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Abstrac

We are interested in our work to the sd shell nuclei whose
energy spectra contain, at low excitation energies, positive-
and negative- parity states.

The normal positive parity states are well described using
the well-known interactions (USD and USDA/B) within the sd
shell valence space. The intruder negative parity states require
the extension of the valence space to the full p-sd-pf. A
PSDPF interaction was built to describe, simultaneously, both
types of states coexisting in the sd shell nuclei using a fitting
procedure. As the states of the middle of sd-shell nuclei could
not be fitted, due to computational limitations, we decided to
study a set of those nuclei, which are the silicon isotopic
chain.

In this work, we will systematically study the excitation
energy evolutions for first excited positive- and negative-
parity states in the even-A silicon isotopic chain using the
PSDPF interaction. A detailed discussion of the obtained
results will be presented.




Késamé
Nous sommes intéresses dans notre travail aux noyaux de

la couche sd dont les spectres en énergie contiennent, a basses
énergies d'excitation, des états de parité- positive et négative.

Les états normaux de parité positive sont bien deécrits en
utilisant les interactions bien connues (USD et USDA/B) dans
I'espace de valence de la couche sd. Les états intrus de parité
négative nécessitent l'extension de l'espace de valence a
I’espace p-sd-pf complet. Une interaction PSDPF a été
construite pour decrire, simultanément, les deux types d'états
coexistant dans les noyaux de la couche sd en utilisant une
procédure d'ajustement. Comme les états des noyaux du
milieu de la couche sd n'ont pas pu étre ajustés, en raison de
limitations informatiques, nous avons décidé d'étudier un
ensemble de ces noyaux, qui sont la chaine isotopique du
silicium.

Dans ce travail, nous étudierons systématiquement
I'évolution des énergies d'excitation pour les premiers excites
etats de paritée- positive et négative dans la chaine isotopique
du silicium avec A-pair en utilisant l'interaction PSDPF. Une
discussion détaillée des résultats obtenus sera présentee.
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General Introduction

uclear structure physics has been evolving to adapt to the growing knowledge of the
nuclear landscape since the conception of an atomic nuclear core by Rutherford’s
early 1900s scattering experiments [1]. Afterwards, the consideration of the proton,
as a fundamental particle, was exposed by Rutherford in 1919 [2]. However, it was
not until the work of Chadwick in 1932 [3], that the existence of the neutron as a
fundamental particle was also discovered.

Nowadays, we have a good understanding of the properties of the structure of the
nucleus; containing two types of particles: protons and neutrons. It is clear that experimental
and theoretical studies in nuclear physics have played a notable part in the development of
twentieth-century physics.

The understanding of the nuclei’s properties such as nuclear masses, energy spectra,
wave functions, electromagnetic transitions, and nucleon density distributions is always the
key problem. Therefore, several models have been developed to solve these problems; among
them is the nuclear shell model, which is often referred to as the naive shell model or the
independent particle shell model.

The sd shell nuclei, whose number of protons (Z) and of neutrons (N) between 8 and
20. This area is one of the most studied regions using state-of-the-art shell model. The
structure of those nuclei has been the subject of renewed interest in recent years [4]. These
nuclei are characterized by the coexistence, at low excitation energies, of normal positive
parity states, called also Oho states, and intruder negative parity states called also 1ho states.
These two kinds of states are described by the PSDPF interaction, developed by M.
BOUHELAL et al., using a fitting procedure. This interaction describes quite well the intruder
negative parity states of nuclei at the beginning of the sd shell around *°O and at the end of the
sd shell near “°Ca, which were included in the fit. During the fit, states belonging to nuclei of
the middle of the sd shell could not be adjusted, we decided thus to study such states in an
isotopic chain.

We used the PSDPF [5,6] interaction to make a systematic study about the evolution
of the excitation energies of the first positive- and negative- parity states in the even-A
isotopes of silicon: %%Si, #Si, #Si, %Si,*si,*si,*si. The calculations were performed using
the shell model code Nathan, developed by E. Caurier in the IPHC theoretical physics group.
The obtained results will be compared to available experimental data.

In this sense, our thesis contains three fundamental chapters distributed as follows:

+ Chapter I: provides an overview of the development of the nuclear shell model, its
basics, and how it simplifies the understanding of the nuclear structure.

+ Chapter II: introduces the properties of the sd shell nuclei and the PSDPF interaction.

+ Chapter III: exposes a detailed discussion of the obtained results and a systematic

study of the even-A silicon isotopic chain first excited states.

This dissertation ends with a general conclusion.

e
1




Chapter I
The Nuclear Shell Model

The Liquid Drop Model, which examines the global properties of nuclei,

underestimated the binding energies of “magic nuclei” for which either the number of
neutrons N or the number of protons Z is equal to one of the following “magic numbers” 2, 8
20, 28, 50, 82, 126. The nuclear shell model was first proposed by Bartlett in 1932 and further
developed in 1949 independently by several physicists such as Maria Goeppert—Mayer [7]
(following a remark of Fermi) as well as Hans Jensen and H.E Suess [8], and independently
by D. Haxel who shared the Nobel Prize in Physics in 1963 with Eugene Wigner for this
work.

Maria Goeppert-Mayer J. Hans D. Jensen 1963 Nobel Prize in Physics

The aim of this chapter and our work is to understand how this model offers the
possibility of exploring different properties of nuclei (such nuclear systematics and the
internal structure of the nucleus), in particular the stability of magic nuclei.

1. Magic nuclei

A magic nucleus has a proton number Z or a neutron number N equals to 2, 8, 20, 28, 50,
82 and 126 known as “magic numbers”. Such nucleus has a higher average binding energy
per nucleon than one would expect based upon predictions like the Liquid Drop Model and
hence, it is more stable against nuclear decay and then its nearby nuclei.

Nuclei, which have both neutron number and proton number equal to one of the magic
numbers, can be called “doubly magic*, and are found to be particularly stable.

1.1 Special features of magic nuclei
v" The strong indication of the magic numbers is the stability of these nuclei. All the
stable elements at the end of the natural radioactive series have a magic N or a magic Z or
both. We mention a few examples:
¢ Stable magic nuclei: 180,,, 22Cass, $3Niz,, itSnes.
¢ Stable doubly magic nuclei: 3He,, 1504, 59Ca5q, 235Pb, 5.

e
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https://www.nuclear-power.net/wp-content/uploads/magic-numbers-doubly-magic-nuclei.png
https://www.nuclear-power.net/wp-content/uploads/magic-numbers-doubly-magic-nuclei.png

There are more stable isotopes, nuclei with same Z, if Z is a magic number, and more
stable isotones, nuclei with same N, if N is a magic number.

v The neutron (proton) separation energies of such magic nuclei are higher than those of
their neighbours.

v The binding energy of magic nuclei is much larger than the nearby nuclei as shown on
Fig. I-1.
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Figure I -1: The binding energy of nuclei per nucleon [9]. The circled elements have a
magic number of N or Z.

To illustrate the differences in binding energies in nearby nuclei, we take example of
nuclei with nucleon number between 15 < A < 17, their binding energies are presented on
Table I-1 and on Fig I-2.

éXN 12Be11 12310 1269 1;N8 '$Bey; 12311 12610 1308
Binding | 4541 5880 | 7100 | 7699.46 | 4285 5507.3 | 6922.05 | 7976.21
energy
(keV)

1oNe; | '2Ciq | YiB12 15Fg

6640.50 | 6558 |5270 |7542.33

Table I-1: Binding energy of nuclei with 15 < A < 17 [10]. Magic and doubly
magic are highlighted in yellow.
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N.B: we can see that the binding energy of the magic nuclei is larger than their nearby ones
and the largest binding energy is found for the doubly magic nucleus §0s.

8500 - ,
Doubly magic nucleus

8000 - ./ N=8,7=8

7500 - / o

Binding energy (keV)
(2] [0)) ~
g 8 8
1 1 1

Figure I-2: Binding energy [10] of nuclei with 15 < A < 17.

v" Magic number nuclei have higher first excitation energy.
v There are more stable isotopes (isotones) if Z (N) is a magic number. We take as an
example the stable Tin isotopes:
% 1126pn 114on 11560, 11060, 11750, 11850, 1195n, 12050, 12250, 1246n,
For the sd shell, region of our interest, the stable isotopes for Oxygen and Calcium
nuclei are:
* Oxygen: 150, %0, 80.
* Calcium: 29Ca, 32Ca, 53Ca, %iCa, 38Ca.
v" Nuclides with a magic number of neutrons are observed to have a relatively low
probability of absorbing an extra neutron, i.e. they have the lowest cross section for
neutron absorption (neutron-capture cross sections).

These magic numbers can be explained in terms of the Nuclear Shell Model.




2. Shell Model

The nuclear shell model has two essential features: first, the identification of the shell
structure itself, based on the evidence for nuclear stability (magic nuclei mentioned earlier)
and leading to the basic assumption that the nucleus can be described by a Single Particle
Model. Second, the assumption of the strong spin-orbit interaction between nucleons that
explains the splitting of their energy levels [11].

3. Independent particle model

The Independent Particle Model can be applied to complicated systems of identical
particles to determine their ground state and the first excited states. It has been used with real
success so far only for atoms [12]. The main idea of this model is that a nucleon moves inside
a certain potential well (which keeps it bound to the nucleus) independently from the other
nucleons. This amounts to replace an N-body problem (N particles interacting) by N single-
body problems. One of the most used central potential is the harmonic oscillator, which will
be discussed, in the next part.

3.1 The harmonic oscillator potential

It is assumed that the interaction between one nucleon and the (A-1) nucleons, in the
nucleus, can be approached to a central potential like the harmonic-oscillator potential which
can be written as [13]:

Vo = %moa)zrz (I-1)

Where w is the frequency of oscillation of the particle with mass m,, r is the distance
between the nucleon and the origin.

