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Abstract
The objective of this thesis is to study and demonstrate the existence of at least three weak

solutions for a certain class of boundary value problems for nonlinear fractional di¤erential sys-

tems. The �rst part is devoted to the notions of functional analysis and also to the de�nitions

used in this work, also it presents the fundamental theorems implemented to demonstrate the ex-

istence of the solutions. Then, the necessary background to familiarize the reader with fractional

calculus and the main issues related to the research is provided. We demonstrate the existence

of three weak solutions by the variational method and theorem of Bonanno and Marano for new

class of fractional p-Laplacian boundary value systems. In the second part we prove the existence

of the multiple solutions for perturbed nonlinear fractional p-Laplacian boundary value systems

with two control parameters by using of the critical point theorem of Ricceri.

Key words: Nonlinear fractional; Dirichlet boundary value systems; p-Laplacian type;

Variational method; Critical point theory.



Résumé
L�objectif de cette thèse est d�étudier et de démontrer l�existence d�au moins trois solutions

faibles pour une certaine classe de problèmes aux limites pour les systèmes di¤érentiels fraction-

naires non linéaires. La première partie est consacrée aux notions d�analyse fonctionnelle ainsi

qu�aux dé�nitions utilisées dans ce travail, elle présente également les théorèmes fondamentaux

mis en �uvre pour démontrer l�existence des solutions. Ensuite, le contexte nécessaire pour

familiariser le lecteur avec le calcul fractionnaire et les principaux problèmes liés à la recherche

est fourni. Nous démontrons l�existence de trois solutions faibles par la méthode variationnelle

et le théorème de Bonanno et Marano pour une nouvelle classe de systèmes de valeurs aux

limites fractionnaires p-Laplaciens. Dans la deuxième partie, nous prouvons l�existence des solu-

tions multiples pour les systèmes de valeurs aux limites fractionnaires p-Laplaciens non linéaires

perturbés avec deux paramètres de contrôle en utilisant le théorème du point critique de Ricceri.

Mots clés: Fractionnel non linéaire; Problèmes de valeur aux limites de dirichlet;

Type p-laplacien; Méthode variationnelle; Théorie des points critiques



 ملخص

 نفئت الأقم عهى ضعٍفت حهٌل ثلاثت ًجٌد ًإثببث دساست ىٌ انشسبنت ىزه ين انيذف

 الأًل جضءان .انخطٍت غٍش انكسشٌت انخفبضهٍت نلأنظًت انحذٌت انقًٍت يشبكم ين يعٍنت

 أنو كًب ،انعًم ىزا فً انًسخخذيت نهخعشٌفبث ًكزنك ذانًان انخحهٍم نًفبىٍى يخصص

 انخهفٍت شٌٍفٌخى ح بعذ رنك .انحهٌل ًجٌد لإثببث انًطبقت ٍتالأسبس اننظشٌبث ٌقذو

 انًخعهقت انشئٍسٍت انقضبٌب ً انكسشي ًانخكبيم انخفبضم بحسبة انقبسئ نخعشٌف انلاصيت

ً نظشٌت بٌنبنٌ  ضعٍفت ين خلال طشٌقت انخغٍشٌت حهٌل ثلاثت ًجٌد أثبخنب كًب .ببنبحث

ًجٌد  حى اثببث فً انجضء انثبنًلابلاط. -pجذٌذة ين أنظًت قٍى حذًد ً يبسانٌ نفئت 

 لابلاط غٍش انخطٍت انًضطشبت يع يعبيهٍن ححكى-pحهٌل يخعذدة لأنظًت قٍى حذًد 

.ببسخخذاو نظشٌت اننقطت انحشجت نشٌسشي 

P-لابلاط ؛ يؤثش؛ هٍجكدٌشٌ انحذٌت انقٍى يشبكمخطٍت؛  غٍش كسٌس :مات المفتاحية الكل 

.انحشجت اننقطت نظشٌت؛ خغٍشٌتان طشٌقت  
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Abbreviations
FDE Fractional di¤erential equations

ODE Ordinary di¤erential equation

G-di¤erentiable Gâteaux di¤erentiable

a.e almost everywhere
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Symbols
N The set of natural numbers.

N� The set of natural numbers with zero included.

R The set of real numbers.

C The set of complex numbers.


 Bounded domain in R:

Lp (
) The space of measurable functions of power p 2 [0;+1[integrable on 
:

L1 (
) The space of measurable functions essentially bounded on 
:

AC(
) The space of absolutely continuous functions on 
:

ACn(
) The space of functions f which have continuous derivatives on 
 up to order (n�1):

� (z) The Euler�s Gamma function.

X Banach space.

X� The dual space of X.

k:kX The norm in the space X:

A A linear operator in X:

A�1 Inverse operator A:

D� The Riemann-Liouville fractional derivatives of order �:

aD
��
t The Left Riemann-Liouville fractional integrals.

tD
��
b The right Riemann-Liouville fractional integrals.

aD
�
t The Left Riemann-Liouville fractional derivatives of order �:

tD
�
b The right Riemann-Liouville fractional derivatives of order �:

C
aD

�
t The Left Caputo fractional derivatives of order �:

C
t D

�
b The right Caputo fractional derivatives of order �:

Ep�; E
p
� Banach space.

�X Denote the class of all functionals � : X ! R that possess the following property:

if fwng is a sequence in X converging weakly to w 2 X and lim
n!1

inf �(wn) � �(w)
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Introduction
Fractional di¤erential equations can generally be seen as the study of di¤erential equations

with the fractional calculus application. With its use , the natural phenomena and mathematical

models in several areas of science and engineering can be precisely described. The Fractional

di¤erential equations (FDE) have also many uses in di¤erent domains like engineering, physics,

chemistry, biology, mechanics, biophysics, and other �elds (see [18], [13], [24], [25], [26] and [32]).

As a result, many improvements have been made in the theory of fractional calculus and fractional

ordinary and partial di¤erential equations ([6], [3], [34], [4], [5], [19], [7] and [44]). Several studies

have explored the existence and di¤erent solutions for nonlinear fractional initial and boundary

value problems through the use of several tools and techniques of nonlinear analysis (see for

example [33], [39], [48], [9] and [28].

A FDE often has very many solutions, the conditions being less strict than in the case

of an ordinary di¤erential equation (ODE) with a single variable; the problems often make

up boundary conditions which restrict the set of solutions. While the sets of solutions of an

ordinary di¤erential equation are parametrized by one of several parameters corresponding to

the additional conditions, in the case of Partial di¤erential equations, the boundary conditions

are presented more in the form of a function, intuitively this means that the set of solutions

is much larger, which is true in almost all problems. For linear FDE, various methods and

techniques can be used as the �xed point theorems, critical point theory, the monotone iterative

methods, the coincidence degree theory to get the solution.

Variational methods have emerged as one of the most e¤ective analytic tools in the study of

nonlinear equations. But there are other nonvariational techniques of use for nonlinear elliptic

and parabolic FDE such as monotonicity and �xed point methods that played an important role

in the study of nonlinear boundary value problems for a long time. The idea behind them is

attempting to solve a given problem by looking for critical point theory which was very useful in

determining the existence of solutions to complete di¤erential equations with certain boundary

conditions, see for example, in the extensive literature on the subject, classical books [32], [37],

[47] and references appearing there. But so far, some problems have been created for fractional

marginal value problems by exploiting this approach, where it is often very di¢ cult to create a

5



suitable space and a suitable function for fractional problems.

The aim of this thesis is to acquaint the reader with the greatly new result for the existence

of three solution of nonlinear fractional elliptique problems involving the p-Laplacian operator

type equations and systems. Chapter 1 of this thesis reviews some useful preliminary notions

as Banach spaces and Monotone operator with giving the importent theorems to prove the

multiplicity of solutions . In chapter 2 we present the basic technique from Calculus fractionnaire

and methods used in our work for proving the existence results of di¤erent problems.

Chapters 3 and 4 are collection of published papers, each paper presents a chapter dealing

with one main problem, and for each one of them we start by giving an introduction discussing

its technical details and assumptions and a small historical review.

In chapter 3 (published in "Mathematics") [21], We obtain at least three weak solutions for a

new class of p-Laplacian type nonlinear fractional systems according to two parameters by using

variational methods combined with a critical point theory due to Bonano and Marano. Some

necessary de�nitions and preliminary facts are presented for fractional calculus which are used

to provde the availability of the weak solutions for the following system:

8>>>>>>>>><>>>>>>>>>:

tD
�i
T

�
1

wi(t)
p�2�p (wi (t) 0D

�i
t ui (t))

�
+ � jui (t)jp�2 ui (t)

= �Fui (t; u1 (t) ; u2 (t) ; :::; un (t)) a.e. t 2 [0; T ] ;

ui (0) = ui (T ) = 0:

(1)

Chapter 4 (published in " j.Pseudo-Di¤er.Oper.Appl") [22], uses two control parameters to

investigate a class of perturbed nonlinear fractional p-Laplacian di¤erential systems, where we

ensure the existence of three weak solutions by using the variational method and Ricceri�s critical

points theorems respecting some necessary conditions on the primitive function of nonlinear terms

Fu and Fv for the following perturbed fractional di¤erential system:

6



8>>>>>>>>><>>>>>>>>>:

tD
�
T

�
1

w1(t)
p�2�p (w1 (t) 0D

�
t u (t))

�
+ � ju (t)jp�2 u (t)

= �Fu (t; u (t) ; v (t)) + �Gu (t; u (t) ; v (t)) a.e. t 2 [0; T ] ;

tD
�
T

�
1

w2(t)
p�2�p

�
w2 (t) 0D

�
t v (t)

��
+ � jv (t)jp�2 v (t)

= �Fv (t; u (t) ; v (t)) + �Gv (t; u (t) ; v (t)) a.e. t 2 [0; T ] ;

u (0) = u (T ) = 0; v (0) = v (T ) = 0:

(2)
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3- Continuous function spaces.

4- Some inequalities.

5- Monotone operators.

6- Some elements of critical point theory.

7- Three critical points theorem.
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Chapter 1. Preliminary

1.1 Lp Spaces

Let 
 an open from Rn; with Lebesgue measure dx. We denote by L1 (
) the space of

functions that can be integrated into 
 with values in R, we provide it with the standard

kukL1 =
Z



ju (x)j dx:

Let p 2 R with 1 � p < +1; we de�ne the space Lp (
) by

Lp (
) =

8<:f : 
! R, f measurable and
Z



jf (x)jp dx < +1

9=; :

Let standard is

kukLp =

0@Z



ju (x)jp dx

1A 1
p

:

We also de�ne the space L1 (
)

L1 (
) = ff : 
! R, f measurable, 9c > 0; such as jf (x)j � c a.e on 
g :

It will be provided with the sup-essentie standard

kukL1 = ess sup
x2


ju (x)j = inf fc; ju (x)j � c a.e on 
g :

1.2 Banach spaces

De�nition 1.1 [43]

Let X be a vector space over R: A real-valued function k:k de�ned on X and satisfying the

following conditions is called a norm:

9



Chapter 1. Preliminary

i) kuk � 0; kuk = 0 if and only if u = 0:

ii) k�uk = j�j kuk ; for all u 2 X and � 2 R.

iii) ku+ vk � kuk+ kvk ; 8u; v 2 X:

(X; k:k) ; vector space X equipped with k:k is called a normed space.

De�nition 1.2 [43]

A normed space X is called a Banach space, if its every Cauchy sequence is convergent, that

is kun � umk ! 0 as n;m ! 1 8un; um 2 X implies that 9u 2 X such that kun � uk ! 0 as

n!1.

1.3 Continuous function spaces

De�nition 1.3 [24]

Let 
 = [0; T ] (0 < T < +1) a �nite interval of R and n 2 N: We denote by Cn (
) the

space of functions f which are m times continuously di¤erentiable on 
 with the norm:

kfkCn(
) =
nX
k=0



f (k)


Cn(
)

=
nX
k=0

max
t2


��f (k) (t)�� ; n 2 N:
In particular, for n = 0, C0 (
) = C (
) in the space of continuous functions f on 
 with the

norm:

kfkCn(
) = maxt2

jf (t)j :

De�nition 1.4 [24]

Let 
 = [0; T ] (0 < T < +1) a �nite interval of R: We denote by AC(
) the space of

primitive functions of integrable functions, that is to say :

AC(
) =

8<:f =9' 2 L1 (
) : f (t) = c+

tZ
0

' (s) ds

9=; ;

and we call AC(
) the space of absolutely continuous functions on 
.

10



Chapter 1. Preliminary

De�nition 1.5 [24]

For n 2 N� we denote by Cn� (
) the space of functions f which have continuous derivatives

on 
 up to order (n� 1) and such that f (n�1) 2 AC(
) that is to say :

ACn(
) =
�
f : 
! C; f (k) 2 C (
) ; k 2 f0; 1; :::; n� 1g ; f (n�1) 2 AC(
)

	
:

In particular AC1(
) = AC(
):

A characterization of the functions of this space is given by the following lemma:

Lemma 1.1 [24]

A function f 2 ACn(
), n 2 N�, if and only if it is represented as:

f (t) =
1

(n� 1)!

tZ
0

(t� s)n�1 f (n) (s) ds+
n�1X
k=0

f (k) (t)

k!
tk:

Lemma 1.2 [50] (Lebesgue�s dominated convergence theorem)

Let 
 be a measurable set and let ffng be a sequence of measurable functions such that

lim
n!1

fn (x) = f (x) a.e. in 
, and for every n 2 N, jfn(x)j � g(x) a.e. in 
, where g is integrable

on 
. Then

lim
n!1

Z



fn (x) dx =

Z



f (x) dx:

Lemma 1.3 [12] (Fatou�s lemma)

If ffng is a sequence of nonnegative measurable functions on 
, thenZ



lim
n!1

inf fn (x) dx � lim
n!1

inf

Z



fn (x) dx:

11



Chapter 1. Preliminary

1.4 Some inequalities

Hölder�s inequality [17]

8 (u; v) 2 Lp (
)� Lq (
) we have

������
Z



uvdx

������ �
0@Z



jujp dx

1A 1
p
0@Z



jvjp dx

1A 1
q

;

where p and q are strictly positive linked by the relation
�
1

p
+
1

q
= 1

�
:

Inequalitie for Vectors [31]

Some special inequalities are helpful in the study of the p-Laplace operator. Expressions like



jbjp�2 b� jajp�2 a; b� a

�
;

are needed, a and b denoting vectors in Rn. As expected, the cases p > 2 and p < 2

are di¤erent. Let us begin with the identity



jbjp�2 b� jajp�2 a; b� a

�
=
jbjp�2 + jajp�2

2
jb� aj2 +

�
jbjp�2 � jajp�2

� �
jbj2 + jaj2

�
2

;

which is easy to verify by a calculation. We can read o¤ the following inequalities

1) If p � 2 

jbjp�2 b� jajp�2 a; b� a

�
� 2�1

�
jbjp�2 + jajp�2

�
jb� aj2

� 2p�2 jb� ajp :

2) If p � 2 

jbjp�2 b� jajp�2 a; b� a

�
� 1

2

�
jbjp�2 + jajp�2

�
jb� aj2 :

However, the second inequality in 1) cannot be reversed for p � 2, as the �rst one, not

even with a poorer constant than 2p�2:

12



Chapter 1. Preliminary

1.5 Monotone operators

De�nition 1.6 [51]

Let X be real Banach space, and let A : X ! X� be an operator.

i) A is called monotone i¤

hAu� Av; u� vi � 0 for all u; v 2 X:

ii) A is called strictly monotone i¤

hAu� Av; u� vi > 0 for all u; v 2 X with u 6= v:

iii) A is called strongly monotone i¤ there is a c > 0 such that

hAu� Av; u� vi � c ku� vk2 for all u; v 2 X:

iv) A is called uniformly monotone i¤

hAu� Av; u� vi � a (ku� vk) ku� vk for all u; v 2 X;

where the continuous function a : R+ ! R+ is strictly monotone increasing with a(0) = 0 and

a(t)! +oo as t! +oo.

