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Abstract 
 

The aime of this work is to study the problem of global asymptotic stability for 
equilibria of a spatially diffusive HIV/AIDS epidemic model with homogeneous 
Neumann boundary condition. By discretizing the model with respect to the space 
variable, we first then by incorporating the theory of stable matrix of Volterra-
Lyapunov into the classical method of the Lyapunov functional ODEs model, and 
then broaden the construction method into the PDEs model in which either 
susceptible or infective populations are diffusive. In both cases, we obtain the 
standard threshold dynamical behaviors, that is, if 01, then the disease-free 
equilibrium is globally asymptotically stable and if 01, then the (strictly positive) 
endemic equilibrium is globally asymptotically stable. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

  الملخص                                                          

 العالمي المقارب الاستقرار مسألة دراسة ھو العمل ھذا من الھدف إن
 مع مكانیا المنتشر الإیدز/  البشریة المناعة نقص لفیروس وبائي نموذجل

 بالمتغیر یتعلق فیما النموذج تفكیك خلال من .المتجانسة نیومان  شروط
ً  نقوم, المكاني  في لیابونوف-لفولتیرا المستقرة المصفوفة نظریة بدمج أولا
 طریقة توسیع ثم, ODEs لنموذج لیابونوف لدالة الكلاسیكیة الطریقة

 السكان أو للعدوى عرضة إما السكان حیث ,PDEs نموذج في البناء
 الدینامیكیة السلوكیات على نحصل, الحالتین كلتا في. منتشرون المعدیة
 الأمراض من الخالي التوازن فإن, R0 <1 كان إذا أي, العتبیة القیاسیة

 التوازن فإن ,R0> 1 كان وإذا مقارب بشكل عالمیًا مستقرًا یكون
 .مقارب بشكل عالمیًا مستقر كذلك) تمامًا  موجب( المستوطن

 

 

 

 

 



 

 

 

    

                                             Résumé 
Le but de cette travail est d.étudier le problème de la stabilité asymptotique 
globale pour les équilibres d.un modèle épidémique de VIH / SIDA spatialement 
diffusif avec une condition aux limites de Neumann homogène. En discrétisant le 
modèle par rapport à la variable spatiale, nous incorporons d.abord la théorie de la 
matrice stable de Volterra-Lyapunov dans la méthode classique du modèle ODE 
fonctionnel de Lyapunov, puis élargissons la méthode de construction dans le 
modèle EDPs dans lequel soit sensible ou les populations infectieuses sont 
diffusives. Dans les deux cas, nous obtenons les comportements dynamiques de 
seuil standard, c.est-à-dire que si 01, alors l.équilibre sans maladie est 
globalement asymptotiquement stable et si 01, alors l.équilibre endémique 
(strictement positif) il est aussi globalement asymptotiquement stable. 
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Introduction

Introduction

HIV (Human Immunode�ciency Virus) and AIDS (Acquired Immune De�ciency Syn-

drome) is one of the health problems. HIV is now the major cause of years of potential

lives lost and the most common cause of death attributed to many infectious diseases.

Mathematical modeling over the years has been useful in analyzing various disease dy-

namics, such as HIV/AIDS, malaria and tuberculosis and also plays an important role

in the better understanding of epidemiological patterns for disease control. Into mod-

eling frame works, scientists presented several di¤erent models of the HIV/AIDS virus

[25, 26, 32]. Marsudi et al [27] studied the impact of educational campaign, screening and

HIV therapy on the dynamics of spread of HIV model. Di¤usive partial di¤erential equa-

tions are important and modern tools used tomodeling natural phenomena, particularly

in epidemiology, di¤usive partial di¤erential equation (PDE) models are frequently used

to study the continuous spatiotemporal spread of disease among population, in this work

we will the model we consider developed from [8] by including a di¤usion term.

This work is divided into three chapter:

� Chapter 1: Reaction-di¤usion systems and stability theory

In this chapter, we present an introduction to reaction-di¤usion system and applying

them in the di¤usion of infection in the population, including the di¤usion of HIV/AIDS

virus, and we also talked about the stability of systems for reaction-di¤usion and we

focused on stability using Volterra-Lyapunov matrix theory.

� Chapter 2: Stability of EDO system

In this chapter, we analyze a model consisting of ordinary di¤erential equation that

describes the dynamics of HIV/AIDS, we will achieve local stability of the equilibriums

points, we apply the method of Lyapunov function combined with the Volterra-Lyapunov

matrix population which lead to proof the global stability.

� Chapter 3: Stability of PDE system

This is the important chapter, whrere we study the spatial spread of HIV/AIDS, that

is, we analyse of model consisting of partial di¤erential equation in the PDE model, and

we studied local and global stability with respect to constant equilibriums points for this

model.

Laarbi Tebessi Univ-Tebessa - 1 2nd Master / PDE



Preliminaries

In this chapter, we will present some mathematical notation and some de�nitions and

theories that we will need in the memoire.
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Preliminaries

This chapter recalls some useful preliminaries that are necessary for the dissertation

at hand. We introduce some basic notations and notions.

0.1 Notations

The following are some notations we are used in the memorie.

� The set of the real numbers, is denoted by R.

� The set of the real numbers of the n-elements, is denoted by Rn:

� Matrices or variables are denoted by capital characters, e.g P , D, A... etc

� The determinant of real and complex martices, is denoted by det (A).

� The trace of real and complex matrices, is denoted by tr (A).

� The invers of real and complex matrices, is denoted by A�1.

� The transpose of matrix A; is denoted by AT .

� The diagonal of real and complex matrices, is denoted by diag(A).

� The real part of a complex number, is denoted by Re(A).

� The space of continuous and derivative functions, is denoted by C1.

� The Sobolev spaces, is denoted by H1(
):

� The spectral radius of A; is denoted by �(A):

� The derived from the variable A with respect to time t; is denoted by
dx

dt
.

� The identity operator, is denoted by I:

� The norme euclidean of A; is denoted by jjAjj:

� The Laplacian operator A; is denoted by �A, where

�A =
nX
i=1

@2A

@A2i
: (1)

Laarbi Tebessi Univ-Tebessa - 3 2nd Master / PDE



Preliminaries

� The gradient A; is denoted by rA, where

GradA = rA =
�
@A

@x1
;
@A

@x2
; :::;

@A

@xn

�
: (2)

� For any n� n matrix A, let ~A denote the (n� 1)� (n� 1) matrix obtained from
A by deleting its last row and last column.

� The set of positive real numbers, is denoted by R+ = [0;+1 ):

� U�� : Non-constant equilibrium point.

� U� : Constant equilibrium point.

� The disease-free equilibrium, is denoted by (DFE).

� The ordinary di¤erential equations, is denoted by (EDO).

� The partial di¤erential equations, is denoted by (PDE).

� 
 : open domaine in Rn; where n > 1:

.
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0.2 General Notions

The following are some general notions we are used in the memorie.

De�nition 1 (equilibrium point) We say that XE an equilibrium point of a system8<:
dX(t)

dt
= f(X(t));

X(0) = X0;
(3)

if XE verify the equation

f(XE) = 0: (4)

De�nition 2 We denote by L2(
) the set of integrable square functions on 
. A function
f de�ned on 
 is called an integrable square if f is measurable. We then de�ne the norme

on

kfkL2(
) =
�Z




jf j2
� 1

2

: (5)

De�nition 3 [31] The equilibrium XE is said to be stable if for everything � > 0; it exists

� > 0; as for all solution X(t) of (3), we have

jjX(0)�XEjj < � =) jjX(t)�XEjj < �: (6)

De�nition 4 [31] (Locally asymptotically stable) Let J(XE) =
@f

@X
(XE); the Jacobian

matrix of f evaluates at point XE: Consider the following linear system

dX

dt
= AX; (7)

where A = J(XE) is say the linearized or the linear approximation of the non-linear

system (3) in XE:

The study of the stability of the origin for the linearized allows in certain cases to

characterize the stability of the (3). More precisely, we have,

� If all the eigenvalues of the matrix A are of strictly negative real part, then the

system (3) is stable.

� If there is at least one eigenvalue of the matrix A of strictly positive real part then,
the system (3) is unstable.
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De�nition 5 [31] (Globally asymptotically stable) The equilibrium point XE is say to be

globally asymptotically stable if it is stable, and for any X(t) solution for (3), we have

lim
t!1

jjX(t)�XEjj = 0: (8)

De�nition 6 [13] The basic reproduction number R is the spectral radius of the next

generation matrix, namely

R = �
�
FV �1� : (9)

The following interpretation is given to the matrix FV �1: Let us consider an infected

individual introduced into a compartment FV �1 of a population without disease. The entry

(i; k) of the matrix V �1 is the average time that the individual will spend in compartment i

during his life, assuming that the infection has been blocked. The entry (j; i) of matrix F is

the speed at which an infected person in compartment i produces infections in compartment

j. Thus the entry (j; k) of FV �1 is the expected number of new infections in compartment

j produced by an infected individual originally introduced into compartment k. The spectral

radius of the matrix FV �1 is the basic reproduction number. That is to say R = �(FV �1):

Lemma 7 [30] For all function u of H1(
); and all function v of H1(
); we have the
Green formula Z




(�u) v =

Z



@u

@�
vd� �

Z



rurv: (10)

Proof 8 On suppose �u =
Xn

i=1

@2u

@x2i
; the Laplacian of a distribution u. Then, if u is a

function of H1(
), for all function v of H1(
)

�
Z



(�u) v = �
nX
i=1

Z



@2u

@x2i
vdx;

=

nX
i=1

8<:
Z



@u

@xi

@v

@xi
�
Z



@u

@xi
v�id�

9=; ;

=

nX
i=1

Z



@u

@xi

@v

@xi
�
Z



@u

@�
vd�;

=

Z



rurv �
Z
@


@u

@�
vd�: (11)

Theorem 9 [10](Routh-Hurwitz)
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Consider the characteristic equation

det(�In � P ) = �n + a1�
n�1 + a2�

n�2 + :::+ an�1�+ an;

determining the n eigenvalues � of a real n�n square matrix P , where I is the identity
matrix.

Then the eigenvalues � all have negative real parts if

�1 > 0;�2 > 0; :::;�k > 0; :::�n > 0; (12)

where

�1 = a1;�2 =

����� a1 1

a3 a2

����� = a1a2 � a3; (13)

and

�k =

�������������

a1 1 0 0 0 0 � � � 0

a3 a2 a1 1 0 0 � � � 0

a5 a4 a3 a2 a1 1 � � � 0
...

...
...

...
...

...
. . .

...

a2k�1 a2k�2 a2k�3 a2k�4 a2k�5 a2k�6 � � � ak

�������������
: (14)
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CHAPTER 1

Reaction-di¤usion systems and stability

theory

In this chapter, we provide an introduction to the systems for spreading the reaction, and

the extent of their application in all �elds, especially in the spread of infection (diseases),

and we have dedicated to this the spread of HIV/AIDS. We also talked about the stability

of these systems and we have devoted to global stability for stability according to Volterra-

Lyapunov

8



Reaction Di¤usion Systems and Stability Theory

1.1 Reaction-di¤usion systems

1.1.1 Introduction to Reaction-Di¤usion Systems

Due to the extreme importance of reaction�di¤usion systems of partial di¤erential equa-

tions in modeling real�life applications [29], it in various are well-established in di¤erent

life science disciplines, they have been attracting the interest of scientists and academics

for decades, and has been the subject of much research, especially in the last twenty years.

