Contents

1	Preliminaries 5			
	1.1	Funct	ional analysis	5
		1.1.1	L^p spaces	5
		1.1.2	Banach space	6
		1.1.3	Complete Metric space	6
		1.1.4	Theorem of Riesz-Thorin	7
		1.1.5	Hölder's inequality	7
		1.1.6	Young's inequality	8
		1.1.7	Gronwall's inequality	8
		1.1.8	Fubini's theorem	9
		1.1.9	Uniform convergence	9
		1.1.10	Dominated convergence theorem	10
		1.1.11	Semi group	10
		1.1.12	Semi-group strongly continuous on a Banach space	11
		1.1.13	Contractive semigroup	12
			Laplace transform	13
	1.2	Calcul	ates fractional	14
		1.2.1	Gamma function	14
		1.2.2	Beta function	15
		1.2.3	$\label{eq:Mittag-Leffler} \mbox{Mittag-Leffler function} \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	16
		1.2.4	Some special cases	17
		1.2.5	Integral representation of Mittag-Leffler function \dots .	18
		1.2.6	Wright function $W_{\lambda,\mu}(z)$	20
		1.2.7	Integral representation of Wright function	21
		1.2.8	Riemann-Liouville Fractional integral	23
		1.2.9	Riemann-Liouville Fractional derivative	23
		1.2.10	Relation with Reimann-Liouville Fractional Calculus Op-	
			erators	24
			Caputo fractional derivative	24
	1.3	Abstr	act equation problem	25
2	Loc	al exis	tence	41
3	Blow-up and global existence			46

ABSTRACT

In this thesis, we investigate the blow-up and global existence of solutions to the following time fractional nonlinear diffusion equations

$$\left\{ \begin{array}{l} {}^C_0D^\alpha_tu-\Delta u=|u|^{p-1}\,u,x\in R^N,t>0,\\ u(0,x)=u_0(x),x\in R^N, \end{array} \right.$$

where $0 < \alpha < 1, p > 1, u_0 \in C_0(R^N)$ and ${}_0^C D_t^{\alpha} u = (\partial/\partial t)_0 I_t^{1-\alpha}(u(t,x)-u_0(x)), {}_0I_t^{1-\alpha}$ denotes left Riemann-Liouville fractional integrals of order $1-\alpha$. We prove that if $1 , then every nontrivial nonnegative solution blowup in finite time, and if <math>p \geq 1+2/N$, and $\|u_0\|_{L^{q_c}(R^N)}$, $q_c = N(p-1)/2$ is sufficiently small, then the problem has global solution.

Introduction

This thesis is concerned with the blow-up and global existence of solutions to the following Cauchy problems for time fractional diffusion equation

$${}_{0}^{C}D_{t}^{\alpha}u - \Delta u = |u|^{p-1}u, x \in \mathbb{R}^{N}, t > 0, \tag{1}$$

$$u(0,x) = u_0(x), x \in \mathbb{R}^N.$$
 (2)

where $0 < \alpha < 1$, p > 1, $u_0 \in C_0(R^N) = \{u \in C(R^N) : \lim_{|x| \to \infty} u(x) = 0\}$ and ${}_0^C D_t^{\alpha} u = (\partial/\partial t)_0 I_t^{1-\alpha}(u(t,x) - u_0(x)), {}_0I_t^{1-\alpha}$ denotes left Riemann-Liouville fractional integrals of order $1 - \alpha$ and is defined by

$$_{0}I_{t}^{1-\alpha}u = \frac{1}{\Gamma(1-\alpha)}\int_{0}^{t} (t-s)^{-\alpha}u(s) ds.$$

When $\alpha = 1$, the problem (1)-(2) reduces to the semilinear heat equation

$$u_t - \Delta u = |u|^{p-1} u, x \in \mathbb{R}^N, t > 0,$$
 (3)

with (2). Fujita showed that if $1 and <math>u_0 \neq 0$, then every solution of (3)-(2) blows up in a finite time. If p > 1 + 2/N, then for initial values bounded by a sufficiently small Gaussian, that is for $\tau > 0$, there is $\varepsilon = \varepsilon(\tau) > 0$ such that if $0 \leq u_0(x) \leq \varepsilon G_\tau(x)$, then the solution of (3)-(2) is global. The critical case p = 1 + 2/N was later proved to be in the blow-up category. Weissler proved that if the initial value u_0 is small enough in $L^{q_c}(R^N)$, $q_c = N(p-1)/2 > 1$, then the solution of (3)-(2) exists globally.

Kirane, Laskyi an Tatar studied the following evolution problem

$${}_{0}^{C}D_{t}^{\alpha}u + (-\Delta)^{\beta/2}u = h(x,t)|u|^{1+\sim p}, x \in \mathbb{R}^{N}, t > 0, \tag{4}$$

with (2), where $0 < \alpha < 1$, $0 < \beta \le 2$, ${}_0^C D_t^\alpha u = (\partial/\partial t)_0 I_t^{1-\alpha}(u(t,x) - u_0(x))$, $\sim p > 0$, h satisfies $h(x,t) \ge C_h |x|^\sigma t^\rho$ for $x \in R^N$, t > 0, $C_h > 0$, and σ , ρ satisfy some conditions. $(-\Delta)^{\beta/2} u =^{-1} (|\zeta|^\beta (u))$, where denotes Fourier transform and $^{-1}$ denotes its inverse. They obtained that if $0 < \sim p \le (\alpha(\beta + \sigma) + \beta\rho)/(\alpha N + \beta(1-\alpha))$, then the problem (4)-(2) admits no global weak nonnegative solution other than the trivial one.

Cazenave, Dickstein and Weissler considered the followin heat equation with nonlinear memory,

$$u_t - \Delta u = \int_0^t (t - s)^{-\gamma} |u|^{p-1} u \, ds, x \in \mathbb{R}^N, t > 0, \tag{5}$$

with (2), where p>1, $0\leq \gamma<1$, and $u_0\in C_0(R^N)$. Let $p_\gamma=1+2(2-\gamma)/(N-2+2\gamma)_+$, $(N-2+2\gamma)_+=\max\{0,N-2+2\gamma\}$ and $p_*=\max\{1/\gamma,p_\gamma\}\in(0,\infty]$. They obtained that if $p\leq p_*$, $u_0\geq 0$, $u_0\neq 0$, then the solution u of (5)-(2) blows up in finite time and if $p>p_*$ and $u_0\in L^{q_{sc}}(R^N)$, $q_{sc}=N(p-1)/(4-2\gamma)$ with $\|u_0\|_{L^{q_{sc}}(R^N)}$ sufficiently small, then the solution exists golbally.

Fino and Kirane discussed the following equation

$$u_t + (-\Delta)^{\beta/2} u = \int_0^t (t-s)^{-\gamma} |u|^{p-1} u ds, x \in \mathbb{R}^N, t > 0,$$
 (6)

with (2), where $0 < \beta \le 2$, $0 \le \gamma < 1$, they got the blow-up and global existence results by using the test function method. The method based on rescalings of a compactly support test function to prove the blow-up results which is used by Mitidieri and Pohozaev to show the blow-up results.

Chapter 1

Preliminaries

In this chapter, we present some preliminaries that will be used in the next chapters.

1.1 Functional analysis

1.1.1 L^p spaces

Definition 1 Let X = [a,b] provided with the Borel tribe and a measure on (X, B_X) . For $1 \le p < \infty$, We denote by $L^p(X, x)$ the set of measurable functions $f: X \to R$ as

$$||f||_p = \left(\int_X |f|^p \ dx\right)^{\frac{1}{p}} < \infty.$$

It is clear that $L^1(X,x)$ is a vector space. To obtain a similar result in the case p > 1, We need the following theorem.

Theorem 2 Let $p, q \in]1, \infty[$ such that $\frac{1}{p} + \frac{1}{q} = 1$. So for any measurable functions $f, g: X \to R$ we have

$$\left| \int_{X} f g \, dx \right| \leq \|f\|_{p} \|g\|_{q} \ (H\ddot{o}lder).$$

$$\|f+g\|_p \leq \|f\|_p + \|g\|_p \ (Minkowski).$$

Proof. We first demonstrate the inequality of Hölder. Without loss of generality, we can suppose that $\|f\|_p = \|g\|_q = 1$. For everyone $x, y \ge 0$, we have

$$xy \le \frac{x^p}{p} + \frac{y^q}{q}.$$

Then

$$\left| \int_{X} f g \, dx \right| \le \int_{X} |fg| \, dx \le \int_{X} \left(\frac{|f|^{p}}{p} + \frac{|g|^{q}}{q} \right) \, dx = \frac{\|f\|_{p}^{p}}{p} + \frac{\|g\|_{q}^{q}}{q} = 1.$$

Let us now show Minkowski's inequality. We obtain

$$\begin{aligned} \|f + g\|_{p}^{p} \\ &= \int_{X} |f + g|^{p} dx \le \int_{X} |f + g|^{p-1} (|f| + |g|) dx \\ &\le \left(\int_{X} |f + g|^{p} dx \right)^{\frac{p-1}{p}} \left(\int_{X} |f|^{p} dx \right)^{\frac{1}{p}} + \left(\int_{X} |g|^{p} dx \right)^{\frac{1}{p}}. \end{aligned}$$

This inequality immediately implies the desired result.

1.1.2 Banach space

A Banach space is a vector space X over the field R of real numbers, or over the field C of complex numbers, which is equipped with a norm and which is complete with respect to that norm, that is to say, for every Cauchy sequence $\{x_n\}$ in X, there exists an element x in X such that

$$\lim_{n\to\infty} x_n = x,$$

or equivalently

$$\lim_{n\to\infty} \|x_n - x\|_X = 0.$$

The vector space structure allows one to relate the behavior of Cauchy sequences to that of converging series of vectors. A normed space X is a Banach space if and only if each absolutely convergent series in X converges,

$$\sum_{n=1}^{\infty}\|v_n\|_X<\infty$$
 implies that $\sum_{n=1}^{\infty}v_n\text{converges in }X.$

Completeness of a normed space is preserved if the given norm is replaced by an equivalent one. All norms on a finite-dimensional vector space are equivalent. Every finite-dimensional normed space over R or C is a Banach space.

1.1.3 Complete Metric space

Definition 3 Let (X, d) be a metric space. A sequence (x_n) in X is called a Cauchy sequence if for any $\varepsilon > 0$, there is an $n_{\varepsilon} \in N$ such that $d(x_m, x_n) < \varepsilon$ for any $m \ge n_{\varepsilon}$, $n \ge n_{\varepsilon}$.

Theorem 4 Any convergent sequence in a metric space is a Cauchy sequence.

Proof. Assume that (x_n) is a sequence which converges to x. Let $\varepsilon > 0$ be given. Then there is an $N \in N$ such that $d(x_n, x) < \frac{\varepsilon}{2}$ for all $n \geq N$. Let $m, n \in N$ be such that $m \geq N$, $n \geq N$. Then

$$d(x_m, x_n) \le d(x_m, x) + d(x_n, x) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Hence (x_n) is a Cauchy sequence.

Then converse of this theorem is not true. For example, let X = (0,1]. Then $(\frac{1}{n})$ is a Cauchy sequence which is not convergent in X.

Definition 5 A metric space (X,d) is said to be complete if every Cauchy sequence in X converges (to a point in X).

1.1.4 Theorem of Riesz-Thorin

Let $1 \leq p_0, p_1, q_0, q_1 \leq \infty$, let $T:L^{p_0}(X,\mu) \cap L^{p_1}(X,\mu) \to L^{q_0}(Y,\nu) \cap L^{q_1}(Y,\nu)$, be a linear operator, and suppose that there exist positive real numbers c_0, c_1 such that, for all $u_0 \in L^{p_0}(X,\mu) \cap L^{p_1}(X,\mu)$,

$$||T(t)u_0||_{L^{q_0}} \le c_0 ||u_0||_{L^{p_0}}, ||T(t)u_0||_{L^{q_1}} \le c_1 ||u_0||_{L^{p_1}}.$$

Fixe a real number $0 < \lambda < 1$ and define the numbers p_{λ} , q_{λ} , c_{λ} by

$$\frac{1}{p_{\lambda}} = \frac{1-\lambda}{p_0} + \frac{\lambda}{p_1}, \frac{1}{q_{\lambda}} = \frac{1-\lambda}{q_0} + \frac{\lambda}{q_1}, c_{\lambda} = c_0^{1-\lambda} c_1^{\lambda}.$$

If $q_{\lambda} = \infty$ assume that (Y, B, v) is semi-finite. Then

$$||T(t)u_0||_{L^{q_\lambda}} \le c_\lambda ||u_0||_{L^{p_\lambda}},$$

for all $u_0 \in L^{p_0}(X, \mu) \cap L^{p_1}(X, \mu) \subset L^{p_{\lambda}}(X, \mu)$.

1.1.5 Hölder's inequality

Let

$$\frac{1}{p} + \frac{1}{q} = 1,$$

with p, q > 1. Then Hölder's inequality for integrals states that

$$\int_{a}^{b} |f(x)g(x)| \ dx \le \left[\int_{a}^{b} |f(x)|^{p} \ dx \right]^{\frac{1}{p}} \left[\int_{a}^{b} (x)|^{q} \ dx \right]^{\frac{1}{q}},$$

with equality when

$$|g(x)| = c |f(x)|^{p-1}.$$

If p=q=2, this inequality becomes Schwarz's inequality. Similarly, Hölder's inequality for sums states that

$$\sum_{k=1}^{n} |a_k b_k| \le \left(\sum_{k=1}^{n} |a_k|^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} |b_k|^q\right)^{\frac{1}{q}},$$

with equality when

$$|b_k| = c |a_k|^{p-1}.$$

If p = q = 2, this becomes Cauchy's inequality.

1.1.6 Young's inequality

Let f be a real-valued, continuous, and strictly increasing function on [0, c] with c > 0. If f(0) = 0, a in [0, c], and b in [0, f(c)], then

$$\int_0^a f(x) \, dx + \int_0^b f^{-1}(x) \, dx \ge ab,$$

where f^{-1} is the inverse function of f. Equality holds iff b = f(a). Taking the particular function $f(x) = \hat{x}(p-1)$ gives the special case

$$\frac{a^p}{p} + \left(\frac{p-1}{p}\right)b^{\frac{p}{p-1}} \ge ab,$$

which is often written in the symmetric form

$$\frac{a^p}{p} + \frac{b^q}{q} \ge ab,$$

where $a, b \ge 0, p > 1$, and

$$\frac{1}{p} + \frac{1}{q} = 1.$$

1.1.7 Gronwall's inequality

Let I denote an interval of the real line of the form $[a,\infty)$ or [a,b] or [a,b] with a < b. Let β and u be real-valued continuous functions defined on I. If u is differentiable in the interior I° of I (the interval I without the end points a and possibly b) and satisfies the differential inequality

$$u'(t) < \beta(t) u(t), t \in I^{\circ},$$

then u is bounded by the solution of the corresponding differential equation $y(t) = \beta(t)y(t)$

$$u(t) \le u(a) \exp\left(\int_a^t \beta(s) \, \mathrm{d}s\right),$$

for all $t \in I$.

1.1.8 Fubini's theorem

Fubini's theorem, sometimes called Tonelli's theorem, establishes a connection between a multiple integral and a repeated one. If f(x, y) is continuous on the rectangular region $R = \{(x, y) \in R^2 : a \le x \le b, c \le y \le d\}$, then the equality

$$\iint_{R} f(x,y) d(x,y) = \int_{a}^{b} \int_{c}^{d} f(x,y) dy dx.$$

1.1.9 Uniform convergence

Definition 6 A sequence of functions $\{f_n\}$, n = 1, 2, 3, ... is said to be uniformly convergent to f for a set E of values of x, if for each $\varepsilon > 0$, an integer n_0 can be found such that

$$|f_n(x) - f(x)| < \varepsilon,$$

for $n \ge n_0$ and all $x \in E$.

A series $\sum f_n(x)$ converges uniformly on E if the sequence $\{S_n\}$ of partial sums defined by

$$S_n(x) = \sum_{k=0}^n f_k(x),$$

converges uniformly on E.

To test for uniform convergence, use Abel's uniform convergence test or the Weierstrass M-test. If individual terms $u_n(x)$ of a uniformly converging series are continuous, then the following conditions are satisfied.

Proposition 7 1. The series sum

$$f(x) = \sum_{n=1}^{\infty} u_n(x),$$

is continuous.

2. The series may be integrated term by term

$$\int_{a}^{b} f(x) dx = \sum_{n=1}^{\infty} \int_{a}^{b} u_n(x) dx.$$

For example, a power series $\sum_{n=0}^{\infty} (x-x_0)^n$ is uniformly convergent on any closed and bounded subset inside its circle of convergence.

3. The situation is more complicated for differentiation since uniform convergence of $\sum_{n=1}^{\infty} u_n(x)$ does not tell anything about convergence of $\sum_{n=1}^{\infty} \frac{d}{dx} u_n(x)$. Suppose that $\sum_{n=1}^{\infty} u_n(x_0)$ converges for some $x_0 \in [a,b]$, that each $u_n(x)$ is differentiable on [a,b], and that $\sum_{n=1}^{\infty} \frac{d}{dx} u_n(x)$ converges uniformly on [a,b]. Then $\sum_{n=1}^{\infty} u_n(x)$ converges uniformly on [a,b] to a function f, and for each $x \in [a,b]$,

$$\frac{d}{dx}f(x) = \sum_{n=1}^{\infty} \frac{d}{dx}u_n(x).$$

1.1.10 Dominated convergence theorem

Theorem 8 (Lebesgue dominated convergence theorem)

Suppose $f_n: R \to [-\infty, +\infty]$ are (Lebesgue) mesurable functions such that the pointwise limit $f(x) = \lim_{n \to \infty} f_n(x)$ exists. Assume there is an integrale $g: R \to [0, \infty]$ with $|f_n(x)| \le g(x)$ for each $x \in R$. Then f is integrable as is f_n for each n, and

$$\lim_{n \to \infty} \int_R f_n \, dx = \int_R \lim_{n \to \infty} f_n \, dx = \int_R f \, dx.$$

1.1.11 Semi group

Definition 9 A family $\{T(t)\}_{t\geq 0}$ of bounded linear operators, on X is said to be a semi graoupe on X, if it satisfies

(a)
$$T(0) = I$$
.

(b)
$$T(t+s) = T(t)T(s), t, s \ge 0.$$

The Semigroup Property

By transitionally breaking down the process of evolution, it is evident that we can reach the state of the system at time t+s by either going directly from the initial condition to the state at time t+s or by allowing the state to evolve over s time units (taking a snapshot), and then allowing it to evolve t more time units. Here the $T(\cdot)$ is acting like a transition operator. The uniqueness of the solution gives reveals the semigroup property which is given by

$$T(t+s) = T(t)T(s) (t > 0, s > 0).$$

The semigroup property of the family of functions, $\{T(t); t \geq 0\}$, is a composition (not a multiplication). Notice that T(0) is the identity operator I (i.e. there is no transition at time zero and the initial data exists).

More Properties

Now that we have seen the fundamental semigroup property, we want to understand how A (which governs the evolution of the system) and T relate to one another. We will first examine the scalar case. Two observations which may be preliminary indicators of the relationship are given as follows

$$T(t)(f) = T(t)(u(0)) = u(t) = e^{At}f,$$

and

$$\frac{d}{dt}T(t)(f) = A(T(t)(f)),$$

where A is the derivative of T(t). In addition, each $T(t): f \to e^{At}f$ is a continuous operator on R, (or in an infinite dimensional setting, a Banach space X), which indicates the continuous dependence of u(t) on f. The initial data f

should belong to the domain of A. We have the following results:

- a) T(t) is a continuous function.
- b) T(0)f = f.
- c) $T(t): R \to R$ is linear provided A is linear.

