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Abstract
This thesis contain a results of the existence of positive solutions of certain nonlinear elliptic

and parabolic systems, involving the (p; q)-Laplace and the p(x)-Laplace operators. The method

used to obtain the results is that of sub and supersolution, which is based on the maximum

principle and the comparison theorem.

Keywords: Sub and supersolutions; semipositon elliptic systems; p(x)-Kircho¤ parabolic sys-

tems.



Résumé
Cette thèse comporte des résultats d�existence de solutions positives de certains systèmes

elliptiques et paraboliques non linéaires, intervenant les opérateurs (p; q)-Laplace et le p(x)-

Laplace. La méthode utilisé pour obtenir les résultats est celle de sous et sur-solution, qui est

basé sur le principe de maximum et le théorème de comparaison.

Mots clés: Sous et sursolutions; systèms elliptiques semipositones; Systèmes paraboliques

p (x)-Kircho¤.



 

 

 الملخص
 

 

 المكافئة جية والقطعيةلهذه الرسالة تحتوي على نتائج خاصة بوجود حلول موجبة لبعض الجمل الإهلي

الطريقة المنتهجة للحصول على  .لابلاص-p(x)و  لابلاص-(p,q)الغير خطية، والتي تتضمن المؤثرات

 هذه النتائج هي طريقة الحلول الفوقية والتحتية والتي تعتمد على مبدأ الحد الأعضمي ونظرية المقارنة.

 

الحلول الفوقية والتحتية، الجمل الإهليجية الشبه موجبة و الرتيبة، الجمل القطعية  الكلمات المفتاحية:

 .لكيرشوفالمكافئة 



Notations

 a bounded smooth domain in RN :

@
 boundary of 
:

ru gradient u;ru =
�
@u
@x1
; @u
@x2
; :::; @u

@xN

�t
:

�pu = div(jOujp�2Ou) =
NP
i=1

@
@xi

�
jOujp�2 @u

@xi

�
:

�p(x)u =
NP
i=1

@
@xi

�
jOujp(x)�2 @u

@xi

�
:

C1 (
) the space of inde�nitely derivable functions on 
:

D (
) the space of functions of class C1 (
), with compact support included in 
:

Lp (
) p-Lebesgue integrable functions on 
, p 2 [1;+1[ :

L1 (
) essentially bounded functions on 
:

W k;p (
) sobolev space; Lp-integrable functions, with weak derivatives up to order k in Lp (
) :

W 1;p
0 (
) the closure of D (
) in W 1;p (
) :

Lp(x) (
) generalized Lebesgue space.

W 1;p(x) (
) generalized Sobolev space.

un * u the weak convergence of sequence fungn to u:

un ! u and strong convergence of sequence fungn to u:



Introduction
The theory of partial di¤erential equations has developed considerably in recent years. Not-

ably the nonlinear elliptic problems with quasilinear homogeneous operators type such as the

p-Laplace, these nonlinear elliptical problems are in general not integrable, which means that

one cannot practically �nd explicit solutions, this gives a great importance to search for a weak

solutions basing on the theory of Sobolev spaces, these solutions can be as critical points or �xed

points of a functional or an appropriate operator, or via sub and supersolution concept,. . . etc.

Hence, in the case of nonhomogeneous p(x)-Laplace operators, it is necessary to introduce

the appropriate spaces, in which we can study the problem with a variable exponent, such as the

space Lp(x) called a variable exponent Lebesgue spaces, which were appeared in the literature,

for the �rst time in 1931 by W. Orlicz, then in 1950 � 1951 Nakonov developed the theory of

modular spaces by generalizing Orlicz spaces by giving an example, the generalized Lebesgue

space with a variable exponent Lp(x)(
).

Afterwards, in the 70s and 80s, with more explicit version, the Lp(x) spaces took over again

from the Polish school (Hudzick and Museielak). The results and studies were followed dur-

ing the 80s and 90s, when a major stage of these investigations was in 1991 by Kovácik and

Rákosnik [25], which had provided the standard base reference of Lp(x)
�
RN
�
spaces which are

also called generalized Lebesgue spaces, their work had covered only basic properties such as

re�exivity, separability, duality and the �rst results concerning inclusions and density of regular

functions. These spaces are a generalization of the corresponding standard spaces, for which the

p(:) is a constant. And which are the functional framework in the resolution of the nonlinear

partial di¤erential equations involving the operator p(x)-Laplacian, who paved the way to more

applications of these theories in partial di¤erential equations.

This type of operators appeared after the development of numerous physical phenomena

concerned with the characteristics of materials which are not homogeneous, like nonlinear elasti-

city, the �uids electrorheological (the interaction between �uids and electromagnetic �elds) and

termorheological, image processing, propagation through porous media and calculation of vari-

ations.

The objective of this thesis is the study of certain elliptic and parabolic problems, involving



Contents

the p-Laplace and the p(x)-Laplace operators.

