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Abstract

The objective of this thesis is to study and demonstrate the existence of at least three weak
solutions for a certain class of boundary value problems for nonlinear fractional differential sys-
tems. The first part is devoted to the notions of functional analysis and also to the definitions
used in this work, also it presents the fundamental theorems implemented to demonstrate the ex-
istence of the solutions. Then, the necessary background to familiarize the reader with fractional
calculus and the main issues related to the research is provided. We demonstrate the existence
of three weak solutions by the variational method and theorem of Bonanno and Marano for new
class of fractional p-Laplacian boundary value systems. In the second part we prove the existence
of the multiple solutions for perturbed nonlinear fractional p-Laplacian boundary value systems

with two control parameters by using of the critical point theorem of Ricceri.

Key words: Nonlinear fractional; Dirichlet boundary value systems; p-Laplacian type;

Variational method; Critical point theory.



Résumé

L’objectif de cette thése est d’étudier et de démontrer 'existence d’au moins trois solutions
faibles pour une certaine classe de problémes aux limites pour les systémes différentiels fraction-
naires non linéaires. La premiére partie est consacrée aux notions d’analyse fonctionnelle ainsi
qu’aux définitions utilisées dans ce travail, elle présente également les théorémes fondamentaux
mis en ceuvre pour démontrer 'existence des solutions. Ensuite, le contexte nécessaire pour
familiariser le lecteur avec le calcul fractionnaire et les principaux problémes liés & la recherche
est fourni. Nous démontrons I'existence de trois solutions faibles par la méthode variationnelle
et le théoréme de Bonanno et Marano pour une nouvelle classe de systémes de valeurs aux
limites fractionnaires p-Laplaciens. Dans la deuxiéme partie, nous prouvons ’existence des solu-
tions multiples pour les systémes de valeurs aux limites fractionnaires p-Laplaciens non linéaires

perturbés avec deux parameétres de controle en utilisant le théoreme du point critique de Ricceri.

Mots clés: Fractionnel non linéaire; Problémes de valeur aux limites de dirichlet;

Type p-laplacien; Méthode variationnelle; Théorie des points critiques



uadla

2l &Y Jo Rdmea Jola AN dea s L) Al 50 oo Al o3a (e Caagdl
Js¥ e all dhall ye 4y oSl dloalal) dadaidl dpaad) dadl) JSUie (pe disea
il LS cJaall 130 daddiall cilay paill SIS Ml Qe aaliad Gaiads
LAl pa g Qi ) aay Jlall agay Y Aldaall dpulaY) @l il a8
Aalaiall Lgut 1) LLadll 5 gyl JalSal 5 Jualéil) Ol 58l Cay el 3 3D
sl Al 5 & el 48yl IS e Alpman Jsla D 2 ap Ll LS aailly
Ay Sl &8 JG e jall & SY-p A;neﬁwiwﬁggwﬂjuj
8ot Galalre ae dyshuadll hall e GOY-p 2saa ad Al saaie sl

o) da el ddadill 4y yk alasinly

¢ OOY-P_ise ¢l 5 Agoall 2l JSLie (plad ye ) guS s Lalidal) il
A pal) ddaiill 4y Hlas ¢dy el 43 )



Acknowledgement and dedication

All praise must go to Allah, without his mercy and will, nothing would have been achieved.

I give my thanks and gratitude to my advisor Dr. R. Guefaifia for his valuable supervision
and encouragement. I thank him for his constant assistance and patience during the process of
writing this thesis. It is a great pleasure to have such a great support from my advisor in my
Phd study.

Besides my advisors, I'm grateful to the rest of my thesis committee: Phd. Mesloub Fatiha,
Prof. Aissaoui Adel, Dr. Oussaeif Taki Eddine, Dr. Bouali Tahar, and Phd Degaichia Hakima
for the time they spent reading and reviewing my work and also for their encouraging and
insightful comments. Also I would like to thank the head of the doctoral project Prof. Zarai
Abderrahmane.

My acknowledgement will not be complete without special thanks and gratitude to Prof.
Boularess Salah for his great contribution in this work. He has always given me help and
guidance to finish my thesis.

At last, I dedicate this work to my parents, my wife and children and to all those interested

in making research and spreading knowledge all around the world.



Contents

Abbreviations

Symbols

Introduction

1 Preliminary

2

1.1
1.2
1.3
1.4
1.5
1.6
1.7

LP Spaces . . . . . . o e e
Banach spaces . . . . . . . .
Continuous function spaces . . . . . . . . . . . ..
Some inequalities . . . . . . ...
Monotone operators . . . . . . . .. e e e e
Some elements of critical point theory . . . . . . . .. ..o 0oL

Three critical points theorem . . . . . . . . .. .. ... ... ... ... . ...,

Fractional calculus

2.1
2.2

2.3

Introduction . . . . . . ..o
Special function . . . . . ...
2.2.1 Gamma function . . . . . ...
2.2.2  Some properties of the Gamma function . . ... ... ... ... ... ..

Fractional integral in the sense of Riemann-Liouville. . . . . . .. ... ... ...

10
12
13
14
15




Contents

24
2.5
2.6
2.7

Fractional derivative in the sense of Riemann-Liouville . . . . . . ... ... ... 22
Fractional derivative in the sense of Caputo . . . . . . .. ... ... ... ... 23
Some fractional derivation properties in the sense of Riemann-Liouville . . . . . . 24
Examples . . . . . e 27

3 Existence of weak solutions for a new class of fractional p-Laplacian boundary

value systems 30
3.1 Introduction to the problem . . . . . . . ... . ... Lo 31
3.2 Definitions and ratings . . . . . . ... oL 32
3.3 Result of existence of at least three solution . . . . .. .. ... ... ... .... 35
3.4 Examples . . . ..o 47

4 Existence of three solutions for perturbed nonlinear fractional p-Laplacian

boundary value systems with two control parameters 51
4.1 Introduction to the problem . . . . . .. . ... ... ... ... ... ... 52
4.2 Preliminary results . . . . . . ... L L 53
4.3 Result of existence of at least three solution . . . . ... ... ... ... ..... 58
4.4 Examples . . . ... e e e 72




FDE
ODE
G-differentiable

a.e

Abbreviations

Fractional differential equations
Ordinary differential equation
Gateaux differentiable

almost everywhere




Symbols

N The set of natural numbers.
N* The set of natural numbers with zero included.
R The set of real numbers.

The set of complex numbers.
Q Bounded domain in R.
LP ()  The space of measurable functions of power p € [0, +oo[integrable on €.
The space of measurable functions essentially bounded on ().

)
2)  The space of absolutely continuous functions on §2.

AC

AC™(§2) The space of functions f which have continuous derivatives on 2 up to order (n—1).
I'(2) The Euler’s Gamma function.

X Banach space.

X* The dual space of X.

-1l The norm in the space X.

A A linear operator in X.

A1 Inverse operator A.

D~ The Riemann-Liouville fractional derivatives of order a.

oDy The Left Riemann-Liouville fractional integrals.

tDy The right Riemann-Liouville fractional integrals.

oD The Left Riemann-Liouville fractional derivatives of order .
Dy The right Riemann-Liouville fractional derivatives of order a.
“Deg The Left Caputo fractional derivatives of order .

“Deg The right Caputo fractional derivatives of order «.

EP, B} Banach space.
Tx Denote the class of all functionals ¢ : X — R that possess the following property:

if {w,} is a sequence in X converging weakly to w € X and lim inf ¢(w,) < ¢(w)




Introduction

Fractional differential equations can generally be seen as the study of differential equations
with the fractional calculus application. With its use , the natural phenomena and mathematical
models in several areas of science and engineering can be precisely described. The Fractional
differential equations (FDE) have also many uses in different domains like engineering, physics,
chemistry, biology, mechanics, biophysics, and other fields (see [18], [13], [24], [25], [26] and [32]).
As a result, many improvements have been made in the theory of fractional calculus and fractional
ordinary and partial differential equations ([6], [3], [34], [4], [5], [19], [7] and [44]). Several studies
have explored the existence and different solutions for nonlinear fractional initial and boundary
value problems through the use of several tools and techniques of nonlinear analysis (see for
example [33], [39], [48], [9] and [28].

A FDE often has very many solutions, the conditions being less strict than in the case
of an ordinary differential equation (ODE) with a single variable; the problems often make
up boundary conditions which restrict the set of solutions. While the sets of solutions of an
ordinary differential equation are parametrized by one of several parameters corresponding to
the additional conditions, in the case of Partial differential equations, the boundary conditions
are presented more in the form of a function, intuitively this means that the set of solutions
is much larger, which is true in almost all problems. For linear FDE, various methods and
techniques can be used as the fixed point theorems, critical point theory, the monotone iterative
methods, the coincidence degree theory to get the solution.

Variational methods have emerged as one of the most effective analytic tools in the study of
nonlinear equations. But there are other nonvariational techniques of use for nonlinear elliptic
and parabolic FDE such as monotonicity and fixed point methods that played an important role
in the study of nonlinear boundary value problems for a long time. The idea behind them is
attempting to solve a given problem by looking for critical point theory which was very useful in
determining the existence of solutions to complete differential equations with certain boundary
conditions, see for example, in the extensive literature on the subject, classical books [32], [37],
[47] and references appearing there. But so far, some problems have been created for fractional

marginal value problems by exploiting this approach, where it is often very difficult to create a
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suitable space and a suitable function for fractional problems.

The aim of this thesis is to acquaint the reader with the greatly new result for the existence
of three solution of nonlinear fractional elliptique problems involving the p-Laplacian operator
type equations and systems. Chapter 1 of this thesis reviews some useful preliminary notions
as Banach spaces and Monotone operator with giving the importent theorems to prove the
multiplicity of solutions . In chapter 2 we present the basic technique from Calculus fractionnaire
and methods used in our work for proving the existence results of different problems.

Chapters 3 and 4 are collection of published papers, each paper presents a chapter dealing
with one main problem, and for each one of them we start by giving an introduction discussing
its technical details and assumptions and a small historical review.

In chapter 3 (published in "Mathematics") [21], We obtain at least three weak solutions for a
new class of p-Laplacian type nonlinear fractional systems according to two parameters by using
variational methods combined with a critical point theory due to Bonano and Marano. Some
necessary definitions and preliminary facts are presented for fractional calculus which are used

to provde the availability of the weak solutions for the following system:

(

(D (s (w1 (0) D (1)) + s (O s (1)

= AE,, (t,uy (8),ug (), .. un () ae. t€0,7], (1)

\

Chapter 4 (published in " j.Pseudo-Differ.Oper.Appl") [22], uses two control parameters to
investigate a class of perturbed nonlinear fractional p-Laplacian differential systems, where we
ensure the existence of three weak solutions by using the variational method and Ricceri’s critical
points theorems respecting some necessary conditions on the primitive function of nonlinear terms

F, and F,, for the following perturbed fractional differential system:




<>>+5G (tu(t),
( 2 (t) oD (1))
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4- Some inequalities.
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Chapter 1. Preliminary

1.1 L? Spaces

Let Q an open from R", with Lebesgue measure dz. We denote by L!(Q) the space of

functions that can be integrated into 2 with values in R, we provide it with the standard
fulls = [ (@)l do.
Q
Let p € R with 1 < p < +o00, we define the space L? (2) by

LP(Q) =< f: Q2 — R, f measurable and / |f ()P dz < +o00
Q

Let standard is

B =

fullyo = { [ 1u @ iz

Q

We also define the space L™ (€2)

L>*(Q) ={f:Q — R, f measurable, 3¢ > 0, such as |f (z)| < ¢ a.e on Q}.
It will be provided with the sup-essentie standard

|lul| foo = esssup|u (z)| = inf{¢; |u(x)] <c a.eonQ}.
reQ

1.2 Banach spaces

Definition 1.1 [43]
Let X be a vector space over R. A real-valued function ||.|| defined on X and satisfying the

following conditions is called a norm:




Chapter 1. Preliminary

i)||ul] >0, |lul| =0 if and only if u = 0.
ii) || Au|| = || ||u]|, for allu € X and X € R.
iii) |Ju + | < JJull + [|v], Yu,v € X.

