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ABSTRACT

In this thesis, we investigate the blow-up and global existence of solutions to
the following time fractional nonlinear diffusion equations

§Dfu — Au = |u|p_1u,x € RNt >0,
u(O,:z:) = UO(x)az € RN7

where 0 < a < 1,p > 1, ug € Co(RY) and § Dfu = (0/0t)o I}~ (u(t, z)—uo(x)),
ol} ~* denotes left Riemann-Liouville fractional integrals of order 1 — a. We
prove that if 1 < p < 1+ 2/N, then every nontrivial nonnegative solution blow-
up in finite time, and if p > 1+ 2/N, and ||u0||LqC(RN), g = N(p—1)/2 is
sufficiently small, then the problem has global solution.



Introduction

This thesis is concerned with the blow-up and global existence of solutions
to the following Cauchy problems for time fractional diffusion equation

CDu— Au= |ul " u,z € RN, t >0, (1)

u(0,2) = ug(z),z € RN, (2)

where 0 < a <1, p > 1, up € Co(RN) = {u € C(RN): lim |00 u(z) = 0} and
SDgu = (0/0t)oI}~*(u(t,z) — uo(x)), o} ~* denotes left Riemann-Liouville
fractional integrals of order 1 — « and is defined by

1

ol; " “u= Ti—a) /0 (t —s)"“u(s) ds.

When « = 1, the problem (1)-(2) reduces to the semilinear heat equation
ut—Au=|u|p_1u,J;€RN,t>O, (3)

with (2). Fujita showed that if 1 < p < 14+2/N and wug # 0, then every solution
of (3)-(2) blows up in a finite time. If p > 14-2/N, then for initial values bounded
by a sufficiently small Gaussian, that is for 7 > 0, there is € = e(7) > 0 such that
if 0 < wp(z) < eG,(x), then the solution of (3)-(2) is global. The critical case
p =1+ 2/N was later proved to be in the blow-up category. Weissler proved
that if the initial value ug is small enough in L% (RY), ¢. = N(p —1)/2 > 1,
then the solution of (3)-(2) exists globally.

Kirane, Laskyi an Tatar studied the following evolution problem

SDu+ (—A)P2u = h(z,t) ju| TPz € RNt > 0, (4)

with (2), where 0 < a < 1,0 < 3 < 2, §D&u = (9/0t)oI}“(u(t, ) — uo(x)),
~p > 0, h satisfies h(x,t) > Cp|z|”t? for z € RN, t > 0, C}, > 0, and o,
p satisfy some conditions. (—A)#/2y =1 (|C|B (u)), where denotes Fourier
transform and ~! denotes its inverse. They obtained that if 0 < ~p < (a(B +
o) + Bp)/(aN + B(1 — «)), then the problem (4)-(2) admits no global weak
nonnegative solution other than the trivial one.

Cazenave, Dickstein and Weissler considered the followin heat equation with
nonlinear memory,

t
ut—Au:/(t—s)’”u\p*luds,xERN,t>0, (5)
0

with (2), where p > 1, 0 <y < 1, and ug € Co(RN).

Let py =14+2(2—7)/(N—=2+27)4, (N —2+2v)y =max {0, N — 2+ 27} and
P« = max {1/7,p} € (0, 00]. They obtained that if p < p,, ug > 0, ug # 0, then
the solution u of (5)-(2) blows up in finite time and if p > p, and ug € L% (RY),
Gsc = N(p—1)/(4 — 27) with [[uo|| 4. g, sufficiently small, then the solution



exists golbally.
Fino and Kirane discussed the following equation

t
Uz + (—A)ﬁ/Qu = / (t—s)" |u|p_1 uds,z € RNt >0, (6)
0

with (2), where 0 < 8 < 2,0 <~ < 1, they got the blow-up and global existence
results by using the test function method. The method based on rescalings of a
compactly support test function to prove the blow-up results which is used by
Mitidieri and Pohozaev to show the blow-up results.



Chapter 1

Preliminaries

In this chapter, we present some preliminaries that will be used in the next
chapters.

1.1  Functional analysis

1.1.1 LP? spaces

Definition 1 Let X = [a,b] provided with the Borel tribe and a measure on
(X, Bx). For1 <p < 0o, We denote by LP(X, x) the set of measurable functions

f:X—>Ras )
- Par) < oo.
T (/Xfl x) < oo

It is clear that L' (X, x) is a vector space. To obtain a similar result in the case
p > 1, We need the following theorem.

1 1

Theorem 2 Let p, q €]1,00[ such that — + — = 1. So for any measurable func-
P q

tions f,g : X — R we have

s

1 +gll, < 71, + llgll, (Minkowski).

< |I£1l, lglly (Holder).

Proof. We first demonstrate the inequality of Holder. Without loss of general-
ity, we can suppose that || f||, = [|g]|, = 1. For everyone z,y > 0, we have
Pyl

ry < — + —.
b q



Then

P q P q
’/ fgdx §/ |fgl d:er/ <f|+|g|> dr = Hf”erHg”q:l.
X X x \ D q p q

Let us now show Minkowski’s inequality. We obtain

If + 9l

=/ gl dxs/ 1+ gl (] + Jg) de
X X

<(eara)” (s ()’

This inequality immediately implies the desired result. m

1.1.2 Banach space

A Banach space is a vector space X over the field R of real numbers, or over
the field C' of complex numbers, which is equipped with a norm and which is
complete with respect to that norm, that is to say, for every Cauchy sequence
{z,} in X, there exists an element x in X such that

limp—ecTn = z,
or equivalently
limy o0 [|2n — ]| = 0.

The vector space structure allows one to relate the behavior of Cauchy sequences
to that of converging series of vectors. A normed space X is a Banach space if
and only if each absolutely convergent series in X converges,

o2 lvnllx < oo implies that Y~°7 | v,converges in X.

Completeness of a normed space is preserved if the given norm is replaced by an
equivalent one. All norms on a finite-dimensional vector space are equivalent.
Every finite-dimensional normed space over R or C is a Banach space.

1.1.3 Complete Metric space

Definition 3 Let (X,d) be a metric space. A sequence (x,) in X is called a
Cauchy sequence if for any € > 0, there is an n. € N such that d(xm,,x,) < €
for any m > ng., n > n..

Theorem 4 Any convergent sequence in a metric space is a Cauchy sequence.



Proof. Assume that (z,) is a sequence which converges to z. Let ¢ > 0 be
given. Then there is an N € N such that d(x,,z) < § for all n > N. Let
m,n € N be such that m > N, n > N. Then

€ €
ATy n) < d( T, x) + d(Th, x) < s ts=¢
Hence (x,) is a Cauchy sequence.
Then converse of this theorem is not true. For example, let X = (0,1]. Then
(%) is a Cauchy sequence which is not convergent in X. m
Definition 5 A metric space (X,d) is said to be complete if every Cauchy
sequence in X converges (to a point in X ).

1.1.4 Theorem of Riesz-Thorin

Let 1 < po, p1, 90, @1 < 00, let T:LPo(X, u)NLPY (X, u) — LP(Y,v)NLE(Y,v),
be a linear operator, and suppose that there exist positive real numbers cg, ¢q
such that, for all ug € LP° (X, u) N LP* (X, p),

IT(#)uol| Lay < colluollpre > IT(E)uoll Lo < 1 lJuoll o -
Fixe a real number 0 < A < 1 and define the numbers py, g, ¢ by
1 1-X X1 1—X A _
+ — IED DY

—, — + —,en=1¢y “cy-
Px Po P1 gx q0 q1

If g\ = oo assume that (Y, B,v) is semi-finite. Then

IT(@)uoll Lar < exlluollox »

for all ug € LPo (X, ) N LPY (X, ) C LPX (X, p).

1.1.5 Holder’s inequality

Let 11
,+,:1’
P q

with p,q > 1. Then Hélder’s inequality for integrals states that

/ablf(x)g(x)l dr < l/abuw dasr V (2)]" dx] "

with equality when
-1
lg(@)| = el f(@)["".



If p = ¢ = 2, this inequality becomes Schwarz’s inequality. Similarly, Holder’s
inequality for sums states that

S ] < (z w) (z w) ,
k=1 k=1 k=1
with equality when
lbi| = clax""" .

If p = g = 2, this becomes Cauchy’s inequality.

1.1.6 Young’s inequality

Let f be a real-valued, continuous, and strictly increasing function on [0, ¢] with
¢>0.If f(0)=0, ain [0,c], and b in [0, f(c)], then

a b
/ (@) do + / F V) de > ab,
0 0

where f~1 is the inverse function of f. Equality holds iff b = f(a). Taking the
particular function f(z) = Z(p — 1) gives the special case

P 1\,
a+(p)bp—1>ab,
P P

which is often written in the symmetric form

a? b1

7+72ab7

p q
where a,b >0, p > 1, and

1 1

42 =1

p q

1.1.7 Gronwall’s inequality

Let I denote an interval of the real line of the form [a, c0) or [a, b] or [a,b) with
a < b. Let 5 and u be real-valued continuous functions defined on I. If u is
differentiable in the interior I° of I (the interval I without the end points a and
possibly b) and satisfies the differential inequality

' (t) < B u(t), t € I°,

then u is bounded by the solution of the corresponding differential equation

(1) = A1) t
u(t) < u(a) exp ( | 86 ds)

forallt e I.



1.1.8 Fubini’s theorem

Fubini’s theorem, sometimes called Tonelli’s theorem, establishes a connection
between a multiple integral and a repeated one. If f(x,y) is continuous on the
rectangular region R = {(x,y) € R? :a < 2 < b,c <y < d}, then the equality

][jczf(x,y)d(x,y)“jﬁbjcdj(x,y)dydx.

1.1.9 Uniform convergence

Definition 6 A sequence of functions {f,},n = 1,2, 3, ... is said to be uniformly
convergent to [ for a set E of values of x, if for each € > 0, an integer ng can
be found such that

|fn(z) — f2)] <e,

forn >ng and all x € E.
A series Y fn(x) converges uniformly on E if the sequence {Sp} of partial sums
defined by

Sa(x) = frl@),
k=0

converges uniformly on E.

To test for uniform convergence, use Abel’s uniform convergence test or the
Weierstrass M-test. If individual terms u,(xz) of a uniformly converging series
are continuous, then the following conditions are satisfied.