Our approach is based on the method of sub and super-solutions. The concepts of the latter

were introduced by Nagumo [29] in 1937 who proved using also the shooting method, the existence

of at least one solution for a class of nonlinear Sturm-Liouville problems. In fact, the premises

of the sub and supersolution method can be traced back to Picard. He applied, in the early

1880s, the method of successive approximations to argue the existence of solutions for nonlinear

elliptic equations that are suitable perturbations of uniquely solvable linear problems. This is

the starting point of the use of sub and supersolutions in connection with monotone methods.

Picards techniques were applied later by Poincaré [30] in connection with problems arising in

astrophysics.

We draw the reader�s attention to the references ( [18, 26, 31, 35]) which are applied the

method of sub and supersolution for nonlinear in�nite semipositone elliptic problems. The elliptic

problems considered in this study are an in�nite semipositon problems, the positone problem

expression means that the nonlinearity F (u) is positive and monotone function. The semipositone

problem expression means that the nonlinearity F (u) is monotone and F (0) = k < 0; k 2 R; and

the in�nity semipositone expression means that F (u) tends to �1 as u tends to 0.

In the �rst chapter, we start by giving some basic notions, which are concerning the functional

framework necessary to support the existence of solutions for the studied problems.

The second chapter, is concerns the study of the existence of a weak solution of the following

(p; q)-Laplace system 8>>>>>>>>><>>>>>>>>>:

��pu = �l (x)up�1 � f1 (u; v)� au��1v�2 in 
:

��qv = �k (x) vq�1 � f2 (u; v)� bu�2v��2 in 
:

u = v = 0 on @
;

where p; q > 1, 0 < �1 < �1 < 1; 0 < �2 < �2 < 1; �; �; a; b > 0; fi : [0;+1) � [0;+1) �!

10
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R; i = 1; 2 are continuous functions, l (x) ; k (x) 2 C (
) ; and

1� �1
p�

+
�1
q�

< 1 and
�2
p�
+
1� �2
q�

< 1:

In the third chapter, we study the following in�nite semipositone elliptic system8>>>><>>>>:
��piui = �iu

pi�1
i � ai

mQ
j=1

u
�ij
j ; i = 1;m; in 
:

ui = 0; i = 1;m on @
;

where
1 + �ii
p�i

+
mP

i6=j=1

�ij
p�j

< 1;8i = 1;m:

We prove the existence of a weak solution and we give an example of application.

The fourth chapter, we are interested in the p(x)-Kirchho¤ parabolic systems of the form

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

@u
@t
�M (I0 (u))�p(x)u = �p(x) [�1f (v) + �1h (u)] ; in QT = 
� [0; T ];

@u
@t
�M (I0 (v))�p(x)v = �p(x) [�2g (u) + �2� (v)] ; in QT = 
� [0; T ];

u = v = 0; on @QT ;

u (x; 0) = ' (x) :

With a suitable assumption, we prove the existence of a positive weak solutions of certain

classes of parabolic systems intervening the p(x)�Kirchho¤ operator.

During these studies 
 is a bounded domain in RN with smooth boundary @
: The boundary

conditions are the homogeneous Dirichlet conditions, by using the method of sub and supersolu-

tion.

11
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Chapter 1. Preliminaries

We assume that the reader is familiar with the concept of a vector space over the real (or

complex) scalar �eld and with the related notions of dimension, subspace and linear forms. We

also assume familiarity with the basic concepts of general topology, Hausdor¤ topological spaces,

continuous functions, topological product spaces, subspaces, and relative topology, Banach spaces

and weaker, stronger convergent sequences and distributions and weak derivatives.

1.1 The space Lp (
)

Let 
 be an open set of RN , equipped with the Lebesgue measure dx, and let p be a positive

real number. We denote by L1 (
) the space of integrable functions on 
 with values on R, it is

provided with the norm

kfkL1(
) =
Z



jf (x)j dx:

De�nition 1.1 We de�ne Lp (
) the space of the class of all measurable functions f , de�ned on


, for which

Z



jf (x)jp dx < +1;

equipped with the norm

kfkLp(
) = (
Z



jf (x)jp dx)
1
p :

De�nition 1.2 We also de�ne the space L1 (
) by

L1 (
) = ff : 
! R; f measurable; 9c > 0; so that jf (x)j < c a.e. on 
g ;

it will be equipped with the essential-sup norm

kfkL1(
) = ess sup
x2


jf (x)j = inf fc; jf (x)j < c a.e. on 
 g :

We say that a function f : 
! R belongs to Lploc (
) if f1k 2 Lp (
) for any compact k � 
.