(X, |l , vector space X equipped with ||.|| is called a normed space.

Definition 1.2 [}3]
A normed space X is called a Banach space, if its every Cauchy sequence is convergent, that
is ||ty — U] — 0 as n,m — 00 Yuy, u, € X implies that Ju € X such that ||u, —ul| — 0 as

n — oQ0.

1.3 Continuous function spaces

Definition 1.3 [2/]
Let Q = [0,T)(0 < T < +00) a finite interval of R and n € N. We denote by C™ () the

space of functions f which are m times continuously differentiable on Q0 with the norm:

n

— (k)
on@) = I?E%XU (t)‘, n € N.

1 fllon@y = > |1F®]
k=0

In particular, forn =0, C°(Q) = C () in the space of continuous functions f on Q with the

norm:

[ f |y = max[f (#)].

teQ

Definition 1.4 [24]
Let Q = [0,T] (0 < T < 4+00) a finite interval of R. We denote by AC(Q2) the space of

primitive functions of integrable functions, that is to say :

t

AC(9) = f/ﬂsoeLl(Q):f(t)=C+/<p(S)d8 ,

0

and we call AC () the space of absolutely continuous functions on €.

10



Chapter 1. Preliminary

Definition 1.5 [24]

Forn € N* we denote by C}(Q) the space of functions f which have continuous derivatives

on Q up to order (n — 1) and such that f"=Y € AC(Q) that is to say :
AC" Q) ={f:Q—-C, fHeCc(), ke{0,1,.,n—1}, f" Ve AC(Q)}.

In particular AC'(Q) = AC(Q).
A characterization of the functions of this space is given by the following lemma:

Lemma 1.1 [2//

A function f € AC™(Q), n € N*, if and only if it is represented as:

t

/(t — )" M (s)ds + X .

0 k=0

1

f(t):m

Lemma 1.2 [50] (Lebesgue’s dominated convergence theorem)

Let Q be a measurable set and let {f,} be a sequence of measurable functions such that
limf, (z) = f (x) a.e. in Q, and for everyn € N, |f,(x)| < g(z) a.e. in Q, where g is integrable
on 2. Then

n—o0

Q Q

lim [ f, (z)de = /f(x) dx.

Lemma 1.3 [12] (Fatou’s lemma)

If {f.} is a sequence of nonnegative measurable functions on €0, then

/ liminf f, (z)dr < liminf / I (@

n—o0 n—o0

Q

11



Chapter 1. Preliminary

1.4 Some inequalities

Holder’s inequality [17]
V (u,v) € LP () x L1(Q) we have

1 1

P q
/uvda: < /|u|pdx /|v|p de |
Q Q Q

1 1
where p and ¢ are strictly positive linked by the relation (— + - = 1) )
P q
Inequalitie for Vectors [31]

Some special inequalities are helpful in the study of the p-Laplace operator. Expressions like

(o6 —laf"? a,b—a),

are needed, a and b denoting vectors in R”. As expected, the cases p > 2 and p < 2

are different. Let us begin with the identity

B b"72 + |afP?
N 2

(161" — ™) (18° + lal*)
2 Y

<|b|p_2b— |a|p_2a,b—a> |b—a|2—|—

which is easy to verify by a calculation. We can read off the following inequalities

)Ifp>2
(o726 — [a["2a,b—a) > 271 (b]" + |al” ) |b — af?

>2072|b—al’.
2) Ifp <2

<|b|p_2 b—la”%a,b— a) < (|b|p_2 + |a|p_2) b—al”.

N | —

However, the second inequality in 1) cannot be reversed for p < 2, as the first one, not

even with a poorer constant than 2°~2.

12



Chapter 1. Preliminary

1.5 Monotone operators

Definition 1.6 [51]
Let X be real Banach space, and let A : X — X* be an operator.

i) A is called monotone iff
(Au— Av,u —v) >0 for all u,v € X.
ii) A is called strictly monotone iff
(Au — Av,u —v) > 0 for all u,v € X with u # v.
iii) A is called strongly monotone iff there is a ¢ > 0 such that
(Au— Av,u —v) > ¢||lu—v||* for all u,v € X.
iv) A is called uniformly monotone iff
(Au — Av,u —v) > a(|lu —vl]) ||lu — | for all u,v € X,

where the continuous function a : RY — RT is strictly monotone increasing with a(0) = 0 and

a(t) — +oo as t — +oo.

Definition 1.7 [51]
Let X be real Banach space, and let A : X — X* be an operator. A is called hemicontinuous

if for all u, v € X, Uappliction t — (A (u + tv) ,v) is continuous from R in R.

Definition 1.8 [51]
Let X be real Banach space, and let A : X — X* be an operator. A is called coercive iff
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1.6 Some elements of critical point theory

Definition 1.9 /23]
Let w be a part of a Banach space X and J : w — R. Ifu € w and v € X are such that for
t > 0 quite small we have u+ tv € w we say that J admits (at the point u) a derivative in the

direction v if
lim J(u+tv) — J (u)

t—0t t ’

exist. We will denote this limit by J, (u)

Definition 1.10 /23]

Let w be a part of a Banach space X and J : w — R. If u € w, we say that J is Gdteaux
differentiable (or G-differentiable ) at u, if there exists | € X' such that in each direction v € X
where J (u+ tv) ezists for t > 0 small enough, the directional derivative J) (u) exists and we

have
Fu+ - F
i (u+ tv) (u)

t—0t t

=(l,v).

We write J' (u) = 1.

Definition 1.11 [23/

Let X be a Banach space, w € X an open space and J € C (w,R). We say that u € w is a
critical point of J if J' (u) = 0 with J' (u) is the G-differentiable of J at point. If u are not a
critical point then we say that u is a reqular point of J. If ¢ € R, we say that ¢ is a value critical
of J, if there exists u € w such that J(u) = ¢ and J'(u) = 0. If ¢ is not a critical value then we

say that c is a regular value of J.

Definition 1.12 [23/
Let X be a Banach space, F € C' (X,R) and a set of constraints:

S={veX:F(v)=0},

we suppose that for everything u € S, we have F' (v) # 0. Si J € C* (X, R) we say that ¢ € R is

14



Chapter 1. Preliminary

value criticism of J on S if there exists u € S, and A € R such that
J(u) = c and J'(u) = A\F' (u) .

The point u is a critical point of J on S and the real one is called the Lagrange multiplier for
the critical value ¢ (or the critical point u).

When X is a functional space and the equation J'(u) = AF'(u) corresponds to an equation
with partial derivatives, we say that J'(u) = NF'(u) is the Euler-Lagrange equation (or the Euler

equation) satisfied by the critical point u on the constraint S.

Definition 1.13 /23]

Let X be a Banach space and w is a part of X. A function J : w — R is said to be weakly
sequentially lower semi-continuous if for any sequence (u,), of w weakly converging to u € w we
have:

J(u) < lim inf J(u,).

n—oo

Proposition 1.1 /23]

Let X be a reflexive Banach space, K C X a closed convex and J : K — R a weakly sequen-
tially lower semi-continuous. Moreover, if K is unbounded, we assume that for any sequence
(un)n of K such that kunk ||u,| — oo , we have J(u,) — oo. Then J is bounded lower and it

reaches its minimum i.e.

Ju € K, J(u) = inf J(v) = minJ(v).

veK VeK

1.7 Three critical points theorem

We present a critical point theorem due to Bonanno and Marano and Ricceri’s critical points

theorems to prove the existence of at least three weak solutions.

Theorem 1.1 /8]
Let X be a reflexive real Banach space; @ : X — R be a coercive, continuously Gateauz differ-

entiable sequentially weakly lower semicontinuous functional whose Gateaux derivative admits a

15
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continuous inverse on X*, bounded on bounded subsets of X, ¥ : X — R a continuously Gateaux

differentiable functional whose Gateaux derivative is compact such that

Assume that there exists r > 0 and T € X, with r < ® (T), such that
(@) U(u) @@
aj) su .

! ‘I’(u)lir r v (E)

® (7) r

U (T)" sup ¥ (u)
D(u)<r

(ag) For each A € Ay = , the functional ® — AV s coercive.

Then, for any A € Ay, the functional ® — AV has at least three critical point in X.

Theorem 1.2 [38]

Let X be a separable reflexive real Banach space, and let ¢ : X — R be a coercive sequentially
weakly lower semicontinuous, C* functional belonging to YT x, bounded on each bounded subset of
X, with derivative admitting a continuous inverse on X*. Let 1 : X — R be a C* functional
with compact derivative. Assume that ¢ has a strict local minimum xo with ¢(xo) = p(xo) = 0.

Finally, setting

_ - V@) i sup?®)
=m0t Sh i 5

02 = sup (@) :
z€¢~1(]0,+00) ¢($)

<

we suppose that 61 < ds.

1_

Then, for each compact interval [a,b] C (%, %)(with the conventions ;

+00 and = = 0),
there exists o > 0 with the following property: for every A\ € [a,b] and every C' functional
J : X — R with compact derivative, there exists 6" > 0 such that, for each § € [0,6"], the
equation

¢ (v) = X' (2) + 67 (x),

has at least three solutions in X with norms less than o.

16
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Theorem 1.3 [39]

Let X be a reflexive real Banach space, and let I C R be an interval.

Let ¢ : X — R be a sequentially weakly lower semicontinuous, C functional bounded on each
bounded subset of X, with derivative admitting a continuous inverse on X*. Let — : X — R be
a C* functional with compact derivative. Assume that

lim (¢(z) — M (x)) = 400,

[| ]| =00

for all X € I and that there exists p € R such that

sup inf (¢(x) + Ao — () < inf sup (¢(x) + Ap — (x))

Ael TEX z€X NeJ

Then there exist a nonempty open set A C I and a positive number with the following property:
for every X € A and every C* functional —J : X — R with compact derivative, there exists 6* > 0

such that, for each § € [0,d%], the equation

¢ (z) — M (z) — 6] (z) =0,

has at least three solutions in X with norms less than o .

17
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Fractional calculus

1- Introduction.

2- Special function.

3- Fractional integral in the sense of Riemann-Liouville.

4- Fractional derivative in the sense of Riemann-Liouville.

5- Fractional derivative in the sense of Caputo.

6- Some fractional derivation properties in the sense of Riemann-Liouville.

7- Examples.
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Chapter 2. Fractional calculus

This section is devoted to the presentation of certain elements of fractional calculation. We
start with general introduction on adequate fractional calculus as well as special function, then
we recall the definitions and some properties of the integral and fractional derivatives within the

meaning of Riemann-Liouville.

2.1 Introduction

The objective of fractional calculus is to generalize traditional derivatives to non-integer
orders. As it is well known, many dynamic systems are best characterized by a dynamic fractional
order model, generally based on the notion of differentiation or integration of the non-whole order.
The origins of fractional calculus date back to the end of the 17th century, starting from some
speculations by GW Leibniz concerning the study conducted in 09/30/1695, on the sibnification
of ©Lgin = % Since then, many mathematicians contributed to the development of this theory,

dtn

we cite among others PS. LAPLACE, J.B.J. FOURIER, N.H.ABEL, J. LIOUVILLE.

2.2 Special function

In this paragraph we present definitions and some properties for the Gamma function.

2.2.1 Gamma function

The Gamma function was introduced by the Swiss mathematician Leonhard Fuler (1707-
1783) with the aim of generalizing the factorial of non-integer values. Later, due to its great
importance, it has been studied by other eminent mathematicians such as Adrien-Marie Legen-
dre (1752-1833), Carl Friedrich Gauss (1777-1855), Christoph Gudermann (1798-1852), Joseph
Liouville (1809-1882), KarlWeierstrass (1815-1897), Charles Hermite (1822-1901) and many oth-
ers. The Gamma function belongs to the category of special transcendent functions and we will
see that some famous mathematical constants occur in his study. It also appears in various fields,
such as asymptotic series. Euler’s Gamma function is a basic function of fractional calculus. This

function generalizes the factorial n!.