The Schrddinger equation for the nucleons in the harmonic oscillator potential takes
the form:

H, is the Hamiltonian of the independent particles which can be written as:

A A
HOZZhiO_)EOZZSiO (I-3)
[ i

h;o is single-particle Hamiltonian:
hio = t; + %mwzrz (I -4

We note that, for any spherically symmetric potential well \V/(r), the eigenvalues and
eigenfunctions of the single-particle Hamiltonian, issued from the harmonic-oscillator
potential, have the form:




¢i(r) = ¢ﬁlmlms(rr 9, (P) = Rr‘l(r) Ylml(gﬁ (P) Xms(s) ( I — 5)

3
8=hw(2n‘+l+§), A =012.. (I-6)
We pose: n =(n—1)
3 3
=>8=hw(Z(n—1)+l+§>=ha)(N+§) (I-7)

The constant Aw of the harmonic oscillator potential is found to be: Aw = 414" /sMeV

(e.g., hw = 8MeV for medium and heavy nuclei)

= (;bnlmlms(r: 0,¢) = R,(1) Yr:nl(e: ®) Xms(S) (1-8)

Here 1 and m;are the quantum numbers of angular momentum and its projection,
respectively, while n is the radial quantum number. Note that the quantum orbitals are
represented by the symbols s, p, d, f, g.... corresponding to [=0, 1, 2, 3, 4,... , respectively.

N denotes the major oscillator quantum number that determines the major shells of the
harmonic oscillator potential defined as: N = 2(n-1)+L.

Unfortunately, using the harmonic oscillator potential we obtain, as shown on Fig. I-3, only
the first three magic numbers: 2, 8, 20.

S5hw 3p 2f 1h 42 112
4hw 35 2d 19 30 70

3hw 2p 1f 20 40

2hw __2s 1d 12 20

lhw 1p 6 8

Ohw _1s 2 2

Nhw n,l Gy Y.Gy

Gy=WN+1)(N+2)

Figure I-3: Shematic of the harmonic oscillator potential major shells whose energy
degeneration is given by Gy.

The degeneration in [ is an accidental degeneration resulting from Vy, potential that does not
appear using another central potential such as the Wood-Saxon potential well [14]. To deal
with this problem we apply the so-called «the edge effect» in order to remove partially this
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degeneration in [ by simulating the harmonic oscillator potential to Wood-Saxon well, see
Fig. I-4, as following:

Vws = Vo + Vs — Vo) = Vyo + AV (1-9)

Where: the Wood-Saxon potential is an example of a mean field central potential (it’s details
adjusted using experimental observations) was parameterized in 1954 by R. Woods and D.
Saxon [14], this admits that the shape of the potential is the same as that of the Fermi
distribution, and the same also as the nuclear density, its formula is given by:

Vo
Vws(r) = T—Rq (1 -10)
1+ e( a )
)
101
R
1 2 3 4 5 | 6 2 9 10 1
0 T T T T I T T T T
r(fm)
—10 b
_20 —
>
@
E 30} S:WOODS - SAXON POTENTIAL
£ ) Ve Vo=-50MeV
Vir)=————=——; R = 5.8fm
=40 1+exp(55R) | . g6stm
. H: HARMONIC OSC. POTENTIAL
_/ Vir)= ;-Mwl’ r2+C0NSTiCOn§f|':—g.§:::\\ll
_60 -

Figure I-4: Difference between the wood-Saxon potential and the harmonic oscillator
potential [15].

The simulation between the Wood-Saxon and harmonic oscillator potentials is given by the
expression [14]:

VWSzVHO_Dlz ([—11)

Where D is a positive parameter adjusted to reproduce the reduction -D(l+1) of the observed
states, with the condition of —DI? « V}, to consider the «the edge effect» as a perturbation
of the main potential Vy,. This corrective term of type —DI? has been added to the main
previous Hamiltonian as:

hio =t; + %mwzr2 — DI? (I -12)




The solution of the Schrddinger equation using the new Hamiltonian, in the theory of
perturbation, gives the eigenenergy as:

gy = ha (N +32) = DI+ (1 —13)

In this case, the energy is related to the quantum numbers n and [, as in Wood-Saxon
potential. The degeneration on  is partially removed but only the first three magic numbers 2,
8, 20 were obtained, see Fig I-5.

3p6) 112
5ha o 2f (14)

1h (22)

) () 70
4ho - 2d (10)

19 (18)

/ 2p(6) 40
3hw .

1f (14)

. 2s(2) 20
2hw

1d (10)
1o 1p (6) 8
0w 1s (2) 2
Nhw H.O0  Ho-DP

Figure I-5: Diagram of the shell model using the potential Vyo—DI?.




3.2 The spin-orbit interaction

It was pointed out (independently by Mayer (1949, 1950) and Haxel, Jensen and Suess
(1949, 1950)) that a contribution to the average field felt by each individual nucleon should
contain a spin-orbit term [16].

The single-particle Hamiltonian becomes thus:
hi =t + %mwzriz + Dlzi + f(r)iigi ( I — 14‘)

The corresponding eigenfunctions have the following form:

. 1
Bl (r,0) = Ru() Y (1mySmy|im) ¥, 000 (1 - 15)
mpmg

withm = m; + mg
The corresponding eigenvalues, now become:

2 —-(l+1 j=1—=
rillj=(N+%)hw+Dl(l+1)h2+h7(f(r))nl l( . ] 2 (1 -16)

The radial function (f(r)) is negative, which means that the states with j = [ +§are always

lower in energy than the states with j = [ — % ; as shown on the Fig 1-6.

nlj=1-1/,

. 4

n,l -

— AF = 21
. | 2

nlj=1+1/,

Figure I-6: The degeneration of states with n, L.

The spin-orbit interaction leads to all the magic numbers 2, 20, 28, 50, 82 and 126. The
schematic representation of the single-particle energies (individual orbitals) including the
three previous potential terms is shown in the Fig I-7.
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Figure I-7: Diagram of the shell model single-particle orbitals [17].
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Despite the success of the independent particle model in reproducing all the magic numbers,
but it could not be sufficient. For example, the model cannot explain why an even-even
nucleus always has a J*= 0" in the ground state, or more generally, why any even number of
similar nucleons couple to a 0" state. There is clearly a (residual) interaction between a
nucleon “i” and a nucleon “j”, which favors the coupling of the nucleons with opposing
angular momentum.

3.3 The nucleon-nucleon interaction

The nucleon-nucleon interaction (N-N) is the interaction between two free nucleons.
With a very rare exception, it is assumed in nuclear structure calculations that the degrees of
freedom related to the exchange of mesons between nucleons can be replaced by a potential
acting between two nucleons [18]. Thus, the determination of the N-N potential appears as
one of the fundamental tasks of theoretical nuclear physics. In fact, the binding energy of a
nucleus depends critically on the nature of the N-N interaction. Let’s also remember that no
experiment has yet succeeded in measuring short-range interaction that connects the nucleons.
The determination of the nucleon-nucleon strength is an interesting problem in itself since we
have a lot of data by studying the nucleon-nucleon diffusion [18]. We will see later how this
effective interaction can be primarily determined in two ways.

4. Beyond the mean field

The independent particle model (mean field) is applicable only for spherical nuclei
(closed shell or near to a closed shell). Considering the case of a nucleus with A nucleons (Z
protons and N neutrons) interacting to each other, we assume that these nucleons interact in
pairs. The spherical mean field provides a global zero-order view of the structure of this
nucleus. The correct description of such a nucleus requires taking into account the two-body
interaction V;;.

The Hamiltonian of this nucleus is then put in the form [13]:
A A A A
i=1 i>) i=1 i=1
H, describes the independent movement of nucleons in a 1-body potential U.

h; denotes the individual Hamiltonian of a nucleon i.

H, represents the residual two—body interaction, which is considered as a perturbation of the
H, Hamiltonian by an adequate choice of the mean field U.

The H, Hamiltonian is generally determined by two methods: the first (used in our
calculations) is the shell model with the previously mentioned independent particle model; the
second is the Hartree-Fock method.
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The Schrodinger’s equation of this system is written [13]:

A A A

i=1 i>) i=1
where o denotes all quantum numbers.

The eigenwave function W, is represented by the Slater determinants ® of H,,, from which the
residual interaction matrix H, will be diagonalized ((®|H,.|®)).

Since the size of the matrix increases very quickly with the increasing number of nucleons in
the complete Hilbert’s space (shown on Fig I-7) so it becomes impossible to proceed to the
diagonalization. To overcome this, we choose a subset of configurations guided by physical
considerations.

Hilbert’s space is divided into three parts [5]:

v" An inert core composed of shells, which are always occupied (usually a magic
nucleus with Z, protons and N, neutrons).

v" A valence space containing the rest of the active nucleons (z=Z7Z—Z2,) and (n =
N — N_) which interact via the H,. interaction.

v An external space formed of orbitals, which are always unoccupied.

The approximation of considering the nucleons occupying the orbits of the core as “inactive”
is justified by the existence of a large difference in energy separating these orbits from those
immediately superior. For example, the energy difference between the 0101/2 and Od5/2

subshells is 11.5 MeV [5].

5. Ingredients of the shell model

Any shell model calculation requires the employment of the following three ingredients [5]:

» The definition of a valence space (inert core, active shells).
» The derivation of an effective interaction compatible with the chosen valence space.
» A computational code to build and diagonalize the Hamiltonians.

5.1 Choice of the valence space

As previously defined, the inert core (see figurel-8) is often associated with a magic or
doubly magic nuclei (3He, §0, 35Ca, ...) then comes the valence space which could include
closed shells but must necessarily contain partial or unfilled shells. If we take our example of
285,, the normal positive parity states, are well reproduced within the sd valence space, while
the intruder negative parity ones need a larger valence space such as p-sd-pf space (the
probability of excitation of ?®Si nucleons here are equal), we will explain them well in the
next chapter.
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The external space E> Empty

The valence space M

Figure I-8: Diagram of the valence space.

We give some examples of valence (named also model) spaces (truncated from figurel-7):

% The p shell is a space formed of both orbital Op3/2 and Op1/2, in which can be

described the properties of nuclei with 2 < N, Z < 8, the inert core is the 3He.
% The sd shell valence space is composed of the three orbital Ods/z, 151/2 and Od3/2,

only the positive parity states of nuclei with 8 < N, Z < 20 can be described, the inert
core is the 1§0.
% The pf shell is the space containing the four sub-shells 0f7/2, lps/z, Ofs/2 and lp1/2

which is adequate for nuclei with 20 < N, Z < 40, the inert core is the “°Ca.

5.2 Effective interaction

Because of the strong short-range repulsion, the nucleon-nucleon interaction cannot be
used directly in shell model calculations [19]. Therefore, these calculations are based on the
definition of an effective interaction that is strongly connected to the valence space used.

