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Abstract 

  The aim of this memory is to study optimal control problem of some linear distributed systems with 

incomplete data. The no-regret control method seems to be the best-adapted method to solve it. Also, the 

averaged control is used to control systems depending on unknown parameter. The no-regret control limit of 

the sequence of low-regret controls will be characterized by an optimality system. 

    Keywords: Optimal control, incomplete data, no-regret control, low-regret control, averaged control, 

average no-regret control, electromagnetic wave equation. 

 

Résumé 

Le but de cette mémoire est d’étudier le problème de contrôle optimal de quelques systèmes linéaires 

distribués avec des données incomplètes. La méthode de contrôle sans regret est la meilleure méthode de 

résoudre ce type de problème. Aussi, le contrôle moyenne est utilisé pour contrôler des systèmes dépends 

d’un paramètre inconnus. Le contrôle sans regret est la limite d’une suite de contrôle à moindre regret sera 

caractérisé par un système d’optimalité. 

Mots clés: Contrôle optimal, donnée incomplète, contrôle sans regret, contrôle à moindre regret, contrôle 

moyenne, contrôle sans regret moyenne, équation des ondes électromagnétiques.  

 

 الملخص

دون ندم هي  الهدف من هذه المذكرة هو دراسة التحكم الأمثل لبعض الأنظمة التوزيعية الخطية ذات معطيات غير المكتملة. طريقة التحكم

التحكم المتوسط  للتحكم في الأنظمة التي تتعلق بوسيط مجهول. سيميز التحكم دون ندم  أفضل طريقة لحل هذا النوع من المسائل. أيضا يستخدم

.                                                               استمثالينهاية متتالية التحكم منخفض الندم بنظام   

الكلمات المفتاحية: التحكم الأمثل، معطيات غير مكتملة، التحكم دون ندم، التحكم المنخفض الندم، التحكم المتوسط، التحكم المتوسط دون ندم، 

 معادلة الأمواج الكهرومغناطيسية
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Notations & abbreviations

R Set of real numbers.

‖.‖H A norm in Banach space H.

(., .)H A scalar product in Hilbert space H.

|.|H A semi-norm in H.

C2 The class of functions with continuous first and second derivative.
∂y
∂ν

= ∇y.ν The conormal derivative.

∆ =
n∑
i=1

∂
∂xi

The laplacien operator.

∇ =
(

∂
∂x1
, ..., ∂

∂xn

)T
The gradient operator.

div Divergence.

A∗ The adjoint operator of A.
dΓ Lebesgue measure on boundary Γ.

χω Characteristic function of the set ω.

L (Y ,Z) The space of linear bounded operators from Y to Z.

D (Q) The space of functions in C∞ with a compact support in Q.

D′ (Q) The dual space of D (Q) .

L2 (0, T,H) The bounded linear operator space.

a.e. Almost every where.

PDE Partial differential equation.

⇀ Symbol of weak convergence.

iff If and only if.
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Introduction

Fields of science like Physics, Statistic, Chemistry, Biology or Population dynamics are modeled

by using Partial Differential Equations (PDE), our goal is to pass from an initial state to a final

desirable state while minimizing the objective function to control those phenomena. Therefore,

we will discuss the optimal control problem which usually given by a dynamic system and some

cost function to minimize.

The theory of optimal control appeared after the second world war (1950s) as a special topic

within the discipline of a differential equation. At that time, two important works discovered,

the first one is Dynamic Programming (Richard Bellman) which reduce the search for an optimal

control function to finding the solution of PDE and the second is Pontryagin Maximum Principle

(Hamilton - Jacobie - Bellman Equation) which gives a set of necessary conditions for the optimal

control function.

Nowadays, the optimal control theory has become a part of our daily life, aiming to improve our

quality of life and facilitate certain tasks. For example, in biomedical phenomena the human

cells are affected by the X-rays energy, so we control the X-rays by displacing the wave to get the

suitable energy for the cells can carry. In ecology, we also control the pollution, which includes

reducing the effects of pollution with the help of control, in given situations rather than leaving

them abandoned.

Sometimes when we modeling those phenomena, we don’t have all the information related to it,

such as the pollution problems we can’t know the initial moment in which pollution occurred and

this is what makes us in front of the problem of control with incomplete data.

This memory aims to study the optimal control problem for systems described by PDEs with

incomplete data or missing data using the notions of no-regret control, the averaged control and

the averaged no-regret control.

The notion of no-regret control is using to control systems such that the initial conditions, bound-

ary conditions or second member of the equation are missing, introduced the first time by the fa-

mous mathematician Jacque Louis Lions [11] who inspired the idea from Savage in statistics [18],

we associate with the no-regret control a sequence of low-regret controls defined by a quadratic

perturbation. Then, we introduce the classic tools to prove the existence and uniqueness of the

solution of the optimal control problems. Also, we prove that the sequence of low-regret control

converges to the no-regret control which gives the optimality system of the no-regret control.

Many scientists develop this notion like O. Nakoulima, A. Omran and J. Velin [15], Jacob and

Omran [4], Hafdallah & Ayadi [2].

Moreover, the notion of averaged control is used to control systems depend on an unknown
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parameter that can be in the operator of the system, it was introduced the first time by Zuazua

[20], and Lohéa & Zuazua [12].

In order to control systems which contains two kinds of missing data, the first is a missing bound-

ary condition and the second is an unknown parameter we use the notion of averaged no-regret

control which used by Hafdallah & Ayadi [5] to control an electromagnetic waves equation with

an unknown velocity of propagation, also used by Mophou [14] to control parabolic equation.

This concept has been generalized recently by A. Hafdallah [8].

Below we present the organization of our memory

In the first chapter, we present the optimal control in a distributed system with complete data.

Thus, we prove the existence of the optimum and we give it characterization. Also, we give some

examples in different types (elliptic, parabolic and hyperbolic equations).

In the second chapter, we consecrated to study the notion of no-regret control and low-regret

control and we give its characterizations and example. Then, we present the idea of the averaged

control.

In the third chapter, we give the optimal control problem of an electromagnetic waves through a

medium since that we don’t know their permeability and permittivity which causes the unknown

velocity of propagation and with an unknown Dirichlet boundary condition. Under this condition,

we use the notion of averaged no-regret control and we give their optimality system which is a

limit to the optimality system of averaged low-regret control.

In the last chapter, we take the optimal control problem of a parabolic equation with missing

boundary condition as an example.
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Chapter 1

Optimal control of linear distributed

systems : Preliminaries

During this chapter, we will study the classical theory of optimal control in distributed system1

with complete data introduced by J.Lions in 1971. We begin our chapter by the presentation of

our optimal control problem and we give it characterization then we finish by some examples.

1.1 Control Problem

A control problem consists to manipulate a system, with an input-output space. The input is the

control can be a function in a boundary condition, an initial condition, a coefficient in a partial

differential equation modeling the system, or any parameter in the equation, and the output is

the state or the solution of the system or any information related to her.

An optimal control problem is an optimization problem with PDE constraint minimize a criterion

depending on the observation of the state and on the control variable.

The theory of optimal control requires the following condition:

- Control u which belongs to the set of control.

- State y(u) which to be controlled.

-Observation z(u).

- Cost function J(u) should be minimized.

Among the goals of this theory is to get the necessary condition to be u a minimum. Also, to get al-

gorithms that approximate the minimum u with a necessary condition which is called ’variational

inequality’.

1it means that the system defined by PDEs in infinite dimension space

1



Chapter 1. Optimal control of linear distributed systems : Preliminaries

1.2 Position of problem

Let Y , U and Z be infinite dimensional Hilbert spaces of states, controls and observation resp.

Uad⊂ U is a subset of admissible controls supposed non empty, closed and convex.

Consider the following well-posed state equation related to the control v ∈ Uad

Ay = f + Bv. (1.1)

Where A ∈ L (Y) is a linear partial differential operator stationary or evolutionary (elliptic,

parabolic and hyperbolic ) modelling a distributed system makes an isomorphism on Y, B ∈
L (U ,Y) is the control operator.

Our optimal control problem consists in looking for a control function u ∈ Uad which minimizes

the following cost function

J (v) = ‖Cy(v)− yd‖2
Z +N ‖v‖2

U ∀v ∈ Uad, (1.2)

where J is convex function from Uad ⊂ U to R ∪ {+∞} , C ∈ L (Y ,Z) the observation operator

and N > 0, yd is the fixed observation in Z.
i.e, our optimal control problem is  find u ∈ Uad such that

J (u) = inf
v∈Uad

J (v) ,
(1.3)

Theorem 1.1 (Existence and uniqueness of optimal control)

Let Uad ⊂ U closed and nonempty, J is lower semicontinuous, bounded from below and coercive

on Uad. Then there exists a minimizer for J on Uad. Moreover, if J is strictly convex the minimizer

is unique.

Proof. 1.Existence

Since J is bounded from below

m = inf
v∈Uad

J (v) ,

Let (vn) be a minimizing sequence2 in Uad since J is coercive, (vn) is converge to u ∈ Uad, and J is

lower semicontinuous, then

J (u) ≤ lim
n→+∞

inf
v∈Uad

J (vn) = inf
v∈Uad

J (v) = m,

2a minimizing sequence of the criterion J on the set Uad is a sequence (vn) such that

lim
n→+∞

J (vn) = inf
v∈Uad

J (v)

1.2. Position of problem 2



Chapter 1. Optimal control of linear distributed systems : Preliminaries

then u is a minimizer of J on Uad.
2.Uniqueness

Suppose that the problem (1.3) admits two distinct solutions u1, u2. We set u = u1+u2

2
, due to strict

convexity of J we get

J (u) <
1

2
J (u1) +

1

2
J (u2) = m,

we obtain a contradiction with the assumption that u1, u2 are two solutions of (1.3) . Thus (1.3)

admits a unique solution.

1.3 Characterization of the optimal control (optimality sys-

tem)

A first order optimality condition gives:

J ′ (u) (v − u) ≥ 0 ∀v ∈ Uad,

we know that the cost function J is Gateaux-differentiable with

J ′ (u) (v − u) = lim
t→0

J (u+ t (v − u))− J (u)

t
for every v ∈ Uad,

by a simple calculus we get

J (u+ t (v − u)) = J (u) + t2 ‖Cy (v − u)‖2
Z + 2t(Cy (u)− yd, Cy(v − u))Z + t2N ‖v − u‖2

U

+2tN(u, v − u)U ,

which gives

J (u+ t (v − u))− J (u)

t
= t ‖Cy (v − u)‖2

Z+2(Cy (u)−yd, Cy(v−u))Z+tN ‖v − u‖2
U+2N(u, v−u)U ,

make t tends to a 0 to get

J ′ (u) (v − u) = 2(C∗(Cy (u)− yd), y(v − u))Y + 2N(u, v − u)U ≥ 0 ∀v ∈ Uad.

Let’s introduce the adjoint state p = p(u)

A∗p(u) = C∗(Cy (u)− yd),

1.3. Characterization of the optimal control (optimality system) 3



Chapter 1. Optimal control of linear distributed systems : Preliminaries

where A∗ is the adjoint operator of A, then

(C∗(Cy (u)− yd), y(v − u))Y = (A∗p(u), y(v − u))Y = (p(u),Ay(v − u))Y

= (p(u),B(v − u))Y = (B∗p(u), (v − u))U ,

Hence,

J ′ (u) (v − u) = (B∗p(u) +Nu, v − u)U ∀v ∈ Uad.

Therefore the optimal control u is characterized by the following optimality system :
Ay(u) = f + Bu,

A∗p(u) = C∗(Cy(u)− yd),
(B∗p+Nu, v − u)U ≥ 0 ∀v ∈ Uad.

The first two equation must be associated with some appropriate boundary and initial condition

and the pair (u, p(u)) called optimal pair.

Remark 1.1 if Uad = U we have also

J ′ (u) (v − u) ≤ 0 ∀v ∈ U ,

and with the previous condition we get

J ′ (u) (v − u) = 0 ∀v ∈ U ,

therefore the optimality system become as following
Ay(u) = f + Bu,

A∗p(u) = C∗(Cy(u)− yd),
(B∗p(u) +Nu, v − u)U = 0 ∀v ∈ U .

1.4 Examples

1-Optimal control of an elliptic distributed system :

Let Ω a bounded domain of Rn with boundary Γ of class C2, consider the following Laplace

equation with Newman boundary condition{
−∆y + y = f

∂y
∂ν

= v

in Ω,

on Γ,
(1.4)

1.4. Examples 4



Chapter 1. Optimal control of linear distributed systems : Preliminaries

where f ∈ L2 (Ω) is a source function and v ∈ L2 (Γ) is a control function. Associate to (1.4) the

following cost function

J(v) = ‖y(v)− yd‖2
L2(Ω) +N ‖v‖2

L2(Γ) ,

where y(v) is the solution of (1.4), yd ∈ L2 (Ω) is a fixed observation and N > 0.

Our optimal control consists a determine u ∈ Uad that minimizing J (v) . That’s why we have to

search u solution of

inf
{
J(v, y) : (v, y) ∈ Uad ×H1 (Ω) verifies (1.4)

}
.