Reaction�di¤usion systems are mathematical models which correspond to several physical

phenomena. The most common is the change in space and time of the concentration of

one or more chemical substances, or infection spread among the population, and di¤usion

which causes the substances to spread out over a surface in space.

Population dynamic has attracted the interest of many authors in the past as nowadays

reaction-di¤usion equations are widely used as models for spatial e¤ects in ecology. They

support three important types of ecological phenomena: the existence of a minimal patch

size necessary to sustain a population, the propagation of wave fronts corresponding to

biological invasions, and the formation of spatial patterns in the distributions of pop-

ulations in homogeneous environments. Reaction-di¤usion equations can be, analyzed

by means of methods from the theory of partial di¤erential equations and dynamical

systems. Reaction�di¤usion equations arise as models for the densities of substances or

organisms that disperse through space by brownian motion, random walks, hydrodynamic

turbulence, or similar mechanisms, and that react to each other and their surroundings

in ways that a¤ect their local densities [16]. Reaction�di¤usion models are in themselves

deterministic, but they can be derived as limits of stochastic processes under suitable scal-

ing. Speci�cally, they provide a modeling approach that allows us to translate assump-

tions about stochastic local movement into deterministic descriptions of global densities.

Reaction-di¤usion models are spatially explicit, describe population densities, and treat

space and time as continuous.

Di¤usion [17]:

The concept of di¤usion originates from physical sciences (Fick�s law is regarded as

the fundamental principle of di¤usion). In its physical sense di¤usion is de�ned as a

phenomenon where a certain particle group as a whole spreads according to the irregular

motion of each particle. There by the spread is always directed from regions of higher

concentration to regions of lower concentration and the time dependence of the distri-

bution of the particles in space is given by the so called di¤usion equation which is the

mathematical formulation of the described spread dynamic. The di¤usion theory seeks to

explain the spread behaviour of a group of particles (rather than spread behaviour of a

Laarbi Tebessi Univ-Tebessa - 9 2nd Master / PDE



Reaction Di¤usion Systems and Stability Theory

single particle) and consequently the variable of interest is the proportion of the particle

group which can be found. In this way phenomena like the di¤usion of an ink drop in

water or di¤usion of heat can be described, of di¤usion is applied in biology to describe

processes of biodi¤usion and to model population dynamics, or the spread of infectious

diseases among the population, or in a less quantitative way, in social sciences to describe

the spread of ideas (di¤usion of innovations, lexical di¤usion, trans-cultural di¤usion).

Reaction [17]:

Based on our gained insights from the theory of the random spread of infection among

the population we now develop the general di¤usion theory. We are especially interested

in deriving spatial distribution results of infection between the dispersing population. In

other words we assume a population with a su¢ cient high number of individuals situated

and are interested in the spatial distribution of this population as time progresses. That

means we determine evolution of infection of between individualsat assuming that the

entire population coexists with each other without taking preventive measures. Here we

carry out the transition from discrete considerations in time and space to continuous

considerations in time and space.

In mathematical population biology, qualitative results for models are the most im-

portant kind, for accurate quantitative results can only occasionally even be expected.

The main reason is that models here are much more idealized than in physics and chem-

istry. Populations are never homogeneous, the environment is never uniform in time or

space, and the population is never isolated from other in�uences. What one can often

hope for, however, is some indication as to the e¤ect, with in the total picture, of the few

factors and in�uences speci�cally being accounted for in the model. Other factors will

also leave their marks on the behavior of actual populations.

1.1.2 Reaction-di¤usion model

After considering di¤erent approaches for describing reproduction and dispersion, whether

for infection, prey or population separately we now study the population dynamic in [29]

obtained by combining both mechanisms. We allow the population or infection to grow

and to disperse at the same time and are interested in the temporal and spatial beha-

viour of the population size under di¤erent growth models (exponential growth, logistic

growth,...). We analyse so called di¤usion-reaction systems we assume Neumann bound-

Laarbi Tebessi Univ-Tebessa - 10 2nd Master / PDE



Reaction Di¤usion Systems and Stability Theory

ary conditions of the form:8>>>>>>>>><>>>>>>>>>:

@U (x; t)

@t
= D�U (x; t) + F (U (x; t)) for all x 2 
; t > 0;

@U (x; t)

@�
= 0 on R+ � @
;

U (x; 0) = U0 (x) x 2 
:

(1.1)

Where U (x; t) is an m-vector the time and space dependent function U (x; t) again

describes the population size at any location x and time t. The mathematical symbol �

de�nes the Laplacian operator, which is the mathematical description of the process of

moving the infection or population from local spatial regions of high density or the most

common infection to those of a lower density or the least infection, D =daigonal matrix

(d1; d2; :::; dm), the temporal change of the population or infection size at location x is given

by the di¤usion component D�U (x; t) ; and the growth component F = (f1; f2; :::; fm).

For the reaction of water, for example, we take in

2H2 +O2 
 2H2O: (1.2)

The equations describing this reaction are then written according to8>>>>>>>>><>>>>>>>>>:

@ [H2]

@t
� d1� [H2] = 2

�
�h [H2]

2 [O2] + l [H2O]
2� ;

@ [O2]

@t
� d2� [O2] =

�
�h [H2]

2 [O2] + l [H2O]
2� x 2 
; t > 0;

@ [H2O]

@t
� d3� [H2O] = 2

�
h [H2]

2 [O2]� l [H2O]
2� ;

(1.3)

with boundary conditions (for exemple
@ [H2]

@t
=

@ [O2]

@t
=

@ [H2O]

@t
= 0, t > 0;

x 2 @
) and positive initial conditions i.e

[H2]t=0 = [H2]0 > 0; [O2]t=0 = [O2]0 > 0; [H2O]t=0 = [H2O]0 > 0:

The coe¢ cients h and l are assumed to be positive constants, although they may

depend on the temperature:
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h; l t cT � exp

�
E

R
T

�
; 1 � � � 2: (1.4)

1.1.3 Reaction-di¤usion for HIV/AIDS model

AIDS is an infectious disease that suppresses the normal function of the immune system, it

is caused by the human immunode�ciency virus (HIV), which destroys the body�s ability

to �ght infections. In order to reduce the risk of transmission to future generations,

patients with HIV can accept treatment before becoming AIDS patients. Their results

showed that 40% of all HIV/AIDS cases result from mother tochild transmission and

fewer than 300 infants in the U.S acquired HIV through vertical transmission in 1997.

In sub-saharan africa over 2.5 million children under the age of 15 died of AIDS. In the

context of modeling, the authors suggested several models for HIV/AIDS virus. We will

take the suggested form a side [8] (use of condom, screening of unaware infectives and

treatment of infectives). The challenge posed by the number of cases of unaware infectives

calls for urgent need for a better understanding of the important parameters in the disease

transmission, and to develop an e¤ective and optimal strategies for prevention and control

of the spread of HIV/AIDS disease.

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

dS(x; t)

dt
�a�S(x; t)= Q0��mS(x; t)��S(x; t) in R+ � 
;

dI1(x; t)

dt
�b�I1(x; t)= �mS� (� + � + �) I1(x; t) in R+ � 
;

dI2(x; t)

dt
�c�I2(x; t)= �I1(x; t)� (� + � + �) I2(x; t) in R+ � 
;

dA(x; t)

dt
�d�A(x; t) = �I1(x; t)+ (� + �) I2(x; t)��A(x; t) in R+ � 
:

(1.5)

Where 
 is an open bounded subset of Rn with piecewise smooth boundary @
:

Subject to the homogeneous Neumann boundary condition
@S

@�
=
@I1
@�
=
@I2
@�
=
@A

@�
= 0,

for all x 2 @
; and positive initial conditions i.e

S(x; 0) = S0(x) > 0; I1(x; 0) = I10(x) > 0;

I2(x; 0) = I20(x) > 0; and A(x; 0) = A0(x) > 0; where x 2 
:
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1.2 Stability of Reaction-di¤usion systems

The study of the endemic global stability is not only mathematically important, but also

essential in predicting the evolution of the disease in the long run so that prevention

and intervention strategies can be e¤ectively designed, and public health administrative

e¤orts can be properly scaled. There are some methods, i.e. those based on the monotone

dynamical systems (1.1), the geometric approach [20], and Lyapunov functions, [21] to

conduct global stability analysis for epidemic models.

Under certain assumptions one might expect that the solution to (1.1) would approach

as t �!1 to a solution of the system we have:8>>><>>>:
D�U�� (x; t) + F (U�� (x; t)) = 0 x 2 
; t > 0;
@U�� (x; t)

@�
= 0 on R+ � @
;

U�� (x; 0) = U��0 (x) ; x 2 
:

(1.6)

Solutions of (1.6) with the Neumann boundary condition are called non-constant equi-

libriums solutions.

1.2.1 Local stability of Reaction-di¤usion systems

In order to study the local asymptotic stability in the PDE sens [29], one of the mostcom-

monly used methods is that of eigenfunction expansion, you we have found that the linear

stability analysis of continuous �eld models isn�t as easy as that of non-spatial models.
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For the latter, we have a very convenient tool called the Jacobian matrices of system, it

is as follows:

Suppose fj : Rm �! Rm, for j = 1; :::;m, is a function such that each of its �rst-order
partial derivatives exist on Rm. This function takes a point x 2 Rm as input and produces
the vector fj(x) 2 Rm as output. Then the Jacobian matrix of fj in the system (1.1) is

de�ned to be an m�m matrix, denoted by Jfj , whose (m;m)th entry is

Jfj =

2664
@f1
@x1

� � � @f1
@xm

...
. . .

...
@fm
@x1

� � � @fm
@xm

3775 : (1.7)

Let 0 = �0 < �1 � �2 � :::: be the sequence of eigenvalues for the elliptic operator

(��) subject to the homogeneous Neumann boundary condition @fi
@�

= 0 on @
, where

each �i for i = 0; 1::: has multiplicity mi � 1. Also let �ij, 1 � j � i, (recall that

�0 = const and �i �!1) be the normalized eigenfunction corresponding to �i.

That is, �ij and �i satisfy

���ij = �i�ij in 
; (1.8)

with
@�ij
@�

= 0 in @
; (1.9)

and Z



�2ij(x)dx = 1: (1.10)

Similar to the ODE case, the asymptotic stability of the steady state solution
u�(x; t) in the (1.1) can be determined by examining the eigenvalue � of the operator Jfj .