De�nition 1.7 [51]

Let X be real Banach space, and let A : X ! X� be an operator. A is called hemicontinuous

if for all u; v 2 X, l�appliction t! hA (u+ tv) ; vi is continuous from R in R:

De�nition 1.8 [51]

Let X be real Banach space, and let A : X ! X� be an operator. A is called coercive i¤

lim
kuk!1

hAu; ui
kuk = +1:

13



Chapter 1. Preliminary

1.6 Some elements of critical point theory

De�nition 1.9 [23]

Let ! be a part of a Banach space X and J : ! ! R. If u 2 ! and v 2 X are such that for

t > 0 quite small we have u + tv 2 ! we say that J admits (at the point u) a derivative in the

direction v if

lim
t!0+

J (u+ tv)� J (u)

t
;

exist. We will denote this limit by J 0v (u)

De�nition 1.10 [23]

Let ! be a part of a Banach space X and J : ! ! R: If u 2 !; we say that J is Gâteaux

di¤erentiable (or G-di¤erentiable ) at u; if there exists l 2 X 0 such that in each direction v 2 X

where J (u+ tv) exists for t > 0 small enough, the directional derivative J 0v (u) exists and we

have

lim
t!0+

F (u+ tv)� F (u)

t
= hl; vi :

We write J 0 (u) = l:

De�nition 1.11 [23]

Let X be a Banach space, ! 2 X an open space and J 2 C1 (!;R) : We say that u 2 ! is a

critical point of J if J 0 (u) = 0 with J 0 (u) is the G-di¤erentiable of J at point. If u are not a

critical point then we say that u is a regular point of J . If c 2 R, we say that c is a value critical

of J , if there exists u 2 ! such that J(u) = c and J 0(u) = 0. If c is not a critical value then we

say that c is a regular value of J .

De�nition 1.12 [23]

Let X be a Banach space, F 2 C1 (X;R) and a set of constraints:

S = fv 2 X : F (v) = 0g ;

we suppose that for everything u 2 S; we have F 0 (v) 6= 0: Si J 2 C1 (X;R) we say that c 2 R is

14



Chapter 1. Preliminary

value criticism of J on S if there exists u 2 S, and � 2 R such that

J(u) = c and J 0(u) = �F 0 (u) :

The point u is a critical point of J on S and the real one is called the Lagrange multiplier for

the critical value c (or the critical point u).

When X is a functional space and the equation J 0(u) = �F 0(u) corresponds to an equation

with partial derivatives, we say that J 0(u) = �F 0(u) is the Euler-Lagrange equation (or the Euler

equation) satis�ed by the critical point u on the constraint S.

De�nition 1.13 [23]

Let X be a Banach space and ! is a part of X. A function J : ! ! R is said to be weakly

sequentially lower semi-continuous if for any sequence (un)n of ! weakly converging to u 2 ! we

have:

J(u) � lim
n!1

inf J(un):

Proposition 1.1 [23]

Let X be a re�exive Banach space, K � X a closed convex and J : K ! R a weakly sequen-

tially lower semi-continuous. Moreover, if K is unbounded, we assume that for any sequence

(un)n of K such that kunk kunk ! 1 , we have J(un) ! 1. Then J is bounded lower and it

reaches its minimum i.e.

9u 2 K; J(u) = inf
v2K

J(v) = min
V 2K

J(v):

1.7 Three critical points theorem

We present a critical point theorem due to Bonanno and Marano and Ricceri�s critical points

theorems to prove the existence of at least three weak solutions.

Theorem 1.1 [8]

Let X be a re�exive real Banach space; � : X ! R be a coercive, continuously Gateaux di¤er-

entiable sequentially weakly lower semicontinuous functional whose Gateaux derivative admits a

15
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continuous inverse on X�; bounded on bounded subsets of X; 	 : X ! R a continuously Gateaux

di¤erentiable functional whose Gateaux derivative is compact such that

� (0) = 	 (0) = 0:

Assume that there exists r > 0 and x 2 X; with r < � (x) ; such that

(a1) sup
�(u)�r

	(u)

r
<
� (x)

	 (x)
:

(a2) For each � 2 �� =

375� (x)
	 (x)

;
r

sup
�(u)�r

	(u)

264 ; the functional �� �	 is coercive.

Then, for any � 2 ��, the functional �� �	 has at least three critical point in X.

Theorem 1.2 [38]

Let X be a separable re�exive real Banach space, and let � : X ! R be a coercive sequentially

weakly lower semicontinuous, C1 functional belonging to �X , bounded on each bounded subset of

X, with derivative admitting a continuous inverse on X�. Let  : X ! R be a C1 functional

with compact derivative. Assume that � has a strict local minimum x0 with �(x0) =  (x0) = 0.

Finally, setting

�1 = max

(
0; lim sup

kxk!+1

 (x)

�(x)
; lim sup

x!x0

 (x)

�(x)

)
;

�2 = sup
x2��1(]0;+1[)

 (x)

�(x)
;

we suppose that �1 < �2:

Then, for each compact interval [a; b] � ( 1
�2
; 1
�1
)(with the conventions 1

0
= +1 and 1

+1 = 0),

there exists % > 0 with the following property: for every � 2 [a; b] and every C1 functional

J : X ! R with compact derivative, there exists �� > 0 such that, for each � 2 [0; ��], the

equation

�
0
(x) = � 

0
(x) + �J

0
(x);

has at least three solutions in X with norms less than %.

16



Chapter 1. Preliminary

Theorem 1.3 [39]

Let X be a re�exive real Banach space, and let I � R be an interval.

Let � : X ! R be a sequentially weakly lower semicontinuous, C1 functional bounded on each

bounded subset of X, with derivative admitting a continuous inverse on X�. Let � : X ! R be

a C1 functional with compact derivative. Assume that

lim
kxk!+1

(�(x)� � (x)) = +1;

for all � 2 I and that there exists � 2 R such that

sup
�2I

inf
x2X

(�(x) + ���  (x)) < inf
x2X

sup
�2I

(�(x) + ���  (x)) :

Then there exist a nonempty open set � � I and a positive number with the following property:

for every � 2 � and every C1 functional �J : X ! R with compact derivative, there exists �� > 0

such that, for each � 2 [0; ��], the equation

�
0
(x)� � 

0
(x)� �J

0
(x) = 0;

has at least three solutions in X with norms less than % .
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Chapter 2. Fractional calculus

This section is devoted to the presentation of certain elements of fractional calculation. We

start with general introduction on adequate fractional calculus as well as special function, then

we recall the de�nitions and some properties of the integral and fractional derivatives within the

meaning of Riemann-Liouville.

2.1 Introduction

The objective of fractional calculus is to generalize traditional derivatives to non-integer

orders. As it is well known, many dynamic systems are best characterized by a dynamic fractional

order model, generally based on the notion of di¤erentiation or integration of the non-whole order.

The origins of fractional calculus date back to the end of the 17th century, starting from some

speculations by GW Leibniz concerning the study conducted in 09/30/1695, on the sibni�cation

of d
nf
dtn

si n = 1
2
. Since then, many mathematicians contributed to the development of this theory,

we cite among others PS. LAPLACE, J.B.J. FOURIER, N.H.ABEL, J. LIOUVILLE.

2.2 Special function

In this paragraph we present de�nitions and some properties for the Gamma function.

2.2.1 Gamma function

The Gamma function was introduced by the Swiss mathematician Leonhard Euler (1707-

1783) with the aim of generalizing the factorial of non-integer values. Later, due to its great

importance, it has been studied by other eminent mathematicians such as Adrien-Marie Legen-

dre (1752-1833), Carl Friedrich Gauss (1777-1855), Christoph Gudermann (1798-1852), Joseph

Liouville (1809-1882), KarlWeierstrass (1815-1897), Charles Hermite (1822-1901) and many oth-

ers. The Gamma function belongs to the category of special transcendent functions and we will

see that some famous mathematical constants occur in his study. It also appears in various �elds,

such as asymptotic series. Euler�s Gamma function is a basic function of fractional calculus. This

function generalizes the factorial n!.
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Chapter 2. Fractional calculus

De�nition 2.1 [36]

One of the basic functions of fractional calculus is Euler�s Gamma function � (z) : The Gamma

Function � (z) is de�ned by the following integral:

� (z) =

+1Z
0

tz�1e�tdt; (2.1)

with � (1) = 1; � (0+) = +1 is a strictly decreasing function for 0 < z � 1:

2.2.2 Some properties of the Gamma function

An important property of the Gamma function � (z) is the following recurrence relation:

� (z + 1) = z� (z) :

That we can demonstrate it by integration by parts

� (z + 1) =

+1Z
0

t(z+1)�1e�tdt =

+1Z
0

tze�tdt = [�te�t]+10 + z

+1Z
0

tz�1e�tdt = z� (z) :

Euler�s Gamma function generalizes the factorial because � (n+ 1) = n!; 8n 2 N, indeed

� (1) = 1, we get:

� (2) = 1� (1) = 1!

� (3) = 2� (2) = 2:1! = 2!

� (4) = 3� (3) = 3:2! = 3!

� (5) = 4� (4) = 4:3! = 4!

� (6) = 5� (5) = 5:4! = 5!
...

...
...

...

� (n+ 1) = n� (n) = n: (n� 1)! = n!:
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Chapter 2. Fractional calculus

Let�s also calculate �
�
1

2

�
: We pose u =

p
t and so t = u2 and dt = 2udu and we get

�

�
1

2

�
=

+1Z
0

e�tp
t
dt =

+1Z
0

e�u
2

u
2udu = 2

+1Z
0

e�u
2
du =

p
�:

Maximum digits, the numerical values of some of these constants are:

�

�
1

2

�
= 1:77245385090551602729816748334:::

�

�
1

3

�
= 2:67893853470774763365569294097:::

�

�
1

4

�
= 3:62560990822190831193068515587:::

�

�
1

5

�
= 4:59084371199880305320475827593:::

� (0:6) = 1:48919224881281710239433338832:::

� (0:65) = 1:38479510202651000285376452479:::

� (0:7) = 1:29805533264755778568117117915:::

� (0:8) = 1:16422971372530337363632093827:::

2.3 Fractional integral in the sense of Riemann-Liouville

De�nition 2.2 [50](Left and right Riemann-Liouville fractional integrals) :

Let j = [a; b] (�1 < a < b < +1) be a �nite interval of R: The left and right Riemann-

Liouville fractional integrals aD��
t u (t) and tD

��
b u (t) of ordre � 2 R+ are de�ned by

aD
��
t u (t) =

1

� (�)

tZ
a

(t� s)��1 u (s) ds; t > a; � > 0; (2.2)

and

tD
��
b u (t) =

1

� (�)

bZ
t

(s� t)��1 u (s) ds; t < b; � > 0; (2.3)

respectively, provided the right-hand sides are pointwise de�ned on [a; b]: When � = n 2 N, the

21



Chapter 2. Fractional calculus

de�nitions (2.2) and (2.3) coincide with the n-th integrals of the

aD
�n
t u (t) =

1

(n� 1)!

tZ
a

(t� s)n�1 u (s) ds;

and

tD
�n
b u (t) =

1

(n� 1)!

bZ
t

(s� t)n�1 u (s) ds:

2.4 Fractional derivative in the sense of Riemann-Liouville

De�nition 2.3 [50](Left and right Riemann-Liouville fractional derivatives) :

The left and right Riemann-Liouville fractional derivatives aD
�
t u (t) and tD

�
b u (t) of ordre

� 2 R+ are de�ned by

aD
�
t u (t) :=

dn

dtn
aD

��n
t u (t) =

1

� (n� �)

dn

dtn

0@ tZ
a

(t� s)n���1 u (s) ds

1A ; t > a; (2.4)

and

tD
�
b u (t) := (�1)

n d
n

dtn
tD

��n
b u (t) =

(�1)n

� (n� �)

dn

dtn

0@ bZ
t

(t� s)n���1 u (s) ds

1A ; t < b; (2.5)

respectively, where n = [�] + 1, [�] means the integer part of �: In particular, when � = n 2 N�

aD
0
tu (t) = tD

0
bu (t) = u (t) ;

aD
n
t u (t) = u(n) (t) and tD

n
b u (t) = (�1)

n u(n) (t) ;

where u(n) (t) is the usual derivative of u (t) of order n: If 0 < � < 1; then

aD
�
t u (t) =

1

� (1� �)

d

dt

0@ tZ
a

(t� s)�� u (s) ds

1A ; t > a; (2.6)
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Chapter 2. Fractional calculus

and

tD
�
b u (t) = �

1

� (1� �)

d

dt

0@ bZ
t

(t� s)�� u (s) ds

1A ; t < b: (2.7)

The left and right Caputo fractional derivatives are de�ned via above Riemann-Liouville

fractional derivatives.

2.5 Fractional derivative in the sense of Caputo

De�nition 2.4 [50](Left and right Caputo fractional derivatives) :

The left and right Caputo fractional derivatives CaD
�
t u(t) and

C
t D

�
b u(t) of order � 2 R+ are

de�ned by:

C
aD

�
t u (t) = aD

�
t

�
u (t)�

n�1P
k=0

u(k)(a)
k!

(t� a)k
�
;

and

C
t D

�
b u (t) = tD

�
b

�
u (t)�

n�1P
k=0

u(k)(b)
k!