19



Chapter 2. Fractional calculus

Definition 2.1 [36]

One of the basic functions of fractional calculus is Euler’s Gamma function T (z). The Gamma

Function T (2) is defined by the following integral:

—+00

I'(z) = /tz_le_tdt, (2.1)

0

with T'(1) =1, T'(04) = +00 is a strictly decreasing function for 0 < z < 1.

2.2.2 Some properties of the Gamma function

An important property of the Gamma function I" (2) is the following recurrence relation:
I'(z+1)=2I(2).

That we can demonstrate it by integration by parts

“+o00 —+00 “+o00
F'(z+1)= /t<z+1>1etdt = /tZefdt = [~te 7 + z/tZ1etdt =2 (2).
0 0 0

Euler’'s Gamma function generalizes the factorial because I' (n 4+ 1) = n!; Vn € N, indeed

I'(1) =1, we get:

I'(2)=10(1) =1

I'(3)=2I(2)=211=2
T (4) = 3T (3) = 3.2! = 3|
'(5) =40 (4) = 4.3! = 4
T (6) = 50 (5) = 5.4 = 5

20



Chapter 2. Fractional calculus

1
Let’s also calculate I' (5) . We pose u = v/t and so t = u? and dt = 2udu and we get

(3)- [

Maximum digits, the numerical values of some of these constants are:

—+o00

/e‘“2du = /7.
0

r % = 1.77245385090551602729816748334...
r % = 2.67893853470774763365569294097...
r % = 3.62560990822190831193068515587...
r % = 4.59084371199880305320475827593...

' (0.6) = 1.48919224881281710239433338832...
I (0.65) = 1.38479510202651000285376452479...
['(0.7) = 1.29805533264755778568117117915...
I (0.8) = 1.16422971372530337363632093827...

2.3 Fractional integral in the sense of Riemann-Liouville

Definition 2.2 [50/(Left and right Riemann-Liouville fractional integrals) .
Let j = [a,b] (—00 <a<b< +400) be a finite interval of R. The left and right Riemann-
Liouwille fractional integrals . Dy “u (t) and Dy, “u (t) of ordre o € Rt are defined by

1
oD %u(t) = T@)/ (t—s) " u(s)ds, t>a, a>0, (2.2)
and
. b
tDy “u ( _F(a/s_t (s)ds, t<b, —«a>0, (2.3)

respectively, provided the right-hand sides are pointwise defined on [a,b]. When o = n € N, the
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Chapter 2. Fractional calculus

definitions (2.2) and (2.3) coincide with the n-th integrals of the

Dult) = o [ = sy ) ds

a

and
, _ s—1)"""u(s)ds
D) = gy [ (=0 ) s

t

2.4 Fractional derivative in the sense of Riemann-Liouville

Definition 2.3 [50/(Left and right Riemann-Liouville fractional derivatives) .
The left and right Riemann-Liouwville fractional derivatives ,Dfu (t) and Diu (t) of ordre

a € RY are defined by

dn _ 1 dn n—a—1
D¥ = — - = — — 2.4
a~t Uu (t) dtn a—t U (t) I‘\ (n _ Oé) dtn / (t ) Uu (S) dS 9 t > a’? ( )
and
d"” (-)" ar /
«a = (— n a—n — ) % _ gynol 2.5
(D (t) := (—1) T + Dy " (1) T(n—a)dr /(t s) u(s)ds|, t<b, (2.5)

t

respectively, where n = [a] + 1, [a] means the integer part of . In particular, when o = n € N*
Du(t) = Dfu(t) = u(t),

oD (t) = u™ (t) and Dpu (t) = (—=1)" u™ (1),
where u™ (t) is the usual derivative of u (t) of order n. If 0 < o < 1, then

t

/(t —s8) “u(s)ds |, t>a, (2.6)

a

1 d

aDtOlU(t):F(l—a)%
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Chapter 2. Fractional calculus

and
b

1 d

(D (t) = Ta-ai /(t —8) “u(s)ds |, t<b. (2.7)

t

The left and right Caputo fractional derivatives are defined via above Riemann-Liouville

fractional derivatives.

2.5 Fractional derivative in the sense of Caputo

Definition 2.4 [50/(Left and right Caputo fractional derivatives) .
The left and right Caputo fractional derivatives € Du(t) and ¢ Dgu(t) of order a € Rt are
defined by:

a a- n_lu(k)a k
CDpu() = W0p [0 - 5 -]

and

n—1 w0
FDpu(D) = D fult)— 3 0 <b—t>'f} |

respectively, where

n=n=[a]+1, fora ¢ N*, n=« for a € N*.

In particular, when 0 < a < 1, then

o Dfu(t) = oDf (u(t) —u(a),

and

F Dpu(t) = o Df (u(t) —u(b)).

The Riemann-Liouville fractional derivative and the Caputo fractional derivative are con-

nected with each other by the following relations.

Proposition 2.1 [50]
i) If « ¢ N* and u(t) is a function for which the Caputo fractional derivatives ¢ Du(t)

and € Du(t) of order o € RT ewist together with the Riemann-Liouville fractional derivatives
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Chapter 2. Fractional calculus

oDfu (t) and Difu (t), then

o

CDu(t) = JDfu(t) zm @ (t—a),

and

nloum .
CDgu(t) = Dju(t) — > Ty (b= 1),

where n = [o] + 1. In particular, when 0 < a < 1, we have

CDpu(t) = oDpu(t) — wids (t—a)™,

'l—a)

and

CDpu(t) = oD t) — il (b— 1)

ii) If « = n € N* and the usual derivative u™ (t) of order n exists, then ¢ Du(t) and ¢ D{u(t)

are represented by

CDru(t) = u™ (t) and € Dpu (t) = (=1)" u™ (t).

2.6 Some fractional derivation properties in the sense of
Riemann-Liouville

The derivation operator and integration by parts in the Riemann-Liouville sense has the

properties summarized in the following propositions:

Proposition 2.2 [36]
Forn—1<a<n,m-—1<p<m we have :

1) The Left and right Riemann-Liouville fractional operator is linear

oD (v (t) + o (£)) = X D (t) + p, Do (1)
Dg (X (£) + o (1) = A Dy (1) + 1, Dgo (1)
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Chapter 2. Fractional calculus

2)In general
i (D7 () # oD (Dfu (b)),

D (Dfu () # Df (Du(®)).
Proof [36]
For the left and right Riemann-Liouville fractional derivatives ,Dfu (t) and ;Dgu (t) of ordre

n —1 < a <n are defined by (2.4) and (2.5) we have:

DE )+ () = Fr e ( [e—sy (/\U(t)ﬂw(t))dS)

- ﬁ% (/ (t — S)H_a_l u (t) dS) + ﬁ% (/ (t— S)n_a_l v (%) ds)

= AN Dfu(t)+ p oDifv (t).

and
D O (1) + o (1)) = PE;_%% / (6 — 8 G t) + v (8) ds
_ FA(EL—_l); 57’; / (t — 57"~ (1) ds +%% / (t— 5o (1) ds

= XN Dju(t)+pDyv(t).

Proposition 2.3 /[36]

For a>0,t >0 we have
oDf (o« Dy u(t) = u(t),

Dy (:Dy “u(t)) =ul(t).
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Chapter 2. Fractional calculus

Proof Let « =n > 1, we have

oD (oD u(t)) = 5% /mu(s)ds

3

4
dt

Suppose now that n — 1 < a < 1 and use the rule of composition of fractional integrals in

the sense of Riemann-Liouville. So we have :
D (oD () = oDy " (,D;u (1)),
from where

D7 (D) = 2 {aDr ) (D) )

The second formula is shown in the same way.

Proposition 2.4 /[36]

Let0<a<1landa<t<b. Then

t

[unsr o) ds—/f .Dg (s

a
b

/[Daf ds—/f D%

t

Specifically,

/[aDz?f (5)] g (s)ds = /f (s) [sDyg(s)]ds.
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Chapter 2. Fractional calculus

Proof

Juptreas = fres [ 4 ( / (ST)af(T)dT>g(8)ds

_ _ﬁ/t (/@T)af(T)dT) J (s)ds

+ [ﬁg © [ =01 dr]

_ —ﬁ/t (/t(ST)“g'(s)ds) £(r)dr

= [10]Dra) =90 15 dr a0 s [0 par

t

_ / £ (7) [-D2g ()] dr

- / £ (5) [sD2g (s)) ds.

a

The second formula is shown in the same way.

2.7 Examples
Some examples about derivation operator the Riemann-Liouville sense

Example 2.1 The derivative of f(t) = t* in the sense of Riemann-Liouville. Let o > 0 such
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Chapter 2. Fractional calculus

that n —1 <a <n and b > —1,

I'b+1) _
Dott = Deghrn=e, 2.8
F'b+n—a+1) (28)

Taking into account

Datb+n—o¢ _ (b+n_a)(b+n—a—1)...(b—04+1)tb—a
Fb+n—a+1), ,
Lb—a+1)

We substitute the result (2.8), in the formula (2.9), to obtain:

ro+1) rrb+n—a+1),,

ayb

b = Frb—a+1) T(b—a+1)
F(b+1) b—a
—
'b—a+1)

So the fractional derivative in the sense of Riemann-Liowville of the function f(t) = t° is

given by:
r'o+1) =

Datb:
ro—a+1)

o (2.10)

In particular, if b = 0 and o > 0, the Riemann fractional derivative-Liouville of a constant

function f(t) = C is non-zero, its value is:

o - C —-b
DC =yt "

Example 2.2 The derivative of f(t) = (t —a)’ in the sense of Riemann-Liouville. Let v > 0
such that n —1 < a<n and b > —1,

T (b+1)

D (t — q)btne 2.11
F'b+n—a+1) (t=a) ’ (2.11)

D® (t —a)’ =
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Chapter 2. Fractional calculus

taking into account

D(t—a)™ = (b+n—a)b+n—a—-1)..b—a+1)({t—a)
B F(b+n_a+1)(t—a)b_a
 T'(b—a+1) ’

(2.12)

we substitute the result (2.11), in the formula (2.12), to obtain:

re+1) 'b+n—a+1)
ro—a+1) T'b—a+1)

o1
Th—azD '~

D® (t —a)’ (t—a)™

so the fractional derivative in the sense of Riemann-Liouville of the function f(t) = (t —a)" is
given by:
C'kb+1)

D®(t—a)’ = oot ) (t—a)"™. (2.13)

Example 2.3 The derivative of wi(t) in the sense of Riemann-Liouville where:

Tclt, t e [O,ET[,
wi(t) =9 T'(2—a)e, telel,(1—¢e)T],
Lo -, tel1-oT.T],

is D*wq(t) Taking into account (2.10) and (2.13) we have :

re—a)qa re—a)e T(2)

DO& t — tlfa — _tlfa
€T €T ['2-—a) €T
a C1 —a 1-a
DT2—-a)eg = e_T(tl —(t—€el) ")
aF (2 _ Oé) 1 C1 —a 1-a Y
D T(T_t) = E(tl — (t—€T) —(t—(t—eT) )),

so the fractional derivative in the sense of Riemann-Liouville of the function ws(t) is given by:

A=t e [0,€l7],
Dy (t) =q & (B = (t—€D)" ), t € [eT, (1 —€) T, (2.14)
A (o — (= €T) " = (t— (t— 7)), t€](1—e) T, 7).
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Chapter 3. Existence of weak solutions for a new class of fractional p-Laplacian
boundary value systems

3.1 Introduction to the problem

In this chapter, at least three weak solutions were obtained for a new class of non-linear
p-Laplace systems according to two parameters by using variational methods combined with a
critical point theory due to Bonano and Marano. Some necessary definitions and preliminary
facts are introduced for fractional calculus which are used to ensure the existence of three weak

solutions for the following system:
D5 (2, (wi (1) 0Dfus (1)) + i (OF i ()

= AE,, (t,uy (8),ug (), .. un () ae. t€0,7], (3.1)

where

G (s) = Isl" s, p>1, wi(t) € L7[0, 7],

with w) = ess infjo 7y w; (t) > 0, oDy and ;D7 are the left and right Riemann-Liouville fractional
derivatives of order 0 < a; < 1 respectively, for 1 < i < n, A is positive parameter, and
F :[0,T)xR™ — R is measurable function with respect to ¢t € [0, 7] for every (z1, x2, ..., z,,) € R"
and are C' with respect to (x1,zs, ..., z,) € R™.