Again, since we are interested in linear semigroups, we will assume that A is linear. These observations bring for the notion of C_0 semigroups.

1.1.12 Semi-group strongly continuous on a Banach space

Definition 10 A family of operators $(T(t))_{t\geq 0}$ of L(X) is a strongly continuous semigroup on X when the following conditions are realized

- (a) T(0) = I,
- (b) T(t+s) = T(t)T(s) for every $t \ge 0$ and all $s \ge 0$,
- (c) $\lim_{t\to 0} ||T(t)x x|| = 0$, for every $x \in X$.

Theorem 11 Let $(T(t))_{t\geq 0}$ be a strongly continuous semi-group on X. Then there exist constants $w\geq 0$ and $M\geq 1$ such that

$$||T(t)|| \leq Me^{wt},$$

for every $t \geq 0$.

Theorem 12 If $(T(t))_{t\geq 0}$ is a strongly continuous semi-group on X then, for all $x \in X$, the application

$$t \longmapsto S(t)x$$
,

is continuous from $[0,\infty)$ in X.

Theorem 13 Let $(T(t))_{t\geq 0}$ be a strongly continuous semi-group over X and (A, D(A)) its infinitesimal generator. The following properties are verified (a) For all $x \in X$, we have

$$\lim_{t \to 0} \frac{1}{h} \int_{t}^{t+h} T(s) x \, ds = T(t)x.$$

(b) For every $x \in X$ and every t > 0, $\int_0^t T(s)x \, ds$ belongs to D(A) and

$$A\left(\int_0^t \int_t^{t+h} T(s)x \, ds\right) = T(t)x - x.$$

(c) If $x \in D(A)$, then $T(t)x \in D(A)$ and

$$\frac{d}{dt}T(t)x = AT(t)x = T(t)x A.$$

(d) If $x \in D(A)$, then

$$T(t)x - T(s)x = \int_{s}^{t} T(\tau)Ax d\tau = \int_{s}^{t} AT(\tau)x d\tau.$$

Definition 14 Let $(T(t))_{t\geq 0}$ be a strongly continuous semi-group on X. The generator infinitesimal of the semigroup $(T(t))_{t\geq 0}$, the unbounded operator (A, D(A)) defined by

$$D(A) = \left\{ x \in X : \lim_{t \to 0} \frac{T(t)x - x}{t} exists in X \right\},\,$$

and

$$Ax = \lim_{t\to 0} \frac{T(t)x-x}{t}$$
 for all $x \in X$.

1.1.13 Contractive semigroup

Definition 15 A strongly continuous semi-group $(T(t))_{t\geq 0}$ over X is a semi-group of contractions if

$$||T(t)|| < 1$$
, for all $t > 0$.

Theorem 16 Let $(T(t))_{t\geq 0}$ be a strongly continuous semi-group over X and (A, D(A)) its infinitesimal generator. The following properties are verified (a) For all $x \in X$, we have

$$\lim_{t \to 0} \frac{1}{h} \int_{t}^{t+h} T(s)x \, ds = T(t)x.$$

(b) For every $x \in X$ and every t > 0, $\int_0^t T(s)x \, ds$ belongs to D(A) and

$$A\left(\int_0^t \int_t^{t+h} T(s)x \, ds\right) = T(t)x - x.$$

(c) If $x \in D(A)$ then $T(t)x \in D(A)$ and

$$\frac{d}{dt}T(t)x = AT(t)x = T(t)xA.$$

(d) If $x \in D(A)$ then

$$T(t)x - T(s)x = \int_{s}^{t} T(\tau)Ax \, d\tau = \int_{s}^{t} AT(\tau)x \, d\tau.$$

Theorem 17 (Hille-Yosida theorem 1) An unbounded linear operator (A, D(A)) in X is the infinitesimal generator of a semi-group of contractions on X if and only if the following conditions are satisfied

- (a) A is closed,
- (b) D(A) is dense in X,
- (c) for everything $\lambda > 0$, $(\lambda I A)$ is a bijective mapping of D(A) into X, and $(\lambda I A)^{-1}$ is A bounded operator on X satisfying

$$\left\| (\lambda I - A)^{-1} \right\| \le \frac{1}{\lambda}.$$

Theorem 18 (Hille-Yosida theorem 2) An unbounded linear operator (A, D(A)) in X is the infinitesimal generator of a semi-group of contractions on X if and only if A is m-dissipative and dense domain in X.

1.1.14 Laplace transform

The Laplace transform intervenes in the resolution of equations and differential systems.

Definition 19 The Laplace transform of a function f of the real variable $t \in R^+$ is defined by

$$\mathcal{L}f(\lambda) = \int_0^\infty e^{-\lambda t} f(t) \, dt, \lambda \in R.$$

F(t) is called the original of $f(\lambda)$.

The Laplace transform of a function exists if the previous integral is convergent, for which the original must be exponential order a, i.e. there exists M>0 such that

$$|f(t)| \leq Me^{at} f(t) dt, for t > T.$$

In this case, the Laplace transform exists for $Re(\lambda) > a$. The original f(t) is called the inverse Laplace transform

$$\mathcal{L}^{-1}(\mathcal{L}f)(t) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{\lambda t} f(\lambda) \, d\lambda, \, c > a.$$

Proposition 20 The Laplace transform is linear i.e

$$\mathcal{L}(f(t))(\lambda) = \mathcal{L}\left(\sum_{i=0}^{n} c_i f_i(t)\right)(\lambda) = \sum_{i=0}^{n} c_i \mathcal{L}f_i(\lambda).$$

Definition 21 When the product f(x - t)g(t) is integrable over any interval [0,x] of R^+ , the convolution product of f and g is defined by

$$(f * g)(x) = \int_0^x f(x - t)g(t) dt.$$

Proposition 22 If the Laplace transforms of f and g exist, then the Laplace transform of the convolution product satisfies

$$\mathcal{L}(f * g)(s) = \mathcal{L}(f)\mathcal{L}(g).$$

Proposition 23 The Laplace transform of the derivative of order $n \in N$ of the function f is given by

$$\mathcal{L}(f^{(n)})(\lambda) = \lambda^n \mathcal{L}(f)(\lambda) - \sum_{k=0}^{n-1} \lambda^{n-k-1} f^{(k)}(0) = \lambda^k \mathcal{L}(f)(\lambda) - \sum_{k=0}^{n-1} \lambda^k f^{(n-k-1)}(0).$$

1.2 Calculates fractional

1.2.1 Gamma function

Definition 24

$$\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt, \, Re(z) > 0, \, z \in C.$$

From this definition it is clear that $\Gamma(z)$ is analytic for Re(z) > 0. By using integration by parts we find that

$$\Gamma(z+1) = \int_0^\infty e^{-t} t^z dt = -\int_0^\infty t^z de^{-t} = -e^{-t} t^z \Big|_0^\infty + \int_0^\infty e^{-t} dt^z$$
$$= z \int_0^\infty e^{-t} t^{z-1} dt = z \Gamma(z), Re(z) > 0.$$

Hence we have.

Theorem 25

$$\Gamma(z+1) = z\Gamma(z), Re(z) > 0, z \in C.$$

Further we have

$$\begin{split} \Gamma(1) &=& \int_0^\infty e^{-t}\,dt = -e^{-t}\mid_0^\infty = 1.\\ \Gamma(n+1) &=& n!,\, n=0,1,2,3,\ldots. \end{split}$$

Now we define

$$\Gamma(z) = \frac{\Gamma(z+1)}{z}, -1 < Re(z) \le 0, z \ne 0.$$

Proposition 26 (of the Gamma function)

$$\begin{split} \frac{\Gamma(z+n)}{\Gamma(z)} &= z(z+1)(z+2)....(z+n-1), n \in N. \\ \frac{\Gamma(z)}{\Gamma(z-n)} &= z(z-1)(z-2)....(z-n), n \in N. \\ \frac{\Gamma(-z)}{\Gamma(-z-n)} &= (-1)^n \frac{\Gamma(1+z+n)}{\Gamma(1+z)}, \, n \, non \, negative \, integer. \\ \lim_{n \to \infty} \frac{\Gamma(z+n)}{\Gamma(n)n^z} &= 1. \end{split}$$

1.2.2 Beta function

Definition 27

$$B(u,v) = \int_0^1 t^{u-1} (1-t)^{v-1} dt, \, Re(u) > 0, \, Re(v) > 0.$$

This integral is often called the beta integral. From the de nition we easily obtain the symmetry

$$B(u, v) = B(v, u),$$

since we have by using the substitution t = 1 - s

$$B(u,v) = \int_0^1 t^{u-1} (1-t)^{v-1} dt = -\int_1^0 (1-s)^{u-1} s^{v-1} ds$$
$$= \int_0^1 s^{v-1} (1-s)^{u-1} ds = B(v,u).$$

The connection between the beta function and the gamma function is given by the following theorem:

Theorem 28

$$B(u,v) = \frac{\Gamma(u)\Gamma(v)}{\Gamma(u+v)}, \, Re(u) > 0, \, Re(v) > 0.$$

In order to prove this theorem we use the definition of gamma function to obtain

$$\Gamma(u)\Gamma(v) = \int_0^\infty e^{-t} t^{u-1} dt \int_0^\infty e^{-s} s^{v-1} ds$$
$$= \int_0^\infty e^{-(t+s)} t^{u-1} s^{v-1} dt ds.$$

Now we apply the change of variables t=xy and s=x(1-y) to this double integral. Note that t+s=x and that $0 < t < \infty$ and $0 < s < \infty$ imply that 0 < x < 1 and 0 < y < 1. There exist many useful forms of the beta integral which can be obtained by an appropriate change of variables. For instance, if we set t=s=(s+1) into $B(u,v)=\int_0^1 t^{u-1}(1-t)^{v-1}dt$, we obtain

$$\begin{split} B(u,v) &= \int_0^1 t^{u-1} (1-t)^{v-1} \, dt \\ &= \int_0^\infty s^{u-1} (s+1)^{-u+1} (s+1)^{-v+1} (s+1)^{-2} \, ds \\ &= \int_0^\infty \frac{s^{u-1}}{(s+1)^{u+v}} \, ds, \, Re(u) > 0, \, Re(v) > 0. \end{split}$$

1.2.3 Mittag-Leffler function

Definition 29 The Mittag-Leffler function is defined for complex $z \in C$

$$E_{\alpha}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(1+\alpha k)}, \ \alpha \in C, \ Re(\alpha) > 0, \ z \in C,$$

and its general form

$$E_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\beta + \alpha k)}, \, \alpha, \, \beta \in C, \, Re(\alpha) > 0, \, Re(\beta) > 0, \, z \in C.$$

Originally Mittag-Leffler assumed only the parameter and assumed it as positive, but soon later the generalization with two complex parameters was considered by Wiman. In both cases the Mittag-Leffler functions are entire of order $\frac{1}{Re(\alpha)}$. Generally $E_{\alpha,1}(z) = E_{\alpha}(z)$.

If $Re(\alpha) > 0$, $Re(\beta) > 0$ and $z \in C$. The following representations are obtained

$$E_{\alpha}(z) = \frac{1}{2\pi i} \int_{\gamma - i\infty}^{\gamma + i\infty} \frac{\Gamma(s)\Gamma(1 - s)}{\Gamma(1 - \alpha s)} (-z)^{-s} ds,$$

and

$$E_{\alpha,\beta}(z) = \frac{1}{2\pi i} \int_{\gamma - i\infty}^{\gamma + i\infty} \frac{\Gamma(s)\Gamma(1 - s)}{\Gamma(\beta - \alpha s)} (-z)^{-s} ds,$$

where the path of integration sparates all the poles of $\Gamma(s)$ at the points $s=-v, v=0,1,\cdots$ from those of $\Gamma(1-s)$ at the points $s=1+v, v=0,1,\cdots$. On evaluating the residues at the poles of the gamma function $\Gamma(1-s)$ we obtain the following analytic continuation formulas for the Mittag-Leffler functions:

$$E_{\alpha}(z) = \frac{1}{2\pi i} \int_{\gamma - i\infty}^{\gamma + i\infty} \frac{\Gamma(s)\Gamma(1 - s)}{\Gamma(1 - \alpha s)} (-z)^{-s} ds$$
$$= -\sum_{k=1}^{\infty} \frac{z^{-k}}{\Gamma(1 - \alpha k)}.$$

$$E_{\alpha,\beta}(z) = \frac{1}{2\pi i} \int_{\gamma - i\infty}^{\gamma + i\infty} \frac{\Gamma(s)\Gamma(1 - s)}{\Gamma(\beta - \alpha s)} (-z)^{-s} ds$$
$$= -\sum_{k=1}^{\infty} \frac{z^{-k}}{\Gamma(\beta - \alpha k)}.$$

1.2.4 Some special cases

We begin our study by giving the special cases of the Mittag-Leffler function $E_{\alpha}(z)$

$$E_0(z) = \frac{1}{1-z}, |z| < 1.$$

$$E_1(z) = E_{1,1}(z) = e^z.$$

$$E_2(z) = \cosh(\sqrt{z}), z \in C.$$

$$E_2(-z^2) = \cos(z), z \in C.$$

$$E_{1,2}(z) = \frac{e^z - 1}{z}, z \in C.$$

We obtain

$$E_{1,2}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(k+2)} = \sum_{k=0}^{\infty} \frac{z^k}{(k+1)!}$$

$$= \frac{1}{z} \sum_{k=0}^{\infty} \frac{z^{k+1}}{(k+1)!} = \frac{1}{z} (e^z - 1).$$

$$E_{2,2}(z) = \frac{\sinh(\sqrt{z})}{\sqrt{z}}, z \in C.$$

$$E_3(z) = \frac{1}{2} \left[e^{z^{\frac{1}{3}}} + 2e^{-\frac{1}{2}z^{\frac{1}{3}}} \cos\left(\frac{\sqrt{3}}{2}z^{\frac{1}{3}}\right) \right], z \in C.$$

$$E_{1,3}(z) = \frac{e^z - z - 1}{z^2}, z \in C.$$

We obtain

$$E_{1,3}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(k+3)} = \frac{1}{z^2} \sum_{k=0}^{\infty} \frac{z^{k+2}}{(k+2)!} = \frac{1}{z^2} \left(e^z - z - 1 \right).$$

$$E_4(z) = \frac{1}{2} \left[\cos \left(z^{\frac{1}{4}} \right) + \cosh \left(z^{\frac{1}{4}} \right) \right], z \in C.$$

$$E_{1/2} \left(\pm z^{\frac{1}{2}} \right) = e^z \left[1 + erf \left(\pm z^{\frac{1}{2}} \right) \right] = e^z erfc \left(\pm z^{\frac{1}{2}} \right), z \in C.$$

Where erfc denotes the complimentary error function and the error function is defines as

$$erf(z) = \frac{2}{\sqrt{\pi}} \int_0^\infty \exp(-t^2) dt, erfc(z) = 1 - erf(z), z \in C.$$

Theorem 30 The Mittag-Leffler has the following properties 1) For |z| < 1, the generalized Mittag-Leffler function satisfies

$$\int_0^\infty e^{-t} t^{\beta - 1} E_{\alpha, \beta}(zt^\alpha) dt = \frac{1}{z - 1}.$$

2) The Laplace transform of this function is given by

$$\mathcal{L}[z^{\alpha k+\beta-1}E_{\alpha,\beta}^{k}(\alpha z^{\alpha})](\lambda) = \frac{k!\lambda^{\alpha-\beta}}{(\lambda^{\alpha}-\alpha)^{k+1}}, Re(\lambda) > |a|^{\frac{1}{\alpha}}.$$

Or $E_{\alpha,\beta}^{(k)}(y) = \frac{d^k}{dy^k} E_{\alpha,\beta}(y)$. 3) Integration of Mittag-Leffler function

$$\int_0^z E_{\alpha,\beta}(\lambda t^{\alpha}) t^{\beta-1} dt = z^{\beta} E_{\alpha,\beta+1}(\lambda z^{\alpha}).$$

4) The derivative of order $n \in N$ of the function of Mittag-Leffler is given by

$$\frac{d^n}{dz^n} \left(z^{\beta - 1} E_{\alpha, \beta} \left(\lambda z^{\alpha} \right) \right) = z^{\beta - n - 1} E_{\alpha, \beta - n} (z^{\alpha}).$$

1.2.5Integral representation of Mittag-Leffler function

In this section several integrals associated with Mittag-Leffler functions are presented, which can be easily established by the application by means of beta and gamma function formulas and other techniques

$$\begin{split} \int_0^\infty e^{-\zeta} E_\alpha(\zeta^\alpha z) \, d\zeta &= \frac{1}{1-z'}, \ |z| < 1, \, \alpha \in C, Re(\alpha) > 0, \\ \int_0^\infty e^{-x} x^{\beta-1} E_{\alpha,\beta}(x^\alpha z) \, dx &= \frac{1}{1-z'}, \ |z| < 1, \, \alpha, \, \beta \in C, \, Re(\alpha) > 0, \, Re(\beta) > 0, \\ \int_0^x (x-\zeta)^{\beta-1} E_\alpha(\zeta^\alpha) \, d\zeta &= \Gamma(\beta) x^\beta E_{\alpha,\beta+1}(x^\alpha), \, Re(\alpha) > 0, \, Re(\beta) > 0, \\ \int_0^\infty e^{-\lambda \zeta} E_\alpha(-\zeta^\alpha) \, d\zeta &= \frac{\lambda^{\alpha-1}}{1+\lambda^\alpha}, \, Re(\lambda) > 0, \end{split}$$

$$\begin{split} &\int_0^\infty e^{-\lambda\zeta}\zeta^{m\alpha+\beta-1}E_{\alpha,\beta}^{(m)}(\pm\alpha\zeta^\alpha)\,d\zeta\\ &=&\frac{m!\lambda^{\alpha-\beta}}{(\lambda^\alpha\pm\alpha)^{m+1}},\,Re(\alpha)>0,\,Re(\lambda)>0,\,Re(\beta)>0, \end{split}$$

where $\alpha, \beta \in C$ and

$$E_{\alpha,\beta}^{(m)}(z) = \frac{d^m}{dz^m} E_{\alpha,\beta}(z),$$

$$E_{\alpha}(-x^{\alpha}) = \frac{2}{\pi} \sin(\frac{\alpha\pi}{2}) \int_0^{\infty} \frac{\zeta^{\alpha-1} \cos(x\zeta)}{1 + 2\zeta^{\alpha} \cos(\frac{\alpha\pi}{2}) + \zeta^{2\alpha}} d\zeta, \quad \alpha \in C, \quad Re(\alpha) > 0,$$

$$E_{\alpha}(-x) = \frac{1}{\pi} \sin(\alpha\pi) \int_0^{\infty} \frac{\zeta^{\alpha-1}}{1 + 2\zeta^{\alpha} \cos(\alpha\pi) + \zeta^{2\alpha}} e^{\zeta x^{\frac{1}{\alpha}}} \zeta d\zeta, \quad \alpha \in C, \quad Re(\alpha) > 0,$$

$$E_{\alpha}(-x) = 1 - \frac{1}{2\alpha} + \frac{x^{\frac{1}{\alpha}}}{\pi} \int_0^{\infty} \arctan\left[\frac{\zeta^{\alpha} \cos(\alpha\pi)}{\sin(\alpha\pi)}\right] e^{-\zeta x^{\frac{1}{\alpha}}} \zeta d\zeta, \quad \alpha \in C, \quad Re(\alpha) > 0.$$

Plot of the Mettag-Meffler function

1.2.6 Wright function $W_{\lambda,\mu}(z)$

Definition 31 The Wright function, that we denote by $W_{\lambda,\mu}(z)$ is so named in honour of E. Maitland Wright, the eminent British mathematician, who introduced and investigated this function in a series of notes starting from 1933 in the framework of the asymptotic theory of partitions. The function is de ned by the series representation, convergent in the whole z-complex plane,

$$W_{\lambda,\mu}(z) = \sum_{k=0}^{\infty} \frac{(z)^k}{k!\Gamma(\lambda k + \mu)}, \lambda > -1, \mu \in C.$$

so $W_{\lambda,\mu}(z)$ is an entire function. Originally Wright assumed $\lambda > 0$, and, only in 1940, he considered $-1 < \lambda < 0$.