There are two types of effective interactions [19]:

o Realistic effective interaction.
o Phenomenological effective interaction.

The first type is realistic calculated directly from nucleon-nucleon potential. The second type
is phenomenology, which consists in selecting the initiating Hamiltonians and in considering
the individual energies and the cross-matrix elements as parameters to be adjusted directly on
the experimental data, as it was done for the development of the PSDPF interaction [5] used
in the calculation of our work.
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5.3 The computational code

The two shell model codes developed in Strasbourg are the ANTOINE code [20, 21] and
the code NATHAN [21, 22]. We will use the code NATHAN in our calculations.

For our knowledge, we mention some of the other international codes: GLASGOW [23],
VECSSE [24], MSHELL [25], REDSTICK [26], RITSSCHIL [27], OXBASH [28], and
DUPSM [29].

In this chapter, we have presented the basic concepts of the shell model, which makes it
possible to describe the nuclear structure.

In the next chapter we will introduce the sd shell nuclei, a region of our current work, and
their properties as well the PSDPF interaction.
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Nuclei in the sd shell (i.e. with valence nucleons confined in the orbitals d5/2,51/2

Chapter 11
The sd-Shell Nuclei

and d3/2) have a number of neutrons N and protons Z between magic numbers 8 and 20.

Thus, this area is limited by the two doubly magic nuclei °0 and *°Ca (see Fig I-7). These

nuclei have been studied since 1960 and their structure has been the subject of many
experimental and theoretical investigations. The chart regrouping these nuclei is presented in

Fig 11-1.

In this chapter we will introduce some properties of the sd-shell nuclei, and we present the
PSDPF interaction developed by M. BOUHELAL [5,6] to reproduce the spectroscopic

properties and the structure of these nuclei.
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Figure II-1: Chart of sd shell nuclei [10]. For nuclei selected with star «*» the ground state is

unbound, i.e. unstable compared to particle emission. Nuclei with «#» are all even-A silicon

isotopes.
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The sd shell area includes 146 experimentally known nuclei, 26 of them are stable.
These sd-shell nuclei are characterized, at low excitation energies, by the coexistence of
spherical normal positive parity (+) and intruder negative parity (—) states (also intruder
collective positive parity may also be found) [10].

Nuclei of particular interest in our work are the even-A Si isotopic chain. The Si isotopes
(Z=14) are located in the middle of the sd shell.

1. The spherical normal states

The normal positive parity states correspond to the movement of A-16 nucleons within the
sd shell, since the 16 nucleons of the core are considered to be inert. The valence space in this
case is limited to the sd orbitals, 1d5/2, 251/2, 1d3/2, and thus the inert core is *°0, i.e. the s

and p shells are filled and inactive.

In the sd shell nuclei, these states appear at low excitation energies for the mass range
varies from A=17 to A=39. This implies the 0 particles and O holes configuration (Op—0h),
hence the name of the normal states is also Oho.

Various interactions have been developed to describe the spherical normal states, in particular
the USD [30, 31] (Universal SD interaction) or the updated interactions USDA/B [32].

2. The intruder states

Not all states of the nuclei in the sd shell can be reproduced by the above interactions (by
increasing the excitation energy and/or moving away from the stability valley, intruder states
appear) [5]. In an sd shell nucleus, two types of intruder states can exist with positive- or
negative- parity. These states differ in their parities but result from the promotion of nucleons
between major shells; from p to sd or sd to pf shells. Thus, intruder states have configurations
outside the sd valence space.

2.1 The intruder spherical negative parity states

In these same nuclei, there is also a set of negative parity states of type (1p—1h) named
also 1hw states, reported among the adopted levels [10]. Such states result from the
promotion of one nucleon from shells p to sd (for nuclei at the beginning of the sd shell
around *°0) or from sd to pf (for nuclei at the end of the sd shell near *°Ca). Their SM
description requires in addition of the sd shell, the inclusion of the p and the pf shells needed
to treat the p—sd and sd—pf excitations which are mainly responsible for the negative parity
states at the beginning and at the end of the sd shell, respectively [5,6]. Concerning nuclei at
the middle of sd shell, it is found that the 1w states may have a competition between the two
excitations p—sd and sd—pf. Diverse interactions have been developed to describe separately
these states in these two regions. The interaction that describes in a consistent way these states

e
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in all nuclei throughout the sd shell is the PSDPF developed by M. BOUHELAL [5, 6]. The
sd-shell nuclei having known negative parity intruder states are shown in Fig II-2.
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Figure I1-2: Chart of sd nuclei with known negative parity intruder states [10].

2.2 The positive- and negative- parity intruder states

In the sd nuclei, intruder states with positive- and/ or negative- parity, whose
configurations is outside the sd valence space, can coexist. These states result from the
promotion of one nucleon or more across major shells, and are thus of type (np-nh) called
also nAw states, n>1. The states in question here have positive parity if the jump numbers
between the two major shells (p—sd or sd-pf) are even (even n). Recent shell model
calculations have shown that this type of levels result mostly from 2p-2h excitations (2Aw) or
4p-4h excitations (4hw). This means that these nuclei are generally deformed and these states
contribute strongly to the collective character of the nucleus, as it is observed near the doubly
magic nuclei °0 and “°Ca. States corresponding to odd excitation number, odd n, have
negative parity, example the 37w states of configuration (3p-3h) type.

3. The PSDPF interaction

In order to describe simultaneously both negative and positive parity states in sd shell
nuclei, and the transitions between these different states, we use the PSDPF interaction
developed in Strasbourg by M. Bouhelal et al. [5,6]. In this case, the core used is restricted to
the “He doubly magic nucleus and the valence space includes the p, sd and pf shells
(containing 9 sub-shells).
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3.1 The construction of the PSDPF interaction

%+ The aim: description of 0 and 1Aw states in sd shell nuclei.
< The model space used: “He core, the 9 p-sd-pf sub-shells.
% One nucleon jump between major shells is allowed.

3.2 Shell model ingredients in case of sd shell nuclei

v Valence space: the full p-sd-pf model space.
v The compatible interaction with this space: the PSDPF interaction.
v Code of calculation: the shell model code NATHAN [20, 21].

The Si isotopic chain, in which we are particularly interested in this work, is located in the
middle of the sd shell. Accordingly, the 1Aw states in these isotopes have a competition
between the two excitations p-sd and sd-pf. Both positive and negative parity states in these
isotopes can simultaneously be described within the full p-sd-pf valence space with “He core
and using the PSDPF interaction, as we will see in the next chapter.

4. Application of the shell model

Some of the shell model applications are the calculation of the parity, spin and isospin
corresponding to the energy level in the nucleus. We give in the next sections a brief
definition of each of these observables.

4.1 Parity

It is possible to show that the stationary states in nucleus, solutions of the time
independent Schrodinger equation, have a definite parity that depends of the sum of [ values
of all the individual nucleons. Actually, the more technically correct statement is that IT
=(—1)Z!. Two possible values are obtained for the parity, IT = 1 (even parity), and II = —1
(odd parity) [13].

4.2 Nuclear spin

Nuclear spin is a physical quantity characteristic of a nucleus that describes its magnetic
properties. The nuclear spin can be described by a vector operator J of module ||J|| whose
projection on a fixed axis is denoted J,. The choice of the vertical direction OZ as the
guantization axis is convenient but is not imperative. It is dictated by the fact that this axis is
chosen as the direction of the static magnetic field in the following. The quantum description
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involves operators, which is expressed as a function of the quantum number of nuclear spin J,
by the following relation:

il =5 jG+ D (I-1)
(h is the Planck constant h = 6,62.10-34J.5).
Particular cases for spin & parity of the nuclei’s ground state:
Even-Even Nuclei: J® = 0%,
Even-Odd Nuclei: J™ given by unpaired nucleon or hole; I = (—1)%.

Odd-Odd Nuclei: J™ is obtained using the J values of the unpaired p and n, then apply j-j
coupling.

e |y —Ju| ST <Jp+Jn 3 = (=1t

An example is shown on Fig II-3.
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Figure I1-3: Different nucleon distributions that gives the ground state ™ values in some
nuclei. Obs: Observed state

4.3 Isospin

After the discovery of the neutron by Chadwick [3], W. Heisenberg proposed the isospin
in 1932 [33] in the aim of constructing a mathematical basis that represents the similarity of
proton-neutron with respect to the strong nuclear force. Indeed, the masses of the proton and
the neutron are very close, m,= 938.272013(23) MeV/c? and m,= 939.565346(23) MeV/c?

[34], and the mass ratio is about one, i.e., % =1.001378.
14
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Assuming that the proton and the neutron have very similar masses, Heisenberg proposed to
consider them as two different states of charge of the same nucleon. To distinguish between
them he introduced a new observable, the isospin t whose projection on the OZ axis is [J],
and assigning t,= +1/2 for the neutron and t,= —1/2 for the proton [13].

Q =0 neutron t,=t+1/2 isospin up
Nucleon
Q = +1 proton t,=-1/2 isospin down

The mathematical formalism of the isospin used by Heisenberg is analogous to the formalism
of the intrinsic spin developed by Pauli.

The single-particle wave functions of a neutron and a proton can be expressed with the help of
t =1/2 spinors as [13]:

=0 (5) et pm=em () Z-2

.. . . . 1
Similarly, to the angular momentum, we can introduce an isospin operator, a vector t = 5T

where three components of the vector t have a form of the Pauli matrices:

w=(i o =( 9)m= 2 (23

On the other hand, we can summarize:

Q N
2

z
A
Q=qu=Ze=>Z=—=>TZ= >
L

—%:Q:(é—Tz>e (I —4)

_Q_
2e 2

e

Where Q is the electric charge of a nucleus, and Tz is the projection of the total isospin, A
denoting the total number of nucleons in nucleus

4.4 Shell occupation

The Eigenfunctions are obtained as a product of a single-particle wave function [13].

k
Yasa 0y (12, ) = | | @) (Z-5)
A=1

For identical nucleons, i.e. either neutrons or protons, the simple product wave function
given by eq. (II-5) is not appropriate, since it must describe indistinguishable particles.
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For nucleons, which are fermions. This implies according to the Pauli exclusion principle
that the wave functions should be anti-symmetric. For two particles, the normalized, anti-
symmetric wave function is written as [13]:

Wop(1,2) = f [e(1)0y(2) — Da(2)by(1)] (I—6)

Or, equivalently, as a Slater determinant

1
Wop(1,2) = £

The wave function W,;,(1,2) is antisymmetric, since the operator P;, that interchanges
particles 1 and 2 yields to P;,%¥,,(1,2) = ¥,,(2,1) = =¥,,(1,2). The normalization of
¥,,(1,2) is guaranteed by the orthonormality of the single-particle wave functions &, and
o,

Do (1) Pe(2)
Pp(1) Pp(2)

(Z-7)

Similarly, a normalized, antisymmetric A-particle wave function is defined by the Slater
determinant:

D, (1) D4,(2) Dy, (4)

Poraran(L2s o ) = =P P @ Ce D) (p_g

VAT . :
®,, (1) ®,,(4)

Explicit use of these determinantal wave functions soon leads to complicated expressions
for matrix elements [13].