For t € [0,T], F,, denote the partial derivative of F' with respect to u;, respectively,

(Hp) a; € (0;1] for 1 <i <.

(H1) F :[0,T] x R* — R be a function such that F' (., uq,us, ..., u,) is continuous in [0, T
for every (uy,ug,...,u,) € R", F(t,.,.,...,.) is a C* function in R?.

For [0,7] C R, let C'([0,7],R) be the real space of all continuous functions with norm

2], = r%a% |z(t)] ,and L? ([0,T],R) (1 < p < 0o) be the space of functions for which the p
te|0,

P

T
power of the absolute value is Lebesgue integrable with norm ||z|/,, = / |z (t)|P dt
0
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boundary value systems

3.2 Definitions and ratings

Definition 3.1 [2/]
Let u be a function defined on [a,b]. The left and right Riemann-Liowville fractional deriva-
tives of order a; > 0 for a function u are defined by

a; o d" a;—n o 1 d" . n—ao;—1
aDt u(t) T dtn aDt U(t) - F(TL—OZ) din /(t 8) U(S) d87

and
; n d" a;—n (_1)” d" n—a;—1
t_DbLU (t) = <—1) % t‘Db U(t) = m% / (t — S) u (S) dS,
t
for every t € [a,b], provided the right-hand sides are pointwise defined on |a,b], where n —1 <
a; < n andn € N*.

Here, T' («;) is the standard gamma function given by

“+oo

(o) := /zo‘i_le_zdz.
0
Setting AC™ ([a,b] ,R) the space of functions u : [a,b] — R such that v € C"([a,b],R)
and v € AC™ ([a,b] ,R). Here, as usual, C" ([a,b] ,R) denotes the set of mappings being
(n— 1) times continuously differentiable on [a,b]. In particular, we denote AC (|a,b],R) :=

AC! ([a, ] ,R) .

Definition 3.2 /28]

Let 0<a; <1, for1<i<mn,1<p<oo. The fractional derivative space

EP = {u(t) € L7 ([0,T],R) oDu(t) € L ([0,T],R),u(0) = u(T) = 0},

&%}

18 a Banche space.
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boundary value systems

Then, for any u € EY_, we can define the weighted norm for EY  as

T

/ u(t)|? dt + / wi®) oD ()P dt | (3.2)

0

Multiplying (3.1) by any v; (t) € Ef. , and integrating, yields

/ 5 (05 (e o (0) D7 (1)) ) (1) 1 / Zim P2 (1) vy (1)t
=A iFu (t,uy (t) ,uz (t) .oy up (t)) v (¢) dt

(3.3)
Then, combining Definition 3.1, Definition 2.4, Proposition 2.3 and Proposition 2.3, he left

side of (3.3) can be transferred into

n

/TZ(D%< NG ———, (wz()oniUi(t)))) dtJru/E:IuZ ()P w; (t) v; () dt

=1t

_ / g s (1) oDf s (1)) oDf i (1)t + g / i (1) i (£) s (1) .

In what follows, we will give the definition of weak solution for (3.1), which is based on the

discussion mentioned above.
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boundary value systems

Definition 3.3 [13/

We mean by a weak solution of system (3.1), any u = (uq, uz, ..., u,) € X such that for all

v =(v1,V2,...,0,) € X

Lemma 3.1 [15]

Let 0 <a; <1, for1<i<mn,1<p<oo. Foranyué€ EL we have

T o
Jwill < T+ 1) lloDg" will o
) 1 1 1
moreover, if a; > — and — + — =1, then
p p q
T o
||uz||oo < oDy will 1 - (3.4)

=

() (e —1)g+1)

From Lemma 3.1, we easily observe that

T 1/p
T ( Jwi(t) oD u (1) dt)
0

; < .
Jull» < T , (35)
for0 < a; <1, and
N T 1/p
T v (f w;(t) oDy u (t) P dt)
il < ' —, (36)
I' (i) (w?)? (i — 1) g+ 1)9
1 1 1
for a; > — and — + — = 1.
b p q
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boundary value systems

By using (3.5), the norm of (3.2) is equivalent to

T v
N= / wi(t) |oDfu () dt |, Yu e EP. (3.7)

0

i

Throughout this paper, we let X be the Cartesian product of the n spaces EE_ for 1 <1 <mn,

i.e, X = Eb X EP x ... x EP  equipped with the norm

n
ull = > Muillgr , w=(u1,uz, ... un)
T
=1

where ||u;||gr s defined in (3.7).

Lemma 3.2 /28]
For0 < a; <1 and 1 < p < oo, the fractional derivative space X is a reflexive separable

Banach space.

Lemma 3.3 [51]

Let A : X — X*be a monotone, coercive and hemicontinuous operator on the real, separable,
reflezive Banach space X. Assume {wq,ws...}is a basis in X. Then the following assertion holds:
(d) Inverse operator. If A is strictly monotone, then the inverse operator A~' : X* — X euwists.
This operator is strictly monotone, demicontinuous and bounded. If A is uniformly monotone,

then A=Y is continuous. If A is strongly monotone, then it is Lipschitz continuous.

3.3 Result of existence of at least three solution

In the present section ,the existence of multiple solutions for system (3.1) is examined by

using Theorem 1.1. First and foremost, we define the functionals ®, ¥ : X — R as

T

1 [ — .
P (u) = ];O/ Zl (wi (8) oDy i ()7 + pfu; (B)[7) dt, a5

u = (ug, Ug, ..., up) € X,
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and

U (1) = / F ot (8),ua (1) o un (1)) d. (3.9)

Lemma 3.4 [28/

Let 0 < a; <1, u= (u,us,...,u,) € X. Functionals & and ¥ are defined in (3.8) and
(8.9). Then, ® : X — R is a coercive, continuously Gateaur differentiable and sequentially
weakly lower semicontinuous functionl whose Gdteaux derivative admits a continuous inverse on
X*, and ¥V : X — R s a continuously Gateaux differentiable functional whose Gdteaux derivative

18 compact.

Proof For each u = (uq,us,...,u,) € X, define &, ¥: X — R as

T
n

[ 3wl (F + s ),

0 =1

@(u):%

and

U (u) = /F(t,u1 (), ug (t),...;up, (1)) dt.

Clearly, ® and ¥ are continuously Gateaux differentiable functionals whose Géateaux deriva-

tives at the point u € X are given by

T

¥ (1) (0) = [ 3 gdrmedy (i (1) oDFus (1) oDF'vs ()
(3.10)

T
n

b [ 3 s (OF s (001 (0)

0
for every v = (v, v, ..., v,) € X.

In addition, according to (3.8), one has ® (u) > 119 |lull% , which means that ® is a coercive
functional. Next, we claim that ®' admits a continuous inverse on X*.

Let u = (uy, ug, ..., u,) € X,v = (v1, 09, ...,v,) € X. Recalling (3.10), we get
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boundary value systems

(D' (u) — @' (v),u—v) = /Z W%’ (wi () oD%, (1)) oD (u — v) dt
[ Sl OF s (0) - vy
P (3.11)
- / Y sy (wit) oDMvi(t) oD (u—v)dt
+p / Z Jv; ()72 v; () (u — v) dt.

According to the well-known inequality

(1" 51 — [52]" " s2) (51 — 52)

(3.12)
51— 52", p>2
_si=se? 1<p<2.

(Is1l+s2))* 77

We have
(¢, (wi (t) oDfu; (t)) — ¢, (w; () oD v (t)))

w (Wi () oD u; (8) — wi (t) oD vy ()7, p =2
wi(t) 00§ i () —wi () o Dy v ()|
wi(t) 0D s (1) +|wi(8) o DY oi ()])

h 1 l<p<2.

Hence, when 1 < p < 2, one has

lw; (t) oDy u; (t) — w; (t) oDy u; ()| dt

-

D
i@ oDf wO—w®) Duo N (3.13)
w;(t) 0Dy us (8) [+]wi(t) 0 DF i (1))

IN

=1 wit)( ,
—_p

2

M= S

wi ()27 (Jwi (£) oDf*us (1)] + [w; (8) oDfo, (t)!)pdt> :

N\
O%H
ﬂ‘

which means that
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boundary value systems

n 1(8)0 Dy i (8) —wi(£)y Dy v (1)] gt

T
sz < w;i t)(|w,(t)0D fuy ()] + | wi (0 D wa(1)]) T
2(p—1)

>—(‘f

\_/

2 M
i = willy,, (lwll?, + loill?,) 7
Then, we deduce

Zi (6, (wi () oD}"ui (1)) — &, (wi (£) oDy vi (1)) oD (u—v)) dt

2(p—1)
—2

)pP > 0.

A [P

(Huz

T n
I 22 (8, (wi(t) oD ui (1) — &, (wi (t) oDfvi (1)) oDf* (u —v)) dt
0
> (W) Jus — will, > 0.

Then, combining with (3.15), yields

T

0

For every 1 < p < o0

Further, denote

T n T n
A /Zm O 2w, u—vdt+/zm B2 s (£) (u— v) dt.
0 0

Then, reapplying inequality (3.12), we always have

A > lu; —vllf >0, forp>2

and
p—2

A2 27 lu = will g, (lwall + lloillg,) 7 >0, for 1 <p<2.

/ 2 (9 (wi(t) oDf*wi (1)) = &, (wi (1) oD vi (1)) (oDfui = oD*vi)) dt > 0.

(3.14)

(3.15)

(3.16)

(3.17)
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That is, A > 0 for every 1 < p < oo. Therefore, by using (3.11) and (3.17), the following
inequality holds
(¢ (u) = @' (v),u—v) >0,

which means that ®’ is strictly monotone. Furthermore, in view of X being reflexive, for u,, — u
in X strongly, as n — oo, one has ® (u,) = &' (u) in X* as n — 0.

Thus, we say that @ is demicontinuous. Then, according to lemma 3.2 and lemma 3.3, we
obtain that the inverse operator (®)"" of &' exists and is continuous.

Moreover, let

T
lulle, = /Z (wi () lo D ws ()7 + o Jus (£)[7) dt,
o =1

owing to the sequentially weakly lower semicontinuity of [|ull} ,. we observe that @ is sequentially
weakly lower semicontinuous in X.

Considering the functional ¥, we will point out that U is a Gateaux differentiable, sequentially
weakly upper semicontinuous functional on X.

Indeed, for u,, C X, assume that v, — u in X, i.e u,, uniformly converges to u on [0,7] as

n — 0o. By using Fatou’s lemma, one has

T

lim inf ¥ (u,) < / lim inf F' (¢, u, (t)) dt

n—-+o0o n—-+o0o

_ /F (£ un (), tn (1) ooyt (£)) = W (1),

whereas u = (ug,us,...,u,) € X, which implies that ¥ is sequentially weakly upper semi-
continuous. Furthermore, since F' is continuously differentiable with respect to u; for almost
every t € [0,7], then based on the Lebesgue control convergence theorem, we obtain that
' (u,) — U’ (u) strongly , that is ¥ is strongly continuous on X. Hence, we confirm that ¥’ is

a compact operator.
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Moreover, it is easy to prove that the functional with the Gateaux derivative ¥’ (u) € X* at

the point u € X

T
n

U (1) (v) = / S F (o (8) uz (£) oo un (1) v () dt, (3.18)

0 =1

for any v = (v1,vg, ..., v,) € X.The proof is completed.

In order to facilitate the proof of our main result, some notations are given.