We also need the following Wright type function which was considered by Mainardi

$$\begin{split} \phi_{\alpha}(z) &=& \sum_{k=0}^{\infty} \frac{(-z)^k}{k!\Gamma(-\alpha k+1-\alpha)} \\ &=& \frac{1}{\pi} \sum_{k=0}^{\infty} \frac{(-z)^k \Gamma(k+1) \sin(\pi (k+1)\alpha)}{k!}, \ 0<\alpha<1. \\ M(z;\beta) &=& \frac{1}{2\pi i} \int_{H_a} e^{\delta-z\delta^{\beta}} \frac{d\delta}{\delta^{1-\beta}}, 0<\beta<1, \end{split}$$

the Hankel representation for the reciprocal of the gamma function. Writing

$$2\pi i M(z;\beta) = \int_{H_a} e^{\delta} \left[\sum_{k=0}^{\infty} \frac{(-1)^k z^k}{k!} \delta^{\beta k} \right] \frac{d\delta}{\delta^{1-\beta}}$$
$$= \sum_{k=0}^{\infty} \frac{(-1)^k z^k}{k!} \left[\int_{H_a} e^{\delta} \delta^{\beta k+\beta-1} d\delta \right],$$

and using the Hankel representation of the reciprocal of the gamma function, we obtain the following series representation

$$M(z;\beta) = \sum_{k=0}^{\infty} \frac{(-1)^k z^k}{k!\Gamma(-+(1-\beta))}, 0 < \beta < 1.$$

1.2.7Integral representation of Wright function

$$W_{\lambda,\mu}(z) = \frac{1}{2\pi i} \int_{H_a} e^{\sigma + z\sigma^{-\lambda}} \frac{d\sigma}{\sigma^{\mu}}, \lambda > -1, \mu \in C,$$

where H_a denotes the Hankel path. The equivalence of the series and integral representations is easily proved using the Hankel formula for the Gamma function

$$\frac{1}{\Gamma(\zeta)} \int_{H_a} e^u u^{-\zeta} \, du, \, \zeta \in C,$$

and performing a term-by-term integration. In fact,

$$\begin{split} W_{\lambda,\mu}(z) &= \frac{1}{2\pi i} \int_{H_a} e^{\sigma + z\sigma^{-\lambda}} \frac{d\sigma}{\sigma^{\mu}} = \frac{1}{2\pi i} \int_{H_a} e^{\sigma} \left[\sum_{k=0}^{\infty} \frac{z^k}{k!} \sigma^{-\lambda k} \right] \frac{d\sigma}{\sigma^{\mu}} \\ &= \sum_{k=0}^{\infty} \frac{z^k}{k!} \left[\frac{1}{2\pi i} \int_{H_a} e^{\sigma} \sigma^{-\lambda k - \mu} d\sigma \right] = \sum_{k=0}^{\infty} \frac{z^k}{k! \Gamma(\lambda k + \mu)}. \end{split}$$

It is possible to prove that the Wright function is entire of order $1/(1+\lambda)$; hence of exponential type if $\lambda \geq 0$. The case $\lambda = 0$ is trivial since

$$W_{0,\mu}(z) = \frac{e^z}{\Gamma(\mu)}.$$

 $\begin{array}{l} \textbf{Proposition 32} \ \phi_{\alpha} \ is \ an \ entire \ function \ and \ has \ the \ following \ properties \\ (a) \ \phi_{\alpha}(\theta) \geq 0, \ for \ \theta \geq 0 \ and \ \int_{0}^{\infty} \phi_{\alpha}(\theta) \ d\theta = 1. \\ (b) \ \int_{0}^{\infty} \phi_{\alpha}(\theta) \theta^{r} \ d\theta = \frac{\Gamma(1+r)}{\Gamma(1+\alpha r)}, \ for \ r > -1. \\ (c) \ \int_{0}^{\infty} \phi_{\alpha}(\theta) e^{-z\theta} \ d\theta = E_{\alpha,1}(-z), \ z \in C. \\ (d) \ \alpha \int_{0}^{\infty} \phi_{\alpha}(\theta) e^{-z\theta} \ d\theta = E_{\alpha,\alpha}(-z), \ z \in C. \end{array}$

Proof.

(a)

$$\begin{split} \phi_{\alpha}(\theta) &= \frac{1}{2\pi i} \int_{H_{a}} e^{\delta - \delta^{\alpha} \theta} \frac{d\delta}{\delta^{1 - \alpha}}. \\ \int_{0}^{\infty} \phi_{\alpha}(\theta) \, d\theta &= \frac{1}{2\pi i} \int_{H_{a}} e^{\delta} \left[\int_{0}^{\infty} e^{-\delta^{\alpha} \theta} \, d\theta \right] \frac{d\delta}{\delta^{1 - \alpha}} \\ &= \frac{1}{2\pi i} \int_{H_{a}} \frac{e^{\delta}}{\delta} d\delta = 1. \end{split}$$

(b) For the M-Wright functions, the following rule for absolute moments in \mathbb{R}^+ holds. M-Wright functions

$$\phi_{\alpha}(\theta) = \sum_{k=0}^{\infty} \frac{(-\theta)^k}{k!\Gamma(-\alpha k + 1 - \alpha)}, \ \theta \in C.$$

$$\int_{0}^{\infty} \phi_{\alpha}(\theta)\theta^r d\theta = \frac{\Gamma(1+r)}{\Gamma(1+\alpha r)}, \ for \ r > -1, \ 0 \le \alpha < 1.$$

In order to derive this fundamental result, we proceed as follows on the basis of the integral representation

$$\begin{split} \phi_{\alpha}(\theta) &= \frac{1}{2\pi i} \int_{H_{a}} e^{\sigma - r\sigma^{\alpha}\theta} \frac{d\sigma}{\sigma^{1-\alpha}}. \\ \int_{0}^{\infty} \theta^{r} \phi_{\alpha}(\theta) d\theta &= \int_{0}^{\infty} \theta^{r} \left[\frac{1}{2\pi i} \int_{H_{a}} e^{\sigma - r\sigma^{\alpha}\theta} \frac{d\sigma}{\sigma^{1-\alpha}} \right] d\theta \\ &= \frac{1}{2\pi i} \int_{H_{a}} e^{\sigma} \left[\int_{0}^{\infty} e^{-\theta\sigma^{r}} \theta^{r} d\theta \right] \frac{d\sigma}{\sigma^{1-\alpha}} \\ &= \frac{\Gamma(1+r)}{2\pi i} \int_{H_{a}} \frac{e^{\sigma}}{\sigma^{\alpha r+1}} d\sigma = \frac{\Gamma(1+r)}{\Gamma(1+\alpha r)}. \end{split}$$

(c)
$$\int_0^\infty \phi_\alpha(\theta) e^{-z\theta} d\theta = \frac{1}{2\pi i} \int_0^\infty e^{-z\theta} \left[\int_{H_a} e^{\sigma - \theta \sigma^\alpha} \frac{d\sigma}{\sigma^{1-\alpha}} \right] d\theta$$
$$= \frac{1}{2\pi i} \int_{H_a} e^{\sigma} \sigma^{\alpha - 1} \left[\int_0^\infty e^{-\theta(z + \sigma^\alpha)} d\theta \right] d\sigma$$
$$= \frac{1}{2\pi i} \int_{H_a} \frac{e^{\sigma} e^{\alpha - 1}}{\sigma^\alpha + z} d\sigma = E_\alpha(-z) = E_{\alpha, 1}(-z), z \in C.$$

In the second approach we develop in series the exponential kernel of the Laplace transform and we use the expression (b) for the absolute moments of the M-Wright function arriving to the following series representation of the Mittag-Leffler function

$$\int_0^\infty \phi_\alpha(\theta) e^{-z\theta} d\theta = \sum_{k=0}^\infty \frac{(-z)^k}{k!} \int_0^\infty \theta^k \phi_\alpha(\theta) d\theta$$
$$= \sum_{k=0}^\infty \frac{(-z)^k}{k!} \frac{\Gamma(k+r)}{\Gamma(1+\alpha k)}$$
$$= \sum_{k=0}^\infty \frac{(-z)^k}{\Gamma(1+\alpha k)} = E_{\alpha,1}(-z), z \in C.$$

(d)
$$\alpha \int_0^\infty \phi_\alpha(\theta) e^{-z\theta} d\theta = \alpha \frac{1}{2\pi i} \int_0^\infty e^{-z\theta} \left[\int_{H_a} e^{\sigma - \theta \sigma^\alpha} \frac{d\sigma}{\sigma^{1-\alpha}} \right] d\theta$$

$$= \alpha \frac{1}{2\pi i} \int_{H_a} e^{\sigma} \sigma^{\alpha-1} \left[\int_0^{\infty} e^{-\theta(z+\sigma^{\alpha})} d\theta \right] d\sigma$$
$$= \frac{1}{2\pi i} \int_{H_a} \alpha \frac{e^{\sigma} e^{\alpha-1}}{\sigma^{\alpha} + z} d\sigma = E_{\alpha,\alpha}(-z), z \in C.$$

1.2.8 Riemann-Liouville Fractional integral

Definition 33 Integration of order $n \in N$ is described by the operation

$$(\mathcal{L}_a^n)[u](x) = \frac{1}{(n-1)!} \int_a^x (x-t)^{n-1} u(t) dt.$$

The natural extension of such a definition to real order s > 0 is

$$(\mathcal{L}_a^s)[u](x) = \frac{1}{\Gamma(s)} \int_a^x (x-t)^{s-1} u(t) dt.$$

This is called the Left Riemann-Liouville Fractional Integral of order s (because we integrate to x from the left). We will discuss the Right Riemann-Liouville Fractional Integral later.

1.2.9 Riemann-Liouville Fractional derivative

Definition 34 To define a fractional derivative we **cannot** just formally replace s by -s in the Riemann-Liouville integral. For a given u, we do not have a nite integral for all $x \in [a;b]$ (except if u is identically zero)

$$(D_a^s)[u](x) = \frac{1}{\Gamma(-s)} \int_a^x (x-t)^{-s-1} u(t) dt.$$

There is, however a nice trick we can use to get around this. To define a fractional derivative of order $s \in (0;1]$ we integrate to order 1-s then differentiate to order 1

$$(D_a^s)[u](x) = \frac{1}{\Gamma(1-s)} \frac{d}{dx} \int_a^x (x-t)^{-s} u(t) dt.$$

More generally, to define a fractional derivative of order $s \in (k-1; k]$ for $k \in N$ we integrate to order k-s then differentiate to order k

$$(D_a^s)[u](x) = \frac{1}{\Gamma(k-s)} \frac{d^k}{dx^k} \int_a^x (x-t)^{k-1-s} u(t) dt.$$

This is the Left Riemann-Liouville Fractional Derivative.

1.2.10 Relation with Reimann-Liouville Fractional Calculus Operators

In this section, we present the relations of Mittag-Leffler functions with the left and rightsided operators of Riemann-Liouville fractional calculus, which are defined

$$\begin{split} (I_{0+}^{\alpha}\phi)(x) &= \frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} (x-t)^{\alpha-1}\phi(t) \, dt, \, Re(\alpha) > 0. \\ (I_{-}^{\alpha}\phi)(x) &= \frac{1}{\Gamma(\alpha)} \int_{x}^{\infty} (t-x)^{\alpha-1}\phi(t) \, dt, \, Re(\alpha) > 0. \\ (D_{0+}^{\alpha}\phi)(x) &= \left(\frac{d}{dx}\right)^{[\alpha]+1} \left[I_{0+}^{1-\{\alpha\}}\phi\right](x) \\ &= \frac{1}{\Gamma(1-\{\alpha\})} \left(\frac{d}{dt}\right)^{[\alpha]+1} \int_{0}^{x} (x-t)^{\alpha-1}\phi(t) \, dt, \, Re(\alpha) > 0. \\ (D_{-}^{\alpha}\phi)(x) &= -\frac{d}{dx} \left[I_{-}^{1-\{\alpha\}}\phi\right](x) \\ &= \frac{1}{\Gamma(1-\{\alpha\})} \left(-\frac{d}{dt}\right)^{[\alpha]+1} \int_{x}^{\infty} (t-x)^{-\{\alpha\}}\phi(t) \, dt, \, Re(\alpha) > 0. \end{split}$$

Where $[\alpha]$ means the maximal integer not exceeding α and $\{\alpha\}$ is the fractional part of α .

1.2.11 Caputo fractional derivative

Definition 35 The fractional derivative of Caputo of order $\alpha \in \mathbb{R}^+$ of a function f is Given by

$$^{c}D_{a}^{\alpha}f(x) = I^{n-\alpha}f^{n}(x) = \frac{1}{\Gamma(n-\alpha)} \int_{a}^{x} (x-t)^{n-\alpha-1}f^{n}(t) dt, \ x > a,$$

with: $n-1 < \alpha \le n, n \in N^*$.

Proposition 36 (Caputo)

1/ Properties: Let $n-1 < \alpha < n$, $n \in N$, $\alpha \in R$ and f(t) be such that ${}^cD_t^{\alpha}f(t)$ exists. Then the following properties for the Caputo operator hold

$$\lim_{\alpha \to n} {}^{c}D_{t}^{\alpha} f(t) = f^{(n)}(t).$$

$$\lim_{\alpha \to n-1} {}^{c}D_{t}^{\alpha} f(t) = f^{(n-1)}(t) - f^{(n-1)}(0).$$

2/ Linearity: Let $n-1 < \alpha < n, n \in N, \alpha, \lambda \in C$ and the functions f(t) and g(t) be such that ${}^{\alpha}D_{t}^{c}f(t)$ and ${}^{c}D_{t}^{\alpha}g(t)$ exists. The Caputo fractional derivatives

is a linear operator i.e

$$^{c}D_{t}^{\alpha}(\lambda f(t) + g(t)) = \lambda ^{c}D_{t}^{\alpha}f(t) + ^{c}D_{t}^{\alpha}g(t).$$

3/

$$^{c}D_{t}^{\alpha}\,^{c}D_{t}^{\beta}f(t) \quad = \quad ^{c}D_{t}^{\alpha+\beta}f(t) \neq {^{c}D_{t}^{\beta}}\,^{c}D_{t}^{\alpha}f(t).$$

Example 37 Let a = 0, $\alpha = \frac{1}{2}$, (n = 1), f(t) = 1, then a pluing formula

$$\frac{1}{\Gamma(n-1)}\int_0^t \frac{f^{(n)}(\tau)}{(t-\tau)^{\alpha-1-a}}\,d\tau, n-1<\alpha< n, n\in N,$$

 $we \ get$

$$^{c}D_{t}^{\frac{1}{2}}(t) = \frac{1}{\Gamma(\frac{1}{2})} \int_{0}^{t} \frac{1}{(t-\tau)^{\frac{-1}{2}}} d\tau.$$

Taking into account the properties of the Gamma function $\Gamma(\frac{1}{2}) = \sqrt{\pi}$ and using the substitution $n := (t-\tau)^{\frac{1}{2}}$ the final result for the Caputo fractional derivative of the function f(t) = t is obtain else

$${}^{c}D_{t}^{\frac{1}{2}}(t) = \frac{-1}{\sqrt{\pi}} \int_{0}^{t} \frac{1}{(t-\tau)^{\frac{1}{2}}} d(t-\tau) = \frac{-1}{\sqrt{\pi}} \int_{\sqrt{t}}^{0} \frac{1}{u} du^{2} = \frac{1}{\sqrt{\pi}} \int_{0}^{\sqrt{t}} \frac{2u}{u} du = \frac{2}{\sqrt{\pi}} (\sqrt{t}-0),$$

thus, it holds

$$^{c}D_{t}^{\frac{1}{2}}(t)=\frac{2\sqrt{t}}{\sqrt{\pi}}.$$

1.3 Abstract equation problem

Lemma 38 If ${}_{0}^{c}D_{t}^{\alpha}f \in L^{1}(0,T)$, $g \in C^{1}([0,T])$ and g(T) = 0, then we have the following formula of integration by parts

$$\int_0^T g_0^c D_t^{\alpha} f \, dt = \int_0^T (f(t) - f(0))_t^c D_T^{\alpha} g \, dt, \qquad (1.1)$$

where

$${}_0^c D_t^{\alpha} g = -\frac{d}{dt} {}_t I_T^{1-\alpha} g.$$

$${}_t I_T^{1-\alpha} g = \frac{1}{\Gamma(1-\alpha)} \int_t^T (s-t)^{-\alpha} g(s) \, ds.$$

We need know the Caputo fractional derivative of the following function, which will be used in the next sections. For given T > 0 and n > 0, if we get

$$\varphi(t) = \begin{cases} \left(1 - \frac{t}{T}\right)^n, t \le T, \\ 0, t > T, \end{cases}$$

then

$$_{t}^{c}D_{T}^{\alpha}\,\varphi(t)=\frac{\Gamma(n+1)}{\Gamma(n+1-\alpha)}T^{-\alpha}\left(1-\frac{t}{T}\right)^{n-\alpha},\,t\leq T.$$

Proof.

.

.
$$I_k(t) = \frac{n(n-1)(n-k+1)}{T^k(1-\alpha)(2-\alpha).....(k-\alpha)} \int_t^T \left(1 - \frac{s}{T}\right)^{n-k} (s-t)^{-\alpha+k} ds.$$

$$\frac{n!}{(k-3)!} = n(n-1)(n-2); \frac{(-\alpha)!}{(k-\alpha)!} = \frac{\Gamma(1-\alpha)}{\Gamma(n-\alpha+1)}.$$
$$\frac{n(n-1)(n-k+1)}{T^k(1-\alpha)(2-\alpha).....(k-\alpha)} \frac{(n)!}{(n-\alpha)!} = \frac{\Gamma(n+1)}{\Gamma(n-\alpha+1)} = I(t).$$

$$\frac{c}{t}D_T^{\alpha}\left(1-\frac{t}{T}\right)^n = -\frac{1}{\Gamma(1-\alpha)}\frac{d}{dt}\int_t^T \left(1-\frac{s}{T}\right)^n (s-t)^{-\alpha}ds, t \le T$$

$$= \frac{\Gamma(n+1)}{\Gamma(1+n-\alpha)}\int_t^T \left(1-\frac{s}{T}\right)^{n-\alpha}ds, t \le T$$

$$= \frac{\Gamma(n+1)}{\Gamma(1+n-\alpha)}T^{-\alpha}\left(1-\frac{t}{T}\right)^{n-\alpha}, t \le T.$$

Theorem 39 We denote $A = \Delta$ and it generates a semigroup $\{T(t)\}_{t\geq 0}$ on $C_0(\mathbb{R}^N)$ with domain

$$D(A) = \{ u \in C_0(R^N) : \Delta u \in C_0(R^N) \}.$$

Then T(t) is an analytic and contractive semigroup on $C_0(\mathbb{R}^N)$ and, for t>0, $x \in \mathbb{R}^N$.

$$T(t)u_0 = \int_{\mathbb{R}^N} G(t, x - y)u_0(y) \, dy, \, G(t, x) = \frac{1}{(4\pi t)^{\frac{N}{2}}} e^{-\frac{|x|^2}{(4t)}}, \quad (1.2)$$

and T(t) is a contractive semigroup on $L^q(\mathbb{R}^N)$ for $q \geq 1$, and

$$||T(t)u_0||_{L^p(R^N)} \le (4\pi t)^{\frac{-N}{2}(\frac{1}{q}-\frac{1}{p})} ||u_0||_{L^q(R^N)},$$
 (1.3)

for $u_0 \in L^q(\mathbb{R}^N)$, $q \leq p \leq +\infty$.