The quantum wave is not located anywhere in the space like a real wave and it possesses
no energy. Since the quantum wave does not carry energy it is not directly detectable. The
presence of the quantum wave is identified after many particle events. According to this
interpretation, the quantum wave described usually with the quantum function ¢ (7, t). The
probability of finding the particle (nucleon) in point r and at time t in the volume element d37
(inside the nucleus volume) is defined as [35]:

dp = |®(# t)|?dv < 1 - probability of finding the particle (nucleon) (7 -9
®(#, 1) is the particle wavefunction; # = xi + y] + zk; dv = dx dy dz = d37

As Fig II-4 indicated, the particle (nucleon) could be found anywhere in space (nucleus),
however it is most likely to be found where the probability of its wave function is large. By
integrating the Eq. (II-9) over all the possible positions in the space inside the nucleus, the
integral will give the total probability of finding the nucleon in all the nucleus volume. Since
the nucleon will certainly be found somewhere inside the nucleus, the integral must be equal
to unity.
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p=ﬂ |7, O)]?dv =1 (I -10)

v is the volume occuped by a nucleon.

High probability that
particle is here

Low probability that
.- " particle is here

Figure II-4: Wave-particle duality [35].
For a nucleon moving along one dimension, the Eg. (I1-10) takes the following form:
+o0

P=j |®(x, 0)[?dx = 1 (I-11)
The probability of finding a J™ state (a certain slater determinant) that results from a certain
distribution of nucleons forming the nucleus 4Xy is given by:

dP = |[Y(# )]2dV < 1 (I -12)

IV is the nucleus’ volume.

The probability of finding a U state resulting from all the different distribution of the

nucleons inside the nucleus (all slater determinants) is given by:

szffl‘}’(?,t)lzdv:l (I —13)
|4

5. Nucleons Distribution

We have seen that a nucleus 4X,, where Z and N are magic numbers, acts as an inert core.
The total angular momentum of this core is zero and a nucleon moving outside of it, feels the
interaction of the nucleons inside the core as a whole. The core induces a central field which
generates the shell model set of single-particle states, that is the individual orbits represented
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on Fig I-7. Each one of the nucleons in the nucleus occupies one of those orbits in the
sequence shown on Fig I-7.

For instance, the + states in sd nuclei result from the distribution of the valence nucleons
within the sd shell formed of the 3 orbits 1ds, ,2s1/ and 1ds, , and considering 1204

nucleus as a core. As an example, we consider the %°Si nucleus having 10 valence nucleons
outside *°0, whose 8 neutrons and 8 protons occupying the orbits 151/2, 1p3/2 and 1p1/2. We

illustrate on Figure 11-5, the distribution of protons and neutrons to form the °Si ground state.

~

{The sd-Shell }

Here the
. 16
coreis O
Or we can
take the
4
He as core

/

Figure II-5: Distribution of nucleons forming the ground state of 2°Si.

» Using the PSDPF interaction and the NATHAN code, we calculated the probability to
distribute nucleons called also shell occupation probabilities to obtain the first + and —
states excited in 2°Si, which are 2* and 3" respectively. The nucleon distribution that has
the highest probability for each of these states is illustrated on Fig II-6.

From Fig I1-6 we remark that:

4 The PSDPF interaction predicts that first excited state of parity 2* has the same
configuration (distribution of nucleons) as that of the ground state corresponding
to the filling of the orbit 1d5/2, but with only 18.6% probability.

+ The first — excited state resulting from one neutron jump from the 1p1/zshell to
the 1d5/2 with only a probability of only 8%.
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The small values of the highest probabilities mean that these states have fragmented
configurations resulting from different nucleon distribution within the sd shell for the + state
and p-sd for the — state.

The external space The external space
187
2ds),

189>

The valence space \ / The valence space \

2p1;
s/,
2p3,
15/,

1d3/‘
251/2

1,,000000 90009 CET T Mﬂ\

nge_ 19.”'5.0_’/&_9_23?_9_ TY Ty

[151/2 QO  ‘He _9_9__] [ —00 e _Q_LJ
T U T U

2% (18.6%) 37 (8%)

Figure I1-6: Schematic of the configurations of the first excited states
2*and 3~ in the 25Si.

All the calculated probabilities of nucleons distributions for 2* and 3" states in %°Si are
presented on Table II-1 and Table I1-2, respectively.
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¢ For the state 2°

Proba
bility
0.0100
6394
0.0122
2118
0.0110
7218
0.0119
1692
0.0112
9481
0.0137
6571
0.0200
0966
0.0131
8006
0.0110
3425
0.0171
5336
0.0107
5249
0.0289
4563
0.0200
7730
0.0201
2629
0.0180
7002
0.0212
4819
0.0329
9206
0.0149
0352
0.0263
1051

The distribution for neutrons

1p
3/2
4

1d
5/2

2s
112

1d
32

1f
712

2p
32
0

1f
512

25

1p

1/2

The distribution for protons

1p
312
4

1d
512

2s
112

1d
32

1f
712

2p
32
0




00614 2 4 3 1 0 O O O O 2 4 6 0 O O O 0 O
3499
o100 2 4 4 0 O O O O O 2 4 2 2 2 0 0 0 O
6922
00139 2 4 4 0 O O O O O 2 4 3 1 2 0 0 0 O
0381
00134 2 4 4 0 O O O O O 2 4 3 2 1 0 0 0 O
6783
00426 2 4 4 0 0 O O O O 2 4 4 0 2 O O 0 O
5504
00322 2 4 4 0 0 O O O O 2 4 4 1 1 0 O 0 O
9502
0008 2 4 4 0 O O O O O 2 4 4 2 0 0 O 0 O
4477
0029 2 4 4 0 0 O O O O 2 4 5 0 1 0 O 0 O
9412
00673 2 4 4 0 0 O O O O 2 4 5 1 0 0 O 0 O
0012
0187 2 4 4 0 O O O O O 2 4 66 0 O O O 0 O
5723

Table I1-1: Calculations of the probability for the different configurations (shell occupation
probabilities) giving rise the first excited state 2°.

¢ For the state 3°

The distribution for neutrons The distribution for protons

Proba 1p 1p 1d 2s 1d 1f 2p 1f 2p 1p 1p 1d 2s 1d 1f 2p 1f 2p
blllty 12 32 5/2 12 32 7/2 32 52 1/2 12 32 52 12 32 72 32 52 12

00115 2 4 4 0 O O O O O 2 3 66 0 1 0 O 0 O
8688
00120 2 4 4 0 O O O O O 2 4 5 0 O 1 0 0 O
0057
00133 1. 4 3 1.1 0 O O O 2 4 4 1 1 0 O 0 O
3954
0010 1 4 3 2 0O O O O O 2 4 4 2 0 0 O O0 O
4239
00148 1. 4 4 0 1 0 O O O 2 4 5 0 1 0 O O0 O
5489
001127 1 4 4 1 0 O O O O 2 4 3 2 1 0 O 0 O
5618
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00165 1 4 4 1 0 O O O O 2 4 4 1 1 0 0 0 O
4240
001122 1 4 4 1 0 O O O O 2 4 4 2 0 O O 0 O
1993
00318 . 4 4 1 0 0 O O O 2 4 5 1 0 0 O O0 O
3491
o100 1 4 5 0 0 O O O O 2 4 2 2 2 0 0 0 O
9188
00104 1 4 5 0 0 0 O O O 2 4 3 2 1 0 O 0 O
5243
00209 1. 4 5 0 0 O O O O 2 4 4 0 2 0 O O0 O
9455
00137 1. 4 5 0 0 O O O O 2 4 4 1 1 0 0 0 O
9332
00381 1 4 5 0 0 0 O O O 2 4 4 2 0 O O 0 O
5501
0080z . 4 5 0 0 O O O O 2 4 6 O O O O O O
3798
0014 2 3 4 0 1 O O O O 2 4 4 2 0 0 O O0 O
1575
00232 0 0 0 0o 0 0 O O O O O O O O O o o o
3191

Table I1-2: Calculations of the probability for the different configurations (shell occupation
probabilities) giving rise the first excited state 3.

In this chapter, after defining the sd shell area of nuclei; we presented some of the sd
shell nuclei properties and we introduced the interaction that developed to describe both the
normal positive parity and intruder negative parity states.
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Chapter 111

Systematic study of the even-A
Silicon isotopic chain

One of the main aims of researches in nuclear physics is to describe the ground and
exited states of all nuclei in the periodic table. In the present work, we used the PSDPF
interaction to calculate the energy spectra of positive and negative parity states of the sd-shell
even—A silicon isotopes. A systematic study of the four + and — states will be presented in this
chapter.

» As a preface to our work in this chapter and before our systematic study for the even-A
silicon isotopic chain, we give some information about the silicon element.

1. Properties of the Silicon element

1.1 Interesting facts
e Discoverer: Jons Jacob Berzelius.
e Discovery date 1823.
e Discovered in: Sweden.
e Appearance: dark grey with a bluish ting.
e Classification: Semi-metallic.
e Origin of name: from the Latin word "silicis" meaning "flint".
e Uses: computer, chips, lubricant, nuclear radiation detectors, semi-conductor
integrated circuits, solar energy.
e Obtained from: clay, granite, quartz, and sands.
e The second most abundant element in our planet is Silicon.
e Silicon is made in stars with a mass of eight or more earth sun.
e The lowest acceptable purity for electronic grade silicon is 99.9999999%.