Putting
Tpaifl
k : = max = 0
1550 | (1 0) e (o — g+ 1)
% TP
‘ ‘%1%’%{<r<az-+1>>pw?}'
Define

1 n
7T(O') = {u: (Ul,UQ,...,Un) GRn . EZ|UZ|p < O'}.

i=1
Theorem 3.1 Let % < a; <1, for 1 <1 <n. Assume that there exists a positive constant r and

a function uw = (uy, ug, ..., u,) € X such that

(2)

n
>l
i=1

n
bty luilll, > prs
i=1

’ T
/ sup F(t,uy,ug, ..., uy,) dt p/F(t,uhw,...,un)dt
uem(kr)
r < no _ ’
Sl + 3 Nl
=1 i=1
(vi1)
T
/ sup F (t,uy,ug, ..., uy,) dt
uem(kr)
ZM\]) pr

i=1
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Then, setting

n
1=

n
2l
i=1
T

Y

uen(kr)

T
p/F (t,uy, Us, ooy Uy) dt / sup F (t,uy,ug, ..., u,) dt
0 0

for each X € A system (3.1) admits at least three weak solutions in X.

Proof Considering Theorem 1.1 and lemma 3.4, in order to obtain that system (3.1) possesses
at least three weak solutions in X, we only need to guarantee the assumptions (a;) and (az)
of Theorem 1.1 are satisfied. Choose ug = (ug1, o2, ---, Uon) and u; = (u11,Usa, ..., Ur,) With
(wo1, Uo2y -y Uon) = (0,0,...,0). Due to (3.9) and (i) , we get ¥ (up) = 0 and @ (uy) > r > 0,
which satisfy the requirement of Theorem 1.1. Then, combining (3.8) and (3.5), yields

{u=(u1,uz, s ty) € X 0 @ (u) < 7}

1 n ILL n
u = (ug,ug, ..., u,) € X : 2—)2 [Juallf, + » Z s}, < r}
-1 i=1

1 n
w = (ug, g, ..., tp) € X : ]—?Z s |P, < r}
=1

u = (u1,ug, ..., u,) € X : Z (I (2:))” wl(jgml__l Dat1): Juill o < 7”}

=1

U= (u17u2a 7un) €X: Z |ul|p < kpr} >
=1

N

N
—l

which implies that

T

sup ¥ (u) = sup /F (¢, Uy, Ugy .oy Uy, ) di
D(u)<r P(u)<r J
T
< / sup F(t,uq,ug, ..., uy)dt.
uen(kr)
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Then, the following inequality is obtained under condition (%)

T
[ sup F(t,ui, uz,...,u,)dt
sup ‘I’(U) < 0 uem(kr)
D(u)<r r
T n
P F(t,uy,ug, ..., u,) dt
R TN
B @ (ur)

n n
2 [uille, +u2 il 7,0
1= i=

Thus the hypothesis (a;) of Theorem 1.1 holds.

On the other hand, taking (7ii) into account, there exist constants C, e € R with

fOT sup F (t,uy,ug, ..., uy,) dt
uen(kr)

C < 3

r

such that
C n
F(tur, ug, . up) < —»kvz uil” + ¢ (3.19)
PR —

for any t € [0, 7] and u = (uq, ua, ..., u,) € X, when C' > 0 by using (3.8), (3.19) and (3.4)
yields

1 n n T
®(u) — AU (u) = ];Zuu,»”gﬁ%ZHUingp —)\/ F (t,uy, ug, ..., uy) dt
i=1 i=1 0

1 o T
> —ZHUZ b —/\/ F (t,uy,ug,...,uy,)dt
i ' 0
1 & 2T
> 15w ——~/ wil[?, dt — ATe
1 AC [ & T
2 - U; ];_——A, U; 2;_ — Nl'e
p;u [ (;(F(ai+1))pwg | )
1 — pYop=
> = il = =) Jlwillh, — ATe
P L —
>

1 n
=Sl ) | 1- 0 r ~ATe.
f ' Jo sup F(t,uy,ug,...,u,)dt

uen(kr)
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That is
lim @ (u) — AV (u) = +o0.

llull x —+o00
Furthermore, analogous to the case of C' > 0 , we can deduce that ® (u) — AV (u) — 400 as
|ul|y — +oo with C' < 0. Hence, all the hypotheses of Theorem 1.1 hold, then, system (3.1)
admits at least three weak solutions in X. The proof is completed.

For simplicity, before giving a corollary of Theorem 3.1, some notations are presented.

Let0<h<%weput

hr a-mr .
Aol = ﬁ / ;wi(t)t(l_%)pdt* / ;wi(t) R s R
i / Swi®) [ = =D = = (=T | (320
a-mr =1 |

Corollary 3.1 Let é < o < 1. Assume that there exist T > 0 and 6 = (01,0,,...,0,) € R"

> Ai(aih)o?
with 01 > 0,05 >0,....0, >0 and 7 < k MT, such that

(i)'

(t, w1, uz, s tn) € ([0,AT]U[(1 = h)T,T) x [0,0])

[ sup F(t,ui,us,...,uy)dt
0 uem(kr)
-
(1-m)T
p [ FtTQ2-a)0,T(2—a)bs,..,['(2—a,)b,)dt
hT

<

Y

k (1 + u%) i A; (i, h) 07
i=1
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(447’
Jim_inf (b, tn)
> luil
i=1
for each
r_ i=1 T
A e A= T T ’
P / F(t,F(Q—al)Gl,F(Q—ag)GQ,,F(?—an)en)dt k/ sup F(taulau%'“aun)dt
| KA ] uen(kr) ]
(3.21)

thus, system (3.1) admits at least three weak solutions in X .

Proof Choose

—_— T
T t, t € [0,hT7],
Uty =3 T(2— a6, te WD, (1—h)T),

W (Ir'—t), te](l—-nh)T,T7],

obviously U; (0) = U; (T)) = 0, U; (t) € L?[0,T]. Owing to Definition 3.1, we derive,

aq (t), te [0, hT[,
oD Us(t) = ¢ ay(t),t € [AT,(1—h)T],
az (t),t €](1—h)T,T],

where

(9.
1—a; — 1 1—a; _ _ 1—a;
% ay (t) T [t (t — (hT)'"*],

and

as (t) = }% [t — (¢t — (W] — (t — (T — hT)' 7] .
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That is

- /Zwl ) oD U; (2)|P dt

a-mr
— /Zwl ) o DU, ()P dt + / > " wilt) o D5 U; (1) dt + / sz ) oD
hro =1 (1-nyr =1

= Z Az (Oéi, h) 95,
=1

where (3.20) is used. Hence U = (Uy, Uy, ..., U,) € X.

Take r = %, then

rk = 7<k
p
U,
= k= < k®(U),
p

for every U = (Uy, Us, ..., U,) € X.
Which means that

1 n ILL n
r< = lallh, = il
P53 P

Thus, the assumption (i7) of Theorem 3.1 holds.
On the other hand, based on (3.2) and (3.20), yields

Z i, Z —5 [l
Z [Juill?
< + ,uk:) ZAi (ci, h) 07

i=1
p

<

LK
bt ’fz luslle, (3.22)
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Then, from (3.22) and (i7)’, we can obtain the following inequality

T T
/ sup F(t,uy,ug, ..., uy)dt k:/ sup F(t,uy,ug, ..., uy)dt
uen(kr) uen(kr)
r - T
(1-m)T
kp / FET (2 1) 01,7 (2 — an) fa, . T (2 — ) ) dt
< hT _
k (1 n ;{15) S A, (i) 67
i=1
(1-R)T
/ FULT (2= a1) 01T (2= a2) 0, T (2 — ) 0,) dt
< hT
- o (U)
T

k/F (t,uy, Us, ..oy uy) dt

0
n

IN

n 7
iy, + 1) lluillZ
1 =1

which means that the hypothesis (ii) of Theorem 3.1 is satisfied.
Furthermore, the condition (4ii) of Theorem 3.1 holds under (i)’ since A" C A Theorem 3.1
is successfully employed to ensure the existence of at least three weak solutions for system (3.1),

the proof is completed. m
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3.4 Examples

Now, we give the following two examples to illustrate the applications of our result.

Example 3.1 Letp=2a; =08, a; =065, u=1, wi(t) =142 we(t) =05+, T =1.

Then, system (3.1) gets the following form

(DO (14 2) oD%uy (£)) + wr (£) = AF, (£, us (£) ,us (£)) , £ € [0,1],

D5 ((0.5 4+ 1) oDYPuy (1)) + up (1) = AE,, (t,ug (t),ug (1)), t € [0,1],

uy (0) = uy(1) = 0,us (0) = uz(1) = 0.

\

Taking
Up(t)y=T(12)t(1—-1t),Ux(t)=T(1.35)t(1—1),

and
F (t, U1 (t) , Ug (t)) = (1 + t2) G (ul, UQ) s
where
(uf +ud), wi+ui<l,
G (ul, Ug) =
10 (u? —I—ug)% -9 (u? +u§)% ,u? +ud > 1.
Clearly, F (t,0,0) =0, w? =1 and w) = 0.5 for any t € [0,1].

By the direct calculation, we have

max{ ! : ! } =k~ 3.4764,
(T'(0.8))*(2x 0.8—1) (I'(0.65))* x 0.5 (2 x 0.65 — 1)

1 1
e { (C(08+ 1)) (F(0.65+ 1)) x 0.5

}:%%Z%M,
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and
oT (1.2)
DOSTI (1) = 02 _ /12
oD (#) re2
2I" (1.35)
oD (1) T (2.35)
So that

IL®)I2s ~ 0.19333, [T5(1)]265 ~ 0.078559

UL ()12 0.028101, || Ux(t)||7> ~ 0.026716.

Q

Take r = 1 x 1074, We easily obtain that

1
(120165 + 102Dl 65) + 5 (WL BI72 + [U2(0)]72) = 0.1632 > .,

N | —

which implies that the condition (i) holds, and

1

/ sup F (t,uy,ug)dt

(ur uz)Em(kr) 16%2

0 _ "~ 0.006445
" 3

1
2/F (t, Uy, Us) dt
< 0 ~ 0.0320085949,

2 2
2 2
ST, + DTz
i=1 =1

and
1

sup F (t, Uy, UQ) dt
F(t,ui,us) 0 (uiuz)en(kr)

0= lim inf 5 5 —
S S P LR P i

~ 0.001305,

thus, conditions (ii) and (iii) are satisfied. Then, in view of Theorem 3.1 for each A € |31.241,155.159],

the system (3.1) has at least three weak solutions in X .
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Example 3.2 Letp=3, a; =08, ay =0.6, u=1, wi(t) =1+1%, wy(t) =05+t and T = 1.
Then , system (3.1) gets the following form

(D93 (14 12) (0D (£)) o DY 5 (8)]) + fun ()] (£) = Aoy (£ () a (1)) £ € [0.1]

DY ((0.5+ 1) (0D} %uz (1)) [o DfCuz (1)) + uz (8)| ua () = AFu, (£ ur (8) ,uz (1), ¢ €[0,1],

U1 (0) = Ul(]_) = O,Ug (O) == UQ(l) = 0.

Taking
Upy(t)y=T(12)t(1—1t),Uy(t)=T(14)t(1—-1),
and

F(t,uy (t),ug () = (1+1t) H (uq,us),

where
(uf +ud)”, uf +uf <1,
H (Ul,UQ) =
10 (u? —I—ug)% -9 (us +u§’)% ,ud +ud > 1.
Clearly, F (t,0,0) =0, w? =1 and w) = 0.5 for any t € [0,1].