Proposition 7 1. The series sum

flz) =) unlx),

18 continuous.
2. The series may be integrated term by term

/abf(;z:) dz = il/abun(x) dz.

For exzample, a power series Y . ,(x — x¢)" is uniformly convergent on any
closed and bounded subset inside its circle of convergence.

8. The situation is more complicated for differentiation since uniform conver-
gence of >_o°  un(x) does not tell anything about convergence of 3 ne | “Lu,,(z).
Suppose that Y~ | un(xo) converges for some xo € [a,b], that each u,(x) is dif-
ferentiable on [a,b], and that >, | “-u, () converges uniformly on [a,b]. Then
S0 un(z) converges uniformly on [a,b] to a function f, and for each x € [a,b],



1.1.10 Dominated convergence theorem

Theorem 8 (Lebesque dominated convergence theorem)

Suppose fn : R — [—00,+00] are (Lebesgue) mesurable functions such that the
pointwise limit f(x) = lim, o frn(x) exists. Assume there is an integrale

g: R —[0,00] with |fn(x)] < g(x) for each x € R. Then f is integrable as is f,
for each n, and

lim fndx:/ lim fndm:/fd;v.

1.1.11 Semi group

Definition 9 A family {T'(t)}1>0 of bounded linear operators, on X is said to
be a semi graoupe on X, if it satisfies

(a) T(0)=1.

(b)) Tt+s)=T()T(s), t,s > 0.

The Semigroup Property

By transitionally breaking down the process of evolution, it is evident that we
can reach the state of the system at time ¢t + s by either going directly from the
initial condition to the state at time ¢+ s or by allowing the state to evolve over
s time units (taking a snapshot), and then allowing it to evolve t more time
units. Here the T'(+) is acting like a transition operator. The uniqueness of the
solution gives reveals the semigroup property which is given by

T(t+s) = T(OT(s) (t > 0, s > 0).

The semigroup property of the family of functions, {T'(¢);t > 0}, is a compo-
sition (not a multiplication). Notice that T'(0) is the identity operator I (i.e.
there is no transition at time zero and the initial data exists).

More Properties

Now that we have seen the fundamental semigroup property, we want to under-
stand how A (which governs the evolution of the system) and T relate to one
another. We will first examine the scalar case. Two observations which may be
preliminary indicators of the relationship are given as follows

T(t)(f) = T(£)(w(0)) = u(t) = e f,
and
—T
dt
where A is the derivative of T'(t). In addition, each T(t) : f — eAtf is a

continuous operator on R, (or in an infinite dimensional setting, a Banach space
X), which indicates the continuous dependence of u(t) on f. The initial data f

10



should belong to the domain of A. We have the following results:
a) T(t) is a continuous function.

b) T(0)f = f.

¢) T(t) : R — R is linear provided A is linear.

Again, since we are interested in linear semigroups, we will assume that A is
linear. These observations bring for the notion of Cj semigroups.

1.1.12 Semi-group strongly continuous on a Banach space

Definition 10 A family of operators (T(t))i>0 of L(X) is a strongly continu-
ous semigroup on X when the following conditions are realized

(a) T(0) = I,

(b) T(t+s)=T(t)T(s) for everyt >0 and all s > 0,

(c¢) lims_o ||T(t)z — z|| = 0, for every x € X.

Theorem 11 Let (T'(t))i>0 be a strongly continuous semi-group on X. Then
there exist constants w > 0 and M > 1 such that

IT(t)|| < Me™,
for every t > 0.

Theorem 12 If (T'(t))i>0 is a strongly continuous semi-group on X then, for
all x € X, the application
t— S(t)z,

is continuous from [0,00) in X.

Theorem 13 Let (T'(t))i>0 be a strongly continuous semi-group over X and
(A, D(A)) its infinitesimal generator. The following properties are verified
(a) For all x € X, we have

1
lim

t+h
lim /t T(s)xds =T(t)z.

(b) For every x € X and every t > 0, fot T(s)xzds belongs to D(A) and

A (/Of /tHh T(s)a ds> = T(t)z —=.

(c) If x € D(A), then T(t)x € D(A) and
d
aT(t)x = AT (t)x = T(t)z A.

(d) If x € D(A), then

T(t)z — T(s)z = / Ty Axdr — / " AT(r)x dr.

11



Definition 14 Let (T(t))i>0 be a strongly continuous semi-group on X. The
generator infinitesimal of the semigroup (T'(t))¢>0, the unbounded operator

(A, D(A)) defined by
% existsin X} ,
and

Az = lim,_ M for allz € X.

1.1.13 Contractive semigroup

Definition 15 A strongly continuous semi-group (T'(t))i>0 over X is a semi-
group of contractions if

|T(t)|| <1, for all t > 0.

Theorem 16 Let (T'(t));>0 be a strongly continuous semi-group over X and
(A, D(A)) its infinitesimal generator. The following properties are verified
(a) For all v € X, we have

1
lim

t+h
lim /t T(s)xds =T(t)x.

t
(b) For every x € X and everyt > 0, / T(s)x ds belongs to D(A) and
0

A ( /0 t /t e ds) — Tt —a.

(c) If x € D(A) then T(t)x € D(A) and

d
ﬁT(t)x = AT (t)x = T(t)zA.

(d) If x € D(A) then
T(t)x —T(s)x = / T(r)AzdT = / AT (r)x dr.

Theorem 17 (Hille-Yosida theorem 1) An unbounded linear operator (A, D(A))
in X is the infinitesimal generator of a semi-group of contractions on X if and
only if the following conditions are satisfied

(a) A is closed,

(b) D(A) is dense in X,

(c) for everything A > 0, (Al — A) is a bijective mapping of D(A) into X, and
(M — A)~! is A bounded operator on X satisfying

1 1
Jor -4 < 1.

12



Theorem 18 (Hille-Yosida theorem 2) An unbounded linear operator (A, D(A))
in X is the infinitesimal generator of a semi-group of contractions on X if and
only if A is m-dissipative and dense domain in X.

1.1.14 Laplace transform

The Laplace transform intervenes in the resolution of equations and differential
systems.

Definition 19 The Laplace transform of a function f of the real variable
t € R" is defined by
LF(N) :/ e Mf(t)dt,\ € R.
0

F(t) is called the original of f(\).
The Laplace transform of a function exists if the previous integral is convergent,
for which the original must be exponential order a, i.e: there exists M > 0 such
that

|£(t)] < Met f(t)dt, fort > T.

In this case, the Laplace transform exists for Re(\) > a. The original f(t) is
called the inverse Laplace transform

LNLF) () = — /c+me’\tf()\)d)\7c>a.

218 Jo—ioo

Proposition 20 The Laplace transform is linear i.e
LIf)AN) =L (Z Cifi(t)> ()= Zciﬁfi()‘)'
i=0 i=0

Definition 21 When the product f(x — t)g(t) is integrable over any interval
[0,z] of RT, the convolution product of f and g is defined by

(f*g)(z)= /Or f(x—t)g(t)dt.

Proposition 22 If the Laplace transforms of f and g exist, then the Laplace
transform of the convolution product satisfies

L(f*g)(s)=L(f)L(g)-

Proposition 23 The Laplace transform of the derivative of order n € N of the
function f is given by

n—1 n—1
LMY = A"L(f)A) =Y ATELEB0) = ML) (A) = D A FED(0).
k=0 k=0

13



1.2 Calculates fractional

1.2.1 Gamma function

Definition 24

I() = / e~t*1dt, Re(z) > 0, = € C.
0

From this definition it is clear that T'(z) is analytic for Re(z) > 0. By using
integration by parts we find that

o0 o (o)
'z+1) = / e "t dt = —/ t*de”t = —e M7 [P +/ e tdt?
0 0 0
= z/ e """ dt = 2T(2), Re(z) > 0.
0

Hence we have.

Theorem 25
I'(z+1) = 2I'(2), Re(z) >0, z € C.

Further we have

ra) = / e tdt =—e 7t |FP=1.
0
'(n+1) = nl,n=0,1,2,3,....
Now we define
I'(z+1)
I'(z) = — —1< Re(z) <0,z #0.

Proposition 26 (of the Gamma function)

FCAm) e et 1)
S5 = )G N.
F(I,;(Z)n) = z2(z=1)(z=2)..(z—n),n€N.
I'(=2) _ 2T(1+24n) o
T(—z-n) (—1) W,nnonnegatwemteger.
lim Lletn) _ 1

14



1.2.2 Beta function
Definition 27

1
B(u,v) = / t“= (1 — )"~ dt, Re(u) > 0, Re(v) > 0.
0

This integral is often called the beta integral. From the de nition we easily obtain

the symmetry
B(u,v) = B(v,u),

since we have by using the substitutiont =1— s

1 0
Blu,v) = /tufla—t)v*ldt:—/ (1= 5)*—Ls"=1 ds
0 1

1
/ 5711 = s)""1ds = B(v,u).
0

The connection between the beta function and the gamma function is given by
the following theorem:

Theorem 28

B(u,v) = 1;((1;)_1;(:)), Re(u) > 0, Re(v) > 0.

In order to prove this theorem we use the definition of gamma function to obtain

oo oo
/ e tput dt/ e *s" s
0 0

= / e~ (tts)pu—1gv=1 gpqg.
0

T(u)T(v)

Now we apply the change of variables t = xy and s = x(1 — y) to this double
integral. Note that t +s = x and that 0 < t < oo and 0 < s < oo imply that
0<xz<1and0 <y < 1. There exist many useful forms of the beta integral
which can be obtained by an appropriate change of variables. For instance, if
we sett =s = (s+1) into B(u,v) = fol tu=1(1 —t)v~1dt, we obtain

1
B(u,v) = / 1=ttt
0
= / sUHs+ 1)U s+ 1) T (s + 1) 72 ds
0

o] su—l
= /0 Gr ds, Re(u) > 0, Re(v) > 0.

15



1.2.3 Mittag-Leffler function
Definition 29 The Mittag-Leffler function is defined for complexr z € C

kZ=0F1+Oék ,a € C, Re(a) >0, z € C,

and its general form
kzzofﬁJr oy @ B € O, Rela) >0, Re(B) > 0, 2 € C.

Originally Mittag-Leffler assumed only the parameter and assumed it as positive,
but soon later the generalization with two complex parameters was considered by
Wiman. In both cases the Mittag-Leffler functions are entire of order ﬁ(a).

Generally Ey1(2) = Eo(2).