Lemma 40 Les deux estimations

Proof. fghjklm ■

Proof. theorem

We use the theorem of Riesz-Thorin, we search (λ): $\frac{1}{q} = \frac{1-\lambda}{1} + \frac{\lambda}{2} = 1 - \lambda + \frac{1}{2} \frac{2}{p} = 1$ $1 - \lambda + \frac{1}{p}, \text{ so } \lambda = \frac{2}{p}.$ In order to verify the result $\frac{1}{p} = \frac{1-\lambda}{\infty} + \frac{\lambda}{2} = \frac{\lambda}{2},$ so $\lambda = \frac{2}{p}.$

$$\frac{1}{p} = \frac{1-\lambda}{\infty} + \frac{\lambda}{2} = \frac{\lambda}{2}$$

We get

 $||T(t)u_0||_{L^p(R^N)} \le (4\pi t)^{(-N/2)(1-\lambda)} ||u_0||_{L^q(R^N)} \le (4\pi t)^{(-N/2)(\frac{1}{p} + \frac{1}{q} - \frac{1}{p})} ||u_0||_{L^q(R^N)},$

finally

$$||T(t)u_0||_{L^p(\mathbb{R}^N)} \le (4\pi t)^{(-N/2)(\frac{1}{q}-\frac{1}{p})} ||u_0||_{L^q(\mathbb{R}^N)}.$$

Theorem 41 Define the operators $P_{\alpha}(t)$ and $S_{\alpha}(t)$ as

$$P_{\alpha}(t)u_{0} = \int_{0}^{\infty} \phi_{\alpha}(\theta)T(t^{\alpha}\theta)u_{0} d\theta, t \ge 0.$$
 (1.4)

$$S_{\alpha}(t)u_{0} = \alpha \int_{0}^{\infty} \theta \phi_{\alpha}(\theta) T(t^{\alpha}\theta) u_{0} d\theta, \ t \ge 0.$$
 (1.5)

Consider the following linear time fractional equation

$$\left\{ \begin{array}{l} {}^{c}_{0}D^{\alpha}_{t}u - \Delta u = |u|^{p-1}u, \ x \in R^{N}, \ t > 0, \\ u(0,x) = u_{0}(x), \ x \in R^{N}, \end{array} \right.$$

where $u_0 \in C_0(\mathbb{R}^N)$ and $f \in L^1((0,T),C_0(\mathbb{R}^N))$. If u is a solution of (1.6), we

$$u(t,x) = P_{\alpha}(t)u_0 + \int_0^t (t-s)^{\alpha-1} S_{\alpha}(t-s)|u|^{p-1} u(s) ds.$$

Proof. we denote $A = -\Delta$, $|u|^{p-1}u(x) = f(t,x)$.

$$\begin{cases} {}^{c}_{0}D_{t}^{\alpha}u + Au = f(t, x), x \in \mathbb{R}^{N}, \\ u(0, x) = u_{0}(x), x \in \mathbb{R}^{N}, \end{cases} (P)$$

we discus the existence and uniqueness of mild solution of the inhomogeneous linear time fractional (Cauchy problem) where $^cD_t^{\alpha}$, $0 < \alpha < 1$, is the Caputo fractional derivative of order α , and u_0 is given belong to a subset of R^N

Assumption.

Assume that $u(.,.):[0,T]\to R^N, u(t,x)\in D(A)$ for $t\in[0,T], Au\in L^1((0,T);R^N)$ and u satisfies (P). We can rewrite (P) as

$$u(t) = u_0 - \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} Au(s) \, ds + \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} f(s,x) \, ds \, for \, t \in [0,T],$$

if $u:[0,T]\to R^N$, is a functions satisffying Assumption (H^*) , then u(t) satisfies the following integral equation

$$u(t) = P_{\alpha}(t)u_0 + \int_0^t (t-s)^{\alpha-1} S_{\alpha}(t-s) f(s,x) \, ds, \text{ for } t \in [0,T].$$

Not that the Laplace transform of an abstract function $f \in L^1(\mathbb{R}^+,\mathbb{R}^N)$ is defines by

$$F(\lambda) = \int_0^\infty e^{-\lambda t} dt, \lambda \in C, (\lambda > 0).$$

Appliying the Laplace transform to

$$u(t) = u_0 - \frac{1}{\Gamma(\alpha)} \int_0^t (t - s)^{\alpha - 1} Au(s) \, ds + \frac{1}{\Gamma(\alpha)} \int_0^t (t - s)^{\alpha - 1} f(s, x) \, ds,$$

for the Laplace transform of the convolution

$$f(t) * g(t) = \int_0^t f(t - \lambda)g(s)ds = \int_0^t f(t)g(t - s) ds,$$

we have

$$\mathcal{L}\{f(t)*g(t);\lambda\} = F(\lambda)G(\lambda),$$

we start with

$$^{c}D^{\alpha}u(t) = ^{RL}D^{\alpha}(u(t) - u_0).$$

$$u(t) - u_0 = \frac{RL}{0} I_t^{\alpha} \left(RL D^{\alpha} (u(t) - u_0) \right) = \frac{RL}{0} I_t^{\alpha} (-Au) + \frac{RL}{0} I_t^{\alpha} (f(t, x))$$

$$u(t) - u_0 = \frac{-1}{\Gamma(\alpha)} \int_0^t (t - s)^{\alpha - 1} Au(s) ds + \frac{1}{\Gamma(\alpha)} \int_0^t (t - s)^{\alpha - 1} f(s) ds \text{ for } t \in [0, T]$$

$$\mathcal{L}\left\{u(t),\lambda\right\} = \mathcal{L}\left\{u_0,\lambda\right\} - \frac{1}{\Gamma(\alpha)}\mathcal{L}\left\{\int_0^t (t-s)^{\alpha-1}Au(s)\,ds,\lambda\right\} + \frac{1}{\Gamma(\alpha)}\mathcal{L}\left\{\int_0^t (t-s)^{\alpha-1}f(s)\,ds,\lambda\right\},$$

where $\mathcal{L}\left\{x^{\alpha-1},\lambda\right\} = \Gamma(\alpha)\lambda^{-\alpha}$. We get

$$\begin{split} \widehat{u}(\lambda) &= \frac{u_0}{\lambda} - \frac{1}{\Gamma(\alpha)} \Gamma(\alpha) \lambda^{-\alpha} A \widehat{u}(\lambda) + \frac{1}{\Gamma(\alpha)} \Gamma(\alpha) \lambda^{-\alpha} \widehat{f}(\lambda) \\ \widehat{u}(\lambda) &= u_0 \lambda^{-1} - \lambda^{-\alpha} A \widehat{u}(\lambda) + \lambda^{-\alpha} \widehat{f}(\lambda) \\ \widehat{u}(\lambda) + \lambda^{-\alpha} A \widehat{u}(\lambda) &= u_0 \lambda^{-1} + \lambda^{-\alpha} \widehat{f}(\lambda) \\ (1 + \lambda^{-\alpha} A) \widehat{u}(\lambda) &= u_0 \lambda^{-1} + \lambda^{-\alpha} \widehat{f}(\lambda) \\ (\lambda^{\alpha} + \lambda^{\alpha} \lambda^{-\alpha} A) \widehat{u}(\lambda) &= u_0 \lambda^{\alpha-1} + \lambda^{-\alpha+\alpha} \widehat{f}(\lambda) \\ (\lambda^{\alpha} + A) \widehat{u} &= u_0 \lambda^{\alpha-1} + \widehat{f}(\lambda), \end{split}$$

by composition $(\lambda^{\alpha} + A)^{-1}$ is obtained

$$(\lambda^{\alpha} + A)^{-1} (\lambda^{\alpha} + A) \widehat{u} = u_0 \lambda^{\alpha - 1} (\lambda^{\alpha} + A)^{-1} + (\lambda^{\alpha} + A)^{-1} \widehat{f}(\lambda),$$

that is

$$\widehat{u}(\lambda) = u_0 \lambda^{\alpha - 1} (\lambda^{\alpha} + A)^{-1} + (\lambda^{\alpha} + A)^{-1} \widehat{f}(\lambda),$$

on the other hand, using for every $\lambda \in C$ with $Re(\lambda) > 0$, one has

$$R(\lambda,-A) = \int_0^\infty e^{-\lambda t} T(t) \, dt = (\lambda^\alpha + A)^{-1},$$

we deduce that

$$\widehat{u}(\lambda) = \lambda^{\alpha-1}(\lambda^{\alpha} + A)^{-1}u_0 + (\lambda^{\alpha} + A)^{-1}\widehat{f}(\lambda)$$

$$= \lambda^{\alpha-1} \int_0^\infty e^{-\lambda^{\alpha}t} T(t)u_0 dt + \int_0^\infty e^{-\lambda^{\alpha}t} T(t)\widehat{f}(\lambda) dt,$$

we use the change of variable in the first and the second term $t=t^{\alpha}$

$$= -u_0 \int_0^\infty \frac{d}{d\lambda} e^{-(\lambda t)^{\alpha}} T(t^{\alpha}) dt + \int_0^\infty \int_0^\infty \alpha t^{\alpha - 1} e^{-(\lambda t)^{\alpha}} T(t^{\alpha}) f(s) e^{-s\lambda} ds dt,$$

where

$$e^{-(\lambda)^{\alpha}} = \int_{0}^{\infty} \frac{\alpha}{t^{\alpha+1}} \phi_{\alpha} \left(\frac{1}{t^{\alpha}}\right) e^{-\lambda t} dt,$$

we use the change of variable in the second term $t = \frac{t}{\tau}$

$$= u_0 \int_0^\infty \int_0^\infty \frac{\alpha t}{\tau^{\alpha}} \phi_{\alpha} \left(\frac{1}{\tau^{\alpha}}\right) e^{-\lambda t \tau} T(t^{\alpha}) d\tau dt + \int_0^\infty \int_0^\infty \int_0^\infty \frac{\alpha}{\tau^{2\alpha}} t^{\alpha - 1} \phi_{\alpha} \left(\frac{1}{\tau^{\alpha}}\right) e^{-\lambda t} T\left(\frac{t^{\alpha}}{\tau^{\alpha}}\right) f(s) e^{-s\lambda} d\tau ds dt,$$

we use the change of variable in the first term $t = \frac{t}{\tau}$, and in the second term $\frac{1}{\tau^{\alpha}} = \tau$, so

$$= u_0 \int_0^\infty \int_0^\infty \frac{\alpha}{\tau^{\alpha+1}} \phi_\alpha \left(\frac{1}{\tau^{\alpha}}\right) e^{-\lambda t} T\left(\frac{t^{\alpha}}{\tau^{\alpha}}\right) d\tau dt + \int_0^\infty \int_0^\infty \int_0^\infty \alpha \tau t^{\alpha-1} \phi_\alpha(\tau) T\left(t^{\alpha}\tau\right) f(s) e^{-(s+t)\lambda} d\tau ds dt,$$

we use the change of variable in the first term $\frac{1}{\tau}^{\alpha} = \tau$, and in the second term t = t - s, we get

$$= u_0 \int_0^\infty e^{-\lambda t} \int_0^\infty \phi_\alpha(\tau) T(t^\alpha \tau) d\tau dt$$

$$+ \int_0^\infty e^{-\lambda t} \int_0^t (t-s)^{\alpha-1} f(s) \left(\int_0^\infty \alpha \tau \phi_\alpha(\tau) T((t-s)^\alpha \tau) d\tau \right) ds dt,$$

$$= \int_0^\infty e^{-\lambda t} P_\alpha(t) u_0 dt + \int_0^\infty e^{-\lambda t} \int_0^t (t-s)^\alpha S_\alpha(t-s) f(s) ds dt$$

$$= \int_0^\infty e^{-\lambda t} \left(P_\alpha(t) u_0 + \int_0^t (t-s)^{\alpha-1} S_\alpha(t-s) f(s) ds \right) dt,$$

this implies that

$$\widehat{u}(\lambda) = \int_0^\infty e^{-\lambda t} \left(P_\alpha(t) u_0 + \int_0^t (t-s)^{\alpha-1} S_\alpha(t-s) f(s) \, ds \right) \, dt,$$

so

$$u(\lambda) = P_{\alpha}(t)u_0 + \int_0^t (t-s)^{\alpha-1} S_{\alpha}(t-s)|u|^{p-1} u(s) \, ds.$$

Lemma 42 We denote

$$K(t,x) = \int_0^\infty \phi_\alpha(\theta) G(t^\alpha \theta, x) \, d\theta, \, x \in \mathbb{R}^N \setminus \{0\}, \, t > 0.$$

Note that for given t > 0 and $x \in \mathbb{R}^N \setminus \{0\}$, $G(t^{\alpha}\theta, x) \to 0$ as $\theta \to 0$, so K is well defined. Since $\int_0^{\infty} \phi_{\alpha}(\theta) d\theta = 1$, $\int_{\mathbb{R}^N} G(t, x) dx = 1$, we know that

$$||K(t,.)||_{L^1(\mathbb{R}^N)} = 1 \text{ for } t > 0.$$

Proof.

$$K(t,x) = \int_0^\infty \phi_\alpha(\theta) G(t^\alpha \theta, x) d\theta, x \in \mathbb{R}^N \setminus \{0\}, t > 0.$$
$$\int_0^\infty \phi_\alpha(\theta) d\theta = 1, \int_{\mathbb{R}^N} G(t, x) dx = 1.$$

$$\begin{split} \|K(t,x)\|_{L^1(R^N)} &= \int_{R^N} \left[\int_0^\infty |\phi_\alpha(\theta) G(t^\alpha \theta,x)| \ d\theta \right] \ dx, \ for \ t > 0, \\ &= \int_0^\infty |\phi_\alpha(\theta)| \ d\theta \int_{R^N} |G(t^\alpha \theta,x)| \ dx = 1, \ for \ t > 0. \end{split}$$

Lemma 43 The operator $\{P_{\alpha}(t)\}_{t>0}$ has the following properties

(a) If $u_0 \ge 0$, $u_0 \ne 0$, then $P_{\alpha}(t)u_0 > 0$ and $\|P_{\alpha}(t)u_0\|_{L^1(\mathbb{R}^N)} = \|u_0\|_{L^1(\mathbb{R}^N)}$.

(b) If
$$1 \le p \le q \le +\infty$$
 and $\frac{1}{r} = \frac{1}{p} - \frac{1}{q} < \frac{2}{N}$, then

$$||P_{\alpha}(t)u_{0}||_{L^{q}(R^{N})} \leq (4\pi t^{\alpha})^{\frac{-N}{2r}} \frac{\Gamma\left(1 - \frac{N}{2r}\right)}{\Gamma\left(1 - \alpha\frac{N}{2r}\right)} ||u_{0}||_{L^{p}(R^{N})}.$$
(1.7)

Proof. (a) Follows from $T(t)u_0 \ge 0, \phi_{\alpha} \ge 0$. The operator $\{P_{\alpha}(t)\}_{t>0}$ define as

$$\begin{split} P_{\alpha}(t)u_0 &= \int_0^\infty \phi_{\alpha}(\theta)T(t^{\alpha}\theta)u_0\,d\theta,\, t \geq 0. \\ \|P_{\alpha}(t)u_0\|_{L^1(R^N)} &= \int_{(R^N)} \left[\int_0^\infty \left|\phi_{\alpha}(\theta)T(t^{\alpha}\theta)u_0\right|\,d\theta\right]\,dx \\ &= \int_{(R^N)} \left[\int_0^\infty \left|\phi_{\alpha}(\theta)\int_{(R^N)} G(t^{\alpha}\theta,x-y)u_0(y)\,dy\right|\,d\theta\right]\,dx \\ &= \int_0^\infty \phi_{\alpha}(\theta)\,d\theta \int_{(R^N)} \int_{(R^N)} G(t^{\alpha}\theta,x-y)u_0(y)\,dy\,dx \\ &= \int_0^\infty \phi_{\alpha}(\theta)\,d\theta \int_{(R^N)} u_0(y) \int_{(R^N)} G(t^{\alpha}\theta,x-y)\,dx\,dy\,(byFubini) \\ &= \int_0^\infty \phi_{\alpha}(\theta)\,d\theta\,\|G(t^{\alpha}\theta,y)\|_{L^1(R^N)} \int_{(R^N)} |u_0|\,dy, \\ \|P_{\alpha}(t)u_0\|_{L^1(R^N)} &= \int_{(R^N)} |u_0|\,d\,\theta = \|u_0\|_{L^1(R^N)} \,. \end{split}$$

(b) By (1.3) and the properties of $\phi_{\alpha}(\theta)$, we have

$$\begin{aligned} \|P_{\alpha}(t)u_{0}\|_{L^{q}(R^{N})} &= \left\| \int_{0}^{\infty} \phi_{\alpha}(\theta)T(t^{\alpha}\theta)u_{0} d\theta \right\|_{L^{q}(R^{N})} \\ &\leq \left(\int_{(R^{N})} \left[\int_{0}^{\infty} \left| \phi_{\alpha}(\theta)T(t^{\alpha}\theta)u_{0} \right|^{q} d\theta \right] dx \right)^{\frac{1}{q}}, \end{aligned}$$

according to previous result

$$||T(t)u_0||_{L^p(R^N)} \le (4\pi t)^{\frac{-N}{2}(\frac{1}{q}-\frac{1}{p})} ||u_0||_{L^q(R^N)},$$

so

$$||P_{\alpha}(t)u_{0}||_{L^{q}(R^{N})} \leq \int_{0}^{\infty} \phi_{\alpha}(\theta) (4\pi t^{\alpha}\theta)^{\frac{-N}{2r}} d\theta ||u_{0}||_{L^{p}(R^{N})}$$

$$\leq \int_{0}^{\infty} \phi_{\alpha}(\theta) (4\pi t^{\alpha})^{\frac{-N}{2r}} \theta^{\frac{-N}{2r}} d\theta ||u_{0}||_{L^{p}(R^{N})}$$

$$\leq (4\pi t^{\alpha})^{\frac{-N}{2r}} \int_{0}^{\infty} \theta^{\frac{-N}{2r}} \phi_{\alpha}(\theta) d\theta ||u_{0}||_{L^{p}(R^{N})},$$

we have

$$\begin{split} \int_0^\infty \theta^{\frac{-N}{2r}} \phi_\alpha(\theta) \, d\theta &= \int_0^\infty \theta^{\frac{-N}{2r}} \left[\frac{1}{2\pi i} \int_{H_a} e^{\sigma - (\frac{-N}{2r})\sigma^\alpha \theta} \frac{d\sigma}{\sigma^{1-\alpha}} \right] \, d\theta \\ &= \frac{1}{2\pi i} \int_{H_a} e^\sigma \left[\int_0^\infty e^{-\theta \sigma^{\frac{-N}{2r}}} \theta^{\frac{-N}{2r}} \, d\theta \right] \frac{d\sigma}{\sigma^{1-\alpha}} \\ &= \frac{\Gamma(1 + (\frac{-N}{2r}))}{2\pi i} \int_{H_a} \frac{e^\sigma}{\sigma^{\alpha(\frac{-N}{2r}) + 1}} d\sigma \\ &= \frac{\Gamma(1 - \frac{N}{2r})}{\Gamma(1 - \alpha \frac{N}{2r})}, \end{split}$$

for $\frac{-N}{2r} > -1 \Longrightarrow \frac{N}{2r} < 1$, so

$$\|P_{\alpha}(t)u_0\|_{L^q(R^N)} \le (4\pi t^{\alpha})^{\frac{-N}{2r}} \frac{\Gamma(1-\frac{N}{2r})}{\Gamma(1-\alpha\frac{N}{2r})} \|u_0\|_{L^p(R^N)}.$$

Hence, we derive (1.7) holds.

