse generalized synchronization of continuous chaotic dynamical systems," Internat. J. Appl. Comput. Math., DOI 10.1007/s40819-015-0040-z.

- [68] **Manfeng Hu., Xu, Z.A.** (2008), "General scheme for Q-S synchronization of chaotic systems," Nonlinear Analysis, Vol. 69 (4), pp. 1091-1099.
- [69] Yassen, M.T. (2005), "Chaos synchronization between two different chaotic systems using active control," Chaos Solitons Fractals, Vol. 23 (1), pp. 131–140.