In this case :

the state space Y = H1 (Ω) , the observation space Z = L2(Ω) and the control space U = L2 (Γ) .

the observation operator is canonical injection

C : H1 (Ω) −→ L2 (Γ)

y −→ y ,

An optimality condition gives us

J ′(u)(v − u) ≥ 0∀v ∈ Uad ⇐⇒ 2(y(u)− yd, y(v − u))L2(Ω) + 2N(u, v − u)L2(Γ) ≥ 0∀v ∈ Uad.

Now, we introduce an adjoint state p = p(u){
−∆p+ p = y(u)− yd

∂p
∂ν

= 0

in Ω,

on Γ.

and using the second Green formula (see appendix Theorem 4.3) we get

(y(u)− yd, y(v − u))L2(Ω) = (−∆p+ p, y(v − u))L2(Ω)

= (p,−∆y(v − u) + y(v − u))L2(Ω)

+

∫
Γ

(p
∂y

∂ν
(v − u)− y(v − u)

∂p

∂ν
)dΓ

=

∫
Γ

p(v − u)dΓ.

Finally, the solution of (1.4) is characterized by the following optimality system:

−∆y(u) + y(u) = f inΩ,
∂y
∂ν

(u) = u on Γ,

−∆p+ p = y(u)− yd in Ω,
∂p
∂ν

= 0 on Γ,∫
Γ
(p+Nu)(v − u)dΓ ≥ 0 ∀v ∈ Uad.

1.4. Examples 5



Chapter 1. Optimal control of linear distributed systems : Preliminaries

2-Optimal control of a parabolic distributed system:

Let Ω a bounded domain of Rn with boundary Γ of class C2, T > 0, Consider time space cylinder

Q = Ω× [0, T ] , Σ = Γ× [0, T ] and the Heat equation with Dirichlet boundary condition
∂y
∂t
−∆y = f + χωv

y = 0

y(x, 0) = y0(x)

in Q,

on Σ,

in Ω,

(1.5)

where f ∈ L2 (Q) , v ∈ L2(0, T, L2(w)), χω is the characteristic function of ω a bounded open of Ω

and y0 ∈ L2(Ω).

Our optimal control problem consists in looking for a control function u ∈ L2(0, T, L2(ω)) which

minimizes the following cost function

J(v) = ‖y(v)− yd‖2
L2(Q) +N ‖v‖2

L2(0,T,L2(ω)) ,

with y(v)is the solution of (1.5), yd ∈ L2 (Q) , N > 0. So, we want to characterize the solution of

the following optimal control

inf
{
J(v, y) : (v, y) ∈ Uad × L2(0, T,H1

0 (Ω)) verifies (1.5)
}
.

In this case

the state space Y = L2(0, T,H1
0 (Ω)), the observation space Z = L2(Ω) and the control space

U = L2(0, T, L2(ω)).

the observation operator is canonical injection

C : L2(0, T,H1
0 (Ω)) −→ L2(Ω)

y −→ y ,

An optimality condition gives us

J ′(u)(v − u) = 2(y(u)− yd, y(v − u))L2(Q) + 2N(u, v − u)L2(0,T,L2(ω)) ≥ 0 ∀v ∈ Uad.

by introducing the adjoint state p = p(u)
−∂p

∂t
−∆p = y(u)− yd

p = 0

p(x, T ) = 0

in Q,

onΣ,

in Ω.

1.4. Examples 6



Chapter 1. Optimal control of linear distributed systems : Preliminaries

and using second Green formula we get

(y(u)− yd, y(v − u))
L2(Q)

= (−∂p
∂t
−∆p, y(v − u))L2(Q)

=

∫ T

0

∫
Ω

−∂p
∂t
y(v − u)dxdt−

∫ T

0

∫
Ω

∆py(v − u)dxdt

=

∫ T

0

∫
Ω

p

(
∂y

∂t
(v − u)−∆y(v − u)

)
dxdt−

∫
Ω

[py(v − u)]T0

+

∫ T

0

∫
Γ

p(
∂y

∂ν
(v − u)− y(v − u)

∂p

∂ν
)dΓdt

=

∫ T

0

∫
Ω

pχω(v − u)dxdt−
∫

Ω

p(T )y(v − u) (T ) dx

+

∫ T

0

∫
Γ

p
∂y

∂ν
(v − u)dΓdt

=

∫ T

0

∫
ω

p(v − u)dxdt,

Hence,

J ′(u)(v − u) = 2

∫ T

0

∫
ω

(p+Nu)(v − u)dxdt ≥ 0 ∀v ∈ Uad.

Finally, the solution of (1.5) is characterized by the following optimality system

∂y
∂t
−∆y = f + χωu in Q,

y = 0 on Σ,

y(x, 0) = y0(x) in Ω,

−∂p
∂t
−∆p = y(u)− yd in Q,

p = 0 onΣ,

p(x, T ) = 0 in Ω,∫ T
0

∫
ω
(p+Nu)(v − u)dxdt ≥ 0 ∀v ∈ Uad.

3-Optimal control of a hyperbolic distributed system :

The notions Ω, Γ, Σ, Q and the assumptions on Ω and Γ are the same of example (2). Consider

wave equation with Dirichlet boundary condition
∂2y
∂t2
−∆y = 0

y = v

y(x, 0) = y0(x), ∂y
∂t

(x, 0) = 0

in Q,

on Σ,

in Ω,

(1.6)

where v ∈ L2(0, T, L2(Γ)), y0 ∈ L2(Ω)

1.4. Examples 7



Chapter 1. Optimal control of linear distributed systems : Preliminaries

Our optimal control problem consists in looking for a control function u ∈ L2(Σ) which minimizes

the following cost function

J(v) = ‖y(v)− yd‖2
L2(Q) + ‖y(v)(T )− yd(T )‖2

L2(Ω) +N ‖v‖2
L2(Σ) ,

with y(v) is the solution of (1.6), yd ∈ L2 (Q) , N > 0. So we want to characterize the solution of

the following optimal control problem

inf
{
J(v, y) : (v, y) ∈ L2 (Σ)× L2(0, T,H1(Ω)) verifies (1.6)

}
.

In this case

the state space Y = L2(0, T,H1(Ω)), the observation space Z = L2(Q) × L2 (Ω) and the control

space U = L2(Σ).

The observation operator is

C : L2(0, T,H1
0 (Ω)) −→ L2(Q)× L2 (Ω)

y −→
(

y(v)

y(v)(T )

)
,

an optimality condition gives us

J ′(u)(v − u) = 2(y(u)− yd, y(v − u))L2(Q) + 2(y(u)(T )− yd(T ), y(v − u)(T ))L2(Ω)

+2N(u, v − u)L2(Σ) = 0 ∀v ∈ U .

by introducing adjoint state p = p(u)
∂2p
∂t2
−∆p = y(u)− yd

p = 0

p(x, T ) = 0, ∂p
∂t

(x, T ) = −(y(u)(T )− yd(T ))

in Q,

on Σ,

in Ω.

and using second Green formula and integrate by part we get

(y(u)− yd, y(v − u))
L2(Q)

= (
∂2p

∂t2
−∆p, y(v − u))L2(Q)

=

∫ T

0

∫
Ω

(
∂2p

∂t2
−∆p)y(v − u)dxdt

=

∫ T

0

∫
Ω

p

(
∂2y

∂t2
(v − u)−∆y(v − u)

)
dxdt

+

∫
Ω

[
∂p

∂t
y(v − u)− p∂y (v − u)

∂t

]T
0

dx

+

∫ T

0

∫
Γ

(p
∂y

∂ν
(v − u)− y(v − u)

∂p

∂ν
)dΓdt

1.4. Examples 8
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=

∫
Ω

[
−p(T )

∂y

∂t
(v − u) (T )

]
dx

+

∫ T

0

∫
Γ

−∂p
∂ν

(v − u)dΓdt

Hence, the optimality condition is given by

J ′(u)(v − u) = 2

∫ T

0

∫
Γ

(−∂p
∂ν

+Nu)(v − u)dΓdt ≥ 0 ∀v ∈ Uad.

Finally, the solution of (1.6) is characterized by the following optimality system

∂2y
∂t2
−∆y = 0 in Q,

y = u on Σ,

y(x, 0) = y0(x) , ∂y
∂t

(x, 0) = 0 in Ω,
∂2p
∂t2
−∆p = y(u)− yd in Q,

p = 0 on Σ,

p(x, T ) = 0 ,∂p
∂t

(x, T ) = −(y(u)(T )− yd(T )) in Ω,∫ T
0

∫
Γ
(− ∂p

∂ν
+Nu)(v − u)dΓdt = 0 ∀v ∈ U .

1.4. Examples 9



Chapter 2

Optimal control of linear distributed

system with incomplete data

In this chapter, we study the optimal control for a linear distributed system with incomplete data
1 this leads to define the notion of no-regret control introduced the first time by J.Lions (1992),

which associate to there a sequence of low-regret control and prove that it converges to the no-

regret control, then we characterize them via optimality systems and we give example. Also, we

represent the notion of averaged control making by Zuazua (2014) to control systems depending

on an unknown parameter.

2.1 Statement of the problem

We keep the same spaces and operators definitions that we defined in the last chapter, the dif-

ference here is the presence of missing data. For this reason, we define a new Hilbert space of

uncertainties denoting by G, and we will denote by β ∈ L (G,Y) the operator of the missing data.

For f ∈ Y the abstract equation related to the control v ∈ Uad and the uncertainty g ∈ G is given

by

Ay(v, g) = f + Bv + βg. (2.1)

The equation (2.1) is well posed in Y and her solution y (v, g) ,which associate to her the following

cost function:

J(v, g) =‖ Cy(v, g)− yd ‖2
Z +N ‖ v ‖2

U ∀v ∈ Uad,∀g ∈ G, (2.2)

1means that the initial conditions, boundary conditions, source function or some of the parameters in the main

operator in the system are unknown.

10



Chapter 2. Optimal control of linear distributed system with incomplete data

as usual, we are concerned with the optimal control of (2.1) and (2.2) is to search u solution of:

inf
v∈Uad

J(v, g) ∀g ∈ G,

but in this case, we can’t apply the classical approach method because our goal to get an optimal

control independently to g. So en thought to take

inf
v∈Uad

(
sup
g∈G

J(v, g)

)
, (2.3)

but G is an infinite dimensional space we can get sup
g∈G

J(v, g) = +∞ and by the way the problem

has no sense, to avoid this difficulty J.Lions introduce the concept of "No-regret control".

Remark 2.1 If G = {0} then J(v, g) = J(v, 0). Therefore, the problem (2.3) becomes a classical

problem of optimal control

 find u ∈ Uad such that

J (u) = inf
v∈Uad

J (v) .

To avoid difficulties arise when we get sup
g∈G

J(v, g) = +∞, J.Lions thought to take only controls

such that ∀v ∈ Uad

J(v, g) ≤ J(0, g) ∀g ∈ G, (2.4)

i.e,

J(v, g)− J(0, g) ≤ 0 ∀g ∈ G.

Thus, we can say that sup
g∈G

(J(v, g)− J(0, g)) exists.

2.2 The no-regret control notion

Definition 2.1 [15]We say that u ∈ Uad is a no-regret control for (2.1) and (2.2) if u solves

inf
v∈Uad

(
sup
g∈G

(J (v, g)− J(0, g))

)
.

Lemma 2.1 For every u ∈ Uad and g ∈ G we have:

J(v, g)− J(0, g) = J(v.0)− J(0, 0) + 2 (S(v), g)G , (2.5)

2.2. The no-regret control notion 11
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where S(v) = β∗ξ(v) and ξ(v) defined for v ∈ Uad by

A∗ξ(v) = C∗C(y(v, 0)− y(0, 0)).

Proof. A is a linear operator in Y , so:{
y(v.g) = y(v, 0) + y(0, g)− y(0, 0)

y(0, g) = y(0, 0) + y(0, g)− y(0, 0)

with y(v, 0) and y(0, g) are a solution of (2.1) when g = 0 and v = 0 resp.

By the definition of J(v, g) one obtain

J(v, g) = ‖C(y(v, 0) + y(0, g)− y(0, 0))− yd‖2
Z +N ‖v‖2

U

= J(v, 0) + ‖C(y(0, g)− y(0, 0)‖2
Z + 2(Cy(v, 0)− yd, C(y(0, g)− y(0, 0)))Z ,

and

J(0, g) = ‖C(y(0, 0) + y(0, g)− y(0, 0))− yd‖2
Z

= J(0, 0) + ‖C(y(0, g)− y(0, 0))‖2
Z + 2(C(y(0, 0)− yd, C(y(0, g)− y(0, 0)))Z ,

then

J(v, g)− J(0, g) = J(v, 0)− J(0, 0) + 2(C∗C(y(v, 0)− y(0, 0)), y(0, g)− y(0, 0))Y .

Introduce an adjoint state ξ(v) given by A∗ξ(v) = C∗C(y(v, 0)− y(0, 0)) to write

J(v, g)− J(0, g) = J(v, 0)− J(0, 0) + 2(A∗ξ(v), y(0, g)− y(0, 0))Y

= J(v, 0)− J(0, 0) + 2(ξ(v),A(y(0, g)− y(0, 0)))Y

= J(v, 0)− J(0, 0) + 2(ξ(v), βg)Y = J(v, 0)− J(0, 0) + 2(β∗ξ(v), g)G

= J(v, 0)− J(0, 0) + 2(S(v), g)G where S(v) = β∗ξ(v).

