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Abstract

In this work, we study the Turing patterns appearing in a Gierer-Meinhardt model of

the activator-inhibitor type with di¤erent sources. First, we investigate the corresponding

kinetic equations and derive the conditions for the stability of the equilibrium and then,

we turn our attention to the Hopf bifurcation of the system. In certain parameter range,

the equilibrium experiences a Hopf bifurcation; the bifurcation is supercritical and the

bifurcated periodic solution is stable. With added di¤usions, we show that both the

equilibrium and the stable Hopf periodic solution experience Turing instability, if the

di¤usion coe¢ cients of the two species are su¢ ciently di¤erent. And we prove the global

existence in time of the solutions of this system.
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Introduction

Introduction

The formation of patterns by Turing instability has been investigated in di¤erent mod-

els to explain how these can emerge from a merely uniform environment. The interaction

of two biochemical substances with di¤erent di¤usion rates having the capacity to generate

biological patterns was introduced by Turing ([15]). Some twenty years later, Gierer and

Meinhardt found that the two substances, in fact, opposed the action of each other giving

rise to the activator-inhibitor model ([5]). Which can be used to explain the formation of

polar, symmetric and periodic structures (spots on animals).

Much of this work is devoted to study the stability of a Gierer-Meinhardt system, To

address this work, we must address the theories of stability (system stability) as well as

the de�nition of reaction systems.

This work is divided into three chapters

� Chapter 1: (Stability theory). This chapter deals with theories of stability of
the linear and nonlinear (via linearization) systems (systems with dimension 2� 2),
then we talk about Lyapunov direct method to study the global stability. Then

we took as un application the Lotka-Voltera system where we studied its local and

global stability, in this study we relied mainly on the eigenvalues of the Jacobian

matrix attached to the system and on Lyapunov�s theorem.

� Chapter 2: (Introduction to Reaction di¤usion Systems). In this chapter
we present an introduction to Reaction-Di¤usion system, activator-inhibitor system.

Then we talked about the Hopf bifurcation and the global existence of solutions using

the Lyapunov�s theorem, in the later we gave some examples of these systems and

we devoted the system of Gierer-Meinhardt.

� Chapter 3: (The Gierer-Meinhardt Activator-Inhibitor Model). This is
the important chapter, we have studied the local stability, the Hopf bifurcation and

the global existence of solutions of the Gierer-Meinhardt system, �rst we started

with the ODE system and then we studied PDE system.

Larbi Tebessi Univ-Tebessa - 1 2e nd Master / PDE



Preliminaries

This chapter recalls some useful preliminaries that are necessary for the dissertation at

hand. We introduce some basic notation and notions.
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Preliminaries

0.1 Notation

the following are some notations the are used in the memorie.

� N denotes the set of natural numbers.

� R denotes the set of real numbers.

� C denotes the set of complex numbers.

� A denotes the matrix

� det (A) denotes the determinant of a matrix A:

� tr (A) denotes the trace of real and complex matrice A.

� A�1 denotes the inverse of matrix A:

� A> denotes the transpose of matrix A.

� sgn (a) denotes the signal of a:

� dkf
dtk
= f (k) denotes the kth derivative of f (t).

� @f
@xi
= @xif = fxi denotes the partial derivative of f (x1; :::; xn) with respect to xi.

.
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0.2 General Notions

� ru denotes the gradient of u, where

Gradu = ru =
�
@u

@x1
;
@u

@x2
; :::;

@u

@xn

�
:

�u denotes the laplacian of u, �u is de�ned by

�u =
nX
i=1

@2u

@x2i
:

0.2.1 Important Spaces

The set of Lp functions (where p � 1) generalizes L2 space. Instead of square integrable,
the measurable function f must be p integrable for f to be in Lp.
On a measure space 
, the Lp norm of a function f is

jf jLp =
�Z

X

jf jp
� 1

p

:

The Lp functions are the functions for which this integral converges. For p 6= 2, the space
of Lp functions is a Banach space which is not a Hilbert space.

The Lp space on Rn, and in most other cases, is the completion of the continuous
functions with compact support using the Lp norm. As in the case of an L2 space, an Lp

function is really an equivalence class of functions which agree almost everywhere. It is

possible for a sequence of functions fn to converge in Lp but not in Lp0 for some other
p0, e.g., fn = (1 + x2)�

1
2
� 1
n converges in L2(
) but not L1(
). However, if a sequence

converges in Lp and in Lp0, then its limit must be the same in both spaces.
For p > 1, the dual vector space to Lp is given by integrating against functions in

Lq, where 1
p
+ 1

q
= 1. This makes sense because of Höder�s inequality for integrals. In

particular, the only Lp space which is self-dual is L2.
While the use of Lp functions is not as common as L2, they are very important in

analysis and partial di¤erential equations. For instance, some operators are only bounded

in Lp for some p > 2.
For d � 1, 
 an open subset of Rd, p 2 [1; +1] and s 2 N , the Sobolev spaceW s;p(Rd)

is de�ned by

W s;p(
) =
�
f 2 LP (
) : 8 j�j � s; @�x f 2 LP (
)

	
; (1)

where � = (�1; :::; �d) ; j�j = �1 + ::: + �d, and the derivatives partial derivative @�x f =

@�1x1 :::@
�d
xd
f are taken in a weak sense.When endowed with the norm.
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In the special case p = 2;W s;2(
) is denoted by Hs(
). This space is a Hilbert space
for the inner product

hf; gis;
 =
X
j�j�s

h@�x f; @�x giL2(
) =
X
j�j�s

Z



@�x f@
�
x gd�:

Sobolev spaces play an important role in the theory of partial di¤erential equations.

0.2.2 Important Formulas

Taylor�s Formula

Recall Taylors for f : R! R :

f (x) = f (a) +
@f

@x
(a) (x� a) +

1

2!

@2f

@x2
(a) (x� a)2 + :::+

1

k!

@kf (a)

@xk
(x� a)k +O (x; a) :

Recall Taylors for f : R2 ! R :

f (x; y) = f (a; b) +
@f

@x
(a; b) (x� a) +

@f

@y
(a; b) (y � b) +

1

2

@2f

@x2
(a; b) (x� a)2

+
@2f

@y2
(a; b) (y � b)2 +

@2f

@x@y
(a; b) (x� a) (y � b)

+O
�
(x� a)2 + (y � b)2

�
:

Green�s Formula([1])

We recall now some green�s formulas whitch generalize the multidimensional case the

formula of integration by parts of dimension one. They write as following:

Theorem 1 we suppose that 
 is an open domain of boundry @
 continue with part.
Then, if u and v are function of H1(
), we haveZ




@u

@xi
vdx = �

Z



u
@v

@xi
dx+

Z
@


uv�id�; 1 6 i 6 n; (2)

we design by �i the i
th consinus director of normal � in @
 directed towards the outside

of 
 and we write �i = (~�:~ei). d� the super�cial measure on @
.

Proof. If u ( resp v) belongs to H1 (
), there exists a suite (um) (resp (vp)) from D
�
�

�

witch converge to u on H1 (
)(resp to v on H1 (
))
�
D
�
�

�
dense on H1 (
)

�
.
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We have for the functions um and vp of D
�
�

�

Z



@um
@xi

vpdx = �
Z



um
@vp
@xi

dx+

Z
@


umvp�id�; 1 6 i 6 n; (3)

We obtain the expretion (2) by switching to the limite in Green formula precedent.

Corollary 2 For all function u of H1 (
) and all function v of H1 (
), we have the Green
formula Z




(�u) v =

Z
@


@u

@�
vd� �

Z



rurv: (4)

Proof. Let given a consequence of Theorem precedent.

On suppose �u =
nP
i=1

@2u
@x2i
, the laplacian of a distribution u. Then, if u is a function of

H1 (
), we have from (2) for all function v of H1 (
)

�
Z



(�u) v = �
nX
i=1

Z



@2u

@x2i
vdx

=
nX
i=1

8<:
Z



@u

@xi

@v

@xi
dx�

Z



@u

@xi
v�id�

9=;
=

nX
i=1

Z



@u

@xi

@v

@xi
dx�

Z



@u

@�
vd�

=

Z



rurv �
Z
@


@u

@�
vd�:

Remark 1 The Green formula rest remains valid if u; v 2 C1 and the formula (4) remains
valid if u 2 C2, v 2 C1.

The Jordan Normal Form([4])

If A is a nonsingular matrix, there exist two nonsingular matrices J and B such that

A = B�1JB, or equivalently BA = JB: J is called the Jordan normal form (or simply

Jordan matrix) of A. The Jordan matrix J is triangular (but not necessarily diagonal).

Let us show what happens if n = 2, which is the case we will deal with in the sequel.

Let A be a 2� 2 matrix with eigenvalues �1; �2. Then the Jordan matrix is as follows.

Larbi Tebessi Univ-Tebessa - 6 2e nd Master / PDE
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1. If �1; �2 are real and distinct, then their algebraic and geometric multiplicity is 1

and hence

J =

 
�1 0

0 �2

!
: (5)

2. If �1 = �2 is real, then its algebraic multiplicity is 2. Either its geometric multiplicity

is also 2, a case where

J =

 
�1 0

0 �1

!
; (6)

or its geometric multiplicity is 1, a case where

J =

 
�1 1

0 �1

!
: (7)

Furthermore, if the eigenvalues are complex conjugate, �1;2 = � � ��, then one can

show that

J =

 
� ��
� �

!
: (8)

Quadratic Formula([1])

A quadratic formula is a homogeneous polynomial of the second degree with respect to n

variables u1; u2; :::; un a quadratic form always has the representation

nX
i;j=1

aijuiuj; (9)

where

A = (aij)1�i;j�n ;

is a symetrica matrix.

If we denote the matrix-column (u1; u2; :::; un) with u and the quadratic formula with

A (u; u) =

nX
i;j=1

aijuiuj; (10)

we can write

A (u; u) = u>Au = Au � u: (11)

If

A = (aij)1�i;j�n ;

Larbi Tebessi Univ-Tebessa - 7 2e nd Master / PDE



Preliminaries

is a real symmetric matrix, the form (10) is called the real quadratic foormula. In this

work, we are interested in real quadratic formula.

De�nition 1 a quadratic formula (10) is called de�ned non-negative if, for arbitrary real
values of the variables

A (u; u) � 0: (12)

De�nition 2 a quadratic formula (10) is called de�ned positive if, for arbitrary values of
non-zero variables (u 6= 0), we have

A (u; u) > 0: (13)

Theorem 3 a quadratic formula (10) is called de�ned positive if, and only if, all the
principls determinants succesifs of her matrix a coe¢ cients, are positives

det 1 > 0; det 2 > 0; :::; detn > 0: (14)

Corollary 4 In a positive quadratic formula (10) all the determinent principls of the
matrix of coe¢ cients, are positifs, when the principals determinants successivesof a real

symmetric matrix are positive, all the remaining principals determinants are posxitives.

Remark 2 if the principals successives determinants are non-negatives

det 1 � 0; det 2 � 0; :::; detn � 0; (15)

it does not follow that A (u; u) is de�ned as non-negative. Thus the forme

a11u
2
1 + 2a12u1u2 + a22u

2
2; (16)

in which a11 = a12 = 0, a22 < 0, satis�ed (15) but is not de�ned non-negative.