(b� t)k
�
;

respectively, where

n = n = [�] + 1; for � =2 N�; n = � for � 2 N�:

In particular, when 0 < � < 1, then

C
aD

�
t u (t) = aD

�
t (u (t)� u (a)) ;

and

C
t D

�
b u (t) = tD

�
b (u (t)� u (b)) :

The Riemann-Liouville fractional derivative and the Caputo fractional derivative are con-

nected with each other by the following relations.

Proposition 2.1 [50]

i) If � =2 N� and u(t) is a function for which the Caputo fractional derivatives C
aD

�
t u(t)

and C
t D

�
b u(t) of order � 2 R+ exist together with the Riemann-Liouville fractional derivatives
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Chapter 2. Fractional calculus

aD
�
t u (t) and tD

�
b u (t), then

C
aD

�
t u (t) = aD

�
t u (t)�

n�1P
k=0

u(k)(a)
�(k��+1) (t� a)k�� ;

and

C
t D

�
b u (t) = tD

�
b u (t)�

n�1P
k=0

u(k)(b)
�(k��+1) (b� t)k�� ;

where n = [�] + 1: In particular, when 0 < � < 1, we have

C
aD

�
t u (t) = aD

�
t u (t)�

u(a)
�(1��) (t� a)�� ;

and

C
t D

�
b u (t) = tD

�
b u (t)�

u(b)
�(1��) (b� t)�� :

ii) If � = n 2 N� and the usual derivative u(n)(t) of order n exists, then C
aD

�
t u(t) and

C
t D

�
b u(t)

are represented by

C
aD

n
t u (t) = u(n) (t) and C

t D
n
b u (t) = (�1)

n u(n) (t) :

2.6 Some fractional derivation properties in the sense of

Riemann-Liouville

The derivation operator and integration by parts in the Riemann-Liouville sense has the

properties summarized in the following propositions:

Proposition 2.2 [36]

For n� 1 < � � n; m� 1 < � � m we have :

1) The Left and right Riemann-Liouville fractional operator is linear

aD
�
t (�u (t) + �v (t)) = � aD

�
t u (t) + �aD

�
t v (t) ;

tD
�
b (�u (t) + �v (t)) = � tD

�
b u (t) + �tD

�
b v (t) :
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Chapter 2. Fractional calculus

2)In general

aD
�
t

�
aD

�
t u (t)

�
6= aD

�
t (aD

�
t u (t)) ;

tD
�
b

�
tD

�
b u (t)

�
6= tD

�
b (tD

�
b u (t)) :

Proof [36]

For the left and right Riemann-Liouville fractional derivatives aD�
t u (t) and tD

�
b u (t) of ordre

n� 1 < � � n are de�ned by (2.4) and (2.5) we have:

aD
�
t (�u (t) + �v (t)) =

1

� (n� �)

dn

dtn

0@ tZ
a

(t� s)n���1 (�u (t) + �v (t)) ds

1A
=

�

� (n� �)

dn

dtn

0@ tZ
a

(t� s)n���1 u (t) ds

1A+ �

� (n� �)

dn

dtn

0@ tZ
a

(t� s)n���1 v (t) ds

1A
= � aD

�
t u (t) + � aD

�
t v (t) :

and

tD
�
b (�u (t) + �v (t)) =

(�1)n

� (n� �)

dn

dtn

0@ bZ
t

(t� s)n���1 (�u (t) + �v (t)) ds

1A
=

� (�1)n

� (n� �)

dn

dtn

0@ bZ
t

(t� s)n���1 u (t) ds

1A+ � (�1)n

� (n� �)

dn

dtn

0@ bZ
t

(t� s)n���1 v (t) ds

1A
= � tD

�
b u (t) + � tD

�
b v (t) :

Proposition 2.3 [36]

For � > 0; t > 0 we have

aD
�
t

�
aD

��
t u (t)

�
= u (t) ;

tD
�
b

�
tD

��
b u (t)

�
= u (t) :

25



Chapter 2. Fractional calculus

Proof Let � = n � 1; we have

aD
�
t

�
aD

��
t u (t)

�
=

dn

dtn

0@ tZ
a

(t� s)n�1

(n� 1)! u (s) ds

1A
=

d

dt

tZ
a

u (s) ds = u (t) :

Suppose now that n � 1 � � < 1 and use the rule of composition of fractional integrals in

the sense of Riemann-Liouville. So we have :

aD
�
t

�
aD

��
t u (t)

�
= aD

�(n��)
t

�
aD

��
t u (t)

�
;

from where

aD
�
t

�
aD

��
t u (t)

�
=

dn

dtn

n
aD

�(n��)
t

�
aD

��
t u (t)

�o
=

dn

dtn
�
aD

�n
t u (t)

	
= u (t) :

The second formula is shown in the same way.

Proposition 2.4 [36]

Let 0 < � < 1 and a < t < b: Then

tZ
a

[aD
�
t f (s)] g (s) ds =

tZ
a

f (s) [sD
�
t g (s)] ds;

bZ
t

[sD
�
b f (s)] g (s) ds =

bZ
t

f (s) [tD
�
s g (s)] ds:

Speci�cally,
bZ
a

[aD
�
b f (s)] g (s) ds =

bZ
a

f (s) [sD
�
b g (s)] ds:
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Chapter 2. Fractional calculus

Proof

tZ
a

[aD
�
t f (s)] g (s) ds =

1

� (1� �)

tZ
a

d

ds

0@ sZ
a

(s� �)�� f (�) d�

1A g (s) ds

= � 1

� (1� �)

tZ
a

0@ sZ
a

(s� �)�� f (�) d�

1A g0 (s) ds

+

24 1

� (1� �)
g (s)

sZ
a

(s� �)�� f (�) d�

35s=t
s=a

= � 1

� (1� �)

tZ
a

0@ tZ
�

(s� �)�� g0 (s) ds

1A f (�) d�

+g (t)
1

� (1� �)

tZ
a

(t� �)�� f (�) d�

=

tZ
a

f (�)
�
C
� D

�
t g (�)

�
d� + g (t)

1

� (1� �)

tZ
a

(t� �)�� f (�) d�

=

tZ
a

f (�)

�
�D

�
t g (�)� g (t)

(t� �)��

� (1� �)

�
d� + g (t)

1

� (1� �)

tZ
a

(t� �)�� f (�) d�

=

tZ
a

f (�) [�D
�
t g (�)] d�

=

tZ
a

f (s) [sD
�
t g (s)] ds:

The second formula is shown in the same way.

2.7 Examples

Some examples about derivation operator the Riemann-Liouville sense

Example 2.1 The derivative of f(t) = tb in the sense of Riemann-Liouville. Let � > 0 such
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Chapter 2. Fractional calculus

that n �1 < � < n and b > �1,

D�tb =
� (b+ 1)

� (b+ n� �+ 1)
D�tb+n��: (2.8)

Taking into account

D�tb+n�� = (b+ n� �) (b+ n� �� 1) ::: (b� �+ 1) tb��

=
� (b+ n� �+ 1)

� (b� �+ 1)
tb��: (2.9)

We substitute the result (2.8), in the formula (2.9), to obtain:

D�tb =
� (b+ 1)

� (b� �+ 1)

� (b+ n� �+ 1)

� (b� �+ 1)
tb��

=
� (b+ 1)

� (b� �+ 1)
tb��:

So the fractional derivative in the sense of Riemann-Liouville of the function f(t) = tb is

given by:

D�tb =
� (b+ 1)

� (b� �+ 1)
tb��: (2.10)

In particular, if b = 0 and � > 0, the Riemann fractional derivative-Liouville of a constant

function f(t) = C is non-zero, its value is:

D�C =
C

� (1� �)
t�b:

Example 2.2 The derivative of f(t) = (t� a)b in the sense of Riemann-Liouville. Let � > 0

such that n �1 < � < n and b > �1,

D� (t� a)b =
� (b+ 1)

� (b+ n� �+ 1)
D� (t� a)b+n�� ; (2.11)

28



Chapter 2. Fractional calculus

taking into account

D� (t� a)b+n�� = (b+ n� �) (b+ n� �� 1) ::: (b� �+ 1) (t� a)b��

=
� (b+ n� �+ 1)

� (b� �+ 1)
(t� a)b�� ; (2.12)

we substitute the result (2.11), in the formula (2.12), to obtain:

D� (t� a)b =
� (b+ 1)

� (b� �+ 1)

� (b+ n� �+ 1)

� (b� �+ 1)
(t� a)b��

=
� (b+ 1)

� (b� �+ 1)
(t� a)b�� ;

so the fractional derivative in the sense of Riemann-Liouville of the function f(t) = (t� a)b is

given by:

D� (t� a)b =
� (b+ 1)

� (b� �+ 1)
(t� a)b�� : (2.13)

Example 2.3 The derivative of w1(t) in the sense of Riemann-Liouville where:

w1(t) =

8>>><>>>:
�(2��)c1

�T
t; t 2 [0; �T [ ;

� (2� �) c1; t 2 [�T; (1� �)T ] ;

�(2��)c1
�T

(T � t); t 2 ](1� �)T; T ] ;

is D�w1(t) Taking into account (2.10) and (2.13) we have :

D�� (2� �) c1
�T

t =
� (2� �) c1

�T

� (2)

� (2� �)
t1�� =

c1
�T
t1��

D�� (2� �) c1 =
c1
�T

�
t1�� � (t� �T )1��

�
D�� (2� �) c1

�T
(T � t) =

c1
�T

�
t1�� � (t� �T )1�� �

�
t� (t� �T )1��

��
;

so the fractional derivative in the sense of Riemann-Liouville of the function w1(t) is given by:

D�w1(t) =

8>>><>>>:
c1
�T
t1��; t 2 [0; �T [ ;

c1
�T

�
t1�� � (t� �T )1��

�
, t 2 [�T; (1� �)T ] ;

c1
�T

�
t1�� � (t� �T )1�� �

�
t� (t� �T )1��

��
, t 2 ](1� �)T; T ] :

(2.14)
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Chapter 3. Existence of weak solutions for a new class of fractional p-Laplacian
boundary value systems

3.1 Introduction to the problem

In this chapter, at least three weak solutions were obtained for a new class of non-linear

p-Laplace systems according to two parameters by using variational methods combined with a

critical point theory due to Bonano and Marano. Some necessary de�nitions and preliminary

facts are introduced for fractional calculus which are used to ensure the existence of three weak

solutions for the following system:

8>>>>>>>>><>>>>>>>>>:

tD
�i
T

�
1

wi(t)
p�2�p (wi (t) 0D

�i
t ui (t))

�
+ � jui (t)jp�2 ui (t)

= �Fui (t; u1 (t) ; u2 (t) ; :::; un (t)) a.e. t 2 [0; T ] ;

ui (0) = ui (T ) = 0;

(3.1)

where

�p (s) = jsj
p�2 s; p > 1; wi (t) 2 L1 [0; T ] ;

with w0i = ess inf [0;T ]wi (t) > 0; 0D
�i
t and tD

�i
T are the left and right Riemann-Liouville fractional

derivatives of order 0 < �i � 1 respectively, for 1 � i � n; � is positive parameter, and

F : [0; T ]�Rn ! R is measurable function with respect to t 2 [0; T ] for every (x1; x2; :::; xn) 2 Rn

and are C1 with respect to (x1; x2; :::; xn) 2 Rn:

For t 2 [0; T ], Fui denote the partial derivative of F with respect to ui; respectively,

(H0) �i 2 (0; 1] for 1 � i � n:

(H1) F : [0; T ] � Rn ! R be a function such that F (:; u1; u2; :::; un) is continuous in [0; T ]

for every (u1; u2; :::; un) 2 Rn, F (t; :; :; :::; :) is a C1 function in R2:

For [0; T ] � R, let C ([0; T ] ;R) be the real space of all continuous functions with norm

kxk1 = max
t2[0;T ]

jx(t)j ;and Lp ([0; T ] ;R) (1 � p <1) be the space of functions for which the pth

power of the absolute value is Lebesgue integrable with norm kxkLp =

0@ TZ
0

jx(t)jp dt

1A
1
p

:
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3.2 De�nitions and ratings

De�nition 3.1 [24]

Let u be a function de�ned on [a; b] : The left and right Riemann-Liouville fractional deriva-

tives of order �i > 0 for a function u are de�ned by

aD
�i
t u (t) :=

dn

dtn
aD

�i�n
t u (t) =

1

� (n� �)

dn

dtn

tZ
a

(t� s)n��i�1 u (s) ds;

and

tD
�i
b u (t) := (�1)

n d
n

dtn
tD

�i�n
b u (t) =

(�1)n

� (n� �)

dn

dtn

bZ
t

(t� s)n��i�1 u (s) ds;

for every t 2 [a; b] ; provided the right-hand sides are pointwise de�ned on [a; b] ; where n � 1 �

�i < n and n 2 N�:

Here, � (�i) is the standard gamma function given by

� (�i) :=

+1Z
0

z�i�1e�zdz:

Setting ACn ([a; b] ;R) the space of functions u : [a; b] ! R such that u 2 Cn�1 ([a; b] ;R)

and u(n�1) 2 ACn ([a; b] ;R). Here, as usual, Cn�1 ([a; b] ;R) denotes the set of mappings being

(n� 1) times continuously di¤erentiable on [a; b] : In particular, we denote AC ([a; b] ;R) :=

AC1 ([a; b] ;R) :

De�nition 3.2 [28]

Let 0 < �i � 1, for 1 � i � n, 1 < p <1: The fractional derivative space

Ep�i = fu(t) 2 L
p ([0; T ] ;R) aD

�i
t u (t) 2 Lp ([0; T ] ;R) ; u (0) = u (T ) = 0g ;

is a Banche space.
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Then, for any u 2 Ep�i, we can de�ne the weighted norm for Ep�i as

kuk�i =

0@ TZ
0

ju(t)jp dt+
TZ
0

wi(t) jaD�i
t u (t)j

p dt

1A
1
p

: (3.2)

Multiplying (3.1) by any vi (t) 2 Ep�i , and integrating, yields8>>>>>>>>><>>>>>>>>>:

TZ
0

nX
i=1

�
tD

�i
T

�
1

wi(t)
p�2�p (wi (t) 0D

�i
t ui (t))

��
vi (t) dt+ �

TZ
0

nX
i=1t

jui (t)jp�2 ui (t) vi (t) dt

= �

TZ
0

nX
i=1t

Fui (t; u1 (t) ; u2 (t) ; :::; un (t)) vi (t) dt:

(3.3)

Then, combining De�nition 3.1, De�nition 2.4, Proposition 2.3 and Proposition 2.3, he left

side of (3.3) can be transferred into

TZ
0

nX
i=1

�
tD

�i
T

�
1

wi (t)
p�2�p (wi (t) 0D

�i
t ui (t))