Lemma 44 For the operator $\{S_{\alpha}(t)\}_{t>0}$, we have the following results. (a) If $u_0 \geq 0$ and $u_0 \not\equiv 0$, then $S_{\alpha}(t)u_0 > 0$ and

$$||S_{\alpha}(t)u_0||_{L^1(\mathbb{R}^N)} = \frac{1}{\Gamma(\alpha)} ||u_0||_{L^1(\mathbb{R}^N)}.$$

(b) For
$$1 \le p \le q \le +\infty$$
, let $\frac{1}{r} = \frac{1}{p} - \frac{1}{q}$, if $\frac{1}{r} < \frac{4}{N}$, then
$$\|S_{\alpha}(t)u_{0}\|_{L^{q}(\mathbb{R}^{N})} \le \alpha (4\pi t^{\alpha})^{\frac{-N}{2r}} \frac{\Gamma(2 - \frac{N}{2r})}{\Gamma(1 + \alpha - \alpha \frac{N}{2r})} \|u_{0}\|_{L^{p}(\mathbb{R}^{N})}. \tag{1.8}$$

Proof. (a) Follows from $T(t)u_0 \geq 0, \phi_{\alpha} \geq 0$. The operator $\{S_{\alpha}(t)\}_{t>0}$ define as

$$\begin{split} S_{\alpha}(t)u_0 &= \alpha \int_0^{\infty} \theta \phi_{\alpha}(\theta) T(t^{\alpha}\theta) u_0 \, d\theta, \, t \geq 0. \\ \|S_{\alpha}(t)u_0\|_{L^1(R^N)} &= \int_{(R^N)} \left[\alpha \int_0^{\infty} |\theta \phi_{\alpha}(\theta) T(t^{\alpha}\theta) u_0| \, d\theta \right] \, dx \end{split}$$

$$= \alpha \int_{(R^N)} \left[\int_0^\infty \left| \theta \phi_\alpha(\theta) \int_{(R^N)} G(t^\alpha \theta, x - y) u_0(y) \, dy \right| \, d\theta \right] dx$$

$$= \alpha \int_0^\infty \theta \phi_\alpha(\theta) \int_{(R^N)} \int_{(R^N)} G(t^\alpha \theta, x - y) u_0(y) \, dy \, dx \, d\theta$$

$$= \alpha \int_0^\infty \theta \phi_\alpha(\theta) \, d\theta \int_{(R^N)} u_0(y) \int_{(R^N)} G(t^\alpha \theta, x - y) \, dx \, dy \, (by Fubini)$$

$$= \alpha \int_0^\infty \theta \phi_\alpha(\theta) \, d\theta \, \|G(t^\alpha \theta, y)\|_{L^1(R^N)} \int_{(R^N)} |u_0| \, dy$$

$$= \alpha \int_0^\infty \theta \phi_\alpha(\theta) \, d\theta \, \|u_0\|_{L^1(R^N)},$$

we have

$$\begin{split} \alpha \int_0^\infty \theta \phi_\alpha(\theta) \, d\theta &= \alpha \int_0^\infty \theta \left[\frac{1}{2\pi i} \int_{H_a} e^{\sigma - \sigma^\alpha \theta} \frac{d\sigma}{\sigma^{1-\alpha}} \right] \, d\theta \\ &= \frac{\alpha}{2\pi i} \int_{H_a} e^\sigma \left[\int_0^\infty e^{-\theta \sigma} \theta \, d\theta \right] \frac{d\sigma}{\sigma^{1-\alpha}} \\ &= \frac{\alpha \Gamma(1)}{2\pi i} \int_{H_a} \frac{e^\sigma}{\sigma^{\alpha+1}} d\sigma = \frac{\alpha \Gamma(1)}{\alpha \Gamma(\alpha)} = \frac{1}{\Gamma(\alpha)}, \end{split}$$

so

$$||S_{\alpha}(t)u_0||_{L^1(\mathbb{R}^N)} = \frac{1}{\Gamma(\alpha)} ||u_0||_{L^1(\mathbb{R}^N)}.$$

(b) by (1.3) and the properties of $\phi_{\alpha}(\theta)$, we have

$$||S_{\alpha}(t)u_{0}||_{L^{q}(R^{N})} = \left\|\alpha \int_{0}^{\infty} \phi_{\alpha}(\theta)T(t^{\alpha}\theta)u_{0} d\theta\right\|_{L^{q}(R^{N})}$$

$$\leq \left(\int_{(R^{N})} \left[\alpha \int_{0}^{\infty} |\phi_{\alpha}(\theta)T(t^{\alpha}\theta)u_{0}|^{q} d\theta\right] dx\right)^{\frac{1}{q}},$$

according to previous result

$$||T(t)u_0||_{L^p(\mathbb{R}^N)} \le (4\pi t)^{\left(\frac{-N}{2}\right)\left(\frac{1}{p}-\frac{1}{q}\right)} ||u_0||_{L^q(\mathbb{R}^N)},$$

so

$$||S_{\alpha}(t)u_{0}||_{L^{q}(R^{N})} \leq \alpha \int_{0}^{\infty} \theta \phi_{\alpha}(\theta) (4\pi t^{\alpha} \theta)^{\frac{-N}{2r}} d\theta ||u_{0}||_{L^{p}(R^{N})}$$

$$\leq \alpha \int_{0}^{\infty} \theta \phi_{\alpha}(\theta) (4\pi t^{\alpha})^{\frac{-N}{2r}} \theta^{\frac{-N}{2r}} d\theta ||u_{0}||_{L^{p}(R^{N})}$$

$$\leq \alpha (4\pi t^{\alpha})^{\frac{-N}{2r}} \int_{0}^{\infty} \phi_{\alpha}(\theta) \theta^{1-\frac{N}{2r}} d\theta ||u_{0}||_{L^{p}(R^{N})},$$

we have

$$\begin{split} \int_0^\infty \theta^{1-\frac{N}{2r}} \phi_\alpha(\theta) \, d\theta &= \int_0^\infty \theta^{1-\frac{N}{2r}} \left[\frac{1}{2\pi i} \int_{H_a} e^{\sigma - (1-\frac{N}{2r})\sigma^\alpha \theta} \frac{d\sigma}{\sigma^{1-\alpha}} \right] \, d\theta \\ &= \frac{1}{2\pi i} \int_{H_a} e^\sigma \left[\int_0^\infty e^{-\theta\sigma^{(1-\frac{N}{2r})}} \theta^{(1-\frac{N}{2r})} \, d\theta \right] \frac{d\sigma}{\sigma^{1-\alpha}} \\ &= \frac{\Gamma(1+1-\frac{N}{2r})}{2\pi i} \int_{H_a} \frac{e^\sigma}{\sigma^{\alpha(1-\frac{N}{2r})+1}} d\sigma \\ &= \frac{\Gamma(2-\frac{N}{2r})}{\Gamma(1+\alpha(1-\frac{N}{2r}))} = \frac{\Gamma(2-\frac{N}{2r})}{\Gamma(1+\alpha-\alpha\frac{N}{2r})}, \end{split}$$

for
$$\frac{-N}{2r} > -1 \Longrightarrow \frac{N}{2r} < 1$$
, so

$$||S_{\alpha}(t)u_{0}||_{L^{q}(\mathbb{R}^{N})} \leq \alpha (4\pi t^{\alpha})^{\frac{-N}{2r}} \frac{\Gamma(2-\frac{N}{2r})}{\Gamma(1+\alpha-\alpha\frac{N}{2r})} ||u_{0}||_{L^{p}(\mathbb{R}^{N})}.$$

Hence, we derive (1.8) holds. \blacksquare

Lemma 45 For $u_0 \in C_0(\mathbb{R}^N)$, we have $P_{\alpha}(t)u_0 \in D(A)$ for t > 0, and

$${}_0^c C_t^{\alpha} P_{\alpha}(t) u_0 = A P_{\alpha}(t) u_0, \ t > 0.$$

$$||AP_{\alpha}(t)u_0||_{L^{\infty}(\mathbb{R}^N)} \le \frac{C}{t^{\alpha}} ||u_0||_{L^{\infty}(\mathbb{R}^N)}, t > 0,$$

for some constant C > 0.

Proof. Let $X = C_0(\mathbb{R}^N)$. First, we prove if $u_0 \in X$, then $P_{\alpha}(t)u_0 \in D(A)$.

$$\begin{split} P_{\alpha}(t)u_{0} &= \int_{0}^{\infty}\phi_{\alpha}(\theta)T(t^{\alpha}\theta)u_{0}\,d\theta \\ &= \int_{0}^{\infty}\left[\phi_{\alpha}(\theta)T(t^{\alpha}\theta)u_{0} + T(t^{\alpha}\theta)u_{0}\phi_{\alpha}(0) - T(t^{\alpha}\theta)u_{0}\phi_{\alpha}(0)\right]d\theta \\ &= \int_{0}^{\infty}\left[\phi_{\alpha}(\theta) - \phi_{\alpha}(0)\right]T(t^{\alpha}\theta)u_{0} + \phi_{\alpha}(0)T(t^{\alpha}\theta)u_{0}\,d\theta \\ &= \int_{0}^{1}\left[\phi_{\alpha}(\theta) - \phi_{\alpha}(0)\right]T(t^{\alpha}\theta)u_{0}d\theta + \phi_{\alpha}(0)\int_{0}^{1}T(t^{\alpha}\theta)u_{0}d\theta + \int_{1}^{\infty}\phi_{\alpha}(\theta)T(t^{\alpha}\theta)u_{0}\,d\theta. \end{split}$$

Clearly, $\int_0^1 T(t^{\alpha}\theta)u_0d\,\theta\in D(A)$. Note that there exists positive constant C such that

$$\|AT(t^{\alpha}\theta)u_0\|_X \le C \frac{\|u_0\|_X}{t^{\alpha}\theta}, \ t > 0, \ \theta > 0,$$

we get that $\int_1^\infty \phi_\alpha(\theta) T(t^\alpha \theta) u_0 d\theta \in D(A)$. Next, we show that

$$\int_0^1 (\phi_{\alpha}(\theta) - \phi_{\alpha}(0)) T(t^{\alpha}\theta) u_0 d\theta \in D(A).$$

$$A \int_0^t T(t^\alpha \theta) u_0 d\theta = T(t) u_0 - u_0, \forall t \ge 0.$$

$$\frac{T(h) - I}{h} \int_0^t T(t^\alpha \theta) u_0 d\theta = \frac{1}{h} \int_0^t (T(h) - I) T(t^\alpha \theta) u_0 d\theta$$

$$= \frac{1}{h} \int_0^t (T(h) T(t^\alpha \theta) u_0 - T(t^\alpha \theta) u_0) d\theta$$

$$= \frac{1}{h} \int_0^t T(h) T(t^\alpha \theta) u_0 d\theta - \frac{1}{h} \int_0^t T(t^\alpha \theta) u_0 d\theta$$

$$= \frac{1}{h} \int_0^t T(t^\alpha \theta + h) u_0 d\theta - \frac{1}{h} \int_0^t T(t^\alpha \theta u_0) d\theta,$$

we use change variable $t^{\alpha}\theta+h=\tau$

$$= \frac{1}{h} \int_{h}^{t+h} T(\tau) u_{0} d\tau - \frac{1}{h} \int_{0}^{t} T(t^{\alpha} \theta) u_{0} d\theta$$

$$= \frac{1}{h} \int_{0}^{t+h} T(\tau) u_{0} d\tau - \frac{1}{h} \int_{0}^{h} T(\tau) u_{0} d\theta - \frac{1}{h} \int_{0}^{t} T(\tau) u_{0} d\tau$$

$$= \frac{1}{h} \int_{t}^{t+h} T(\tau) u_{0} d\tau - \frac{1}{h} \int_{0}^{h} T(\tau) u_{0} d\theta.$$

By passing the limit for $h\to 0$ and considering the lemma (Let $T(t)_{t\geq 0}$ be a C_00 -semi-group. So: $\lim_{h\to 0}\frac{1}{h}\int_t^{t+h}T(s)x\,ds=T(t),\,\forall t\geq 0$) we get

$$A \int_0^t T(t^{\alpha}\theta) u_0 d\theta = T(t)u_0 - u_0, \forall t \ge 0.$$

In fact, for every h > 0,

$$\frac{T(h)-I}{h}\int_0^1 (\phi_{\alpha}(\theta)-\phi_{\alpha}(0))T(t^{\alpha}\theta)u_0\,d\theta$$

$$= \frac{1}{h} \left[T(h) \int_0^1 (\phi_{\alpha}(\theta) - \phi_{\alpha}(0)) T(t^{\alpha}\theta) u_0 d\theta - \int_0^1 (\phi_{\alpha}(\theta) - \phi_{\alpha}(0)) T(t^{\alpha}\theta) u_0 d\theta \right]$$

$$= \frac{1}{h} \int_0^1 [(\phi_{\alpha}(\theta) - \phi_{\alpha}(0)) T(t^{\alpha}\theta) T(h) - T(t^{\alpha}\theta)] u_0 d\theta$$

$$= \frac{1}{h} \int_0^1 (\phi_{\alpha}(\theta) - \phi_{\alpha}(0)) (T(t^{\alpha}\theta + h) - T(t^{\alpha}\theta)) u_0 d\theta.$$

Since

$$\left\| \frac{(T(t^{\alpha}\theta + h) - T(t^{\alpha}\theta))u_0}{h} \right\|_{X} \le \frac{C}{t^{\alpha}\theta} \left\| u_0 \right\|_{X}, \quad \left| \frac{\phi_{\alpha}(\theta) - \phi_{\alpha}(0)}{\theta} \right| \le C,$$

for some constant C>0 independent of θ and h, so, by dominated convergence theorem, we know

$$\int_0^1 (\phi_{\alpha}(\theta) - \phi_{\alpha}(0)) T(t^{\alpha}\theta) u_0 d\theta \in D(A).$$

Note that

$$AP_{\alpha}(t)u_{0} = A\left[\int_{0}^{1}(\phi_{\alpha}(\theta) - \phi_{\alpha}(0))T(t^{\alpha}\theta)u_{0} d\theta + \phi_{\alpha}(0)\int_{0}^{1}T(t^{\alpha}\theta)u_{0} d\theta + \int_{1}^{\infty}\phi_{\alpha}(\theta)T(t^{\alpha}\theta)u_{0} d\theta\right]$$

$$= A\int_{0}^{1}(\phi_{\alpha}(\theta) - \phi_{\alpha}(0))T(t^{\alpha}\theta)u_{0} d\theta + \phi_{\alpha}(0)A\int_{0}^{1}T(t^{\alpha}\theta)u_{0} d\theta + A\int_{1}^{\infty}\phi_{\alpha}(\theta)T(t^{\alpha}\theta)u_{0} d\theta$$

$$= \int_{0}^{1}(\phi_{\alpha}(\theta) - \phi_{\alpha}(0))AT(t^{\alpha}\theta)u_{0} d\theta + \frac{\phi_{\alpha}(0)(T(t^{\alpha})u_{0} - u_{0})}{t^{\alpha}} + \int_{1}^{\infty}\phi_{\alpha}(\theta)AT(t^{\alpha}\theta)u_{0} d\theta.$$

Therefore

$$||AP_{\alpha}(t)u_{0}||_{X} \le \frac{C}{t^{\alpha}\theta} ||u_{0}||_{X}.$$
 (1.9)

For some positive constant C. By dominated convergence theorem, we obtain that for $u_0 \in X$,

$$\frac{d}{dt}P_{\alpha}(t)u_0 = t^{\alpha-1}AS_{\alpha}(t)u_0, \ t > 0.$$

Furthermore, if $u_0 \in D(A)$, then

$$\frac{d}{dt}P_{\alpha}(t)u_0 = t^{\alpha - 1}S_{\alpha}(t)Au_0, \ t > 0.$$

Since

$${}_{0}I_{t}^{1-\alpha}\left(t^{\alpha-1}S_{\alpha}(t)Au_{0}\right) = \frac{1}{\Gamma(1-\alpha)}\int_{0}^{t}\frac{s^{\alpha-1}}{(t-s)^{\alpha}}\int_{0}^{\infty}\alpha\theta\phi_{\alpha}(\theta)T(s^{\alpha}\theta)Au_{0}\,d\theta ds.$$
$$\int_{0}^{\infty}\alpha\theta\phi_{\alpha}(\theta)T(s^{\alpha}\theta)Au_{0}\,d\theta = \frac{1}{2\pi i}\int_{\Gamma'}E_{\alpha,\alpha}(\lambda s^{\alpha})(\lambda-A)^{-1}Au_{0}\,d\lambda,$$

where Γ' is a path composed from two rays $\rho e^{i\pi}$ $\rho \geq 1$, $\pi/2 < \tau < \pi$ and $\rho e^{-i\pi}$ and a curve $e^{i\pi}$, $-\tau \leq \beta \leq \tau$,

$$_{0}I_{t}^{1-\alpha}(t^{\alpha-1}S_{\alpha}(t)Au_{0}) = P_{\alpha}(t)Au_{0} = AP_{\alpha}(t)u_{0},$$

by similar argument with ${}_0^cD_t^\alpha P_\alpha(t)u_0 = AP_\alpha(t)u_0$, one can prove that $t^{\alpha-1}E_{\alpha,\alpha}(\lambda t^\alpha)$ belongs to $\mathcal{F}_0^\gamma(s_\mu^0)$ for t>0 and hence, such as (Let $-1<\gamma<0$ and let s_μ^0 with $0<\mu<\pi$ be the open sector $\{z\in C\setminus\{0\}: |\arg(z)|<\mu\}$ and s_μ bits closure, that is $s_\mu=\{z\in C\setminus\{0\}: |\arg(z)|\leq\mu\}\cup\{0\}$. Set

$$\mathcal{F}_0^{\gamma}(s_{\mu}^0) = \cup_{s<0} \Psi_s^{\gamma}(s_{\mu}^0) \cup \Psi_0(s_{\mu}^0).$$

 $\mathcal{F}(s_{\mu}^0)=\{f\in H(s_{\mu}^0); \text{ there } k,n\in N \text{ such that } f\Psi_n^k\in \mathcal{F}_0(s_{\mu}^0)\}; \text{ where } f\in \mathcal{F}_0(s_{\mu}^0)\}$

$$H(s_{\mu}^{0}) = \{f: s_{\mu}^{0} \rightarrow c; f \text{ is holomorphic}\},\$$

$$\begin{split} H^{\infty}(s^{0}_{\mu}) &= \{f \in H(s^{0}_{\mu}); f \ is \ bounded \}, \\ \varphi_{0}(z) &= \frac{1}{1+z}, \Psi_{n}(z) = \frac{1}{(1+z)^{n}}, z \in C \backslash \{-1\}, n \in N \cup \{0\}, \\ \Psi_{0}(s^{0}_{\mu}) &= \{f \in H(s^{0}_{\mu}) : s^{0}_{\mu} \sup_{z \in C} \left| \frac{f(z)}{\varphi_{0}(z)} \right| < \infty \}. \end{split}$$

$${}_{0}I_{t}^{1-\alpha}(t^{\alpha-1}S_{\alpha}(t)Au_{0}) = {}_{0}I_{t}^{1-\alpha}(t^{\alpha-1}E_{\alpha,\alpha}(\lambda t^{\alpha}))Au_{0}$$
$$= (E_{\alpha}(\lambda t^{\alpha}))Au_{0}$$
$$= P_{\alpha}(t)Au_{0},$$

in view of ${}_{0}I_{t}^{1-\alpha}(t^{\alpha-1}E_{\alpha,\alpha}(\lambda t^{\alpha})) = E_{\alpha}(\lambda t^{\alpha})$ this completes the proof. Befor proceeding with our theory further, we present the following result.

$$_{0}I_{t}^{1-\alpha}(t^{\alpha-1}E_{\alpha,\alpha}(\lambda t^{\alpha})) = E_{\alpha,1}(\lambda t^{\alpha}),$$

so,

$$_{0}I_{t}^{1-\alpha}(t^{\alpha-1}S_{\alpha}(t)Au_{0}) = P_{\alpha}(t)Au_{0} = AP_{\alpha}(t)u_{0}.$$
 (1.10)

Therefore, we get

$${}_{0}^{C}D_{t}^{\alpha}P_{\alpha}(t)u_{0} = AP_{\alpha}(t)u_{0},$$

if $u_0 \in D(A), t > 0$.