We have, however, the following theorem:

Theorem 5 a quadratic formula (10) is said de�ned as non-negative if, and only if, all
the principal determinants of its matrix of coe¢ cients are non-negative

detA [i1; i2; :::; inji1; i2; :::; ip] � 0;

where

1 � i1 < i2 < ::: < ip � n; and p � n:

Larbi Tebessi Univ-Tebessa - 8 2e nd Master / PDE
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0.2.3 Important Inequalities

Young�s Inequality

Let f be a continuous and increasing function on [0; c] ou c > 0:

f (0) = 0; a 2 [c; 0] and b 2 [0; f (c)] ; then

ab �
aZ
0

f (x) dx+

bZ
0

f�1 (x) dx; (17)

or f�1 is the inverse function of f:

Proof. we begin with the expression

g (a) = ab�
aZ
0

f (x) dx; (18)

we take b > 0 as a parameter. since g0 (a) = b�f (a) and since the function f is inceasing,
we have

g0 (a) > 0 for 0 < a < f�1 (b) ;

g0 (a) = 0 for a = f�1 (b) ;

g0 (a) < 0 for a > f�1 (b) :

From this, g (a) is a maximum value of the function g reached a = f�1 (b) :

so

g (a) � max g (x) = g
�
f�1 (b)

�
(19)

applying an integration by parts

g
�
f�1 (b)

�
= bf�1 (b)�

f�1(b)Z
0

f (x) dx

=

f�1(b)Z
0

xf 0 (x) dx

Larbi Tebessi Univ-Tebessa - 9 2e nd Master / PDE
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if we take y = f (x) ; the above equation becomes:

g
�
f�1 (b)

�
=

bZ
0

f�1 (y) dy (20)

by comparing (18),(19), and (20), one obtains (17)

the function f (x) = xp�1 with p > 1 in each interval [0; c] satis�es the condition

apply(1.2.27) utilisant 1
p
+ 1

q
= 1 on obtient

8a; b 2 R+ : ab � ap

p
+
bq

q
: (21)

if we replace the function f (x) by �xp�1 on (17) then the inequality from Yong with � :

8a; b 2 R+ : ab � �ap +
(�p)

�q
p

q
bq (22)

ce qui donne

8a; b 2 R+ : ab � �ap +
(�p)

�1
p�1

q
bq

Hölder�s Inequality

Let p > 1 and q be real numbers connected by the relation 1
p
+ 1

q
= 1 then

8 (f; g) 2 Lp (
)� Lq (
) :

Z



jf (x) g (x)j dx �

0@Z



jf (x)jp dx

1A 1
p
0@Z



jg (x)jq dx

1A 1
q

:

(23)

Proof. Using inequality (23), we obtain

jf (x) g (x)j � 1

p
jf (x)jp + 1

q
jg (x)jq

it results that fg 2 L1 (
) and

Z



jf (x) g (x)j dx � 1

p

Z



jf (x)jp dx+ 1
q

Z



jg (x)jq dx: (24)
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Replacing in (24) f by �f (� > 0) he comes

Z



jf (x) g (x)j dx � �p�1

p

Z



jf (x)jp dx+ 1

�q

Z



jg (x)jq dx;

we choose � =

0@Z



jf (x)jp
1A 1

p
0@Z



jg (x)jq
1A 1

q

, we obtain then (23).

De�nition 3 Let (V; h�; �i) be a n dimensional euclidean vector space and T : V ! V a

linear operator. We will call the adjoint of T , the linear operator T
�
: V ! V

such that:

hTu; vi = hu; T �
vi; for all u; v 2 V:

Larbi Tebessi Univ-Tebessa - 11 2e nd Master / PDE



CHAPTER 1

Stability theory

In this chapter we present an introduction to the theory of stability. Since this is a very

broad area which includes not only many topics but also various notions of stability, we

mainly focus on Liapunov stability of equilibrium points. Some of the proofs are omitted

or carried out in special simple cases.

12



Stability theory

1.1 Introduction

The term �stable�informaly means resistant to change. For technical use the term has to

be de�ned more precisely in term of the mathematical model, but the same connotation.

In mathematics, stability theory addresses the stability of solutions of di¤erential

equations and of trajectories of dynamical systems under small perturbations of initial

conditions. The heat equation, for example, is a stable partial di¤erential equation because

small perturbations of initial data lead to small variations in temperature at a later time

as a result of the maximum principle. In partial di¤erential equations one may measure

the distances between functions using Lp norms or the sup norm.
Many parts of the qualitative theory of di¤erential equations and dynamical systems

deal with asymptotic properties of solutions and the trajectories what happens with the

system after a long period of time. The simplest kind of behavior is exhibited by equilib-

rium points, or �xed points, and by periodic orbits. If a particular orbit is well understood,

it is natural to ask next whether a small change in the initial condition will lead to similar

behavior. Stability theory addresses the following questions: Will a nearby orbit indef-

initely stay close to a given orbit? Will it converge to the given orbit? (The latter is a

stronger property). In the former case, the orbit is called stable; in the latter case, it is

called asymptotically stable and the given orbit is said to be attracting.

One of the key ideas in stability theory is that the qualitative behavior of an orbit

under perturbations can be analyzed using the linearization of the system near the orbit.

In particular, at each equilibrium of a smooth dynamical system with an n-dimensional

phase space, there is a certain n�n matrix A whose eigenvalues characterize the behavior
of the nearby points.

More precisely, if all eigenvalues are negative real numbers or complex numbers with

negative real parts then the point is a stable attracting �xed point, and the nearby points

converge to it at an exponential rate, Liapunov stability and exponential stability. If

none of the eigenvalues are purely imaginary (or zero) then the attracting and repelling

directions are related to the eigenspaces of the matrix A with eigenvalues whose real part

is negative and, respectively, positive. Analogous statements are known for perturbations

of more complicated orbits.

1.2 Stability of Fixed Points

The simplest kind of an orbit is a �xed point, or an equilibrium. If a mechanical system

is in a stable equilibrium state then a small push will result in a localized motion, for

example, small oscillations as in the case of a pendulum. In a system with damping, a

Larbi Tebessi Univ-Tebessa - 13 2e nd Master / PDE
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stable equilibrium state is moreover asymptotically stable. On the other hand, for an

unstable equilibrium, such as a ball resting on a top of a hill, certain small pushes will

result in a motion with a large amplitude that may or may not converge to the original

state.

There are useful tests of stability for the case of a linear system. Stability of a nonlinear

system can often be inferred from the stability of its linearization.

In this work we will study the stability of the (2� 2) system

1.2.1 The Stability of a Linear System

The stability of �xed points of a system of constant coe¢ cient linear di¤erential equations

of �rst order can be analyzed using the eigenvalues of the corresponding matrix.

Let be the system

@X

@t
= f(X (t)); X = (x (t) ; y (t)) ; (1.1)

we write the system (1.1) in the form(
@x(t)
@t

= a11x+ a12y = f(x; y)
@y(t)
@t

= a21x+ a22y = g(x; y)
; (1.2)

where the coe¢ cients aij are real numbers. Letting

A =

 
a11 a12

a21 a22

!
;

we put (
f(x; y) = a11x+ a12y

g(x; y) = a2I1x+ a22y
;

(x�; y�) is a equilibrium point of (1.2) :(
f(x�; y�) = 0

g(x�; y�) = 0
; (1.3)

then

x� = 0; y� = 0;

hence, the unique equilibriun point of (1.2) is (0; 0):
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The Jacobian matrix of (1.2) is

J =

 
fx fy

gx gy

!
=

 
a11 a12

a21 a22

!
(1.4)

J(0; 0) =

 
a11 a12

a21 a22

!
: (1.5)

Typology of the Solutions of the Linear Systems in the (tr; det)�Plane

The typology of the solutions of the planar linear systems which we established with to

leave the nature of the eigenvalues of the matrix of the system (1.2)can be also summarized

in a plan, (tr; det).(see Figure 1.1)Eigenvalues of J are solutions of the characteristic

Figure 1.1: Summary of the di¤erent possible phase portraits of the system _X = AX as
a function of the sign of the trace and the determinant of the matrix A:

equation:

�2 � tr (J) + det (J) = 0 with
(
tr (A) = �1 + �2

det (A) = �1�2
:

The nature of the eigenvalues depends on the sign of the discriminant � = (tr (J))2�
4 det (J).
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In the plan (tr; det), the equation � = 0 is that of a parabola passing by the origin:

det (J) =
1

4
(tr (J))2 :

This parabola divides the plan into two great areas: above the parabola (� < 0), one

�nds the portraits of phase of the hearths and the centers; below (� > 0), one �nds them

nodes and the points saddles.

� Case � = 0

1. There is then �1 = �2 = �0, i.e. det (J) = �20 > 0 and tr (J) = 2�0. Consequently,

if trace is positive (�0 > 0), we have a star or an unstable degenerated node;

if the trace is negative (�0 < 0), we have a star or a stable degenerated node.(

see Figure 1.2).

Figure 1.2: (a) Stable node, with �1 = �2 < 0; (b) Unstable node, with �1 = �2 > 0:

� Case � > 0

We have two distinct real eigenvalues then. is in the area under the parabola who still

can is shared in three zones:

det (J) < 0 : �1 and �2 are of opposed sign, the origin is a point saddles (see Figure 1.3);

det (J) > 0 and tr (J) > 0 : �1; �2 > 0, the origin are an unstable node (see Figure

1.4);det (J) > 0 and tr (J) < 0 : �1; �2 < 0, the origin are a stable node (see Figure 1.5).

� Case � < 0
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Figure 1.3: Saddle, wich �1 < 0 < �2

Figure 1.4: Unstable node. (a) 0 < �1 < �2; (b) 0 < �2 < �1
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Figure 1.5: Stable node. (a) �1 < �2 < 0; (b) �2 < �1 < 0

we have two combined complex eigenvalues then, �1;2 = ��i�; i.e det (J) = �2+�2 > 0

and tr (J) = 2�. One is in the area above the parabola, which division there still in three

distinct zones:

tr (J) < 0: The real part of the eigenvalues is negative, the origin is a asymptotically

stable focus (see Figure 1.6);

tr (J) > 0: The real part of the eigenvalues is positive, the origin is a unstable focus

(see Figure 1.6);

Figure 1.6: (a) � < 0 : Stable focus; (b) � > 0 : unstable focus

tr (J) = 0: The real part of the eigenvalues is worthless, the origin is a stable center

(see Figure 1.7).

In short, the zone where the point of balance is asymptotically stable is that corres-
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Figure 1.7: Stable center: with � = 0

pondent with: (
det (J) > 0

tr (J) < 0
:

In the typical case where (
det (J) > 0

tr (J) = 0
;

the origin is a center.

The following table sumarizes the natur of the equilibrium (0; 0):

Eigenvalues Equilibrium

�1;2 2 R; �1; �2 < 0 asymptotically stable node

�1;2 2 R; �1; �2 > 0 unstable node

�1;2 2 R; �1 � �2 < 0 unstable saddle

�1;2 = �� i�; � < 0 asymptotically stable focus

�1;2 = �� i�; � > 0 unstable focus

�1;2 = �i� stable center

1.2.2 The Stability of a Nonlinear System

De�nition 4 Given a system x0 (t) = f(x (t)) with equilibrium x� = 0, its linearization

at x� = 0 is the linear system x0 (t) = Ax, where A = rf(0): Developing f in Taylor�s
expansion we �nd f(x) = Ax+O(jxj).
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Then the linearized system is x0 (t) = Ax. We have seen that a su¢ cient condition for

the asymptotic stability of x = 0 for x0 (t) = Ax is that all the real parts of the eigenvalues

of A be negative, whilst if at least one eigenvalue is positive, or has positive real part,

then x� = 0 is unstable. This result is extended to the nonlinear case in the next theorem,

whose proof is omitted.