1.2 The physical properties
e Name: Silicon.
e Symbol: Si.
e Atomic number: 14.
e Standard solid state: at 298K.
e Classification: semi-metallic.
e Group in periodic table: 14.
e Period in periodic table: 3.
e Block in periodic table: p.

e
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e Shell structure: 2.4.8
e Electron Configuration: [Ne]3S23P1.

(7

&)

: Electron

. : Nucleus

Figure III-1: The atomic model of the silicon atom.

The observation of 23 silicon isotopes has been reported so far, including 3 stable, 6
proton-rich, and 14 neutron-rich isotopes. The sd shell region of our interest contains only 13
silicon isotopes from A=22 to A=35.

2. Properties of Silicon isotopes

There are four natural isotopes of silicon (Si) existing in the environment: “*Si, °Si, *Si
and *’Si. The first three isotopes are stable and the last one is radiogenic. The relative
abundance of “®Si, 2°Si and *Si is 92.23%, 4.67% and 3.10%, respectively [36]. In the 1920s,
all three stable silicon isotopes had been discovered. Mass spectrometric studies on Silicon
isotope variation in the natural environment started in the 1950s. In the 1970s, extensive
studies on silicon isotope compositions of meteorites and rocks were made [36].

In addition to the previously mentioned natural isotopes, there are 9 other artificial
isotopes belonging to the sd shell region, **Si,*Si,*Si,*Si,?°Si,2’Si, *!Si, *si, *si.

We focus, particularly in our study, just on the even-A silicon isotopes.
2.1 The even-A silicon isotopes

We present here the properties of the even-A silicon isotopes taken from international nuclear
bank [10].
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“2sj: Saint-Laurent et al. discovered *Si in 1987 in the paper "Observation
of a bound T, = —3 nucleus: %Si" [37].

v’ Z=14; N=8; J1 = 0.

v Half-life 29 ms 2. Mass = (22.03579+5.40) AMU.

v Binding energy/A = (6058+2.3) keV.

**Si: In the 1979 paper “Decay of a new isotope, 2*Si: A test of the isobaric

multiplet mass equation” Aysto et al. Described the first observation of 2*Si
[38].

v’ Z=14; N=10; JT = 0.

v Half-life 140 ms 2. Mass = (24.011353+2.1) AMU.

v Binding energy/A = (7167.2+0.8) keV.

“°Si: was identified in 1960 by Robinson and Johnson in “Decay of 25>
[39].
v\ Z=14;N=12; JT = 0*.
v' Half-life (2.1 £0.3)s, this half-life agrees with the presently
accepted value of (2.234+1.3) s. Mass= (25.9923338 +1.1) AMU.
v Binding energy/A= (7924.708+0.4) keV.

8si: Aston discovered 22Si in 1920 as reported in “The constitution of the
elements” [40].

v Z=14; N=14; J" = 0*.

v" Half-life: Stable. Mass= (27.976926535+0.5) AMU.

v" Binding energy/A = 8447.744 keV. Abundance= 92.223%.

*Si: In the 1924 paper “Isotope effects in the band spectra of boron
monoxide and Silicon nitride “Mulliken reported the observation of 0g;
[41].

v’ Z=14;N=16; /T = 0*.

v" Half-life: Stable. Mass= (29.973770136+2.3) AMU.

v Binding energy/A = (8520.654 +0.1) keV. Abundance =3.092%.

#25i: Lindner identified 32Si in the 1953 paper “New nuclides produced in
chlorine spallation” [42].
v Z=14;N=18; T = 0™,
v" Half-life: it was found to have a maximum probable half-life of
710 years. Mass= (31.9741515+0.3) AMU.
v" Binding energy/A = (8481.468+0.9) keV. Abundance= None.

*Si: Artukh et al., discovered **Si, in the 1971 paper “New isotopes
29,30Mg' 31,32,33A|’ 33,34,35,368i’35,36,37,38P’ 39'408, and 41,42C| produced in
bombardment of a 2*2Th target with 290 MeV “°Ar ions” [43].

e
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v Z=14; N=20; J" = 0*.
v Half-life: 2.77 s 20. Mass= (33.978575+1.5) AMU.
v Binding energy/A= (8336.1+0.4) keV.

2.2 Experimental review of excitation energies in even-A Silicone
Isotopes

Investigation of nuclear properties and the laws governing the structure of nuclei is an
active and productive area of physical research. Here, we collected the experimental
excitation energies; spins and parities J* of the even-A silicon isotopes’ states up to the fourth
— state from ?°Si to **Si. Since nuclei with N < Z are less studied due to Coulomb repulsion
between protons, we compare them to their mirrors. We present and discuss these properties
case by case. We remind that nuclei having an even-A number of nucleons have a J* = 0°
ground state.

The ?%Si case

THEO

0.0 0" 0.0 0*

1.75 P 3.199 2"

2.5 i 4.584 (3%

4.75 A 4.909 (0%
5.800
6.512 )
6.938 (4%
7.649 (0,1,2)
8.783 (0,1°,2)
20.554 (0,1,2)
13.298 (0,1,2)

Table III-1: Comparison of the first excited states in the mirror nuclei %Si and %20 [10],
* States taken from Ref [44].
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to make it clear here are the reasons of comparing just the isotopes %°Si,
Oo,  si, %®Si with theirs mirror nuclei %20, **Ne, and **Mg.

v Mirror nuclei have same structure and same excitation energy, the energy differences
is due to Coulomb interaction.

v" To answer the question, when is the difference in Coulomb energy occur in these
mirrors, the number of neutrons is less than the number of protons N « Z, and
therefore the repulsion force between p-p has a significant value. The N «< Z nucleus
here is unstable (easy to disintegrate).

v Since we have undetermined states, we use the mirror nuclei’s states to confirm them.
In addition, the shell model calculations are primordial in the comparison.

» Note that the PSDPF interaction is an isospin independent and Coulomb free,
so it gives the same results for mirror nuclei.

We present on Table III-1, the energy spectra, of the mirror nuclei 2°Si and 220 [10].
Since the #Si is deficient of neutrons, it was difficult to study it experimentally, we show on
the table the theoretical results obtained in Ref. [44] using the Gamow shell model (GSM).
Concerning the mirror 220, only the first excited state with J™ = 2" was well identified and all
the other states have uncertain J* and needs to be confirmed using shell model calculation.

The ?*Si case

0.0 0 0.0 0
1.879 2! 1.981 2*
3.449 @2h* 3.868 2*
3.471 (4*,0M* 3.972 4
4.766 0
4.880
5.575 2*

Table II1-2: Comparison of the first excited states in the mirror nuclei %Si and **Ne [10],
* States taken from Ref. [45].
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On Table III-2, are presented the excitation energy spectra of the mirrors 24Sj and
’Ne [10, 45]. We remark that the #*Si has 3 observed excited states [45], 2 of them have
uncertain J* assignments. Like the usual mirror nuclei, the **Ne has more excited states with
well-known J" except for the 4880 keV state. No negative parity states were identified in both
mirrors.

The %Si case

0.0 0* 0.0 0*
1.797 2" 1.808 2"
2.787 2" 2.938 2"
3.336 0* 3.082
3.757 (39 3.420
3.842 (4" 3.564
4.139 2" 3.588 0
4.187 (39 3.941 3"
4.446 (4 4318 4*
4.796 (4 4.332 2"
4811 2 4.350 3"
4.831 0 4.644
5.147 2" 4.835 2"
5.229 2 4,901 4*
5.289 4* 4.972 0*
5.517 (4" 5.180
5.676 1* 5.291 2"
5.890 0 5.476 4"
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5.929 3 5,601 1

5.945 (09 5.711 (1*,2)
6.101 5.715 4*
6.295 2" 6.125 3"
6.382 29 6.256 0*
6.461 0 6.483

6.765 6.622 (4"
6.787 3 6.634

6.810 6.745 2"
6.880 (0 6.876 3
7.018 (39 6.951

7.154 2" 6.971 (4"
7.198 (5Y) 6.978 (59
7.418 (4" 7.061 1
7.496 2" 7.099 2"
7.522 (5) 7.002 (0,1) "
7.606 7.264 3"
7.674 2 7.261

7.701 (3) 7.282 (4)
7.886 (1) 7.348 3
7.921 7.371 2"

Table ITI-3: Comparison of the first excited states in the mirror nuclei %°Si and *Mg [10].

The energy spectra of the A = 26 are represented on Table III-3, there are more
available states in %°Si and the mirror Mg with some unknown J®. In *°Si there, are three
proposed negative parity states contrary to its mirror that has three confirmed ones.
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The %Si case

0.0 0*
1.779 2"
4.617 4
4.979 0*
6.276 3"
6.690 0*
6.878 3
6.887 4
7.380 2"
7.416 2"
7.799 3*
7.933 2"
8.258 20"
8.328 1*
8.413 4
8.543 6"
8.588 3*
8.819

8.904 1
8.945 5*
8.953 (0%, 1,2)
9.164 @
9.315 3*
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9.381 2"

9.417 4*

9.479 2"
9.496 1
9.702 )
9.764 3)

Table II1-4: Experimental review of the first excited states in 22Si [10].

On Table III-4, is shown the energy spectrum of ?Si, which has well studied states
but some of them have uncertain J™ that need to assigned. Three possible negative parity states
were identified.

The *°Si case

0.0 0*
2.235 2"
3.498 2"
3.769 1"
3.787 0*
4.810 2"
4.830 3"
5.231 3
5.279 4*
5.372 0
5.487 3
5.614 2"
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5.950 4"

6.503 4
6.537 2*
6.641 >
6.642 0
6.744 1
6.865 3
6.914 29
6.998 5*
7.043 5

Table III-5 : Experimental review of the first excited states in *°Si [10].

The energy spectrum of *°Si up to 7 MeV is shown on Table III-5. We note here, that
almost all the excited states are certain with well-defined J”; five of them have negative parity.

The 3°Si case

0.0 0
1.941 2*
4.230 2*
4.983 0
5.220 )
5.288 3
5.412 1*
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5.427 2"

5.502 4" 5)
5.581 )
5.773 (1,2,3)
5.785 0,1,2)*
5.893 39
5.954 29
5.967 3
6.170 29
6.195 1

Table I11-6: Experimental review of the first excited states in **Si [10].