That is the solution is asymptotically stable if all the eigenvalues of Jfj have negative
real parts. In order to achieve that, suppose  = ( 1;  2; :::;  n) is an eigenfunction of

Jfj corresponding to an eigenvalue �. By de�nition [11], we have

Jfj 
t= � t; (1.11)

where �
Jfj � �In

�
 t = 0; (1.12)
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this can be rearranged to the form

X
0�i�1;1�j�mi

(Pi � �In)

266664
k1ij

k2ij
...

knij

377775�ij = 0; (1.13)

where

 1 =
X

k1ij�ij
0�i�1;1�j�mi

, and  2 =
X

k2ij�ij
0�i�1;1�j�mi

; :::;  n =
X

knij�ij
0�i�1;1�j�mi

The stability of the steady state now reduces to examining the eigenvalues of the

matrices Pi,

det (Pi � �In) = 0;

the sytem (1.1) is asymptotically locally stable if

Re(�) < 0: (1.14)

If Re(�) � 0; the sytem (1.1) is unstable.

1.2.2 Global stability of Reaction-di¤usion systems

De�nition 10 [29] The U�(:; t) equilibrium point constant of the system (1.1) is globally

asymptotically stable, and for any U solution constant to (1.1) we have

lim
t!1

kU�(:; t)� UkL2(
) = 0: (1.15)

Lemma 11 [1] Let consider a disease model system written in the form8>>><>>>:
dX1

dt
= Fi(X1; X2) for i = 0; 1; :::;

dX2

dt
= Gi(X1; X2) for i = 0; 1; :::;

(1.16)

and

Gi(X1; 0) = 0 for i = 0; 1; :::; (1.17)

where X1 2 Rm denotes (by its components) the uninfected populations and X2 2 Rn de

Laarbi Tebessi Univ-Tebessa - 15 2nd Master / PDE



Reaction Di¤usion Systems and Stability Theory

notes (by its components) the infectious populations, X0= (X
E
1 ; 0): denotes the DFE of

the system.

Also assume the following conditions:

(C1) For
dX1

dt
= Fi(X1; 0) for i = 0; 1; ::::. XE

1 is globally asymptotically stable.

(C2) Gi(X1; X2) = AiX2 � Ĝ(X1; X2), with Ĝ(X1; X2) � 0 for (X1; X2)2 
 and for
i = 0; 1; :::.

Where the jacobian matrix Ai=
@Gi
@X2

(XE
1 ; 0); for i = 0; 1; :::: has all non-negative

o¤-diagonal elements, and X is the region where the model makes biological sense.

Then the DFE X0 = (X
E
1 ; 0) is globally asymptotically stable provided that R0< 1;

for i = 0; 1; :::.

Stability Based on Volterra-Lyapunov Method

The construction method of Lyapunov functions and functionals is commonly used to

establish global stability results for biologically structured epidemic models, the method

of Lyapunov functions has been known for many decades [29]. The challenge in the

application of this method is that there is no systematic way to construct Lyapunov

functions (particularly, the determination of the appropriate coe¢ cients is often a matter

of luck), so that its success largely depends on trial and error as well as on speci�c

problems. Due to the fact that these models belong to in�nite dimensional dynamical

systems, it is often necessary to formulate some mathematical arguments, for example, the

relative compactness (or completely continuous) of the semi-�ow generated from system,

which ensures the existence of the global attractor and uniform persistence, which ensures

the wellposedness of the Lyapunov functions for the steady states, the global asymptotic

stability for various epidemic models based on patchy ODEs models with discretized

spatial structure have been extensively studied, the global stability analysis of epidemic

models as high-dimensional ODEs is relatively easily followed. From this reason, even if

we do not know the suitable form of Lyapunov functions for a spatially di¤usive epidemic

model as PDEs, we can guess it by discretizing the PDEs model into a corresponding

ODEs model and paying attention to the known Lyapunov function for the models ODEs

.

The Lyapunov function is de�ned as follows

De�nition 12 [30] (Lyapunov functional) We say Lyapunov functional associated with
a reaction-di¤usion system form of m equations, any function

V : R+ �! R+;
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such as
d

dt
(V (u1(:; t); u2(:; t); :::; um(:; t))) � 0; (1.18)

for all t > 0 and any solution (u1(x; :); u2(x; :); :::; um(x; :)) of system (1.1).

After obtaining the matrix system when applying the Lyapunov function, we prove

it is stability by we do incorporate the Volterra�Lyapunov matrix [14, 15] theory into

Lyapunov functions which, under certain conditions, eliminates the need of determining

the coe¢ cients. by combining this classical approach with the Volterra�Lyapunov matrix

analysis, we have leveraged the di¢ culty of determining speci�c coe¢ cient values and, as

such, wider application of Lyapunov functions to dynamical systems could be promoted,

in prove to global stability.

Where we will apply the following characteristics of Volterra-Lyapunov :

De�nition 13 [9] We say a nonsingular n�n matrix P Volterra-Lyapunov stable if there
exists a positive diagonal n� n matrix M such that

MP + P TMT < 0: (1.19)

De�nition 14 [9] We say a nonsingular n� n matrix P is diagonally stable (or positive
stable) if here exists a positive diagonal n� n matrix M such that

MP + P TMT > 0: (1.20)

Lemma 15 [9] Let P be an n�n real matrix. Then all the eigenvlues of P have negative
(positive ) real parts if and only if there exists a matrix M > 0 such that

MP + P TMT < 0(> 0): (1.21)

Lemma 16 [9] Let P =

"
p11 p12

p21 p22

#
be a 2 � 2 matrix. Then P is Volterra-Lyapunov

stable if and only if p11 < 0, p22 < 0 and

det(P ) = p11p22 � p12p21 > 0: (1.22)

The characterization of Volterra-Lyapunov stable matrices of higher dimensions, how-

ever, is much more di¢ cult.

From de�nition 12 and 13, it is clear that a matrix P is Volterra-Lyapunov stable if

and only if its negative matrix, �P is diagonally stable obtained the following su¢ cient

and necessary conditions for 3� 3 diagonally stable matrices.
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Lemma 17 [9] Let P = (pij) be a 3 � 3 real matrix and D = (dij) = det(P )D be the

adjiont of P , where D = (dij) is the inverse of P is diagonally stable if and only if all the

signed principal minors of �P are positive and the inequalities:(
(p31+Zp13)

2< 4p11p33Z;

(d̂31+Zb̂13)
2< 4d̂11d̂33Z:

(1.23)

Based on Lemma 16, the following generalized result was obtained by Redhe¤er which

will be frequently used in our global stability analysis. For simplicity, we only state the

su¢ cient condition below.

Lemma 18 [9] Let P = [P ij] be a nonsingular n� n matrix (n � 2) andM = diag(m1; :::;mn)

be a positive diagonal n� n matrix. Let E = P�1: Then, if pnn> 0. fM eE+(fM eE)T> 0;
and fM eP+(fM eP )T> 0, it is possible to choose Mn > 0 such that

MP + P TMT> 0: (1.24)

Finally, we say that reaction�di¤usion systems have become important in many areas

of life, it in various are well-established in di¤erent life science disciplines.
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CHAPTER 2

Stability of the HIV/AIDS model

As we have seen before the HIV/AIDS model, in this chapter we will study the local and

global stability of the equilibriums points of this model in the case of ordinary di¤erential

equations (EDO).

19



Stability of system EDO

In this chapter, we consider the fourth-order model of [8]. Consider a population of size

N(t) at time t into the following sub-populations of susceptible individuals S(t), infective

individuals who do not know that they are infected I1(t), HIV positive individuals who

know that they are infected I2(t) and that of the AIDS population A(t). So that

N(t) = S(t) + I1(t) + I2(t) + A(t): (2.1)

We study a system of di¤erentiale quations in the following form:8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

dS(t)

dt
= Q0��mS(t)� �S(t) t > 0;

dI1(t)

dt
= �mS(t)� (� + �+ �) I1(t) t > 0;

dI2(t)

dt
= �I1(t)� (� + �+ �) I2(t) t > 0;

dA(t)

dt
= �I1(t)+�I2(t)+�I2(t)� (�+ �)A(t) t > 0;

(2.2)

where

�m=
(1� u1)(�1c1I1+�2c2I2+�3c3A)

N

where the terms ci (i = 1; 2; 3) are the number of sexual partners of susceptible individuals

with unaware infectives, aware infectives and the AIDS individuals respectively in each
time period. Also, �i (i = 1; 2; 3) are the probabilities for susceptible individuals with

unaware infectives, infectives who are already-aware of their status andAIDS individuals
respectively. Control u1 2 [0; 1] is the successful use of condom by susceptibles to protect
themselves. The term � measures the rate at which unaware infectives are detected by a

screening method to become aware infectives, the term � measures the progression rate

at which the already-aware infective individuals on treatment move to the A class in each

time period. Here, � is the rate by which both types of infectives not on treatment develop

AIDS (� < �). � is the natural mortality rate unrelated to HIV/AIDS disease and � is
the AIDS related death rate. It is assumed that the rate of contact of susceptibles with
AIDS individuals is much less than aware infectives which in turn is much less than that
with unaware infectives (�3 � �2 � �1). This is so because, on becoming aware of their

infection, the infected persons may choose to use preventive measures and change their

behavior and thus may contribute little in spreading the infection. We assume also that

the A class is less sexually active. Now, we describe that all solutions of the system with
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non-negative initial data will remain non-negative for all time.

2.1 Positivity and boundedness of solutions

For the HIV/AIDS transmission system (2.2) to be epidemiologically meaningful, it

is important to prove that all solutions with non-negative initial data will remain non-

negative for all time [8].

Theorem 19 If S(0); I1(0); I2(0) and A(0) are non-negative, then so are S(t); I1(t); I2(t)

and A(t) for all time t > 0: Moreover, lim sup
t!1

N(t) �Q0
�
.

Furthermore, if N(0) �Q0
�
, then N(t) � Q0

�
.

Proof 20 Let (S(t); I1(t); I2(t) and A(t)) be any solution with positive initial conditions
[9]. We have

N(t) = S(t) + I1(t) + I2(t) + A(t);

the time derivative of N(t) along the solution of (1.1) is

dN(t)

dt
=
dS(t)

dt
+
dI1(t)

dt
+
dI2(t)

dt
+
dA(t)

dt
;

dN(t)

dt
� Q0 � �N(t):

Using theory of di¤erential equations, we get:

homogene solution:

dN(t)

dt
= ��N(t); therefore N(t) = N0e

��t;

non-homogene solution:

dN(t)

dt
=

�
dN0(t)

dt
� �N0(t)

�
e��t, hence N(t) �Q0

�

�
1� e��t

�
+N0e

��t;

and for t!1, we have
lim
t!1

N(t) = lim sup
t!1

N(t) �Q0
�
: (2.3)

Clearly, it has been proved that all the solutions of (2.2) which initiate in R4+ con�ned in
the region

D=

�
(S; I1; I2; A) 2 R4+ : S + I1 + I2 + A � Q0

�

�
: (2.4)
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(i.e) solution are bounded in the interval [0;1).

2.2 Existence the equilibriums points

In the section we calculation the quilibriums pionts of model (2.2).