14



Chapter 1. Preliminaries

1.1.1 Hölder inequality and Lp completeness

If f 2 Lp (
) and g 2 Lp0 (
) where the real numbers p and p0 satisfy 1 < p <1 and 1
p
+ 1

p0 = 1;

we have Hölder inequality:

Z



jf (x) g (x)j dx � (
Z



jf (x)jp dx)
1
p (

Z



jg (x)jp
0
dx)

1
p0 :

Theorem 1.1 [10] The space Lp (
) is Banach spaces if 1 � p � 1 (complete normed space),

separable space if 1 � p <1; and Lp (
) is re�exive if and only if 1 < p <1:

1.1.2 Some convergence criteria

Theorem 1.2 (Monotony convergence) [24] Let (fn)n�1 be an increasing sequence of a pos-

itive measurable functions. By noting f (x) = lim
n!1

fn (x) = sup
n�1

fn (x) we have

Z



f (x) dx = lim
n!+1

Z



fn (x) dx:

Theorem 1.3 (Lebesgue�s dominated convergence) [24] Let (fn)n be a sequence of func-

tions of L1 (
) converging almost everywhere to a measurable function f . We suppose that there

exists g 2 L1 (
) such that for all n � 1, we have jfnj � g a.e. on 
. Then f 2 L1 (
) and

lim
n!+1

kfn � fk = 0;
Z



f (x) dx = lim
n!+1

Z



fn (x) dx:

Lemma 1.1 (Brezis-Lieb) [10] Let 1 � p <1 and (fn)n be a bounded sequence of functions

from Lp (
) converging a.e. to f . Then f 2 Lp (
) and

kfkpLp(
) = lim
n!+1

�
kfnkpLp(
) � kf � fnkpLp(
)

�
:

Lemma 1.2 Let 1 < p < 1 and (fn)n be a bounded sequence of L
p (
) converging a.e. to f .

Then fn * f in Lp (
).

15



Chapter 1. Preliminaries

1.2 Sobolev space

In this section, we present a brief reminder on Sobolev spaces. We denote by D (
) the space

of functions of class C1 (
), with compact support included in 
; and by D0 (
) the topological

dual of D (
).

1.2.1 Weak derivative

De�nition 1.3 Let be an open set of RN ; and 1 � i � N . A function f 2 L1loc (
) has an i
th

weak derivative in L1loc (
) if there exists fi 2 L1loc (
) such that for all ' 2 C10 (
) we haveZ



f (x) @i' (x) dx = �
Z



fi (x)' (x) dx;

this leads to say that the ith derivative within the meaning of distributions of f belongs to

L1loc (
), we write

@if =
@f

@xi
= fi:

1.2.2 The space W 1;p (
)

De�nition 1.4 [10] The space W 1;p (
) is de�ned by

W 1;p (
) = fu 2 Lp (
) ; such that @iu 2 Lp (
) ; 1 � i � Ng ;

where @i is the ith weak derivative of u belongs L1loc (
) :

The space W 1;p (
) is provided with the norm

kukW 1;p(
) = (kuk
p
Lp(
) + kruk

p
Lp(
))

1
p ; u 2 W 1;p (
) :

16



Chapter 1. Preliminaries

1.2.3 The space Wm;p (
)

When � 2 Nn, we denote by j�j = �1 + �2 + :::�n the length of � and we denote

@�u = @�11 @
�2
2 :::@

�n
n u;

in all that follows @�u (or D�u) denotes the weak derivative of a function u 2 L1loc (
) :

De�nition 1.5 [10] We de�ne the space Wm;p (
) ;m � 2 as following

Wm;p (
) = fu 2 Lp (
) ; such that 8� 2 Nn; j�j � m; @�u 2 Lp (
) ; j�j � mg ;

equipped by the norm

kukWm;p(
) = (
X
j�j�m

k@�ukpLp(
))
1
p :

Remark 1.1 For p = 2, it is customary to replace the notation Wm;2 (
) by Hm (
).

Proposition 1.1 [24] The space Wm;p (
) provided with the norm de�ned by

kukWm;p(
) =

8>><>>:
(
P
j�j�m

k@�ukpLp(
))
1
p ; 1 � p < +1

max
j�j�m

k@�ukpLp(
) ; p = +1;

is a Banach space, and for p 2 ]1;1[ ; this space is convex, so it is a re�exive space. The

space Hm (
) ;

endowed with the scalar product

(u; v) =
X
j�j�m

(@�u; @�v)L2(
) ;

is a Hilbert space.

17



Chapter 1. Preliminaries

1.2.4 The space W 1;p
0 (
)

De�nition 1.6 For 1 � p < +1 we de�ne the space W 1;p
0 (
) as being the closure of D (
) in

W 1;p (
), and we write

W 1;p
0 (
) = D (
)W

1;p

:

Proposition 1.2 (Continuous embeddings) [10] Let 
 be an open set of RN :We suppose

that 
 is a bounded with Lipschitzian border or that 
 = RN :

1- If 1 � p < N; then

W 1;p (
) � Lp
�
(
) ; with p� =

pN

N � p
;

and the embedding is continuous, i.e there is C 2 R+ such that 8u 2 W 1;p (
) ;

kukLp� � C kukW 1;p(
) ;

we note this

W 1;p (
) ,! Lp
�
(
) ;

2- If p = N;

W 1;p (
) ,! Lq (
) ;8q 2 [p;+1[ :

3- If p > N;then

W 1;p (
) � L1 (
) :

Proposition 1.3 (Compact embeddings) 1- If 1 � p < N; then

W 1;p (
) � Lq (
) ; 8q 2 [1; p�[ with p� = pN

N � p
:

2- If p = N; W 1;p (
) ,! Lq (
) ;8q 2 [1;+1[ :

3- If p > N; then

W 1;p (
) � C
�


�
:

18



Chapter 1. Preliminaries

Corollaire 1.1 (Poincaré inequality) Let 
 be an open and bounded set of RN , then there

exists a constant C (C (
; p)) such that

kukLp(
) � C krukLp(
) ;8u 2 W 1;p (
) ; 1 � p < +1:

We need to recall some basic properties on spaces LP (x) (
) and W P (x) (
) :

1.3 Lebesgue and Sobolev spaces with variable exponents

Let p : 
 ! [1;+1[ a measurable and bounded function, we denote by p� and p+ respectively

the essential inf
�
inf


p (x)

�
and the essential sup

�
sup


p (x)

�
of the function p, we assume

p� � p+ < +1:

We also introduce the space

L1+ (
) =
�
p 2 L1 (
) ; p� � 1

	
:

De�nition 1.7 [17], [25] Let u : 
 ! R a measurable function,we de�ne the modulus of u by

the quantity

�p(x) (u) =

Z



ju (x)jp(x) dx:

Such that � veri�es the following properties

a) �p(:) (u) = 0() u = 0:

b) �p(:) (�u) = �p(:) (u) :

c) The map �! �p(:) (�u) is convex, continuous and even. In addition, she is strictly increasing

over [0;+1[:

d)

�p(:) (�u+ �v) � ��p(:) (u) + ��p(:) (v) ; �+ � = 1:

De�nition 1.8 Let p be a measurable function of [1;+1[ in R�+. We de�ne and denote Lp(x) (
)

19



Chapter 1. Preliminaries

the Lebesgue space of variable exponent p

Lp(x) (
) =
�
u : 
! R, measurable; �p(x) (u) < +1

	
:

We de�ne on Lp(:) (
) the so-called Luxembourg norm by

kuk� = inf

8<:� > 0;
Z



����u (x)�
����p(x) dx � 1

9=; :

Proposition 1.4 The space Lp(x) (
) is a separable Banach space. If p� > 1, Lp(x) (
) is uni-

formly convex and re�exive.

The following two results show the relationship between the Luxembourg norm and module

�p(x)

Proposition 1.5 Let p 2 L1+ (
)

(i) If u 2 Lp(x) (
) ; then kukLp(x)(
) = a() �
�
u
a

�
= 1:

(ii) kukLp(x)(
) < 1 (= 1; > 1)() �p(x) < 1 (= 1; > 1) :

(iii) If kukLp(x)(
) > 1 then kuk
p�
Lp(x)(
)

� �p(x) � kuk
p+

Lp(x)(
)
:

(iiii) If kukLp(x)(
) < 1 then kuk
p+

Lp(x)(
)
� �p(x) � kuk

p�
Lp(x)(
)

:

Proposition 1.6 If p 2 L1+ (
) ; (un) � Lp(x) (
) and u 2 Lp(x) (
) :

The following statements are equivalent

(i) lim
n!+1

ku� unkLp(x)(
) = 0:

(ii) lim
n!+1

�p(x) (u� un) = 0:

Remark 1.2 Let p 2 L1+ (
) ; (un) � Lp(x) (
) and u 2 Lp(x) (
) : If

lim
n!+1

ku� unkLp(x)(
) = 0;

then there exists a subsequence
�
unj
�
� (un), and a function g 2 Lp(x) (
) such that

(i) unj ! u a:e in 
:

(ii)
��unj �� � g (x) a:e in 
:
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Theorem 1.4 (Interpolation in the spaces Lp(x) (
)) Let p; q; r 2 L1+ (
) ; u 2 Lp(x) (
)

and v 2 Lq(x) (
) such that
1

p (x)
+

1

q (x)
=

1

r (x)
a:e in 
;

then

kuvkLr(x)(
) �
�

1

(p=r)�
+

1

(q=r)�

�
kuk

Lp(x)(
)
kvkLq(x)(
) :

Remark 1.3 Let p 2 L1+ (
) and p0 : 
! [1;+1[ the conjugate of p such that

p0 (x) =

8<:
p(x)
p(x)�1 ; if p (x) > 1

1; if p (x) = 1:

For all u 2 Lp(x) (
) and v 2 Lp0(x) (
) ; there exists a constant Cp such thatZ



ju (x) v (x)j dx � Cp kuk
Lp(x)(
)

kvkLp0(x)(
) :

For the results of injections we draw the reader to Kovacik and Rákosnik [25] and Fan and

Zhao [17].