To prove ${}_0^c D_t^{\alpha} P_{\alpha}(t) u_0 = A P_{\alpha}(t) u_0$ first it is easy to see that $\frac{1}{\varphi_0} \in \mathcal{F}(s_{\mu}^0)$ and the operator $\varphi_0(A)$ is infective. Taking $u_0 \in D(A)$, by f(A)g(A) = (fg)(A) provided that g(A) is bounded or $D((fg))(A) \subset D(g(A))$ one has

$$P_{\alpha}(t)u_0 = E_{\alpha}(\lambda t^{\alpha})(A)u_0 = (E_{\alpha}(\lambda t^{\alpha})\varphi_0)(A)(\frac{1}{\varphi_0})(A)x,$$

$$E_{\alpha,\beta}(z) = \begin{cases} \frac{1}{\alpha} z^{(1-\beta)/\alpha} e^{z^{1/\alpha}} + \varepsilon_{\alpha,\beta}(z), |\arg(z)| \leq \frac{1}{2}\alpha\pi, \\ \varepsilon_{\alpha,\beta}(z), |\arg(-z)| < (1 - \frac{1}{2}\alpha)\pi, \end{cases}$$

where

$$\varepsilon_{\alpha,\beta}(z) = -\sum_{k=1}^{N-1} \frac{z^{-n}}{\Gamma(\beta - \alpha n)} + 0(|z|^{-N}), \ as \ z \to \infty,$$

we have

$$\sup_{z\to\infty} |zt^{\alpha} E_{\alpha}(\lambda t^{\alpha})| < \infty,$$

which implies that

$$\left|zE_{\alpha}(\lambda t^{\alpha})(1+\lambda)^{-1}\right| \le c\left|z\right|^{-1}t^{-\alpha}, \ as \ z \to \infty,$$

where c is a constant which is independent of t. Consequentely

$$zE_{\alpha}(\lambda t^{\alpha})(1+\lambda)^{-1} \in \mathcal{F}_{0}^{\gamma}(s_{\mu}^{0}).$$

Notice also that

$${}_{0}^{c}D_{t}^{\alpha}E_{\alpha}(\lambda t^{\alpha})(1+\lambda)^{-1}R(\lambda;A) = (z)E_{\alpha}(\lambda t^{\alpha})(1+\lambda)^{-1}R(\lambda;A),$$

combining $(f(A)g(A) \subset (fg)(A)$ for all $f, g \in \mathcal{F}(s_{\mu}^0)$ and $zE_{\alpha}(\lambda t^{\alpha})(1+\lambda)^{-1}$ we get

$${}_{0}^{c}D_{t}^{\alpha}[E_{\alpha}(\lambda t^{\alpha})(1+\lambda^{\beta})^{-1}(A)] = \frac{1}{2\pi i} \int_{\mu_{0}} z E_{\alpha}(\lambda t^{\alpha})(1+\lambda)^{-1}R(\lambda;A) dz$$
$$= zA[E_{\alpha}(\lambda t^{\alpha})(1+\lambda)^{-1}](A)$$
$$= A[E_{\alpha}(\lambda t^{\alpha})(1+\lambda)^{-1}](A).$$

Hence, we obtain

$${}_0^c D_t^{\alpha} P_{\alpha}(t) u_0 = A[E_{\alpha}(\lambda t^{\alpha})(1+\lambda)^{-1}](A)(1+\lambda)(A) u_0$$
$$= A[E_{\alpha}(\lambda t^{\alpha})](A) u_0 = AP_{\alpha}(t) u_0.$$

Next, we prove that the conclusion also holds if $u_0 \in X$. In fact, if $u_0 \in X$, then we can find $\{u_{0,n}\} \subset D(A)$ such that $u_{0,n} \to 0$ in X. By (1.10) and Lemma 1.2, we have ${}_0^c D_t^{\alpha} P_{\alpha}(t) u_0 = A P_{\alpha}(t) u_0$ and $\|P_{\alpha}(t) u_0\|_{L^1(\mathbb{R}^N)}$ we know ${}_0^C D_t^{\alpha} P_{\alpha}(t) u_{0,n} = A P_{\alpha}(t) u_{0,n}$, and $\|P_{\alpha}(t) u_{0,n}\|_X \leq \|u_{0,n}\|_X$. We denote $u_n = P_{\alpha}(t) u_{0,n}$. Then, there exists $u \in X$ such that for every T > 0, $u_n \to u$ uniformly in X for $t \in [0,T]$ as $n \to \infty$. Since

$$\| {}_{0}I_{t}^{1-\alpha}u_{n}\|_{X} \leq \frac{T^{1-\alpha}}{(1-\alpha)\Gamma(1-\alpha)} \|u_{n}\|_{L^{\infty}((0,T),X)}, t \in [0,T].$$

So we know ${}_0I_t^{1-\alpha}u_n \to {}_0I_t^{1-\alpha}u$ in X. By (1.9),

$$\left\| {_0^C D_t^{\alpha} u_n} \right\|_X = \left\| {_0^c D_t^{\alpha} P_{\alpha}(t) u_{0,n}} \right\|_X = \left\| A P_{\alpha}(t) u_{0,n} \right\|_X \le \frac{C}{t^{\alpha} \theta} \left\| u_{0,n} \right\|_X,$$

for some constant C > 0, t > 0.

Hence, for every $\delta > 0$, there exists $w \in C([\delta, \infty), X)$ such that ${}_0^C D_t^{\alpha} u_n \to w$ uniformly in X on $t \in [\delta, \infty)$. Note that for $t \in [\delta, \infty)$,

$${}^{C}_{0}D^{\alpha}_{t}u_{n} = {}^{c}_{0}D^{\alpha}_{t}P_{\alpha}(t)u_{0,n} = AP_{\alpha}(t)u_{0,n} = {}^{c}_{0}I^{1-\alpha}_{t}(t^{\alpha-1}S_{\alpha}(t)Au_{0,n}) = {}^{c}_{0}I^{1-\alpha}_{t}(\frac{d}{dt}P_{\alpha}(t)u_{0,n})$$

$$= \frac{d}{dt}\left({}_{0}I^{1-\alpha}_{t}(P_{\alpha}(t)u_{0,n} - u_{0,n})\right) = Au_{n}.$$

We have $u_n = P_{\alpha}(t)u_{0,n} \to u$, $u_{0,n} \to u_0$, ${}_0^c D_t^{\alpha} u_n \to {}_0^c D_t^{\alpha} u$ and ${}_0^c D_t^{\alpha} u_n \to w$, so

$${}_{0}^{c}D_{t}^{\alpha}u_{n} = \frac{d}{dt}({}_{0}I_{t}^{1-\alpha}(P_{\alpha}(t)u_{0,n} - u_{0,n})) \to \frac{d}{dt}({}_{0}I_{t}^{1-\alpha}(u - u_{0})) = {}_{0}^{c}D_{t}^{\alpha}u,$$

and we have

$${}_0^c D_t^{\alpha} u_n \rightarrow w = {}_0^c D_t^{\alpha} u.$$

So

$$w = \frac{d}{dt}({}_{0}I_{t}^{1-\alpha}(u - u_{0})) = {}_{0}^{C} D_{t}^{\alpha}u, t \in [\delta, \infty).$$

We have ${}_0^cD_t^{\alpha}u_n=Au_n$ and ${}_0^cD_t^{\alpha}u_n\to w$, so $Au_n\to Au$. Since A is closed, we have w=Au, that is ${}_0^cD_t^{\alpha}u=Au=P_{\alpha}(t)u_0, t\in [\delta,\infty)$. By arbitrariness of δ , we have ${}_0^cD_t^{\alpha}u=P_{\alpha}(t)u_0, t>0$.

Lemma 46 Assume that $f \in L^q((0,T), C_0(\mathbb{R}^N)), q > 1$. Let

$$z(t) = \int_0^t (t - s)^{\alpha - 1} S_{\alpha - 1}(t - s) f(s) \, ds,$$

then

$${}_0I_t^{1-\alpha}z = \int_0^t P_\alpha(t-s)f(s) \, ds.$$

Furthermore, if $q\alpha > 1$, then $z \in C((0,T), C_0(\mathbb{R}^N))$.

Proof. Let $X = C_0(\mathbb{R}^N)$. By Fubini theorem and (1.10), we have

$$0I_t^{1-\alpha}z = \frac{1}{\Gamma(1-\alpha)} \int_0^t (t-s)^{-\alpha} \int_0^s (s-\tau)^{\alpha-1} S_\alpha(s-\tau) f(\tau) d\tau ds$$

$$= \frac{1}{\Gamma(1-\alpha)} \int_0^t \int_\tau^s (t-s)^{-\alpha} (s-\tau)^{\alpha-1} S_\alpha(s-\tau) f(\tau) ds d\tau$$

$$= \frac{1}{\Gamma(1-\alpha)} \int_0^t \int_0^{t-\tau} (t-s-\tau)^{-\alpha} s^{\alpha-1} S_\alpha(s) f(\tau) ds d\tau$$

$$= \int_0^t P_\alpha(t-\tau) f(\tau) d\tau.$$

For every h > 0 and $t + h \le T$, we have $z(t + h) - z(t) = I_1 + I_2$, where

$$I_{1} = \alpha \int_{t}^{t+h} \int_{0}^{\infty} \theta \phi_{\alpha}(\theta) (t+h-\tau)^{\alpha-1} T((t+h-\tau)^{\alpha}\theta) f(\tau) d\theta d\tau.$$

$$I_{2} = \alpha \int_{0}^{t} \int_{0}^{\infty} \theta \phi_{\alpha}(\theta) [(t+h-\tau)^{\alpha-1} T((t+h-\tau)^{\alpha}\theta) - (t-\tau)^{\alpha-1} T((t-\tau)^{\alpha}\theta)] f(\tau) d\theta d\tau.$$

By Hölder inequality, we have

$$||I_1||_X \leq \alpha \int_t^{t+h} \int_0^\infty \theta \phi_\alpha(\theta) (t+h-\tau)^{\alpha-1} ||f(\tau)||_X d\theta d\tau$$

$$= \frac{1}{\Gamma(\alpha)} \int_{t}^{t+h} (t+h-\tau)^{\alpha-1} \|f(\tau)\|_{X} d\tau$$

$$\leq \frac{1}{\Gamma(\alpha)} \|f\|_{L^{q}((0,T),X)} \left(\int_{t}^{t+h} (t+h-\tau)^{\frac{(q\alpha-1)}{q}} d\tau \right)^{\frac{q-1}{q}}$$

$$= \frac{1}{\Gamma(\alpha)} \left(\frac{q-1}{q\alpha-1} \right)^{\frac{q-1}{q}} \|f\|_{L^{q}((0,T),X)} h^{\frac{(q\alpha-1)}{q}},$$

so

$$||I_1||_X = \frac{1}{\Gamma(\alpha)} \left(\frac{q-1}{q\alpha - 1} \right)^{\frac{q-1}{q}} ||f||_{L^q((0,T),X)} h^{\frac{(q\alpha - 1)}{q}}.$$
 (1.11)

Note that, for $0 < \tau < t$,

 $\left\|(t+h-\tau)^{\alpha-1}T((t+h-\tau)^{\alpha}\theta)f(\tau)-(t-\tau)^{\alpha-1}T((t-\tau)^{\alpha}\theta)f(\tau)\right\|_{X}\leq 2(t-\tau)^{\alpha-1}\left\|f(\tau)\right\|_{X},$ and there exists constant C>0 such that

$$\begin{split} \big\| [(t+h-\tau)^{\alpha-1} T((t+h-\tau)^{\alpha} \theta) - (t-\tau)^{\alpha-1} T((t-\tau)^{\alpha} \theta)] f(\tau) \big\|_{X} \\ & \leq \big| (t+h-\tau)^{\alpha-1} - (t-\tau)^{\alpha-1} \big| \, \| T((t+h-\tau)^{\alpha} \theta) f(\tau) \|_{X} \\ & + (t-\tau)^{\alpha-1} \, \| T((t+h-\tau)^{\alpha} \theta) - T((t-\tau)^{\alpha} \theta)) f(\tau) \|_{X} \\ & \leq C(t-\tau)^{\alpha-2} h \, \| f(\tau) \|_{X} \, . \end{split}$$

Therefore

$$\begin{split} \|I_2\|_X & \leq & C \int_0^t \int_0^\infty \alpha \theta \phi_\alpha(\theta) \min \left\{ \frac{1}{(t-\tau)^{1-\alpha}}, \frac{h}{(t-\tau)^{2-\alpha}} \right\} \, d\theta \, \|f(\tau)\|_X \, d\tau \\ & \leq & \frac{C}{\Gamma(\alpha)} \left(\int_0^t \left(\min \left\{ \frac{1}{(t-\tau)^{1-\alpha}}, \frac{h}{(t-\tau)^{2-\alpha}} \right\} \right)^{\frac{q}{(q-1)}} \, d\tau \right)^{\frac{(q-1)}{q}} \|f\|_{L^q((0,T),X)} \, . \end{split}$$

Observe that

$$\begin{split} & \int_0^t \left(\min \left\{ \frac{1}{(t-\tau)^{1-\alpha}}, \frac{h}{(t-\tau)^{2-\alpha}} \right\} \right)^{\frac{q}{q-1}} \, d\tau = \int_0^t \left(\min \left\{ \frac{1}{\tau^{1-\alpha}}, \frac{h}{\tau^{2-\alpha}} \right\} \right)^{\frac{q}{q-1}} \, d\tau \\ & \leq \int_0^\infty \left(\min \left\{ \frac{1}{\tau^{1-\alpha}}, \frac{h}{\tau^{2-\alpha}} \right\} \right)^{\frac{q}{q-1}} \, d\tau = \int_0^h \tau^{\frac{q(\alpha-1)}{(q-1)}} \, d\tau + \int_h^\infty h^{\frac{q}{q-1}} \tau^{\frac{q(\alpha-2)}{q-1}} \, d\tau \\ & = \frac{q(q-1)}{(q\alpha-1)(q+1-q\alpha)} h^{\frac{q\alpha-1}{q-1}}, \end{split}$$

so,

$$||I_2||_X < C ||f||_{L^q((0,T),X)} h^{\frac{q\alpha-1}{q}}.$$
 (1.12)

Hence, (1.11)-(1.12) imply that the conclusion of Lemma 2.4 also holds. \blacksquare

Chapter 2

Local existence

In this chapter, we give the local existence and uniqueness of mild solution of the problem (1)-(2). First, we give the definition of the mild solution of (1)-(2).

Definition 47 Let $u_0 \in C_0(\mathbb{R}^N)$, T > 0. We call that $u \in C([0,T], C_0(\mathbb{R}^N))$ is a mild solution of the problem (1)-(2) if u satisfies the following integral equation

$$u(t) = P_{\alpha}(t)u_0 + \int_0^t (t-s)^{\alpha-1} S_{\alpha}(t-s) |u|^{p-1} u(s) ds, t \in [0,T].$$

For the problem (1)-(2), we have the following local existence result.

Theorem 48 Given $u_0 \in C_0(R^N)$, then there exists a maxial time $T_{\max} = T(u_0) > 0$ such that the problem (1)-(2) has a unique mild solution u in $C([0,T],C_0(R^N))$ and either $T_{\max} = +\infty$ or $T_{\max} < +\infty$ and $\|u\|_{L^{\infty}((0,t),C_0(R^N))} \to +\infty$ as $t \to T_{\max}$. If, in addition, $u_0 \ge 0$, $u_0 \ne 0$, then u(t) > 0 and $u(t) \ge P_{\alpha}(t)u_0$ for $t \subset (0,T_{\max})$. Moreover, if $u_0 \subset L^r(R^N)$ for some $r \subset [1,\infty)$, then $u \in C([0,T_{\max}),L^r(R^N))$.

Proof. For given T > 0 and $u_0 \in C_0(\mathbb{R}^N)$, let

$$E_T = \left\{ u : u \in C([0, T], C_0(\mathbb{R}^N)), \|u\|_{L^{\infty}((0, T), L^{\infty}(\mathbb{R}^N))} \le 2 \|u_0\|_{L^{\infty}(\mathbb{R}^N)} \right\},$$
$$d(u, v) = \max_{t \in [0, T]} \|u(t) - v(t)\|_{L^{\infty}(\mathbb{R}^N)} \text{ for } u, v \in E_T.$$

Since $C([0,T],C_0(\mathbb{R}^N))$ is a Banach space, (E_T,d) is a complete metric space. We define the operator G on E_T as

$$G(u)(t) = P_{\alpha}(t)u_0 + \int_0^t (t-s)^{\alpha-1} S_{\alpha}(t-s) |u(s)|^{p-1} u(s) ds, \ u \in E_T,$$

then $G(u) \in C([0,T], C_0(\mathbb{R}^N))$ in view of lemma(2.4). If $u \in E_T$, then by lemma (2.1)(b) and lemma (2.2)(b), for $t \subset [0,T]$,

$$||G(u)(t)||_{L^{\infty}(R^N)} \le ||u_0||_{L^{\infty}(R^N)} + \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} ||u(s)||_{L^{\infty}(R^N)}^p ds$$

$$\leq \|u_0\|_{L^{\infty}(R^N)} + \frac{2^p T^{\alpha}}{\alpha \Gamma(\alpha)} \|u_0\|_{L^{\infty}(R^N)}^p.$$

Hence, we have choose T small enough such that

$$\frac{2^p T^{\alpha}}{\alpha \Gamma(\alpha)} \|u_0\|_{L^{\infty}(\mathbb{R}^N)}^{p-1} \le 1,$$

so we get $\|G(u)\|_{L^{\infty}((0,T),L^{\infty}(R^N))} \le 2 \|u_0\|_{L^{\infty}(R^N)}$. Furthermore, for $u,v\in E_T$, we have for $t\in [0,T]$

$$\begin{split} \|G(u)(t) - G(v)(t)\|_{L^{\infty}(R^{N})} & \leq & \frac{1}{\Gamma(\alpha)} \int_{0}^{t} (t-s)^{\alpha-1} \left\| |u(s)|^{p-1} \, u(s) - |v(s)|^{p-1} \, v(s) \right\|_{L^{\infty}(R^{N})} \, ds \\ & \leq & \frac{4^{(p-1)} p T^{\alpha} \left\| u_{0} \right\|_{L^{\infty}(R^{N})}^{p-1}}{\alpha \Gamma(\alpha)} \left\| u - v \right\|_{L^{\infty}((0,T),L^{\infty}(R^{N}))}. \end{split}$$

We can choose T small enough such that

$$\frac{p4^{(p-1)}T^{\alpha} \left\|u_0\right\|_{L^{\infty}(R^N)}^{p-1}}{\alpha\Gamma(\alpha)} \le \frac{1}{2},$$

then

$$\|G(u)(t) - G(v)(t)\|_{L^{\infty}(R^N)} \le \frac{1}{2} \|u - v\|_{L^{\infty}((0,T),C_0(R^N))}$$

Therefore, G is contractive on E_T . So, G has a fixed point $u \in E_T$ by the contraction mapping principle.