2.3 The low-regret control

From (2.5) we have that:

sup
g∈G

(J (v, g)− J(0, g)) = J(v, 0)− J(0, 0) + sup
g∈G

(2S(v), g)G,

is realized only for the no-regret control v if v ∈ K , where K is a closed subspace of Uad given by

2.3. The low-regret control 12



Chapter 2. Optimal control of linear distributed system with incomplete data

K = {v ∈ Uad, (S(v), g) = 0 ∀g ∈ G} .

The main difficulty here is to characterize the set K. To avoid that, we relax the problem by

adding a quadratic term to (2.4)

J(v, g) ≤ J(0, g) + γ ‖g‖2
G , γ > 0,

then

J(v, g)− J(0, g)− γ ‖g‖2
G = J(v, 0)− J(0, 0) + 2(S(v), g)G − γ ‖g‖2

G ,

which implies

sup
g∈G

(J(v, g)− J(0, g)− γ ‖g‖2
G) = J(v, 0)− J(0, 0) + sup

g∈G
(2(S(v), g)G − γ ‖g‖2

G),

use Legendre transform (see appendix Definition 4.4)[19] to obtain

sup
g∈G

(J(v, g)− J(0, g)− γ ‖g‖2
G) = J(v, 0)− J(0, 0) +

1

γ
‖S(v)‖2

G .

Hence, the problem (2.5) becomes for all γ > 0 find uγ ∈ Uad such that

Jγ (uγ) = inf
v∈Uad

Jγ(v).
(2.6)

where the new cost function is given by

Jγ(v) = J(v, 0)− J(0, 0) +
1

γ
‖S(v)‖2

G . (2.7)

Now, we can define the low-regret by

Definition 2.2 [15]We say that uγ ∈ Uad is a low-regret control for (2.1) and (2.2) if u solves

inf
v∈Uad

sup
g∈G

(J(v, g)− J(0, g)− γ ‖g‖2
G , γ > 0).

Theorem 2.1 (Low-regret control: existence and uniqueness)

The problem (2.1) and (2.6) with (2.7) has a unique solution uγ.

Proof. 1.Existence

We have that:

Jγ (v) = J (v, 0)− J (0, 0) +
1

γ
‖S(v)‖2

G ∀v ∈ Uad,

2.3. The low-regret control 13
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which implies that

Jγ (v) ≥ −J (0, 0) = constant,

i.e, inf
v∈Uad

Jγ (v) exists.

we denote by dγ = inf
v∈Uad

Jγ (v). Let a minimizing sequence (vγn) verifying

lim
n→∞

Jγ (vγn) = inf
v∈Uad

Jγ (v) = dγ,

we have that :

−J (0, 0) ≤ Jγ (vγn) = J (vγn, 0)− J (0, 0) +
1

γ
‖β∗ζ (vγn)‖2

G ≤ dγ + 1,

which implies that

‖Cy (vγn, 0)− yd‖2
Z +N ‖vγn‖

2
U +

1

γ
‖β∗ζ (vγn)‖2

G ≤ dγ + J (0, 0) + 1 = Cγ.

we deduce that

‖vγn‖U ≤ Cγ, (2.8.a)

‖Cy (vγn, 0)− yd‖Z ≤ Cγ, implies ‖Cy (vγn, 0)‖Z ≤ Cγ, (2.8.b)

‖β∗ζ (vγn)‖G ≤ Cγ
√
γ, (2.8.c)

where Cγ is a constant independent of n.

From (2.8.a) we deduce that (vγn) is bounded in compact space Uad then we can extracting a

subsequence still denoting by (vγn) converges weakly to uγ in Uad, due to isomorphism of A we

deduce that y (vγn, 0) converge weakly to y (uγ, 0) in Y .
The cost function Jγ (v) is a lower semi continuous

Jγ (uγ) ≤ lim
n→∞

inf
v∈Uad

Jγ (vγn) = inf
v∈Uad

Jγ (v) = dγ,

Jγ (uγ) = inf
v∈Uad

Jγ (v) .

2.Uniqueness

Suppose that the problem (2.6) admits two distinct solutions u1
γ
, u2

γ. We set uγ =
u1
γ

+u2
γ

2
, due to

strict convexity of J we get

Jγ
(
uγ
)
<

1

2
Jγ
(
u1
γ

)
+

1

2
Jγ
(
u2
γ

)
= dγ,

we obtain a contradiction with the assumption that u1
γ
, u2

γ are two solutions of (2.6) . Thus (2.6)

admits a unique solution.

2.3. The low-regret control 14
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Theorem 2.2 The unique low-regret control uγis converge weakly when γ tends to 0 to the unique

no-regret control u in Uad.

Proof. Let uγ be a low-regret control in Uad then for all v ∈ Uad

Jγ (uγ) ≤ Jγ (v) ,

from the definition of Jγ (v) we find

J (uγ, 0)− J (0, 0) +
1

γ
‖β∗ζ (uγ)‖2

G ≤ J (v, 0)− J (0, 0) +
1

γ
‖β∗ζ (v)‖2

G ∀v ∈ Uad,

which implies

J (uγ, 0) +
1

γ
‖β∗ζ (uγ)‖2

G ≤ J (v, 0) +
1

γ
‖β∗ζ (v)‖2

G ∀v ∈ Uad,

we choose v = 0 to find :

J (uγ, 0) +
1

γ
‖β∗ζ (uγ)‖2

G = ‖Cy (uγ , 0)− yd‖2
Z +N ‖uγ‖2

U +
1

γ
‖β∗ζ (uγ)‖2

G ≤ J (0, 0) = constant,

then

‖uγ‖U ≤ C, (2.9.a)

‖Cy (uγ , 0)‖Z ≤ C, (2.9.b)

‖β∗ζ (uγ)‖G ≤ √
γC, (2.9.c)

where C is a constant independent of γ.

We deduce from (2.9.a) that (uγ) is bounded in Uad then we can extract a subsequence still be

denoting (uγ) converges weakly to u ∈ Uad.
It’s clear that for every v ∈ Uad

J (v, g)− J (0, g)− γ ‖g‖2
G ≤ J (v, g)− J (0, g) ∀g ∈ G,

i.e,

J (v, g)− J (0, g)− γ ‖g‖2
G ≤ sup

g∈G
(J (v, g)− J (0, g))∀g ∈ G,

from another side we have

J (uγ, g)− J (0, g)− γ ‖g‖2
G ≤ J (v, g)− J (0, g)− γ ‖g‖2

G ,

so

J (uγ, g)− J (0, g)− γ ‖g‖2
G ≤ sup

g∈G
(J (v, g)− J (0, g)) ∀g ∈ G,

2.3. The low-regret control 15
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when γ tend to 0 we obtain:

J (u, g)− J (0, g) ≤ sup
g∈G

(J (v, g)− J (0, g)) ∀g ∈ G,

which means that

sup
g∈G

(J (u, g)− J (0, g)) = inf
v∈Uad

{
sup
g∈G

(J (v, g)− J (0, g))

}
.

In conclusion, u is a no-regret control.

Characterization of the low-regret control

A first order optimality condition gives

Jγ′(uγ)(v − uγ) ≥ 0 ∀v ∈ Uad,

where

Jγ′(uγ)(v − uγ) = lim
h→0

J (uγ + h (v − uγ))− J (uγ)

h
∀v ∈ Uad,

we have

J (uγ + t (v − uγ))− Jγ(uγ)
h

= h ‖Cy(v − uγ, 0)‖2
Z + hN ‖v − uγ‖2

U +
h

γ
‖S (v − uγ)‖2

G

+2(Cy(uγ, 0)− yd, Cy(v − uγ, 0))Z + 2N(uγ, v − uγ)U

+
2

γ
(S(uγ), S (v − uγ))G,

make h tends to 0 to get

Jγ′(uγ)(v − uγ) = 2(Cy(uγ, 0)− yd, Cy(v − uγ, 0))Z + 2N(uγ, v − uγ)U +
2

γ
(S(uγ), S (v − uγ))G.

From linearity of the operator C in Z, we get:

Jγ′(uγ)(v − uγ) = 2(Cy(uγ, 0)− yd, Cy(v, 0)− Cy (uγ, 0))Z + 2N(uγ, v − uγ)U +
2

γ
(S(uγ), S (v − uγ))G

= 2(C∗ (Cy(uγ, 0)− yd) , y(v, 0)− y (uγ, 0))Y + 2N(uγ, v − uγ)U +
2

γ
(S(uγ), S (v − uγ))G,

thanks to linearity

y(v, 0)− y(uγ, 0) = y (v − uγ, 0)− y (0, 0) ,

2.3. The low-regret control 16
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then

Jγ′(uγ)(v − uγ) = 2(C∗ (Cy(uγ, 0)− yd) , y(v − uγ, 0)− y (0, 0))Y

+2N(uγ, v − uγ)U +
2

γ
(S(uγ), S (v − uγ))G.

We recall the adjoint state defined previously by A∗ξ(uγ) = C∗C(y(uγ, 0)− y(0, 0)), then

(S(uγ), S (v − uγ))G = (β∗ξ(uγ), β
∗ξ(v − uγ))G = (ββ∗ξ(uγ), ξ(v − uγ))Y .

Also, we define the new state ργ = ρ(uγ) by

Aργ =
1

γ
ββ∗ξ(uγ),

this leads to the following equality

(Aργ, ξ(v − uγ))Y = (ργ,A∗ξ(v − uγ))Y = (ργ, C∗C(y(v − uγ, 0)− y(0, 0)))Y

= (C∗Cργ, y(v − uγ, 0)− y(0, 0))Y ,

introducing the new adjoint state pγ = p(uγ) by

A∗pγ = C∗(Cyγ − yd) + C∗Cργ,

to find

(A∗pγ, y (v − uγ, 0)− y(0, 0))Y = (pγ,A(y (v − uγ, 0)− y(0, 0)))Y

= (pγ,B (v − uγ))Y
= (B∗pγ, v − uγ)U ,

Hence, the optimality condition is given by

Jγ
′
(uγ)(v − uγ) = (B∗pγ +Nuγ, v − uγ)U ≥ 0 ∀v ∈ Uad,

Finally, the low-regret control is characterized by the following optimality system:

Ayγ = f +Buγ,

A∗ξγ = C∗C(yγ − y(0, 0)),

Aργ = 1
γ
ββ∗ξγ,

A∗pγ = C∗(Cyγ − yd) + C∗Cργ,
(B∗pγ +Nuγ, v − uγ)U ≥ 0 ∀v ∈ Uad.

(2.10)

where y (uγ, 0) = yγ, ξ(uγ) = ξ
γ
.

2.3. The low-regret control 17
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Characterization of no-regret control

To get the optimality system of no-regret control we pass to limit when γ tends to 0 in the system

(2.10) 

Ay = f +Bu,

A∗ζ = C∗Cy (u, 0)− yd,
Aρ = βλ, λ ∈ G,

A∗p = C∗ (Cy (u, 0)− yd) + C∗Cρ,
(B∗p+Nu, v − u)U ≥ 0 ∀v ∈ Uad.

(2.11)

where y (u, 0) = y, ξ(u) = ξ.

2.4 Example

Optimal control of an elliptic distributed system with missing Newmann boundary condi-

tion:

Let Ω be an open bounded set of Rn with smooth boundary Γ. Consider the following elliptic

equation : {
−∆y + y = f + v

∂y
∂ν

= g

in Ω,

on Γ,
(2.12)

where v ∈ L2 (Ω), g ∈ G = L2 (Γ) , f ∈ L2 (Ω) and y (v, g) ∈ H
3
2 (Ω) ⊂ L2 (Ω) is the unique

solution of this system depend on v and g. Associate to (2.12) the following cost function:

J (v, g) = |y (v, g)− yd|2L2(Γ) +N ‖v‖2
L2(Ω) ∀g ∈ G, (2.13)

where yd ∈ L2 (Γ) , N > 0 and |.|L2(Γ) denote the semi norm in L2 (Γ).

Here, we have that: Y = L2 (Ω) is the state space, U = L2 (Ω) is the control space, Z = L2 (Γ) is

the observation space, G = L2 (Γ) is the uncertainties space, the observation operator C :

C : L2 (Ω) −→ L2 (Γ)

y −→ y |Γ
β : is the uncertainties operator

β : L2 (Γ) −→ L2 (Ω)

g −→ y (0, g)

where y (0, g) is solution of (2.12) when v = 0.

2.4. Example 18
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Definition 2.3 We say that u is a no-regret control for (2.12) and (2.13) iff u is solution of:

inf
v∈L2(Ω)

(
sup

g∈L2(Γ)

J (v, g)− J (0, g)

)
.

We need the characterization of a no-regret control. Therefore, for all v ∈ L2 (Ω) and g ∈ L2 (Γ) ,

we have :

J (v, g) = J(v, 0) + |y (0, g)− y (0, 0)|2L2(Γ) + 2(y (v, 0)− yd, y (0, g)− y (0, 0))L2(Γ),

and

J (0, g) = J (0, 0) + |y (0, g)− y (0, 0)|2L2(Γ) + 2(y (0, 0)− yd, y (0, g)− y (0, 0))L2(Γ),

so:

J (v, g)− J (0, g) = J(v, 0)− J (0, 0) + 2(y (v, 0)− y (0, 0) , y (0, g)− y (0, 0))L2(Γ).