Theorem 6 ([4]) .Suppose that all the eigenvalues ofrf(0) have negative real parts.Then
the equilibrium x� = 0 is asymptotically stable with respe:ct to the system x0 (t) = rf(0)x+
O(jxj). If at least one eigenvalue of rf(0) has positive real part, then the equilibrium
x� = 0 is unstable.

Example 1 .Consider the Van der Pol system(
x0 = �y
y0 = x� 2�(x2 � 1)y

;

with j�j < 0. Here the eigenvalues of

A = rf(0; 0) =
 
0 �1
1 2�

!
;

are �1 = �+
p
�2 � 1, �2 = ��

p
�2 � 1.if 0 < � < 1, both the eigenvalues have positive

real part and the equilibrium (0; 0) is unstable. On the other hand, if �1 < � < 0, both

the eigenvalues have negative real part and the equilibrium (0; 0) is asymptotically stable.

1.3 Liapunov Direct Method

At the beginning of the 1900�s, the Russian mathematician Aleksandr Liapunov developed

what is called the Liapunov Direct Method for determining the stability of an equilibrium

point. We will describe this method and illustrate its applications.

De�nition 5 Let x� 2 Rn be an equilibrium point of

x0 (t) = f (x (t)) : x (0) = p: (1.6)

Let 
 � Rn be an open set containing x�. A real valued function V 2 C1 (
;R) is called
a Liapunov function for (1.6) if

(V 1) : V (x) > V (x�) for all x 2 
; x 6= x�:
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(V 2) : _V (x) = (rV (x) jf (x)) � 0, for all x 2 
:
Recall that (x jy ) denotes the euclidean scalar product of the vectors x; y; see Notations.
Moreover, rV = (Vx1 ; :::; Vxn) denotes the gradient of V and the subscripts denote partial

derivatives.

Remark 3 Note that, since x0 (t) = f (x (t)) we have that

_V (x (t)) = Vx1 (x (t)) f1 (x (t)) + Vx2 (x (t)) f2 (x (t)) :::+ Vxn (x (t)) fn (x (t))

= Vx1 (x (t))x
0
1 (t) + Vx2 (x (t))x

0
2 (t) + :::+ Vxn (x (t))x

0
n (t)

= (rV (x (1)) jx0 (t))

=
d

dt
[V (x (t))] :

In other word, _V (x (t)) = dV (x(t))
dt

is nothing but the derivative of V along the trajectories

x (t).Therefore (V 2) implies that V (x (t)) : is non-increasing along the trajectories x (t) :

Theorem 7 ([4]) (Liapunov stability theorem).
(i) If (1.2) has a Liapunov function, then x� is stable.

(ii) If in (V 2) one has that _V (x) < 0, for all x 6= 0, then x� is asymptotically stable.

Proof. We will prove only the statement (i).By the change of variable y = x � x�,

the autonomous system x0 (t) = f (x (t)) becomes y0 (t) = f (y + x�) which has y = 0 as

equilibrium. Thus, without loss of generality, we can assume that x� = 0. Moreover, still

up to a translation, we can assume without loss of generality that V (x�) = 0.

Finally, for simplicity, we will assume that 
 = Rn. The general case requires only
minor changes. Set

'p (t) = V (x (t; p)) :

The function 'p (t) is de�ned for all t � 0 and all p 2 Rn: Moreover 'p (t) is di¤erentiable
and one has

'0p (t) = Vx1x
0
1 + :::+ Vxnx

0
n =

�
rV x (t; p)

��x0 (t; p)0 � = _V (x (t; p)) :

By (V 2) it follows that '0p (t) � 0 for all t � 0. Hence 'p (t) is non-increasing and thus

0 � V (x (t; p)) � V (x (0; p)) = V (p) ; 8t � 0:

Given any ball Tr centered at x = 0 with radius r > 0, let Sr denote its boundary.
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From (V 1) it follows that

m = m (r) = min fV (x) : y 2 Srg > 0:

Let U = fp 2 Tr; V (p) < mg. From (V 1)one has that U is a neighborhood of x = 0.

Moreover, by (12.2) it follows that V (x (t; p)) < m for all t � 0 and all p 2 U .Since m is

the minimum of V in Sr, the solution x (t; p) has to remain in Tr,provided p 2 U , namely
p 2 U =) x (t; p) 2 Tr and this proves that x = 0 is stable.
Roughly, the Liapunov function V is a kind of potential well with the property that

the solution with initial value p in the well remain con�ned therein for all t � 0.

Remark 4 If _V = 0 for all t � 0, then V (x (t; p)) is constant, namely V (x (t; p)) =

V (x (0; p)) = V (p) all t � 0.Then x (t; p) cannot tend to x� as t! +1: As a consequence,

x� is stable but not asymptotically stable.

1.3.1 Example: Lotka Voltera Equations

In the 1920"s Vito Voltera was asked whether it would be possible to explain the �uctu-

ations that had been observed in the �sh population of the Adriatic sea �uctuations that

were of great concern ti �shermen in times of low �sh populations.Volterra 1926 construc-

ted the model that has become known as the Lotka Voltera model (because A.J.Lotka

(1925) constructed a similar model in a di¤erent context about the same time), based

on the assumptions that �sh and sharks were in a predator-prey relationship.Here is a

description of the model suggested by Volterra. Let x(t) be the number of �sh and y(t)

the number of sharks at time t. We assume that the plankton; which is the food supply

for the �sh, is unlimited, and thus that the per capita growth rate of the �sh population in

the absence of sharks would be constant. Thus, if there were no sharks the �sh population

would satisfy a di¤erential equation of the form @x=@t = ax. The sharks, on the other

hand, depend on �sh as their food supply,and we assume that if there were no �sh, the

sharks would have a constant per capita death rate; thus, in the absence of �sh, the shark

population would satisfy a di¤erential equation of the form @y=@t = �cy. We assume
that the presence of �sh increases the shark growth rate, changing the per capita growth

rate from �c to �c + dx . The presence of sharks reduces the �sh population, changing

the per capita �sh growth rate from a to a� by. This gives the Lotka-Volterra equation.(
@x
@t
= ax� bxy

@y
@t
= �cx+ dxy

: (1.7)
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The predator population lags behind that of the prey in achieving its maximum values.

This lag is shown in Figure 1.8, witch graphs both x (t) and y (t) :

Now we want to stady the equilibruim point the system (1.7):

We put (
ax� bxy = f(x; y)

�cx+ dxy = g(x; y)
; (1.8)

the point (x�; y�) is an equilibruim:(
f(x�; y�) = 0

g(x�; y�) = 0
;

(
ax� � bx�y� = 0

�cx� + dx�y� = 0
=)

(
x� = 0; y� = 0

x� = c
d
; y� = a

b

;

so (x�; y�) =
�
(0; 0); ( c

d
; a
b
)
	
:

The Jacobian matrix of (1.7) is

J =

 
a� by �by
dy �c+ dx

!
; (1.9)

J(0; 0) =

 
a 0

0 �c

!
;

whose eigenvalues are �1 = �a; �2 = c. It follows that (0; 0) is unstable saddle.

On the contrary, let us show that the equilibrium ( c
d
; a
b
) is stable. Here

J(
c

d
;
a

b
) =

 
0 �bc

d
ad
b

0

!
;

det(J � �I) = �2 + ac = 0;

then eigenvalues are �1;2 = �i
p
ac. It follows that ( c

d
; a
b
) is stable center.

Global stability:

We want to study the global stability of the nontrivial equilibrium ( c
d
; a
b
) of (1.7) :
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Figure 1.8: The shark and �sh populations oscillante periodically, with the mlaximum
shark population lagging the maximum �sh population.

Let the liapunov function be de�ned as

H(x; y) = dx+ by � c lnx� a ln y; x > 0; y > 0

@H

@t
(x; y) = Hx

@x

@t
+Hy

@y

@t
=
�
d� c

x

� @x
@t
+

�
b� a

y

�
@y

@t
(1.10)

=
�
d� c

x

�
(ax� bxy) +

�
b� a

y

�
(�cx+ dxy);

@H

@t
(
c

d
;
a

b
) = 0;

then ( c
d
; a
b
) is stable (but not asymptotically stable).

The shark and �sh populations oscillate through repeated cycles along a �xed traject-

ory. Figure 1.3.1 shows several trajectories for the predator-prey system.
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Some trajectories along wich H is conserved
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CHAPTER 2

Reaction�Di¤usion System

In this chapter we present an introduction to R-D systems, Activator-Inhibitor systems.

Then we talked about the Hopf bifurcation and the global existence of solutions using the

Liapunov�s theorem, in the later we gave some examples of these systems and we devoted

the system of Gierer-Meinhardt.
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Reaction�di¤usion system

2.1 Introduction to Reaction-Di¤usion Systems

In recent years, reactions-di¤sion systems have received a great deal of attention motivated

by their widespread incident in models of biological and chemical phenomena, and by the

richness of the structure of their sets of solutions. Considering the numerous and varied

applications of these systems; The Approaches to modeling certain chemical problems such

as reactions oscillating chemicals (Brussellateur). Individuals diverge from one problem

to another:

In chemistry, for example, they are chemical substances. In biochemistry, they May

represent molecules. In metallurgy, atoms. In dynamics of Populations, they are humans.

In population genetics, they represent characters. In biophysics, electrical charges or

potential di¤erences. In the environment, they can represent the animals or plants of a

forest, a sea or an ocean ...

For most of these problems, we show that results in reaction-di¤usion systems. The

conditions at the edges will be chosen according to the origin and the nature of the problem

Studied: if there is no immigration of individuals across the boundary of the domain 


on which the problem is posed, the conditions at the homogeneous edges of Neumann. If

there are no individuals on the border, we take the conditions at the edges Homogeneous

of Dirichlet. The unknown (the solution one seeks) is a vector of which The components

are generally positive functions: in chemistry, for example, it is a vector of chemical

concentrations. In biochemistry or metallurgy, a vector of concentrations in numbers of

molecules or atoms respectively. In population dynamics and in the environment, it is a

vector of densities of Human, animal or plant populations ...

Initial conditions are generally positive; Since they are concentrations, densities, elec-

trical charges, etc. All these problems are in the form of:

@u

@t
�D�u = f (u) ;

Where u (x; t) = (u1 (x; t) ; :::; um (x; t)) is a vector of dependent variables, and f (x; t; u (x; t)) =

(f1 (x; t; u (x; t)) ; :::; fm (x; t; u (x; t))) is the reaction (usually nonlinear) and D is a square

matrix m�m Positive and diagonalizable called dissemination matrix. The terms of re-

action are the result of any interaction between the components of u:

For example, in chemistry u is a vector of chemical concentrations and f represents

the chemical reactions on these concentrations. The term D�u represents the Molecular

diagnoses across the reaction boundary.
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2.1.1 Turing Instabilities

In 1952, Turing published a paper titled The chemical basis of morphogenesis( [15] ), where

he proposed a reaction-di¤usion model for pattern formation, in which di¤usion was the

source of the instability that caused patterns to form. However, we will see that the key

is that this instability comes from the interaction of the reactive and di¤usive terms that

govern interacting chemical species that are di¤using within some spatial domain.

We introduce a de�nition:

De�nition 6 A di¤usion-driven instability, or Turing instability, occurs when a steady

state, stable in the absence of di¤usion, becomes unstable when di¤usion is present.