If Re(a) > 0, Re(B) > 0 and z € C. The following representations are obtained

L PRI (1-s),
Eo(z) = 27”/7 W(*Z) ds,

—100
and

E

@ (2) = 2mi ), e T(B — as)
where the path of integration sparates all the poles of I'(s) at the points
s=—v,v=0,1,-- from those of I'(1—s) at the points s = 1+v,v =0,1,---.On
evaluating the residues at the poles of the gamma function I'(1 — s) we obtain
the following analytic continuation formulas for the Mittag-Leffler functions:

y+ioco — s
E.(z) = 1/ DT =9) s g

Y+ioo (g _s
L [TUIOR= Y g,

2mi i00 F(l —as)
= 2 Tioan I( 1 —ak)’
k=1

1 7+“>°F D(s)T(1 = s)

E = — ¢
o8(2) i ) —as) — o (—2)""ds
_ e
(B —ak)
k=1

16



1.2.4 Some special cases

We begin our study by giving the special cases of the Mittag-Leffler function
Eq(z)

1
Eo(z) = 1= 2] < 1.
El(z) = El,l(Z):
Es(z) = cosh(v/z),z€C.
Fy(—2%) = cos(z), z€ C.
-1
Era(z) = ez ,z€C.
We obtain
o0 k o0 k
z z
Bra(z) = ) =2
= I(k+2) & ((k+1)
1o zktl 1
- ;Z(;H),:;(e—z_u
k=0
sinh(y/z
Erp(z) = \/(;f)7zec
1 1 1
Es(z) = B e*? 4+ 2e72%7 cos (fﬁ)],zec
e —z—1
Ei3(z) = = ,z€eC
We obtain
> 1 & z+2 I
Eis(z) = Zrk+3 ?Z (k + 2@
k=0 =
Ey(z) = %c z4)+cosh(z%} zeC.
Ei)s (iz%> = ¢ [1+erf(izf)}:e erfc(izf),zEC.

Where er fc denotes the complimentary error function and the error function is
defines as

erf(z \f/ exp(—t?)dt,erfc(z) =1 —erf(z), z € C.

17



Theorem 30 The Mittag-Leffler has the following properties
1) For |z| < 1, the generalized Mittag-Leffler function satisfies

1
z—1

/ e HPTIE, p(2t™) dt =
0

2) The Laplace transform of this function is given by

EIae—p

W, Re(/\) > |CL|E .

LB s(az))(A) =

k k
Or BS)(y) = L Eap(y).
3) Integration of Mittag-Leffler function

/ Eo (M)t dt = 2P B, 511 (A2%).
0

4) The derivative of order n € N of the function of Mittag-Leffler is given by

d’I’L
e (P By (1) = 27 B (7).

1.2.5 Integral representation of Mittag-Leffler function

In this section several integrals associated with Mittag-Leffler functions are
presented, which can be easily established by the application by means of beta
and gamma function formulas and other techniques

& 1
/ e SE,(C%2)d¢ T |z| < 1, a € C, Re(ax) > 0,
0 _

o0

1

/ e 2P E, p(2%2)dx = = |2l < 1, a, B € C, Re(a) > 0, Re(B) >0,
0 _

/ox@—o“Ea(c“)dc = T(B)2°Eaps1(z), Re(a) >0, Re(B) > 0,

Aafl

> —X¢ _ra _
| B = S R >0,

/ e AmetAL B (Lac?) d¢
0

mIXe—P
= Doy fel@) >0, Re(A) > 0, Re(5) > 0,

where «, 5 € C and
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m am
ElH() = o Baus(2),

N 2 . am, [ ¢ teos(zC)
Ea(_x ) = ;SIH(T)/O 1_’_240[(308(%)_’_@?0[
Ca—l

1+ 2¢> cos(am) + ¢

d¢, a € C, Re(a) > 0,

T Cde, a e C, Re(a) > 0,
T

Fu(-2) = lsin(om) /OOO

Eo(-z) = 1—— o+ —/ arctan [Ca COS(OMT)} _Cm%CdC, a € C, Re(a) > 0.

sin(ar)

Plot of the Mettag-Mefller function

Mittag-L effler function Mittag-Leffler function

-0 & 0 1 o b T0 1
H __/ H
a=1b=1 =2t 1
Mittag-L effler function Mittag-Leffler function
L —
e ——
/— —
||
Ao ] 0 1 0 s 0 1}
=3t=1 =4t=1
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Mittag-L effler function

1.2.6 Wright function W, ,(2)

Definition 31 The Wright function, that we denote by W ,(z) is so named in
honour of E. Maitland Wright, the eminent British mathematician, who intro-
duced and investigated this function in a series of notes starting from 1933 in
the framework of the asymptotic theory of partitions. The function is de ned by
the series representation, convergent in the whole z-complexr plane,

— ()"
Wau(z) =Y A > ~1,u € C.
2 BT (M + 1)

s0 W u(2) is an entire function. Originally Wright assumed X > 0, and, only
in 1940, he considered —1 < \ < 0.

We also need the following Wright type function which was considered by Mainardi

bolz) = i (—2)F
= kI (—ak+1-a)

1 (—2)FT(k + 1) sin(7(k + 1)a)
= 2 Kl

,0<a< 1.

. o L 5_2613 d5
M(Z,ﬂ) - 27TZ Hae 51_57

0<pB<1,

the Hankel representation for the reciprocal of the gamma function. Writing

27TZM(Z,ﬁ) — A 66 [i (_]}{:)!ka 5ﬁk‘| 6?155

k=0

el

k=0 He

6555k+ﬁ1d5] ,
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and using the Hankel representation of the reciprocal of the gamma function, we
obtain the following series representation

kK

> —-1)"z
M(z; ) :,;Jklf((— +)(1_B))7O<ﬂ< 1.

1.2.7 Integral representation of Wright function

1 -2 d
WA,H(Z) 7/]{ €U+ZU A£3A>_15H607

~ 2m
where H, denotes the Hankel path. The equivalence of the series and integral

representations is easily proved using the Hankel formula for the Gamma func-

tion L
— eu"Cdu, ¢ € C,
76 s

and performing a term-by-term integration. In fact,

1 -xdo 1 2, 2k do
%% - otzoT Y~ o ROV R
Aul?) 27i Jy, c ot 21 gy ¢ LZ_O K7 ot
= ZF 1 e > P
= _— | — S5~ _Hd = _—_—
kZ:O k! [27ri /H c7 ”} kZ:O KID(NE + 1)

It is possible to prove that the Wright function is entire of order 1/(1+4\); hence
of exponential type if A > 0. The case A = 0 is trivial since

Wo,u(z) = W

Proposition 32 ¢, is an entire function and has the following properties
(a) ¢a(0) >0, for > 0and [~ dpa(6)dd = 1.

() f5 da(0)07 db = Fr((fjojﬁ), forr > —1.

(c) Iy ba(0)e™* db = Ey1(—2), z € C.

(d) afooo ¢a(0)6729 da = Ea,a(fz)v FAS C

Proof.
(a)
ba(0) = 2%” . 6—6%%.
/Om%(e)de = % . e’ [/Oooe—é“me] ;i
§
_ % N %dd:l.
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(b) For the M-Wright functions, the following rule for absolute moments in R™
holds. M-Wright functions

$a(0) = i Cof ,0¢€C.
= E(—ak+1—a)

° L(l+r)
2(0)07d) = ————, -1,0<a< 1.
/0 b (0) T+ ar) forr > <«
In order to derive this fundamental result, we proceed as follows on the basis of
the integral representation

1 ag do

N 0 - o—ro0 ]
9a(0) 2mi Hae ol-a

oo o 1 )
[ramm = [eliof =]
0 0 21 J g ol—a

1 e r d
= — [ ¢ { / e ?” 0rd9} od
21 J g, 0 o

F(l—i—.r)/ e’ do — L(1+7)

2w Jy, oort! 7= rl+ar)

()

o0 1 o0 « do’
—z0 _ —20 o—0o
/0 Do (0)e "dl = 3 ), e [/Ha e Jla} de

= ! o1 [/ ee(”"a)dﬁ} do
0

21 H,

L e B(—2) = Eyy(—2), 2 € C
= - 0 = Lig\—%2) = L1\ —%), .
2mi Jy, 0%+ 2 !

In the second approach we develop in series the exponential kernel of the Laplace
transform and we use the expression (b) for the absolute moments of the M-
Wright function arriving to the following series representation of the Mittag-
Leffler function

o 6—29 — - (_Z k
/0 Pa(0)e™>" db ]; i) Orea®)a
_ o (2)F Tk +r)
B k;) k!l T(1+ak)

oo 1 0 ) d
o [T tan = agk [Teo [ e 42 T
0 27 Jo H, ol-a



1 > o
a— gl [/ e 0lzto )dH] do
27T'L H, 0
1 o,a—1
= — P do=FE,a(—2), z€ C.
21 Jy, o0*+=z ’

1.2.8 Riemann-Liouville Fractional integral
Definition 33 Integration of order n € N is described by the operation
n _ 1 * _ n—1
(DM@ = gy [ =0 oyt

The natural extension of such a definition to real order s > 0 is

1 x

(EDl(@) = 5 [ e =0 ().
I'(s) Ja

This is called the Left Riemann-Liouville Fractional Integral of order s (because

we integrate to x from the left). We will discuss the Right Riemann-Liouville

Fractional Integral later.

1.2.9 Riemann-Liouville Fractional derivative

Definition 34 To define a fractional derivative we cannot just formally re-
place s by —s in the Riemann-Liouville integral. For a given u, we do not have
a nite integral for all x € [a;b] (except if u is identically zero)

1
D? =—
(Do) = 5
There is, however a nice trick we can use to get around this.
To define a fractional derivative of order s € (0;1] we integrate to order 1 — s
then differentiate to order 1

/aw(x — )75 tu(t) dt.

PYI) = gy s [ (o= O u(tar

More generally, to define a fractional derivative of order s € (k—1;k] fork € N
we integrate to order k — s then differentiate to order k

k x
(D3 ul(x) = F(kl_)ddk / (2 — O 1=*u(t) dt.