Let’s introduce the adjoint state ξ = ξ(u){
−∆ζ + ζ = 0

∂ζ
∂ν

= y (u, 0)− y (0, 0)

in Ω,

on Γ,

using the second Green formula(see appendix Theorem 4.3), we obtained:

(−∆ζ + ζ, y (0, g)− y (0, 0))L2(Ω) =

∫
Ω

(−∆ζ + ζ) (y (0, g)− y (0, 0)) dx

=

∫
Γ

ζgdΓ.

So:

J (v, g)− J (0, g) = J(v, 0)− J (0, 0) + 2(ζ, g)L2(Γ).

Let’s define the low-regret control

Definition 2.4 We say that uγ is a low-regret control for (2.12) and (2.13) iff uγ is solution of:

inf
v∈L2(Ω)

(
sup

g∈L2(Γ)

J (v, g)− J (0, g)− γ ‖g‖2
L2(Γ)

)
.
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We have

sup
g∈L2(Γ)

(
J (v, g)− J (0, g)− γ ‖g‖2

L2(Γ)

)
= J (v, 0)− J (0, 0) + sup

v∈L2(Γ)

(
2(ζ, g)L2(Γ) − γ ‖g‖2

L2(Γ)

)
= J (v, 0)− J (0, 0) +

1

γ
‖ζ (v)‖2

L2(Γ) .

Hence, we define the new following cost function related to the problem of low regret given by

Jγ (v) = J (v, 0)− J (0, 0) +
1

γ
‖ζ (v)‖2

L2(Γ) . (2.14)

Then our problem optimal becomes find uγ ∈ U such that

Jγ (uγ) = inf
v∈U

Jγ (v) .
(2.15)

Theorem 2.3 (The existence and uniqueness of a low-regret control)

The problem (2.12) and (2.15) with(2.14) has a unique solution uγ.

Proof. The cost function Jγ (v) is coercive and strictly convex in L2 (Ω) which implies the exis-

tence and uniqueness of uγ.

Characterization of the low-regret control:

A first optimality condition gives us :

Jγ
′
(uγ)

(
v − uγ

)
= 0 ∀v ∈ L2 (Ω) ,

i.e,

Jγ
′
(uγ)

(
v − uγ

)
= 2(y (uγ, 0)− yd, y (v − uγ, 0)− y (0, 0))L2(Γ) + 2N(uγ , v − uγ)L2(Ω)

+
2

γ
(ζ
(
uγ
)
, ζ
(
v − uγ

)
)
L2(Γ)

= 0 ∀v ∈ L2 (Ω) ,

Introduce the state ργ = ρ(uγ) by {
−∆ργ + ργ = 0
∂ργ
∂ν

= 1
γ
ζ (uγ)

in Ω,

on Γ,

multiply the first equation of the last one by ζ (v − uγ) and apply second Green formula (see

appendix Theorem 4.3) to get :

(
−∆ργ + ργ, ζ (v − uγ)

)
L2(Ω)

=

∫
Ω

(
−∆ργ + ργ

)
ζ (v − uγ) dx

=

∫
Γ

(
ργ (y (v, 0)− y (0, 0))− ζ(v − uγ)

∂ργ
∂ν

)
dΓ,
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Hence,

Jγ
′
(uγ)

(
v − uγ

)
= (ργ + y (uγ, 0)− yd, y (v − uγ, 0)− y (0, 0))L2(Γ) +N(uγ , v − uγ)L2(Ω)

= 0 ∀v ∈ U .

We introduce another adjoint state pγ = p(uγ) given by:{
−∆pγ + pγ = 0

∂pγ
∂ν

= ργ + y (uγ, 0)− yd
in Ω,

on Γ.

Again, we have

(−∆pγ + pγ, y (v − uγ, 0)− y (0, 0))L2(Ω) =

∫
Ω

(−∆pγ + pγ) (y (v − uγ, 0)− y (0, 0)) dx

=

∫
Ω

pγ((−∆ + I) (y (v − uγ, 0)− y (0, 0)))dx

+

∫
Γ

(pγ
∂ (y (v − uγ, 0)− y (0, 0))

∂ν

− (y (v − uγ, 0)− y (0, 0))
∂pγ
∂ν

)dΓ,

then:

Jγ
′
(uγ)

(
v − uγ

)
= (pγ +Nuγ , v − uγ)L2(Ω) = 0, ∀v ∈ L2 (Ω) .

i,e.

pγ +Nuγ = 0 in L2 (Ω) ,

pγ +Nuγ = 0 a.e in Ω.

Then the low-regret control is characterized by the following optimality system:
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−∆y (uγ, 0) + y (uγ, 0) = f + uγ in Ω,
∂y(uγ ,0)

∂ν
= 0 on Γ,

−∆ζ (uγ) + ζ (uγ) = 0 in Ω,
∂ζγ
∂ν

= y (uγ, 0)− y (0, 0) on Γ,

−∆ργ (uγ) + ργ (uγ) = 0 in Ω,
∂ργ
∂ν

= 1
γ
ζ (uγ) on Γ,

−∆pγ (uγ) + pγ (uγ) = 0 in Ω,
∂pγ
∂ν

= ργ + y (uγ, 0)− yd on Γ,

pγ +Nuγ = 0 a.e in Ω.

To get a no-regret control characterization we pass to limit when γ → 0 in the last system we

obtain: 

−∆y (u, 0) + y (u, 0) = f + u in Ω,
∂y(u,0)
∂ν

= 0 on Γ,

−∆ζ (u) + ζ (u) = 0 in Ω,
∂ζ
∂ν

= y (u, 0)− y (0, 0) on Γ,

−∆ρ (u) + ρ (u) = 0 in Ω,
∂ρ
∂ν

= λ on Γ,

−∆p (u) + p (u) = 0 in Ω,
∂p
∂ν

= ρ+ y (u, 0)− yd on Γ,

p+Nu = 0 a.e in Ω.

with the following limits

lim
γ→0

uγ = u, lim
γ→0

y (uγ, 0) = y (u, 0) , lim
γ→0

ξγ = ξ,

lim
γ→0

ρ (uγ) = ρ (u) , lim
γ→0

1

γ
ζ (uγ) = λ ∈ G, lim

γ→0
p (uγ) = p (u) .

2.5 Averaged control in distributed systems

Average control is a method making by Zuazua [20] to control a distributed system depending

on an unknown parameter. The idea of this method is not controlling the state is to control the

average of the state.
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Chapter 3

Optimal control of electromagnetic waves

with missing data

This chapter is devoted to the study of the optimal control problem for an electromagnetic waves

that penetrate a medium with some unknown physical properties as there velocity of propagation

and missing boundary condition. For this purpose, Hafdallah & Ayadi use the concept of averaged

no-regret control and averaged low-regret control. We show the existence and uniqueness of

averaged low-regret control and show that it converges to the averaged no-regret control. Then,

we give the optimality system that characterizes the controls.

3.1 Description of problem

Let n = 1, 2 or 3, and Ω be an open bounded domain in Rn, with smooth boundary Γ, for T > 0

we set the cylindric time space Q = Ω × (0, T ) and Σ = Γ × (0, T ) . We consider the following

controlled hyperbolic equation which modelling the propagation of electromagnetic waves in a

medium with missing parameter σ belongs to [σ1, σ2] represent the velocity of propagation and

unknown Dirichlet boundary condition:
∂2y
∂t2
− σ2∆y = v

y = g

y (x, 0) = 0, ∂y
∂t

(x, 0) = 0

in Q,

on Σ,

in Ω,

(3.1)

where g is an unknown function belongs to L2 (Σ) , Uad is a non-empty closed convex subset of

L2 (Q). The control v ∈ Uad and the function g are independent of σ. According to the data, we

know that system (3.1) admits a unique solution

y(v, g, σ) = y(v, g, σ;x, t) ∈ C([0, T ];L2 (Ω)) ∩ C1([0, T ];H−1 (Ω)),
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which depend continuously on σ. We associate to the problem the following cost function:

J (v, g, σ) = ‖y (v, g;σ)− yd‖2
L2(Q) +N ‖v‖2

L2(Q) , (3.2)

where yd is the desired state in L2 (Q) , N > 0. We are concerned with the optimal control of the

problem (3.1) and (3.2). i.e, we want to solve

inf
v∈Uad

J (v, g, σ) , for every g ∈ L2 (Σ) and σ ∈ [σ1, σ2] , (3.3)

since the function g is unknown, the optimal control problem (3.3) has no sense. So, we look for

a solution to the following minimizing problem

inf
v∈Uad

sup
g∈L2(Σ)

J (v, g, σ) ∀σ ∈ [σ1, σ2] .

In this case, it’s possible to get sup
g∈L2(Σ)

J (v, g, σ) = +∞, so we use the idea of J.Lions to look only

for controls v ∈ Uad such that

J (v, g;σ) ≤ J (0, g, σ) , ∀g ∈ L2 (Σ) , ∀σ ∈ [σ1, σ2] , (3.4)

and for the unknown parameters σ we use the concept of averaged control. So, we substitute the

state by it’s average concerning the unknown parameter σ in the cost function (3.2) to get

J (v, g) =

∥∥∥∥∥∥
σ2∫
σ1

y (v, g, σ) dσ − zd

∥∥∥∥∥∥
2

L2(Q)

+N ‖v‖2
L2(Q) , (3.5)

where zd is an averaged desired state observation in L2 (Q) .

3.2 Averaged no-regret control and averaged low-regret con-

trol: definitions

Definition 3.1 [5]We say that u ∈ Uad is an averaged no-regret control for (3.1) with (3.5) if u is a

solution of

inf
v∈Uad

sup
g∈L2(Σ)

(J (v, g)− J (0, g)) .

Let’s try to isolate g to get a control independent to the missing condition.

Lemma 3.1 Let v ∈ Uad and g ∈ L2 (Σ) , we have
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J (v, g)− J (0, g) = J (v, 0)− J (0, 0) + 2 (σ1 − σ2)

T∫
0

∫
Γ

t
∂ξ

∂ν
gdΓdt, (3.6)

where ξ = ξ (v) ∈ C([0, T ], H1
0 (Ω)) ∩ C1([0, T ], L2 (Ω)) be solution of

∂2ξ
∂t2
−∆ξ = 1

t

σ2∫
σ1

y (v, 0;σ) dσ in Q,

ξ = 0 on Σ,

ξ (x, T ) = 0, ∂ξ(v)
∂t

(x, T ) = 0 in Ω.

(3.7)

Proof. Let us consider y (v, 0;σ) and y (0, g;σ) be a solution of (3.1) where g = 0 and v = 0 resp,

and we have

y (v, g, σ) = y (v, 0;σ) + y (0, g;σ) ,

from the definition of J (v, g) and by a simple calculus, we get

J (v, g) = J (v, 0) + J (0, g) + J (0, 0) + 2

 σ2∫
σ1

y (0, g;σ) dσ − yd, yd


L2(Q)

+2

 σ2∫
σ1

y (v, 0;σ) dσ − yd,
σ2∫
σ1

y (0, g;σ) dσ


L2(Q)

,

Hence,

J (v, g)− J (0, g) = J (v, 0)− J (0, 0) + 2

 σ2∫
σ1

y (v, 0;σ) dσ,

σ2∫
σ1

y (0, g;σ) dσ


L2(Q)

.

Now, we need the system that describes

σ2∫
σ1

y (0, g;σ) dσ, we pose

t = σt =⇒ σ = 1

to get

y (0, g, σ;x, t) = Y (0, g, 1;x, σt) ,

where Y (x, t) is a solution of
∂2Y
∂t2
−∆Y = 0

Y (x, σt) = g (x, t)

Y (x, 0) = 0, ∂Y
∂t

(x, 0) = 0

in Q,

on Σ,

in Ω,
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then
σ2∫
σ1

y (0, g, σ;x, t) dσ =

σ2t∫
σ1t

Y (0, g, 1;x, σt)
dt

t
=
Z (x, σ2t)− Z (x, σ1t)

t
,

where Z (x, t) =

t∫
0

Y (0, g, 1;x, s) ds is solution of



∂2Z
∂t2
−∆Z = 0

Z (x, t) =

t∫
0

Y (x, s) ds

Z (x, 0) = 0, ∂Z
∂t

(x, 0) = 0

in Q,

on Σ,

in Ω,

that is

J (v, g)− J (0, g) = J (v, 0)− J (0, 0) + 2

 σ2∫
σ1

y (v, 0;σ) dσ,

σ2∫
σ1

y (0, g;σ) dσ


L2(Q)

= J (v, 0)− J (0, 0) + 2

1

t

σ2∫
σ1

y (v, 0;σ) dσ, Z (x, σ2t)− Z (x, σ1t)


L2(Q)

.

Then, we introduce the adjoint state ξ = ξ (v) define by (3.7) and use the second Green formula,

we obtain:1

t

σ2∫
σ1

y (v, 0;σ) dσ, Z (x, σ2t)− Z (x, σ1t)


L2(Q)

=

(
∂2ξ

∂t2
−∆ξ, Z (x, σ2t)− Z (x, σ1t)

)
L2(Q)

= −
T∫

0

∫
Γ

∂ξ

∂ν

σ2t∫
σ1t

g (x, t) dsdΓdt

= (σ1 − σ2)

T∫
0

∫
Γ

t
∂ξ

∂ν
gdΓdt,

we conclude that

J (v, g)− J (0, g) = J (v, 0)− J (0, 0) + 2 (σ1 − σ2)

T∫
0

∫
Γ

t
∂ξ

∂ν
gdΓdt.