By the direct calculation, we have

max{ L , 1 } =k ~ 3.7849,
(T (0.8)* ((0.8 —1) x 1.5+ 1)2" ((I'(0.6))> (0.6 — 1) x 1.5+ 1)2 x 0.5
max{ ! - ! - }:%zzso:a,
(T'(0.8 4 1))* (I'(0.6 +1))* x 0.5

and

0.2 2I'(1.2) ,1.2
o DPPUL(E)| = 0 — Tt t€[0,0.6]

5 (),
_ (t02 _ mt”) . t€(0.6,1],

104 — 20314 4 € [0,0.7
o DP°Ua(t)] = e o

4 _ 2P(1.35) 1.4
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So that

U ()]s ~ 0.09228, ||Us(t)]12 =~ 0.0212

UL (1)]13s =~ 0.0053, ||Ux(t)]|25 ~ 0.005.
Take r = 1 x 107°. We easily obtain that

1 1
3 (I:@)lgs + 102115 65) + 3 (IU: 117 + 1020117
~ 0.041 > r,

which implies that the condition (i) holds, and

1

/ sup  F(t,uy,uq)dt
(u1,u2)en(kr) 27k2
— " ~0.00193
2
1

3/F (t, Uy, Us) dt
< 0 ~ 0.00656,

2 2
DG, + > 1Tz
i=1 =1

r

and

1
/ sup  F(t,uq,ug)dt
F(t (u1,uz)€m(kr)
0= lim inf (3,u1,?2) <2 —
u1 ——+00,u2—+00 Uy + Uy 3rk

~ 0.00023,

thus, conditions (ii) and (iii) are satisfied. Then, in view of Theorem 3.1 for each \ € ]152.43,518.13],

the system (3.1) admits at least three weak solutions in X.
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Chapter 4. Existence of three solutions for perturbed nonlinear fractional
p-Laplacian boundary value systems with two control parameters

4.1 Introduction to the problem

In this chapter, we use two control parameters to study a class of perturbed nonlinear fractional
p-Laplacian differential systems, where we prove the existence of three weak solutions by using
the variational method and Ricceri’s critical points theorems respecting some necessary condi-
tions on the primitive function of nonlinear terms F,, and F,. To apply critical point theory to

explore the existence of weak solutions for the following perturbed fractional differential system:

7

= \F, ( u(t),v(t))+0G, (t,u(t),v(t)) ae tel[0,T],

D?( e ® (s (1) oDPv (1)) + o (P v (1) (4.1)
= AE, (t,u(t),v(t) + G, (t,u(t),v(t)) ae te0,T],
uw(0)=u(T)=0, v(0)=v(T)=0,

\

where A, i, 0 are positive real parameters, «, 8 € (0;1], oDy, D$ and ODtB , tD? are the left

and right Riemann-Liouville fractional derivatives of order a, 3 respectively.®,, (s) = |s|"~>

S, p >
Low (t),ws () € L0, T] with w) = ess infj 7w, (£) > 0 and w) = ess infy 7w (t) > 0.
(F0) F :[0,T] x R* — R is a function such that F(-,u,v) is continuous in[0, T| for any (u, v)
€ R? F(t,,) is a C! function in R?, and F} is the partial derivative of F with respect to s ;
(GO) G : [0,T] x R* — R is measurable with respect to t for every(u,v) € R?, continuously
differentiable in R? for a.e. ¢t € [0, 7], and G,,, G, denote the partial derivatives of G that satisfy

the following condition:

sup  max {|G,(-,u,v)|,|Gy(-,u,v)|} € L' ([0,7T]) for all £ > 0, (4.2)

VaETor<e
we recall some basic notations and lemmas and construct a variational framework. Let X be
a real Banach space, and let Tx denote the class of all functionals ¢ : X — R that possess
the following property: if {w,} is a sequence in X converging weakly to w € X and lim

inf ¢(w,) < ¢(w), then {w,} admits a subsequence converging strongly to w. For instance, if X

is uniformly convex and S : [0, +0c) — R is a continuous strictly increasing function, then the
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functional w — S(||w]|) belongs to the class Tx.

4.2 Preliminary results

Definition 4.1 [2//
Let u be a function defined on [a,b]. The left and right Riemann-Liowville fractional deriva-

tives of order a > 0 for a function u are defined by

t
« _ d" a—n _ 1 d" n—a—1
aDtu<t)_%aDt u(t)_f‘(n—a)dt”/(t S) U(S)dS,

a

and
b

Iy n d" a—n (_1)” d" n—a—1
tDbU(t) = (—1) % t‘Db U(t) = m% / (t — 8) U(S) dS,
t
for every t € |a,b], provided the right-hand sides are pointwise defined on [a,b], where
n—1<a<nandn € N*.

Here, T' («) is the standard gamma function given by

+o0o

F(a):/zo‘_le_zdz.

0

Set AC™ ([a,b] ,R) the space of functions u : [a,b] — R such that u € C" ' ([a,b],R) and
uV ¢ AC™([a,b],R). Here, as usual, C" ' ([a,b],R) denotes the set of mappings having
(n—1) times continuously differentiable on [a,b]. In particular, we signify AC ([a,b],R) =
AC* ([a,b],R).

Definition 4.2 /28]

Let 0 <a <1, forl <p<oo. The fractional derivative space EF s defined as

EG = {u(t) € LP([0,T],R)| oDfu(t) € L7 ([0,T],R) ,u(0) = u(T) = 0},

«

1s a Banche space.
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Then, for any u € E?, we can define the weighted norm for EP as
T T 3
full, = ([ P ae+ o hDutor )
0 0

Let 0<a<1landl<p<oo. For anyu € EF we have

Lemma 4.1 [15]

T o
Jull o < TatD lo D¢ ull s -
Also, if « > p and 119 + % =1, then
T %
p
[ullo < 7 oDt ull s -
(@) (e =1)g+1)¢

From Lemma 4.1, we clearly observe that

T % T 1/p
il < s ([ w® bR @Par)

for0 <a <1, and

fora>pcmd%+%:1.

By using (4.6), the norm of (4.3) is equivalent to

r :
lull, = ( / wn (1) [o D% (1) dt) Ve,
0

(4.3)

(4.4)

(4.5)

(4.8)

For0 < B <1,1<p< oo analogous to the space EY we define the fractional derivative space

Eg as
{v(t) e L7 ([0, 7], R)|, Dlv () € L7 ([0, T],R) ,v (0) = v (T) = o} ,

1s a Banche space.
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Then, for any v € Ef, the norm of Ej is defined by

loll, = </OT|v(t)|pdt+/0Tw2(t) )Ova (t))pdt>;, Vo € B, (4.9)

Similar with (4.6) and (4.7), we get

T8 ( i ws(t) ‘OD;% (t) 3 dt) v
[v][» < T (4.10)
L(B+1)(wd)r
for0 < B <1, and
795 ([T wst) |y )] )"
ol < (fo w2()‘0 o0 ) . (4.11)

Q-

T
I'(B) (w3)» (B—-1)g+1)
for i <pB<1and % + % = 1. Then, based upon (4.10), the weighted norm

ol = ( / Cun(t)|oDf <t>\”dt); , (4.12)

is equivalent to (4.9), for every v € Eg.
In the following discussion, for any w € E?, v € Eg denote the space of X = EP x Eg with

the norm
1

o)l = (Il + 0l3) ™ ¥ (u,0) € X,

where ||ul|, and ||v]|; is defined in (4.8) and (4.12) respectively.

Lemma 4.2 [28]

For0 < a,8<1and1 < p < oco. The fractional derivative space X is a reflerive separable

Banach space.

Consider the first equation with its boundary conditions of (4.1)

D (e (0 (1) oD (1)) + e u (O u (1) (1.13)
)

=\, (t,u(t),v(t) +0G, (t,u(t),v(t) ae t 0,17,
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Multiplying (4.13)by any z (t) € E¥, , v € Ej; and integrating, yields

UM)OD%UD>()ﬁ+Mﬂu O 2 (t)x () dt

Fy (tu(t), v () +0Gu (u(t), v (1) z (1) dt.

(4.14)

A

SR SQ

Then, combining Definition 4.1, Definition 2.4, Proposition 2.3 and Proposition 2.3, he left

side of (4.14) can be transferred into

:-jﬂ&ﬂ@?%;ﬁw%@wﬂdyw)ﬂ+uﬂu|p2@ﬂ@ﬂt

L ®, (w1 (t) oDfu () oD 1a! () dt—l—,uf|u O u(t)z (t)dt

f
= [ e () DFu ) § D7 () + [ | (O ()2 (0)
]

=z ®p (Wi () oDfu(t)) oDfw(t )dt+uf|u (O u () (1) dt.

Moreover, we can get similar results for the second equation of (4.1). In what follows, we will

give the definition of weak solution for (4.1), which is based on the discussion mentioned above.

Definition 4.3 [13]
We say that (u,v) € X is a weak solution of (4.1). If the following identity holds for any
(x,y) € X such that

/OT ;@p (wy (t) oDju(t)) oDyx (t)dt

w1 (t)p_Q
+/OT W% (wa (£) oDfw (1)) oDfy (1) dt
+u/0 [u () u(t)z (t) dt+u/0 o ()"0 () y (¢) dt
—)\/0 (Fu (£, u(t) v (8) x () + Fy (Fu(t) v (E) y (t)) di

—5/0 (Gu (tu(t),v(t)z(t)+ Gy (tu(t),v(t)y(t))dt = 0.
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Lemma 4.3 [51]

Let A : X — X*be a monotone, coercive and hemicontinuous operator on the real, separable,
reflexive Banach space X.Assume {w1,ws...}is a basis in X. Then the following assertion holds:
(d) Inverse operator. if A is strictly monotone, then the inverse operator A~' : X* — X euist.
This operator is strictly monotone,demicontinuous and bounded. If A is uniformly monotone,

then A=1 is continuous. If A is strongly monotone, then is Lipschitz continuous.

Proposition 4.1 [40]
Let X be a nonempty set, and let ¢, 1) be real functions on X. Assume that there are r > 0

and xg,v1 € X such that

b(w0) = (x0) o (a) >, s (@) <p<ril@)
z€p~L((—o0;r]) ¢ (x1>

Then for each p satisfying

We have

sup inf (¢(x) + A (p —(x))) < inf sup (d(x) + A(p — ¢(2)))

A>0 zeX zeX A>0

Lemma 4.4 [1/]
Let 0 <a <1, forl<p<oo. Then, for any f € LP([0,T],R),

Y te
||0D§ f”Lp([O’T]) < m HfHLP([O,T})’ fOTf < [O’t]’ te [OvT]v

wher oD¢* is left Riemann—Liouville fractional integral of order o, and I is the gamma function.
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Lemma 4.5 [39]
Assume that 3 < o < land the sequence {u,} converges weakly to u in EP : uy — u in

C([0,T],R), that is, ||uy —ul|, — 0 as k — oo.

4.3 Result of existence of at least three solution

In this part, we explore the existence of at least three weak solutions for problem (4.1) . For

better understanding, we define the functionals ¢,v¢,J : X — R as

1 1
¢ (u,v) = » lulle, + » lollg » (u,v) € X, (4.15)

Y (u,v) ::/0 F(t,u(t),v(t))dt, (4.16)

J (u,v) ::/O G (t,u(t),v(t))dt. (4.17)

Clearly, ¢ and J are well-defined continuously Gateaux-differentiable functional at any (u,v) €

X, and their Gateaux derivatives are

T

¥ (0, 0) (z,y) = / (Fu (b ()0 () 2 (t) + Fy (tu(8), 0 (8)) y (1)) dt,

0

J ' (u,v) (@, y) =/ (Gu (tu(t) v () (t) + Gy (tu(t),v (L) y (1)) dt,

0

respectively, for every (x,y) € X.

Lemma 4.6 .

The functional ¢ is sequentially weakly lower semicontinuous and bounded on X, and ¢’

admits a continuous inverse on X*.
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Proof Let {(un,v,)} C X, (tun,v,) — (u,v) in X.From Lemma 4.5, (u,,v,) converges uni-

formly to (u,v) on [0,T], and lim inf ||(w,,v,)|ly > [|(u,v)| . Thus

1 1
lim inf ¢(up,v,) = lim inf (— |un|? + = ||vn||’[§>
p p

n—oo n—oo

1 1
—lulle + = llvlls = é(u, v).
p p

v

So ¢ is a sequentially weakly lower semicontinuous functional.
Moreover, let €2 be a bounded subset of X, that is, there is a constant ¢ > 0 such that

|(u,v)||x < ¢ for any (u,v) € Q. By (4.6), (4.10) and Lemma 4.5, we have

1 1
P(u,v) = = |ul® + = |v]5
(wo) = = lull+ ol
1
= (lllz+ i)
cP
S i
p

Hence ¢ is bounded on each bounded subset of X.
Next, we will show that ¢’ : X — X* admits a Lipschitz continuous inverse. Obviously,

¢ € CY(X,R) and
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where

(61 00) = [ —msy (1 () oD (1) wDfw ()b [ O ) v € B

02 0),9) = [ sy (w2 (1) 0D @) DIy Ot [ 10OF P @)y )it vy < 2%

For any u, x € EP, it follows from (4.6), that

(6 (1) — by (2) u—7) = / ﬁ@ (wn (8) oD% (1)) oD% (o () — (1))

T

+u/|u O u(t) (u(t) —z () dt

0

/w1 p (w1 (t) oDfx (1)) oD (u(t) — x (1)) dt

Ty / o (O 2 () (u () — 2 (1)) dt.