This is the Left Riemann-Liouville Fractional Derivative.
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1.2.10 Relation with Reimann-Liouville Fractional Calcu-
lus Operators

In this section, we present the relations of Mittag-Leffler functions with the
left and rightsided operators of Riemann-Liouville fractional calculus, which are
defined

g0e) = g | =00 de, Ref) > o
(12¢)(x) = ﬁ /oo(t—x)“_lgb(t)dt,Re(a)>0,

(DG 9) () = (;‘i)[am 107 10] ()

[a]+1  rz
= ml{a})(;t) /O(w—t)“‘lczb(t)dt, Re(a) > 0.

CZE[a]H [Ii‘{“}qs] »

[a]+1 00
= mo@n () o e R o

(D29) (x)

Where [«] means the maximal integer not exceeding v and {a} is the fractional
part of a.

1.2.11 Caputo fractional derivative

Definition 35 The fractional derivative of Caputo of order « € R of a func-
tion f is Given by

1

D) = ') = g [ o= 07 o > a

with: n—1<a<n,neN*

Proposition 36 (Caputo)
1/ Properties: Letn —1 < a <n,n € N, a € R and f(t) be such that °D{* f(t)
exists. Then the following properties for the Caputo operator hold

Jim “DEf(t) = [(1).
Jim €Dpf(t) = fOD(@) - fD(0).

2/ Linearity: Let n — 1 < a <n,n € N, a,\ € C and the functions f(t) and
g(t) be such that *Dg f(t) and Dy g(t) exists. The Caputo fractional derivatives
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18 a linear operator i.e

DEAS(#) +9(t) = ADEf(E) +° Dig(t).

3/
‘DDl f(t) = °DitPf(t) # °D] D f(t).

Example 37 Leta =0, o = %, (n=1), f(t) =1, then a pluing formula

L[ M)
dr,n—1 N
I‘(n—l)/o (t_T)a—l—a T, N <a<n,necliv,

we get

N S A | .
PO-5p ) s

Taking into account the properties of the Gamma function T'(3) = /7 and using

the substitution n := (t—T)% the final result for the Caputo fractional derivative

of the function f(t) =t is obtain else

i -1 [t 1 -1 (%1 1 Vi 2
DIt)= = | ——dlt—1)= —= fdu2:—/ Y = = (vi-0),
£ ) Vo (t—1)2 (=) VTl vrlo u ﬁ( )
thus, it holds
ey 2Vt
Di(t)=—=.
T

1.3 Abstract equation problem

Lemma 38 If§D¢f € L'(0,T), g € C*([0,T]) and g(T) = 0, then we have the

following formula of integration by parts

T T
[ aipera = [0~ roipsgd
0 0
where
C « d —
oDig = —%tf% g-
. 1 g

25
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We need know the Caputo fractional derivative of the following function, which
will be used in the next sections. For given T >0 and n > 0, if we get

cp(t){ (1-F)"t<T,

0,t>T,
then
D7 o(t) = MT—Q (1 —~ ;) < T
Proof.
d l—«o
Dret) = —2 Ir ()
- -3 [ml— o) -0 ds]
d 1 r . S\™
= _ﬁ[myﬂn[ (s =) @_T)d%J<T
T s
= 7ﬁ% [/t (s —t)~*(1 - T)”ds} A< T=uv| f/u’v.
n (n—1) [T s\l Ca
L0 = Fa=a1e=a /t (1- T) (s =) ds.

. T n—~k
_ n(n—1)(n—k+1) S —a+k
Ik(t) T TFI—a)(2—a)...... (k—a) /t (1 — T) (8 — t) + ds.

n!l (=)l T -a)
TR Ll o Tl v e £
nn—1)(n—-k+1) (n)! T(n+1) It

TF1—a)2—a)(k—a)(n—a) Th—a+1) (®)-
o t\" 1 d [T S\™ o
tDT<1—T> - —m%/t (1_T) (s—t)ds, t<T

I'(n+1) r s\
_ 7F(1+nia)/t (1_T> ds,t <T
B 'n+1) ., t\"
- T(l+n-a) <1T> i T
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Theorem 39 We denote A = A and it generates a semigroup {T(t)}1>0 on
Co(RN) with domain

D(A) = {u € Co(RY) : Au € Cy(RM)}.

Then T(t) is an analytic and contractive semigroup on Co(R™) and, for t > 0,
z € RV,

T(t)ug = - G(t,z —y)uo(y) dy, G(t,z) = M?i‘)l;ew’ (1.2)

and T(t) is a contractive semigroup on LY(RYN) for ¢ > 1, and
ZN(11
1700l vy < () G5 ooy (13)
for ug € LI(RY), ¢ < p < +o0.

Lemma 40 Les deux estimations

Proof. fghjklm =
Proof. theorem
We use the theorem of Riesz-Thorin, we search (\): % =124
17)\+%,s0)\:2.
In order to verify the result
1124 A A
p 00 2 27
so A= 2,

p
We get

N[>

1

IT ()0l o vy < (@Amt) T2 g || g vy < (@mt) TN DEFa7570) g L vy
finally
_ 1_1
HT(t)uOHLP(RN) < (47Tt)( NG =) ||UOHLQ(RN) .
|

Theorem 41 Define the operators Pu(t) and S, (t) as

Pa(t)ug = /0 " (O (10 bt > 0. (1.4)

Sa(t)up = « h 0o ()T (t*0)ug db, t > 0. (1.5)
0

Consider the following linear time fractional equation
{ ¢Dfu — Au = |ulP~lu, x € RN, t >0,

u(0,7) = up(z), x € RV, (1.6)

where ug € Co(RN) and f € L((0,T), Co(RN)). If u is a solution of (1.6), we
get
t
u(t,2) :Pa(t)u0+/ (t = $)°=18u (t — )[ulP~u(s) ds.
0
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Proof. we denote A = —A, |u|P"tu(z) = f(¢, ).

{ ¢Dfu+ Au = f(t,z),z € RN, P)

u(0,2) = ug(z),z € RN,

we discus the existence and uniqueness of mild solution of the inhomogeneous
linear time fractional (Cauchy problem) where D¢, 0 < a < 1, is the Caputo
fractional derivative of order «, and wug is given belong to a subset of RY
Assumption.

Assume that u(.,.) : [0,7] — R, u(t,x) € D(A) fort € [0,T)], Au € L*((0,T); RY)
and u satisfies (P). We can rewrite (P) as

1 t a_lussi t—sa_l s,x)ds for
) = w5 [ 0= Aul dstis [ (=9 f(sa) ds ort € 0.7,

N I'(«)
if u:[0,7] — RV, is a functions satisffying Assumption (H*), then u(t) satisfies
the following integral equation

u(t) = Py (t)uo —1—/0 (t— s)aflsa(t —s)f(s,x)ds, fort € [0,T].

Not thet the Laplace transform of an abstract function f € L'(R*,RY) is
defines by
PO = / e Mt N e O (A > 0).
0
Appliying the Laplace transform to

1

L t a-l — t —5)* L f(s,z)ds
)/O(t—s) Aus)ds + /O(t )21 f(s, 2) ds,

ult) = = 555 (o)

for the Laplace transform of the convolution

ﬂ@wm=AfW%M®m=Af@m—ﬁw
we have
L) % g(8): A} = FOVG),

we start with
cD%u(t) =R D¥(u(t) — ug).

o 17 ("D (u(t) — uo)) o IE (= Au) +5 7 I (f(t )
u(t) —ug = I;jé)/o (t — s)* 1 Au(s)ds + F(la)/o (t—s)*"1f(s)ds fort € [0,T]
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LLu®) N} = £ {uo A} — ﬁc {/Ot(t — )L Au(s) ds,/\} + ﬁc {/Ot(t - s)“lf(s)ds,)\} ,

where £ {z*71 A} = T(a)A~*. We get

a0 = % - ﬁr(a)xma(x) + @r(a)xaf(x)
) = wA ' = ATCATA) + ATYF(N)
N+ AAT(N) = ugA P+ ATYF(N)
(14+AA)T(N) = wph™ P+ A f(N)
(A% +AATA) TG(N) = wpA® AT F(N)

AN+ A)T = w4 F(N),
by composition (A* + A)~! is obtained
A+ AP+ AT =uA" A+ AT+ A+ A) TN,
that is
AN = wpA® YA+ A) T+ (A 4+ A) T,

on the other hand, using for every A € C with Re(A) > 0, one has
R(\, —A) :/ e MT(t)dt = (\* + A7,
0

we deduce that
) = AT+ A) g+ (A + A) T
_ et / XD (Bugdt + / NP FON d,
0 0

we use the change of variable in the first and the second term t = t*

o0 d o o0 oo a
= —uo/ —e~ () T(to‘)dt—i—/ / at®"Le= OO (19 f(5)e ™ dsdt,
o dA o Jo

where -
e Y AR B S
e _/0 ta+1¢a (ta>e dt,
t
we use the change of variable in the second term t = —
-
= uo/ / a—(éa () e MTT(tY) drdt
o Jo T T
+/ / / %ta_lqba <> e MT <> f(s)e™*N drdsdt,
o Jo Jo T T T
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t
we use the change of variable in the first term ¢ = —, and in the second term
T

o T, SO
-

= U/OO/OO a(b 1 e MT drdt

- 0 o 0 ratl @ T

+/ / / att® Lo (T)T (t*7) f(s)ef(sﬂ))‘ drdsdt,
o Jo Jo
we use the change of variable in the first term — = 7, and in the second term
T

t=1—s, we get

— / Y / " bu (T (t7) drdt
/ —At/ f(s) (/OO atge (T)T ((t —5)* 1) dT> dsdt,
= /0 e MP,(t)ug dt + / e M / ot — 8)f(s)dsdt

/ome‘” (Pa< >uO+/o< —8)* 1 Salt = 5)f(s )d5> o

this implies that

u(A\) = /0 e M (Pa(t)uo —|—/O (t—8)* 1S, (t — 8)f(s) ds) dt,
u(A) = Po(t)uo + / (t —8)* 1 Su(t — s)|uP~ u(s) ds.
0
[

Lemma 42 We denote
K(t,z) = / ba(0)G(t*0,2) d, = € RN\{0}, t > 0.
0

Note that for given t > 0 and x € RN\{0}, G(t*0,x) — 0 as  — 0, so K is
well defined. Since fooo 0o (0)df =1, fRN G(t,x)dx = 1, we know that
Kt M pigvy =1 for t > 0.
Proof. -
K(t,z) = / 60 (0)G(t0, ) dB, = € RN\{0}, ¢ > 0.
0

h ®a(0)do =1, G(t,x)dx = 1.