Proposition 1.7 Let 
 be a bounded open of RN and p; q 2 L1+ (
) : if p (x) � q (x) a; e in 
;

then

Lq(x) (
) ,! Lp(x) (
) ;

(i.e Lq(x) (
) continuously injects into Lp(x) (
)):

De�nition 1.9 For all p 2 L1+ (
) ; and m 2 N� we de�ne the generalized Sobolev space (or

Sobolev space with variable exponent) by

Wm;p(x) (
) =
�
u 2 Lp(x) (
) ; D�u 2 Lp(x) (
) ; for all j�j � m

	
;

providing him with the norm

kukWm;p(x)(
) =
X
j�j�m

kD�ukLp(x)(
) :

21



Chapter 1. Preliminaries

The space Wm;p(x) (
) provided with the norm kukWm;p(x)(
) ; is a separable and re�exive

Banach space for p� > 1.

We de�ne the subspace Wm;p(x)
0 (
) as the closure of C10 (
) in Wm;p(x) (
)

W
m;p(x)
0 (
) = C10 (
)

Wm;p(x)(
)
:

Now let us generalize the well known Sobolev imbedding.

Proposition 1.8 Let m 2 N� and p; q 2 L1+ (
) : If p(x) � q(x) a:e in 
; then

Wm;q(x) (
) ,! Wm;p(x) (
) ;

is continuous.

The continuity of the injection of the space Wm;q(x) (
) into Lp
�(x) (
) was obtained by Ed-

munds and Rákosnik [21], where

p� (x) =

8<:
Np(x)
N�p(x) ; p(x) < N

1; p(x) � N:

Theorem 1.5 [11] Let p; q 2 C
�


�
and p; q 2 L1+ (
). Assume that

mp(x) < N; 1 < q(x) < p� (x) ; x 2 
:

Then there is a continuous and compact imbedding

Wm;q(x) (
)! Lq(x) (
) :

For more information concerning this section we refer the reader to [17] and [25]
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1.4 Maximum principle

Let 
 be an open connected set in RN with boundary @
 = 
 \
�
RN�


�
: Let L be the second

order di¤erential operator

L =
NX

i;j=1

aij (x)Dij +

NX
i=1

biDi + c (x) ;

with aij 2 L1loc (
) ; and bi; c (x) 2 L1 (
). Here we have used Di =
@
@xi

and Dij =
@
@xi

@
@xj
.

Without loss of generality one assumes aij = aji:

De�nition 1.10 We will �x the following notions

� The operator L is called elliptic on 
 if for every x 2 
 there is � (x) > 0; such that

NX
i;j=1

aij (x) �i�j � � (x) j�j2 ;8� 2 RN :

� The operator L is called strictly elliptic on 
 if there is � > 0; such that

NX
i;j=1

aij (x) �i�j � � j�j2 ;8� 2 RN ; x 2 
:

� The operator L is called uniformly elliptic on 
 if there are �; � > 0 such that

� j�j2 �
NX

i;j=1

aij (x) �i�j � � j�j
2 ;8� 2 RN ; x 2 
:

1.4.1 Strong maximum principle

Theorem 1.6 Suppose that L is strictly elliptic with c � 0; if u 2 C2 (
) \ C
�


�
and L (u) � 0

in 
; then either u � sup
 u or u does not attain a nonnegative maximum in 
:

23



Chapter 1. Preliminaries

1.4.2 Weak maximum principle

Theorem 1.7 Suppose that 
 is bounded and that L is strictly elliptic with c � 0; if u 2

C2 (
) \ C
�


�
and L (u) � 0 in 
; then a nonnegative maximum is attained at the boundary.

1.4.3 Comparison principle

Lemma 1.3 Let u; v 2 W 1;p
0 (
)

�
2 W 1;p(x)

0 (
)
�
such that A (u) � A (v) � 0 in

�
W 1;p
0 (
)

��
;�

in
�
W

1;p(x)
0 (
)

���
; ' (x) = min fu (x)� v (x) ; 0g ; if ' (x) 2 W 1;p

0 (
) ;
�
2 W 1;p(x)

0 (
)
�
then

u � v in 
:

1.5 Properties of the p-Laplacian operator

For 1 < p <1, the p�laplacian of a function f on an open bounded domain 
 is de�ned by

�pf = div(jrf jp�2rf):

Lemma 1.4 Let V be a closed subspace of W 1;p (
) and W 1;p
0 (
) � V � W 1;p (
) :

Then it holds

(i) ��p : V ! V � is continuous, bounded and has the (S+)-property, ie, if every sequence

fungn in V such that un * u and

lim
n!+1

sup h��pun; un � ui � 0 has a convergent subsequence funkgk such that unk ! u:

(ii) ��p : W
1;p (
)! W�1q (
) is

a) strictly monotone if 1 < p <1

b) strongly monotone if p = 2 (which is the well-known Laplace operator)

c) uniformly monotone if 2 < p <1:
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1.5.1 Eigenvalue problem

We consider the following eigenvalue problem :

�pu (x) + � ju (x)jp�2 u (x) = 0; in 
: (1.1)

Where we impose the Dirichlet boundary conditions. We say that � is an eigenvalue of ��p

if (1:1) has a nontrivial weak solution u� 2 W 1;p
0 (
). That is, for any v 2 C10 (
) ;Z




jru� (x)jp�2ru� (x)rv (x) dx� �

Z



ju� (x)jp�2 u� (x) v (x) dx = 0:

The function u� is then called an eigenfunction of ��p associated to the eigenvalue �. Note

that if p = 2, the p�laplacian corresponds to the usual laplacian.