2.2 Activator Inhibitor Systems

2.2.1 Introduction

Pattern formation is a very important process in the development of all organisms. For

example the colony formation of small marine animals is triggered by an activator-inhibitor

system. Furthermore, the regular spacing of leaves or the the ordering of stomata on a

leaf can be explained with the help of such interacting system. There exist di¤erent

mathematical models that are able to simulate such processes. These models consist of at

least two substances that in�uence each other. The system has to be globally stable and

locally unstable to form patterns. In order to achieve theses characteristics the di¤usion

plays a very important role as it is shown in the following.

2.2.2 Behaviour of Activator-Inhibitor Systems

An activator-inhibitor system consists of two substances that act on each other. The

activator stimulates its own production via autocatalysis as well as the production of the

inhibitor. The inhibitor in turn represses the production of the activator. In addition,

the inhibitor di¤uses more rapidly than the activator such that patterns of activator and

inhibitor concentrations can arise. Two cases are considered:

1) An equal activator increase at all positions of a linear array of cells.

2) A random perturbation in just a few cells of the array. Both situations will lead to

di¤erent behaviours of the system.

Theorem 8 ([2]) In the system (1.2)

If

fy(x
�; y�) < 0; gy(x

�; y�) < 0
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and

fx(x
�; y�) > 0; gx(x

�; y�) > 0

is satis�ed, then we call x an activator, y an inhibitor, and the system (1.2) is an

activator�inhibitor system.

2.3 Hopf Bifurcation

The term Hopf bifurcation (also sometimes called Poincaré-Andronov-Hopf bifurcation)

refers to the local birth or death of a periodic solution (self-excited oscillation) from

an equilibrium as a parameter crosses a critical value. It is the simplest bifurcation

not just involving equilibria and therefore belongs to what is sometimes called dynamic

(as opposed to static) bifurcation theory. In a di¤erential equation a Hopf bifurcation

typically occurs when a complex conjugate pair of eigenvalues of the linearised �ow at

a �xed point becomes purely imaginary. This implies that a Hopf bifurcation can only

occur in systems of dimension two or higher.

That a periodic solution should be generated in this event is intuitively clear from

Figure 2.1. When the real parts of the eigenvalues are negative the �xed point is a stable

focus (Figure 2.1.a); when they cross zero and become positive the �xed point becomes

an unstable focus, with orbits spiralling out. But this change of stability is a local change

and the phase portrait su¢ ciently far from the �xed point will be qualitatively una¤ected:

if the nonlinearity makes the far �ow contracting then orbits will still be coming in and

we expect a periodic orbit to appear where the near and far �ow �nd a balance (as in

Figure 2.1.b).

The Hopf bifurcation theorem makes the above precise. Consider the planar system

where � is a parameter. Suppose it has a �xed point (x; y) = (x0; y0); which may depend

on �. Letthe eigenvalues of the linearised system about this �xed point be given by �(�);
��(�) = �(�)� i�(�).

Suppose further that for a certain value of �, say � = �0, the following conditions are

satis�ed (As mentioned in [9] and [17]):

1.�(�0) = 0; �(�0) = w 6= 0, where sgn(w) = sgn[(@g�=@x)j�=�0(x0; y0)] (non-
hyperbolicity condition: conjugate pair of imaginary eigenvalues).

2.d�(�)
d�

��
�=�0 = d 6= 0 (transversality condition: the eigenvalues cross the imaginary

axis with non-zero speed).

3. a 6= 0, where

a =
1

16
(fxxx+ fxyy + gxxy + gyyy) +

1

16w
(fxy(fxx+ fyy)� gxy(gxx+ gyy)� fxxgxx+ fyygyy);
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Figure 2.1: Phase portraits of (2) for (a) � = �0:2, (b) � = 0:3. There is a supercritical
Hopf bifurcation at � = 0.

with fxy = (@2f�=@x@y)
��
�=�0(x0; y0) , etc. (genericity condition).

Then a unique curve of periodic solutions bifurcates from the �xed point into the

region � > �0 if ad < 0 or � < �0 if ad > 0. The �xed point is stable for � > �0 (resp.

� < �0) and unstable for � < �0 (resp. � > �0) if d < 0 (resp. d > 0) whilst the periodic

solutions are stable (resp. unstable) if the �xed point is unstable (resp. stable) on the

side of � = �0 where the periodic solutions exist.

The amplitude of the periodic orbits grows like
p
j�� �0j whilst their periods tend to

2�= jwj as � tends to �0. The bifurcation is called supercritical if the bifurcating periodic
solutions are stable, and subcritical if they are unstable.

This 2D version of the Hopf bifurcation theorem was known to Andronov and his co-

workers from around 1930, and had been suggested by Poincaré in the early 1890s. Hopf,

in 1942, proved the result for arbitrary (�nite) dimensions. Through centre manifold

reduction the higher-dimensional version essentially reduces to the planar one provided

that apart from the two purely imaginary eigenvalues no other eigenvalues have zero

real part. In his proof (which predates the centre manifold theorem), Hopf assumes the

functions f� and g� to be analytic, but C5di¤erentiability is su¢ cient. Extensions exist

to in�nite-dimensional problems such as di¤erential delay equations and certain classes of

partial di¤erential equations (including the Navier-Stokes equations).
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2.4 Examples

Now we will provide some examples of these systems.

2.4.1 System of Lengyel-Epstein

The Lengyel�Epstein System is the following reaction-di¤usion equations(
@u
@t
= �u+ a� u� 4uv

1+u2

@v
@t
= (�b)�v + (�b)

�
u� uv

1+u2

� ; x 2 
; t > 0

which was derived from the chlorite iodide malonic acid (CIMA) chemical reaction in-

troduced by Lengyel and Epstein and can be used to design chemical systems capable of

displaying stationary, symmetry breaking reaction di¤usion patterns (Turing structures).

Here u and v are the concentrations of the active iodide I� and inhibitor (ClO�2 ) at time

t, respectively, a and b are positive parameters related to the feed concentrations, � > 0

is a rescaling parameter depending on the concentration of the starch.

A closely related system for this chemical reaction mechanism is the chlorine dioxide-

iodine-malonic acid (CDIMA) reaction shown below.8>>>><>>>>:
MA+ I2 ! IMA+ I +H+

ClO2 + I� ! ClO2 +
1
2
I2

CIO�2 + 4I
� + 4H+ ! Cl + 2I2 + 2H2O

S + I2 + I� ! SI�3

:

The �rst reaction serves as a source of the activator I�, the second produces the

inhibitor chlorite ion, the third shows regeneration of iodine, and the last reaction shows

the complex formation between the activator iodide (I�) and the indicator starch.

In the CDIMA system of reaction, the concentration of Malonic acid (MA), Chloride

Dioxide (ClO2) and Iodine (I2) displays very little variation and essentially they can be

considered constant. Since only the activator iodine ion (I�) and the inhibitor chlorite

ion (ClO�2 ) show wide concentration variation, the system can be approximated by two

variables model.

In the presence of starch which is used as indictor, the di¤usion rate of the activ-

ator (I�) is slower than that of the inhibitor (ClO�2 ). The starch which is much bigger

molecule forms a chemical complex with I� e¤ectively reducing the di¤usion rate of I�.

This allows the inhibitor to di¤use faster creating a condition that leads to oscillatory

phenomenon.(For more information, see [11])
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2.4.2 The Gray-Scott Model: Pearson�s Parametrization

The reaction-di¤usion system described here involves two generic chemical species U and

V , whose concentration at a given point in space is referred to by variables u and v.

As the term implies, they react with each other, and they di¤use through the medium.

Therefore the concentration of U and V at any given location changes with time and can

di¤er from that at other locations.

The system is described by the following formula(
@u
@t
= Du�u� uv2 + F (1� u)

@v
@t
= Dv�v + uv2 + (F + k) v

;

u = [U ], the concentration of U , and v = [V ]; the concentration of V . For the sake of

simplicity we can consider Du; Dv; F and k to be constants. (For more information, see

[12])

2.4.3 The Gierer-Meinhardt System

The G-M Model is a reaction-di¤usion system of the activator-inhibitor type that appears

to account for many important types of pattern formation and morphogenesis observed

in development, in their seminal paper, Gierer and Meinhardt ([5]) proposed the model(
@a
@t
= ��a+ c�a

r

hs
+ ��0 +Da

@2a
@x2

@h
@t
= c0�0 a

T

hu
� h+Dh

@2h
@x2
:

: (2.1)

Where a(x; t) represents the population density of the activator and h(x; t) the inhibitor,

and �0; �; �
0; c0; c; �; ; r; s; T; u;Da; Dh are all positive constants. The activator a and the

inhibitor h act on the sources with density �(x) and �0(x), respectively.For simplicity, we

assume the sources are evenly distributed in space, i.e. �(x) = �, �0(x) = �0 and the basal

production of the activator is proportional to �. The terms ��a and �h represent the
rates that a and h are removed by either enzyme degradation, or leakage, or reuptake

by the source, or by any combination of these mechanisms. Da and Dh are the di¤usion

coe¢ cients of the activator and inhibitor, respectively. We will also assume that Da, �0
small and Dh large, so that the inhibitor will have nearly equal distribution over the entire

area ([5]). A further approximation leads (2.1) to the following two simplest models:

The �rst model is the activator and inhibitor system with common sources(
@a
@t
= ��a+ c� a

2

h4
+ ��0 +Da

@2a
@x2

@h
@t
= c0�0 a

2

h4
� h+Dh

@2h
@x2

; (2.2)
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where correspondingly u = s = 4; r = T = 2 and � = �0 in (2.1), and the second model is

the activator and inhibitor system with di¤erent sources(
@a
@t
= ��a+ c�a

2

hs
+ ��0 +Da

@2a
@x2

@h
@t
= c0�0a� h+Dh

@2h
@x2

; (2.3)

where correspondingly u = 0; r = 2; T = 1 in (2.1).

In [[14]], the stability of the equilibrium and the Hopf bifurcation of (2.3) with s = 1

were analyzed, and the author used spectral analysis and Floquet exponent to show that

under certain conditions, the equilibrium (Hopf periodic solution) is asymptotically stable

for the ODE system while, with added di¤usions under Neumann boundary conditions,

the equilibrium (Hopf periodic solution) may lose its stability and a spatial pattern may

occur.

In contrast, there have been a paucity of studies on system (2.3) with s = 2. In partic-

ular, we would like to understand the pattern generating mechanism in this case, namely,

the parametric range for the pattern to form and the dynamics that are responsible for

the patterns such as stripes and spots. As far as we know, the results for the Turing

patterns for the Geirer-Meinhardt model in this case are new, and they are important in

theory and implication.

2.5 Global Existence

To demonstrate the existence of the solutions of the reaction systems, there are several

methods such as the invariant region method, the smoothing e¤ect method, functional

methods based on a priori estimates or on Liapunov functional. Here we do not expose

the �rst two methods since they do not always give the global existence in view of the

di¤culty and the complexity of the reaction terms of certain reaction-di¤usion systems,

but we devote ourselves to the last method which gives satisfactory results.

De�nition 7 (Functional of Lyapunov) Functional Lyapunov is associated with a system
of reaction-di¤usion formed by m-equations, any function

L : R+ ! R+;

such that
d

dt
(L (u1 (t; �) ; :::; um (t; �))) � 0;

for all t > 0 and all solution (u1 (t; �) ; :::; um (t; �)) of the system.
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Remark 5 We can use only a bounded functional to demonstrate the global existence of
solutions.Here are some of the theories we have used in the following chapters.