Now, we consider the averaged no-regret control
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inf
v∈Uad

sup
g∈L2(Σ)

(J (v, g)− J (0, g)) ,

from (3.6) the problem is equivalent to the following one

inf
v∈Uad

J (v, 0)− J (0, 0) + (σ1 − σ2) sup
g∈L2(Σ)

2

T∫
0

∫
Γ

t
∂ξ

∂ν
gdxdt

 .

So, the problem it’s defined only for

T∫
0

∫
Γ

t
∂ξ

∂ν
gdΓdt = 0,

it means that the no regret controls depend only to the set structure of K define by

K =

v ∈ Uad such that

 T∫
0

∫
Γ

t
∂ξ

∂ν
gdΓdt

 = 0, ∀g ∈ L2 (Σ)

 .

This set is hard to characterize, so we relax the problem by adding a quadratic perturbation to

(3.4) to get

inf
v∈Uad

sup
g∈L2(Σ)

(
J (v, g)− J (0, g)− γ ‖g‖2

L2(Σ)

)
, γ > 0.

Then

sup
g∈L2(Σ)

(
J (v, g)− J (0, g)− γ ‖g‖2

L2(Σ)

)
= J (v, 0)− J (0, 0) + sup

g∈L2(Σ)

(2 (σ1 − σ2)

T∫
0

∫
Γ

t
∂ξ

∂ν
gdΓdt

−γ ‖g‖2
L2(Σ)), γ > 0,

using the Legendre transform (see appendix definition 4.4) we get

sup
g∈L2(Σ)

(
J (v, g)− J (0, g)− γ ‖g‖2

L2(Σ)

)
= J (v, 0)− J (0, 0) +

σ2 − σ1

γ

∥∥∥∥t ∂ξ∂ν
∥∥∥∥2

L2(Σ)

.

Therefore, we are front in a classical problem of optimal control independently to the function g

and the parameters σ define by find uγ ∈ Uad such that

Jγ (uγ) = inf
v∈Uad

Jγ (v) , ∀γ > 0,
(3.8)
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where

Jγ (v) = J (v, 0)− J (0, 0) +
σ2 − σ1

γ

∥∥∥∥t ∂ξ∂ν
∥∥∥∥2

L2(Σ)

. (3.9)

This leads us to define the notion of averaged low-regret control.

Definition 3.2 [5]We say that uγ ∈ Uad is an averaged low-regret control for (3.1) and (3.5) if u is

a solution of

inf
v∈Uad

sup
g∈L2(Σ)

(
J (v, g)− J (0, g)− γ ‖g‖2

L2(Σ)

)
.

Theorem 3.1 (The averaged low-regret control: Existence and uniqueness)

There exists a unique averaged low-regret control uγ solution to (3.1)− (3.8) and (3.9).

Proof. 1-Existence:

From the definition of Jγ (v) , It’s clear that

Jγ (v) ≥ −J (0, 0) ,

it means that inf
v∈Uad

Jγ (v) = dγ exists. Let (vn) be a minimizing sequence satisfying:

lim
n→∞

Jγ (vn) = inf
v∈Uad

Jγ (vn) = dγ.

Moreover, we have

−J (0, 0) ≤ Jγ (vn) = J (vn, 0)− J (0, 0) +
σ2 − σ1

γ

∥∥∥∥t∂ξn∂ν
∥∥∥∥2

L2(Σ)

≤ dγ + 1,

which implies

‖vn‖L2(Q) ≤ Cγ, (3.10.1)∥∥∥∥t∂ξn∂ν
∥∥∥∥
L2(Σ)

≤ Cγ (σ2 − σ1)
√
γ, (3.10.2)∥∥∥∥∥∥

σ2∫
σ1

y (vn, 0;σ) dσ

∥∥∥∥∥∥
L2(Q)

≤ Cγ. (3.10.3)

In the other side, we have the following energy estimate [13]∥∥∥∥∂yn∂t
∥∥∥∥2

L∞(0,T ;L2(Ω))

+ σ2 ‖yn‖2
L∞(0,T ;H1

0 (Ω)) ≤ ‖vn‖L2(Q)
≤ Cγ,

where Cγ is a constant independent of n.
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Which gives ∥∥∥∥∂yn∂t
∥∥∥∥
L∞(0,T ;L2(Ω))

≤ Cγ, (3.11.1)

‖yn‖L∞(0,T ;H1
0 (Ω)) ≤ Cγ, (3.11.2)

where yn = y (vn, 0;σ) solution of
∂2yn
∂t2
− σ2∆yn = vn

yn = 0

yn (x, 0) = 0, ∂yn
∂t

(x, 0) = 0

in Q,

on Σ,

in Ω,

(3.12)

From (3.10.1) and (3.12) we get ∥∥∥∥∂2yn
∂t2
− σ2∆yn

∥∥∥∥
L2(Q)

≤ Cγ, (3.13)

Then from (3.10.1), (3.10.3) , (3.11.2) we can extracting a subsequences still denoted (vn), (yn),

(

σ2∫
σ1

y (vn, 0;σ) dσ)

such that

vn ⇀ uγ weakly in L2 (Q) ,
σ2∫
σ1

y (vn, 0;σ) dσ ⇀ zγ weakly in L2 (Q) ,

yn ⇀ yγ weakly in L∞
(
0, T ;H1

0 (Ω)
)
.

Because of continuous embedding of L∞ (0, T ;H1
0 (Ω)) and L∞ (0, T ;L2 (Ω)) into L2 (0, T ;H1

0 (Ω))

and L2 (0, T ;L2 (Ω)) respectively, and by the continuity of y with respect to the data, we conclude

yn ⇀ y (uγ, 0, σ) weakly in L2
(
0, T ;H1

0 (Ω)
)
,

zγ =

σ2∫
σ1

y (uγ, 0;σ) dσ,

due to (3.11.1) we deduce ∂yn
∂t

⇀ f1 weakly in L2 (Q) , and ∂yn
∂t

⇀ ∂yγ
∂t

in D′ (Q) by the uniqueness

of limit, we deduce
∂yn
∂t

⇀
∂yγ
∂t

weakly in L2 (Q) ,

due to (3.13) we deduce ∂2yn
∂t2
− σ2∆yn ⇀ f2 weakly in L2 (Q) , and ∂2yn

∂t2
− σ2∆yn ⇀

∂2yγ
∂t2
− σ2∆yγ

in D′(Q) by the uniqueness of limit, we deduce

∂2yn
∂t2
− σ2∆yn ⇀

∂2yγ
∂t2
− σ2∆yγ weakly in L2 (Q) .

3.2. Averaged no-regret control and averaged low-regret control: definitions 29



Chapter 3. Optimal control of electromagnetic waves with missing data

In view to the initial condition, we deduce

yγ (x, 0) = 0,
∂yγ
∂t

(x, 0) = 0 in Ω.

Now, we prove that yγ = 0 in Σ, let φ ∈ D′(Q) such that φ (x, T ) = ∂φ
∂t

(x, T ) = 0 in Ω, φ = 0 on Σ,

multiply (3.12) by φ we get
T∫

0

∫
Ω

(
∂2yn
∂t2
− σ2∆yn

)
φdxdt =

T∫
0

∫
Ω

vnφdxdt,

integrate by part and use the second Green formula
T∫

0

∫
Ω

yn

(
∂2φ

∂t2
− σ2∆φ

)
dxdt+σ2

T∫
0

∫
Γ

(
yn
∂φ

∂ν
− φ∂yn

∂ν

)
dΓdt+

∫
Ω

([
∂yn
∂t

φ− yn
∂φ

∂t

]T
0

)
dx =

T∫
0

∫
Ω

vnφdxdt,

this last one beomes
T∫

0

∫
Ω

(
∂2φ

∂t2
− σ2∆φ

)
yndxdt =

T∫
0

∫
Ω

vnφdxdt,

passing to limit γ → 0

T∫
0

∫
Ω

(
∂2φ

∂t2
− σ2∆φ

)
yγdxdt =

T∫
0

∫
Ω

uγφdxdt,

integrate by part again and use the second Green formula, we get
T∫

0

∫
Ω

(
∂2yγ
∂t2
− σ2∆yγ

)
φdxdt+ σ2

T∫
0

∫
Γ

(
φ
∂yγ
∂ν
− yγ

∂φ

∂ν

)
dΓdt =

T∫
0

∫
Ω

uγφdxdt,

implies
T∫

0

∫
Γ

yγ
∂φ

∂ν
dΓdt = 0,

which means that yγ = 0 a.e in Σ.

Then, we know that

∂2ξn
∂t2
−∆ξn =

1

t

σ2∫
σ1

y (vn, 0;σ) dσ in Q,

multiply this last one by ∂ξn
∂t

and apply Green formula
T∫

0

∫
Ω

t

(
∂2ξn
∂t2

∂ξn
∂t
−∆ξn

∂ξn
∂t

)
dxdt =

T∫
0

∫
Ω

 σ2∫
σ1

y (vn, 0;σ) dσ

 ∂ξn
∂t

dxdt,

1

2

T∫
0

∫
Ω

t
d

dt

[∣∣∣∣∂ξn∂t
∣∣∣∣2 + |∇ξn|

2

]
dxdt =

T∫
0

∫
Ω

 σ2∫
σ1

y (vn, 0;σ) dσ

 ∂ξn
∂t

dxdt,
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integrate by parts with respect to time variable

1

2

T∫
0

∫
Ω

[∣∣∣∣∂ξn∂t
∣∣∣∣2 + |∇ξn|

2

]
dxdt = −

T∫
0

∫
Ω

 σ2∫
σ1

y (vn, 0;σ) dσ

 ∂ξn
∂t

dxdt,

we take the absolute value and use Cauchy–inequality (see appendix Proposition 4.2) in the

second part of inequality to obtain

T∫
0

∫
Ω

[∣∣∣∣∂ξn∂t
∣∣∣∣2 + |∇ξn|

2

]
dxdt ≤

T∫
0

∫
Ω

∣∣∣∣∂ξn∂t
∣∣∣∣2 +

∣∣∣∣∣∣
σ2∫
σ1

y (vn, 0;σ) dσ

∣∣∣∣∣∣
2 dxdt,

which gives

T∫
0

∫
Ω

|∇ξn|
2 dxdt ≤

T∫
0

∫
Ω

∣∣∣∣∣∣
σ2∫
σ1

y (vn, 0;σ) dσ

∣∣∣∣∣∣
2

dxdt ≤ Cγ =⇒ ‖ξn‖
2
L2(0,T ;H1

0 (Ω)) ≤ Cγ.

i.e,

ξn ⇀ ξγ weakly in L2
(
0, T ;H1

0 (Ω)
)
,

from (3.10.3) we get

t

(
∂2ξn
∂t2
−∆ξn

)
⇀ f3 weakly in L2 (Q) ,

Also, we have

t

(
∂2ξn
∂t2
−∆ξn

)
⇀ t

(
∂2ξγ
∂t2
−∆ξγ

)
in D

′
(Q) ,

i.e,

t

(
∂2ξn
∂t2
−∆ξn

)
⇀ t

(
∂2ξγ
∂t2
−∆ξγ

)
weakly in L2 (Q) ,

and for the reset of condition we use the same method used for the system of yγ.

Since, the cost function Jγ (v) is lower semi-continous

Jγ (uγ) ≤ lim
n→+∞

inf
v∈Uad

Jγ (vn) = inf
v∈Uad

Jγ (v) = dγ,

then uγ is a minimizer of Jγ (v).

2-Uniqueness

It follows from the strict convexity of Jγ.
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3.2.1 Characterization of the averaged low-regret control

A first order optimality condition for Jγ (v) gives:

Jγ′ (uγ) (v − uγ) ≥ 0 ∀v ∈ Uad,

by a simple calculus, we get

Jγ′ (uγ) (v − uγ) =

 σ2∫
σ1

y (uγ, 0;σ) dσ − zd,
σ2∫
σ1

y (v − uγ, 0;σ) dσ


L2(Q)

+N (uγ, v − uγ)L2(Q)

+
(σ2−σ1)

γ

(
t
∂ξ

∂ν
(uγ) , t

∂ξ

∂ν
(v − uγ)

)
L2(Σ)

≥ 0 ∀v ∈ Uad.

Let’s introduce a new state ργ = ρ (uγ) given by
∂2ργ
∂t2
−∆ργ = 0

ργ = − t2

γ

∂ξγ
∂ν

ργ (x, 0) = 0,
∂ργ
∂t

(x, 0) = 0

in Q,

on Σ,

in Ω,

multiply the first equation of the last one by ξ (v − uγ) and apply the second Green formula, we

obtain

(
∂2ργ
∂t2
−4ργ, ξ (v − uγ)

)
L2(Q)

=

∫ T

0

∫
Ω

(
∂2ξ

∂t2
(v − uγ)−4ξ (v − uγ)

)
ργdxdt

+

∫
Ω

[
∂ργ
∂t

ξ(v − uγ)− ργ
∂ξ

∂t
(v − uγ)

]T
0

dx+

∫ t

0

∫
Γ

(
∂ξ

∂ν
(v − uγ) ργ

−
∂ργ
∂ν

ξ (v − uγ))dΓdt

=

∫ T

0

∫
Ω

1

t

∫ σ2

σ1

y (v − uγ, 0, σ) dσργdxdt∫ T

0

∫
Γ

∂ξγ
∂ν

(v − uγ) ργdxdt

Hence,

Jγ′(uγ)(v−uγ) =

(∫ σ2

σ1

y (uγ, 0, σ) dσ − zd +
(σ2 − σ1)

t
ργ,

∫ σ2

σ1

y (v − uγ, 0, σ) dσ

)
L2(Q)

+N (uγ, v − uγ)L2(Q) .