0 RN
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HK(t,x)||L1(RN) == AN |:/O\ |¢Q(G)G(ta9’.]j)| d9:| dﬂ:, fOTt > 07

/Oo e (0)] de/ |G(t*0,x)| dz =1, fort > 0.
0 RN
| ]

Lemma 43 The operator {P,(t)}+>0 has the following properties
(a) If up = 0,up # 0, then Po(t)uo >0 and ||[Pa(t)uollprgvy = lluollp1 gy -

1 1 1 2
(b)) If1<p<qg<+oc0 and;:5_5<ﬁ’ then
a2 F(l_%)
”Pa(t)uO“LQ(RN) < (4mt®)=r F(l —a%) HUOHLP(RN)' (1.7)

Proof. (a) Follows from T'(t)ug > 0, ¢4 > 0. The operator { P, (t)}+>0 define as
Pa(t)’u() = / QSQ(Q)T(tae)UO d0, t Z 0
0
Patols, = [ [ 10T 0p0] a0]

0
0a(0) G(t“0,x — y)up(y) dy

o0
o P9 L

- o (0)db g, — dy d
e[ [ Gyt dyas

/ ba(0) d@/ uo(y) G(t*0,x — y) dx dy (by Fubini)
0 (RY) (R)

d&] dx

| 0@ @016 0.l sy [ ol
0 (RY)
a OllLy(RNYy = 0 = YollLy(rwy -
[P () uo| |uo| 0 = luoll
(RN)
(b) By (1.3) and the properties of ¢4 (6), we have

" (O (10 g do
0

1P (O)uoll oy = ‘
La(RN)

</(RN) {/OOO | (6) T (£%6) | da} dx>é7

IN

according to previous result

—N(1_1
ITE)oll o ny < (47t) = G73) fug| o -
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SO
HPa(t)UOHLQ(RN) < /O°° ¢a(9)(47"ta9)% do HUOHLP(RN)
< [ sulo)amt®) T 0% a8 Juoln g,
< (4mt*) = /000 073 ¢, (0) db [woll o (rvy »

we have

0 _N 0 —-N 1 —N\ o dO'
= = Sl o—(Z)o%0 27
/0 07 pa(0) df /0 0 [27”, /Hae Jla] do

© =~ _
T [/ e 07 g do} da
211 H, 0

o-l—a

271 H UO‘(;T)+1
_ora-4)
N (1 - a%)’

for—_ziv>—1:>2—1\£<l,
SO
P, < (mey T
2r — =
POy < AR T o2 ol

Hence, we derive (1.7) holds. m

Lemma 44 For the operator {Ss(t) }+>0, we have the following results.
(a) If ug > 0 and ug # 0, then S, (t)ug > 0 and

1
[Sa()uoll 1 (rry = T(a) l[woll Ly (movy -

1 1 1 1 4
(b) For 1 <p<qg<+4oo,let —=———,if — < —, then
r p q T N
ay =X F(2_ ﬁr)
”Sa(t)UOHLq(RN) < a(4mt®) 2 ra +a_2a%) ||u0||Lp(RN) . (1.8)

Proof. (a) Follows from T'(t)ug > 0, ¢ > 0. The operator {S,(¢)}+>0 define as

Sa (t)uo

o / 0 (0)T(1°0) 0 dB, ¢ > 0.
0

ISa()uoll 1 gvy = /(RN) {a/ 1060 (0)T(t°0)uo| 6| dz

0
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0¢a(0) G(t70, 2 — y)uo(y) dy
(RN)

- o[l

d(‘)] dx

— o weu0) [ [ G0 gusly)dydsao
0 (RN) J(RN)

= a/ 0o (0)do uo(y) G(t%0,x — y) dx dy (byFubini)
0 (RY) (RY)

= o [T 00u0) 0 1GE0 ) i [ ool
0 (RN)

= o 00aO ol

we have

© > 1 ooog dO
« ; 0o (6) do a/o 0 [m/Hae Jla] do

_ & o > —0o do
= 5. Hae [/0 Gdﬁ} e
(
(

_ aF(D/ e 4 al’

21

a

SO

1
[1Sa@)uoll 1 vy = @HUO“D(RN)'

(b) by (1.3) and the properties of ¢, (6), we have

HSa(t)UOHLq(RN) -

/ b (O)T(t0)uo db

La(RN)

(/(RN) {a/ooowa(@)T(taﬂ)uoﬁ d@] i)},

IN

according to previous result

=Ny1_1
IT@uollomry < @rt)FIE™D Jug| oy

SO
1Sa®uoll oy <a / 00 (6)(47t°6) % B o | o)
<o [ 00u0)amt") T 0% 08 ol

< a(4rt®) / a0 ~5 df HUOHLP(RN) )
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we have

N 1 o do
- _ - | (1-yoog
0 ou0) a0 / 0 {27” /Hae Ula] d
_ —_ 9ot 2p (17271\77‘) 9 do
2mi [ 0 d ] ol-@
211 H, O'O‘( 2r)+1
r2-3) r2-3)

-N
for—>—1:>—<1 SO
2r

L2 -3)

1Sa(uoll oy < a(dmte) T ———— 2
Fl+a—ag)

||u0||Lp(RN)'

Hence, we derive (1.8) holds. m

Lemma 45 For ug € Co(RY), we have P, (t)ug € D(A) fort >0, and
GCY Py (t)ug = AP, (t)ug, t > 0.

||A‘ZDDL(1€)U‘0HL°C RN) — ta || OHLoo(RN) t> 0’

for some constant C > 0.

Proof. Let X = Co(RY). First, we prove if ug € X, then P, (t)up € D(A).

/ d)a UO df

/O (60 (O)T(t0)u0 + T(10) oo (0) — T(1°0)uoda(0)] d8

Pa(t)uo

- " 160(0) = 6a(O)T(t%0)uo + b (O)T(t*0)ug O

1 1
- / (60 (6) — Ga(O)T(E6)undd + b0 (0) / T(t°0)uodd + / 60 (O)T (10 db.
0 0

1
Clearly, / T(t*0)uod @ € D(A). Note that there exists positive constant C' such
0

that
[[uoll

JAT (0o | < CTop

,t>0,0>0,

we get that / Do (0)T(t*0)uo do € D(A). Next, we show that
1

/ (60(0) — 6a(0))T(t*0)ug db € D(A),

0
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t
A/ T(tae)uod(? = T(t)UQ — UQ,Vt Z 0.
0

t N 1 t o
w1 /0 T Ouods = 7 /0 (T(h) = DT (t°0)uq 6

= % /O t(T(h)T(t“G)uo — T(t*0)uo) do

t t
/ T(h)T(t“G)uodG—% / T(t*0)uo db
0 0

>= >

t 1 t
/ T(t°0 + h)uo df — — / T(t*0up) db,
0 h 0

we use change variable t*0 + h = 7
1 t+h 1 t
= 7/ T(r)ugdr — f/ T(t0)ug do
h /i, h Jo
1 t+h 1 h 1 t
= f/ T(T)ugdr — 7/ T(7)uodf — 7/ T(T)ugdr
h Jo h Jo h Jo

— 7/ T(7)uo dT——/ T(7)ug db.
h J; h Jo

By passing the limit for A — 0 and considering the lemma ( Let T'(¢);>0 be a

Co0—semi-group. So:lim + :+h T(s)xds=T(t), vVt >0 ) we get
h—0

A/t T(tag)UO df = T(t)uo — ’LLO,Vt > 0.
0
In fact, for every h > 0,
B 1
HE=E [ (60a(6) ~ 0aO)T (@ 0)u0 a0
1 1
[T(h) [ 600 = 60 T 000 0 [ (000) — 6. (0)7(60) o

/ [(6a(6) — 6o (O)T(*0)T () — T(t*6)]uo o

0

= = S

/ (60(0) — Ga(0))(T(120 + h) — T(t°0) Yo do.

0

C

v 120 HUOHX )

H (T(t*0 + h) — T(£0))uq
h

¢a(9) ; ¢o¢(0) ‘ < C,
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for some constant C' > 0 independent of 6 and h, so, by dominated convergence
theorem, we know

/0 (60(8) — 6a(0))T(°0) up df € D(A).

Note that
APy(tyuy = A [ [ 606 = a0 008 + 60 [ T 0+ [ T GOt 0)us de}
= A 1 (60 (0) — e (0)) T(t0)ug d + ¢ (0) A / 1 T(t*0)uo db + A / h Ga(0)T (t6) ug db
0 0 1
1 @ [e%)
= / (6a(0) — a(0)) AT (t0)uq db + ¢a(0) (T(ia) o = o) + / b (0)AT (t%0) ug db.
0 1
Therefore

C
[APa(@uolly < g lluoll - (19)

For some positive constant C. By dominated convergence theorem, we obtain
that for ug € X,

d
— P (t)ug = t* "L AS, (t)ug, t > 0.

dt
Furthermore, if ug € D(A), then
d a—1
EPa(t)uo =t Sa(t)A’U,o, t > 0.
Since
1 1 1 toset >
ol, 7 (tY7 S, () Aug) = / / o (0)T(s40)Aug dods.
COUTSOA) = wigy e Sy 00O

1
2mi

/ abpo(0)T (s%0)Aug df = / Eoa(As®) (X — A) "t Aug d),
0 r’

where I is a path composed from two rays pet™ p > 1, 7/2 < 7 < 7 and
pe~""and a curve e, -1 < B < T,

ol (17 Sa (1) Aug) = Pa(t) Aug = APy (t)uo,

by similar argument with § D P, (t)ug = AP, (t)ug, one can prove that t*~1 E, ,(At%)
belongs to Fy (s,) for t > 0 and hence, such as ( Let —1 < < 0 and let s,
with 0 < g < 7 be the open sector {z € C\ {0} : |arg(z)| < pu} and s, bits
closure, that is s, = {z € C\ {0} : Jarg(z)| < p} U {0}. Set

T (sp) = Us<oW3 (sp) U Wo(sp).
F(sh) ={f € H(sY); there k,n € N such that f¥} € Fo(s))}; where

0y — . G0 — .
H(s,) ={f:s, — ¢ [isholomorphic},
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H>(s )—{feH( )fzsbounded}

e0(2) = T3 W) = s €CM-1hm e N U {0},
\Ilo(sz) ={fe H(SO) s sup ‘450((22)) < o0}
OItl_a(tailsa(t)AuO) = OItl_a(tailtha()\ta))AUo
= (E,(AtY))Aug

= Pa(t)Auo,

in view of oI} ~*(t* ' Ey o (M%) = E,(At®) this completes the proof.
Befor proceeding with our theory further, we present the following result.

ol} Tt By o (M) = Eq i (M%),

SO
i~ (4771 S () Aug) = Pa(t) Ay = APo(t)up. (1.10)

Therefore, we get
§ DY Py (t)ug = APy (t)uo,

if ug € D(A),t > 0.