Now, we prove the uniqueness. Let $u, v \in C([0, T], C_0(\mathbb{R}^N))$ be the mild solutions of (1)-(2) for some T > 0, then there exists positive constant C > 0 such that

$$\begin{split} \|u(t) - v(t)\|_{_{L^{\infty}(R^N)}} & = & \|G(u)(t) - G(v)(t)\|_{L^{\infty}(R^N)} \\ & \leq & C \int_0^t (t-s)^{\alpha-1} \left\|u(s) - v(s)\right\|_{_{L^{\infty}(R^N)}} \, ds. \end{split}$$

Hence, by Gronwall's inequality, we know u = v.

Next, using the uniqueness of solution, we conclude that the existence of solution on a maximal interval $[0, T_{\text{max}})$, where

 $T_{\max} = \sup\{T>0 \,:\, there\, exists\, a\, mild\, solution\, \mathbf{u}\, of(1) - (2)\, in\, C([0,T],C_0(\mathbb{R}^N))\}.$

Assume that $T_{\text{max}} < +\infty$ and there exists M > 0 such that for $t \in [0, T_{\text{max}})$,

$$\|u(t)\|_{_{L^{\infty}(R^N)}} \le M.$$

Next, we will verify that $\lim_{t\to T_{\text{max}}} u(t)$ exists in $C_0(\mathbb{R}^N)$. In fact, for $0 < t < \tau < T_{\text{max}}$, by the proof of lemma (2.4), there exists constant C > 0 such that

$$\|u(t) - u(\tau)\|_{L^{\infty}(\mathbb{R}^N)} \le \|P_{\alpha}(t)u_0 - P_{\alpha}(\tau)u_0\|_{L^{\infty}(\mathbb{R}^N)}$$

$$+ \left\| \int_{0}^{t} (t-s)^{\alpha-1} S_{\alpha}(t-s) |u(s)|^{p-1} u(s) - (\tau-s)^{\alpha-1} S_{\alpha}(\tau-s) |u(s)|^{p-1} u(s) ds \right\|_{L^{\infty}(\mathbb{R}^{N})}$$

$$+ \left\| \int_{t}^{\tau} (\tau-s)^{\alpha-1} S_{\alpha}(\tau-s) |u(s)|^{p-1} u(s) ds \right\|_{L^{\infty}(\mathbb{R}^{N})}$$

$$\leq \|P_{\alpha}(t)u_{0} - P_{\alpha}(\tau)u_{0}\|_{L^{\infty}(\mathbb{R}^{N})} + \frac{M^{p}}{\Gamma(\alpha)} \int_{t}^{\tau} (\tau - s)^{\alpha - 1} ds + CM^{p} \int_{0}^{t} \min\{(t - s)^{\alpha - 1}, (t - s)^{\alpha - 2}(\tau - t)\} ds$$

$$\leq \|P_{\alpha}(t)u_{0} - P_{\alpha}(\tau)u_{0}\|_{L^{\infty}(\mathbb{R}^{N})} + \frac{M^{p}}{\alpha\Gamma(\alpha)} (\tau - t)^{\alpha} + CM^{p} \frac{1}{\alpha(1 - \alpha)} (\tau - t)^{\alpha}.$$

Since $P_{\alpha}(t)u_0$ is uniformly continuous in $[0,T_{\max}]$, so $\lim_{t\to T_{\max}}u(t)$ exists. We denote $u_{T_{\max}}=\lim_{t\to T_{\max}}u(t)$ and define $u(T_{\max})=u_{T_{\max}}$. Hence, $u\in C([0,T_{\max}],C_0(R^N))$ and then, by Lemma (2.4),

$$\int_0^t (t-s)^{\alpha-1} S_{\alpha}(t-s) |u(s)|^{p-1} u(s) ds \in C([0, T_{\text{max}}], C_0(\mathbb{R}^N)).$$

For h > 0, $\delta > 0$, let

$$E_{h,\delta} = \{ u \in C([T_{\max}, T_{\max} + h], C_0(R^N)) : u(T_{\max}) = u_{T_{\max}}, d(u, u_{T_{\max}}) \le \delta \},$$

where

$$d(u, v) = \max_{t \in [T_{\max}, T_{\max} + h]} \|u(t) - v(t)\|_{L^{\infty}(\mathbb{R}^N)} \text{ for } u, v \in E_{h, \delta}.$$

Via $C([T_{\max}, T_{\max} + h], C_0(R^N))$ is a Banach space, we know $(E_{h,\delta}, d)$ is a complete metric space.

We define the operator G on $E_{h,\delta}$ as

$$G(v)(t) = P_{\alpha}(t)u_{0} + \int_{0}^{T_{\max}} (t-\tau)^{\alpha-1} S_{\alpha}(t-\tau) |u|^{p-1} u(\tau) d\tau + \int_{T_{\max}}^{t} (t-\tau)^{\alpha-1} S_{\alpha}(t-\tau) |v|^{p-1} v(\tau) d\tau v \in E_{h,\delta}.$$

Clearly, $G(v) \in C([T_{\max}, T_{\max} + h], C_0(\mathbb{R}^N))$ and $G(v)(T_{\max}) = u_{T_{\max}}$. If $v \in E_{h,\delta}$, then for $t \in [T_{\max}, T_{\max} + h]$,

$$\|G(v)(t) - u_{T_{\max}}\|_{L^{\infty}(R^N)} \le \|P_{\alpha}(t)u_0 - P_{\alpha}(T_{\max})u_0\|_{L^{\infty}(R^N)} + \|I_3\|_{L^{\infty}(R^N)} + \|I_4\|_{L^{\infty}(R^N)},$$

where

$$I_{3} = \int_{0}^{T_{\text{max}}} (t - \tau)^{\alpha - 1} S_{\alpha}(t - \tau) |u(\tau)|^{p - 1} u(\tau) d\tau - (T_{\text{max}} - \tau)^{\alpha - 1} S_{\alpha}(T_{\text{max}} - \tau) |u(\tau)|^{p - 1} u(\tau) d\tau,$$

$$I_{4} = \int_{T_{\text{max}}}^{t} (t - \tau)^{\alpha - 1} S_{\alpha}(t - \tau) |v|^{p - 1} v(\tau) d\tau.$$

Taking h small enough such that

$$||P_{\alpha}(t)u_{0} - P_{\alpha}(T_{\max})u_{0}||_{L^{\infty}(R^{N})} < \frac{\delta}{3} for t \in [T_{\max}, T_{\max} + h],$$

$$||I_{3}||_{L^{\infty}(R^{N})} \leq \frac{\delta}{3},$$

$$\begin{split} \|I_{4}\|_{L^{\infty}(R^{N})} & \leq & \left\| \int_{T_{\max}}^{t} (t-\tau)^{\alpha-1} S_{\alpha}(T_{\max} - \tau) (|v|^{p-1} \, v(\tau) - |u_{T_{\max}}|^{p-1} \, u_{T_{\max}}) d\tau \right\|_{L^{\infty}(R^{N})} \\ & + & \left\| \int_{T_{\max}}^{t} (t-\tau)^{\alpha-1} S_{\alpha}(T_{\max} - \tau) \, |u_{T_{\max}}|^{p-1} \, u_{T_{\max}} d\tau \right\|_{L^{\infty}(R^{N})} \\ & \leq & C\delta \int_{T_{\max}}^{t} (t-\tau)^{\alpha-1} d\tau + \|u_{T_{\max}}\|_{L^{\infty}(R^{N})}^{p} \frac{1}{\Gamma(\alpha)} \int_{T_{\max}}^{t} (t-\tau)^{\alpha-1} d\tau \\ & = & \frac{C\delta}{\alpha} (t-T_{\max})^{\alpha} + \frac{\|u_{T_{\max}}\|_{L^{\infty}(R^{N})}^{p}}{\Gamma(\alpha+1)} (t-T_{\max})^{\alpha} \leq \frac{\delta}{3}, \end{split}$$

for $t \in [T_{\max}, T_{\max} + h]$. Then, we have $\|G(v)(t) - u_{T_{\max}}\|_{L^{\infty}(\mathbb{R}^N)} \leq \delta, t \in [T_{\max}, T_{\max} + h]$. Next, we will prove that G is contractive on $E_{h,\delta}$ for h small enough. In fact, for $w, v \in E_{h,\delta}$, $t \in [T_{\max}, T_{\max} + h]$,

$$\begin{split} \|w(t) - v(t)\|_{L^{\infty}(R^{N})} & \leq \int_{T_{\max}}^{t} (t - \tau)^{\alpha - 1} \left\| S_{\alpha}(t - \tau) (|w|^{p - 1} w(\tau) - |v|^{p - 1} v(\tau) \right\|_{L^{\infty}(R^{N})} d\tau \\ & \leq \|w - v\|_{L^{\infty}((T_{\max}, T_{\max} + h), L^{\infty}(R^{N}))} (\|w\|_{L^{\infty}((T_{\max}, T_{\max} + h), L^{\infty}(R^{N}))} \\ & + \|v\|_{L^{\infty}((T_{\max}, T_{\max} + h), L^{\infty}(R^{N}))})^{p - 1} \frac{p}{\Gamma(\alpha)} \int_{T_{\max}}^{t} (t - \tau)^{\alpha - 1} d\tau \\ & \leq \frac{2^{p - 1}p}{\Gamma(\alpha + 1)} (\delta + \|u_{T_{\max}}\|_{L^{\infty}(R^{N})})^{p - 1} (t - T_{\max})^{\alpha} d(w, v). \end{split}$$

Choosing h small enough such that

$$\frac{2^{p-1}p}{\Gamma(\alpha+1)}(\delta + ||u_T||_{L^{\infty}(R^N)})^{p-1}h^{\alpha} \le \frac{1}{2}.$$

Then, G is contractive on $E_{h,\delta}$. So, we know G has a fixed point $v \in E_{h,\delta}$. Since

$$v(T_{\text{max}}) = G(v(T_{\text{max}})) = u(T_{\text{max}}),$$

if we let

$$\sim u(t) = \begin{cases} u(t), t \in [0, T_{\text{max}}), \\ v(t), t \in [T_{\text{max}}, T_{\text{max}} + h], \end{cases}$$

then $\sim u \in C([0, T_{\text{max}} + h], C_0(\mathbb{R}^N))$ and

$$\sim u(t) = P_{\alpha}(t)u_0 + \int_0^t (t-\tau)^{\alpha-1} S_{\alpha}(t-\tau) |\sim u|^{p-1} \sim u(\tau) d\tau.$$

Therefore, $\sim u(t)$ is a mild solution of (1)-(2), which contradicts with the definition of T_{max} . If $u_0 \in L^r(\mathbb{R}^N)$ for some $1 \leq r < \infty$, then repeating the above argument, we get the conclusion. Moreover, if $u_0 \geq 0$, then we can obtain the nonnegative solution of (1) applying the above argument in the set

$$E_T^+ = \{ u \in E_T : u \ge 0 \}.$$

Then, we know $u(t) \ge P_{\alpha}(t)u_0 > 0$ on $t \in (0, T_{\text{max}})$.

Chapter 3

Blow-up and global existence

In this chapter, we prove the blow-up results and global existence of solutions of (1.1)-(1.2). First, we give the definition of weak solution of (1)-(2).

Definition 49 We call $u \in L_p((0,T), L_{loc}^{\infty}(\mathbb{R}^N))$, for $u_0 \in L_{loc}^{\infty}(\mathbb{R}^N)$ and T > 0, is a weak solution of (1) if

$$\int_{R^N} \int_0^T (|u|^{p-1} \, u\varphi + u_0{}_t^c D_T^\alpha \varphi) \, dt dx = \int_{R^N} \int_0^T u(-\Delta \varphi) \, dt dx + \int_{R^N} \int_0^T {}_t^c D_T^\alpha \varphi \, dt dx,$$

for every $\varphi \in C^{2,1}_{x,t}(\mathbb{R}^N \times [0,T])$ with $supp_x \varphi \subset\subset \mathbb{R}^N$ and $\varphi(.,T)=0$.

Lemma 50 Assume $u_0 \in C_0(\mathbb{R}^N)$, let $u \in C([0,T], C_0(\mathbb{R}^N))$ be a mild solution of (1)-(2), then u is also a weak solution of (1)-(2).

Proof. Assuming that $u \in C([0,T], C_0(\mathbb{R}^N))$ is a mild solution of (1)-(2), we have

$$u - u_0 = P_{\alpha}(t)u_0 - u_0 + \int_0^t (t - \tau)^{\alpha - 1} S_{\alpha}(t - \tau) |u|^{p - 1} u d\tau.$$

Note that by Lemma 2.4,

$${}_{0}I_{t}^{1-\alpha}\left(\int_{0}^{t}(t-\tau)^{\alpha-1}S_{\alpha}(t-\tau)\left|u\right|^{p-1}u(\tau)d\tau\right) = \int_{0}^{t}P_{\alpha}(t-s)\left|u\right|^{p-1}u(s)\,ds,$$

so, we know

$$_{0}I_{t}^{1-\alpha}(u-u_{0}) = _{0}I_{t}^{1-\alpha}(P_{\alpha}(t)u_{0}-u_{0}) + \int_{0}^{t}P_{\alpha}(t-\tau)\left|u\right|^{p-1}u(\tau)\,d\tau.$$

Then, for every $\varphi\in C^{2,1}_{x,t}(R^N\times[0,T])$ with supp $supp_x\varphi\subset\subset R^N$ and $\varphi(x,T)=0$, we get

$$\int_{R^N} {}_0I_t^{1-\alpha}(u-u_0)\varphi \, dx = I_5(t) + I_6(t), \tag{3.1}$$

where

$$I_5(t) = \int_{\mathbb{R}^N} {}_0 I_t^{1-\alpha} (P_\alpha(t)u_0 - u_0) \varphi \, dx, \ I_6(t) = \int_{\mathbb{R}^N} \int_0^t P_\alpha(t-s) \left| u \right|^{p-1} u(s) \varphi \, dx.$$

By Lemma 2.3,

$$\frac{dI_5}{dt} = \int_{R^N} A(P_{\alpha}(t)u_0)\varphi \, dx + \int_{R^N} {}_0I_t^{1-\alpha}(P_{\alpha}(t)u_0 - u_0)\varphi_t \, dx. \tag{3.2}$$

For every h > 0, $t \in [0, T)$ and $t + h \to T$, we have

$$\frac{1}{h}\left(I_{6}(t+h) - I_{6}(t)\right) = \frac{1}{h} \int_{0}^{t+h} \int_{R^{N}} P_{\alpha}(t+h-s) \left|u\right|^{p-1} u \, ds \varphi(t+h,x) \, dx - \frac{1}{h} \int_{0}^{t} \int_{R^{N}} P_{\alpha}(t-s) \left|u\right|^{p-1} u \, ds \varphi(t,x) \, dx = I_{7} + I_{8} + I_{9},$$

where

$$I_{7} = \frac{1}{h} \int_{R^{N}} \int_{t}^{t+h} \int_{0}^{\infty} \phi_{\alpha}(\theta) T((t+h-s)^{\alpha}\theta) |u|^{p-1} u(s) d\varphi(t+h,x) dx,$$

$$I_{8} = \frac{1}{h} \int_{R^{N}} \int_{0}^{t} \int_{0}^{\infty} \phi_{\alpha}(\theta) T((t+h-s)^{\alpha}\theta) - T((t-s)^{\alpha}\theta) |u|^{p-1} u(s) d\theta ds \varphi(t,x) dx,$$

$$I_{9} = \frac{1}{h} \int_{R^{N}} \int_{0}^{t} \int_{0}^{\infty} \phi_{\alpha}(\theta) T((t+h-s)^{\alpha}\theta) |u|^{p-1} u(s) d\theta ds (\varphi(t+h,x) - \varphi(t,x)) dx.$$

By dominated convergence theorem, we conclude that

$$I_{7} \rightarrow \int_{R^{N}} |u|^{p-1} u\varphi \, dx \, as \, h \rightarrow 0,$$

$$I_{9} \rightarrow \int_{R^{N}} \int_{0}^{t} \int_{0}^{\infty} \phi_{\alpha}(\theta) T((t-s)^{\alpha}\theta) |u|^{p-1} u(s) \, d\theta ds \varphi_{t} \, dx$$

$$= \int_{R^{N}} \int_{0}^{t} P_{\alpha}(t-s) |u|^{p-1} u(s) \, ds \varphi_{t} \, dx \, as \, h \rightarrow 0.$$

Since

$$I_{8} = \int_{R^{N}} \int_{0}^{t} \int_{0}^{\infty} \int_{0}^{1} \alpha \theta \phi_{\alpha}(\theta)(t+\tau h-s)^{\alpha-1} A(T((t+\tau h-s)^{\alpha}\theta) |u|^{p-1} u(s) d\tau d\theta ds \varphi dx$$

$$-\int_{R^{N}} A \int_{0}^{t} \int_{0}^{\infty} \int_{0}^{1} \alpha \theta \phi_{\alpha}(\theta)(t+\tau h-s)^{\alpha-1} T((t+\tau h-s)^{\alpha}\theta) |u|^{p-1} u(s) d\tau d\theta ds \varphi dx$$

$$= \int_{R^{N}} \int_{0}^{t} \int_{0}^{\infty} \int_{0}^{1} \alpha \theta \phi_{\alpha}(\theta)(t+\tau h-s)^{\alpha-1} T((t+\tau h-s)^{\alpha}\theta) |u|^{p-1} u(s) d\tau d\theta ds A\varphi dx,$$

by dominated convergence theorem, we know

$$I_8 \to \int_{R^N} \int_0^t (t-s)^{\alpha-1} S_{\alpha}(t-s) |u|^{p-1} u(s) \, ds A \varphi \, dx \, as \, h \to 0.$$

Hence, the right derivative of I_6 on [0, T) is

$$\int_{R^{N}} |u|^{p-1} u\varphi dx + \int_{R^{N}} \int_{0}^{t} (t-s)^{\alpha-1} S_{\alpha}(t-s) |u|^{p-1} u(s) ds A\varphi dx + \int_{R^{N}} \int_{0\alpha}^{t} P_{\alpha}(t-s) |u|^{p-1} u(s) ds \varphi_{t} dx,$$

and it is continuous in [0,T). Therefore

$$\frac{dI_6}{dt} = \int_{R^N} |u|^{p-1} u\varphi \, dx + \int_{R^N} \int_0^t (t-s)^{\alpha-1} S_\alpha(t-s) |u|^{p-1} u(s) \, ds A\varphi \, dx
+ \int_{R^N} \int_0^t P_\alpha(t-s) |u|^{p-1} u(s) \, ds \varphi_t \, dx
= \int_{R^N} |u|^{p-1} u\varphi \, dx + \int_{R^N} \int_0^t (t-s)^{\alpha-1} S_\alpha(t-s) |u|^{p-1} u(s) \, ds A\varphi \, dx$$

$$+ \int_{R^N} I_{0/t}^{1-\alpha} \left(\int_0^t (t-s)^{\alpha-1} S_\alpha(t-s) |u|^{p-1} u(s) \, ds \right) \varphi_t \, dx, \qquad (3.3)$$

for $t \in [0, T)$. It follows from (3.1)-(3.3) that

$$0 = \int_{0}^{T} \frac{d}{dt} \int_{R^{N}} I_{0/t}^{1-\alpha}(u - u_{0}) \varphi \, dx = \int_{0}^{T} \frac{dI_{5}}{dt} + \frac{dI_{6}}{dt} \, dt$$

$$= \int_{0}^{T} \int_{R^{N}} P_{\alpha}(t) u_{0} \Delta \varphi \, dx dt - \int_{0}^{T} \int_{R^{N}} (u - u_{0})_{0}^{C} D_{T}^{\alpha} \varphi \, dx dt + \int_{0}^{T} \int_{R^{N}} |u|^{p-1} \, u\varphi \, dx dt$$

$$+ \int_{0}^{T} \int_{R^{N}} \int_{0}^{t} (t - s)^{\alpha - 1} S_{\alpha}(t - s) |u|^{p-1} \, ds \Delta \varphi \, dx dt$$

$$= \int_{0}^{T} \int_{R^{N}} u \Delta \varphi \, dx dt - \int_{0}^{T} \int_{R^{N}} (u - u_{0})_{0}^{C} D_{T}^{\alpha} \varphi \, dx dt + \int_{0}^{T} \int_{R^{N}} |u|^{p-1} \, u\varphi \, dx dt.$$

Hence, we get the conclusion. We say the solution u of the problem (1)-(2) blows up in a finite time T if $\lim_{t\to T} = \|u(t,.)\|_{L^{\infty}(\mathbb{R}^N)} = +\infty$. Now, we give a blow-up result of the problem (1)-(2).