Also, we introduce the adjoint state pγ = p (uγ)
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∂2pγ
∂t2
− σ2∆pγ =

∫ σ2

σ1
y (uγ, 0, σ) dσ − zd + (σ2−σ1)

t
ργ

pγ = 0
∂pγ
∂t

(x, T ) = 0, pγ(x, T ) = 0

in Q,

on Σ,

in Ω,

again we have

(
∂2pγ
∂t2
− σ2∆pγ,

∫ σ2

σ1

y (v − uγ, 0, σ) dσ

)
L2(Q)

=

∫ T

0

∫
Ω

∫ σ2

σ1

(
∂2pγ
∂t2
− σ2∆pγ

)
y (v − uγ, 0, σ) dσdxdt

=

∫ T

0

∫
Ω

∫ σ2

σ1

pγ (v − uγ) dσdxdt,

Then

Jγ′(uγ)(v − uγ) =

(∫ σ2

σ1

pγdσ +Nuγ, v − uγ
)
L2(Q)

≥ 0 ∀v ∈ Uad.

Finally, the optimality system which characterized the low-regret control is :
∂2yγ
∂t2
− σ2∆yγ = uγ

yγ = 0

yγ (x, 0) = 0, ∂yγ
∂t

(x, 0) = 0

in Q,

on Σ,

in Ω,
∂2ξγ
∂t2
−∆ξγ = 1

t

σ2∫
σ1

y (uγ, 0;σ) dσ

ξγ = 0

ξγ (x, T ) = 0,
∂ξγ
∂t

(x, T ) = 0

in Q,

on Σ,

in Ω,


∂2ργ
∂t2
−∆ργ = 0

ργ = − t2

γ

∂ξγ
∂ν

∂ργ
∂t

(x, 0) = 0, ργ (x, 0) = 0

in Q,

on Σ,

in Ω,
∂2pγ
∂t2
− σ2∆pγ =

∫ σ2

σ1
y (uγ, 0, σ) dσ − zd + (σ2−σ1)

t
ργ

pγ = 0
∂pγ
∂t

(x, T ) = 0, pγ(x, T ) = 0

in Q,

on Σ,

in Ω,

and (∫ σ2

σ1

pγdσ +Nuγ, v − uγ
)
L2(Q)

≥ 0 ∀v ∈ Uad.
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3.3 Characterization of the averaged no-regret control:

Below, we show the convergence of the averaged low-regret control to the averaged no-regret

control. Then, we give the optimality system of the last one.

Proposition 3.1 :The low-regret control sequences uγ converges to the no-regret control u.

Proof. uγ is the minimum of Jγ so

Jγ (uγ) = J (uγ, 0)− J (0, 0) +
σ2 − σ1

γ

∥∥∥∥t∂ξγ∂ν
∥∥∥∥2

L2(Σ)

≤ Jγ (0) = 0,

which implies∥∥∥∥∫ σ2

σ1

y (uγ, 0, σ) dσ − zd
∥∥∥∥2

L2(Q)

+N ‖uγ‖2
L2(Q) +

σ2 − σ1

γ

∥∥∥∥t∂ξγ∂ν
∥∥∥∥2

L2(Σ)

≤ J (0, 0) = ‖zd‖2
L2(Q) ,

this gives

‖uγ‖L2(Q) ≤ C, (3.14.1)∥∥∥∥∫ σ2

σ1

y (uγ, 0, σ) dσ

∥∥∥∥
L2(Q)

≤ C, (3.14.2)∥∥∥∥t∂ξγ∂ν
∥∥∥∥
L2(Σ)

≤ C (σ2 − σ1)
√
γ, (3.14.3)

where C is a constant independent of γ.

We have that 
∂2yγ
∂t2
− σ2∆yγ = uγ

yγ = 0

yγ(x, 0) = 0, ∂yγ
∂t

(x, 0) = 0

in Q,

on Σ,

in Ω,

multiply the first equation by ∂yγ
∂t

and integrate over (0, t) to get

1

2

t∫
0

∫
Ω

d

dt

[∣∣∣∣∂yγ∂t
∣∣∣∣2 + σ2 |∇yγ|2

]
dxds =

t∫
0

∫
Ω

uγ
∂yγ
∂t

dxds,

use Cauchy inequality∥∥∥∥∂yγ (t)

∂t

∥∥∥∥2

L2(Ω)

+ σ2 ‖∇yγ (t)‖2
L2(Ω) ≤

t∫
0

(
‖uγ (s)‖2

L2(Ω) +

∥∥∥∥∂yγ∂t (s)

∥∥∥∥2

L2(Ω)

)
ds,

then, use Gronwall lemma (see appendix Lemma 4.2) we get∥∥∥∥∂yγ (t)

∂t

∥∥∥∥2

L2(Ω)

+ σ2 ‖∇yγ (t)‖2
L2(Ω) ≤ ‖uγ (s)‖2

L2(Ω) exp (t) ≤ C,
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implies ∥∥∥∥∂yγ (t)

∂t

∥∥∥∥
L∞(0,T ;L2(Ω))

≤ C, ‖yγ (t)‖L∞(0,T ;H1
0 (Ω)) ≤ C (σ) , (3.15)

Also, we have ∥∥∥∥∂2yγ
∂t2
− σ2∆yγ

∥∥∥∥
L2(Q)

≤ C, (3.16)

from (3.14.1) , (3.14.2) , (3.15) and (3.16)by the same way in Theorem 3.1, we deduce that

uγ ⇀ u weakly in L2 (Q) ,

yγ ⇀ y weakly in L∞
(
0, T ;H1

0 (Ω)
)
,

∂2yγ
∂t2
− σ2∆yγ ⇀

∂2y

∂t2
− σ2∆y weakly in L2 (Q) ,∫ σ2

σ1

y (uγ, 0, σ) dσ ⇀

∫ σ2

σ1

y (u, 0, σ) dσ weakly in L2 (Q) , (3.17)

and

y (x, 0) = 0,
∂y

∂t
(x, 0) = 0 in Ω,

and from (3.17), we get ∥∥∥∥∂ξγ∂t
∥∥∥∥
L∞(0,T ;L2(Ω))

≤ C,
∥∥ξγ∥∥L∞(0,T ;H1

0 (Ω)) ≤ C,∥∥∥∥∂2ξγ
∂t2
−∆ξγ

∥∥∥∥
L2(Q)

≤ C,

then ξγ ⇀ ξ weakly in L∞ (0, T ;H1
0 (Ω)) and ∂2ξγ

∂t2
−∆ξγ ⇀

∂2ξ
∂t2
−∆ξ weakly in L2 (Q).

Hence, ξ = ξ (u) ∈ L∞ (0, T ;H1
0 (Ω)) is the solution of

∂2ξ
∂t2
−∆ξ = 1

t

σ2∫
σ1

y (u, 0;σ) dσ in Q,

ξ = 0 on Σ,

ξ (x, T ) = 0, ∂ξ
∂t

(x, T ) = 0 in Ω,

from (3.14.3) when γ → 0 we get t∂ξγ
∂ν
→ ∂ξ

∂ν
= 0 strongly in L2 (Σ) . Then

T∫
0

∫
Γ

t ∂ξ
∂ν
gdΓdt = 0 for

every g ∈ L2 (Σ) it means that u is a no-regret control.

Theorem 3.2 The averaged no-regret control corresponding to the state y(u, 0) characterized by the

following optimality system 
∂2y
∂t2
− σ2∆y = u

y = 0

y(x, 0) = 0, ∂y
∂t

(x, 0) = 0

in Q,

on Σ,

in Ω,
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∂2ξ
∂t2
−∆ξ = 1

t

∫ σ2

σ1
y(u, 0, σ)dσ

ξ = 0

ξ (x, T ) = 0, ∂ξ
∂t

(x, T ) = 0

in Q,

on Σ,

in Ω,
∂2ρ
∂t2
−∆ρ = 0

ρ = λ

ρ(x, 0) = 0, ∂ρ
∂t

(x, 0) = 0

in Q,

on Σ,

in Ω,
∂2p
∂t2
−∆p =

∫ σ2

σ1
y(u, 0, σ)dσ − zd + (σ2−σ1)

t
ρ

p = 0
∂p
∂t

(x, T ) = 0, p(x, T ) = 0

in Q,

on Σ,

in Ω,

and (∫ σ2

σ1

p (σ) dσ +Nu, v − u
)
L2(Q)

≥ 0 ∀v ∈ Uad

where

u = lim
γ→0

uγ, y = lim
γ→0

yγ, ξ = lim
γ→0

ξγ

ρ = lim
γ→0

ργ, p = lim
γ→0

pγ, λ = lim
γ→0

t2

γ

∂ξ

∂ν
(uγ) .

Proof. We show in the last propositions convergence of y and ξ.ffor ργ we have from (3.14.3)

1

γ

∥∥∥∥t∂ξγ∂ν
∥∥∥∥
L2(Σ)

≤ C =⇒ t2

γ

∂ξγ
∂ν
∈ L2 (Σ) . (3.18)

We use Theorem 4.3 in [1] to get∥∥∥∥∂ργ∂t
∥∥∥∥
L∞(0,T ;H−1(Ω))

≤ C,
∥∥ργ∥∥L∞(0,T ;L2(Ω))

≤ C, (3.19)∥∥∥∥∂2ργ
∂t2
−∆ργ

∥∥∥∥
L2(Q)

≤ C,

where C is a constant independent of γ.

We have from (3.19)

ργ ⇀ ρ weakly in L2 (Q) ,

and ∂2ργ
∂t
−∆ργ ⇀

∂2ρ
∂t
−∆ρ weakly in L2 (Q) and from (3.18) we get − t2

γ

∂ξγ
∂ν

⇀ λ weakly in L2 (Σ)

then 
∂2ρ
∂t2
−∆ρ = 0

ρ = λ

ρ (x, 0) = 0, ∂ρ
∂t

(x, 0) = 0

in Q,

on Σ,

in Ω,
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It is easy to get ∥∥∥∥∂pγ∂t
∥∥∥∥
L∞(0,T ;L2(Ω))

≤ C, ‖pγ‖L∞(0,T ;H1
0 (Ω)) ≤ C,∥∥∥∥∂2pγ

∂t2
−∆pγ

∥∥∥∥
L2(Q)

≤ C,

again we get

pγ ⇀ p weakly in L2 (Q) ,

∂2pγ
∂t2
− σ2∆pγ ⇀

∂2p

∂t
− σ2∆p weakly in L2 (Q) ,∫ σ2

σ1

y (uγ, 0, σ) dσ − zd +
(σ2 − σ1)

t
ργ ⇀

∫ σ2

σ1

y (u, 0, σ) dσ − zd +
(σ2 − σ1)

t
ρ weakly in L2 (Q) .

Hence, 
∂2p
∂t2
− σ2∆p =

∫ σ2

σ1
y (u, 0, σ) dσ − zd + (σ2−σ1)

t
ρ

p = 0
∂p
∂t

(x, T ) = 0, p(x, T ) = 0

in Q,

on Σ,

in Ω,

therefore, the optimality condition is given by(∫ σ2

σ1

p (σ) dσ +Nu, v − u
)
L2(Q)

≥ 0 ∀v ∈ Uad.
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Chapter 4

Optimal control of heat equation with

missing boundary condition

In this chapter, we consider the problem of a parabolic equation which describes the diffusion

of the heat in a cylindrical domain. A mixed Dirichlet Newman boundary conditions are given

on the face of the cylinder represented by a control v and unknown function g respectively, by

the virtue of the last one leads us to optimal control for problem governed by a linear parabolic

equation with missing data, which requires us to use the method of no-regret control that is well

adapted in this case. Assuming that the no-regret control is associated with a sequence of the

low-regret control. Besides, it converges weakly to the no-regret control we discussed together

the optimality system describing the no-regret control.

4.1 Setting of the problem

Let Ω ⊂ Rn be a bounded domain with smooth boundary Γ. We consider the time space cylinder

Q = Ω× (0, T ) , Σ1 = Γ1× ]0, T [ and by Σ2 = Γ2× ]0, T [ such that ]0, T [ is the time interval we are

looking at and Γ1 ∩ Γ2 = ∅ and Γ1 ∪ Γ2 = Γ.

We consider the following controlled heat equation
∂y
∂t
− div (a (x)∇y) = 0

∂y
∂νa

= v on Σ1, y = g

y (x, 0) = 0

in Q,

on Σ2,

in Ω,

(4.1)

where
∂y

∂νa
= a (x)∇y.ν,
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ν is the outward unit normal vector and a ∈ L∞ (Ω) is the coefficient of diffusions such that

0 < α1 ≤ a (x) ≤ α2, a.e in Ω.

The function g is unknown boundary belongs to L2 (Σ2) , the control v ∈ L2 (Σ1) . The problem

(4.1) has a unique solution

y = y(g) = y(x, t) ∈ L2
(
0, T ; H2 (Ω)

)
⊂ L2 (Q) .