0

According to the well-known inequality

(Isal" ™% 51 — [52]" 7 52) (51 — 52)
51— 8", p>2 (4.18)

|s1—s2]?
Tl ™7? 1 <P <2

We have
(P (w1 (1) oDfu(?))) oDf (u(t) —z (1))

4.19
I fwy (8) oDRu (O, p 22 (4.19)

2 1 |w1(t)o Dfut )|2
wi (t) (’wl )o D5 u(t )|)2—p7

l<p<?2
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Hence, when 1 < p < 2, one has

T

J lwi (8) (oDfu () — oD (1))[" dt

0

- ( | wn(t) oDFult)— oD () dt)Q
~ o w®(Jwi@)Dgu)|+|wi () Dx(t)]) "

(f wi (075 (Jun (1) oD% (5] + Jun (1) oDz <t>\>pdt) ,

which means that

wy (t) oDfu; (1) — wy (t) oDga (1)

/ i
o wy (1) (fwn (1) oDu (D] + wn (1) oDz (D)™

22 () Ael) ) » »
> ——=— llu—z|, (lull + =)

p—2
p .
wy

Then, we deduce

(®p (wy (1) oDfu(t)) = @y (wr (t) oD (1)) oDF (u— x))dt

2(p—1)
p==

2p—2 ,LUO P 2 2
> 2208 Ty (ull? + J2]?) > o.

~

wy

When p > 2, we get

Of@p (w1 (t) oDfu (t)) — @p (w (t) oD (1) o D) (u — x))dt
>

—2
(w?)" " [u = z[[§, > 0.

Further, denote

(4.20)

(4.21)

(4.22)

(4.23)
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Then, reapplying inequality (4.18), we always have
A>|lu—z|? >0, forp>2,

and

p—2

A > o2 <||u — 2%, (lull o + N2l )7 ) >0, forl <p <2

That is, A > 0 for every 1 < p < co. Thus ¢, is a uniformly monotone operator.

Similarly, it is easy to show that ¢, is also a uniformly monotone operator. So ¢’ is uniformly
monotone.

Furthermore, in view of X is reflexive,for (u,,v,) — (u,v) in X strongly, as n — 0o, one has
¢ (Un,vp) — ¢ (u,v) in X* as n — oo.

Thus, we say that ¢ is demicontinuous. Then, according to lemma 4.3, we obtain that the
inverse operator (¢') " of ¢ exist and is continuous.

Moreover , let
T

1l o =/(w1 () oD w (O + o [u ()[7) dt,

and
T

lulls = / (wa (1) oD (D)7 + p o ()[7) dt,

owing to the sequentially weakly lower semicontinuity of ||ull}, , and ||u||}, ;we observe that ¢ is

sequentially weakly lower semicontinuous in X. m

Lemma 4.7 .
The functionals ¢ and J are continuously Gateaux differentiable in X, and their derivatives

W', J ! are compact.

Proof Considering the functional ¢, we will point out that v is a Géteaux differentiable,
sequentially weakly upper semicontinuous functional on X.Indeed, for (u,,v,) C X, assume that

(U, vy) = (u,v) in X, i.e (up,v,) uniform converge to (u,v) on [0,7] as n — oo.
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Hence

lim inf o (un, 0,) < / lim inf 7 (£, up (), v, (£)) dt

n—-—4o00 n—+oo

which implies that ¢ is sequentially weakly upper semicontinuous. Furthermore, since F’ is contin-
uously differentiable with respect to u and v for almost every t € [0, T] .we have F (¢, u, (t),v, (t)) —
F(t,u(t),v(t)) asn — 4oo . Then , based on the Lebesgue control convergence theorem, we
obtain that 1’ (U, V) — s (u,v) strongly, that is ' is strongly continuous on X. Hence, we
confirm that w/ is compact operator.

Moreover, it is easy to prove that the functional with the Géateaux derivative 1/1/ (u,v) € X*at

the point (u,v) € X

WWW@M:A(%@U@w®ﬂ@+ﬂwuwwwwwﬂt (4.24)

for any (z,y) € X.
Analogously, we can deduce that J ’(u,v) is a compact operator for any (u,v) € X.
The proof is completed.

In what follows, in order to facilitate the further discussion, we give some notation. Put

{ Tpa—1 TpB—1 }
M : =max = 5
(I ()P wi (e = 1) g+ 1) (T'(8) w3 (6 —1)g+1)
A =inf |Lu||a Il , (u,v) € X,/F(t,u,v) dt >0,
pfF(t,u,v)dt 0
0
T T -1
p [ F(tu,v)dt p[F(tu,v)dt

Ay : = | max< 0, limsup 0 7 7 , lim sup x D D
lww)lx—too Nulla 10l " @wu—o lullg + vl
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For a given constant 0 < € < %, put

. T (1-e)T
1—a)p l1—a ,ap
A9 = /wl(t)t( " dt + / wy (1) [t —(t—eT)! }dt
0 eT

1-e)T
and
1 er (1—-e)T ;
B(pe) = (€T /w2 (1" dt + / ws (t) [tlfﬁ —(t- eT)lﬂ dt
+ / wy (1) [tl_ﬁ —(t—eD)"—(t—((1—¢) T))l‘ﬁ}pdt
(1-e)T
Ay :=min{A (o, €),B(8,¢)}, Ay :=max {A (a,¢),B(S,¢)}

for any o > 0, we denote by Q(c) the set 7 (0) = {(u,v) € R?: [u]f + |v|’ < o}

Theorem 4.1 Assume that (F0) hold. Moreover, assume that there exist a constant n > 0 and

a function w = (uy,v1) € X such that

(4)
max F' (t,u,v) max F (t,u,v)

. te[0,7 . te[0,7)
max ¢ lim sup ,lim  sup

(u;u)—»((),O) |u|p + ‘/U|p |(u,v)|—>+oo |u|p + |U|p

<,

(i)
foT F(tuy (1), v (1)) dt

[ ly, + flvalls ’

pT'Mn <

Then, for any compact interval [ay,as] C (A1, A2), there exists a positive constant o with the

following property: for every A € a1, as| and for two Carathéodory functions G, G, satisfying

(GO), there is k > 0 such that, for each § € |0, k), problem (4.1) has at least three weak solutions

with norms less than o.
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Proof Our aim is to apply Theorem 1.2 to our problem (4.1) by taking X = E? x Eg
endowed with the norm ||(u,v)||y defined before. Obviously, X is a separable reflexive Banach
space. It follows from Lemmas 4.6 and 4.7 that the functional ¢ is sequentially weakly lower
semicontinuous, with continuous Gateaux derivative, and bounded on each bounded subset of X.
¢’ admits a continuous inverse m and ¢ and J are continuously Gateaux-differentiable functionals
in X with compact derivatives.

’p

1 1
It is easy to see that — |u|” + = |v|” belongs to Tx. Now we prove that ¢(u,v) € Tx.
p p

Let {(tun,vn)} C X, (Un,v,) = (u,v) in X, and

lim inf @(uy,,v,) < o(u,v).

n—oo

By Lemma 4.5, (u,,v,) converges uniformly to (u,v) on [0,7]. Thus there exist constants

c1, ¢z > 0 such that ||u,|| < ¢ and ||v,||, < ¢ for any n € N. Therefore ¢ € Ty,

we have 1 1
¢(u,v) = —Jlullg + = llvllis
p p (4.25)
> (ull? + ol
=D o B
for all (u,v) € X. So ¢ is coercive and has a strict local minimum (ug,v9) = (0,0) with
¢(uo, vo) = 1 (ug, vo) = 0.
Fix ¢ > 0. According to (i), there exist 01,09 with 0 < 07 < 09 such that
F(t,u,v) < (n+e) (Jul” +[0]), (4.26)

for all t € [0,T] and |(u,v)| € ([0,01) U (02,4+00)). In view of (F0), F(t,u,v) is bounded on

t €[0,T) and |(u,v)| € [o1, 03], so we can choose my, my > 0 and 71,79 > p such that

F(t,u,0) < (n+¢) (Jul” + [vf” + ma [ul™ +ma [u]™),

for all ¢ € [0, 7] and |(u, v)| € [01,02], we have
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T
Pluw) < (n+e) / (al? + o) dt + | (ma Jul™ + my |ul™) dt
0

St~y

<+ 7™M (llully + lol) +T¢ (lul + oll3)

for all (u,v) € X, where

T1 T2
_1 _1
T > A=

T
la) Aud(@-Da+ i) \r@) Aug((8-1)q+1)

¢ = max

Qs

Hence

lim sup Plu, v)
(u,v)—0 ¢(u, ’U)

Furthermore, by (4.27) again, for any (u,v) € X\{(0,0)}, we have

<pT'M (n+e). (4.27)

/ F ot u,v) dt / F ot u,v) dt

P(u,v)  lw)l<o | w02
¢(u,v) 1 [ ue]|? 1 P 1 p o, 1 P
’ — llulle + = ol ~lulla + vl
p p p

pTSupt€[07T]7|(u7U)‘6[0702] F (t, u, 'U) pTM (77 + 6) <||u||§ + ||/U||IB)>

< +
lulle, + [lvll lulle, + [lvll
pT SuptE[O T1,|(u,v)|€[0,02] F (ta U, U)
= TR +pTM (1 +¢),
lull + llvlig
which implies that
¥ {u,v) <pTM(n+e). (4.28)

im
ll(u,0) | —+o0 P, V)

Since ¢ is arbitrary, combining with (4.27) and (4.28), we have

51:max{0, lim ¢< U) i @Z)(u )
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and

5. — P(u,v) Y(u,v)
g = sup = sup
(u)€d~1((0,400) P(Us V) (uw)ex \{(0,0)} P(u; V)
fOT F (t, Uy, 1)1) dt
5 e, + 5 llo
> pT'Mn > 6.

Then, for each compact intervallai,as] C (A1, A2), there is o > 0 with the following prop-
erty:for all A € [a1, as] and G € (GO), there is £ > 0 such that, for each 6 € [0, x|, problem (4.1)

has at least three weak solutions with norms less than o . =

Theorem 4.2 Assume that (F0), hold and there exist I,h € L'([0,T],R"),three positive con-
stants 0,061,045, and constant vector © = (c1,c2) € R?, ¢1,¢0 > 0, with 0 < pMA( + ¢2) and
01,05 € [0,p), such that

(A1) F (t,u,v) >0 forallt € [0,eT|U[(1—€)T,T], |u| <T(2—-—a)c, and |v| <T(2—0)co ;
(Ag) |F (t,u,v)| < 1(t) (\u!el + |v]02> + h(t) for all (u,v) € X and a.e. t € [0,T];

(As3)
JS TP @T(2—a)er, T (2 - 8) )

max F(t,u,v) < = )
t€[0,7],(uw)en (o) ( ) pMT AQ(C% + C%)

where 7 (o) = {(u,v) € R* : Jul’ + |v|’ < o}.

Then there exist an open interval A C [0,400) and a positive constant o with the following
property: for every A € A and for two carathéodory functions G, G, satisfying (GO), there is
Kk > 0 such that, for each ¢ € [0, k), problem (4.1) has at least three weak solutions with norms

less than o.