Solving the HIV/AIDS model equation in-terms of �m, we calculate the equilibrium

piont and obtain:

Q0 � �mS � �S = 0; (2.5)

�mS � (� + �+ �) I1 = 0; (2.6)

�I1 � (� + �+ �) I2 = 0; (2.7)

�I1 + �I2 + �I2 � (�+ �)A = 0: (2.8)

2.2.1 Existence of disease-free equilibrium

The disease-free equilibrium (DFE) of the HIV/AIDS model (2.2) existe only when
I1= I2= A = 0, it is given by

E0 =

�
Q0
�
; 0; 0; 0

�
: (2.9)

The basic reproduction number of the model (2.2) with condom use and screening of

unaware infective individuals, by de�ntion 5 it is given as follows:

R0 = �
�
FV �1� ;

where

F (E0) =

264 (1� u1) �1c1 (1� u1) �2c2 (1� u1) �3c3

0 0 0

0 0 0

375 ; (2.10)

and

V (E0) =

264 (� + � + �) 0 0

�� (� + �+ �) 0

�� � (� + �) (�+ �)

375 ; (2.11)

since det(V ) = (� + � + �) (� + �+ �) (�+ �) 6= 0; therfore the matrix V is inverse,
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where inverse is given by

V �1 =
1

det(V )

264 (� + �+ �) (�+ �) 0 0

� (�+ �) (� + � + �) (�+ �) 0

� (� + �) + � (� + �+ �) (� + �) (� + �+ �) (� + � + �) (� + �+ �)

375 ;
(2.12)

The basic reproduction number is given by

R0 = B + C +D + E; (2.13)

where

B =
(1� u1)�1c1
(� + � + �)

;

C =
(1� u1)�2c2�

(� + � + �) (� + �+ �)
;

D =
(1� u1)�3c3� (� + �)

(� + � + �) (� + �+ �) (�+ �)
;

E =
(1� u1)�3c3�

(� + � + �) (�+ �)
:

While the basic reproduction number of the model without condom use and screening of

unaware infective individuales [8], i.e (� = 0 and u1 = 0) ; is the given by

R =
(�1c1 (� + �+ �) (�+ �) + �3c3� (� + � + �))

(� + �) (� + �+ �) (�+ �)
: (2.14)

2.2.2 Existence of endemic equilibrium

Solving the HIV/AIDS model equation in-terms of ��m, we calculate the equilibriums

pionts, and obtain:

S� =
Q0

��m + �
;

I�1 =
Q0�

�
m

(� + � + �)(��m + �)
;

I�2 =
Q0�

�
m�

(� + � + �)(� + �+ �)(��m + �)
;
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A� =
Q0�

�
m((� + �)(� + �) + ��)

(�+ �)(� + � + �)(� + �+ �)(��m + �)
: (2.15)

Using theory 20 we obtain:

N� =
Q0 � �A�

�
: (2.16)

By solving systeme (2.2) at the equilibrium we obtain ��m = 0 (which corresponds to the

DFE) or

B1 �
�
m +B0 = 0; therefore �

�
m = �

B0
B1
; (2.17)

where
B1 = (� + �+ �) (� + �+ �) + � (�+ � + �+ �) > 0;

B0 = (�+ �) (� + � + �) (� + � + �) (1�R0) :
(2.18)

� if R0 > 1 then ��m > 0 therefore the model HIV has a unique endemic equilib-
rium.

� if R0 < 1 then ��m � 0 therefore the HIV/AIDS model has no endemic equilib-
rium.

Proposition 21 The HIV model has a unique endemic equilibrium if and only if

R0 > 1.

Now we will discuss the existence of all possible equilibria of the model system (2.2).

We found that the system (2.2) has two possible non-negative equilibria namely the

disease-free equilibrium (DFE) E0 and the endemic equilibrium E1.

2.3 Local stability of the equilibriums points of the

HIV/AIDS model

In this section we will study the local stability of equilibres points of the model (2.2).

2.3.1 Local stability of the disease-free equilibrium(DFE)

Let examine the local stability of the disease-free equilibriumis E0 =
�
Q0
�
; 0; 0; 0

�
.

Proposition 22 The disease-free equilibrium (DFE) of the (2.6) is locally asymp-
totically stable.
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Proof 23 The Jacobian matrix for the model (2.2), evaluated at E0, is given by

J(E0) =

266664
�� ��1 ��2 ��3
0 �1 � (� + � + �) �2 �3

0 � � (� + �+�) 0

0 � � + � � (�+�)

377775 ; (2.19)

where

�1 = (1� u1)�1c1

�2 = (1� u1)�2c2;

�3 = (1� u1)�3c3:

It is clear that � (�) is an eigenvalue. Hence, by removing the �rst column and the �rst
row, the Jacobian matrix will be reduced as

J(E0) =

264 �1 � (� + � + �) �2 �3

� � (� + �+�) 0

� � + � � (�+�)

375 : (2.20)

We therefore calculate the eigenvalues of the reduced matrix. Solving the eigenvalues of

J(E0), requires that

det(J(E0)� �) = 0;

which leads to the following characteristic polynomial,

�3 + a1�
2 + a2� + a3 = 0; (2.21)

here

a1 = (�+ �) + (� + �+�) + (� + � + �) (1� A);

a2 = (�+ �) (� + �+�)

+ (� + �+�) (� + � + �) (1� A�B)

+ (�+ �) (� + � + �) (1� A�D)

a3 = (� + � + �) (� + �+�) (�+ �) (1�R0) :

Now we applying theorem 9 stability conditions

a1 > 0; a3 > 0; a1a2 � a3 > 0: (2.22)
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We examine the conditions (2.22) for the equation (2.21) a3 > 0; will be resulted if

R0 < 1:

Since A > 0; then with respect to (2.13) we can conclude A < R0. Thus, if R0 < 1

then a1 > 0. Finally, we investigate the third stability condition. With some algebraic

computations, we have

a1a2 � a3 = (�+ �)2 (� + � + �) + (�+ �)2 (� + � + �) (1�B � E)

+ (� + �+�)2 (�+ �) + (� + �+�)2 (� + � + �) (1�B � C)

+ (� + �+�) (�+ �) (� + � + �) [2 (1�B) +D]

+ (� + � + �)2 (� + �+�) (1�B) (1�B � C)

+ (� + � + �)2 (�+ �) (1�B � E) (1�B) :

Since all the parameters B;C;D; and E are smaller than R0; hence if R0 < 1, then

from the above relation: With these assumptions, all the stability conditions (2.22) are

satis�ed and the disease-free equilibrium E0 is locally asymptotically stable.

2.3.2 Local stability of endemic equilibrium.

Let R0 > 1; we will study the stability local of endemic equilibrium E1 in (2.15) in the

system (2.2).

We evaluate the Jacobian matrix of the model at the endemic equilibriume E1 and
we obtain

|E1 =

266664
�G� � J1 J2 J3

G �J1 �B �J2 �J3
0 � �C 0

0 � D �E

377775 ; (2.23)

where: B = � + � + �, C = � + �+ �, D = � + �, E = �+ �.

G =
(N� � S�)

N� ��m > 0;

J1 = S�
�
��m �

(1� u1)

N� �1C1

�
> 0;

J2 = S�
�
��m �

(1� u1)

N� �2C2

�
> 0;

J3 = S�
�
��m �

(1� u1)

N� �3C3

�
> 0:

(2.24)
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The characteristic equation corresponding to |E1 is

det (|E1 � �I4)=�
4 + b1�

3 + b2�
2 + b3�+ b4; (2.25)

where

b1 = G+ �+B + C + E + J1 > 0;

b2 = (B + C)(�+ E +G) + E(J1 +G+ �) + (�+ C) J1 + CB + �J2 + �J3 > 0;

(2.26)

b3 = (�+G) (C + E)B + (C + �)(J1 + �) + �DJ3 + �J2(E + �) + C�J1 > 0;

b4 = E (C (G+ �) (B + J1) + ��J2) + (�D + C�)�J3 > 0:

It is clear that

bi > 0 for j = 1; 2; 3; 4;

using theorem 9, E1 is locally asymptotically stable if the following conditions hold

(i) b1b2 � b3 > 0;

(ii) b3(b1b2 � b3)� b21b4 > 0:
(2.27)

Hence we have the following theorem:

Theorem 24 L�équilibre endémique E1ndu modèle VIH / SIDA est localement asymp-

totiquement stable avec les conditions (i) et (ii) satisfaites..

2.4 Global stability of the equilibriums points of the

HIV/AIDS model

In this section we will study the global stability of the equilibriums points of the model

HIV/AIDS (2.2).

2.4.1 Global stability of the disease-free eqiulibrium(DFE)

We will study the global stability of the disease-free eqiulibrium (DFE) of system (2.11)

using lemma 11.
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Theorem 25 [9] The �xed piont E0 =
�
Q0
�
; 0; 0; 0

�
is a globally asymptotically stable

equilibrium of systeme (2.2) if R0 < 1.

Proof 26 Applying Lemma11 to model system (2.2), consider

X1 = S; (2.28)

and

X2 =

264 I1

I2

A

375 : (2.29)

When I1= I2= A = 0, the uninfected subsystem (i.e the equation for S) becomes

dS

dt
= Q0 � �S; (2.30)

whish has the solution

S(t) =
Q0
�
+ e��t

�
S (0)� Q0

�

�
; (2.31)

obviously S(t)! Q0
�
as t!1 regardless of the initial value S(0). Therefore, it show that

condition (C1) in lamma 11 for our model (2.2) next, the right-hand side of the infectious

subsysteme (i,e the equations for I1; I2; A) can be written as

dX2

dt
= G(X1; X2) =

26666666664

dI1
dt

dI2
dt

dA

st

37777777775

=

26666664
� (� + � + �) I1+

1� u1
N

�1c1
Q0
�
I1+

1� u1
N

�2c2
Q0
�
I2+

1�u1
N
�3c3

Q0
�
A

��m
Q0
�
+�mS

�I1� (� + � + �) I2

�I1+(� + �) I2� (�+ �)A

37777775 :
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=

26664
� (� + � + �)+

1� u1
N

�1c1
Q0
�

1� u1
N

�2c2
Q0
�

1� u1
N

�3c3
Q0
�

� � (� + � + �) 0

� (� + �) � (�+ �)

37775�
264 I1

I2

A

375

�

26664
�m

Q0
�
��mS

0

0

37775 :

=MX2�Ĝ(X1; X2); (2.32)

where

M =

26664
� (� + � + �)+

1� u1
N

�1c1
Q0
�

1� u1
N

�2c2
Q0
�

1� u1
N

�3c3
Q0
�

� � (� + � + �) 0

� (� + �) � (�+ �)

37775 ; (2.33)
and

Ĝ(X1; X2) =

26664
�m

Q0
�
��mS

0

0

37775 : (2.34)

It is obvious that S � Q0
�
, hence it is clear that Ĝ(X1; X2) � 0 for all (X1; X2)2 R3+.