We define the cost function related to the problem (4.1) as follows

J (v, g) = ‖y − yd‖2
L2(Q) +N ‖v‖2

L2(Σ1) , (4.2)

where N > 0 is a constant and yd is the fixed observation belongs to L2 (Q). Our optimal control

problem is written as follows

inf
v∈L2(Σ1)

J (v, g) , for every g ∈ L2 (Σ2) . (4.3)

Solving the problem (4.3) leads to a control depending on g, this requires us to use the no-regret

control method.

4.2 No-regret control :

Hence, we define the notion of no-regret control for the problem (4.1) as following:

Definition 4.1 We say that u ∈ L2 (Σ1) is a no-regret control for (4.1) and (4.2) iff u is the solution

of:

inf
v∈L2(Σ1)

sup
g∈L2(Σ2)

(J (v, g)− J (0, g)) .

Thanks to linearity in (4.1), it’s easy to see that

y(v, g) = y(v, 0) + y(0, g). (4.4)

Remark 4.1 It’s clear that y(0, 0) is the trivial solution of (4, 1) .

Therefore, we shall isolate g to a form where the classical theory of optimal control can be applied,

the method is shown in the following Lemma

Lemma 4.1 For any v ∈ L2 (Σ1) and for any g ∈ L2 (Σ2) , we have:
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J (v, g)− J (0, g) = J (v, 0)− J (0, 0)− 2(
∂ξ

∂νa
, g)L2(Σ2), (4.5)

where ξ = ξ(x, t; v) ∈ L2 (Q) is solution of backword heat equation given by:
−∂ξ
∂t
− div (a (x)∇ξ) = y(v, 0)

∂ξ
∂νa

= 0 on Σ1, ξ = 0

ξ (x, T ) = 0

in Q,

on Σ2,

in Ω.

(4.6)

Proof. We have

J (v, g) = ‖y − yd‖2
L2(Q) +N ‖v‖2

L2(Σ1) ,

by (4, 4) we get

J (v, g) = J (v, 0) + J (0, g)− J (0, 0) + 2 (y(v, 0), y(0, g))L2(Q) .

Consequently:

J (v, g)− J (0, g) = J (v, 0)− J (0, 0) + 2 (y(v, 0), y(0, g))L2(Q) .

Now, we introduce an adjoint state ξ = ξ(x, t; v) define by (4, 6) , by the use of Green formula

(y(v, 0), y(0, g))L2(Q) =

(
−∂ξ
∂t
− div (a (x)∇ξ) , y(0, g)

)
L2(Q)

= −
T∫

0

∫
Γ2

∂ξ

∂νa
gdΓ2dt,

Then

J (v, g)− J (0, g) = J (v, 0)− J (0, 0)− 2(
∂ξ

∂νa
, g)L2(Σ2).

Now, we consider the no-regret control problem

inf
v∈L2(Σ1)

sup
g∈L2(Σ2)

(J (v, g)− J (0, g)) ,

from (4, 5) the problem is equivalent to the following one

inf
v∈L2(Σ1)

(
J (v, 0)− J (0, 0)− sup

g∈L2(Σ2)

2(
∂ξ

∂νa
, g)L2(Σ2)

)
.

This leads us to define the low-regret control.
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4.2.1 Low-regret control :

Definition 4.2 Let γ > 0, we say that uγ ∈ L2 (Σ1) is the low-regret control of (4.1) and (4.2) if it’s

a solution of

inf
v∈L2(Σ1)

sup
g∈L2(Σ2)

(
J (v, g)− J (0, g)− γ ‖g‖2

L2(Σ2)

)
.

Hence, our optimal control problem will be as follows

inf
v∈L2(Σ1)

Jγ (v) , (4.7)

where

Jγ (v) = J (v, 0)− J (0, 0) +
1

γ

∥∥∥∥ ∂ξ∂νa
∥∥∥∥2

L2(Σ2)

.

Theorem 4.1 There exist a unique low-regret control uγ solution to (4.1) and (4.7) .

Proof. 1-Existence

It’s clear that Jγ (v) ≥ −J (0, 0) implies inf
v∈L2(Σ1)

Jγ (v) = dγ exists.

Let (vn) ⊂ L2 (Σ1) be a minimizing sequence, since Jγ is coercive (vn) is bounded i,e.

Jγ (vn) →
n→+∞

inf
v∈L2(Σ1)

Jγ (v) = dγ.

We have that

−J (0, 0) ≤ Jγ (vn) = J (vn, 0)− J (0, 0) +
1

γ

∥∥∥∥∂ξn∂νa

∥∥∥∥2

L2(Σ2)

≤ dγ + 1 = Cγ,

which gives the following bounds

‖vn‖L2(Σ1) ≤ Cγ, (4.8.1)

‖y (vn, 0)‖L2(Q) ≤ Cγ, (4.8.2)∥∥∥∥∂ξn∂νa

∥∥∥∥
L2(Σ2)

≤ Cγ
√
γ, (4.8.3)

where Cγ is a constant independent of n.

Consequently, from (4.8.1) and (4.8.2) we can extracting a subsequences still denoting by (vn) and

y (vn, 0) such that

vn ⇀ uγ weakly in L2 (Σ1) ,

y(vn, 0) ⇀ yγ weakly in L2 (Q) ,
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and from the continuity of y with respect to data we deduce that

y(vn, 0) ⇀ y(uγ, 0) weakly in L2 (Q) , (4.9)

from the uniqueness of limit, we deduce that yγ = y(uγ, 0).

We know that yn = y(vn, 0) is solution of:
∂yn
∂t
− div (a (x)∇yn) = 0

∂yn
∂νa

= vn on Σ1, yn = 0

yn (x, 0) = 0

in Q,

on Σ2,

in Ω,

(4.10)

integrate over Q then we deduce that∥∥∥∥∂yn∂t − div (a (x)∇yn)

∥∥∥∥
L2(Q)

≤ Cγ,

it means that

0 =
∂yn
∂t
− div (a (x)∇yn) ⇀ f1 = 0 weakly in L2 (Q) ,

we have that

∂yn
∂t
− div (a (x)∇yn) ⇀

∂yγ
∂t
− div (a (x)∇yγ) weakly in D′ (Q) ,

from the uniqueness of limit we get:

∂yγ
∂t
− div (a (x)∇yγ) = 0 in Q.

from (4.9) we get

yγ (x, 0) = 0 in Ω.

The limit of boundary condition will be proved into two steps

First step. We know that

‖yn‖L2(Q) ≤ Cγ,

yn ⇀ yγ weakly in L2 (Q) ,

from the continuity of trace operator, we have that∥∥∥∥∂yn∂νa

∥∥∥∥
L2(Σ1)

≤ c ‖yn‖L2(Q) ≤ Cγ,

where c is arbitrary constant.

We deduce that
∂yn
∂νa

⇀ g weakly in L2 (Σ1) ,
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On the other hand
∂yn
∂νa

= vn on Σ1,

and

vn ⇀ uγ weakly in L2 (Σ1) ,

according to the uniqueness of limit, we get

∂yγ
∂νa

= uγ on Σ1.

Second step. Now, we multiply the first equation in (4.10) by φ ∈ D (Q), where φ (T ) = 0 in

Ω, ∂φ
∂νa

= 0 on Σ1, φ = 0 on Σ2, and integrate over Q we get

T∫
0

∫
Ω

(
∂yn
∂t
− div (a (x)∇yn)

)
φdxdt =

T∫
0

∫
Ω

yn

(
−∂φ
∂t
− div (a (x)∇φ)

)
dxdt−

∫
Σ1

vnφdΣ1,

passing to limit we get:

T∫
0

∫
Ω

yγ

(
−∂φ
∂t
− div (a (x)∇φ)

)
dxdt =

∫
Σ1

uγφdΣ1,

integrate another time ∫
Σ1

∂yγ
∂νa

φdΣ1 −
∫
Σ2

yγ
∂φ

∂νa
dΣ2 =

∫
Σ1

uγφdΣ1,

Consequently ∫
Σ2

yγ
∂φ

∂νa
dΣ2 = 0,

finally

yγ = 0 on Σ2.

In the other side, we have that ξn = ξ(vn) is a solution of the following adjoint problem
−∂ξn

∂t
− div (a (x)∇ξn) = yn

∂ξn
∂νa

= 0 on Σ1, ξn = 0

ξn (x, T ) = 0

in Q,

on Σ2,

in Ω,

multiply the first equation by ξn and we integrate over Q

−1

2

T∫
0

∫
Ω

d

dt
|ξn|

2 dxdt+ α1

T∫
0

∫
Ω

|∇ξn|
2 dxdt ≤

T∫
0

∫
Ω

ynξndxdt,
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integrate by parts with respect to time variable

−1

2

∫
Ω

(|ξn (T )|2 − |ξn (0)|2)dx+ α1

T∫
0

∫
Ω

|∇ξn|
2 dxdt ≤

T∫
0

∫
Ω

ynξndxdt,

we use Cauchy Schwartz inequality (see appendix Proposition 4.2) we get

∫
Ω

|ξn (0)|2 dx+ 2α1

T∫
0

∫
Ω

|∇ξn|
2 dxdt ≤

T∫
0

∫
Ω

|yn|2 dxdt+

T∫
0

∫
Ω

|ξn|
2 dxdt,

by using Poincare inequality (see appendix Proposition 4.3) we get

∫
Ω

|ξn (0)|2 dx+ 2

T∫
0

∫
Ω

|ξn|
2 dxdt ≤

T∫
0

∫
Ω

|yn|2 dxdt+

T∫
0

∫
Ω

|ξn|
2 dxdt,

implies that ∫
Ω

|ξn (0)|2 dx+

T∫
0

∫
Ω

|ξn|
2 dxdt ≤

T∫
0

∫
Ω

|yn|2 dxdt ≤ Cγ,

we deduce

‖ξn‖L2(Q) ≤ Cγ.

Hence, there exists a subsequence still be denoted (ξn) such that

ξn ⇀ ξγ weakly in L2 (Q) , (4.11)

due to (4.8.2) , we have ∥∥∥∥−∂ξn∂t − div (a (x)∇ξn)

∥∥∥∥
L2(Q)

≤ Cγ,

requires that there exists some subsequence converges weakly

−∂ξn
∂t
− div (a (x)∇ξn) ⇀ g weakly in L2 (Q) ,

also, we have

−∂ξn
∂t
− div (a (x)∇ξn) ⇀ −

∂ξγ
∂t
− div

(
a (x)∇ξγ

)
weakly in D′ (Q) ,

Then from the uniqueness of limit we get

g = −
∂ξγ
∂t
− div

(
a (x)∇ξγ

)
.
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Now, we will show the convergences of the boundary and initial conditions, from (4.11) we deduce

ξγ (x, T ) = 0 in Ω.

For the limit of boundary condition will be proved in two steps

First step. We have

‖ξn‖L2(Q) ≤ Cγ,

ξn ⇀ ξ weakly in L2 (Q) ,

Also, we have that from the continuity of trace operator∥∥∥∥∂ξn∂νa

∥∥∥∥
L2(Σ1)

≤ Cγ,

we deduce that
∂ξn
∂νa

⇀ h weakly in L2 (Σ1) ,

from the continuity of the trace operator with respect to the data

∂ξn
∂νa

⇀
∂ξγ
∂νa

weakly in L2 (Σ1) ,

in other side, we have
∂ξn
∂νa

= 0 on Σ1,

from the uniquness of limit
∂ξγ
∂νa

= 0 on Σ1.

Second step. We follow the same method shown in the previous problem which de-

scribes the state y such that φ (0) = 0 in Ω, we obtain

T∫
0

∫
Ω

ξγ(
∂φ

∂t
− div (a (x)∇φ))dxdt =

T∫
0

∫
Ω

yγφdxdt,

integrate another time, we get

T∫
0

∫
Ω

yγφdxdt+

∫
Σ1

∂ξγ
∂νa

φdΣ1 −
∫
Σ2

ξγ
∂φ

∂νa
dΣ2 =

T∫
0

∫
Ω

yγφdxdt,

implies that ∫
Σ2

ξγ
∂φ

∂νa
dΣ2 = 0,
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Consequently

ξγ = 0 on Σ2.

Since The cost function Jγ (v) is lower semi-continuous

Jγ (uγ) ≤ lim
n→+∞

inf
v∈L2(Σ1)

Jγ (vn) = inf
v∈L2(Σ1)

Jγ (v) = dγ.

Finally, uγ is a minimizer of Jγ (v).

2-Uniqueness

It follows from the strict convexity of Jγ.

4.2.2 Optimality system of the low-regret control

A first order optimality condition for Jγ (v) gives :

Jγ′(uγ)(v − uγ) = 0 ∀v ∈ L2 (Σ1) ,

by a simple calculus, we get

Jγ′(uγ)(v − uγ) = 2 (y(uγ, 0)− yd, y(v − uγ, 0))L2(Q) + 2N (uγ, v − uγ)L2(Σ1)

+
2

γ

(
∂ξ(uγ)

∂νa
,
∂ξ(v − uγ)

∂νa

)
L2(Σ2)

= 0.