To prove §D¢ P, (t)ug = AP, (t)ug first it is easy to see that % € F(s),) and
the operator ¢g(A) is infective. Taking ug € D(A), by f(A)g(A) = (fg)(4)
provided that g(A) is bounded or D((fg))(A) C D(g(A)) one has

Po(t)uo = Ea (M) (A)uo = (Ea()\t”‘)%o)(A)(é)(A)w,

— « Zl
Eapte)={ .s(2), larg(2)] < Far,
€.5(2), \arg( 2)| < (11— za)m,
where
No1 N
€,5(2) =— 2 m +0(|]z]7 ), asz — oo,
we have

Supz—)oo |ZtaE(¥()‘ta)| < 00,

which implies that

|zEa(At*)(1+A)7H < clz] N, as 2 — oo,
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where c¢ is a constant which is independent of ¢. Consequentely
2Eq (M) (1+X)7" € FJ(s).
Notice also that
SDIEL (M) 1+ AT RN A) = (2) Eo(M) (1 + X)) "1R(N; A),
combining (f(A)g(A) C (fg)(A) for all f,g € F(s%)) and zE4(At*)(1+ A)~*
we get

D7 [Ea(At*)(1+ M) 71 (A)] = Qim/ 2Eo (M) (1 + X)) R(\; A) dz

— ZA[EL (M) (1+2)71](4)
— A[EL(M)(1+A)71](A).

Hence, we obtain
62 Pa(t)uo = A[Ea(M)(1 + N)J(A)(1 + A)(A)uo

— A[Ba(M*)](A)ug = AP, (t)uq.

Next, we prove that the conclusion also holds if ug € X. In fact, if uy € X,
then we can find {uo,} C D(A) such that up, — 0 in X. By (1.10) and
Lemma 1.2, we have {D"Po(t)ug = AP (t)uo and |[Po(t)uol| 1 (zr) we know
§Dg Po(t)uo,n = APn(t)uo,n, and ||Pa(t)uonllx < |luomly -

We denote u,, = P, (t)ug,,. Then, there exists u € X such that for every T' > 0,
U, — w uniformly in X for ¢ € [0,7] as n — co. Since

Tl—a

0! *unll, < A—aT(i—-a) l[tnll Lo 0,1y, » T € [0, T

So we know oI}~ “u, —o I} “u in X. By (1.9),

C
H(?D?UHHX = H(CJD?Pa(t>u0,nHX = ||APa(t)u0,nHX < 120 ||u07n||xa

for some constant C' > 0,¢ > 0.
Hence, for every § > 0, there exists w € C([§,00), X) such that §Dfu, — w
uniformly in X on t € [§,00). Note that for t € [§, 00),

6 Dfup =G Dy Po(t)uon = APo(t)uo,n =o Itlia(ta_lsa(ﬂAuOm) =0 Iy (7 Pa(t)uo,n)

d —Q
T at (OItl (Po(t)uo,n — Uo,n)) = Au,.

We have u,, = P,(t)ug., — u, ug.n — Ug, $DMu,, —& D¥u and §DMu,, — w, so
; » Uo, » 0/t 0ot ot )
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d

d _ — C «
oDfun = *(Oltl a(Pa(t)UO,n - UO,H)) - (OIt1 “(u —uo)) =5 Di'u,

dt dt
and we have
6D un = w =g Difu.
So
d
w= ﬁ( I (u —ug)) =5 Dfu, t € 6, 00).

We have §Dfu, = Au,, and §Dfu, — w, so Au, — Au. Since A is closed, we
have w = Au, that is §{ Dfu = Au = P,(t)ug,t € [§,00). By arbitrariness of 4,
we have § Dfu = P, (t)ug, t > 0. m

Lemma 46 Assume that f € L1((0,T), Co(RN)),q > 1. Let

t
) = [ (6= St = 5)5(5) ds,
0
then .
ol} ™%z = / P,(t—s)f(s)ds.

0
Furthermore, if g > 1, then z € C((0,T), Co(RY)).
Proof. Let X = Co(RY). By Fubini theorem and (1.10), we have

ol = e [0 [e T S = () aras

0 0
1 ! ) —a a—1 o sdr
= F(l—a)/o [r (t—8)"Ys—71)"""Sals —7)f(1)dsd

1 T — 5 —71)" %718, (s)f(7) dsdT
w0 dsa

t
/ Pu(t - ) f(r) dr.
0
For every h > 0 and ¢t + h < T, we have z(t + h) — z(t) = I + I, where
t+h [e%)
I = a/ / 0 (0)(t + h — 1)~ T((t + h — 7)°0) £ (r) dbdr.
¢ 0

I, = cu/ /00 000 (0)[(t +h —7)*IT((t + h —7)%0) — (t — 7)* I T((t — 7)*0)] f (1) dOd.
0 Jo

By Holder inequality, we have
t+h o
Il < af [ 66a@)t+h=n) 50 doir
t 0
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1 e a—1
- @/ (t+h— 1)L f()l dr

qg—1

1 t+h (ga—1) T
e / (t+h—7) " dr
[(a) aomn.o | [,

q—1

1 g—1Y\ * (ga=1)
- F(a)(qa—l) 1A za om0 B

IN

SO

q—1

1 q—1 a (qga—1)
s = 55 (A7) T Whoomn 5 (111)

Note that, for 0 < 7 < t,

[(t+h=7)*TIT((t+h = 7)) f(7) = (t = 7)* T T((t = 7)*O) f(7)]| < 20=7)*""IF (D)l x s
and there exists constant C' > 0 such that
|l(t+h—=7)"T((t+h—7)%0) — (t = 7)* ' T((t = 7)*O)]f(7)||
<|t+h =) = (=) It + h =)0 f(7)]lx
(=) T ((t+h = 7)70) = T((t = 7)70)) f(7)l|x
<Ot =) f()llx -

Therefore

IA

Ly < o [ [ atonomin{ s s | 1Ol ar

(a—1)

c T 1 h @D 7
F(a></ (mm{(t—f)”’(t—ﬂ“}) dT) 11l o 0.7y, x) -

Observe that

[ (b)) = [ (o )

o0 . 1 h =1 h ga-n 4 ale=2)
= / minsg ——+ 54 dT:/ T (=D dT+/ he=171 a1 dr
0 rl-a’ 22—« o N
_ alg—1) pEst
(g —1)(g+1—qa)
S0,

qa—1

[2]lx < C ||f||Lq((0,T),X) h™a
Hence, (1.11)-(1.12) imply that the conclusion of Lemma 2.4 also holds. m

(1.12)
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Chapter 2

Local existence

In this chapter, we give the local existence and uniqueness of mild solution of
the problem (1)-(2). First, we give the definition of the mild solution of (1)-(2).

Definition 47 Let ug € Co(RYN), T > 0. We call that u € C([0,T)], Co(RY)) is
a mild solution of the problem (1)-(2) if u satisfies the following integral equation

u(t) = Po(t)uo + /0 (t — $)* 1 Sa(t — ) [ulP " u(s) ds, t € [0,T).

For the problem (1)-(2), we have the following local existence result.

Theorem 48 Given ug € Co(RY), then there exists a mazial time

Tmax = T'(ug) > 0 such that the problem (1)-(2) has a unique mild solution u in
C([0,T],Co(RN)) and either Tyax = +00 or Thax < +00 and ”u”LOO((O,t),Co(RN)) —
400 as t = Tmax- If, in addition, ug > 0, ug # 0, then u(t) > 0 and
u(t) > Po(t)ug fort C (0, Tiax). Moreover, ifug C L™(RN) for somer C [1,00),
then u € C([0, Tinax), L™ (RY)).

Proof. For given T' > 0 and ug € Co(RY), let
Ep = {U tu € C([0,T], Co(RM)), [ull oo (0.7, 1< (rY)) < 2 HUOHLOC(RN)}’

d(u,v) = max [u(t) - v(®)]

foru,v e Er.
te[0,T) Lo (RN)

Since C([0,T], Co(RY)) is a Banach space, (Er,d) is a complete metric space.
We define the operator G on Er as

G(u)(t) = Pa(t)ug + /0 (t — ) Sa(t — s) |u(s)[P~ " u(s)ds, u € By,

then G(u) € C([0,T], Co(RY)) in view of lemma(2.4). If u € E7, then by lemma
(2.1)(b) and lemma (2.2)(b), for t C [0,7],

IGE@ O gry) < ||uOHLm<RN)+ﬁ / (t— )2 [lu(s) |

0 Lo (RN)
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2P

M [[uoll

P
< ||UOHLOO(RN) + Loo (RN |
Hence, we have choose T' small enough such that

p—1
— 1
aT(@) 10l e, < 1

so we get [|G ()l oo (0,7, 00 (rV)) < 2 [|%0l oo gy - Furthermore, for u,v € Er,
we have for ¢t € [0, 7]

t
IG@)(#) = GOl oy < ﬁ / (t = )|l uls) = o) P (s)
4= DpT |lug|P
< o :
al'(@) Lo°((0,T), Lo (RN))

We can choose T small enough such that

PAPIT [

Lo (RN)

ol'(a)

1
< a)
-2
then 1

1G(u)(t) = GO) )l oo () < 5 1w =]

Therefore, G is contractive on Ep. So, G has a fixed point u € Ep by the con-
traction mapping principle.

Now, we prove the uniqueness. Let u,v € C([0,T],Co(R"Y)) be the mild solu-
tions of (1)-(2) for some T > 0, then there exists positive constant C' > 0 such
that

Lo ((0,T),C0(RN))

[u(t) = v@)] = G @) = G))l| L (rm)

1,00 (RN)
t
< _ a—1 _
S R A OO
Hence, by Gronwall’s inequality, we know u = v.
Next, using the uniqueness of solution, we conclude that the existence of solution
on a maximal interval [0, Tihax ), where

Tmax = sup{T > 0 : there exists amild solutionuof (1) — (2)in C([0,T], Co(RN))}.