We also notice that the matrix M is an M-matrix since all its o¤-daigonal elements are

non-negative. Hence, this proves the global stability of the DFE (E0) :

2.4.2 Global stability of the endemic equilibrium of the HIV/AIDS

model for � = 0

Our goal here is to show that the endemic equilibrium of the HIV model for � = 0 is

globally asymptotically stable [9] if R0 > 1. It is, however, interesting to note that the

classical method of Lyapunov functions combined with the Volterra�Lyapunov matrix

properties [14, 15] can lead to the proof of the endemic global stability. The details are

provided below. We will study the system (2.2) in the biologically feasible domain

D =

�
(S; I1; I2; A) 2 R4+ : S + I1 + I2 + A � Q0

�

�
;
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which is clearly a positively invariant set in R4+. Further, N(t) = N�(t) =
Q0
�
as t!1.

Thus, we have the following limiting system:

dS(t)

dt
= Q0�

1� u1
N� (�1c1I1(t) + �2c2I2(t) + �3c3A(t))S(t)� �S(t) t > 0;

dI1(t)

dt
=

(1� u1)

N� (�1c1I1(t) + �2c2I2(t) + �3c3A(t))S(t)� (� + �+ �) I1(t) t > 0;

dI2(t)

dt
= �I1(t)� (� + �+ �) I2(t) t > 0; (2.35)

dA(t)

dt
= �I1(t)+�I2(t)+�I2(t)��A(t) t > 0:

To prove global stability result we propose the following Lyapunov function

V = m1 (S � S�)2+m2 (I1 � I�1 )
2+m3(I2�I

�
2)
2+m4 (A� A�)2 ; (2.36)

where m1, m2, m3 and m4 are positive constants calculating the time derivative of V

along the trajectories of systeme (2.2), we obtain

dV

dt
=

�
2m1 (S � S�)

dS

dt
+ 2m2 (I1 � I�1 )

dI1
dt
+ 2m3 (I2 � I�2 )

dI2
dt
+ 2m4 (A� A�)

dA

dt

�

= 2m1

�
�1� u1

N� (�1c1 (I1 � I�1 ) + �2c2 (I2 � I�2 ) + �3c3(A� A�)) (S � S�)� � (S � S�)

�
(S � S�)

+2m2 (I1 � I�1 ) [
1� u1
N� (�1c1 (I1 � I�1 ) + �2c2 (I2 � I�2 ) + �3c3(A� A�)) (S � S�)

� (� + � + �) (I1 � I�1 )]+2m3 (I2 � I�2 ) [� (I1 � I�1 )� (� + �+ �) (I2 � I�2 )]

+2m4 (A� A�) [� (I1 � I�1 )� (� + �) (I2 � I�2 )�� (A� A�) ];

dV

dt
= 2m1[�

(1� u1)

N� (�1c1 (I1S � I�1S
�) + �2c2 (I2S � I�2S

�) + �3c3 (AS � A�S�)) (S � S�)

�� (S � S�)2]+2m2[
(1�u1)

N� (�1c1 (I1S � I�1S
�) + �2c2 (I2S � I�2S

�) + �3c3 (AS � A�S�)) (I1 � I�1 )

� (� + � + �) (I1 � I�1 )
2]+2m3

�
� (I1 � I�1 ) (I2 � I�2 )� (� + �+ �) (I2 � I�2 )

2�
+2m4[� (I1 � I�1 ) (A� A�)� (� + �) (I2 � I�2 ) (A� A�)�� (A� A�)2 ];
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Then, we add the expression �1c1I1S
�; �2c2I2S

� and �3c3AS
� into the �rst and second

square brackets. As aresult, we obtain:

dV

dt
= 2m1[�

(1� u1)

N� (�1c1 (I1S � I�1S
�)+�1c1I1S

���1c1I1S�+�2c2 (I2S � I�2S
�)

+�2c2I2S
���2c2I2S�+�3c3 (AS � A�S�)+�3c3AS

���3c3AS�) (S � S�)�� (S � S�)2 ]

+2m2[
(1� u1)

N� (�1c1 (I1S � I�1S
�)+�1c1I1S

���1c1I1S�+�2c2 (I2S � I�2S
�)

+�2c2I2S
���2c2I2S�+�3c3 (AS � A�S�)+�3c3AS

���3c3AS�) (I1 � I�1 )� (� + � + �) (I1 � I�1 )
2 ]

+2m3[� (I1 � I�1 ) (I2�I
�
2)� (� + �+ �) (I2�I

�
2)
2] + 2m4[� (I1 � I�1 ) (A� A�)

� (� + �) (I2�I
�
2)(A� A�)� � (A� A�)2 ];

therefore, we have

dV

dt
= 2m1[�

(1� u1)

N� (�1c1I1 (S � S�)+�1c1S
� (I1 � I�1 )+�2c2I2 (S � S�)+�2c2S

�(I2�I
�
2)

+�3c3A (S � S�)+�3c3S
� (A� A�)�� (S � S�)2 )]

+2m2[
(1� u1)

N� (I1 � I�1 ) (�1c1I1 (S � S�)+�1c1S
� (I1 � I�1 )+�2c2I2 (S � S�)

+�2c2S
�(I2�I

�
2) + �3c3A (S � S�)+�3c3s

� (A� A�) )� (� + � + �) (I1 � I�1 )
2 ]

+2m3[� (I1 � I�1 ) (I2 � I�2 )�(� + �+ �) (I2 � I�2 )
2]+2m4� (I1 � I�1 ) (A� A�)

� (� + �) (I2 � I�2 ) (A� A�)�� (A� A�)2 ];

= 2m1[�
(1� u1)

N� f (�1c1I�1 + �2C2I
�
2 + �3C3A

�) (S � S�)2+�1c1S
� (I1 � I�1 ) (S � S�)

+�2c2S
� (I2 � I�2 ) (S � S�)+�3c3S

� (A� A�) (S � S�) g � � (S � S�)2 ]

+2m2[
(1� u1)

N� (�1c1I
�
1 + �2C2I

�
2 + �3C3A

�) (S � S�) (I1 � I�1 )+�1c1S
� (I1 � I�1 )
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+2m3

�
� (I1 � I�1 ) (I2 � I�2 )� (� + �+ �) (I2 � I�2 )

2�+ 2m4[� (I1 � I�1 ) (A� A�)

� (� + �) (I2 � I�2 ) (A� A�)�� (A� A�)2 ]

= Y
�
MP + P TMT

�
Y T (2.37)

where Y= [S � S�; I1�I�1; I2�I�2; A� A�]; and M = diag(m1;m2;m3;m4);

and

P =

266666666666664

�1� u1
N� (�1c1I

�
1 + �2C2I

�
2 + �3C3A

�)� � �1� u1
N� �1c1S

�

1� u1
N� (�1c1I

�
1 + �2C2I

�
2 + �3C3A

�)
1� u1
N� �1c1S

� � (� + � + �)

0 �

0 �

�1� u1
N� �2c2S

� �1� u1
N� �3c3S

�

1� u1
N� �2c2S

� 1� u1
N� �3c3S

�

�(�+ � + �) 0

(� + �) ��

377777777777775
(2.38)

To discuss the global asymptotic stability of Y , we proceed to show that the matrix P

de�ned in (2.38) is Volterra-Lyapunov stable or �P is diagonal stable.

For this goal, we prove the following lemmas.

Lemma 27 [9] For the matrix P de�ned in Eq (2.38), let us consider D = � eP , then D
is diagonal stable.
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Proof 28 From (2.38), we obtain

D = � eP =
2666666664

1� u1
N� (�1c1I

�
1 + �2C2I

�
2 + �3C3A

�) + �
1� u1
N� �1c1S

�

�1� u1
N� (�1c1I

�
1 + �2C2I

�
2 + �3C3A

�) �1� u1
N� �1c1S

� + (� + � + �)

0 ��
1� u1
N� �2c2S

�

�1� u1
N� �2c2S

�

(�+ � + �)

3777777775
: (2.39)

To prove the diagonal stability of D and based on lemma 14 we need to show that the

following three conditions are satis�ed.

Condition 1. We show that the matrixgD is diagonal stable. For this purpose, it is

necessary to show that �fD is Volterra-Lyapunov stable:

� eD =

264 �(1� u1)

N� (�1c1I1 + �2C2I2 + �3C3A)� � �1� u1
N� �1c1S

�

(1� u1)

N� (�1c1I1 + �2C2I2 + �3C3A)
1� u1
N� �1c1S

� � (� + � + �)

375 :
(2.40)

Clearly � eD11 = �
(1� u1)

N� (�1c1I1 + �2C2I2 + �3C3A)�� < 0; note that u12 [0; 1]. Next

we show � eD22 =
(1� u1)

N� �1c1s
� � (� + � + �) < 0:

according (2.6), we have:

��mS
� = (� + � + �) I�1 ;

therefore

(1� u1) (�1c1I
�
1 + �2C2I

�
2 + �3C3A

�)

N� S� = (� + � + �) I�1 ;

then
(1� u1) (�1c1I

�
1 )

N� S�< (� + � + �) I�1 ;
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therefore
(1� u1) (�1c1)

N� S�< (� + � + �) : (2.41)

Also, it is

det (� eD) =

�
�(1� u1)

N� (�1c1I1 + �2C2I2 + �3C3A)� �

�
(
1� u1
N� �1c1S

� � (� + � + �)

+

�
(1� u1)

N� (�1c1I1 + �2C2I2 + �3C3A)

�
(
(1� u1)

N� �1c1S
�): (2.42)

hence g�D22 < 0; since � eD11�� eD22 > 0 and � eD21> 0; and � eD12< 0 to see det(� eD) >
0. Therefore, � eD is Volterra-Lyapunov stable hence eD is diagonal stable, based on lemma

14.