��
vi (t) dt+ �

TZ
0

nX
i=1t

jui (t)jp�2 ui (t) vi (t) dt

= �
TZ
0

vi (t) d

�
tD

�i�1
T

�
1

wi (t)
p�2�p (wi (t) 0D

�i
t ui (t))

��
+ �

TZ
0

jui (t)jp�2 ui (t) vi (t) dt

=

TZ
0

1

wi (t)
p�2�p (wi (t) 0D

�i
t ui (t)) 0D

�i�1
t v0i (t) dt+ �

TZ
0

jui (t)jp�2 ui (t) vi (t) dt

=

TZ
0

1

wi (t)
p�2�p (wi (t) 0D

�i
t ui (t))

C
0D

�i
t vi (t) dt+ �

TZ
0

jui (t)jp�2 ui (t) vi (t) dt

=

TZ
0

1

wi (t)
p�2�p (wi (t) 0D

�i
t ui (t)) 0D

�i
t vi (t) dt+ �

TZ
0

jui (t)jp�2 ui (t) vi (t) dt:

In what follows, we will give the de�nition of weak solution for (3.1), which is based on the

discussion mentioned above.
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De�nition 3.3 [13]

We mean by a weak solution of system (3.1); any u = (u1; u2; :::; un) 2 X such that for all

v = (v1; v2; :::; vn) 2 X

TZ
0

nX
i=1

1

wi (t)
p�2�p (wi (t) 0D

�i
t ui (t))0D

�i
t vi (t) dt

+�

TZ
0

nX
i=1

jui (t)jp�2 ui (t) vi (t) dt

��
TZ
0

nX
i=1

Fui (t; u1 (t) ; u2 (t) ; :::; un (t)) vi (t) dt = 0:

Lemma 3.1 [13]

Let 0 < �i � 1; for 1 � i � n , 1 < p <1: For any u 2 Ep�i we have

kuikLp �
T�i

� (�i + 1)
k0D�i

t uikLp ;

moreover, if �i >
1

p
and

1

p
+
1

q
= 1; then

kuik1 �
T�i

� (�i) ((�i � 1) q + 1)
1
q

k0D�i
t uikLp : (3.4)

From Lemma 3:1, we easily observe that

kuikLp �
T�i

�
TR
0

wi(t) j0D�i
t u (t)j

p dt

�1=p
� (�i + 1)

; (3.5)

for 0 < �i � 1, and

kuik1 �
T�i�

1
p

�
TR
0

wi(t) j0D�i
t u (t)j

p dt

�1=p
� (�i) (w0i )

1
p ((�i � 1) q + 1)

1
q

; (3.6)

for �i >
1

p
and

1

p
+
1

q
= 1:
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By using (3.5), the norm of (3.2) is equivalent to

kuk�i =

0@ TZ
0

wi(t) jaD�i
t u (t)j

p dt

1A
1
p

; 8u 2 Ep�i : (3.7)

Throughout this paper, we let X be the Cartesian product of the n spaces Ep�i for 1 � i � n;

i.e; X = Ep�1 � Ep�2 � :::� Ep�n equipped with the norm

kuk =
nX
i=1

kuikEp�i ; u = (u1; u2; :::; un) ;

where kuikEp�i is de�ned in (3.7):

Lemma 3.2 [28]

For 0 < �i � 1 and 1 < p < 1, the fractional derivative space X is a re�exive separable

Banach space.

Lemma 3.3 [51]

Let A : X ! X�be a monotone, coercive and hemicontinuous operator on the real, separable,

re�exive Banach space X: Assume fw1; w2:::gis a basis in X. Then the following assertion holds:

(d) Inverse operator. If A is strictly monotone, then the inverse operator A�1 : X� ! X exists.

This operator is strictly monotone, demicontinuous and bounded. If A is uniformly monotone,

then A�1 is continuous. If A is strongly monotone, then it is Lipschitz continuous.

3.3 Result of existence of at least three solution

In the present section ,the existence of multiple solutions for system (3.1) is examined by

using Theorem 1:1. First and foremost, we de�ne the functionals �;	 : X ! R as

� (u) =
1

p

TZ
0

nX
i=1

(wi (t) j0D�i
t ui (t)j

p + � jui (t)jp) dt,

u = (u1; u2; :::; un) 2 X,

(3.8)
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and

	(u) =

TZ
0

F (t; u1 (t) ; u2 (t) ; :::; un (t)) dt: (3.9)

Lemma 3.4 [28]

Let 0 < �i � 1; u = (u1; u2; :::; un) 2 X: Functionals � and 	 are de�ned in (3.8) and

(3.9). Then, � : X ! R is a coercive, continuously Gâteaux di¤erentiable and sequentially

weakly lower semicontinuous functionl whose Gâteaux derivative admits a continuous inverse on

X�, and 	 : X ! R is a continuously Gâteaux di¤erentiable functional whose Gâteaux derivative

is compact.

Proof For each u = (u1; u2; :::; un) 2 X, de�ne �; 	 : X ! R as

� (u) =
1

p

TZ
0

nX
i=1

(wi (t) j0D�i
t ui (t)j

p + � jui (t)jp) dt;

and

	(u) =

TZ
0

F (t; u1 (t) ; u2 (t) ; :::; un (t)) dt:

Clearly, � and 	 are continuously Gâteaux di¤erentiable functionals whose Gâteaux deriva-

tives at the point u 2 X are given by

�0 (u) (v) =

TZ
0

nX
i=1

1
wi(t)

p�2�p (wi (t) 0D
�i
t ui (t)) 0D

�i
t vi (t) dt

+�

TZ
0

nX
i=1

jui (t)jp�2 ui (t) vi (t) dt;

(3.10)

for every v = (v1; v2; :::; vn) 2 X:

In addition, according to (3.8), one has � (u) � 1
p
kukpX ; which means that � is a coercive

functional. Next, we claim that �0 admits a continuous inverse on X�:

Let u = (u1; u2; :::; un) 2 X; v = (v1; v2; :::; vn) 2 X: Recalling (3.10); we get
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h�0 (u)� �0 (v) ; u� vi =
TZ
0

nX
i=1

1
wi(t)

p�2�p (wi (t) 0D
�i
t ui (t)) 0D

�i
t (u� v) dt

+ �

TZ
0

nX
i=1

jui (t)jp�2 ui (t) (u� v) dt

�
TZ
0

nX
i=1

1
wi(t)

p�2�p (wi (t) 0D
�i
t vi (t)) 0D

�i
t (u� v) dt

+ �

TZ
0

nX
i=1

jvi (t)jp�2 vi (t) (u� v) dt:

(3.11)

According to the well-known inequality

�
js1jp�2 s1 � js2jp�2 s2

�
(s1 � s2)

�

8<: js1 � s2jp ; p � 2
js1�s2j2

(js1j+js2j)2�p
; 1 < p � 2:

(3.12)

We have �
�p (wi (t) 0D

�i
t ui (t))� �p (wi (t) 0D

�i
t vi (t))

�

�

8><>:
1

wi(t)
jwi (t) 0D

�i
t ui (t)� wi (t) 0D

�i
t vi (t)j

p ; p � 2
1

wi(t)

jwi(t) 0D�i
t ui(t)�wi(t) 0D

�i
t v(t)j2

(jwi(t) 0D�i
t ui(t)j+jwi(t) 0D�i

t vi(t)j)2�p ; 1 < p < 2:

Hence, when 1 < p < 2; one has

TR
0

nP
i=1

jwi (t) 0D
�i
t ui (t)� wi (t) 0D

�i
t ui (t)j

p dt

�
�
TR
0

nP
i=1

jwi(t) 0D�i
t ui(t)�wi(t) 0D

�i
t vi(t)j2

wi(t)(jwi(t) 0D�i
t ui(t)j+jwi(t) 0D�i

t vi(t)j)2�pdt
� p

2

�
TR
0

nP
i=1

wi (t)
p

2�p (jwi (t) 0D
�i
t ui (t)j+ jwi (t) 0D

�i
t vi (t)j)

p dt

� 2�p
2

;

(3.13)

which means that
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TR
0

nP
i=1

jwi(t)0D�i
t ui(t)�wi(t)0D

�i
t vi(t)j2

wi(t)(jwi(t)0D�i
t ui(t)j+jwi(t)0D�i

t vi(t)j)2�pdt

� 2p�2(w01)
2(p�1)

p

�
w01

kui � vik2�i
�
kuikp�i + kvik

p
�i

� p�2
p :

(3.14)

Then, we deduce

TR
0

nP
i=1

�
�p (wi (t) 0D

�i
t ui (t))� �p (wi (t) 0D

�i
t vi (t)) 0D

�i
t (u� v)

�
dt

� 2p�2(w01)
2(p�1)

p

�
w01

kui � vik2�i
�
kuikp�i + kvik

p
�i

� p�2
p > 0:

(3.15)

When p � 2; we get

TR
0

nP
i=1

�
�p (wi (t) 0D

�i
t ui (t))� �p (wi (t) 0D

�i
t vi (t)) 0D

�i
t (u� v)

�
dt

� (w01)
p�2 kui � vikp�i > 0:

(3.16)

Then, combining with (3.15), yields

TZ
0

nX
i=1

�
�p (wi (t) 0D

�i
t ui (t))� �p (wi (t) 0D

�i
t vi (t)) (0D

�i
t ui � 0D

�i
t vi)

�
dt > 0: (3.17)

For every 1 < p <1

Further, denote

A =

TZ
0

nX
i=1

jui (t)jp�2 ui (t) (u� v) dt+

TZ
0

nX
i=1

jvi (t)jp�2 vi (t) (u� v) dt:

Then, reapplying inequality (3.12); we always have

A � kui � vikp�i > 0; for p � 2

and

A � 2p�2 kui � vik2Lp (kuik
p
Lp + kvik

p
Lp)

p�2
p > 0; for 1 < p < 2:
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That is, A > 0 for every 1 < p < 1: Therefore, by using (3.11) and (3.17); the following

inequality holds

h�0 (u)� �0 (v) ; u� vi > 0;

which means that �0 is strictly monotone. Furthermore, in view of X being re�exive, for un ! u

in X strongly, as n!1; one has �0 (un)* �0 (u) in X� as n!1:

Thus, we say that �0 is demicontinuous. Then, according to lemma 3:2 and lemma 3:3, we

obtain that the inverse operator (�0)�1 of �0 exists and is continuous.

Moreover, let

kukp�;�i =
TZ
0

nX
i=1

(wi (t) j0D�i
t ui (t)j

p + � jui (t)jp) dt;

owing to the sequentially weakly lower semicontinuity of kukp�;�i we observe that � is sequentially

weakly lower semicontinuous in X:

Considering the functional	; we will point out that	 is a Gâteaux di¤erentiable, sequentially

weakly upper semicontinuous functional on X:

Indeed, for un � X, assume that un * u in X; i.e un uniformly converges to u on [0; T ] as

n!1. By using Fatou�s lemma, one has

lim
n!+1

inf 	 (un) �
TZ
0

lim
n!+1

inf F (t; un (t)) dt

=

TZ
0

F (t; u1 (t) ; u2 (t) ; :::; un (t)) dt = 	(u) ;

whereas u = (u1; u2; :::; un) 2 X; which implies that 	 is sequentially weakly upper semi-

continuous. Furthermore, since F is continuously di¤erentiable with respect to ui for almost

every t 2 [0; T ] ; then based on the Lebesgue control convergence theorem, we obtain that

	
0
(un)! 	

0
(u) strongly , that is 	

0
is strongly continuous on X: Hence, we con�rm that 	

0
is

a compact operator.
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Moreover, it is easy to prove that the functional with the Gâteaux derivative 	
0
(u) 2 X� at

the point u 2 X

	0 (u) (v) =

TZ
0

nX
i=1

Fui (t; u1 (t) ; u2 (t) ; :::; un (t)) vi (t) dt; (3.18)

for any v = (v1; v2; :::; vn) 2 X:The proof is completed.

In order to facilitate the proof of our main result, some notations are given.

Putting

k : = max
1�i�n

(
T p�i�1

(� (�i))
pw0i ((�i � 1) q + 1)

p
q

)
;

ek : = max
1�i�n

�
T p�i

(� (�i + 1))
pw0i

�
:

De�ne

� (�) =

(
u = (u1; u2; :::; un) 2 Rn :

1

p

nX
i=1

juijp < �

)
:

Theorem 3.1 Let 1
p
< �i � 1; for 1 � i � n: Assume that there exists a positive constant r and

a function u = (u1; u2; :::; un) 2 X such that

(i)
nX
i=1

kuikp�i + �
nX
i=1

kuikpLp > pr;

(ii)
TZ
0

sup
u2�(kr)

F (t; u1; u2; :::; un) dt

r
<

p

TZ
0

F (t; u1; u2; :::; un) dt

nX
i=1

kuikp�i + �

nX
i=1

kuikpLp
;

(iii)

lim
juj!1

inf
F (t; u1; u2; :::; un)

nX
i=1

juijp
<

TZ
0

sup
u2�(kr)

F (t; u1; u2; :::; un) dt

prek :
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Then, setting

� =

377777775

nX
i=1

kuikp�i + �

nX
i=1

kuikpLp

p

TZ
0

F (t; u1; u2; :::; un) dt

;
r

TZ
0

sup
u2�(kr)

F (t; u1; u2; :::; un) dt

266666664
for each � 2 � system (3.1) admits at least three weak solutions in X.

Proof Considering Theorem 1:1 and lemma 3:4, in order to obtain that system (3.1) possesses

at least three weak solutions in X, we only need to guarantee the assumptions (a1) and (a2)

of Theorem 1:1 are satis�ed. Choose u0 = (u01; u02; :::; u0n) and u1 = (u11; u12; :::; u1n) with

(u01; u02; :::; u0n) = (0; 0; :::; 0) : Due to (3.9) and (i) , we get 	(u0) = 0 and � (u1) > r > 0;

which satisfy the requirement of Theorem 1.1. Then, combining (3.8) and (3.5), yields

fu = (u1; u2; :::; un) 2 X : � (u) � rg

=

(
u = (u1; u2; :::; un) 2 X :

1

p

nX
i=1

kuikp�i +
�

p

nX
i=1

kuikpLp � r

)

�
(
u = (u1; u2; :::; un) 2 X :

1

p

nX
i=1

kuikp�i � r

)

�
(
u = (u1; u2; :::; un) 2 X :

nX
i=1

(� (�i))
pw01((�i � 1) q + 1)

p
q

pT
p�i�1

kuik1 � r

)

�
(
u = (u1; u2; :::; un) 2 X :

nX
i=1

juijp � kpr

)
;

which implies that

sup
�(u)�r

	(u) = sup
�(u)�r

TZ
0

F (t; u1; u2; :::; un) dt

�
TZ
0

sup
u2�(kr)

F (t; u1; u2; :::; un) dt:

41



Chapter 3. Existence of weak solutions for a new class of fractional p-Laplacian
boundary value systems

Then, the following inequality is obtained under condition (ii)

sup
�(u)�r

	(u) �

TR
0

sup
u2�(kr)

F (t; u1; u2; :::; un) dt

r

�
p
TR
0

nP
i=1

F (t; u1; u2; :::; un) dt

nP
i=1

kuikp�i + �
nP
i=1

kuikpLp
=
	(u1)

� (u1)
:

Thus the hypothesis (a1) of Theorem 1:1 holds.