On Table II1-6, is presented the energy spectrum of *Si up to 6 MeV. One can see that
most states here have unconfirmed J*. This spectrum contains nine positive parity states; two
of them are uncertain, and eight negative parity states, four of them are uncertain.

The *'Si case

0.0 0
3.327 2*
3.590

4.265 3)
4.380 3)
4.520

4.971 (3.45)
5.042
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5.330 2"

6.023

Table III-7: Experimental review of the first excited states in **Si [10].

The energy spectrum of **Si up to 6 MeV is shown on Table III-7. The **Si states have
uncertain or unknown assignments.

3. Systematics of the even-A silicon isotopic chain study

Using the PSDPF interaction and the code NATHAN we calculated the excitation
energies of the first 3 positive +and 4 negative- parity common excited states: 2*, 3%, 4", 17, 3,
4", 57, called test states. The obtained results are shown case by case on Table I11-8.

]]'[ 228i 24Si 268i ZBSi 3OSi 328i 34Si
2" 3.219 2116 1878 1892 2235 2.044  4.380
3" 4947 4927 | 3.990 6.470 4787 5.602 5715

4" 6.903 4.069  4.397 4645 5274 5589 @ 7.565

r 6.820 6.511  6.663 7227 6.665 5241  4.876
3 6.454 6.490 6.716 7.176 5773 5495 4.790
4 8.844  8.110  7.899 8.604 6.249 6502 4.254
5 9.999 8.602 8.318 8.767  7.360 5725  4.839

Table II1-8: Calculated excitation energies (in MeV) of the test states even—A silicon
isotopes.

3.1 Comparison Calculated versus Experimental excitation energies
of the test states

All the results obtained using PSDPF of the comparison between experimental [10]
and calculated excitation energies for the test states 2*, 3%, 4%, 1, 3", 4, 5 in the even-A
silicon isotopes up to N = 19, are discussed in the following subsections.
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The 2" state

E (MeV)

/
/
/

- Y
—
=
/ w/
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~
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8 10 12 14 16 18 20

Neutrons number

Figure III-2: Comparison between experimental and calculated excitation energies of the 2*
state in even-A silicon isotopes.

The 27 state is known in all the even-A Si isotopes (see Fig 111-2), from A=22 to
A=34, as a first excited state, an exception is found for *’Si with N << Z, thus we plotted its
mirror state of 220. This state is located at excitation energies between 1.779 MeV for ?®Si and
4.380 MeV for **Si. The agreement between calculation and experiment is perfect except the
case of 3*Si. PSDPF predicts the first 2* state higher than experiment of 1 MeV in *Si (N =
20), this is expected for a magic nucleus since all the neuron subshells are completely filled.

The 3+ state

E (MeV)

8 10 12 14 16 18 20
Neutrons number

Figure II1-3: Comparison between the experimental and calculated excitation energies of the
3" in even-A silicon isotopes.

40



The 3" state is known experimentally just in #Si, 2Si, ¥si, *Si, we used the 3
excitation energy of %0 as shown in Fig IlI-3. The excitation energies of this state are
comprise between 3,757 MeV for %Si and 6.470 MeV for ?®Si. There is an excellent
agreement between calculations, using PSDPF, and experiment.

The 4" state

E (MeV)

8 10 12 14 16 18 20
Neutrons number

Figure II1-4: Comparison between the experimental and calculated excitation energies of the
4" in even-A silicon isotopes.

We can see in Fig I11-4, that the 4" state is known in all the isotopes except in **Si and
225, we used the value of 220. Its excitation energies vary between 3.471 MeV for 2*Si and
7.565 MeV for Si. The calculation is in good agreement with experiment.

The 1 state
9,0 - .
8,5 \\
\
8.0 \\\ 1 cAL
® —e— 1
. \ EXP
7,5 — \
i 2 - \
= 7.0 / \
D - .
S T, =
o &
6,0 —
5,5 -
5,0
415 T T T T T T T
8 10 12 14 16 18 20
Neutrons number

Figure III-5: Comparison between the experimental and calculated excitation energies of the
1" in even-A silicon isotopes.
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We present in Fig 111-5 the comparison experimental versus theory of the excitation energies
of the 1" state in even-A silicon isotopes. This observed excitation energies are comprised
between 4.876 MeV for **Si and 8.904 MeV for #Si. This state is well reproduced by PSDPF
only in *Si. We remind that all these isotopes could not be included in the fit of the PSDPF
interaction and we expect such discrepancies.

In order to improve the result of this state, we decided to recalculate; by adding the rmsd (root

mean square deviation), which is given by: rmsd= \/% 2 (Ecal — Eexp)?.

The rmsd for the 1" state equals 1.215 MeV. The new excitation energies are listed on Table
I11-9.

Eexp Ecal AE (AE)? Ecal + AE'

SI  (Mev) (MeV)  (MeV)  (Mev)  rmsd (MeV)
si?? 7.649 6.82 -0.829 0.687241 8.035 0.386
Si% 7.886 6.663 -1.223  1.495729 7.878 -0.008
si?® 8.904 7.227 -1.677 2.812329 8.442  -0.462
Si* 6.195 5.241 -0.954 0.910116 6.456 0.261
rmsd 1,2150523

Table ITI-9: New calculated excitation energies of the 1" state by adding the rmsd.

The comparison between the experimental and new calculated excitation energies of the 1-
state is shown on Fig III-6. We remark that there is now a quite good agreement experiment
versus theory.

CAL'

EXP

7 22
7,0 - o

E (MeV)

4’5 T T T T T T T
22 24 26 28 30 32 34

Neutrons number

Figure III-6: Comparison between the experimental and the new calculated excitation
energies of the 1" in even-A silicon isotopes.
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The 3 state

E (MeV)

T T T T T
10 12 14 16

Neutrons number

Figure III-7: Comparison between the experimental and calculated excitation energies of the

3" in even-A silicon isotopes.

Figure 111-7 that the 3 state is not observed in 2°Si and 2*Si. It is located at excitation
energies between 4.790 MeV for **Si and 7.176 MeV for %Si. The agreement between the
observed and calculated excitation energies is quite good.

The 4  state

E (MeV)

|
- //. 4>CAL
P
mMg/”
:/-

T T T T T T
10 12 14 16 18 20

Neutrons number

Figure III-8: Comparison between the experimental and calculated excitation energies of the

4" in even-A Silicon isotopes.

The 4 state is less known in the studied isotopes, we used the energy of Mg, the
mirror of 2°Si (see Fig 111-8). The observed excitation energies are well reproduced by

PSDPF.
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The 5 state

° _ \ \\ —-—5_
\

E (MeV)

N
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8 10 12 14 16 18 20

Neutrons number

Figure III-9: Comparison between the experimental and calculated excitation energies of the
5" in even-A Silicon isotopes.

The 5 is not observed in ?°Si and 2*Si (see Fig 111-9), and is comprises between the
excitation energies 4.839 MeV for **Si and 9,999 MeV for %Si. The difference between
calculated and experimental excitation energies is low for the isotopes at the end of sd shell.
While in #®Si and %Si these differences equal to AE(26Si)= 0.796 MeV,
AE (?8Si) = —0.935MeV, respectively. We think that this state has collective configuration
(3p-3h) in the case of #Si, which makes its energy higher than experiment. Such collective
states cannot be reproduced using our PSDPF interaction because their configuration is out of
the p-sd-pf valence space.

P.S I —_ . . .
,: If the excitation energy is higher than its experimental counterpart; this
is explained by the fact that these nuclei are far from closure shells, and that the

excitation of a nucleon from the shell p to sd or sd to pf requires a superior
energy than for the nuclei at the beginning or the end of the shell.

3.2 Systematics of the excitation energies of the test states in
even-A silicon isotopes

In this section we will discuss the evolution of the excitation energies of the test states
throughout the even-A Si isotopes. We compared the experimental and calculated, using
PSDPF, the excitation energies of the + test states 2*, 3", 4" in the previous Figures I1I-2, III-
3, IlI-4; and listed their values in the Appendix. Further, Figures III-5,6, I1I-7, 1II-8, III-9
represent the comparison of excitations energies in the — test states 17, 3', 4, 5". In order to

e
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make our systematic study based on the most probable wave function (Slater determinant) we
calculated also, using PSDPF, the shell occupation probabilities, discussed in Chapter I, for
all the test states in question. The results are shown, for each state in all the studied isotopes,
in Figures I1I-10 to I1I-16. The systematic evolution will be discussed state by state.

& The 2" state

As shown in the Figure 111-2, the variation shape of the 2" states excitation energies is
quite well reproduced by the PSDPF interaction. Remind that the first excited state in all the
silicon isotopes is the 2*, where the ground state in all of theme is 07, this is a particular
properties of any even-A (even N and Z) nucleus.

As shown in Figures 111-10, we get the following remarks:

» The 0" ground states correspond to protons full filling the shell ds/zin all the isotopes.

o The 2" states are obtained from the excitations of nucleons within the same sd-shell,
and follow the same distribution as the ground state. On the other hand, the closure of
the neutron subshells ds/z and 251/2, when approaching the magic N = 20 number,

can give rise to reduce the possibility of nucleon arrangement within the sd shell. That
can explain the need to more nucleon excitations across the sd-pf shells for *Si,
which is out of our p-sd-pf valence space using the PSDPF interaction for which just
one nucleon jump is permitted.

P.S: |- In ?si the probability of nucleon distribution is always equal between

the neutrons and the protons towards 1d5/2 - 251/2, that is expected

since this isotope has N = Z = 14.
- In *Si, the collective contribution can be found in all the + states,
because the p and sd shells are completely full.

+ The 3" state
The shape of the variation of the 3" states excitation energies predicted by the PSDPF
interaction agrees well with the experimental one, as illustrated Figure I11-3.

As shown in Figures 111-11, we get the following remarks:
e These states result mainly from the rearrangement, within the sd shell, of the proton
side, in the isotopes with N < Z, 22Si, %si, 2°Si. Concerning the N > Z isotopes, *°Si and
%25j: the neutron distributions contribute also to the configuration of these states.
o For the N = Z, %Sj the excitation 1ds; — 2s1;, has the same probability for protons

and neutrons.