Condition 2. We show that the matrix ]D�1 is diagonal stable. In fact, we show that

�gD�1 is Volterra-Lyapunov stable:

� gD�1 =
1

det(D)

"
�gD�1

11 �gD�1
12

�gD�1
21 �gD�1

22

#
: (2.43)

Where

det (D) = (�m + �) [(�(1� u1)

N� �1c1S
� + (� + � + �)) (�+ � + �)

�(1� u1)

N� �2c2S
��] +

(1� u1)

N� �1c1S
� [(1� u1) �m (�+ � + �)] +

(1� u1)

N� �2c2S
� [(1� u1) �m�] ;

= (�m + �) [(�(1� u1)

N� �1c1S
� + (� + � + �)) (�+ � + �)� (1� u1)

N� �2c2S
��]

+�m[
(1� u1)

N� �1c1S
� (�+ � + �) +

(1� u1)

N� �2c2S
��];

(2.44)

multiplying the above equality by �, we have

(1� u1)

N� (�1c1�I
�
1S

�) +
(1� u1)

N� (�2C2�I
�
2S

�) � (� + � + �) �I�1 ;

therefore

(1� u1)

N� (�1c1 (� + �+ �) I�2S
�) +

(1� u1)

N� (�2C2�I
�
2S

�) � (� + �+ �) (� + � + �) I�2 ;
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then

(1� u1)

N� (�1c1 (� + �+ �)S�) +
(1� u1)

N� (�2C2�S
�) � (� + �+ �) (� + � + �) ;

furthermore

(1� u1)

N� (�1c1 (� + �+ �) + �2C2�)S
� � (� + �+ �) (� + � + �) ;

now, we get

det (D) > 0; (2.45)

therefore, we have:

�gD�1
11 =

�
(1� u1)

N� �1c1S
� (� + �+ �)� (� + �+ �) (� + � + �)

�
+
(1� u1)

N� �2C2S
��;

�gD�1
12 =

(1� u1)

N� (�1c1S
� (� + �+ �)) +

(1� u1)

N� �2C2S
��;

�gD�1
21 = �

(1� u1)

N� (�1c1I1 + �2C2I2 + �3C3A) (� + �+ �) ;

�gD�1
22 = �

�
(1� u1)

N� (�1c1I1 + �2C2I2 + �3C3A) + �

�
(� + �+ �) :

(2.46)

According to (2.6), we have:

��mS
� = (� + � + �) I�1 So

(1� u1)

N� (�1c1I
�
1 + �2C2I

�
2 + �3C3A

�)S� = (� + � + �) I�1 ;

therefor
(1� u1)

N� (�1c1I
�
1 + �2C2I

�
2 )S

� < (� + � + �)I1: (2.47)

multiplying the resulting inequality by �, we have:

(1� u1)

N� (�1c1�I
�
1 + �2C2�I

�
2 )S

� < (� + � + �) �I�1 ; (2.48)

using (2.7) and (2.50), we have:

(1� u1)

N� (�1c1 (� + �+ �) I�2S
� + �2C2�I

�
2S

�) < (� + � + �) (� + �+ �)I�2 ; : (2.49)
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where
(1� u1)

N� (�1c1 (� + �+ �)S� + �2C2�S
�) < (� + � + �) (� + �+ �);

therefore, we have

�gD�1
11 = [

(1� u1)

N� �1c1S
� (� + �+ �)� (� + �+ �) (� + � + �)] +

(1� u1)

N� �2C2S
�� < 0;

(2.50)

hence, �gD�1
11 < 0: It is easy to see det(D)> 0. Therefore, �gD�1 is Volterra-Lyapunov

stable based on lemma 14.

Condition 3. It is abvious that D33 = (� + �+ �) > 0:

Hence, lemma 16 guarantees that D = � eP is diagonal stable.

Lemma 29 [9] For the matrix P de�ned (2.38) matrix E = �gP�1 is diagonal stable.
Proof 30 To prove diagonal stability of E, once again use lemma 16 as follows:

� eE is diagonal stable.

� gE�1 is diagonal stable.
� E33 > 0.

From (2.38), we obtain

E = �gP�1 = 1

det(�P )

2664
�gP�111 �gP�112 �gP�113
�gP�121 �gP�122 �gP�123
�gP�131 �gP�132 �gP�133

3775 ; (2.51)

where

�gP�111 =
(1� u1)

N� � �3C3S
�([� (� + �) + � (� + �+ �)] + �f (� + �+ �) (

(1� u1)

N� (�1c1S
�)

+ (� + � + �))� �
(1� u1)

N� �2C2S
�g;

�gP�112 =
(1� u1)

N� �3C3S
� (� (� + �) + � (� + �+ �))� �

(1� u1)

N� (��1c1S� (� + �+ �) + �2C2S
��) ;

�gP�113 = �(1� u1)

N� (� + � + �)S� [��2C2 + (� + �) �3C3] ;
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�gP�121 = (1� u1)

N� (�1c1I1 + �2C2I2 + �3C3A) (� (� + �+ �)) ;

�gP�122 = �(1� u1)

N� (�1c1I1 + �2C2I2 + �3C3A) + �

�
(� (� + �+ �)) ;

�gP�123 = �
(1� u1)

N� S�[��2C2 + (� + �) �3C3];

�gP�131 = (1� u1)

N� (�1c1I1 + �2C2I2 + �3C3A) (��) ;

�gP�132 = �(1� u1)

N� (�1c1I1 + �2C2I2 + �3C3A) + �

�
(��) ;

�gP�133 = �� �(1� u1)

N� �1c1S
��+

(1� u1)

N� �1c1S
�� � � (� + � + �)

�

+�
(1� u1)

N� (�1c1I1 + �2C2I2 + �3C3A) (� + � + �) :

and

� eE = " gP�111 gP�121gP�112 gP�122
#
: (2.52)

Now, we show that the � eE is Volterra-Lyapunov stable. As we know

�gP�111 = (1� u1)

N� (��3C3S�) ([� (� + �) + � (� + �+ �)] + �)� f (� + �+ �) [
(1� u1)

N� (�1c1S
�)

+ (� + � + �)]� �
(1� u1)

N� �2C2S
�g;

from (2.5), we have

(1� u1) (�1c1I
�
1 + �2C2I

�
2 + �3C3A

�)

N� S� = (� + � + �) I�1 ;

multiplying the above equality by (��), using (2.6) and (2.7), we have

�
(1� u1)

N� �1c1S
� (� + �+ �) I�2 + ��

(1� u1)

N� �2C2S
�I�2 +

(1� u1)

N� �3C3S
�I�2 [� (� + �+ �) + � (� + �)] ;

= � (� + � + �) (� + �+ �) I�2 ;

(2.53)
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and

det(�P ) = (��m + �) [�
�
(1� u1)

N� �1c1S
� + (� + � + �)

�
(� (� + �+ �))

+
(1� u1)

N� �2C2S
� (���)� (1� u1)

N� �3C3S
� (� (� + �) + � (� + �+ �)) ]� (1� u1)

N� �1c1S
�

� [���m� (� + �+ �)] +
(1� u1)

N� �2C2S
� [��m (��)] +

(1� u1)

N� �3C3S
�[���m� (� + �) + � (� + �+ �)]

+� (� + �+ �)];

therefore

det (�P ) = (��m + �)gP�111 � ��m
gP�112 ; (2.54)

This implies that gP�111 = 0. It is obvious that gP�111 < 0; and gP�112 < 0, and since det(�P ) >
0 one can conclude that � eE is Volterra-Lyapunov stable.

Our next goal here is to show that �gE�1 is Volterra-Lyapunov stable. Let us consider
�gE�1 = 1

det(E)

"
�e11 �e12
�e21 �e22

#
; (2.55)

where

� e11 = �� (�m + �)�f (� + �+ �)�
(1� u1)

N� (��1c1S�)� � (� + �+ �)
(1� u1)

N� �3C3S
�

���(1� u1)

N� �2C2S
� + ��

(1� u1)

N� �3C3S
� + � (� + � + �) (� + �+ �) g

��m (� + �+ �) (� + � + �)�2 (2.56)

multiplying the above equality by (��), using (2.6) and (2.7), we have

� (� + �+ �)
(1� u1)

N� �1c1S
� + ��

(1� u1)

N� �2C2S
� + [� (� + �+ �) + � (� + �)]

(1� u1)

N� �3C3S
�;

= � (� + �+ �) (� + � + �) ;

(2.57)

this implies that �e11 < 0: It is easy to see that �e12 < 0;�e21 > 0 and �e22 < 0 and

since:

det (E) =
1

(det (�P ))3
��m�e12 +

1

(det (�P ))3
��m��

(1� u1)

N� ��m�[�2C2S
�

+��m (� + �) �3C3S
�];
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therefore

det(E) > 0; (2.58)

one can conclude that �gE�1 is Volterra-Lyapunov stable.
Theorem 31 [9] The matrix P de�ned in (2.38) is Volterra-Lyapunov stable.

Proof 32 Based on lemmas 16 and 26 and since �P44 = � > 0; there existe a positive

diagonal matrix M such that M(�P ) + (�P )TMT > 0: Thus

MP + P TMT < 0: (2.59)

Theorem 33 [9] The endemic equilibruim, E1=(S�; I�1 ; I
�
2 ; A

�), of system (2.2) is globally

asymptotically stable if R0 > 1.

Proof 34 Based on, lemma 16, 26 and theorem 30, we obtain
dV

dt
< 0 when X 6= X�

and X is not on the s-axis (a set measure zero ). It implies that the endemic equilibrium

of the model system (2.2) is globally asymptotically stable.
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CHAPTER 3

Reaction-Di¤usion system(R-D / PDE) of

the model HIV/AIDS

In this chapter we will devote to the spatial di¤usion of HIV /AIDS, and examine the

local and global stability of the constant equilibriums points for this PDE model.

40



Reaction-Di¤usion system( R-D / PDE )

In the previous chapter, we studied the changes of infection HIV/AIDS in relation
to time, and in this chapter we will study the change in time the place of the spread of

infection HIV/AID spreads to the population, by increasing the mathematical factor �

in each equation of the system (2.2). Where and we will use the same equilibriums points

for the EDO system, we will study the local stability and the global stability of the PDE
system for equilibriums points of the model HIV/AIDS.

Let the systeme the reaction-di¤usion of the model HIV/AIDS is the form:8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

dS(x; t)

dt
�a�S(x; t) = Q0(x; t)��mS(x; t)� �S(x; t) in R+ � 
;

dI1(x; t)

dt
�b�I1(x; t)= �mS(x; t)� (� + � + �) I1(x; t) in R+ � 
;

dI2(x; t)

dt
�c�I2(x; t)= �I1(x; t)� (� + � + �) I2(x; t) in R+ � 
;

dA(x; t)

dt
�d�A(x; t) = �I1(x; t)+ (� + �) I2(x; t)��A(x; t) in R+ � 
:

(3.1)

Where 
 is an open bounded subset of Rn with piecewise smooth boundary @
:

Subject to the homogeneous Neumann boundary condition
@S

@�
=
@I1
@�
=
@I2
@�
=
@A

@�
= 0,

for all x 2 @
. and positive initial conditions i.e

S(x; 0) = S0(x) > 0; I1(x; 0) = I10(x) > 0; and

I2(x; 0) = I20(x) > 0; A(x; 0) = A0(x) > 0; where x 2 
:

Let 0 = �0 < �1 � �2 � :::: be the sequence of eigenvalue for the elliptic operator

(��), where each �i has multiplicity mi � 1. Also let �ij, 1 � j � mi, (recall that

�0 = const and �i �! 1) be the normalized eigenfunction corresponding to �i; for
i = 0; 1; :::. That is, �ij and �i satisfy ���ij = �i�ij in 
, with

@�ij
@�

= 0 in @
, andR


�2ij(x)dx = 1.

3.1 Local stability of the equilibruims pionts of the

model HIV/AIDS

In the section we will study the local stability of the pionts equilibriums of model (PDE)

(3.1).
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3.1.1 Local Stability of disease-free equilibrium(DEF) of the

model HIV/AIDS

In sub-section we will study the local Stability of disease-free equilibrium (DEF) an the

system PDE.