The �rst eigenvalue of the Dirichlet eigenvalue problem of the p�Laplace operator, denoted

by �1;p, is characterized as,

�1;p = min
0 6=u�2W 1;p

0 (
)

R



jru� (x)jp dxR



ju� (x)jp dx
:

The in�mum is attained for a function '1;p 2 W 1;p
0 (
). In addition, �1;p is simple and

isolated. Moreover, the eigenfunction '1;p associated to �1;p does not change sign, and it is only

such eigenfunction, with
'1;pW 1;p

0 (
)
= 1; and there are mp; "; � > 0; such that

��r'1;p�� � mp; on �
" = fx 2 
 : d (x; @
) � "g ;

'1;p � � > 0; on 
n
":
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1.6 Properties of the p (x)-Laplacian operator

We consider the separable and re�exive Banach space V = W
1p(x)
0 (
)

��p(x)u : V ! V �;

de�ned by 

��p(x)u; v

�
=

Z



jrujp(x)ru:rvdx; u; v 2 V:

Lemma 1.5 (i) ��p(x) : V ! V � is a homeomorphism from V into V �.

(ii) ��p(x) : V ! V � is a strictly monotone operator, that means



��p(x)u�

�
��p(x)

�
v; u� v

�
> 0; u 6= v 2 V:

(iii) ��p(x) : V ! V � is a mapping of type (S+).

Remark 1.4 Since the structure of the p(x)-Laplace is more complicated than that of the p-

Laplace operator,such as it is nonhomogeneous, the extension from p-Laplace operator to p(x)-

Laplace operator will not be well-worn. Furthermore, many concepts for p-Laplacian are not true

for the p(x)-Laplacian, for instance ,if 
 is bounded, then the Rayleigh quotient

�1;p(x) = min
0 6=u2W 1;p(x)

0 (
)

R



1
p(x)

jru (x)jp(x) dxR



1
p(x)

ju (x)jp(x) dx
;

is a zero in general, so the �rst eigenvalue and the �rst eigenfunction of the p(x)�Laplacian

may not be existing.
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Chapter 2. In�nite semipositone elliptic systems

The results of this chapter have been accepted to publish in " Discontinuity, Nonlinearity,

and Complexity" journal, 2020.

2.1 Introduction

In recent years, there has been a considerable progress on the study of semipositione problems,

(see [21,34]). It is well documented in the literature that studying positive solutions to such semi-

positone problems is mathematically challenging. Even more challenging in�nite semipositone

problem has been studied by [3,26,32], for example in [26] E.K. Lee, R. Shivaji and J. Ye, have

studied the singular problem when

F (u) = au� f (u)� c

u�
;

under the following assumptions8>>><>>>:
9A > 0; p > 1 : f (u) � Aup;

9M > 0 : f (u) � alu�M;

and the result has been extended to the system8>>>>>>>>><>>>>>>>>>:

��u = a1u� f1 (u)� c1
v�
in 
;

��v = a2v � f2 (v)� c2
u�
in 
;

u = v = 0 on @
;

where 
 is a bounded domain in RN with C2 boundary @
.

There are many results concerning the p-Laplace problems see [22] or (p; q)-Laplace as like

as [21]. But the fact of that the problem is an in�nite semipositone make things more di¢ cult,

in [4] K. Akrout, has studied the in�nite semipositone problems involving the p-Laplace system.
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Chapter 2. In�nite semipositone elliptic systems

In this work, motivated by the ideas introduced in [4], we used Sub-supersolution method

with comparison principle to prove the existence of positive solution of our p; q-system, depending

on the parameters � and �:

We study the following in�nite semipositone system8>>>>>>>>><>>>>>>>>>:

��pu = �l (x)up�1 � f1 (u; v)� au��1v�1 ; in 
;

��qv = �k (x) vq�1 � f2 (u; v)� bu�2v��2 ; in 
;

u = v = 0; on @
;

(2.1)

where p; q > 1, 0 < �1 < �1 < 1; 0 < �2 < �2 < 1; �; �; a; b > 0 are real constants,

�s is a s-Laplace operator. The weight functions l and k satisfy l (x) ; k (x) 2 C (
) and

l (x) > l0 > 0; k (x) > k0 > 0 for all x 2 
 also klk1 = l1 < +1; kkk1 = k1 < +1 and

fi : [0;+1)� [0;+1) �! R; i = 1; 2 are continuous functions.

We used �rst eigenfunction of p and q-Laplace operator for constructing the subsolution, the

supersolution is a solution of a well de�ned problem, while respecting the comparison principle

between them (sub supersolution) by controlling the constants.