+ The 4" state

The variation of the 4" states excitation energies, calculated by PSDPF, follows the same
shape as the experimental one; see Figure I11-4. Figures 111-12, illustrate that the 4" states
have the same configurations as the 3 states or the ground states.
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+ Thel state

Despite the disagreement, as shown in the Figure Il1-5, between experimental and
calculated excitation energies of the 1" states; the variation shape of the 1" states is quite well
reproduced by the PSDPF interaction. The excitation energies of this state were readjusted
and presented on Figure I11-6. The negative parity states have a special interest since they
result from one nucleon jump across p-sd or sd-pf shells, unlike the positive parity ones which
are obtained from the nucleon arrangements within the sd shell. We take a great interest to
their shell occupation probabilities to comprehend the evolution of the excitation with the
increasing neutron number in the Si even-A isotopes.

Figures II1-13 show that:

e In %Si, the 1 state results from one proton (34%) or neutron (15%) jumps from
1p1/2t0 sd, a pure p-sd configuration (hole in 1p1/2). No nucleon jump to the pf shell.

« Inthe N < Z isotopes, 2Si, %Si, the main 1p — sd excitation comes from the neutron
side (neutron hole in 1p). There is no nucleon excitation to the pf shell; this state has a
pure p-sd configuration.

o For %Si with N = Z, these states result from a proton or a neutron promotion with
equal probabilities, 50% for each type, from 1p1/2 to 251/2.

For all the rest isotopes with N > Z, these states correspond to a promotion of one neutron
from sd to the 2103/2 (neutron in pf). No p-sd excitation was found; a pure sd-pf configuration.

+ The 3 state
The pace of the variation of the 3" state excitation energies predicted by the PSDPF

interaction agrees well with the experimental one, as illustrated Figure I11-7.

From Figures 111-14, we get the following observations:
e In the N < Z isotopes, 2°Si, #*Si, ?®Si, these states result from the main 1p1/, -

sd excitation, which comes from the neutron side (neutron hole in 1p1/2). There is no

nucleon excitation to the pf shell; it has a pure p-sd configuration.

o For %Sj with N = Z, the 3 state has almost a pure sd — 1f7/2 excitation corresponding
to a nucleon in pf shell. This excitation comes from a proton or a neutron promotion
with same probability, 50% for each type.

 For the isotopes with N > Z, *°Si, *Sj 3Sj these states correspond to one neutron
jump from sd to the 1f7/2 (neutron in pf). No p-sd excitation was found; a pure sd-pf

configuration.

+ The 4 and 5 states
The variation shapes of the 4" and 5 states are quite well reproduced by the PSDPF

interaction; see Figures I11-8, 111-9.

From the shell occupation probabilities of the 4" and 5 states, shown in Figure III-15, I1I-
16, one can catch the following comments:
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Only in the N < Z isotope, ?°Si, these 4™ and 5 states have a main excitation resulting
from the neutron 1p1/2 — sd jump (neutron hole in 1p1/2). There is no nucleon

excitation to the pf shell; these states have a pure p-sd configuration.
In the N < Z other isotopes, 2*Si, %°Si, these states result from promotion of proton
across the sd-pf shells, mainly to the 1f7/2. That means these states have a pure sd-pf

configuration corresponding to a proton in fp.
As for the 3 state in 2Si with N = Z, the 4" and 5’ states have almost a pure sd = pf
excitation corresponding to a nucleon in pf shell mainly in 1f7/2. This excitation

comes from a proton or a neutron promotion with same probability, 50% for each

type.
For the isotopes with N > Z, *°Si, 3Sj, **Si, these states have similar configuration that
corresponds to a one neutron jump from sd to the 1f7/2 (neutron in pf). No p-sd

excitation was found, i.e. a pure sd-pf configuration.
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The 2" state
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The 3" state
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The 4" state
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The 1" state
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The 3" state
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The 4 state
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The 5 state

[ o
s

Shell occupation
w

5
4
=
s 5
3 B
= :
5
=} 9]
o o
s} o
3 =
c 2 2
2 7]
1
0 p = T T dﬂ f =
Pa Py, 5/2 251/2 d3/2 f7/2 Pa Pyp Ysi2 251/2 ds/z
. '
5 /4 v =5
4
c
2 =
=z 3 2
3 b}
a o
8 B
5] 8
=2 S)
3 =
5 2
7]
1
0
Pai Py2d, 251/2d3/2f7,22p3/2 foe a2 P,y 2s,, d3,2f7r2 fo
| ___[on
| E— )
5
4 S
s g
k=4 3
=] 3 o
3 3
g 2
° 5]
= <
22 7
@
1
o
a2 Pidg,2s,,d T, Py Piedg,2s, dipf, T2 2Py,
6 |
5 |

Py, Pypd,, 2s . d

52 “¥ 12 a2

w

N}

w

N

!

|

Pan pl/ZdS/z Zsuzdarszzzps/z f5/22p1/p a2 Pu d5/2 Zsl/gdarz

[

Ps, Pypd,, 2s  d

f
512 S 172 a2 712

6
5
4
3
2
1
o
32 P2 d

2s,,d,.f L

2 Y32 712

T

28, d ai2lre

o
s

a2 Py, Ay,

v

2 Py,

v

a2 Py,

[
[

[
s

2s .d,f fo

2 "3z 712

[N
s

f5/2

2s,.d_f

12932 712

Figure I11-16: Shell occupation probabilities of the 5 state.

54




Conclusion

We used the PSDPF interaction to calculate the excitation energies of the first + states
2%, 3", 4%, and — states 27, 3, 4, 5 in the even-A silicon isotopic chain. Their shell occupation
probabilities were also calculated. From this study, we can conclude the following points:

% The comparison of our results to the observed excitation energies shows a good
agreement between experience and theory.

<+ This study allowed us to make important predictions of the J™ for isotopes that not only
do not have these states but also to have an idea of their energies (see the Appendix).

<+ We can note that in the case of the even-A isotopes, the ground state has a J* = 0",

“ As it is expected, for the isotopes near N = 8 closure, the negative parity states result
from a hole in p shell. While near N = 20 closure, these states result from the
promotion of one nucleon to pf shell.

In conclusion, the results of our calculations, discussed in this chapter, have enabled us to
demonstrate that the PSDPF interaction very satisfactorily reproduces normal and intruder
states in sd-region.
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Genersl Conclusion

Our work was devoted to carrying out a systematic study, using PSDPF

interaction, of the first + and — excited states in even-A silicon isotopic chain. We focused on
even-A silicon (with A = 22 to 34), since they are located between in the middle of the sd
shell, which could not be included in the fit of the PSDPF interaction.

We used the PSDPF interaction to describe the spectroscopic properties, excitation
energy spectra, and wave functions, of the first 0 and lho (+ and —) states of the even-A
isotopic chain of silicon. Concerning nuclei with N < Z, that are experimentally less studied,
we have used the mirror nuclei to determine the J™ of the uncertain or undefined states.

Important predictions have been proposed for each isotope studied. This study allowed
us to confirm ambiguous states and to predict spins and/or parities for the indeterminate states
in these isotopes, concerning the test states. The obtained results show a good agreement
theory versus experiment for the excitation energies of the test states.

This study allowed us to understand the systematic variation of the different + and —
test states excitation energies throughout the studied isotopes following their wave function.
This gives us an idea of the evolution of the nuclear structure within an isotopic chain. The
systematic evolution was well reproduced using the PSDPF interaction.

In conclusion, we can say that the PSPDF interaction successfully described the
spectroscopic properties of the studied isotopes; and gives more credit to it.
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Appendix —A

Table contains the experimental and the theoretical values of the
excitation energies of the test states in even—A Si isotopes.

The excitation energies

4947 6,903 6,820 6,454
4584 475 7.649
4,927 4,069 6,511

3.471

4,397

3.842

4,645

4.617

5,274

5.279

5,589

5.502

7,565

Table A-1: Experimental versus the theoretical excitation energies values of the test states.
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Appendix —B

Tables containing the shell occupation probabilities in even-A silicon
Isotopes.

ZZSi.

For neutrons:

JU (1psz  1pwz  1psp 2512 1dap 70 2p3p sy 2p1pe

0" 4.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2" 4.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3" 4.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4% 4.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 3.864 1693 0.268 0.110 0.068 0.0 0.0 0.0 0.0
o 3.873 1269 0.748 0.016 0.094 0.0 0.0 0.0 0.0

4 3.884 1262 0.749 0.007 0.098 0.0 0.0 0.0 0.0

5 3.864 1289 0.706 0.036 0.105 0.0 0.0 0.0 0.0

Table B-1: Shell occupation probabilities for neutrons in ““Si.

For protons :

JU | 1pap 1p1e 1psp 2y 1dap 172 2psp 1fsp  2p1pe

0" 4.0 2.0 5411 0368 0.222 0.0 0.0 0.0 0.0
2" 4.0 2.0 4655 1114 0.231 00 0.0 0.0 0.0
3" |40 2.0 4819 0983 0.197 0.0 0.0 0.0 0.0
4" 4.0 2.0 3931 1877 0.192 0.0 0.0 0.0 0.0
1" 3913 1.602 5.025 1.049 0.341 0.0445 0.004 0.020 0.002

3 13968 1.995 4.754 0.756 0.422 0.085 0.003 0.145 0.003
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4 13977 1999 4288 1178 0.436 0.106 0.003 0.012 0.002

5 3965 1998 4376 1159 0.387 0.100 0.003 0.010 0.001

Table B-2: Shell occupation probabilities for protons in ““Si.

24g;-

For neutrons:

JU | 1pse 1p1s 1psp  2s12  1dsp 1f70  2pap 1fsp,  2pap

0" |4.0 2.0 1.733 0.154 0.113 0.0 0.0 0.0 0.0
2" |40 2.0 1.709 0.202 0.089 0.0 0.0 0.0 0.0
3" |40 2.0 1528 0.357 0.115 0.0 0.0 0.0 0.0
4" 4.0 2.0 1.763 0.089 0.149 0.0 0.0 0.0 0.0
1" 3695 1535 2222 0371 0.163 0.008 0.003 0.003 0.0
3 13801 1.402 2280 0.233 0.278 0.003 0.001 0.003 0.0

4 13962 1914 1.487 0.427 0.198 0.006 0.002 0.004 0.002

5 3926 1769 1747 0316 0.225 0.006 0.001 0.010 0.001

Table B-3: Shell occupation probabilities for neutrons in “"Si.