Let us examine the local stability of the disease-free equilibriumis E0 , Applying the

next generation method Now, we compute The basic reproduction number of the model

(3.1) with condom use and screening of unaware infective individuals, by de�ntion 5, we

get:

Ri = �(FV �1
i ), for i = 0; 1; :::;

where � it�s eigenvalues in the matrix FV �1
i ,

we have:

F = (1� u1)

264�1c1 �2c2 �3c3

0 0 0

0 0 0

375 : (3.2)

and, for i = 0; 1; :::; we have

Vi =

264(�+�+�+ b�i) 0 0

�� (� + �+ � + c�i) 0

�� � (� + �) (�+ �+ d�i)

375 ; (3.3)

since det(Vi) = (�+�+�+ b�i) (� + �+ � + c�i) (�+ �+ d�i) 6= 0; so the matrix Vi is

inverse for i = 0; 1; :::,we get by

V �1
i =

1

det(Vi)

264 (� + �+ � + c�i) (�+ �+ d�i) 0

� (�+ �+ d�i) (�+�+�+ b�i) (�+ �+ d�i)

� (� + �) + � (� + �+ � + c�i) (�+�+�+ b�i) (� + �)

0

0

(�+�+�+ b�i) (� + � + �+ c�i)

375 :
therefore

Ri = �(FV �1
i )

= Bi + Ci +Di + Ei; for i = 0; 1; :::; (3.4)
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where

Bi =
(1� u1)�1c1

(� + � + �+ d2�i)
;

Ci =
(1� u1)�2c2�

(� + � + �+ d2�i) (� + �+ � + d3�i)
;

(3.5)

Di =
(1� u1)�3c3� (� + �)

(� + � + �+ d2�i) (� + �+ � + d3�i) (�+ �+ d4�i)
;

Ei =
(1� u1)�3c3�

(� + � + �+ d2�i) (�+ �+ d4�i)
:

It is clear to Ri < R0; for i = 1; 2; ::::

While the basic reproduction number of the model without condom use and screening

of unaware infective individuals is then given by � = 0 and u1 = 0 so for i = 0; 1; :::that

R�
i
= (1� u1)

�1c1 (� + �+ � + c�i) (�+ �+ d�i)+�3c3� (�+�+ � + c�i)

(� + �+ b�i) (� + �+ � + c�i) (�+ �+ d�i)
: (3.6)

Theorem 35 The disease free equilibrium E0 of the model (3.1) is locally asymptotically

stable if R0 < 1, but unstable R0 > 1:

Proof 36 The Jacobian matrix for the model (3.1), evaluated at E0, is given by

Ji(E0) =

266664
� (�+ d1�i) ��1 ��2 ��3

0 �1 � (� + � + �+ d2�i) �2 �3

0 � � (� + �+� + d3�i) 0

0 � � + � � (�+�+ d4�i)

377775 :

It is clear that � (�+ d1�i) is an eigenvalue for i = 0; 1; :::. Hence, by removing the

�rst column and the �rst row, the Jacobian matrix will be reduced as

Ji(E0) =

264 �1 � (� + � + �+ d2�i) �2 �3

� � (� + �+� + d3�i) 0

� � + � � (�+�+ d4�i)

375 ;
we therefore calculate the eigenvalues � of the reduced matrix. Solving the eigenvalues of

Ji(E0), for i = 0; 1; :::requires that

det(Ji(E0)� �I3) = 0; for i = 0; 1; :::

Laarbi Tebessi Univ-Tebessa - 43 2nd Master / PDE



Reaction-Di¤usion system( R-D / PDE )

which leads to the following characteristic polynomial,

�3 + ai1�
2 + ai2� + ai3 = 0 for i = 0; 1; :::; (3.7)

where

ai1 = (�+ �+ d4�i) + (� + �+� + d3�i) + (� + � + �+ d2�i) (1�Bi);

ai2 = (�+ �+ d4�i) (� + �+� + d3�i)

+ (� + �+� + d3�i) (� + � + �+ d2�i) (1�Bi � Ci)

+ (�+ �+ d4�i) (� + � + �+ d2�i) (1�Bi � Ei) ;

ai3 = (� + � + �+ d2�i) (� + �+� + d3�i) (�+ �+ d4�i) (1�Ri) :

(3.8)

Now, we applying theorem 9 we have:

ai1 > 0; ai3 > 0; and ai1ai2 � ai3 ; for i = 0; 1; ::: (3.9)

we examine the conditions (3.9) for the equation (3.7) ai3 > 0 will be resulted if Ri < 1:

Since Bi > 0;then, with respect to (3.4) we can conclude Bi < Ri; : Thus, if Ri < 1

then ai1 > 0, for i = 0; 1; :::: Finally, we investigate the third stability condition. With

some algebraic computations, we have

ai1ai2 � ai3 = (�+ �+ d4�i)
2 (� + � + �+ d3�i)

+ (�+ �+ d4�i)
2 (� + � + �+ d2�i) (1�Bi � Ei)

+ (� + �+� + d3�i)
2 (�+ �+ d4�i)

+ (� + �+� + d3�i)
2 (� + � + �+ d2�i) (1�Bi � Ci)

+ (� + �+� + d3�i) (�+ �+ d4�i) (� + � + �+ d2�i) [2 (1�Bi) +Di]

+ (� + � + �+ d2�i)
2 (� + �+� + d3�i) (1�Bi) (�Bi � Ci)

+ (� + � + �+ d2�i)
2 (�+ �+ d4�i) (1�Bi � Ei) (1�Bi)

Since all the parameters Bi; Ci; Di; and Ei for i = 0; 1; :::: are smaller than Ri; hence

if Ri < 1,then from the above relation, for i = 0; 1; :::: With these assumptions, all the

stability conditions (3.8) are satis�ed and the disease-free equilibrium E0 is locally asymp-

totically stable.
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3.1.2 Local stability of endemic equilibrium of the model HIV/AIDS

Let R0 > 1; in the sub-section we will study the local stability of endemic equilibrium an

the system (3.1).

Let us de�ne the linearizing operator

| =

266664
a�S �G� � J1 J2 J3

G b�I1 � J1 �B �J2 �J3
0 � c�I2 � C 0

0 � D d�A� E

377775 ; (3.10)

therefore for i = 0; 1; :::

|�i =

266664
�a�i �G� � J1 J2 J3

G �b�i � J1 �B �J2 �J3
0 � �c�i � C 0

0 � D �d�i � E

377775 ;

where B = (� + � + �), C = (� + �+ �), and D = (� + �), E = (�+ �) ;8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

G =
(N� � S�)

N� ��m;

J1 =
(1� u1)

N� S� (��m � �1C1) ;

J2 =
(1� u1)

N� S� (��m � �2C2) ;

J3 =
(1� u1)

N� S� (��m � �2C2) :

(3.11)

Similar to theODE case, the asymptotic stability of the endemic equilibrium (S�; I�1; I
�
2; A

�)

can be determined by examining the eigenvalue of the operator |�i ; for i = 0; 1; :::. That

is the solution is asymptotically stable if all the eigenvalues of |�i have negative real
parts. In order to achieve that, suppose (�(x);	(x); �(x);  (x)) is an eigenfunction of |�i
corresponding to an eigenvalue �. By de�nition [11], we have

J(�(x);	(x); �(x);  (x))t= �(�(x);	(x); �(x);  (x))t:
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Leading to

(J � �I4)

266664
�

	

�

 

377775 =
266664
0

0

0

0

377775 ;
this can be rearranged to the form

X
0�i�1;1�j�mi

(Mi � �I4)

266664
aij

bij

cij

dij

377775�ij =
266664
0

0

0

0

377775 ; (3.12)

where, for i = 0; 1; :::

Mi =

266664
�a�i �G� � J1 J2 J3

G �b�i � J1 �B �J2 �J3
0 � �c�i � C 0

0 � D �d�i � E

377775 : (3.13)

The characteristic equation corresponding to |E1 is for i = 0; 1; :::;

�4 + bi1�
3 + bi2�

2 + bi3� + bi4 = 0; (3.14)

where, for i = 0; 1; :::

bi1 = G+ �+B + C + E + J1 + (b+ c+ d+ a)�i > 0;

bi2 = [a(b+ c+ d) + (b(c+ d) + cd)]�2i + �i[(b+ c+ d+ E + C +B)�

+(E + J1 + C)a+ (B + E + C + b+ c+ d)G+B(C + E + d+ a+ c)

+C(E + b+ d) + (C + a+ c+ d+ E + �)J1 + (b+ 1)Ec+ �J2 + �J3]

(B + E + C)G+B(C + E) + C(E) + (C + E + �)J1 + �J2 + �J3 + �(B + C + E)) > 0

bi3 = [BCbcd]�4i + [ab(c+ d) + (a+ b)cd]�3i + �2i [bc(1 + d)

+(ab+ (a+ b)c)E +Ba(c+ d) + Ca(b+ d) +G(bc+ (b+ c)d)

+(ac+ (a+ c)d)J1] + �i[Ba(E + C) + aC(J1 + E) + (a+ d)�J2)

+((�+ E)J1 + �J3)(c+ d) + (E(b+ c) + C(d+ b)) + (B(c+ d))(G+ �)]

+[B (G+ �) (C + E) + C (J1 + �J1 + �) + � (�J2 + � + J1) + � (DJ3 + EJ2)]
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+((�+ E)J1 + �J3)(c+ d) + (E(b+ c) + C(d+ b)) + (B(c+ d))(G+ �)]

+[B (G+ �) (C + E) + C (J1 + �J1 + �) + � (�J2 + � + J1) + � (DJ3 + EJ2)]

bi4 = [BCabcd
2]�5i + bcd�4i [a+BCd�+BCGd]

+c�3i [bd�+ abE + adJ1 +Gbd] + [c� (bE + dJ1)

+a (cE + Cd) (B + J1) + a (d�J2 + c�J3) + CabE]�2i

+�i[E ((Bc+ cJ1)�+ a(J1 +B + �J2)) +BGc) + Cd�J1

+(Eb+Bd)C(�+G) + d��J2 + (c�� + a(C� + �D))J3]

+BCE(G+ �) + (CJ1 + �J2)�E + (C� + �D)�J3 > 0:

It is clear that

bi j > 0 for j = 1; 2; 3; 4;

by theorem 9, E1 is locally asymptotically stable if the following conditions hold

(i) bi1bi2 � bi3 > 0; for i = 0; 1; :::;

(ii) bi3(bi1bi2 � b3)� b2i1bi4 > 0 for i = 0; 1; ::::

Hence we have the following theorem:

Theorem 37 The endemic equilibrium E1=(S
�; I�1 ; I

�
2 ; A

�) is locally asymptotically stable

with the condition (i) and (ii) are satisfed.; for i = 0; 1; :::.

3.2 Global stability of systeme reaction-di¤usion

In the section we will study the global stability of the pionts equilibriums of PDE model

(3.1)

3.2.1 Global stability of disease-free equilibrium(DFE) of the

model HIV/AIDS

In the sub-section we will study the global stability of disease-free equilibrium (DFE) of
PDE system (3.1).