On the other hand, taking (iii) into account, there exist constants C; " 2 R with

C <

R T
0
sup

u2�(kr)
F (t; u1; u2; :::; un) dt

r
;

such that

F (t; u1; u2; :::; un) �
C

pek
nX
i=1

juijp + " (3.19)

for any t 2 [0; T ] and u = (u1; u2; :::; un) 2 X, when C > 0 by using (3.8), (3.19) and (3.4)

yields

� (u)� �	(u) =
1

p

nX
i=1

kuikp�i +
�

p

nX
i=1

kuikpLp � �

Z T

0

F (t; u1; u2; :::; un) dt

� 1

p

nX
i=1

kuikp�i � �

Z T

0

F (t; u1; u2; :::; un) dt

� 1

p

nX
i=1

kuikp�i �
�C

pek
Z T

0

nX
i=1

kuikpLp dt� �T"

� 1

p

nX
i=1

kuikp�i �
�C

pek
 

nX
i=1

T�i

(� (�i + 1))
pw0i

kuikp�i

!
� �T"

� 1

p

nX
i=1

kuikp�i �
�C

p

nX
i=1

kuikp�i � �T"

�
 
1

p

nX
i=1

kuikp�i

!0B@1� C
rR T

0
sup

u2�(kr)
F (t; u1; u2; :::; un) dt

1CA� �T":
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That is

lim
kukX !+1

� (u)� �	(u) = +1:

Furthermore, analogous to the case of C > 0 , we can deduce that � (u)� �	(u)! +1 as

kukX ! +1 with C � 0. Hence, all the hypotheses of Theorem 1:1 hold, then, system (3.1)

admits at least three weak solutions in X: The proof is completed.

For simplicity, before giving a corollary of Theorem 3:1, some notations are presented.

Let 0 < h < 1
2
we put

Ai (�i; h) =
1

(hT )

24 hTZ
0

nX
i=1

wi (t) t
(1��i)p

dt+

(1�h)TZ
hT

nX
i=1

wi (t)
h
t
1��i � (t� hT )1��i

ip
dt

+

TZ
(1�h)T

nX
i=1

wi (t)
h
t
1��i � (t� hT )1��i � (t� ((1� h)T ))1��i

ip
dt:

375 (3.20)

Corollary 3.1 Let 1
p
< �i � 1: Assume that there exist � > 0 and � = (�1; �2; :::; �n) 2 Rn

with �1 > 0; �2 > 0; :::; �n > 0 and � � k

nP
i=1

Ai(�i;h)�
p
i

p
; such that

(i)0

F (t; u1; u2; :::; un) � 0 for

(t; u1; u2; :::; un) 2 ([0; hT ] [ [(1� h)T; T ]� [0; �])

(ii)0

TR
0

sup
u2�(kr)

F (t; u1; u2; :::; un) dt

r

<

p
(1�h)TR
hT

F (t;� (2� �1) �1;� (2� �2) �2; :::;� (2� �n) �n) dt

k
�
1 + �ek� nP

i=1

Ai (�i; h) �
p
i

;
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(iii)0

lim
juj!1

inf
F (t; u1; u2; :::; un)

nX
i=1

juijp
� 0

for each

� 2 �
0
=

377777775
�
1 + �ek� nX

i=1

Ai (�i; h) �
p
i

p

(1�h)TZ
hT

F (t;� (2� �1) �1;� (2� �2) �2; :::;� (2� �n) �n) dt

;
�

k

TZ
0

sup
u2�(kr)

F (t; u1; u2; :::; un) dt

266666664
;

(3.21)

thus, system (3.1) admits at least three weak solutions in X.

Proof Choose

Ui(t) =

8>>>><>>>>:
� (2� �i) �i

hT
t; t 2 [0; hT [ ;

� (2� �i) �i ; t 2 [hT; (1� h)T ] ;

� (2� �i) �i
hT

(T � t ) ; t 2 ](1� h)T; T ] ;

obviously Ui (0) = Ui (T ) = 0; Ui (t) 2 Lp [0; T ]. Owing to De�nition 3:1, we derive,

0D
�i
t Ui(t) =

8>>><>>>:
a1 (t) , t 2 [0; hT [ ;

a2 (t) , t 2 [hT; (1� h)T ] ;

a3 (t) , t 2 ](1� h)T; T ] ;

where

a1 (t) =
�i
hT

t1��i ; a2 (t) =
�i
hT

�
t1��i � (t� (hT )1��i

�
;

and

a3 (t) =
�i
hT

�
t1��i � (t� (hT )1��i � (t� (T � hT )1��i

�
:
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That is

kUkp�i =

TZ
0

nX
i=1

wi(t) j0D�i
t Ui (t)j

p dt

=

hTZ
0

nX
i=1

wi(t) j0D�i
t Ui (t)j

p dt+

(1�h)TZ
hT

nX
i=1

wi(t) j0D�i
t Ui (t)j

p dt+

TZ
(1�h)T

nX
i=1

wi (t) j0D�i
t Ui (t)j

p dt

=
nX
i=1

Ai (�i; h) �
p
i ;

where (3.20) is used. Hence U = (U1; U2; :::; Un) 2 X.

Take r =
�

k
, then

rk = � � k

nX
i=1

Ai (�i; h) �
p
i

p

= k

nX
i=1

kUikp�i

p
� k� (U) ;

for every U = (U1; U2; :::; Un) 2 X:

Which means that

r � 1

p

nX
i=1

kuikp�i +
�

p

nX
i=1

kuikpLp :

Thus, the assumption (ii) of Theorem 3:1 holds.

On the other hand, based on (3.2) and (3.20), yields

� (U) � 1

p

nX
i=1

kuikp�i +
�

p

nX
i=1

T�i

(� (�i + 1))
pw0i

kuikp�i

� 1

p

nX
i=1

kuikp�i +
�

p
ek nX
i=1

kuikp�i

�

�
1 + �ek� nX

i=1

Ai (�i; h) �
p
i

p
:

(3.22)
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Then, from (3.22) and (ii)0 ; we can obtain the following inequality

TZ
0

sup
u2�(kr)

F (t; u1; u2; :::; un) dt

r
=

k

TZ
0

sup
u2�(kr)

F (t; u1; u2; :::; un) dt

�

<

kp

(1�h)TZ
hT

F (t;� (2� �1) �1;� (2� �2) �2; :::;� (2� �n) �n) dt

k
�
1 + �ek� nX

i=1

Ai (�i; h) �
p
i

�

(1�h)TZ
hT

F (t;� (2� �1) �1;� (2� �2) �2; :::;� (2� �n) �n) dt

� (U)

�

k

TZ
0

F (t; u1; u2; :::; un) dt

nX
i=1

kuikp�i + �
nX
i=1

kuikpLp
;

which means that the hypothesis (ii) of Theorem 3:1 is satis�ed.

Furthermore, the condition (iii) of Theorem 3:1 holds under (iii)0 since �
0 � � Theorem 3:1

is successfully employed to ensure the existence of at least three weak solutions for system (3.1),

the proof is completed.

.
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3.4 Examples

Now, we give the following two examples to illustrate the applications of our result.

Example 3.1 Let p = 2; �1 = 0:8; �2 = 0:65; � = 1; w1(t) = 1 + t2; w2(t) = 0:5 + t; T = 1:

Then, system (3.1) gets the following form8>>>>>>>>><>>>>>>>>>:

tD
0:8
1 ((1 + t2) 0D

0:8
t u1 (t)) + u1 (t) = �Fu1 (t; u1 (t) ; u2 (t)) ; t 2 [0; 1] ;

tD
0:65
1 ((0:5 + t) 0D

0:65
t u2 (t)) + u2 (t) = �Fu2 (t; u1 (t) ; u2 (t)) ; t 2 [0; 1] ;

u1 (o) = u1(1) = 0; u2 (o) = u2(1) = 0:

Taking

U1 (t) = � (1:2) t (1� t) ; U2 (t) = � (1:35) t (1� t) ;

and

F (t; u1 (t) ; u2 (t)) =
�
1 + t2

�
G (u1; u2) ;

where

G (u1; u2) =

8>>><>>>:
(u21 + u22)

2 , u21 + u22 � 1 ,

10 (u21 + u22)
1
2 � 9 (u21 + u22)

1
3 , u21 + u22 > 1.

Clearly, F (t; 0; 0) = 0; w01 = 1 and w
0
2 = 0:5 for any t 2 [0; 1] :

By the direct calculation, we have

max

�
1

(� (0:8))2 (2� 0:8� 1)
;

1

(� (0:65))2 � 0:5 (2� 0:65� 1)

�
= k � 3:4764;

max

�
1

(� (0:8 + 1))2
;

1

(� (0:65 + 1))2 � 0:5

�
= ~k � 2:4684;
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and

0D
0:8
t U1(t) = t0:2 � 2� (1:2)

� (2:2)
t1:2;

0D
0:65
t U2(t) = t0:35 � 2� (1:35)

� (2:35)
t1:35:

So that

kU1(t)k20:8 � 0:19333; kU2(t)k20:65 � 0:078559

kU1(t)k2L2 � 0:028101; kU2(t)k2L2 � 0:026716:

Take r = 1� 10�4: We easily obtain that

1

2

�
kU1(t)k20:8 + kU2(t)k

2
0:65

�
+
1

2

�
kU1(t)k2L2 + kU2(t)k

2
L2

�
� 0:1632 > r;

which implies that the condition (i) holds, and

1Z
0

sup
(u1;u2)2�(kr)

F (t; u1; u2) dt

r
=

16k2r

3
� 0:006445

<

2

1Z
0

F (t; U1; U2) dt

2X
i=1

kUik2�i +
2X
i=1

kUik2L2

� 0:0320085949;

and

0 = lim
ju1j!1;

inf
ju2j!1

F (t; u1; u2)

ju1j2 + ju2j2
<

1R
0

sup
(u1;u2)2�(kr)

F (t; u1; u2) dt

2r
�
k

� 0:001305;

thus, conditions (ii) and (iii) are satis�ed. Then, in view of Theorem 3.1 for each � 2 ]31:241; 155:159[,

the system (3.1) has at least three weak solutions in X.
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Example 3.2 Let p = 3; �1 = 0:8; �2 = 0:6; � = 1; w1(t) = 1+ t2; w2(t) = 0:5+ t and T = 1.

Then , system (3.1) gets the following form8>>>>>>>>><>>>>>>>>>:

tD
0:8
1 ((1 + t2) (0D

0:8
t u1 (t)) j0D0:8

t u1 (t)j) + ju1 (t)ju1 (t) = �Fu1 (t; u1 (t) ; u2 (t)) ; t 2 [0; 1] ;

tD
0:6
1 ((0:5 + t) (0D

0:6
t u2 (t)) j0D0:6

t u2 (t)j) + ju2 (t)ju2 (t) = �Fu2 (t; u1 (t) ; u2 (t)) ; t 2 [0; 1] ;

u1 (0) = u1(1) = 0; u2 (0) = u2(1) = 0:

Taking

U1 (t) = � (1:2) t (1� t) ; U2 (t) = � (1:4) t (1� t) ;

and

F (t; u1 (t) ; u2 (t)) = (1 + t)H (u1; u2) ;

where

H (u1; u2) =

8>>><>>>:
(u31 + u32)

2
; u31 + u32 � 1;

10 (u31 + u32)
1
2 � 9 (u31 + u32)

1
3 , u31 + u32 > 1:

Clearly, F (t; 0; 0) = 0; w01 = 1 and w
0
2 = 0:5 for any t 2 [0; 1] :

By the direct calculation, we have

max

�
1

(� (0:8))3 ((0:8� 1)� 1:5 + 1)2
;

1

((� (0:6))3 (0:6� 1)� 1:5 + 1)2 � 0:5

�
= k � 3:7849;

max

�
1

(�(0:8 + 1))3
;

1

(�(0:6 + 1))3 � 0:5

�
= ~k � 2:803;

and

��
0D

0:8
t U1(t)

�� =

8<: t0:2 � 2�(1:2)
�(2:2)

t1:2, t 2 [0; 0:6]

�
�
t0:2 � 2�(1:2)

�(2:2)
t1:2
�
, t 2 (0:6; 1] ;

��
0D

0:6
t U2(t)

�� =

8<: t0:4 � 2�(1:35)
�(2:4)

t1:4, t 2 [0; 0:7]

�
�
t0:4 � 2�(1:35)

�(2:35)
t1:4
�
, t 2 (0:7; 1] :
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So that

kU1(t)k30:8 � 0:09228; kU2(t)k30:6 � 0:0212

kU1(t)k3L3 � 0:0053; kU2(t)k3L3 � 0:005:

Take r = 1� 10�5: We easily obtain that

1

3

�
kU1(t)k30:8 + kU2(t)k

3
0:65

�
+
1

3

�
kU1(t)k3L3 + kU2(t)k

3
L3

�
� 0:041 > r;

which implies that the condition (i) holds, and

1Z
0

sup
(u1;u2)2�(kr)

F (t; u1; u2) dt

r
=

27k2r

2
� 0:00193

<

3

1Z
0

F (t; U1; U2) dt

2X
i=1

kUik3�i +
2X
i=1

kUik3L3

� 0:00656;

and

0 = lim
u1!+1;

inf
u2!+1

F (t; u1; u2)

u31 + u32
<

1Z
0

sup
(u1;u2)2�(kr)

F (t; u1; u2) dt

3r
�
k

� 0:00023;

thus, conditions (ii) and (iii) are satis�ed. Then, in view of Theorem 3:1 for each � 2 ]152:43; 518:13[,

the system (3.1) admits at least three weak solutions in X.
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4.1 Introduction to the problem

In this chapter, we use two control parameters to study a class of perturbed nonlinear fractional

p-Laplacian di¤erential systems, where we prove the existence of three weak solutions by using

the variational method and Ricceri�s critical points theorems respecting some necessary condi-

tions on the primitive function of nonlinear terms Fu and Fv. To apply critical point theory to

explore the existence of weak solutions for the following perturbed fractional di¤erential system:

8>>>>>>>>><>>>>>>>>>:

tD
�
T

�
1

w1(t)
p�2�p (w1 (t) 0D

�
t u (t))

�
+ � ju (t)jp�2 u (t)

= �Fu (t; u (t) ; v (t)) + �Gu (t; u (t) ; v (t)) a.e. t 2 [0; T ] ;

tD
�
T

�
1

w2(t)
p�2�p

�
w2 (t) 0D

�
t v (t)

��
+ � jv (t)jp�2 v (t)

= �Fv (t; u (t) ; v (t)) + �Gv (t; u (t) ; v (t)) a.e. t 2 [0; T ] ;

u (0) = u (T ) = 0; v (0) = v (T ) = 0;

(4.1)

where �; �; � are positive real parameters, �; � 2 (0; 1], 0D�
t , tD

�
T and 0D

�
t , tD

�
T are the left

and right Riemann-Liouville fractional derivatives of order �; � respectively.�p (s) = jsjp�2 s; p >

1; w1 (t) ; w2 (t) 2 L1 [0; T ] with w01 = ess inf [0;T ]w1 (t) > 0 and w02 = ess inf [0;T ]w2 (t) > 0:

(F0) F : [0; T ]�R2 ! R is a function such that F (�; u; v) is continuous in[0; T ] for any (u; v)

2 R2, F (t;�;�) is a C1 function in R2, and Fs is the partial derivative of F with respect to s ;

(G0) G : [0; T ] � R2 ! R is measurable with respect to t for every(u; v) 2 R2, continuously

di¤erentiable in R2 for a.e. t 2 [0; T ], and Gu; Gv denote the partial derivatives of G that satisfy

the following condition:

supp
u2+v2��

max fjGu(�; u; v)j ; jGv(�; u; v)jg 2 L1 ([0; T ]) for all � > 0; (4.2)

we recall some basic notations and lemmas and construct a variational framework. Let X be

a real Banach space, and let �X denote the class of all functionals � : X ! R that possess

the following property: if fwng is a sequence in X converging weakly to w 2 X and lim
n!1

inf �(wn) � �(w), then fwng admits a subsequence converging strongly to w. For instance, if X

is uniformly convex and S : [0;+1) ! R is a continuous strictly increasing function, then the
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functional w ! S(kwk) belongs to the class �X .

4.2 Preliminary results

De�nition 4.1 [24]

Let u be a function de�ned on [a; b] : The left and right Riemann-Liouville fractional deriva-

tives of order � > 0 for a function u are de�ned by

aD
�
t u (t) =

dn

dtn
aD

��n
t u (t) =

1

� (n� �)

dn

dtn

tZ
a

(t� s)n���1 u (s) ds;

and

tD
�
b u (t) = (�1)

n d
n

dtn
tD

��n
b u (t) =

(�1)n

� (n� �)

dn

dtn

bZ
t

(t� s)n���1 u (s) ds;

for every t 2 [a; b] ; provided the right-hand sides are pointwise de�ned on [a; b] ; where

n� 1 � � < n and n 2 N�:

Here, � (�) is the standard gamma function given by

� (�) =

+1Z
0

z��1e�zdz:

Set ACn ([a; b] ;R) the space of functions u : [a; b] ! R such that u 2 Cn�1 ([a; b] ;R) and

u(n�1) 2 ACn ([a; b] ;R). Here, as usual, Cn�1 ([a; b] ;R) denotes the set of mappings having

(n� 1) times continuously di¤erentiable on [a; b] : In particular, we signify AC ([a; b] ;R) =

AC1 ([a; b] ;R) :

De�nition 4.2 [28]

Let 0 < � � 1, for 1 < p <1: The fractional derivative space Ep� is de�ned as

Ep� = fu(t) 2 Lp ([0; T ] ;R)j 0D�
t u (t) 2 Lp ([0; T ] ;R) ; u (0) = u (T ) = 0g ;

is a Banche space.
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Then, for any u 2 Ep�, we can de�ne the weighted norm for Ep� as

kuk� =
�Z T

0

ju(t)jp dt+
Z T

0

w1(t) j0D�
t u (t)j

p dt

� 1
p

(4.3)

Lemma 4.1 [13]

Let 0 < � � 1 and 1 < p <1: For any u 2 Ep� we have

kukLp �
T�

� (�+ 1)
k0D�

t ukLp : (4.4)

Also, if � > p and 1
p
+ 1

q
= 1; then

kuk1 �
T��

1
p

� (�) ((�� 1) q + 1)
1
q

k0D�
t ukLp : (4.5)

From Lemma 4:1, we clearly observe that

kukLp �
T��

1
p

� (�+ 1)

�Z T

0

w1(t) j0D�
t u (t)j

p dt

�1=p
; (4.6)

for 0 < � � 1, and

kuk1 �
T��

1
p

�R T
0
w1(t) j0D�

t u (t)j
p dt
�1=p

� (�) (w01)
1
p ((�� 1) q + 1)

1
q

; (4.7)

for � > p and 1
p
+ 1

q
= 1:

By using (4.6), the norm of (4.3) is equivalent to

kuk� =
�Z T

0

w1(t) j0D�
t u (t)j

p dt

� 1
p

; 8u 2 Ep�: (4.8)

For 0 < � � 1; 1 < p <1 analogous to the space Ep� we de�ne the fractional derivative space

Ep� as n
v(t) 2 Lp ([0; T ] ;R)j0D

�
t v (t) 2 Lp ([0; T ] ;R) ; v (0) = v (T ) = 0

o
;

is a Banche space.
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Then, for any v 2 Ep�, the norm of Ep� is de�ned by

kvk� =
�Z T

0

jv (t)jp dt+
Z T

0

w2(t)
���0D�

t v (t)
���p dt� 1

p

; 8v 2 Ep� (4.9)

Similar with (4.6) and (4.7), we get

kvkLp �
T �
�R T

0
w2(t)

���0D�
t v (t)

���p dt�1=p
� (� + 1) (w02)

1
p

(4.10)

for 0 < � � 1, and

kvk1 �
T ��

1
p

�R T
0
w2(t)

���0D�
t v (t)

���p dt�1=p
� (�) (w02)

1
p ((� � 1) q + 1)

1
q

: (4.11)

for 1
p
< � � 1 and 1

p
+ 1

q
= 1: Then, based upon (4.10), the weighted norm

kvk� =
�Z T

0

w2(t)
���0D�

t v (t)
���p dt� 1

p

; (4.12)

is equivalent to (4.9); for every v 2 Ep�:

In the following discussion, for any u 2 Ep�, v 2 Ep� denote the space of X = Ep� � Ep� with

the norm

k(u; v)kX =
�
kukp� + kvk

p
�

� 1
p
; 8 (u; v) 2 X;

where kuk� and kvk� is de�ned in (4.8) and (4.12) respectively:

Lemma 4.2 [28]

For 0 < �; � � 1 and 1 < p < 1: The fractional derivative space X is a re�exive separable

Banach space.

Consider the �rst equation with its boundary conditions of (4.1)

tD
�
T

�
1

w1(t)
p�2�p (w1 (t) 0D

�
t u (t))

�
+ � ju (t)jp�2 u (t)

= �Fu (t; u (t) ; v (t)) + �Gu (t; u (t) ; v (t)) a.e. t 2 [0; T ] ;
(4.13)
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Multiplying (4.13)by any x (t) 2 Ep� , v 2 E
p
� and integrating, yields

TR
0

D�
T

�
1

w1(t)
p�2�p (w1 (t) 0D

�
t u (t))

�
x (t) dt+ �

TR
0

ju (t)jp�2 u (t)x (t) dt

= �
TR
0

Fu (t; u (t) ; v (t)) + �Gu (t; u (t) ; v (t))x (t) dt.
(4.14)

Then, combining De�nition 4.1, De�nition 2.4, Proposition 2.3 and Proposition 2.3, he left

side of (4.14) can be transferred into

TR
0

tD
�
T

�
1

w1(t)
p�2�p (w1 (t) 0D

�
t u (t))

�
x (t) dt+ �

TR
0

ju (t)jp�2 u (t)x (t) dt

= �
TR
0

x (t) d
h
tD

��1
T

�
1

w1(t)
p�2�p (w1 (t) 0D

�
t u (t))

�i
+ �

TR
0

ju (t)jp�2 u (t)x (t) dt

=
TR
0

1
w1(t)

p�2�p (w1 (t) 0D
�
t u (t)) 0D

��1
t x0 (t) dt+ �

TR
0

ju (t)jp�2 u (t)x (t) dt

=
TR
0

1
w1(t)

p�2�p (w1 (t) 0D
�
t u (t))

C
0D

�
t x (t) dt+ �

TR
0

ju (t)jp�2 u (t)x (t) dt

=
TR
0

1
w1(t)

p�2�p (w1 (t) 0D
�
t u (t)) 0D

�
t x (t) dt+ �

TR
0

ju (t)jp�2 u (t)x (t) dt:

Moreover, we can get similar results for the second equation of (4.1). In what follows, we will

give the de�nition of weak solution for (4.1), which is based on the discussion mentioned above.

De�nition 4.3 [13]

We say that (u; v) 2 X is a weak solution of (4.1). If the following identity holds for any

(x; y) 2 X such that

Z T

0

1

w1 (t)
p�2�p (w1 (t) 0D

�
t u (t)) 0D

�
t x (t) dt

+

Z T

0

1

w2 (t)
p�2�p (w2 (t) 0D

�
t v (t)) 0D

�
t y (t) dt

+�

Z T

0

ju (t)jp�2 u (t)x (t) dt+ �

Z T

0

jv (t)jp�2 v (t) y (t) dt

��
Z T

0

(Fu (t; u (t) ; v (t))x (t) + Fv (t; u (t) ; v (t)) y (t)) dt

��
Z T

0

(Gu (t; u (t) ; v (t))x (t) +Gv (t; u (t) ; v (t)) y (t)) dt = 0:
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Lemma 4.3 [51]

Let A : X ! X�be a monotone, coercive and hemicontinuous operator on the real, separable,

re�exive Banach space X:Assume fw1; w2:::gis a basis in X. Then the following assertion holds:

(d) Inverse operator. if A is strictly monotone, then the inverse operator A�1 : X� ! X exist.

This operator is strictly monotone,demicontinuous and bounded. If A is uniformly monotone,

then A�1 is continuous. If A is strongly monotone, then is Lipschitz continuous.

Proposition 4.1 [40]

Let X be a nonempty set, and let �,  be real functions on X. Assume that there are r > 0

and x0; x1 2 X such that

� (x0) =  (x0) ; � (x1) > r ; sup
x2��1((�1;r])

 (x) < � < r
 (x1)

� (x1)
:

Then for each � satisfying

sup
x2��1((�1;r])

 (x) < r
 (x1)

� (x1)
:

We have

sup
��0

inf
x2X

(�(x) + � (��  (x))) < inf
x2X

sup
��0

(�(x) + � (��  (x)))

Lemma 4.4 [14]

Let 0 < � � 1, for 1 < p <1: Then, for any f 2 Lp([0; T ];R);




0D

��
� f




Lp([0;T ])

� t�

� (�+ 1)
kfkLp([0;T ]) ; for � 2 [0; t]; t 2 [0; T ];

wher 0D��
� is left Riemann�Liouville fractional integral of order �, and � is the gamma function.
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Lemma 4.5 [39]

Assume that 1
2
< � � 1and the sequence fung converges weakly to u in Ep� : uk * u in

C([0; T ];R), that is, kuk � uk1 ! 0 as k !1.

4.3 Result of existence of at least three solution

In this part, we explore the existence of at least three weak solutions for problem (4.1) . For

better understanding, we de�ne the functionals �;  ; J : X ! R as

� (u; v) :=
1

p
kukp� +

1

p
kvkp� , (u; v) 2 X, (4.15)

 (u; v) :=

Z T

0

F (t; u (t) ; v(t)) dt; (4.16)

J (u; v) :=

Z T

0

G (t; u (t) ; v(t)) dt: (4.17)

Clearly,  and J are well-de�ned continuously Gâteaux-di¤erentiable functional at any (u; v) 2

X, and their Gâteaux derivatives are

 0(u; v)(x; y) =

Z T

0

(Fu (t; u (t) ; v (t))x (t) + Fv (t; u (t) ; v (t)) y (t)) dt;

J 0(u; v)(x; y) =

Z T

0

(Gu (t; u (t) ; v (t))x (t) +Gv (t; u (t) ; v (t)) y (t)) dt;

respectively, for every (x; y) 2 X.

Lemma 4.6 .

The functional � is sequentially weakly lower semicontinuous and bounded on X, and �0

admits a continuous inverse on X�.
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Proof Let f(un; vn)g � X; (un; vn) * (u; v) in X:From Lemma 4:5, (un; vn) converges uni-

formly to (u; v) on [0; T ], and lim
n!1

inf k(un; vn)kX � k(u; v)kX . Thus

lim
n!1

inf �(un; vn) = lim
n!1

inf

�
1

p
kunkp� +

1

p
kvnkp�

�
� 1

p
kukp� +

1

p
kvkp� = �(u; v):

So � is a sequentially weakly lower semicontinuous functional.

Moreover, let 
 be a bounded subset of X, that is, there is a constant c > 0 such that

k(u; v)kX � c for any (u; v) 2 
. By (4.6), (4.10) and Lemma 4:5; we have

�(u; v) =
1

p
kukp� +

1

p
kvkp�

=
1

p

�
kukp� + kvk

p
�

�
� cp

p
:

Hence � is bounded on each bounded subset of X.