Assume that Tinax < +00 and there exists M > 0 such that for ¢ € [0, Tiax),

[u@) < M.

Lo (RN) —

Next, we will verify that lim; ,7, _u(t) exists in Co(RY). In fact, for 0 < t <
T < Tmax, by the proof of lemma (2.4), there exists constant C' > 0 such that

[u(t) = u(r)] < Pa(t)uo = Palr)uol|

Lo (RN) Lo (RN)

42

Lo (RN)

ds



+ / (t —5)* 1S, (t — 5) |u(s)|p_1 u(s) — (1= 8)* 1S (1 — s) |u(5)|p_1 u(s) dsH
0

Lo (RN)

+

/;(T — 8)71So (7 — 8) [u(s)[P " u(s) ds

Lo°(RN)

< || Pa(t)up — Pa(T)uOHLOC(RN) —l—FJ\(I:) /tT(T—s)O‘lds—i—C’Mp/o min{(t—s)*"1, (t—s)*"2(1—t)} ds
< [Pa(tuo — Palmyuoll F(;(T —he CM”M%@“ _—

Since P, (t)ug is uniformly continuous in [0, Tinax], so lim;_, 7 u(t) exists.

max
We denote ur, . = lim 7, u(t) and define u(Timax) = ur,,... Hence,

u € C([0, Trax), Co(RY)) and then, by Lemma (2.4),
/0 (t—8)*71S,(t — s) |u($)|p_1 u(s) ds € C([0, Trmax], Co(R™)).

For h >0, 6 > 0, let
Eh,5 - {U S O([TmaX7Tmax + h]7 CO(RN)) : U(Tmax) = UT ax d(ua ur, ) < 5}a

max / —

where
d(u7 'U) = maxte[ﬂnax7Tmax+h] ||U(t) - v(t)HLOC(RN) fOT' u, v € Ehvts'

Via CO([Timax; Tmax + h], Co(RY)) is a Banach space, we know (Ejs,d) is a
complete metric space.
We define the operator G on E}, s as

G)(t) = Palt)uo+ / "= 1) St — 1) [u " u(r)d

t
+ / (t — 1) 8ot —7) 0[P u(r)dTv € Eps.
Timax

Clearly, G(U) S C([Tmaxa Tmax + h], CO(RN)) and G(U)(Tmax) = uTmaX'
If v € Ej 5, then for t € [Tiax, Tmax + hl,

1G(0)(t) — ur,,.||

where

< ||Pa(t)uo — Pa(TmaX)UOHLoo(RN)JFHIB||L°°(RN)+||[4HLoc(RN) )

L (RN)

Timax
Iy = /0 (t — 7)1 Sa(t — 7) Ju(m) P u(m)d T — (Timax — ) Sa(Tinax — ) [u(r) [P~ u(r)d T,

Iy :/ (t—7) 1St — 1) [P u(r)dT.

TI]’] ax
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Taking h small enough such that
”Pfl (t)uo - Pa(TmaX)uO”Loo(RN) <

15

fO?" te [Tmam Tmax + h]a

Wl o Wl

Lo (RN)

t
Hallpoe (mvy = ’/ (t = 7)° " Sa(Tmax — 7) ([0~ 0(7) = Jur,,,. [P~ ur,,,)d T
Tnax Loo(aN)
t
L =S T = ) o
max Lo (RN)
t . 1 t )
_ a— p - _ a—
3\ 0 e ] . o, 7 O
- Z( - max) +W( - max) = 57
for t € [Tmax, Tmax + h]. Then, we have |G (v)(¢) —umeHLm(RM < 4§t €
[Thmaxs Tmax + h]. Next, we will prove that G is contractive on Ej, 5 for h small
enough. In fact, for w,v € E}, 5, t € [Tmax, Tmax + B,
lw(t) = v(E)|| o (ry
t
< [ @ Sate - el ) o)
Tmax Lo (RN)
< w—vf oy, Ul N
L ((Tmax, Tmax +h), L (RN ) L ((Tmax, Tmax +h), L= (RN )
t
p—1 D _ a—1
+ ”v”LW((Tmax,Tmaerh),Loo(RN>>) I'(«) /Tmax(t T
< 2P G funl, ) T dw,0)
_— u — Tnax w,v).
- T(a+1) Tmascll oo vy
Choosing h small cnough such that
2r=1p 1
— (4 prlpe < Z
F(Oé+ 1)( + ||uTHLoo(RN>) =9

Then, G is contractive on Ej, 5. So, we know G has a fixed point v € Ej, 5. Since

V(Tmax) = G(v(Tmax)) = U(Tmax),

if we let (t) [ )
u(t),t € [0, Trax),
Nu(t) - { ’U(t),t S [TmavamaX + h’]V

then ~u € C([07 Tmax + h]a CO(RN>) and

~u(t) = P (t)uo + / (t = )18, (t — 7) |~uf" " ~ou(r)d 7

0
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Therefore, ~ u(t) is a mild solution of (1)-(2), which contradicts with the defi-
nition of Tiax. If ug € L"(RYN) for some 1 < r < oo, then repeating the above
argument, we get the conclusion. Moreover, if uy > 0, then we can obtain the
nonnegative solution of (1) applying the above argument in the set

Ef ={u€ Er:u>0}.

Then, we know u(t) > P, (t)ug >0 on t € (0, Tax). ™
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Chapter 3

Blow-up and global
existence

In this chapter, we prove the blow-up results and global existence of solutions
of (1.1)-(1.2). First, we give the definition of weak solution of (1)-(2).

Definition 49 We callu € L,((0,T), LS. (RY)), forug € LiS.(RN) and T > 0,
is a weak solution of (1) if

T T
/ / (Ju[" ™" up+uo$ DY) dtdz —/ / —Ap) dtdw+/ / ¢DG o dtdx,
RN Jo Ry Jo

for every ¢ € Cﬁ} (RN x [0,T)) with supp,p CC RN and ¢(.,T) = 0.

Lemma 50 Assume ug € Co(RY), let u € C([0,T],Co(RYN)) be a mild solution
of (1)-(2), then u is also a weak solution of (1)-(2).

Proof. Assuming that u € C([0,7],Co(R")) is a mild solution of (1)-(2), we
have

u—ug = Py (t)ug — ug + /t(t — 1) S, (¢ — 1) [ulf T udr.
Note that by Lemma 2.4, '
ol </Ot(t — 7)1 St —7) |u|p1u(7)d7) = /Ot Po(t—s) |ul’" u(s) ds,
so, we know
ol ~*(u—uo) =0 I; ~*(Pa(t)uo — uo) + /Ot Po(t—7) [ul ™" u(r) dr.

Then, for every ¢ € Cifl(RN x [0, T]) with supp supp, CC RN and p(z,T) =
0, we get

/R ol = w)pdw = (1) + To(t), (3.1)
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B5() = [ oI~ (Pa(t)uo — wo)pda, (1) /“(/ L (t— ) [uP ™ u(s)p de.
RN RN

By Lemma 2.3,

r;
dt

J.

A(Po(t)uo)p dar + /R ol (Palthuo —wo)pdr. (32)

For every h > 0,t € [0,T) and t + h — T, we have

1
7 (Is(t+ h)

where

t+h
—1s(t) = 5 / RN Po(t+h—s)ul"" udsp(t + h, ) do—

t
f/ Po(t —s) [ulP" udsp(t, x) do = I + Is + I,
0 JRN

1 t+h poo N p—1
L = E/RN/t /0 Ga(O)T((t+h — )°0) [u" " u(s) di(t + h, z) da,

_ l t e s} —Sa _ _Sa upflus s ) de
fs = hLMAA $a(O)T((t+ = 5)*0) = T((t = 5)"0) [ul"~" u(s) dbdsp(t, z) dz,

1 t [e’¢) N o1 B . .
Iy = E/RN/O/O Ga(O)T((t+h —5)%0) |u|""" u(s)dfds(p(t + h,z) — p(t,x)) dz.

By dominated convergence theorem, we conclude that

I

Iy

%

/ lulP~! wpdzash — 0,

/RN / / Ga(O)T((t — $)0) [ul’ ™" u(s) dfdse; da

/ / P (t — s) [ul""" u(s) dspy dzash — 0.
R~ Jo

t [e%s} 1
- _ aflA AY: p—1
Is /R N /0 /0 /0 a0po (0)(t +Th — 5) (T((t +7h — 5)*0) |u|"~" u(s) drdfdspdx

t [eS) 1
- /RN A/O /0 /0 o (0)(t +7h — )T ((t + 7h — $)%0) |u|’ ™" u(s) drdodspdx

t [e%e] 1
- / / / / aboa(0)(t+ Th — s)aflT((t +7h — 5)*0) |u‘p—1 u(s) drdods Apdz,
ryv Jo Jo Jo

by dominated convergence theorem, we know

Ig — / /
RN Jo

Y18 (t — 8) [ulP ™ u(s) dsApdx as h — 0.
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Hence, the right derivative of I on [0, 7)) is

¢ ¢
/ P! ugodx—i—/ / (t—5)* 1Sy (t—s) [u" ™" u(s) dsAtpdcc—i—/ P (t—s) [ulP ™" u(s) dsprda,
RN RN Jo RN Joa

and it is continuous in [0, 7). Therefore

% = / lul"™ ugadx+/ / )OS (t — 8) [ulP ™ u(s) ds Ay dx
RN

/ /P (t —s) [ul" " u(s) dspy da
RN

= / |ulP™ ugader/ / )OS (t — 8) [ulP ™ u(s) dsAg dx
RN

s ne e s )l ) e, (33)

for t € [0,T). It follows from (3.1)-(3.3) that

dls  dlg
— I (u— dr= [ —>+ —>dt
0 / dt /RN o (U= uo)pdr = /0 a T ar
/ / (H)uoAp dxdt — / / (u—ug)g DTgodwdt—i—/ / [ul?~" wp dadt
RN RN RN
/ / / )9S (t — 8) [ulP ™" dsAg dadt
RN
T T
- / / uAgodxdt—/ / (u—uo)gD%godxdt—&—/ / lulP™" ug dadt.
o Jr~ o JRN o Jr~