Theorem 9 ([13]) Assume 
 bounded.
(i) Assume that

r � 1
T

< min

�
s

u+ 1
; 1

�
: (2.4)

Then, for all a0; h0 2 C
�
�

�
; with a0; h0 > 0, the solution (a; h) of problem (2.1) is global.

If in addition �; ,�; �0 > 0, then a; h, are uniformly bounded in �
� [0;1).
(ii) Assume that

r � 1
T

> min

�
s

u+ 1
; 1

�
;

r � 1
T

6= 1:

Then there exist space-independent initial data a0; h0 > 0 such that the solution (a; h) =

(a (t) ; h (t)) of problem satis�es Tmax <1.

Lemma 10 ([13]) Assume that r; s; T; u satisfy For all �; �; � > 0, there exist C =

C (�; �; �) > 0 and � = � (�) 2 (0:1) such that

�
xr�1+�

yu+1+�
� �

xT+�

yu+1+�
+ C

�
x�

y�

��
; x � 0; y � �: (2.5)

Proof. Let x > 0 and y � �: Inequality is equivalent to

�
xr�1

ys
� �

xT

yu+1
+ C

�
y�

x�

�1��
;

write

�
xr�1

ys
=

�
xT

yu+1

�(r�1)=T
y(r�1)(u+1)=r�s = C

�
�
xr

yu+1

��
y�m;

where � = (p� 1) =r < 1 and m = s � (r � 1) (u+ 1) =T > 0. For each 0 < " <

min (m= (u+ 1) ; 1� �) ; using y � � and Young�s inequality, we obtain

�
xr�1

ys
= C

�
�
xT

yu+1

��+�
y�m+(u+1)�x�T� � C

�
�
xT

yu+1

��+��
y�

x�

�T�=�
� �

xT

yu+1
+ C

�
y�

x�

�T�=(1����)�
;

and follows by taking � su¢ ciently small.

Lemma 11 ([?]) Let T > 0 and f = f (t) be a non-negative integrable function on [0; T ).

Let 0 < � < 1 and W = W (t) be a positive function on [0; T ) satisfying the di¤erential
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inequality
dW

dt
� �W (t) + f (t)W � (t) ; 0 � t < T:

Then W (t) � k, where k is the positive root of the algebraic equation

x�
�
sup
0<t<T

Z
e�(t��)f (�) d�

�
x� = W (0) :
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CHAPTER 3

The Gierer-Meinhardt Activator-Inhibitor

Model

As we see before about Gierer-Meinhardt now we will investigate this system by studying

the local stability in all case (EDO and PDE models), the global existence, How changes
occur in stability, Bifurcations.

36



The Gierer-Meinhardt Activator-Inhibitor Model

3.1 The ODE Model

3.1.1 Local stability

The Stability of the Equilibrium of the Kinetic System (2.3) with s = 1

In this subsubsection we will study the stability of the equilibrium of (2.3) with s = 1,

for the ODE system.

Following the Gierer-Meinhardt equations for the activator concentration a and the

inhibitor concentration h we can write:(
at = ��a+ c�a

2

h
+ ��0

ht = c0�0a2 � vh
: (3.1)

System (3.1) can be interpreted in this way: two molecules of activator are necessary to

activate and one to inhibit the source.

For convenience, we denote(
��a+ c�a

2

h
+ ��0 = f(a; h)

c0�0a2 � vh = g(a; h)
:

The equilibrium (a�; h�) of (3.1) satis�es the equations(
��a+ c�a

2

h
+ ��0 = 0

c0�0a2 � vh = 0
;

so (
��u+ c�a

�2

h� + ��0 = 0

�vh� + c0�0a�2 = 0
;

then (
a� =

�
c�v+c0�0��0

c0�0�

�
h� = c0�0a�2

v

;

the nontrivial equilibrium is (a�; h�) =
��

c�v+c0�0��0
c0�0�

�
; c

0�0

v

�
c�v+c0�0��0

c0�0�

�2�
:

The jacobian matrix of the system (3.1) is:

J =

0@ 2c�v
cv+c0�0�0

� � � c
�

�
�v

cv+c0�0�0

�2
2�(cv+c0�0�0)

�
�v

1A ;
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det(J) =

�
2c�v

cv + c0�0�0
� �

�
(�v) +

�
2� (cv + c0�0�0)

�

� 
� c
�

�
�v

cv + c0�0�0

�2!
= �v: (

tr(J) = 2c�v
cv+c0�0�0

� �� v

det(J) = �v > 0
;

tr(J) =
2c�v

cv + c0�0�0
� �� v < 0;

then
� (c0�0�0 � cv)

c0�0�0 + cv
<
v

�

det(J � �I) =

������
2c�v

cv+c0�0�0
� �� � � c

�

�
��

c�+c0�0�0

�2
2�(cv+c0�0�0)

�
�v � �

������
= �2 �

�
2c��

cv + c0�0�0
� �� v

�
�+ �v

= 0;

the characteristic equation is

�2 � �t tr J + det J = 0

� = (� tr J)2 � 4 det J
= i2

�
4 det J � (tr J)2

�
;

then

�1;2 =
1

2
tr J � i

1

2

p
4 det J � (tr J)2

the characteristic roots can be expressed as

�1;2 = � (�)� iw(�);

where

� (�) =
1

2
tr J; w(�) =

1

2

p
4 det J � tr J2:

It is easy to see that �1;2 have negative real parts if

� > 0() v >
c0�0�0
c

; (3.2)
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the point (a�; h�) is asymptatically stable if

� <
v (cv + c0�0�0)

cv � c0�0�0
= �0 (3.3)

and

v >
c0�0�0
c

:

The Stability of the Equilibrium of the Kinetic System (2.3) with s = 2:

From now on, we �x s = 2 in (2.3).To make the later exposition easier we nondimension-

alize (2.3) with s = 2. Let a = c�Da
(c0�0)2

�a; h = c�
c0�0
�h; c0 =

�0
c(Da)

2 (c0�0)
2 ; t =

�t
Da
; � = Da��;

 = Da�;Dh = rDa; we have (
@�a
@t
= c0 +

�a2
�h2
� ��a+ @2�a

@x2

@�h
@t
= �a� �h+ r @

2�h
@x2

: (3.4)

For notational convenience, we will still use a; h; t, �,  instead of �a; �h; �t, ��, �. (3.4)

now reads (
@a
@t
= c0 +

a2

h2
� �a+ @2a

@x2

@h
@t
= a� h+ r @

2h
@x2

: (3.5)

We will study the stability of the equilibrium and the Hopf bifurcation of the system

(3.5)

Without di¤usion, we can write the system (3.5) as(
@a
@t
= c0 +

a2

h2
� �a

@h
@t
= a� h

; (3.6)

we denote (
c0 +

a2

h2
� �a = f(a; h)

a� h = g(a; h)

(a�; h�) is an equilibruim point of (3.6) if :(
f(a�; h�) = 0

g(a�; h�) = 0
;

then (
c0 +

a2

h2
� �a = 0

a� h = 0
;
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then
h� = c0+2

�v

a� = c0+2

�

:

The unique équilibruim point of this system is :

(a�; h�) = (
c0 + 2

�
;
c0 + 2

�
): (3.7)

The Jacobian matrice of (3.6) is:

J =

 
2a
h2
� � �2a2

h3

1 �

!
; (3.8)

J(a�; h�) =

 
v2�c0
c0+2

� �2v3
c0+2

�

1 �

!
; (3.9)

det(J � �I) = (
2 � c0
c0 + 2

�� �)(� � �) +
23

c0 + 2
�

= 0;

�2 � (�c0 + 2

c0 + 2
�� )�+ � = 0 (3.10)

� = (
�c0 + 2

c0 + 2
�� )2 � 4� (3.11)

=

�
�c0 + 2

c0 + 2

�2
�2 � 2�c0 + v2

c0 + v2
� + 2 � 4�v

=

�
�c0 + 2

c0 + 2

�2
�2 �

�
2
�c0 + 2

c0 + 2
 + 4

�
�+ 2:

�0 =

�
2
�c0 + 2

c0 + 2
 + 4

�2
� 4

�
�c0 + 2

c0 + 2

�2
2

=

�
2
�c0 + 2

c0 + 2
 + 4 � 2�c0 + 2

c0 + 2


��
2
�c0 + 2

c0 + 2
 + 4 + 2

�c0 + 2

c0 + 2


�
= (4)

�
4
�c0 + 2

c0 + 2
 + 4

�
= 16

�c0 + 2

c0 + 2
2 + 16:
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The eigenvalues of (3.11) are

�1 =

�p
c0 + 2 �

p
2
�2

�c0 + 2
�0

�2 =

�p
c0 + 2 +

p
2
�2

�c0 + 2
�0;

where

�0 =
�c0 + 2

c0 + 2
: (3.12)

Theorem 12 System (3.6) has a unique equilibrium (a�; h�) = ( c0+
2

�
; c0+

2

�
), whish is

asymptotically stable if

(H1)
�c0 + 2

c0 + 2
� < ;

and is unstable if

(H2)
�c0 + 2

c0 + 2
� > :

Furthermore,

(i) (a�; h�)is a stable node if one of the following conditions is satis�ed:

(ia) 2 6= c0; 0 < � � �1; (ib) 
2 = c0; 0 < � <



4
; (ic) 2 < c0; � � �2:

(ii) (a�; h�)is a stable focus if one of the following conditions is satis�ed:

(iia) 2 < c0; �1 < � � �2; (iib) 
2 = c0; � >



4
; (iic) 2 > c0; �1 < � � �0:

(iii) (a�; h�) is an unstable focus if

2 > c0; �0 < � < �2;

(iv) (a�; h�)is an unstable node if

2 > c0; � � �2:
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Proof. the characteristic roots of (3.10) are

�1;2 =
1

2

24�c0 + 2

c0 + 2
��  �

s�
�c0 + 2

c0 + 2
�� 

�2
� 4�

35 :
We have two cases:

The �rst case 2 = c0

(A1)

� = 2 � 4�v > 0
so  � 4� > 0 then 0 < � <



4
;

the eigenvalues become

�1;2 =
1

2

�
� �

p
2 � 4�

�
;

�1 =
1

2

�
� �

p
2 � 4�

�
< 0;

�2 =
1

2

�
� +

p
2 � 4�

�
< 0:

Then if 2 = c0 and 0 < � < 
4
; �1; �2 < 0, the equilibrium (a�; h�) is asymptotically

stable node.

(A2)

� = 2 � 4� < 0 so  < 4� then � > 

4

the eigenvalues become

�1;2 =
1

2

h
� � i

p
2 � 4�

i
;

then if 2 = c and � > 
4
> 0; the equilibrium (a�; h�) is asymptotically stabe focus.

The second case 2 6= c0

(B1) (�c0+
2

c0+2
�� )2 � � � 0 if (� � �1 or � � �2)8><>: �1 =

�p
c0+2�

p
2
�2

�c0+2 �0

�2 =

�p
c0+2+

p
2
�2

�c0+2 �0

;
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(B11) 2 > c0 and �1 < �0 < �2

if 0 < � � �1 stable node,

if � � �2 unstable node.