Theorem 51 Let $u_0 \in C_0(\mathbb{R}^N)$ and $u_0 \geq 0$, if

$$\int_{R^N} u_0(x)\chi(x) \, dx > 1,$$

where

$$\chi(x) = \left(\int_{R^N} e^{-\sqrt{N^2 + |x|^2}} dx\right)^{-1} e^{-\sqrt{N^2 + |x|^2}},$$

then the mild solutions of (1)-(2) blow up in a finite time.

Proof. We take $\Psi \in C_0^{\infty}(R)$ such that

$$\Psi(x) = \begin{cases} 1, |x| \le 1, \\ 0, |x| \ge 2, \end{cases}$$

and $0 \le \Psi(x) \le 1$, $x \in R$. Let $\Psi_n(x) = \Psi(x/n)$, $n = 1, 2, \cdots$. By Lemma 4.2, a mild solution of (1)-(2) is also a weak solution of it. So, using the definition of weak solution of (1)-(2), taking $\varphi_n(x,t) = \chi(x)\Psi_n(x)\varphi_1(t)$ for $\varphi_1 \in C^1([0,T])$ with $\varphi_1(T) = 0$ and $\varphi_1 \ge 0$, we have

$$\int_{R^N} \int_0^T u^p \varphi_n dx dt + \int_{R^N} \int_0^T u_0_t^C D_T^\alpha \varphi_n dx dt = \int_{R^N} \int_0^T (-u \Delta \varphi_n + u_t^C D_T^\alpha \varphi_n) dx dt. (3.4)$$

Since $\Delta(\chi \Psi_n) = (\Delta \chi) \Psi_n + 2 \nabla \chi \cdot \nabla \Psi_n + (\Delta \Psi_n) \chi$ and $\Delta \chi \ge -\chi$, by (3.4) and the dominated convergence theorem, let $n \to \infty$, we have

$$\int_{R^N} \int_0^T u^p \chi \varphi_1 dx dt + \int_{R^N} \int_0^T u_0 \chi_t^C D_T^\alpha \varphi_1 dx dt \leq \int_{R^N} \int_0^T (u \chi \varphi_1 + u \chi_t^C D_T^\alpha \varphi_1) dx dt. (3.5)$$

Hence, by Jensen's ineequality and (3.5), we have

$$\int_0^T \left(\int_{R^N} u\chi \, dx \right)^p \varphi_1 dt + \int_{R^N} \int_0^T u_0 \chi_t^C D_T^\alpha \varphi_1 dx dt \leq \int_{R^N} \int_0^T (u\chi \varphi_1 + u_0 \chi_t^C D_T^\alpha \varphi_1) \, dx dt.$$

So, if we denote $f(t) = \int_{\mathbb{R}^N} u\chi \, dx$, then

$$\int_{0}^{T} (f^{p} - f)\varphi_{1}dt \le \int_{0}^{T} (f - f(0))_{t}^{C} D_{T}^{\alpha} \varphi_{1} dt.$$
 (3.6)

We take $\varphi_1 =_t I_T^{\alpha} \sim \Psi(t)$ where $\sim \Psi \in C_0^1((0,T))$ and $\sim \Psi \geq 0$, then (3.6) implies

$$\int_0^T I_T^\alpha(f^p-f) \sim \Psi dt = \int_0^T (f^p-f) \sim_t I_T^\alpha \Psi(t) dt \le \int_0^T (f-f(0)) \sim \Psi dt.$$

Hence,

$$_{t}I_{T}^{\alpha}(f^{p}-f)+f(0) \leq f. \tag{3.7}$$

In view of $f(0)=\int_{R^N}u_0(x)\chi(x)dx>1$ and the continuity of f, we obtain f(t)>1 when t is small enough. Then (3.7) implies $f(t)\geq f(0)>1$ for $t\in[0,T]$. Taking $\varphi_1(t)=(1-\frac{t}{T})^m,\,t\in[0,T]$ $m\geq\max\{1,p\alpha/(p-1)\}$, we know there exists constant C>0 such that

$$\int_0^T (f^p - f)\varphi_1 dt + Cf(0)T^{1-\alpha} \le \varepsilon \int_0^T f^p \varphi_1 dt + C(\varepsilon)T^{1-p\alpha/(p-1)}.$$

Choosing ε small enough such that $f(0) > (1-\varepsilon)^{-1/(p-1)}$, we then have $f(0) \leq CT^{\alpha-p\alpha/(p-1)}$ for some constant C > 0. If the solution of (1.1)-(1.2) exists globally, we get f(0) = 0 by taking $T \to \infty$, which contradicts with f(0) > 1. Hence, we give the main result of this paper.

Theorem 52 Let $u_0 \in C_0(\mathbb{R}^N)$ and $u_0 \geq 0$, $u_0 \not\equiv 0$, then (a) If 1 , then the mild solition of (1)-(2) blows up in a finite time.

(b) If $p \ge 1 + 2/N$ and $||u_0||_{L^{q_c}(\mathbb{R}^N)}$ is sufficiently small, where $q_c = N(p-1)/2$, then the solutions of (1)-(2) exist globally.

Proof. (a) Let $\Phi \in C_0^{\infty}(R)$ such that $\Phi(s) = 1$ for $|s| \le 1$, $\Phi(s) = 0$ for |s| > 2 and $0 \le \Phi(s) \le 1$. For T > 0, we define

$$\varphi_1(x) = \left(\Phi\left(T^{-\alpha/2}\left|x\right|\right)\right)^{2p/(p-1)}, \ \varphi_2(x) = \left(1 - \frac{t}{T}\right)^m, \ m \geq \max\left\{1, \frac{p\alpha}{p-1}\right\},$$

for $t \in [0,T]$. Assuming that u is a mild solution of (1)-(2), then by Lemma (3.2) we have

$$\int_{R^N} \int_0^T (u^p \varphi_1 \varphi_2 + u_0 \varphi_1_t^C D_T^\alpha \varphi_2) dt dx = \int_{R^N} \int_0^T (u(-\Delta \varphi_1) \varphi_2 + u \varphi_1_t^C D_T^\alpha \varphi_2) dt dx. (3.8)$$

Note that

$$\left| (-\Delta \varphi_1) \varphi_2 + \varphi_{1t}^{\ C} D_T^{\alpha} \varphi_2 \right| \le C T^{-\alpha} \varphi_1^{1/p} \varphi_2^{1/p}, \tag{3.9}$$

for some positive constant C independent of T. Then by (3.8), (3.9) and Hölder inequality, we have

$$\int_{R^{N}} \int_{0}^{T} (u^{p} \varphi_{1} \varphi_{2} + u_{0} \varphi_{1}^{C} D_{T}^{\alpha} \varphi_{2}) dt dx \leq C T^{-\alpha} \int_{R^{N}} \int_{0}^{T} u \varphi_{1}^{1/p} \varphi_{2}^{1/p} dt dx
\leq C T^{-\alpha + (1 + \alpha N/2)(p-1)/p} (\int_{R^{N}} \int_{0}^{T} u^{p} \varphi_{1} \varphi_{2} dt dx)^{1/p}.$$

Hence

$$T^{1-\alpha} \int_{R^N} u_0 \varphi_1 \, dx \leq C T^{1+\alpha N/2 - p\alpha/(p-1)}.$$

It follows from p < 1 + 2/N that $(N/2 + 1)\alpha - p\alpha/(p - 1) < 0$. Therefore, if solution of (1)-(2) exists globally, then taking $T \to \infty$, we obtain

$$\int_{\mathbb{R}^N} u_0 \varphi_1 \, dx = 0,$$

and then $u_0 \equiv 0$. Hence, by Theorem(4.3), we know u blows up in a finite time. (b) We construct the global solution of (1)-(2) by the contraction mapping principale.

Since $p \ge 1 + 2/N > 1 + 2\alpha/(\alpha N + 2 - 2\alpha)$, we know

$$\frac{\alpha N(p-1)}{2(p\alpha - p + 1)_{+}} > 1, \tag{3.10}$$

where $(p\alpha - p + 1)_+ = \max\{0, p\alpha - p + 1\}$. In view of $p \ge 1 + 2/N > (4 - N + \sqrt{N^2 + 16})/4$, we have

$$\frac{N(p-1)}{2p(2-p)_{+}} > 1. (3.11)$$

Hence, by Lemma (3.10), (3.11) and $(p-1)N/(2p)<(\alpha N(p-1))/(2(p\alpha-p+1)_+)$, we can choose $q>p\geq 1+2/N$ such tha

$$\frac{\alpha}{p-1} - \frac{1}{p} < \frac{\alpha N}{2q} < \frac{\alpha}{p-1},\tag{3.12}$$

and

$$\frac{\alpha}{p-1} - \alpha < \frac{\alpha N}{2q}. (3.13)$$

Let

$$\beta = \frac{\alpha N}{2} \left(\frac{1}{q_c} - \frac{1}{q} \right) = \frac{\alpha}{p-1} - \frac{\alpha N}{2q}. \tag{3.14}$$

Using (3.12) and (3.14), one verifies that

$$0 < p\beta < 1, \alpha = \frac{\alpha N(p-1)}{2q} + (p-1)\beta. \tag{3.15}$$

Assume that the initial value u_0 satisfies

$$\sup_{t>0} t^{\beta} \|P_{\alpha}(t)u_0\|_{L^q(\mathbb{R}^N)} = \eta < +\infty. \tag{3.16}$$

Note that (3.13) implies $1/q_c - 1/q < 2/N$. If $u_0 \in L^{q_c}(R^N)$, (1.7) implies (3.16) holds. If $u_0(x) \le C |x|^{-2/(p-1)}$ for some constant C > 0, then $||T(t)u_0||_{L^q(R^N)} \le Ct^{N/(2q)-1/(p-1)}$. Hence

$$||P_{\alpha}(t)u_{0}||_{L^{q}(R^{N})} \leq Ct^{\alpha(N/(2q)-1/(p-1))} \int_{0}^{\infty} \phi_{\alpha}(\theta)\theta^{N/(2q)-1/(p-1)} d\theta.$$

Since N/(2q) - 1/(p-1) > -1,

$$\int_0^\infty \phi_\alpha(\theta) \theta^{N/(2q)-1/(p-1)} d\theta < \infty.$$

Therefore, we also obtain that (3.16) is staisfied in this case. Let $Y = \{u \in L^{\infty}((0, \infty), L^q(\mathbb{R}^N)) : \|u\|_Y < \infty\}$, where

$$||u||_Y = \sup_{t>0} t^{\beta} ||u(t)||_{L^q(\mathbb{R}^N)}.$$

For $u \in Y$, we define

$$\Phi(u)(t) = P_{\alpha}(t)u_0 + \int_0^t (t-s)^{\alpha-1} S_{\alpha}(t-s) |u|^{p-1} u(s) ds.$$

Denote $B_M = \{u \in Y : ||u||_Y \leq M\}$. For any $u, v \in B_M, t \geq 0$,

$$t^{\beta} \|\Phi(u)(t) - \Phi(v)(t)\|_{L^{q}(\mathbb{R}^{N})} \leq t^{\beta} \int_{0}^{t} (t-s)^{\alpha-1} \|S_{\alpha}(t-s)(u^{p}(s) - v^{p}(s))\|_{L^{q}(\mathbb{R}^{N})} ds. 17)$$

Since q > p > N(p-1)/4, so p/q-1/q < 4/N. Hence, Hölder inequality, Lemma 2.2, (3.15) and (3.17) imply that there exists constant C > 0 such that

$$\begin{split} t^{\beta} \, \| \Phi(u) - \Phi(v) \|_{L^{q}(R^{N})} & \leq & C t^{\beta} \int_{0}^{t} (t-s)^{\alpha - 1 - \alpha N(p/q - 1/q)/2} \, \| u^{p} - v^{p} \|_{L^{\frac{q}{p}}(R^{N})} \, ds \\ & \leq & C t^{\beta} \int_{0}^{t} (t-s)^{\alpha - 1 - \alpha N(p - 1)/(2q)} \left(\left\| u_{L^{q}(R^{N})}^{p - 1} \right\| + \left\| v_{L^{q}(R^{N})}^{p - 1} \right\| \right) \| u - v \|_{L^{q}(R^{N})} \, ds \\ & \leq & C t^{\beta} M^{p - 1} \int_{0}^{t} (t-s)^{\alpha - 1 - \alpha N(p - 1)/(2q)} s^{-p\beta} ds \, \| u - v \|_{Y} \\ & = & C M^{p - 1} t^{\beta - p\beta - \alpha N(p - 1)/(2q) + \alpha} \int_{0}^{1} (1-\tau)^{-\alpha N(p - 1)/(2q) + \alpha - 1} \tau^{-p\beta} d\tau \, \| u - v \|_{Y} \\ & = & C M^{p - 1} \int_{0}^{1} (1-\tau)^{-\alpha N(p - 1)/(2q) + \alpha - 1} \tau^{-p\beta} d\tau \, \| u - v \|_{Y} \\ & = & C M^{p - 1} \frac{\Gamma((p - 1)\beta)\Gamma(1 - p\beta)}{\Gamma(1-\beta)} \, \| u - v \|_{Y} \, . \end{split}$$

If we choose M small enough such that

$$CM^{p-1}\frac{\Gamma((p-1)\beta)\Gamma(1-p\beta)}{\Gamma(1-\beta)} < \frac{1}{2},$$

then $\|\Phi(u) - \Phi(v)\|_{Y} \leq \frac{1}{2} \|u - v\|_{Y}$. Since

$$t^{\beta} \|\Phi(u)(t)\|_{L^{q}(\mathbb{R}^{N})} \leq \eta + CM^{p} t^{\beta} \int_{0}^{t} (t-s)^{-\alpha N(p/q-1/q)/2-1+\alpha} s^{-p\beta} ds$$

$$\leq \eta + CM^{p} \frac{\Gamma((p-1)\beta)\Gamma(1-p\beta)}{\Gamma(1-\beta)}, t \in [0,+\infty),$$

we can choose η and M small enough such that

$$\eta + CM^p \frac{\Gamma((p-1)\beta)\Gamma(1-p\beta)}{\Gamma(1-\beta)} \le M.$$

Therefore, by contraction mapping principale we know Φ has a fixed point $u \in B_M$. Next, we will prove $u \in C([0,\infty), C_0(\mathbb{R}^N))$. First, we prove that for T > 0 small enough, $u \in C([0,T], C_0(\mathbb{R}^N))$. In fact, the above proof shows that u is the unique solution in

$$B_{M,T} = \left\{ u \in L^{\infty}((0,T), L^{q}(\mathbb{R}^{N})) : \sup_{0 < t < T} t^{\beta} \|u(t)\|_{L^{q}(\mathbb{R}^{N})} \le M \right\}.$$

By Theorem 3.2 and $u_0 \in C_0(R^N) \cap L^q(R^N)$, we know that for T small enough, (1.1) has a unique solution $\sim u \in C([0,T], C_0(R^N) \cap L^q(R^N))$. Hence, we can take T small enough such that $\sup_{0 < t < T} t^\beta \|\sim u(t)\|_{L^q(R^N)} \le M$. Then, by uniqueness, we know $u \equiv \sim u$ for $t \in [0,T]$ and then $u \in C([0,T], C_0(R^N)) \cap C([0,T], L^q(R^N))$. Next, we show that $u \in C([0,T], C_0(\mathbb{R}^N))$ by a bootstrap argument. For t > T, we have

$$u - P_{\alpha}(t)u_{0} = \int_{0}^{t} (t - s)^{\alpha - 1} S_{\alpha}(t - s)u^{p} ds$$

$$= \int_{0}^{T} (t - s)^{\alpha - 1} S_{\alpha}(t - s)u^{p} ds + \int_{T}^{t} (t - s)^{\alpha - 1} S_{\alpha}(t - s)u^{p} ds$$

$$= I_{10} + I_{11}.$$

It follows from $u \in C([0,T], C_0(\mathbb{R}^N))$ that

$$I_{10} \in C([T, \infty), C_0(R^N)) \cap C([T, \infty), L^q(R^N)).$$

For $T_1 > T$, we know $u^p \in L^{\infty}((T,T_1),L^{q/p}(R^N))$. Note that q > N(p-1)/2, we can choose r > q such that N(p/q-1/r)/2 < 1. Then analogous to the proof of Lemma 2.4, we can show that $I_{11} \in C([T,T_1],L^r(R^N))$. By the arbitrariness of T_1 , we know $I_{11} \in C([T,\infty),L^r(R^N))$ and so $u \in C([T,\infty),L^r(R^N))$. We take $r = q\chi^i, \chi > 1$ such that

$$\frac{N}{2} \left(\frac{p}{q} - \frac{1}{q\chi^i} \right) < 1, i = 1, 2, \cdots,$$

then $u \in C([T,\infty), L^{q\chi^i}(R^N))$. By finite steps, we have $p/(q\chi^i) < 2/N$, so $u \in C([0,\infty), C_0(R^N))$.

Conclusion

xcfvgbjhnk,k;