Now, to go on with the problem (2.1) ; we add the following assumptions

1� �1
p�

+
�1
q�

< 1 and
�2
p�
+
1� �2
q�

< 1; (2.2)

9A1; A2 > 0; �1; �2; �1; �2 > 1 :

8>>><>>>:
f1 (u; v) � A1u

�1(p�1)v�1(p�1);

f2 (u; v) � A2u
�2(q�1)v�2(q�1);

with

�1(p�1)+1
p� + �1(p�1)

q� < 1 and �2(q�1)
p� + �2(q�1)+1

q� < 1;

(2.3)
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Chapter 2. In�nite semipositone elliptic systems

9 M1;M2 > 0 :

8>>><>>>:
f1 (u; v) � �l1u

p�1 �M1;

f2 (u; v) � �k1v
q�1 �M2:

(2.4)

Let
F (x; u; v) = �l (x)up�1 � f1 (u; v)� au��1v�1 ;

G (x; u; v) = �k (x) vq�1 � f2 (u; v)� bu�2v��2 :

Then

lim
(u;v)!(0;0)

F (x; u; v) = lim
(u;v)!(0;0)

G (x; u; v) = �1:

Hence, we refer to (2.1) as an in�nite semipositone system, such as F and G are increasing

functions.

We introduced here some de�nitions and important Lemmas for proof

De�nition 2.1 We called a weak positive subsolution ( 1;  2) and supersolution (z1; z2) in

W 1;p (
) �W 1;q (
) of (2.1) such that they satisfy  i � zi ; i = 1; 2, ( 1;  2) = (0; 0) = (z1; z2)

on @
 and8>>>>>>><>>>>>>>:

Z



jr 1j
p�2r 1:rw1dx � �

Z



l (x) p�11 w1dx�
Z



f1 ( 1;  2)w1dx� a

Z



 ��11  
�1
2 w1dx;

Z



jr 2j
q�2r 2:rw2dx � �

Z



k (x) q�12 w2dx�
Z



f2 ( 1;  2)w2dx� b

Z



 �21  
��2
2 w2dx:

And8>>>>>>><>>>>>>>:

Z



jrz1jp�2rz1:rw1dx � �

Z



l (x) zp�11 w1dx�
Z



f1 (z1; z2)w1dx� a

Z



z��11 z�12 w1dx;

Z



jrz2jq�2rz2:rw2dx � �

Z



k (x) zq�12 w2dx�
Z



f2 (z1; z2)w2dx� b

Z



z�21 z
��2
2 w2dx;

for all test functions w1 2 W 1;p
0 (
) ; w2 2 W 1;q

0 (
) and w1; w2 � 0;in 
:
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Chapter 2. In�nite semipositone elliptic systems

Lemma 2.1 [10] The following problem8<: ��pu = f (x) ; in 
;

u = 0; on @
;

has a unique positive solution u 2 W 1;p
0 (
) if ,f 2 Lp0 (
) :

Lemma 2.2 [2] Let u; v 2 W 1;p
0 (
) satisfy

Z



jrujp�2ru:rwdx �
Z



jrvjp�2rv:rwdx;

for all w 2 W 1;p
0 (
) ; w � 0 then u � v a.e in 
:

Lemma 2.3 If there exist sub-supersolution ( 1;  2) and (z1; z2), respectively, such that  i �

zi ; i = 1; 2 in 
, then (2.1) has at least a positive solution satisfying  1 � u � z1 and  2 � v �

z2 in 
.

Let �p (resp. �q) be the �rst eigenvalue of ��p (resp. ��q) with Dirichlet boundary condi-

tions and 'p
�
resp. 'q

�
the corresponding positive eigenfunction with

'j = 1; j = p; q; and

there are mp;mq; "; � > 0; such that

��r'j�� � mj; j = p; q on �
" = fx 2 
 : d (x; @
) � "g ;

'j � � > 0; j = p; q on 
n
":

(2.5)

There exists positive constants h1 and h2 such that

h1'p � 'q � h2'p for all x 2 
: (2.6)
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Chapter 2. In�nite semipositone elliptic systems

We denote by 8>>><>>>:
�1 =

p(�2+q�1)+q�1
�

;

�2 =
q(�1+p�1)+p�2

�
;

with � = (�1 + p� 1) (�2 + q � 1)� �2�1 6= 0:

C1 =

��
mp

a
h
��2�1
2 �p�11 (�1 � 1) (p� 1)

��(�2+q�1) �mq

b
h�1�21 �2(�2 � 1)(q � 1)

���1� 1
�

;

C2 =

��
mp

a
h
��2�1
2 �p�11 (�1 � 1)(p� 1)

���2
(mq

b
�q�12 (�2 � 1)(q � 1)h�1�21 )�(�1+p�1)

� 1
�

;

and
�� = 1

l0

�
�p�11 �p + A1h

�1�2(p�1)
2 C

(�1�1)(p�1)
1 C

�2(p�1)
2

�

�� = 1
k0

�
�q�12 �q + A2h

��2�1(q�1)
1 C

�1(q�1)
1 C

(�2�1)(q�1)
2

�
:

(2.7)

Remark 2.1 It�s easy to verify that �1; �2 > 1:

2.2 Main results

In this section we proved the main result of this paper, and we will be deeply based on the

sub-supersolution method to prove it.