Hence, we get the conclusion. We say the solution w of the problem (1)-(2)
blows up in a finite time 7" if lim¢—, 7 = |[u(¢,.)[| L (gv) = +00. Now, we give a
blow-up result of the problem (1)-(2). m

Theorem 51 Let ug € Co(RY) and ug > 0, if

/ uo(@)x () dz > 1,
RN

where

-1
x):</ e‘VN2+wl2dw> e VNl
RN

then the mild solutions of (1)-(2) blow up in a finite time.
Proof. We take ¥ € C§°(R) such that

Lz <1,
2 ‘{ 0]z > 2,
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and 0 < ¥(z) <1,z € R. Let ¥,,(z) = ¥(z/n),n=1,2,---. By Lemma 4.2, a
mild solution of (1)-(2) is also a weak solution of it. So, using the definition of
weak solution of (1)-(2), taking ¢, (z,t) = x ()W, (z)p1(t) for ¢; € C1([0,T])
with ¢1(T) = 0 and ¢ > 0, we have

T T T
/ / uPopdadt + / / uoS D, dadt = / / (—ul g, +uf DS, dzdt.(3.4)
BN Jo RN Jo RN Jo

Since A(x¥,,) = (Ax)¥,, + 2Vx.VY,, + (AT, )x and Ax > —y, by (3.4) and
the dominated convergence theorem, let n — oo, we have

T T T
/ / uP xprdade —|—/ / uoxS DG dadt < / / (uxpr + ux® DSpy) dedt.(3.5)
RN Jo RN Jo RN Jo

Hence, by Jensen’s ingequality and (3.5), we have

T P T T
/ (/ 5% da:) p1dt + / / uox& DS dadt < / / (uxe1 + uoxS D) dadt.
0 RN rN Jo RN Jo

So, if we denote f(t) = [,n ux dz, then

T T
/ (? — fendt < / (f — F(0))C D dt. (3.6)
0 0

We take o1 =; I$~U(t) where ~¥ € CL((0,T)) and ~¥ > 0, then (3.6) implies

T T T
/ I3/ — f)~Wdt = / (7 = P I8 (t)dt < / (f — F(0)~T dt.
0 0 0

t

Hence,

I (ff =)+ f(0) < f. (3.7)

In view of f(0) = [px uo(z)x(z)dz > 1 and the continuity of f, we obtain
f(#) > 1 when t is small enough. Then (3.7) implies f(¢t) > f(0) > 1 for
t €10, T]. Taking ¢1(t) = (1—%)™, t € [0,7] m > max{1,pa/(p—1)}, we know
there exists constant C' > 0 such that

T T
/ (7 = fordt + CHOT® < « / fPordt + C(e)T P/ =),
0 0

Choosing ¢ small enough such that f(0) > (1 — &)=/~ we then have

f(0) < cTo=P/®=1) for some constant C' > 0. If the solution of (1.1)-(1.2)
exists globally, we get f(0) = 0 by taking T — oo, which contradicts with
f(0) > 1. Hence, we give the main result of this paper. m

Theorem 52 Let ug € Co(RYN) and ug > 0, ug # 0, then

(a) If 1 < p <14 2/N, then the mild solition of (1)-(2) blows up in a finite
time.

(b) If p 2 1+2/N and ||uo|| poc (ry s sufficienlly small, where . = N(p—1)/2,
then the solutions of (1)-(2) exist globally.
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Proof. (a) Let ® € C§°(R) such that ®(s) =1 for |s| <1, ®(s) =0 for |s| > 2
and 0 < ®(s) < 1. For T > 0, we define

2p/(p—1) t\" o
o) = (o (o)) e = (1 2) 2 {1 225

for t € [0,T]. Assuming that u is a mild solution of (1)-(2), then by Lemma
(3.2) we have

/RN / (uP 102 + U1 & DS o) dtdr = / / — A1) s + up1$ DS o) dtda.(3.8)

Note that
|(— A@ﬂ¢2+WMtDT¢2T<Cﬂwa¢Up )7, (3.9)

for some positive constant C' independent of T. Then by (3.8), (3.9) and Hélder
inequality, we have

T T
/ / (uP o109 + w1 E DS py) dtdz < CT~° / / ugo}/pgoé/p dtdx
RN Jo RN Jo

T
< CT—a+(1+aN/2)(p—l)/p(/ / uP 109 dtdx)l/p.
RN Jo

Hence
Tl*&/ UpP1 dx S CT1+04N/27PD‘/(1771).
RN

It follows from p < 1+ 2/N that (N/2 + 1)ae — pa/(p — 1) < 0. Therefore, if
solution of (1)-(2) exists globally, then taking 7' — oo, we obtain

/ UpoP1 dr = 0)
RN

and then ug = 0. Hence, by Theorem(4.3), we know u blows up in a finite time.
(b) We construct the global solution of (1)-(2) by the contraction mapping
principale.

Since p > 1+42/N > 1+ 2a/(aN + 2 — 2a), we know

aN(p—1)

_avWwm ) oy, 3.10
2(pa—p+1)4 (3.10)

where (pa — p+ 1)+ = max{0,pa —p + 1}.
In view of p > 1+2/N > (4 — N + VN2 + 16) /4, we have

N(p—1)

T (3.11)

50



Hence, by Lemma (3.10), (3.11) and
(0~ VN/(2p) < (N (p— 1))/(2(pa— p+ 1)), we can choose ¢ > p > 1+2/N
such tha

o 1 alN a
—_— - — < —, 3.12
p—1 p 2¢ p-1 (3.12)
and
a alN
_ —_— 3.13
p— o< 5 ( )
Let
aN 1 1 « aN
B=—(——-")= — - — (3.14)

2 e ¢ p-1 2¢°
Using (3.12) and (3.14), one verifies that

aN(p—1)

0O<pB<la=
2q

+(p—1)8. (3.15)
Assume that the initial value ug satisfies

Sup; ot” [ Pa(t)toll oy =1 < +o0. (3.16)
Note that (3.13) implies 1/g. —1/q < 2/N. If ug € L% (RY), (1.7) implies (3.16)
holds. If up(z) < C |x|72/(p71) for some constant C' > 0, then
||T(t)U0||Lq(RN) < OtN/Ca)=1/(r=1)  Hence

(o)
| Pat)etoll o, < OO/ =1/ =1 / 60 (0)0N/ =1/ (=1) gg.
0

Since N/(2q) —1/(p —1) > —1,

/ " pu(0)0V/ 201/ gy < o,
0

Therefore, we also obtain that (3.16) is staisfied in this case.
Let Y = {u € L>((0,00), LY(R™)) : |Jully < oo}, where

lully = supysot” [l Laan) -

For u € Y, we define
t
B(u)(t) = Pa(t)uo +/ (t = )2 LS (t — ) [ul” " uls) ds.
0
Denote By ={u €Y : ||ully, < M}. For any u, v € By, t >0,

71 (w)(t) = D) (1)l oy < tﬁ/o (t =) [Salt = 5)(uP(s) = 0" ()| oy d63.17)

o1



Since ¢ > p > N(p—1)/4,s0 p/q—1/q < 4/N. Hence, Holder inequality, Lemma
2.2, (3.15) and (3.17) imply that there exists constant C' > 0 such that

£ 11 () = B(0)| o oy

t
< C’tﬁ/ (t — s)e 1= aN@/a=1/0)/2 || yp _ P|| 4 ds
t
< Ct,@/o (t N S)a—l—aN(P—l)/(QQ) (‘ UZI),Z(IRN)H + UZZ(IRN)H) ||u — U”L‘I(RN) ds
t
< CctPprt / (t — s)@ 1= aNP=1/(20) =B g ||y — vy
0

1
_ Oopp-LB-pB-aN(p-1)/(20) +a / (1= 7)=oN =D/ +a=L=p8 g1 |1y — |,
0

1
— oMmP! / (1-— T)*aN(pfl)/(2q)+afledeT u— vy
0

I'((p—1)B)r(A —pb)

= CMP! — vy .
F(l _ ﬁ) HU’ U”Y
If we choose M small enough such that
D=1 -pp) _1
MP1 il
¢ T(1-3) <3

then ||®(u) — ®(v)[ly < % |lu—v|y . Since

t
OISOy < 1+ O [ (= sy OI Dt o g

I'((p = 1B = pb)
-2

we can choose 17 and M small enough such that

L(p- VAT -p8) _,,

r1-p) -
Therefore, by contraction mapping principale we know ® has a fixed point
u € Byy. Next, we will prove u € C(]0, 00), Co(RY)).
First, we prove that for 7 > 0 small enough, u € C([0, T], Co(RY)). In fact, the
above proof shows that u is the unique solution in

IN

n+ CM?

,t € [0,400),

n+ CMP

Bur = {u e L>((0,T),LY(RN)) : sup t° [w(®l po(rry < M}.
0<t<T

By Theorem 3.2 and ug € Co(RY)N LI(RY), we know that for 7' small enough,
(1.1) has a unique solution ~u € C([0,T],Co(RN) N LY(RY)).
Hence, we can take T small enough such that supg,p t° [~u)l po(rry < M.

Then, by uniqueness, we know u = ~u for t € [0, T] and then u € C([0, T], Co(RN))N

C([0,T], LY(RN)).
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Next, we show that u € C([0,T], Co(RY)) by a bootstrap argument. For ¢t > T,
we have

u— Py (t)ug

/t(t —8)*71S, (t — s)uP ds
0

/T(t —8)*LS, (t — s)uPds + /t(t —8)* LS, (t — s)uP ds
= 1100+I11- '

It follows from u € C([0,T], Co(RY)) that
Ig € C([T,00), Co(RY)) N C([T, 00), LI(RY)).

For T} > T, we know u? € L>®((T,Ty), LY?(RY)). Note that ¢ > N(p — 1)/2,
we can choose r > ¢ such that N(p/q—1/r)/2 < 1. Then analogous to the proof
of Lemma 2.4, we can show that Iy, € C([T,T1], L"(RY)). By the arbitrariness
of Ty, we know I1; € C([T, ), L"(RN)) and so u € C([T,c0), L"(RY)).

We take r = ¢x*, ¥ > 1 such that

N 1
(p— .)<17i:1,2,~-~,
2 \¢ gox

then u € C([T,0), L% (RN)). By finite steps, we have p/(qx’) < 2/N, so
u € C([0,00),Co(RY)). =

]



Conclusion

xcfvgbjhnk k;

o4