(B12) 2 < c0 and �0 < 0 < �1 < �2(
0 < � < �1 then (�1;2 réal négative)

� � �2
;

(a�; h�) stable node

(B2) (�c0+
2

c0+2
�� )2 � 4� < 0 if �1 < � < �2

(B21) 2 < c0

�(�) < 0;

(a�; h�) is asyptotically stable focus.

(B22) 2 > c0

we have �0 =
c0+2

�c0+2 > 0

(B221) 0 < �1 < � < �0 : (a
�; h�) stable focus [�1;2] (� < 0);

(B222)�0 < � < �2 (a
�; h�) unstable focus (� > 0):

3.1.2 Global Existence of Solutions

Global Existence of Solutions of the Kinetic System (2.3) with s = 1

We claim that, for all large �; � > 0, the function

� = ��;� (t) =
a�

h�
; (3.13)

satis�es

sup
t2(0;T )

� (t) <1: (3.14)
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We have:

�0 (t) =
�a��1ath

� � �h��1hta
�

h2�

=
�a��1

h
��0 + c�a

2

h
� �a

i
h�

� �a� [c0�0a2 � vh]

h�+1

= (���+ �v)
a�

h�
+

�
�c�

a�+1

h�+1
� �c0�0

a�+2

h�+1
+ ���0

a��1

h�

�
= (���+ �v)�+

�
�c�

a�+1

h�+1
� �c0�0

a�+2

h�+1
+ ���0

a��1

h�

�
:

We also have
a��1

h�
=

�
a�

h�

�(��1)=�
h��=� � C

�
a�

h�

�(��1)=�
: (3.15)

Using Lemma (2) , (3.15) and Holder�s inequality, we obtain

�0 (t) � (���+ �v)�+ C

�
a�

h�

��
+ ���0

a��1

h�
(3.16)

� (���+ �v)�+ C
�
�� + �(��1)=�

�
;

for some � 2 (0; 1).
Since ���+ �v < 0, the function

f (Y ) = (���+ �v)Y + C
�
Y � + Y (��1)=�� ;

has a largest positive zero, say Y = K. Since, by 3.16, �0 (t) < 0 whenever � (t) > K,

we deduce easily that supt2(0:T ) � (t) � max (� (0) ; K), hence 3.14. Since h is bounded

below, it is clear that 3.14 remains true if we enlarge �.The claim is proved.

Global Existence of Solutions of the Equilibrium of the Kinetic System (2.3)
with s = 2:

We claim that, for all large �; � > 0, the function

� = ��;� (t) =
a�

h�
; (3.17)

satis�es

sup
t2(0;T )

� (t) <1: (3.18)
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By (3.6)we have:

�0 (t) =
�a��1ath

� � �h��1hta
�

h2�

=
�a��1

h
c0 +

a2

h2
� �a

i
h�

� �a� [a� h]

h�+1

=
�c0a

��1

h�
+
�a�+1

h�+2
� ��a�

h�
� �a�+1

h�+1
+
�a�

h�

= (���+ �)
a�

h�
+

�
�
a�+1

h�+2
� �

a�+1

h�+1
+ �c0

a��1

h�

�
= (���+ �)�+

�
�
a�+1

h�+2
� �

a�+1

h�+1
+ �c0

a��1

h�

�
:

Owing to , we also have

a��1

h�
=

�
a�

h�

�(��1)=�
h��=� � C

�
a�

h�

�(��1)=�
: (3.19)

Using Lemma (2) ,( 3.19) and Holder�s inequality, we obtain

�0 (t) � (���+ �)�+ C

�
a�

h�

��
+ ���0

a��1

h�
(3.20)

� (���+ �)�+ C
�
�� + �(��1)=�

�
;

for some � 2 (0; 1).
Since ���+ �v < 0, the function

f (Y ) = (���+ �)Y + C
�
Y � + Y (��1)=�� ;

has a largest positive zero, say Y = K. Since, by (3.20), �0 (t) < 0 whenever � (t) > K,

we deduce easily that supt2(0:T ) � (t) � max (� (0) ; K), hence (3.18). Since h is bounded
below, it is clear that (3.18) remains true if we enlarge �.The claim is proved.

3.1.3 The Hopf bifurcation

The Hopf bifurcation of the Kinetic System (2.3) with s = 2:

When � = �0 the Jacoobian matrix of the system (3.6) evaluated at (a
�; h�) has a pair

of conjugate pure imaginary eigenvalues. This indicates that system may undergo a Hopf

bifurcation at � = �0:

From now on,we will set � to be the bifurcation parameter, and study the direction and
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stability of the Hopf bifurcation. We �rst transforme into normal form and translate

the equilibrium (a�; h�) to the origin by the translation x = a � a�; y = h � h�: The

following computation is tedious but straightforward:

We will develope f and g in Taylor�s expansion.

We can calculate that

fah(a
�; h�) = �4(c0 + 2

�
)(

�

c0 + 2
)3 =

�4�23
(c0 + 2)2

;

fa(a
�; h�) = 2(

c0 + 2

�
)(

�

c0 + 2
)2 � � =

�c0 + 2

c0 + 2
�;

faa(a
�; h�) = 2(

�

c0 + 2
)2;

fh(a
�; h�) = �2(c0 + 2

�
)2(

�

c0 + 2
)3

= �2 3�

c0 + 2
;

fhh(a
�; h�) = 6(

c0 + 2

�
)2(

�

c0 + 2
)4

= 6
4�2

(c0 + 2)2
;

faaa(a
�; h�) = 0

faah(a
�; h�) = �4

�
c0 + 2

�

�3
;

fahh(a
�; h�) = 12

�
c0 + 2

�

��
�

c0 + 2

�4
;

fhhh(a
�; h�) = �24

�
c0 + 2

�

�2�
�

c0 + 2

�5
= 24

5�3

(c0 + 2)3
:
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Thus

f(a; h) = f(a�; h�) + (a� a�)(
�c0 + 2

c0 + 2
)�� (h� h�)2

3�

c0 + 2

+
1

2!

"
(a� a�)2 � 2

�
�

c0 + 2

�2
� 6(a� a�)(h� h�)

�23

(c0 + 2)2
+ 6(h� h�)2

4�2

(c0 + 2)2

#
+
1

3!

�
(a� a�)3 � 0 + 3(a� a�)2(h� h�)faah + 3(a� a�)(h� h�)2fahh + (h� h�)3fhhh

�
+O(4);

then

f(x; y) =

�
�c0 + 2

c0 + 2
�

�
x� 2 3�

c0 + 2
y +

(�)2

(c0 + 2)2
x2 � 4xy (�)2

(c0 + 2)2
+ y

2

2
(�)2

(c0 + 2)2

+
1

6

"
3x2y(�4

�
�

c0 + 2

�3
) + 3xy2(12

�34

(c0 + 2)4
) + y3(24

�35

(c0 + 2)3
)

#
+O(4):

Now we get Taylor�sexpansion of f and g

f(x; y) =

�
�c0 + 2

c0 + 2
�

�
x� 2 3�

c0 + 2
y +

(�)2

(c0 + 2)2
�
x2 � 4xy + 3y22

�
�2 �33

(c0 + 2)3
�
x2y � 3xy2 � 2y32

�
+O(4);

g(x; y) = x� y:

Now the system (3.6) becomes

@

@t

 
x

y

!
=

 
�c0+2
c0+2

� �2 3�
c0+2

1 �

! 
x

y

!
+

 
f1(x; y; �)

g1(x; y; �)

!
: (3.21)

Where

f1(x; y; �) =
(�)2

(c0 + 2)2
�
x2 � 4xy + 3y22

�
� 2 �33

(c0 + 2)3
�
x2y � 3xy2 � 2y32

�
(3.22)

+o(4) (3.23)

g1(x; y; �) = 0;

and o(4)represents the remaining terms with order greater than or equal to 4.

For � = �0, we verify �1;2 = �iw0 andw0 = w (�0) = 
q

c0+2

�c0+2 > 0 and
d
d�
Re (�1;2)

���
�=�0

=

�c0+2
2(c0+2)

> 0 and the eigenvector of J (�0) correspending to iw0 is �;
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where (J � iw0I) � = 0 
�c0+2
c0+2

�� iw0
�23
c0+2

�

1 � � iw0

! 
x

y

!
=

 
0

0

!
;

( �
�c0+2
c0+2

�� iw0

�
x� 23

c0+2
�y = 0

x+ (� � iw0) y = 0) x = ( + iw0)
;

) � = ( + iw0; 1)
> :

The eigenvector of J (�0) correspending to iw0 is � = ( + iw0; 1)
> :

Setting

P =

 
w0 

0 1

!
;

to calculate P�1we assume that

P�1 =

 
a b

c d

!
;

then  
w0 

0 1

! 
a b

c d

!
=

 
1 0

0 1

!
;

then

P�1 =

 
1
w0

�
w0

0 1

!
 
_x

_y

!
= P

 
0 �w0
w0 0

!
P�1

 
x

y

!
+

 
f1

g1

!
;

with transformation: 
x

y

!
= P

 
u

v

!

P

 
_u

_v

!
= P

 
0 �w0
�w0 0

!
P�1P

 
u

v

!
+

 
f1

g1

!
 
_u

_v

!
= P�1P

 
0 �w0
w0 0

!
P�1P

 
u

v

!
+ P�1

 
f1

g1

!
;

Larbi Tebessi Univ-Tebessa - 48 2e nd Master / PDE



The Gierer-Meinhardt Activator-Inhibitor Model

(3.21) turns into  
_u

_v

!
=

 
0 �w0
w0 0

! 
u

v

!
+

 
f2

g2

!
:

Where

f2 (u; v; �0) =
1

w0

"
4

(�c0+2)2
�
(w0u+ v)2 � 4 (w0u+ 8v) v + 32v2

�
� 2

(�c0+2)3
�
(w0u+ v)2 v + 3 (w0u+ v) v2 + 22v3

� #+O (4)

= � 5

(c0 � 2)4
u
h�
c20 � 4

�
u+ 2

�
c0 � 2

�2
v + 22

�
c0 + 2

�
uv + 22

�
c0 � 2

�
v2
i

+O (4) ;

g2 (u; v; �0) = 0:

The stability of Hopf bifurcation of (3.6) at (a�; h�) is determined by the sign of the

following

� =
1

16
(f2uuu + g2uuv + f2uvv + g2vvv)

+
1

16w0
[f2uv (f2uu + f2vv)� g2uv (g2uu + g2vv)� f2uug2vv + f2vvg2vv] ;

where all the partial derivatives are evaluated at the bifurcation point (u; v; �) = (0; 0; �0) :

Since g2 (u; v; �0) = 0 we have that

� =
1

16
(f2uuu + f2uvv) +

1

16w0
f2uv (f2uu + f2vv) :

We can calculate that

f2uuu = 0;

f2uvv =
47

(�c0 + 2)3
;

f2uv =
25 (c0 + 2)

(�c0 + 2)3
;

f2uu = � 25

(�c0 + 2)2
;

f2vv = 0:
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Thus,

� =
1

16
f2uvv +

1

16w0
f2uvf2uu

= � c0
7

4 (�c0 + 2)4
< 0:

Now from Poincaré-Andronov-Hopf Bifurcation Theorem, d
d�
Re (�1;2)

���
�=�0

> 0 and the

above calculation of �; we summarize our results as the following theorem.

Theorem 13 Suppose c0 < 2; then system (3.6) experiences a Hopf bifurcation at

(a�; h�)for � = �0: The Hopf bifurcation is supercritical and the bifurcated limit cycle

is stable.