Proof For any A > 0 and (u,v) € X, according to (4.25) and (As), we have

p (e p 6
T

Ll + 2 ol —)\/Tl(t) (jul" + o) dt—)\/ h(t)dt

p e P 0

1 P P g 01 02 ’
(g + o) =26 [ 1 (a2 + o) ae=x [ nioya

v

v
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where

T " 7% "
o) Aful ((a—1)q+1)" r(8) Afuf((B—1)q+1)

0 = max

Since 61,60, € [0, p), we have
lim  ¢(u,v) — AMp(u,v) = 400 for all A > 0.
Il (w,v)[| x =400

For every r > 0, by the definition of ¢ and (4.25) we have

67" ((=o0; 7)) = {(u,0) € X : 6 (u,v) <1}

g&mv WM&+HM%S@

< {wsv) € X5 ull + ol < pr} (4.29)
C { w0y € X ; WOV o COPRG DD <pr}

C {(u,v) € X :|ul’ + |u|’ < Mpr, for all t € [0,T]},

which implies that
su u,v) < max U, vV
(u,v)egﬁ*l?(foo;r]) w ( ) (’LL,’U)GW(Mp'I‘)w ( )

T
= max / F (t,u,v)dt

(uw)em(Mpr) Jq

T
< T max )/ F (t,u,v)dt.
0

tel0,T),(uv)em(Mpr

Choose w = (u1(t), v1(t)) with

L2 ooy, tel0,eT],
ur(t) =9 T'(2—a)c, te [T, (1—¢)T],
Peer 1), tel(l-oT,1],

and
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L@-Bleay, t € [0,€T],
Ul(t) == F(2_/B)CQ, t e [ET,(l—E)T],
LeBle(p 1), tel(l—eT,T].

Clearly,w(0) = w(T) = 0 and w € L?[0,T]. A direct calculation shows that

Attt e [0,€T]

oDjui(t) = & (¢ — (t - eT)lfa) yte[el, (1 —¢€)T]
Ao —(t—el) = (t—(t—eD)), te]l-¢T,T]
and
2=t e|0,€lT,
oDfui(t) =4 % (10— (t— 1) ") te e, (1- ) T],
el (tl—ﬁ (b —eT) P (t - ET)l—ﬁ)) tel(l—oT,T].
Furthermore,

T
fr]l?. = / wr (£) oDy (1) P di
0

eT T
(1—-e)T
= /wl (t) loDguy ()P dt + [ wy (t) oDy (¢)” dt + / wy (t) [oDguy (t)[P dt
0 T (1-er
= ptA(ae),

and

T
oy = [ wa®)loDpu 0 d
0

€T (1-eT T

= / ws (t) [oD%vy (£)[P dt + / ws (£) [oD%vy (£)[P dt + / ws (£) [oD2vy ()P dt.
0 T (1-e)T

= pe3B(Be).
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Thus, w = (uy(t),v1(t)) € X, and

pAL (i +3) < lually, + llvillf < pAa (cf +¢3) -

Obviously, ¢(0,0) = ¢(0,0) = 0. Choose r = 7. From o < pMA (2 + c3) and (4.29) we

have

pMr = o < pMA(c] + c3) < pM d(ur,v1),

which means that ¢(uy,v;) > 7. According to (A;) and F(t,0,0) = 0, we have

T eT 1—¢) T (1-e)T
/ F(t,ul,vl / / + / F t Ul,Ul dt > / F(t,ul,vl)dt.
0 0 el (1—e)T el
So
r@[}(ul,vl) _ fO t Ul,Ul dt
¢ (u1,v1) 1 ||U1||p 5 ol
Tff% T P(LD @ a)e, TR B
- A (cf + c3) ’
(1— E)T - -
o ST RRTR-a)a T2 o)
- pMT A (et + c3) 7

T
T max / F (t,u,v)dt,
)er (o) Jo

t€[0,T],(u,w

T
= T max / F(t,u,v)dt > sup u,v) .
tE[O,T],(U,'U)Gﬂ'(pMT‘) ( ) (U,U)E¢71((—OO;T]) w ( )

Thus we can fix p such that

sup @Z}(u,v)<p<rw
(u,0) €6 ((—o0ir]) ¢ (u,v)

By proposition 4.1 we have

sup inf (¢(x) + Ap — () < inf sup (p(x) + Ap — ().

eI zeX reX el
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So, according to Theorem 1.3, for each interval A C [0,+00) and ¢ > 0 we have: for any
A € A and G € (Gy), there is k > 0 such that, for each 6 € [0, k),
&' (u,v) — M (u,v) — pJ "(u,v) = 0, has at least three solutions in X with norms less than o .
Therefore problem (1.3) has at least three solutions in X with norms less than p.

For the particular case of F(t,u,v) = ¢(t)f(u,v), where o(t) € L'([0, T];R)\ {0}, f(u,v) €

C'(R% R), we can deduce the following two corollaries of Theorems 4.1 and 4.2, respectively. m

Corollary 4.1 Assume that there exist n > 0 and W = (uy,v;) € R%\ {(0,0)}
(A
f(u,v) : f(u,v) }
) . 1 EEACILONN EACIONN e
o e(t) max{uﬁﬁzfuphAP+\mP|WW§3+WS“ P + P [ ="
(A2)
f(ul,'ul fO dt

pIT'Mn <
lualle, + ||01||§

Then, for any compact interval [ay,as] C (A1, \2), there exists a positive constant o with the
following property: for every \ € [a1,as| and for two Carathéodory functions G, G, satisfying
(GO), there is k > 0 such that, for each § € [0, k), problem (4.1) has at least three weak solutions

with norms less than o.

Corollary 4.2 Assume that there exist five positive constants lg, hg, o, 01,05, and constant vector
= (c1,c0) €ER? 1,00 >0, with o < pMA;(c} + c2) and 01,05 € [0,p), such that

(A)" () F (u,v) >0 forallt € [0,eT|U[(1 — )T, T], |u| <T(2—a)c, and |v] <T (2 — B)ca,
(42)" |F (w,0)] <lo (Jul” + [0]) + ho for all (u,v) € X,

(As)

(1-e)T
F(I'(2- I'2 - t)dt
max F (u,v) < 7 (C@=a)e, I 5 B)EQ)LT el
(u,v)en (o) pM ||g0||L1 AQ(Cl + C2>

?

where 7 (o) = {(u,v) € R? : [ul’ + |v|’ < o}.

Then there exist an open interval A C [0,400) and a positive constant o with the following
property: for every X\ € A and for two carathéodory functions G, G, satisfying (GO), there is
Kk > 0 such that, for each 6 € [0, k), problem (4.1) has at least three weak solutions with norms

less than o.
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4.4 Examples

Now, we give the following two numerical examples to illustrate the applications of our result.

Example 4.1 Letp=2,a=08,3=0.65 pu=1, wi(t) =1+t* wy(t) =05+t T = 1.

Then, system (4.1) becomes the following form

(D98 ((1+12) oD&Su (t)) + u (t)
= \F, (t,u (1), v (1) +6Gy (tu(t),v (1), t €[0,1]
(DY (0.5 + 1) oDy (£)) + v (1) (4.30)

= \F, (t,u(t),v(t) +6G, (t,u(t),v (b)), tel0,1]

For all (t,u,v) € [0,1] x R?, Taking
F (t,u,v) =10 (14 3t%) (v® +v*),

and
G (tu,v) = (1+£2) (Jul® + o]
Clearly,F(t,0,0) = G(t,0,0) =0 , w? = 1 and w) = 0.5 for all t € [0,1].
Conditions (F0) hold. By the direct calculation, we have

1 1
A { (T'(0.8))*(2x 0.8—1)" (I'(0.65))* x 0.5(2 x 0.65 — 1)

} =M ~ 3.4764.

1
207 e easily verify that (i) is satisfied. Moreover, we have \y > 10 and

Ay > 2.8765. In fact,

Taking n =
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lullos + [1vllo 65

A1 = inf
(u,v)eX 1
20/ (1 + 3t2) dt (u2 + v?)
0
2 2
B 1 f lullgs + l1v1llg.65
= I 2 2
(u,v)eX (u +v )

20/ (14 3¢2) dt

0

S i n HU1||(2).8 + ||U1H§.65
= 2 2
40 (u)ex M (HulHo,g + Hvluo.(ﬁ)
1
> P
- 140

and \y > T ~ 2.8765. On the other hand, choosing u, (t) =1 (1.2)t(1 —1),

vy (t) =T (1.35) ¢t (1 — t) we have

OD?'gul(t) = 92— 2;:((2122)) 12
oDY Py (t) = 9% — %tm;
So that
s (8[| & 0.19333, [[vs (£)]2 g5 = 0.078559,
and

1

/F (t,ul,vl) dt

2T Mn ~ 0.3476 < — < 3.6889.
(luallos + llorllo 6s)

Which implies that condition (ii) holds. Hence, by Theorem 4.1, for any compact interval

la1,as] C (—=,2.8765), there exists a positive constant o with the following property: for every

140’
A € |ay, a3 , there is k > 0 such that, for each 6 € [0, k), problem (4.30) has at least three weak

solutions with norms less than o.
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Example 4.2 Letp=2, =08, =06, u=1, wi(t) =1+ we(t) =05+, T =1.

Then system (4.1) becomes the following form

(D98 ((1+12) oD&Su (t)) + u (t)
= AE, (t,u(t) v (t) + 6Gy (t,u (), v (1), t €[0,1]
+DYE((0.5+1) oD% (t)) + v (t) (4.31)

= \F, (t,u(t), v (8) +6G, (t,u(t),v (b)), tel0,1]

p(t) =
—14t,te[d1]

and
3 6
G (t,u,v) =t* (|u|5 + |v|3) :

Clearly, F (t,0,0) =0, w? = w) =1, for any t € [0,1].

By the direct calculation, we have

1 1
s { (T'(0.8))*(2x 0.8—1) " (I'(0.6))*(2x 0.6 — 1)

} = M =~ 2.2548.

1
Letting € = 1 e obtain A(a,e) = 1.3096 and B (§,¢) = 0.4736 Hence A, = 0.4736 and

1 1 ) 4
AQ = 1.3096. Take o = 5, Cl = Cy = 6, lp = 1, ho > 0, 91 = 4_17 and 92 = g Then all the

conditions in Corollary 4.2 are satisfied. In fact, conditions (A1) and (As)" hold, and by direct
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computation we have

=0 <2MA; (] + 3) ~ 0.5932,

and

F(D(0.2),T(0.36)) [ o(t)dt

ST
NI

90

max F(u,v) ~ 0.1739 < :
(uw)er () M |l 11 Ay

1.703.

Q

Which implies that condition (A;)" holds. Hence, By Corollary 4.2 there exist an open interval
A C [0,400) and a positive constant o with the following property: for every A € A, there exists
Kk > 0 such that, for each ¢ € [0,k), problem (4.31) has at least three weak solutions with norms

less than o.
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Conclusion and Percpective

Throughout this study, fractional differential equations have been carefully investigated in
four chapters The importance of this paper rises in its application in many scientific and engi-
neering fields such as models for various precesses in plasma physics, biology, medical science,
chemistry as well as population dynamics, and control theory.In the first chapter, detailed theory
has been presented to provide the necessary background information about the theoremes needed
to understand the investigated problems in the other chapters. Then, chapter two has dealt with
fractioal calculus and its relevance in this work. Furthermore, We could ensure the existence of
at least three solutions for a class of fractional p-Laplacian differential systems in chapter three,
note that some appropriate function spaces and variational methods were successfully created for
the system (3.1). Chapter four, on the other hand, explains how building a variational framework
and using some critical points in theorems of Ricceri is used to get other new existence results for
at least three weak solutions in terms of different values of the two parameters )\, §, taking into
consideration that we have supposed the primitive function G of GG, and G, to satisfy a general
growth condition allowing us to apply a variational method. In addition, we have obtained the
multiplicity results for two cases: where the primitive function F' of F,, F, is asymptotically
quadratic and where it is subquadratic as |(u,v)| — oc.

At last, further researches are recommended to enlarge this study and prove the existence of

infinite number of solutions for the investigated problems.
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