Next, we will show that �0 : X ! X� admits a Lipschitz continuous inverse. Obviously,

� 2 C1(X;R) and

h�0 (u; v) ; (x; y)i =

TZ
0

1

w1 (t)
p�2�p (w1 (t) 0D

�
t u (t)) 0D

�
t x (t) dt

+

TZ
0

1

w2 (t)
p�2�p (w2 (t) 0D

�
t v (t)) 0D

�
t y (t) dt

+�

TZ
0

ju (t)jp�2 u (t)x (t) dt+ �

TZ
0

jv (t)jp�2 v (t) y (t) dt

= h�1 (u) ; xi+ h�2 (v) ; yi ;

59



Chapter 4. Existence of three solutions for perturbed nonlinear fractional
p-Laplacian boundary value systems with two control parameters

where

h�1 (u) ; xi =
TZ
0

1

w1 (t)
p�2�p (w1 (t) 0D

�
t u (t)) 0D

�
t x (t) dt+�

TZ
0

ju (t)jp�2 u (t)x (t) dt 8x 2 Ep�;

h�2 (v) ; yi =
TZ
0

1

w2 (t)
p�2�p

�
w2 (t) 0D

�
t v (t)

�
0D

�
t y (t) dt+ �

TZ
0

jv (t)jp�2 v (t) y (t) dt; 8y 2 Ep�:

For any u; x 2 Ep�, it follows from (4.6), that

h�1 (u)� �1 (x) ; u� xi =

TZ
0

1

w1 (t)
p�2�p (w1 (t) 0D

�
t u (t)) 0D

�
t (u (t)� x (t)) dt

+�

TZ
0

ju (t)jp�2 u (t) (u (t)� x (t)) dt

�
TZ
0

1

w1 (t)
p�2�p (w1 (t) 0D

�
t x (t)) 0D

�
t (u (t)� x (t)) dt

+�

TZ
0

jx (t)jp�2 x (t) (u (t)� x (t)) dt:

According to the well-known inequality

�
js1jp�2 s1 � js2jp�2 s2

�
(s1 � s2)

�

8<: js1 � s2jp ; p � 2
js1�s2j2

(js1j+js2j)2�p
; 1 < p � 2

(4.18)

We have
(�p (w1 (t) 0D

�
t u (t))) 0D

�
t (u (t)� x (t))

�

8><>:
1

w1(t)
jw1 (t) 0D

�
t u (t)j

p ; p � 2
1

w1(t)

jw1(t)0D�
t u(t)j2

(jw1(t)0D�
t u(t)j)2�p

; 1 < p < 2

(4.19)
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Hence, when 1 < p < 2; one has

TR
0

jw1 (t) (0D�
t u (t)� 0D

�
t x (t))j

p dt

�
�
TR
0

jw1(t) 0D�
t u(t)� 0D�

t x(t)j
2

w1(t)(jw1(t)0D�
t u(t)j+jw1(t)0D�

t x(t)j)2�p
dt

� p
2

�
TR
0

w1 (t)
p

2�p (jw1 (t) 0D
�
t u (t)j+ jw1 (t) 0D

�
t x (t)j)

p dt

� 2�p
2

;

(4.20)

which means that

TR
0

jw1 (t) 0D
�
t ui (t)� w1 (t) 0D

�
t x (t)j

2

w1 (t) (jw1 (t) 0D�
t u (t)j+ jw1 (t) 0D�

t x (t)j)
2�pdt

� 2p�2(w01)
2(p�1)

p

�
w01

ku� xk2� (kuk
p
� + kxk

p
�)

p�2
p :

(4.21)

Then, we deduce

TR
0

(�p (w1 (t) 0D
�
t u (t))� �p (w1 (t) 0D

�
t x (t)) 0D

�
t (u� x)) dt

� 2p�2(w01)
2(p�1)

p

�
w01

ku� xk2� (kuk
p
� + kxk

p
�)

p�2
p > 0:

(4.22)

When p � 2; we get

TR
0

(�p (w1 (t) 0D
�
t u (t))� �p (w1 (t) 0D

�
t x (t)) 0D

�i
t (u� x)) dt

� (w01)
p�2 ku� xkp� > 0:

(4.23)

Further, denote

A =

TZ
0

ju (t)jp�2 u (t) (u� x) dt+

TZ
0

jx (t)jp�2 x (t) (u� v) dt
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Then, reapplying inequality (4.18), we always have

A � ku� xkp� > 0; for p � 2;

and

A � 2p�2
�
ku� xk2Lp (kukLp + kxkLp)

p�2
p

�
> 0; for1 < p < 2

That is, A > 0 for every 1 < p <1: Thus �1 is a uniformly monotone operator.

Similarly, it is easy to show that �2 is also a uniformly monotone operator. So �
0 is uniformly

monotone.

Furthermore, in view of X is re�exive,for (un; vn)* (u; v) in X strongly, as n!1; one has

�0 (un; vn)* �0 (u; v) in X� as n!1:

Thus, we say that �0 is demicontinuous. Then, according to lemma 4:3, we obtain that the

inverse operator (�0)�1 of �0 exist and is continuous.

Moreover , let

kukp�;� =
TZ
0

(w1 (t) j0D�
t u (t)j

p + � ju (t)jp) dt;

and

kukp�;� =
TZ
0

(w2 (t) j0D�
t v (t)j

p + � jv (t)jp) dt;

owing to the sequentially weakly lower semicontinuity of kukp�;� and kuk
p
�;�we observe that � is

sequentially weakly lower semicontinuous in X:

Lemma 4.7 .

The functionals  and J are continuously Gâteaux di¤erentiable in X, and their derivatives

 0 , J 0 are compact.

Proof Considering the functional  ; we will point out that  is a Gâteaux di¤erentiable,

sequentially weakly upper semicontinuous functional on X:Indeed, for (un; vn) � X, assume that

(un; vn)* (u; v) in X; i.e (un; vn) uniform converge to (u; v) on [0; T ] as n!1.
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Hence

lim
n!+1

inf  (un; vn) �
TZ
0

lim
n!+1

inf F (t; un (t) ; vn (t)) dt

=

TZ
0

F (t; u (t) ; v (t)) dt =  (u; v) ;

which implies that  is sequentially weakly upper semicontinuous. Furthermore, since F is contin-

uously di¤erentiable with respect to u and v for almost every t 2 [0; T ] :we have F (t; un (t) ; vn (t))!

F (t; u (t) ; v (t)) as n ! +1 . Then , based on the Lebesgue control convergence theorem, we

obtain that  
0
(un; vn) !  

0
(u; v) strongly, that is  

0
is strongly continuous on X: Hence, we

con�rm that  
0
is compact operator.

Moreover, it is easy to prove that the functional with the Gâteaux derivative  
0
(u; v) 2 X�at

the point (u; v) 2 X

 0 (u; v) (x; y) :=

Z T

0

(Fu (t; u (t) ; v (t))x (t) + Fv (t; u (t) ; v (t)) y (t)) dt (4.24)

for any (x; y) 2 X:

Analogously, we can deduce that J 0(u; v) is a compact operator for any (u; v) 2 X.

The proof is completed.

In what follows, in order to facilitate the further discussion, we give some notation. Put

M : = max

(
T p��1

(� (�))pw01 ((�� 1) q + 1)
p
q

;
T p��1

(� (�))pw02 ((� � 1) q + 1)
p
q

)
;

�1 : = inf

8>>><>>>:
kukp� + kvk

p
�

p
TR
0

F (t; u; v) dt

; (u; v) 2 X;
TZ
0

F (t; u; v) dt > 0

9>>>=>>>; ;

�2 : =

0BBB@max
8>>><>>>:0; lim sup

k(u;v)kX!+1

p
TR
0

F (t; u; v) dt

kukp� + kvk
p
�

; lim sup
(u;v)!0

p
TR
0

F (t; u; v) dt

kukp� + kvk
p
�

9>>>=>>>;
1CCCA
�1

:
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For a given constant 0 < � < 1
p
; put

A (�; �) =
1

(�T )p

24 �TZ
0

w1 (t) t
(1��)p

dt+

(1��)TZ
�T

w1 (t)
h
t
1�� � (t� �T )1��

ip
dt

+

TZ
(1��)T

w1 (t)
h
t
1�� � (t� �T )1�� � (t� ((1� �)T ))1��

ip
dt

375
and

B (�; �) =
1

(�T )p

24 �TZ
0

w2 (t) t
(1��)p

dt+

(1��)TZ
�T

w2 (t)
h
t
1�� � (t� �T )1��

ip
dt

+

TZ
(1��)T

w2 (t)
h
t
1�� � (t� �T )1�� � (t� ((1� �)T ))1��

ip
dt

375

�1 := min fA (�; �) ; B (�; �)g ; �2 := max fA (�; �) ; B (�; �)g

for any � > 0; we denote by 
(�) the set � (�) = f(u; v) 2 R2 : jujp + jvjp < �g

Theorem 4.1 Assume that (F0) hold. Moreover, assume that there exist a constant � � 0 and

a function w = (u1; v1) 2 X such that

(i)

max

8<:lim sup
(u;v)!(0;0)

max
t2[0;T ]

F (t; u; v)

jujp + jvjp ; lim sup
j(u;v)j!+1

max
t2[0;T ]

F (t; u; v)

jujp + jvjp

9=; � �;

(ii)

pTM� <

R T
0
F (t; u1 (t) ; v1 (t)) dt

ku1kp� + kv1k
p
�

;

Then, for any compact interval [a1; a2] � (�1; �2), there exists a positive constant % with the

following property: for every � 2 [a1; a2] and for two Carathéodory functions Gu, Gv satisfying

(G0), there is � > 0 such that, for each � 2 [0; �), problem (4.1) has at least three weak solutions

with norms less than %.
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Proof Our aim is to apply Theorem 1:2 to our problem (4.1) by taking X = Ep� � Ep�

endowed with the norm k(u; v)kX de�ned before. Obviously, X is a separable re�exive Banach

space. It follows from Lemmas 4:6 and 4:7 that the functional � is sequentially weakly lower

semicontinuous, with continuous Gâteaux derivative, and bounded on each bounded subset of X.

�0 admits a continuous inversem and  and J are continuously Gâteaux-di¤erentiable functionals

in X with compact derivatives.

It is easy to see that
1

p
jujp + 1

p
jvjp belongs to �X . Now we prove that �(u; v) 2 �X .

Let f(un; vn)g � X, (un; vn)* (u; v) in X, and

lim
n!1

inf �(un; vn) � �(u; v):

By Lemma 4:5, (un; vn) converges uniformly to (u; v) on [0; T ]. Thus there exist constants

c1; c2 > 0 such that kunk1 � c1 and kvnk1 � c2 for any n 2 N . Therefore � 2 �X ;

we have
�(u; v) =

1

p
kukp� +

1

p
kvkp�

� 1

p

�
kukp� + kvk

p
�

�
;

(4.25)

for all (u; v) 2 X. So � is coercive and has a strict local minimum (u0; v0) = (0; 0) with

�(u0; v0) =  (u0; v0) = 0.

Fix " > 0. According to (i), there exist �1; �2 with 0 < �1 < �2 such that

F (t; u; v) � (� + ") (jujp + jvjp) ; (4.26)

for all t 2 [0; T ] and j(u; v)j 2 ([0; �1) [ (�2;+1)). In view of (F0), F (t; u; v) is bounded on

t 2 [0; T ] and j(u; v)j 2 [�1; �2]; so we can choose m1;m2 > 0 and � 1; � 2 > p such that

F (t; u; v) � (� + ") (jujp + jvjp +m1 juj�1 +m2 juj�2) ;

for all t 2 [0; T ] and j(u; v)j 2 [�1; �2]; we have
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 (u; v) � (� + ")

TZ
0

(jujp + jvjp) dt+
TZ
0

(m1 juj�1 +m2 juj�2) dt

� (� + ")TM
�
kukp� + kvk

p
�

�
+ T�

�
kuk�1� + kvk

�2
�

�
;

for all (u; v) 2 X, where

� = max

8<:m1

0@ T��
1
p

� (�)
1
p

q
w01 ((�� 1) q + 1)

p
q

1A�1

;m2

0@ T ��
1
p

� (�)
1
p

q
w02 ((� � 1) q + 1)

p
q

1A�2
9=; :

Hence

lim
(u;v)!0

sup
 (u; v)

�(u; v)
� pTM (� + ") : (4.27)

Furthermore, by (4.27) again, for any (u; v) 2 Xnf(0; 0)g, we have

 (u; v)

�(u; v)
=

Z
k(u;v)k��2

F (t; u; v) dt

1

p
kukp� +

1

p
kvkp�

+

Z
k(u;v)k>�2

F (t; u; v) dt

1

p
kukp� +

1

p
kvkp�

�
pT supt2[0;T ];j(u;v)j2[0;�2] F (t; u; v)

kukp� + kvk
p
�

+
pTM (� + ")

�
kukp� + kvk

p
�

�
kukp� + kvk

p
�

�
pT supt2[0;T ];j(u;v)j2[0;�2] F (t; u; v)

kukp� + kvk
p
�

+ pTM (� + ") ;

which implies that

lim
k(u;v)kX!+1

 (u; v)

�(u; v)
� pTM (� + ") : (4.28)

Since " is arbitrary, combining with (4.27) and (4.28), we have

�1 = max

�
0; lim
(u;v)!0

 (u; v)

�(u; v)
; lim
k(u;v)kX!+1

 (u; v)

�(u; v)

�
� pTM�
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and

�2 = sup
(u;v)2��1((0;+1))

 (u; v)

�(u; v)
= sup

(u;v)2X nf(0;0)g

 (u; v)

�(u; v)

�
R T
0
F (t; u1; v1) dt

1
p
ku1kp� + 1

p
kv1kp�

> pTM� � �1:

Then, for each compact interval[a1; a2] � (�1; �2), there is % > 0 with the following prop-

erty:for all � 2 [a1; a2] and G 2 (G0), there is � > 0 such that, for each � 2 [0; �], problem (4.1)

has at least three weak solutions with norms less than % .

Theorem 4.2 Assume that (F0), hold and there exist l; h 2 L1([0; T ];R+);three positive con-

stants �; �1; �2; and constant vector c = (c1; c2) 2 R2, c1; c2 > 0, with � < pM�1(c
2
1 + c22) and

�1; �2 2 [0; p), such that

(A1) F (t; u; v) � 0 for all t 2 [0; �T ][ [(1� �)T; T ] , juj � � (2� �) c1 , and jvj � � (2� �) c2 ;

(A2) jF (t; u; v)j � l (t)
�
juj�1 + jvj�2

�
+ h(t) for all (u; v) 2 X and a.e. t 2 [0; T ] ;

(A3)

max
t2[0;T ];(u;v)2�(�)

F (t; u; v) <
�

pMT

R (1��)T
�T

F (t;� (2� �) c1;� (2� �) c2)

�2(c21 + c22)
;

where � (�) = f(u; v) 2 R2 : jujp + jvjp � �g.

Then there exist an open interval � � [0;+1) and a positive constant % with the following

property: for every � 2 � and for two carathéodory functions Gu, Gv satisfying (G0), there is

� > 0 such that, for each � 2 [0; �), problem (4.1) has at least three weak solutions with norms

less than %.