Theorem 38 The �xed point E0 = (
Q0
�
; 0; 0; 0) is a globally asymptotically stable

equilibrium of system (3.1), provided that R0< 1:
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Proof 39 Applying Lemma 6 to model system (3.1), consider

X1 = S(x; t); (3.15)

and

X2=

264 I1(x; t)

I2(x; t)

A (x; t)

375 : (3.16)

When I1 = I2 = A = 0, the uninfected subsystem (i.e. the equation for S) becomes

dX1

dt
=
dS

dt
= Q0 � �S+a�S; (3.17)

from where we solve the following problem8>>>>>>>>>><>>>>>>>>>>:

dS(x; t)

dt
� a�S(x; t) = Q0 � �S(x; t) in R+ � 
;

@S(0; t)

@�
= 0; in R+ � @
;

S0(x) =
Q0
�

in 
:

(3.18)

Using the method of separating variables:

Solution homogene 8>>>>>>>>>><>>>>>>>>>>:

dS(x; t)

dt
� a�S(x; t) = 0 in R+ � 
;

@S(0; t)

@�
= 0; in R+ � @
;

S0(x) =
Q0
�

in 
:

(3.19)

The solution is given in the form

S(x; t) = T (t)X(x);

thereforme
1

a

@T (t)

@T (t)
=
@2X(x)

@X(x)
= ��;
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where 8>><>>:
@2X(x)

@X(x)
� �X(x) = 0;

@X(0; t)

@�
= 0;

Solutions depend on the constant �;

If � > 0 then the solutions of the di¤erential equation are

X(x) = C1 exp(
p
�x) + C2 exp(�

p
�x)

with condition
@X(0; t)

@�
= 0; the solution is given by

Xn(x) = C1 cos(n�x):

If � = 0 then the solutions of the di¤erential equation are

Xn(x) = 0:

If � < 0 then the solutions of the di¤erential equation are

Xn(x) = 0:

and 8><>:
@T (t)

@T (t)
+ a�T (t) = 0;

T (0) =
Q0
�
:

solution is given by

Tn(t) =
Q0
�
exp(�an�t)

The solution is given by

S(x; t) =
Q0
�
C1 cos(n�x) exp(�an�t);

According to Fourier devlopment we have

S(x; t) =

1X
n�0

Q0
�
C1 cos(n�x) exp(�an�t): (3.20)

Laarbi Tebessi Univ-Tebessa - 49 2nd Master / PDE



Reaction-Di¤usion system( R-D / PDE )

Using Strum-Loviulle theory for the presence of non-homogene solution

S(x; t) =
Q0
�
+

1X
n�1

Q0
�
C1 cos(n�x) exp(�an�t): (3.21)

For t!1; then S(x; t)! Q0
�

obviously S(x; t) ! Q0
�
as t!1 regardless of the initial value S0(x): Therefore, it

shows that condition (C1) in Lemma 11 holds for our model.

Next, the right-hand side of the infectious subsystem (i.e the equations for I1; I2 and

A) can be written as

dX2

dt
=G(X1; X2) =

2666664
dI1(x; t)

dt
� �m

Q0
�
+ �mS(x; t)

dI2(x; t)

dt
dA(x; t)

dt

3777775 ; (3.22)

then, we have for i = 0; 1; :::

dX2

dt
=Gi(X1; X2) =

26664
�mS(x; t)� (� + � + �+ b�i) I1(x; t)� �m

Q0
�
+ �mS(x; t)

�I1(x; t)� (� + �+ � + c�i)

�I1(x; t) + �I2(x; t) + �I2(x; t)� (�+ �A+ d�i)

37775 ;
therefore, we have for i = 0; 1; :::

dX2

dt
=Gi(X1; X2) =

26664
(1� u1)(�1c1I1+�2c2I2+�3c3A)

N

Q0
�
� (� + � + �+ b�i) I1 � �m

Q0
�
+ �mS

�I1 � (� + �+ � + c�i)

�I1 + �I2 + �I2 � (�+ �A+ d�i)

37775 ;

here, for i = 0; 1; :::

=

26664
(1� u1)(�1c1I1+�2c2I2+�3c3A)

N

Q0
�
� (� + � + �+ b�i) I1

�I1 � (� + �+ � + c�i) I2

�I1 + �I2 + �I2 � (�+ �A+ d�i)A

37775�
26664
�m

Q0
�
� �mS

0

0

37775 ;
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therefore, for i = 0; 1; :::

dX2

dt
= Gi(X1; X2) =

26664
� (� + � + �+ b�i)+

(1� u1)

N
�1c1

Q0
�

(1� u1)

N
�2c2

Q0
�

� � (� + �+ � + c�i)

� � + �

(1� u1)

N
�3c3

Q0
�

0

� (�+ �A+ d�i)

37775�
264I1I2
A

375�
26664
�m

Q0
�
� �mS

0

0

37775 ;
dX2

dt
=Gi(X1; X2) =Mi X2 � Ĝ(X1; X2); for i = 0; 1; :::: (3.23)

where, for i = 0; 1; :::

Mi=

26664
� (� + � + �+ b�i)+

(1� u1)

N
�1c1

Q0
�

(1� u1)

N
�2c2

Q0
�

(1� u1)

N
�3c3

Q0
�

� � (� + �+ � + c�i) 0

� � + � � (�+ �A+ d�i)

37775 ;
(3.24)

and

Ĝ (X1; X2)=

26664
�m

Q0
�
� �mS(x; t)

0

0

37775 : (3.25)

It is obvious that S(x; t) � Q0
�
, hence it is clear that Ĝ(X1; X2) � 0 for all (X1; X2)2 R3+.

We also notice that the matricies Mi is an M-matricies, for i = 0; 1; ::: since all its o¤-

diagonal elements are non-negative. this proves the global stability of the DFE E0.

3.2.2 Global stabilty of the endemic equilibruim

In sub-section we will study the global stability of the endemic equilibrium in the PDE
system(3.1), we will use the Lyapunov function in the EDO system of [9] and methode

of [11].

Theorem 40 Let

V (t) =

Z



�
m1 (S � S�)2+m2 (I1 � I�1 )

2+m3 (I2 � I�2 )
2+m4 (A� A�)2

�
dx: (3.26)

Then V (t) is non-negative it is a valid Lyapunov functional. Hence (S�; I�1 ; I
�
2 ; A

�) is
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globally asymptotically stable if R0 > 1:

Proof 41 To prove that the endemic equilibrium E1 = (S
�; I�1 ; I

�
2 ; A

�) is globally asymp-

totically stable, we need to establish that V (t) is a Lyapunov functional. First, we di¤er-

entiate V (t) with respect to time

dV (t)

dt
=

Z



�
2m1 (S � S�)

dS

dt
+ 2m2 (I1 � I�1 )

dI1
dt
+ 2m3 (I2 � I�2 )

dI2
dt
+ 2m4 (A� A�)

dA

dt

�
dx:

(3.27)

Substituting the time derivatives with their values form (3.20) yields

dV (t)

dt
=

Z



[2m1 (��mS � �S + a�S) (S � S�)] dx

+

Z



[2m2 (�mS � (� + � + �) I1 + b�I1) (I1 � I�1 )] dx

+

Z



[2m3 (�I1 � (� + � + �) I2 + c�I2) (I2 � I�2 )] dx

+

Z



[2m4 (�I1 + (� + �) I2 � �A+�d�A) (A� A�)] dx;

=

Z



[2m1 (��mS � �S) (S � S�)] dx+

Z



[2m1 (a�S) (S � S�)] dx

+

Z



[2m2 (�mS � (� + � + �) I1) (I1 � I�1 )] dx

+

Z



[2m2 (b�I1) (I1 � I�1 )] dx+

Z



[2m3 (�I1 � (� + � + �) I2) (I2 � I�2 )] dx

+

Z



[2m3 (c�I2) (I2 � I�2 )] dx

+

Z



[2m4 (�I1 + (� + �) I2 � �A) (A� A�)] dx+

Z



[2m4 (d�A) (A� A�)] dx;Z



[2m1 (a�S) (S � S�)] dx+

Z



[2m2 (b�I1) (I1 � I�1 )] dx+

Z



[2m3 (c�I2) (I2 � I�2 )] dx

+

Z



[2m4 (d�A) (A� A�)] dx+

Z



[2m1 (��mS � �S) (S � S�)] dx

+

Z



[2m2 (�mS � (� + � + �) I1) (I1 � I�1 )] dx

+

Z



[2m3 (�I1 � (� + � + �) I2) (I2 � I�2 )] dx

+

Z



[2m4 (�I1 + (� + �) I2 � �A) (A� A�)] dx;

= I + J: (3.28)
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The �rst part is

I = I1 + I2 + I3 + I4; (3.29)

where

I1 = 2

Z



m1a�S (S � S�) dx; (3.30)

I2 = 2

Z



m2b�I1 (I1 � I�1 ) dx; (3.31)

I3 = 2

Z



m3c�I2 (I2 � I�2 ) dx; (3.32)

I4 = 2

Z



m4d�A (A� A�) dx: (3.33)

The second part of the derivative is

J =
R


[2m1 (��mS � �S) (S � S�)] dx+

R


[2m2 (�mS � (� + � + �) I1) (I1 � I�1 )] dx

+
R


[2m3 (�I1 � (� + � + �) I2) (I2 � I�2 )] dx+

R


[2m4 (�I1 + (� + �) I2 � �A) (A� A�)] dx;

:

(3.34)

form theorem 32 [9] in EDO system, we have

J < 0:

We start by looking at I Using Green�s formula and assuming the Neumann boundary

conditions, we obtain

I1 = 2

Z



m1a�S (S � S�) dx;

= �2m1a

Z



rSr (S � S�) dx;

= �2m1a

Z



jrSj2 dx: (3.35)

I2 = 2

Z



m2b�I1 (I1 � I�1 ) dx;

= �2m2b

Z



rI1r (I1 � I�1 ) dx;

= �2m2b

Z



jrI1j2 dx: (3.36)
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and

I3 = 2

Z



m3c�I2 (I2 � I�2 ) dx

= �2m3c

Z



rI2r (I2 � I�2 ) dx

= �2m3c

Z



jrI2j2 dx: (3.37)

I4 = 2

Z



m4d�A (A� A�) dx

= �2m4d

Z



rAr (A� A�) dx

= �2m4d

Z



jrAj2 dx: (3.38)

Therefor, by (3.29), we have

I = �2m1a
R


jrSj2 dx� 2m2b

R


jrI1j2 dx� 2m3c

R


jrI2j2 dx� 2m4d

R


jrAj2 d;

I = �
R



�
2m1a jrSj2 + 2m2b jrI1j2 + 2m3c jrI2j2 + 2m4d jrAj2

�
dx < 0:

:

(3.39)

It is clear that I � 0 and J � 0 which leads to dV
dt

< 0. Therefore, by Lyapunov�s direct

method, the endemic equilibrium (S�; I�1 ; I
�
2 ; A

�) is globally asymtotically stable.
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Conclusion

Conclusion

In this work, we built the HIV / AIDSmodel in PDE, we studied the overall asymptotic

stability of endemic equilibria for HIV / AIDS. Use of the method of Lyapunov functions

combined with the theory of stable matrices of Volterra �Lyapunov. Although the
method of Lyapunov functions has been widely applied to a variety of dynamical systems,

most of our analysis is based on the lesser-known results of stable Volterra �Lyapunov
matrices.
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