For protons:

JU | 1pae 1p1s 1psp  2s12  1dspe 1f70  2pap 1fsp,  2pae

0" |4.0 2.0 5040 0536 0424 0.0 0.0 0.0 0.0
2" 4.0 2.0 4842 0.715 0.443 0.0 0.0 0.0 0.0
3" |40 2.0 4580 0938 0482 0.0 0.0 0.0 0.0
4" 4.0 2.0 5.075 0.498 0427 0.0 0.0 0.0 0.0
1" 3934 1917 4367 1062 0.655 0.028 0.020 0.014 0.004
3 3948 1984 4500 0.824 0.616 0.090 0.015 0.019 0.004

4 13991 199 4.214 0512 0438 0449 0321 0.034 0.046
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5 3976 1994 4288 0585 0510 0433 0.156 0.035 0.024

Table B-4: Shell occupation probabilities for protons in “Si.

26Si:

For neutrons:

JU | 1pse 1p1s 1psp  2s12  1dsp  1fyp 2pspe 1fsp  2p1e

0" |4.0 2.0 3.251 0.365 0.384 0.0 0.0 0.0 0.0
2" |40 2.0 3.207 0418 0.374 0.0 0.0 0.0 0.0
3" |40 2.0 3.247 0.3% 0.357 0.0 0.0 0.0 0.0
4° 4.0 2.0 3473 0286 0.241 0.0 0.0 0.0 0.0
1" 3628 1531 3.638 0543 0.646 0.005 0.004 0.005 0.001
3 |3.762 1458 3.632 0585 0.536 0.010 0.002 0.014 0.001

4 13986 1982 2948 0.467 0.580 0.022 0.005 0.007 0.002

5 3991 1992 2889 0511 0572 0.029 0.004 0.012 0.002

Table B-5: Shell occupation probabilities for neutrons in “°Si.

For protons:

JU | 1pse 1pyz  1psp 212 1dsp  1fyp 2pse 1fspe 2P

0" |[4.0 2.0 4804 0.601 0.595 0.0 0.0 0.0 0.0
2" 4.0 2.0 4696 0.691 0.6134 0.0 0.0 0.0 0.0
3" |40 2.0 4483 0.687 0.830 0.0 0.0 0.0 0.0
4" 4.0 2.0 4851 0551 0598 0.0 0.0 0.0 0.0

1" |13.945 1962 4.177 1.089 0.778 0.027 0.011 0.011 0.003
3 |[3.934 1974 4287 0933 0.769 0.073 0.008 0.018 0.004

4 13.992 1995 3966 0559 0.568 0.622 0.253 0.034 0.010

5 [3.992 1998 3860 0.646 0576 0.745 0.134 0.043 0.006

Table B-6: Shell occupation probabilities for protons in <°Si.
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28Si:

For neutrons:

JU |1pzz  1pwz 1psz 282 1dap  Ifzp 2p3z Ufsp 2pie
0 4.0 2.0 4598 0.760 0.642 0.0 0.0 0.0 0.00
2" 4.0 2.0 4236 1.020 0.744 0.0 0.0 0.0 0.0
3" 4.0 2.0 4544 0.737 0.720 0.0 0.0 0.0 0.0
4* 4.0 2.0 4,182 0.940 0.878 0.0 0.0 0.0 0.0

1 3.788 1807 4.177 1113 1.019 0.037 0.015 0.036 0.007
3 3.986 1996 3.906 0.822 0.809 0.305 0.032 0.131 0.014
4 3.990 1998 3.862 0.834 0.829 0.306 0.027 0.143 0.012
5 3.994 1999 3660 1.084 0.771 0415 0.004 0.071 0.002

Table B-7: Shell occupation probabilities for neutrons in “°Si
For protons:

JU (1psz  1pwz  1psp 2812 1d3z  1fzp 2psp Ifsp 2pue I
0" |4.0 2.0 4598 0.760 0.642 0.0 0.0 0.0 0.0
2" 4.0 2.0 4236 1.020 0.744 0.0 0.0 0.0 0.0
3" 4.0 2.0 4544 0.736 0.720 0.0 0.0 0.0 0.0
4* 4.0 2.0 4182 0940 0.878 0.0 0.0 0.0 0.0

1 3.788 1807 4.178 1.113 1.020 0.037 0.015 0.037 0.007
3 |3.986 1.996 3906 0.822 0.809 0.305 0.032 0.131 0.014
4 13990 1.998 3.862 0.834 0.829 0.306 0.027 0.143 0.012
5 3.994 1999 3.658 1.084 0.770 0.418 0.004 0.071 0.002

Table B-8: Shell occupation probabilities for protons in “°Si.
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30Si:

For neutrons:

JU |1pzz  1pwz 1psz 282 1dap  Ifzp 2p3z Ufsp 2pie
0 4.0 2.0 5437 1367 1.196 0.0 0.0 0.0 0.0
2" 4.0 2.0 5.345 1.251 1.404 0.0 0.0 0.0 0.0
3" 4.0 2.0 5.052 1.341 1.607 0.0 0.0 0.0 0.0
4* 4.0 2.0 5.023 1456 1.520 0.0 0.0 0.0 0.0
1 3.989 1985 5231 1184 0.781 0.133 0.636 0.030 0.030
3 3.988 1999 5081 1.052 1.040 0.703 0.024 0.106 0.007
4 3.995 1200 4.816 1.346 0.913 0.875 0.011 0.0043 0.002
5 3.999 1200 4.752 1.015 1.308 0.860 0.007 0.058 0.002

Table B-9: Shell occupation probabilities for neutrons in °"Si.
For protons:

JU (1psz  1pwz  1psp 2812 1d3z  1fzp 2psp Ifsp 2pue I
0" |4.0 2.0 4990 0.608 0.402 0.0 0.0 0.0 0.0
2" |40 2.0 4800 0.780 0.421 0.0 0.0 0.0 0.0
3" |40 2.0 4518 1.006 0.477 0.0 0.0 0.0 0.0
4% |40 2.0 4543 0.956 0.501 0.0 0.0 0.0 0.0
1 3979 1934 4682 0.767 0580 0.022 0.016 0.010 0.010
3 3988 1.995 4.441 0.810 0.635 0.088 0.008 0.030 0.005
4 3993 1998 4.286 0.943 0.726 0.042 0.002 0.010 0.001
5 3996 1999 4289 0.921 0.728 0.049 0.003 0.014 0.001

Table B-10: Shell occupation probabilities for protons in *"Si.
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32Si:

For neutrons:

JU | 1pae 1pyz  1psp 2512 1dsp  1fp 2pse s 2pap
0" (4.0 2.0 5831 1622 2547 0.0 0.0 0.0 0.0
2" 140 2.0 5820 1557 2.623 0.0 0.0 0.0 0.0
3" |4.0 2.0 5.800 1.855 2345 0.0 0.0 0.0 0.0
4" 4.0 2.0 5578 1.643 2779 0.0 0.0 0.0 0.0
1 13.999 1998 5.684 1.717 1.624 0.077 0871 0.013 0.018
3 13.992 2.0 5712 1354 2114 0571 0.116 0.133 0.010
4 14.0 2.0 5.88 1422 2.020 0.842 0.049 0.078 0.001
5 4.0 2.0 5.696 1.704 1.645 0.908 0.008 0.038 0.001

Table B-11: Shell occupation probabilities in neutrons in *“Si.
For protons:

JU (1psz  1pwz  1psp 2812 1d3z  1fzp 2psp Ifsp 2pue I
0" |4.0 2.0 520 0535 0.260 0.0 0.0 0.0 0.0
2" |40 2.0 4996 0.741 0.263 0.0 0.0 0.0 0.0
3" |40 2.0 4720 0.876 0.404 0.0 0.0 0.0 0.0
4% |40 2.0 4606 1.056 0.338 0.0 0.0 0.0 0.0
1 3.998 1994 4865 0.732 0.402 0.001 0.006 0.001 0.003
3 3.985 1993 4805 0.673 0.405 0.094 0.009 0.029 0.007
4 3.998 2.0 4800 0.692 0.483 0.023 0.001 0.005 0.0
5 3999 2.0 4721 0.754 0.483 0.034 0.0 0.009 0.0

Table B-12: Shell occupation probabilities for protons in
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34Si:

For neutrons:

JU |1psz  1pwz  1pse 251, 1dsp  1f7p 2pse Ifsp 2pap

0" 4.0 2.0 6.0 2.0 4.0 0.0 0.0 0.0 0.0
2" 140 2.0 6.0 2.0 4.0 0.0 0.0 0.0 0.0
3" 140 2.0 6.0 2.0 4.0 0.0 0.0 0.0 0.0
4" 14.0 2.0 6.0 2.0 4.0 0.0 0.0 0.0 0.0

1 4.0 2.0 5.946 1964 3.132 0.065 0.916 0.006 0.002

3 4.0 2.0 5.957 1.865 3.245 0.852 0.020 0.059 0.003

4 4.0 2.0 5.979 1.874 3.149 0.983 0.004 0.011 0.0

5 140 2.0 5.965 1954 3.096 0.954 0.011 0.019 0.001

Table B-13: Shell occupation probabilities for neutrons in *"Si.

For protons:

JU |1psz  1pwz  1pse  2S12  1dsze  1fe 2pae 1fsp 2p1e

0" |4.0 2.0 5732 0124 1443 00 0.0 0.0 0.0
2" 140 2.0 4793 1.028 0.179 0.0 0.0 0.0 0.0
3" 140 2.0 4859 0959 0.182 0.0 0.0 0.0 0.0
4" 4.0 2.0 4835 0.093 1.073 0.0 0.0 0.0 0.0
r 3.998 1.996 5.361 0.380 0.259 0.0 0.004 0.0 0.0
3 3994 1999 5321 0337 0.291 0.050 0.001 0.007 0.002

4 4.0 2.0 5182 0.473 0.344 0.001 0.0 0.0 0.0

5 4.0 2.0 5312 0.357 0.316 0.011 0.0 0.004 0.0

Table B-14: Shell occupation probabilities for protons in *"Si.

66