Proof For any � � 0 and (u; v) 2 X, according to (4.25) and (A2), we have

�(u; v)� � (u; v) =
1

p
kukp� +

1

p
kvkp� � �

Z T

0

F (t; u (t) ; v(t)) dt

� 1

p
kukp� +

1

p
kvkp� � �

Z T

0

l (t)
�
juj�1 + jvj�2

�
dt� �

Z T

0

h(t)dt

� 1

p

�
kukp� + kvk

p
�

�
� ��

Z T

0

l (t)
�
kuk�1� + kvk

�2
�

�
dt� �

Z T

0

h(t)dt;
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where

� = max

8><>:
0@ T��

1
p

� (�)
1
p

q
w01 ((�� 1) q + 1)

p
q

1A�1

;

0@ T ��
1
p

� (�)
1
p

q
w02 ((� � 1) q + 1)

p
q

1A�2
9>=>; :

Since �1; �2 2 [0; p), we have

lim
k(u;v)kX!+1

�(u; v)� � (u; v) = +1 for all � � 0:

For every r > 0, by the de�nition of � and (4.25) we have

��1 ((�1; r]) = f(u; v) 2 X : � (u; v) � rg

�
n
(u; v) 2 X : 1

p
kukp� + 1

p
kvkp� � r

o
�
n
(u; v) 2 X : kukp� + kvk

p
� � pr

o
�
�
(u; v) 2 X :

(�(�))pw01((��1)q+1)
p
q

T p��1 kukp1 +
(�(�))pw01((��1)q+1)

p
q

T p��1 kvkp1 � pr

�
� f(u; v) 2 X : jujp + jujp �Mpr; for all t 2 [0; T ]g ;

(4.29)

which implies that

sup
(u;v)2��1((�1;r])

 (u; v) � max
(u;v)2�(Mpr)

 (u; v)

= max
(u;v)2�(Mpr)

Z T

0

F (t; u; v) dt

� T max
t2[0;T ];(u;v)2�(Mpr)

Z T

0

F (t; u; v) dt:

Choose �w = (u1(t); v1(t)) with

u1(t) =

8>>><>>>:
�(2��)c1

�T
t; t 2 [0; �T [ ;

� (2� �) c1; t 2 [�T; (1� �)T ] ;

�(2��)c1
�T

(T � t); t 2 ](1� �)T; T ] ;

and
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v1(t) =

8>>><>>>:
�(2��)c2

�T
t; t 2 [0; �T [ ;

� (2� �) c2; t 2 [�T; (1� �)T ] ;

�(2��)c2
�T

(T � t); t 2 ](1� �)T; T ] :

Clearly, �w(0) = �w(T ) = 0 and �w 2 L2[0; T ]. A direct calculation shows that

0D
�
t u1(t) =

8>>><>>>:
c1
�T
t1��; t 2 [0; �T [

c1
�T

�
t1�� � (t� �T )1��

�
, t 2 [�T; (1� �)T ]

c1
�T

�
t1�� � (t� �T )1�� �

�
t� (t� �T )1��

��
, t 2 ](1� �)T; T ]

and

0D
�
t v1(t) =

8>>><>>>:
c2
�T
t1��; t 2 [0; �T [ ;

c2
�T

�
t1�� � (t� �T )1��

�
, t 2 [�T; (1� �)T ] ;

c2
�T

�
t1�� � (t� �T )1�� �

�
t� (t� �T )1��

��
, t 2 ](1� �)T; T ] :

Furthermore,

ku1kp� =

Z T

0

w1 (t) j0D�
t u1 (t)j

p dt

=

�TZ
0

w1 (t) j0D�
t u1 (t)j

p dt+
(1��)TR
�T

w1 (t) j0D�
t u1 (t)j

p dt+

TZ
(1��)T

w1 (t) j0D�
t u1 (t)j

p dt

= pc21A (�; �) ;

and

kv1kp� =

Z T

0

w2 (t) j0D�
t v1 (t)j

p dt

=

�TZ
0

w2 (t) j0D�
t v1 (t)j

p dt+

(1��)TZ
�T

w2 (t) j0D�
t v1 (t)j

p dt+

TZ
(1��)T

w2 (t) j0D�
t v1 (t)j

p dt:

= pc22B (�; �) :
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Thus, w = (u1(t); v1(t)) 2 X, and

p�1

�
c21 + c22

�
� ku1kp� + kv1k

p
� � p�2

�
c21 + c22

�
:

Obviously, �(0; 0) =  (0; 0) = 0. Choose r = �
pM
. From � < pM�1(c

2
1 + c22) and (4.29) we

have

pMr = � < pM�1(c
2
1 + c22) � pM �(u1; v1);

which means that �(u1; v1) > r. According to (A1) and F (t; 0; 0) = 0, we have

Z T

0

F (t; u1; v1) dt =

�TZ
0

+

(1��)TZ
�T

+

TZ
(1��)T

F (t; u1; v1) dt �
(1��)TZ
�T

F (t; u1; v1) dt:

So

r
 (u1; v1)

� (u1; v1)
= r

R T
0
F (t; u1; v1) dt

1
p
ku1kp� + 1

p
kv1kp�

;

� r

R (1��)T
�T

F (t;� (2� �) c1;� (2� �) c2)

�2(c21 + c22)
;

=
�

pMT

R (1��)T
�T

F (t;� (2� �) c1;� (2� �) c2)

�2(c21 + c22)
;

> T max
t2[0;T ];(u;v)2�(�)

Z T

0

F (t; u; v) dt;

= T max
t2[0;T ];(u;v)2�(pMr)

Z T

0

F (t; u; v) dt � sup
(u;v)2��1((�1;r])

 (u; v) :

Thus we can �x � such that

sup
(u;v)2��1((�1;r])

 (u; v) < � < r
 (u; v)

� (u; v)
:

By proposition 4:1 we have

sup
�2I

inf
x2X

(�(x) + ���  (x)) < inf
x2X

sup
�2I

(�(x) + ���  (x)) :
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So, according to Theorem 1:3, for each interval � � [0;+1) and % > 0 we have: for any

� 2 � and G 2 (G0), there is � > 0 such that, for each � 2 [0; �),

�0(u; v) � � 0(u; v) � �J 0(u; v) = 0, has at least three solutions in X with norms less than % .

Therefore problem (1:3) has at least three solutions in X with norms less than %.

For the particular case of F (t; u; v) = '(t)f(u; v), where '(t) 2 L1([0; T ];R)n f0g; f(u; v) 2

C1(R2;R), we can deduce the following two corollaries of Theorems 4:1 and 4:2, respectively.

Corollary 4.1 Assume that there exist � > 0 and w = (u1; v1) 2 R2n f(0; 0)g

(A1)
0

max
t2[0;T ]

'(t) . max
�
lim

(u;v)!0
sup

f(u; v)

jujp + jvjp ; lim
j(u;v)j!+1

sup
f(u; v)

jujp + jvjp
�
� �;

(A2)
0

pTM� <
f(u1; v1)

R T
0
'(t)dt

ku1kp� + kv1k
p
�

:

Then, for any compact interval [a1; a2] � (�1; �2), there exists a positive constant % with the

following property: for every � 2 [a1; a2] and for two Carathéodory functions Gu, Gv satisfying

(G0), there is � > 0 such that, for each � 2 [0; �), problem (4.1) has at least three weak solutions

with norms less than %.

Corollary 4.2 Assume that there exist �ve positive constants l0; h0; �; �1; �2; and constant vector

c = (c1; c2) 2 R2, c1; c2 > 0, with � < pM�1(c
2
1 + c22) and �1; �2 2 [0; p), such that

(A1)
00 '(t)F (u; v) � 0 for all t 2 [0; �T ][[(1� �)T; T ] , juj � � (2� �) c1 , and jvj � � (2� �) c2,

(A2)
00 jF (u; v)j � l0

�
juj�1 + jvj�2

�
+ h0 for all (u; v) 2 X;

(A3)

max
(u;v)2�(�)

F (u; v) <
�

pM k'kL1
F (� (2� �) c1;� (2� �) c2)

R (1��)T
�T

'(t)dt

�2(c21 + c22)
;

where � (�) = f(u; v) 2 R2 : jujp + jvjp < �g :

Then there exist an open interval � � [0;+1) and a positive constant % with the following

property: for every � 2 � and for two carathéodory functions Gu, Gv satisfying (G0), there is

� > 0 such that, for each � 2 [0; �), problem (4.1) has at least three weak solutions with norms

less than %.
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4.4 Examples

Now, we give the following two numerical examples to illustrate the applications of our result.

Example 4.1 Let p = 2; � = 0:8 ; � = 0:65; � = 1; w1(t) = 1 + t2; w2(t) = 0:5 + t; T = 1:

Then, system (4.1) becomes the following form

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

tD
0:8
1 ((1 + t2) 0D

0:8
t u (t)) + u (t)

= �Fu (t; u (t) ; v (t)) + �Gu (t; u (t) ; v (t)) ; t 2 [0; 1]

tD
0:65
1 ((0:5 + t) 0D

0:65
t v (t)) + v (t)

= �Fv (t; u (t) ; v (t)) + �Gv (t; u (t) ; v (t)) ; t 2 [0; 1]

u (0) = u(1) = 0; v (0) = v(1) = 0:

(4.30)

For all (t; u; v) 2 [0; 1]� R2;Taking

F (t; u; v) = 10
�
1 + 3t2

� �
u2 + v2

�
;

and

G (t; u; v) =
�
1 + t2

� �
juj

5
4 + jvj

4
3

�
:

Clearly,F (t; 0; 0) = G(t; 0; 0) = 0 , w01 = 1 and w
0
2 = 0:5 for all t 2 [0; 1].

Conditions (F0) hold. By the direct calculation, we have

max

�
1

(� (0:8))2 (2� 0:8� 1)
;

1

(� (0:65))2 � 0:5 (2� 0:65� 1)

�
=M � 3:4764:

Taking � =
1

20
, we easily verify that (i) is satis�ed. Moreover, we have �1 �

1

140
and

�2 � 2:8765. In fact,
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�1 = inf
(u;v)2X

kuk20:8 + kvk
2
0:65

20

1Z
0

(1 + 3t2) dt (u2 + v2)

=
1

20

1Z
0

(1 + 3t2) dt

inf
(u;v)2X

ku1k20:8 + kv1k
2
0:65

(u2 + v2)

� 1

40
inf

(u;v)2X

ku1k20:8 + kv1k
2
0:65

M
�
ku1k20:8 + kv1k

2
0:65

�
� 1

140
;

and �2 �
1

2TM�
� 2:8765. On the other hand, choosing u1 (t) = � (1:2) t (1� t) ;

v1 (t) = � (1:35) t (1� t) we have

0D
0:8
t u1(t) = t0:2 � 2� (1:2)

� (2:2)
t1:2;

0D
0:65
t v1(t) = t0:35 � 2� (1:35)

� (2:35)
t1:35:

So that

ku1(t)k20:8 � 0:19333; kv1(t)k
2
0:65 � 0:078559;

and

2TM� � 0:3476 <

1Z
0

F (t; u1; v1) dt�
ku1k20:8 + kv1k

2
0:65

� < 3:6889:
Which implies that condition (ii) holds. Hence, by Theorem 4:1, for any compact interval

[a1; a2] � (
1

140
; 2:8765), there exists a positive constant % with the following property: for every

� 2 [a1; a2] , there is � > 0 such that, for each � 2 [0; �), problem (4.30) has at least three weak

solutions with norms less than %.
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Example 4.2 Let p = 2; � = 0:8; � = 0:6; � = 1; w1(t) = 1 + t2; w2(t) = 0:5 + t; T = 1:

Then system (4.1) becomes the following form

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

tD
0:8
1 ((1 + t2) 0D

0:8
t u (t)) + u (t)

= �Fu (t; u (t) ; v (t)) + �Gu (t; u (t) ; v (t)) ; t 2 [0; 1]

tD
0:6
1 ((0:5 + t) 0D

0:6
t v (t)) + v (t)

= �Fv (t; u (t) ; v (t)) + �Gv (t; u (t) ; v (t)) ; t 2 [0; 1]

u (0) = u(1) = 0; v (0) = v(1) = 0:

(4.31)

Moreover, for all (t; u; v) 2 [0; 1]� R2; put F (t; u; v) = ' (t)
�
juj

5
4 + jvj

4
3

�
; where

' (t) =

8>>><>>>:
1
4
� t , t 2

�
0; 3

8

�
�1
2
+ t , t 2

�
3
8
; 1
�

and

G (t; u; v) = t2
�
juj

3
2 + jvj

6
5

�
:

Clearly, F (t; 0; 0) = 0; w01 = w02 = 1; for any t 2 [0; 1] :

By the direct calculation, we have

max

�
1

(� (0:8))2 (2� 0:8� 1)
;

1

(� (0:6))2 (2� 0:6� 1)

�
=M � 2:2548:

Letting � =
1

4
, we obtain A (�; �) = 1:3096 and B (�; �) = 0:4736 Hence �1 = 0:4736 and

�2 = 1:3096. Take � =
1

2
, c1 = c2 =

1

6
, l0 = 1, h0 > 0; �1 =

5

4
; and �2 =

4

3
Then all the

conditions in Corollary 4:2 are satis�ed. In fact, conditions (A1)
00
and (A2)

00 hold, and by direct

74



Chapter 4. Existence of three solutions for perturbed nonlinear fractional
p-Laplacian boundary value systems with two control parameters

computation we have
1

2
= � < 2M�1

�
c21 + c22

�
� 0:5932;

and

max
(u;v)2�( 12)

F (u; v) � 0:1739 <
9�

M k'kL1
�

F (� (0:2) ;� (0:36))

3
4Z

1
4

'(t)dt

�2

� 1:703:

Which implies that condition (A1)
00 holds. Hence, By Corollary 4:2 there exist an open interval

� � [0;+1) and a positive constant % with the following property: for every � 2 �, there exists

� > 0 such that, for each � 2 [0; �), problem (4.31) has at least three weak solutions with norms

less than %.
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Conclusion and Percpective
Throughout this study, fractional di¤erential equations have been carefully investigated in

four chapters The importance of this paper rises in its application in many scienti�c and engi-

neering �elds such as models for various precesses in plasma physics, biology, medical science,

chemistry as well as population dynamics, and control theory.In the �rst chapter, detailed theory

has been presented to provide the necessary background information about the theoremes needed

to understand the investigated problems in the other chapters. Then, chapter two has dealt with

fractioal calculus and its relevance in this work. Furthermore, We could ensure the existence of

at least three solutions for a class of fractional p-Laplacian di¤erential systems in chapter three,

note that some appropriate function spaces and variational methods were successfully created for

the system (3.1). Chapter four, on the other hand, explains how building a variational framework

and using some critical points in theorems of Ricceri is used to get other new existence results for

at least three weak solutions in terms of di¤erent values of the two parameters �; �, taking into

consideration that we have supposed the primitive function G of Gu and Gv to satisfy a general

growth condition allowing us to apply a variational method. In addition, we have obtained the

multiplicity results for two cases: where the primitive function F of Fu, Fv is asymptotically

quadratic and where it is subquadratic as j(u; v)j ! 1.

At last, further researches are recommended to enlarge this study and prove the existence of

in�nite number of solutions for the investigated problems.
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