3.2 The PDE Model

3.2.1 Di¤usion Driven Instability of the Equilibrium

In this subsection, we consider the in�uence of di¤usion of the stability of equilibrium

(a�; h�) of the system (
@a
@t
= c0 +

a2

h2
� �a+ @2a

@x2

@h
@t
= a� vh+ r @

2h
@x2

: (3.24)

We �rst assume condition (H1) so that (a�; h�) is stable equilibrium for system (3.6)

and we consider the corresponding reaction di¤usion system (3.24) with the following

Neumann boundary conditions(
@a
@x
(0; t) = @a

@x
(�; t) = 0

@h
@x
(0; t) = @h

@x
(�; t) = 0

; (3.25)

in the Banach space H2 ([0; �])�H2 ([0; �]) ; where

H2 ([0; �]) =
�
w (:; t) j @

iw

@xi
2 L2 ([0; �]) ; i = 0; 1; 2

�
:

It is well known that the operator a ! axx with the above boundary condition has

eigenvalues and eigenfunctions as follows:

�0 = 0; '0 =

r
1

�
; �k = k2; 'k =

r
2

�
cos (kx) ; k = 1; 2; 3; :::

From the standard linear operator theory, it is known that if all the eigenvalues of the
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operator L have negative real parts, then (a�; h�) is asymptotically stable, and if some

eigenvalues have positive real parts, the (a�; h�) is unstable.

It is easy to see that (a�; h�) is a steady state solution of (3.24)-(3.25) and if (a�; h�) is

lineary unstable in H2 ([0; �])�H2 ([0; �]) then, it is nonlineary unstable for (3.24)-(3.25).

Let u1 = a�a�; u2 = h�h�, we can write the linearized system of Eq (3.24) at (a�; h�)
as �

u1t
u2t

�
= L

�
u1
u2

�
:= D

�
u1xx
u2xx

�
+ J

�
u1
u2

�
; (3.26)

where

D :=

 
1 0

0 r

!
; J :=

 
�c0+2
c0+2

� � 23

c0+2
�

1 �

!
:

Let (u1; u2) 2 H2 ([0; �])�H2 ([0; �]) :

We consider the following characteristic equation of the operator

L

 
'

 

!
= �

'

 
:

Let (' (x) ;  (x)) be an eigenfunction of L corresponding to the eigenvalue �, and let 
'

 

!
=

1X
k=0

 
ak

bk

!
cos kx;

where ak and bk are coe¢ cients, we obtain that

�k2D
1X
k=0

 
ak

bk

!
cos kx+ J

1X
k=0

 
ak

bk

!
cos kx = �

1X
k=0

 
ak

bk

!
cos kx:

Hence �
J � k2D

� ak

bk

!
= �

 
ak

bk

!
(k = 0; 1; 2; :::) :

Denote

Jk = J � k2D =

 
�c0+2
c0+2

�� k2 � 23

c0+2
�

1 � � rk2

!
(k = 0; 1; 2; :::) ; (3.27)

It follows from this, that the eigenvalues of L are given by the eigenvalues of Jk for

k = 0; 1; 2; :::. The characteristic equation of Jk is
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det (Jk � �I) =

����� �c0+2
c0+2

�� k2 � � � 23

c0+2
�

1 � � rk2 � �

����� (3.28)

=

�
�c0 + 2

c0 + 2
�� k2 � �

��
� � k2 � �

�
+

23

c0 + 2
� (3.29)

= �2 � �

�
�k2 (1 + r) + �c0 + 2

c0 + 2
�� 

�
+

�
rk2
�
k2 � �c0 + 2

c0 + 2
�

�
+ 

�
k2 + �

��
(3.30)

= 0; (3.31)

we are searching conditions on the solutions of(3:28) such that Re (� (k)) < 0 and � (k)

satis�es the equation

�2 � � tr (k) + det (k) = 0; k = 0; 1; 2; ::: (3.32)

where

tr (k) = �k2 (1 + r) + �c0 + 2

c0 + 2
��  < 0;

and

det (k) = rk2
�
k2 � �c0 + 2

c0 + 2
�

�
+ 

�
k2 + �

�
:

Under condition (H1) we have tr (k) < 0 for all k = 0; 1; 2; ::: and det (0) > 0.

det (k) > 0 so rk2
�
k2 � �c0 + 2

c0 + 2
�

�
> �

�
k2 + �

�
;

r >
� (k2 + �)

k2
�
k2 � �c0+2

c0+2
�
� ; k 6= 0:

Then det (k) � det (0) > 0 for k = 1; 2; ::: if �c0+2
c0+2

� � 1 or m <
q

�c0+2
c0+2

� � m + 1

and r < rm, where m 2 N+ and

rm = min
1�k�m

 (k2 + �) (c0 + 2)

k2 [(�c0 + 2)�� k2 (c0 + 2)]
:

It follows that (3.32) can only have solutions with Re (� (k)) < 0 for all k = 0; 1; 2; :::;

i.e. (a�; h�) is linearly asymptotically stable for (3.24), the linear stability implies the non

linear stability of the equilibrium. It follows that (a�; h�) is nonlinearly stable for (3.24).

Hence, there is no Turning pattern foe system (3.24) in this case. If m <
q

�c0+2
c0+2

� �

Larbi Tebessi Univ-Tebessa - 52 2e nd Master / PDE



The Gierer-Meinhardt Activator-Inhibitor Model

m + 1 and r > rm, then there exists at least one negative in det (1) ; :::; det (m) ; and so

(a�; h�) is unstable for (3.24). Hence, Turing instability takes place in this case.

Theorem 14 The following result is a summary of the obove discussion:

Assume condition (H1) and let rm = min
1�k�m

(k2+�)(c0+2)
k2[(�c0+2)��k2(c0+2)] , then (a

�; h�) is unstable

equilibrium for (3.24) if

(H3) m <
q

�c0+2
c0+2

� � m+ 1 m 2 N+ and r > rm;

and is a stable equilibrium for (3.24) if either

(H4) �c0+2
c0+2

� � 1;
or

(H5) m <
q

�c0+2
c0+2

� � m+ 1 and r < rm:

3.2.2 Di¤usion-Driven Instability of the Limit Cycle

In this subsection, we investigate the stability of limit cycle as derived in the last theorem

under spatially inhomogeneous perturbations. Recall that the limit cycle is a small amp-

litude periodic solution bifurcated from (a�; h�) for � su¢ ciently close to �0. For the rest

of the section we assume condition (H2) so that the limit cycle is stable under spatially

homogeneous perturbation.Let u1 = a� a�; u2 = h� h�., � = �0 and U = (u1; u2)
>, then

system (3.24)becomes8><>: Ut =

"
J (�0) +D

 
�xx 0

0 �xx

!#
U + F (U; �0)

Ux (0; t) = Ux (�; t) = (0; 0)
>

; (3.33)

where

J (�0) =

 
 � 24

�c0+2

1 �

!
; D =

 
1 0

0 r

!
;

F (U; �0) = (f1 (u1; u2; �0) ; g1 (u1; u2; �0))
> ;

and f1 and g1 are de�ned in (3.22) .

We write F (U; �0) in the form

F (U; �0) =
1

2
Q (U;U) +

1

6
(U;U; U) +O

�
jU j4

�
;

where Q and C are in the following form:

Q (U;U) = (Q1 (U;U) ; Q2 (U;U; ))
> ;

C (U; U; U) = (C1 (U;U; U) ; C2 (U;U; U))
> ;
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with

Q1 (U; V ) = f1uuu1v1 + f1uvu1v2 + f1vuu2v1 + f1vvu2v2

=
4

(�c0 + 2)2
�
2u1v1 � 4u1v2 � 4u2v1 + 62u2v2

�
;

Q2 (U; V ) = guuu1v1 + g2uvu1v2 + g1vuu2v1 + g1vvu2v2

= 0;

C1 (U; V;W ) = f1uuuu1v1w1 + f1uuvu1v1w2 + f1uvuu1v2w1 + f1uvvu1v2w2

+f1vuuu2v1w1 + f1vuvu2v1w2 + f1vvuu2v2w1 + f1vvvu2v2w2

= � 26

(�c0 + 2)3
[2u1v1w2 + 2u1v2w1 � 6u1v2w2

+2u2v1w1 � 6u2v1w2 � 6u2v2w1 + 122u2v2w2];
C2 (U; V;W ) = g1uuuu1v1w1 + g1uuvu1v1w2 + g1uvuu1v2w1 + g1uvvu1v2w2

+g1vuuu2v1w1 + g1vuvu2v1w2 + g1vvuu2v2w1 + g1vvvu2v2w2

= 0;

for any U = (u1; v2)
> ; V = (v1; v2)

> ; W = (w;w)> and U; V; W 2 H2 ([0; �]) �
H2 ([0; �]) :

The linear operator L de�ned in (3.26) for � = �0 is

LU =

"
J (�0) +D

 
@xx 0

0 @xx

!#
U;

for U 2 H2 ([0; �])�H2 ([0; �]) :

Let L� be the adjoint operator of L de�ned in H2 ([0; �])�H2 ([0; �]) ; then

L�U =

"
J� (�0) +D

 
@xx 0

0 @xx

!#
;

with

J� (�0) =

 
 1

� 24

�c0+2 �

!
:

Obviously, hL�U; V i = hU; LV i for any U; V 2 H2 ([0; �]) � H2 ([0; �]) and the

inner product in H2 ([0; �]) � H2 ([0; �]) is de�ned as hU; V i 1
�
�

�Z
0

�U>V dx for any U;

V 2 H2 ([0; �])�H2 ([0; �]) :
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The linearized system of(3.33) at the equilibrium (0; 0) is�
u1t
u2t

�
= L

�
u1
u2

�
; (3.34)

which are subject to the boundary conditions:

Ux (0; t) = Ux (�; t) = (0; 0)
> : (3.35)

Let U = (u1; u2)
> 2 H2 ([0; �]) � H2 ([0; �]) be a solution of (??). Since (3.34) is

linear, we can formally write the solution as�
u1 (x; t)

u2 (x; t)

�
=

1X
k=0

�
ak
hk

�
e�t+ikx; (3.36)

where � 2 C is the temporal spectrum, k is wave number (spatial spectrum) and ak; hk
are real number for k = 0; 1; 2:::: Plugging (u1; u2) into (3.34), we have

1X
k=0

�

�
ak
hk

�
e�t+ikx = L

1X
k=0

�
ak
hk

�
e�t+ikx

=
1X
k=0

Lk

�
ak
hk

�
e�t+ikx:

Collecting the like terms about k we have

(�I � Lk)

�
ak
hk

�
=

�
0

0

�
; k = 0; 1; 2; :::; (3.37)

where

Lk =

 
�k2 +  � 24

�c0+2

1 �rk2 � 

!
:

For some k; Eq.(3.37) has a nonzero solution (ak; hk)
> if and only if the following

dispersion relation is satis�ed:

det (�I � Lk) = 0:

We are searching conditions such that Re (� (k)) > 0 and � (k) satis�es equation

�2 � Tk�+Dk = 0; k = 0; 1; 2; :::; (3.38)

where Tk = � (1 + r) k2 and Dk = rk2 (k2 � ) + k2 + w20:

Under condition c0 < 2 and � = �0 we have T0 = 0; D0 = w20 > 0; Tk < 0 for k = 0;
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1; 2; :::, it follows that for k = 0; L has eigenvalues with zero real parts. We then proceed

to the center manifold reduction.