Let’s introduce the new state ργ = ρ(uγ) given by
∂ργ
∂t
− div

(
a(x)∇ργ

)
= 0

∂ργ
∂νa

= 0 on Σ1, ργ = − 1
γ
∂ξ
∂νa

(uγ)

ργ(x, 0) = 0

in Q,

on Σ2,

in Ω,

(4.12)

multiply the first equation of the last system by ξ (v − uγ) and apply the second Green formula,

we obtain(
∂ργ
∂t
− div

(
a(x)∇ργ

)
, ξ (v − uγ)

)
L2(Q)

=

∫ T

0

∫
Ω

(
∂ργ
∂t
− div

(
a(x)∇ργ

)
)ξ (v − uγ) dxdt

=

∫ T

0

∫
Ω

y(v − uγ, 0)ργdxdt,

Hence,

Jγ′(uγ)(v − uγ) = 2 (y(uγ, 0)− yd + ργ, y(v − uγ, 0))L2(Q) + 2N (uγ, v − uγ)L2(Σ1) = 0 ∀v ∈ L2 (Σ1) .
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For the second time, we introduce an adjoint state pγ = p (uγ)
−∂pγ

∂t
− div (a(x)∇pγ) = y(uγ, 0)− yd + ργ

∂pγ
∂νa

= 0 in Σ1, pγ = 0

pγ(x, T ) = 0

in Q,

on Σ2,

in Ω,

(4.13)

again we have(
−∂pγ
∂t
− div (a(x)∇pγ) , y(v − uγ, 0)

)
L2(Q)

=

∫ T

0

∫
Ω

(−∂pγ
∂t
− div (a(x)∇pγ))y(v − uγ, 0)dxdt

=

∫ T

0

∫
Γ1

pγ(v − uγ)dxdt,

then

Jγ′(uγ)(v − uγ) = (pγ +Nuγ, v − uγ)L2(Σ1) = 0 ∀v ∈ L2 (Σ1) ,

implies that

pγ +Nuγ = 0 a.e in Σ1.

Finally, the optimality system of the low-regret control is characterized by
∂yγ
∂t
− div (a (x)∇yγ) = 0

∂yγ
∂νa

= uγ on Σ1, yγ = 0

yγ (x, 0) = 0

in Q,

on Σ2,

in Ω,
−∂ξγ

∂t
− div

(
a (x)∇ξγ

)
= y(uγ, 0)

∂ξγ
∂νa

= 0 on Σ1, ξγ = 0

ξγ (x, T ) = 0

in Q,

on Σ2,

in Ω,
∂ργ
∂t
− div

(
a(x)∇ργ

)
= 0

∂ργ
∂νa

= 0 on Σ1, ργ = − 1
γ
∂ξ
∂νa

(uγ)

ργ(x, 0) = 0

in Q,

on Σ2,

in Ω,
−∂pγ

∂t
− div (a(x)∇pγ) = y(uγ, 0)− yd + ργ

∂pγ
∂νa

= 0 on Σ1, pγ = 0

pγ(x, T ) = 0

in Q,

on Σ2,

in Ω,

with

pγ +Nuγ = 0 a.e in Σ1.
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4.3 Optimality system of the no-regret control

Before we start the characterization of the no-regret control we give the following proposition

proving the convergence of the sequence of low-regret control to the no-regret control.

Proposition 4.1 The low-regret control uγ converge to the no-regret control u when γ tends to 0.

Proof. uγ is the minimum of Jγ (v) then

Jγ (uγ) ≤ Jγ (0) = constant,

replacing Jγ (uγ) with their definition, we get

‖y (uγ, 0)− yd‖2
L2(Q) +N ‖uγ‖2

L2(Σ1) +
1

γ

∥∥∥∥∂ξ (uγ)

∂νa

∥∥∥∥2

L2(Σ2)

≤ J (0, 0) = C,

where C is a constant independent γ. This leads to the following bounds

‖uγ‖L2(Σ1) ≤ C, (4.14.a)

‖y (uγ, 0)‖L2(Q) ≤ C, (4.14.b)∥∥∥∥∂ξ (uγ)

∂νa

∥∥∥∥
L2(Σ2)

≤ C
√
γ, (4.14.c)

we deduce from (4.14.a) and (4.14.b) that we can extracting a subsequence still denoting by

(uγ) , y (uγ, 0) such that

uγ ⇀ u weakly in L2 (Σ1) ,

y (uγ, 0) ⇀ y weakly in L2 (Q) ,

due to the continuity of y with respect to u, we deduce

y (uγ, 0) ⇀ y (u, 0) weakly in L2 (Q) ,

from the uniqueness of limit y = y (u, 0) .

As the same proof in the Theorem 4.1, we get the following system governed the state y and ξ.
∂y
∂t
− div (a (x)∇y) = 0

∂y
∂νa

= u on Σ1, y = 0

y (x, 0) = 0

in Q,

on Σ2,

in Ω,
−∂ξ
∂t
− div (a (x)∇ξ) = y

∂ξ
∂νa

= 0 on Σ1, ξ = 0

ξ (x, T ) = 0

in Q,

on Σ2,

in Ω.
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due to (4.14.c) and by passing to limit when γ → 0 we get

∂ξ (uγ)

∂νa
→ ∂ξ

∂νa
= 0 strongly in L2 (Σ2) ,

which implies that ∫
Σ2

∂ξ

∂νa
gdΣ2 = 0.

Which means that u is the no-regret control.

Theorem 4.2 The no-regret control u is characterised by the following optimality system:
∂y
∂t
− div (a (x)∇y) = 0

∂y
∂νa

= u on Σ1, y = 0

y(x, 0) = 0

in Q,

on Σ2,

in Ω,
−∂ξ
∂t
− div (a (x)∇ξ) = y

∂ξ
∂νa

= 0 on Σ1, ξ = 0

ξ (x, T ) = 0

in Q,

on Σ2,

in Ω,
∂ρ
∂t
− div (a(x)∇ρ) = 0

∂ρ
∂νa

= 0 on Σ1, ρ = λ

ρ(x, 0) = 0

in Q,

on Σ2,

in Ω,
−∂p

∂t
− div (a(x)∇p) = y − yd + ρ
∂p
∂νa

= 0 on Σ1, p = 0

p(x, T ) = 0

in Q,

on Σ2,

in Ω,

with

p+Nu = 0 a.e in Σ1.

where

lim
γ→0

uγ = u, lim
γ→0

yγ = y, lim
γ→0

ξγ = ξ,

lim
γ→0

ργ = ρ, lim
γ→0

pγ = p, lim
γ→0

1

γ

∂ξ

∂ν
(uγ) = λ.

Proof. Actually, we have the systems that describe the state y and the adjoint state ξ in the

previous propositions, now we need the systems that describe ρ and p shown in the following

steps.
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First step: Multiply the first equation in (4.12) by ργ and integrate over Q we obtain

T∫
0

∫
Ω

∂ργ
∂t

ργdxdt−
T∫

0

∫
Ω

div
(
a(x)∇ργ

)
ργdxdt = 0,

use Green formula

1

2

T∫
0

∫
Ω

d

dt

∣∣ργ∣∣2 dxdt+

T∫
0

∫
Ω

a(x)
∣∣∇ργ∣∣2 dxdt− T∫

0

∫
Γ1

ργ
∂ργ
∂νa

dΓ1dt−
T∫

0

∫
Γ2

ργ
∂ργ
∂νa

dΓ1dt = 0,

implies that

1

2

∫
Ω

∣∣ργ(T )
∣∣2 dx+

T∫
0

∫
Ω

a(x)
∣∣∇ργ∣∣2 dxdt+

1

γ

T∫
0

∫
Γ2

∂ξγ
∂νa

∂ργ
∂νa

dΓ2dt = 0,

then

1

2

∫
Ω

∣∣ργ(T )
∣∣2 dx+ α1

T∫
0

∫
Ω

∣∣∇ργ∣∣2 dxdt ≤ −1

γ

T∫
0

∫
Γ2

∂ξγ
∂νa

∂ργ
∂νa

dΓ2dt,

we take the absolute value and use Cauchy inequality we get

∫
Ω

∣∣ργ(T )
∣∣2 dx+ 2α1

T∫
0

∫
Ω

∣∣∇ργ∣∣2 dxdt ≤ 1

γ

T∫
0

∫
Γ2

∣∣∣∣∂ξγ∂νa

∣∣∣∣2 dΓ2dt+
1

γ

T∫
0

∫
Γ2

∣∣∣∣∂ργ∂νa

∣∣∣∣2 dΓ2dt,

from the continuity of trace operator, we obtain

∫
Ω

∣∣ργ(T )
∣∣2 dx+ 2α1

T∫
0

∫
Ω

∣∣∇ργ∣∣2 dxdt ≤ 1

γ

T∫
0

∫
Γ2

∣∣∣∣∂ξγ∂νa

∣∣∣∣2 dΓ2dt+

T∫
0

∫
Ω

∣∣ργ∣∣2 dxdt,
use Poincare inequality

∫
Ω

∣∣ργ(T )
∣∣2 dx+ 2

T∫
0

∫
Ω

∣∣ργ∣∣2 dxdt ≤ 1

γ

T∫
0

∫
Γ2

∣∣∣∣∂ξγ∂νa

∣∣∣∣2 dΓ2dt+

T∫
0

∫
Ω

∣∣ργ∣∣2 dxdt,
then ∫

Ω

∣∣ργ(T )
∣∣2 dx+

T∫
0

∫
Ω

∣∣ργ∣∣2 dxdt ≤ 1

γ

T∫
0

∫
Γ2

∣∣∣∣∂ξγ∂νa

∣∣∣∣2 dΓ2dt ≤ C,

requires that ∥∥ργ∥∥L2(Q)
≤ C.
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There exists a subsequence such that

ργ ⇀ ρ weakly in L2 (Q) ,

due to (4.14.c) we have

1

γ

∥∥∥∥∂ξ (uγ)

∂νa

∥∥∥∥
L2(Σ2)

≤ 1

γ

∥∥∥∥∂ξ (uγ)

∂νa

∥∥∥∥2

L2(Σ2)

≤ C,

implies that exist λ ∈ L2 (Σ2) such that

1

γ

∂ξ (uγ)

∂νa
⇀ λ weakly in L2 (Σ2) .

By passing to limit in (4.12) we get the system governed ρ
∂ρ
∂t
− div (a(x)∇ρ) = 0

∂ρ
∂νa

= 0 on Σ1, ρ = λ

ρ(x, 0) = 0

in Q,

on Σ2,

in Ω.

Second step We know that ργ ∈ L2 (Q) and yγ − yd ∈ L2 (Q) requires to yγ − yd + ρ ∈ L2 (Q) .

As usual, we multiply the first equation in (4.13) by pγ and use Green formula we get∫
Ω

(
|pγ (T )|2 − |pγ (0)|2

)
dx+ 2α1

T∫
0

∫
Ω

|∇pγ|2 dxdt ≤
T∫

0

∫
Ω

(∣∣yγ − yd + ργ
∣∣2 + |pγ|2

)
dxdt,

use poincaré inequality

‖pγ‖2
L2(Q) ≤ ‖pγ (0)‖2

L2(Ω) +
∥∥yγ − yd + ργ

∥∥2

L2(Ω)
,

Consequently,

‖pγ‖L2(Q) ≤ C

Then, there exists a subsequence such that

pγ ⇀ p weakly in L2 (Q) ,

By the same way on the proof in Theorem 4.1 and we pass to limit we get the system governed p
−∂p

∂t
− div (a(x)∇p) = y − yd + ρ
∂p
∂νa

= 0 on Σ1, p = 0

p(x, T ) = 0

in Q,

on Σ2,

in Ω,

with

p+Nu = 0 a.e in L2 (Σ1) .
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Appendices

Theorem 4.3 ( Green Formulas) Let Ω ⊂ Rn a bounded and regular domain, and the normal

vector unit to the outside Γ = ∂Ω.So, for u ∈ H1(Ω) and v ∈ H2(Ω) we have: the first Green’s

formula ∫
Ω

u∆vdx = −
∫
Ω

∇u∇vdx+

∫
Γ

u
∂v

∂ν
dΓ,

for u, v ∈ H2(Ω) we have the second formula of Green’s:∫
Ω

(u∆v − v∆u)dx =

∫
Γ

u
∂v

∂ν
− v∂u

∂ν
dΓ.

Definition 4.3 Let U ∈ Rn a convex set and f : U −→ R a strictly convex function in U if

f (ty + (1− t)x) < tf (y) + (1− t) f (x) ∀x, y ∈ U , ∀t ∈ [0, 1]

Definition 4.4 Let f : E → R ∪ {+∞} is a proper function, so Legendre transform f ∗ of f is a

function of E → R ∪ {+∞} defined by

f ∗(p) = sup
x∈E

((p, x)− f(x))

Lemma 4.2 (Gronwall)Let Ψ, G be continuous in [0, T ], with G nondecreasing and γ > 0. If

Ψ(t) ≤ G(t) + γ

∫ t

0

Ψ (s) ds for all t ∈ [0, T ],

then

Ψ(t) ≤ G(t) exp(γt), for all t ∈ [0, T ].

Proposition 4.2 (Cauchy inequality)

Let a, b are any real numbers and p, q are real numbers connected by the relationship 1
p

+ 1
q

= 1.

Then we have the Cauchy inequality

ab ≤ 1

2

(
a2 + b2

)
.

Proposition 4.3 (Poincare inequality)

For 1 ≤ p <∞, there exists a constant C such that

‖u‖Lp(Ω) ≤ C ‖∇u‖Lp(Ω) .
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