First of all, if 0 <  � 1; then Dk �  + w20 > 0 for k = 1; 2; :::. Ferthermore, for

m <
p
 � m + 1 and r < �r; where m 2 N+ and �r = min1�k�m k2+w20

k2(�k2) ; we have Dk > 0

for k = 1; 2; :::; and for m <
p
 � m+ 1 and r > �r; there exists at least one negative in

D1; :::; Dm:

Letting Lq = iw0q and L�q� = �iw0q�; we have q = (iw0 + ; 1)> and q� = 1
2w0
(i; w0 � i)> ;

respectively. It is easy to see that hq�; qi = 1 and hq�; qi = 0:

We write

U = zq + �z�q + w; z = hq�; Ui ; w = (w1; w2)> ;

and (
u1 = (iw0 + ) z + (�iw0 + ) �z + w1

u2 = z + �z + w2
:

The system (3.33) in (z; w) coordinates becomes(
_z = iw0z +



q�; �f

�
_w = Lw +H (z; �z; w)

; (3.39)

with

~f = F (zq + �z�q + w; �0)

H (z; �z; w) = �f �


q�; �f

�
q �



�q�; �f

�
�q;

and

~f =
1

2
Q (zq + �z�q + w; zq + �z�q + w) +

1

6
C (zq + �z�q + w; zq + �z�q + w; zq + �z�q + w)

+O
�
jzq + �z�q + wj4

�
=

1

2
[Q (zq; zz) +Q (�z�q; �z�q) +Q (w;w) + 2Q (zq; �z�q) + 2Q (zq; w) + 2Q (�z�q; w)]

+
1

6
[C (zq; zq; zq) + C (�z�q; �z�q; �z�q) + C (w;w;w) + 3C (zq; zq; �z�q) + 3C (zq; zq; w)

+3C (�z�q; �z�q; zq) + 3C (�z�q; �z�q; w) + 3C (w;w; zq) + 3C (w;w; �z�q) + 6C (zq; �z�q; w)]

+O
�
jzq + �z�q + wj4

�
=

1

2
Q (q; q) z2 +Q (q; �q) z�z +

1

2
Q (�q; �q) �z2 +O

�
jzj3 ; jzj � jwj ; jwj2

�
;
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D
q�; ~f

E
=

1

2
hq�; Q (q; q)i z2 + hq�; Q (q; �q)i z�z

+
1

2
hq�; Q (�q; �q)i �z2 +O

�
jzj3 ; jzj � jwj ; jwj2

�
D
q�; ~f

E
=

1

2
h�q�; Q (q; q)i z2 + h�q�; Q (q; �q)i z�z + 1

2
h�q�; Q (�q; �q)i �z2

+O
�
jzj3 ; jzj � jwj ; jwj2

�
:

so

H (z; �z; w) =
1

2
z2H20 + z�zH11 +

1

2
�z2H02 +O

�
jzj3 ; jzj � jwj ; jwj2

�
;

where 8><>:
H20 = Q (q; q)� hq�; Q (q; q)i q � h�q�; Q (q; q)i �q;
H11 = Q (q; �q)� hq�; Q (q; �q)i q � h�q�; Q (q; �q)i �q;
H02 = Q (�q; �q)� hq�; Q (�q; �q)i q � h�q�; Q (�q; �q)i �q:

Furthermore,

H20 = (Q1 (q; q) ; Q2 (q; q))
> � 1

2w0
[�iQ1 (q; q)

+ (w0 + i)Q2 (q; q)] (iw0 + w0 + ; 1)>

� 1

2w0
[iQ1 (q; q) + (w0 � i)Q2 (q; q)]� (�iw0 + ; 1)>

= (0; 0)> :

Similarly, we have

H11 = H02 = (0; 0)
> :

Therefore,

H (z; �z; w) = O
�
jzj3 ; jzj � jwj ; jwj2

�
:

It follows that system (3.39) pessesses a center manifold, which we write

w =
1

2
z2w20 + z�zw11 +

1

2
�z2w02 +O

�
jzj3
�
;

then from Lw +H (z; �z; w) = _w = @w
@�z
_z + @w

@z
_z; we have8>>>><>>>>:

w20 = [2iw0 � L]�1H20 = [2iw0 � J (�0)]
�1H20 = (0; 0)

> ;

w11 = �L�1H11 = �J (�0)H11 = (0; 0)
> ;

w02 = [�2iw0 � L]�1H02

= [�2iw0 � J (�0)]
�1H02 = (0; 0)

> ;
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then w = O
�
jzj3
�
:

Now the reaction-di¤usion system restricted to the center manifold is

_z = iw0z +
D
q�; ~f

E
= iw0z +

X
2�i+j�3

gij
i!j!

zi�zj +O
���z4��� (3.40)

where

g20 = hq�; Q (q; q)i ;
g11 = hq�; Q (q; �q)i ;
g02 = hq�; Q (�q; �q)i ;
g21 = 2 hq�; Q (w11; q)i+ hq�; Q (w20; �q)i+ hq�; C (q; q; �q)i

= hq�; C (q; q; �q)i ;

the dynamics of (3.39) is determined by that of (3.40), we write the Poincaré normal form

of (3.33) in the following form

_z = (� (�) + iw (�)) z + z
MX
j=1

cj (�) (z�z)
i ; (3.41)

where z is a complex variable, M � 1;and cj (�) are complex-valued coe¢ cients. Then

we have

c1 (�) =
g20g11 [3� (�) + iw (�)]

2 [�2 (�) + w2 (�)]
+

jg11j2

� (�) + iw (�)

+
jg02j2

2 [� (�) + 3iw (�)]
+
g21
2
;

and Re (c1 (�0)) = Re
h
g20g11
2w0

i+ g21
2

i
since � (�0) = 0 and w (�0) = w0 > 0:

Since

g20 = hq�; Q (q; q)i = w40 (�2 + iw0)

(c0 + 2)2
;

g11 = hq�; Q (q; �q)i = w50i

(c0 + 2)2

g21 = hq�; C (q; q; �q)i = w60 ( + iw0)

(c0 + 2)3
;

we then have Re [c1 (�0)] = � c07

(c0+2)
4 < 0; Therefore, the supercritical Hopf bifurcation
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occurs at � = �0: By setting �r = min1�k�m
k2+w20
k2(�k2) ; we summarize the above conclusions

as in the following theorem:

Theorem 15 Assume condition (H2)so the spatially homogeneous periodic of () bifurc-
ated from the equilibrium is stable. Then the spatially homogeneous periodic solution for

(3.24) is unstable if

(H6) m <
p
 � m+ 1;m 2 N+ and r > �r; and is stable if either

(H7) 0 <  � 1;
or

(H8) m <
p
 � m+ 1;m 2 N+ and 0 < r < �r:

Remark 6 The previous theorem states that system (3.24) experiences a Turing instabil-
ity for c0 < 2; � > �0;  > 1 and r > �r: which accounts for the spot and stripe patterns

in system.

3.2.3 Global Existence of Solutions

We claim that, for all large �; � > 0, the function

� = ��;� (t) =

Z



a�

h�
dx; (3.42)

satis�es

sup
t2(0;T )

� (t) <1:
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By (3.24)we have:

�0 =

Z



�
�a��1ath

� � �h��1hta
�

h2�

�
dx

=

Z



�
�
a��1at
h�

� �
a�ht
h�+1

�
dx

= �

Z



a��1

h�

�
c0 +

a2

h2
� �a+�a

�
dx� �

Z



a�

h�+1
(a� h+ r�h) dx

= �

Z



�
a��1

h�
�a+

a�+1

h�+2
� �

a�

h�
+ c0

a��1

h�

�
dx� �

Z



�
a�

h�+1
r�h+

a�+1

h�+1
� 

a�

h�

�
dx

= (���+ �)�+

Z



�
�c0

a��1

h�
+ �c0

a��1

h�
� �

a�+1

h�+1

�
dx

+

Z



�
�
a��1

h�
�a� �r

a�

h�+1
�h

�
dx;

using Green�s formula, we deduce that

�0 (t) = (���+ �)�+

Z



�
�c0

a��1

h�
+ �c0

a��1

h�
� �

a�+1

h�+1

�
dx

+

Z �
�� (�� 1) a

��2

h�
jraj2 � � (� + 1) r

a�

hb+2
jrhj2 + �� (1 + r)

a��1

h�+1
ra � rh

�
dx:

the last integrand can be rewritten as

Q =
��
�� (�� 1)h2 jraj2 � � (� + 1) ra2 jrhj2 + �� (1 + r) (hra � arh)

�� a��2
h�+2

;

����� �� (�� 1) ��(1+r)
2

��(1+r)
2

�� (� + 1) r

����� = �� (�� 1) (� + 1)� (��)
2 (1 + r)2

4
� 0;

which guarantees that the discriminant(1 + r)2 �2�2 � 4��r (�� 1) (� + 1) of the quad-
ratic form Q is nonpositive.

Consequently we have Q � 0, provided we assume

��

(�� 1) (� + 1) �
4r

(1 + r)2
; (3.43)
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we also have
a��1

h�
=

�
a�

h�

�(��1)=�
h��=� � C

�
a�

h�

�(��1)=�
: (3.44)

Using Lemma (9) , (3.44) and Holder�s inequality, we obtain

�0 (t) � (���+ �)�+ C

Z



�
a�

h�

��
dx+ �c0

Z



a��1

h�
dx (3.45)

� (���+ �)�+ C
�
�+ �(��1)=�

�
;

for some � 2 (0; 1).
Now assume � � 2max (1; �=) and � � 2r= (1 + r)2 � 1. Then (3.43) is satis�ed

and,since ���+ �v < 0, the function

f (Y ) = (���+ �)Y + C
�
Y � + Y (��1)=�� ;

has a largest positive zero, say Y = K. Since, by (3.45), �0 (t) < 0 whenever � (t) > K,

we deduce easily that supt2(0:T ) � (t) � max (� (0) ; K), hence (3.18). Since h is bounded
below, it is clear that (3.18) remains true if we enlarge �.The claim is proved.
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For the Gierer-Meinhardt model(3.1), it is known that under the condition (3.2), if

� < �0; where �0 is a (critical) value de�ned in (3.3), then the positive equilibrium E�

is asymptotically stable. when � passes through the critical value �0, a Hopf bifurcation

occurs.

For the Gierer-Meinhardt model(3.6), under the condition � < �0; where �0 is a

(critical) value de�ned in (3.12), then the positive equilibrium E� is asymptotically stable.

When 2 > c0, then the equilibrium (a�; h�) changes from a stable focus to an unstable

one as � increases from �1 via �0 to �2; while at � = �0 the Jacobian matrix evaluated

at (a�; h�) has a pair of conjugate pure imaginary eigenvalues a Hopf bifurcation occurs

and the Hopf bifurcation is supercritical and the bifurcated limit cycle is stable.

The positive equilibrium E� and the periodic solution are spatially homogeneous solu-

tions of the reaction-di¤usion Gierer-Meinhardt model (3.24). For the homogeneous equi-

librium solution E�; by using Turing�s technique, it was shown that di¤usion-driven in-

stability occurs when m <
q

�c0+2
c0+2

� � m + 1 and r > rm. Then, if an appropriate

small perturbation is added to the equilibrium solution E�; there will appear spatial

inhomogeneity with certain periodic spatial structure in the solution of system (3.24).

For the homogeneous periodic solution; system (3.24) experiences a Turing instability for

c0 < 2; � > �0;  > 1 and r > �r: which accounts for the spot and stripe patterns in

system.
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