The following main result hold.

Theorem 2.1 Assume that we have all hypotheses (2.2)� (2.7). Then for

8>>><>>>:
� � �� + �p�11 (�1 � 1)(p� 1)

�
mp

l0�p

�
;

� � �� + �q�12 (�2 � 1)(q � 1)
�

mq

k0�q

�
;

(2.8)
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the system (2.1) has a positive solution (u; v) :

Proof First, we construct a positive subsolution of (2.1)

Let

 1 = C1'
�1
p and  2 = C2'

�2
q :

A calculation shows that

��p 1 = Cp�1
1 �p�11 �p'

�1(p�1)
p � Cp�1

1 �p�11 (�1 � 1)(p� 1)'�1(p�1)�pp

��r'p��p ;
��q 2 = Cq�1

2 �q�12 �q'
�2(q�1)
q � Cq�1

2 �q�12 (�2 � 1)(q � 1)'�2(q�1)�qp

��r'q��q :
In �
"; by using (2.5) ; we have

��p 1 � Cp�1
1 �p�11 �p'

�1(p�1)
p �mpC

p�1
1 �p�11 (�1 � 1)(p� 1)'�1(p�1)�pp

=
�
�p�11 �p + A1h

�1�2(p�1)
2 C

(�1�1)(p�1)
1 C

�2(p�1)
2

�
Cp�1
1 '

�1(p�1)
p

�A1h�1�2(p�1)2 C
�1(p�1)
1 C

�1(p�1)
2 '

�1(p�1)
p �mpC

p�1
1 �p�101 (�1 � 1)(p� 1)'�1(p�1)�pp ;

and

��q 2 �
�
�q�12 �q + A2h

��2�1(q�1)
1 C

(�2�1)(q�1)
1 C

(�2�1)(q�1)
2

�
Cq�1
2 '

�2(q�1)
q

�A2h��2�1(q�1)1 C
�2(q�1)
1 C

�2(q�1)
2 '

�2(q�1)
q �mqC

q�1
2 �q�12 (�2 � 1)(q � 1)'�2(q�1)�qq :

A calculation show that
�1(p� 1)� p = ��1�1 + �1�2;

�2(q � 1)� q = �2�1 � �2�2;
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aC��11 C
�1
2 = mph

��2�1
2 Cp�1

1 �p�11 (�1 � 1)(p� 1);

bC�2
1 C

��2
2 = mqh

�1�2
1 Cq�1

2 �q�12 (�2 � 1)(q � 1):

(2.9)

It follow that

�mpC
p�1
1 �p�11 (�1 � 1)(p� 1)'�1(p�1)�pp = � ah

�2�1
2

C
�1
1 C

��1
2

'
��1�1+�1�2
p

= �
ah

�2�1
2

�
C
�1
2 '

�1�2
p

�
�
C
�1
1 '

�1�1
p

� ;

�mqC
q�1
2 �q�12 (�2 � 1)(q � 1)'�2(q�1)�qq = � bh

��1�2
1

C
��2
1 C

�2
2

'
�2�1��2�2
q

= �
bh
��1�2
1

�
C
�2
1 '

�2�1
q

�
�
C
�2
2 '

�2�2
q

� :

(2.10)

Moreover, we have

�mpC
p�1
1 �p�11 (�1 � 1)(p� 1)'�1(p�1)�pp � �a ��11  

�1
2 ;

�mqC
q�1
2 �q�12 (�2 � 1)(q � 1)'�2(q�1)�qq � �b �21  

��2
2 :

(2.11)
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In the other hand

�A1h�1�2(p�1)2 C
�1(p�1)
1 C

�1(p�1)
2 '

�1(p�1)
p � �A1h�1�2(p�1)2 C

�1(p�1)
1 C

�1(p�1)
2 '

(p�1)(�1�1+�1�2)
p

= �A1
�
C
�1(p�1)
1 '

�1�1(p�1)
p

��
C
�1
2 h

�1�2(p�1)
2 '

�1�2(p�1)
p

�

� �A1 �1(p�1)1  
�1(p�1)
2 � �f1 ( 1;  2) ;

�A2h��1�2(q�1)1 C
�2(q�1)
1 C

�2(q�1)
2 '

�2(q�1)
q � �A2h��1�2(q�1)1 C

�2(q�1)
1 C

�2(q�1)
2 '

(q�1)(�2�1+�2�2)
q

= �A2(C�2(q�1)
1 h

��1�2(q�1)
1 '

�2�1(q�1)
q )(C

�2(q�1)
2 '

�2�2(q�1)
q )

� �A2 �2(q�1)1  
�2(q�1)
2 � �f2 ( 1;  2) ;

(2.12)

and�
�p�11 �p + A1h

�1�2(p�1)
2 C

(�1�1)(p�1)
1 C

�1(p�1)
2

�
Cp�1
1 '

�1(p�1)
p � ��l0

�
C1'

�1
p

�p�1
� �l (x) p�11 :

�
�q�12 �q + A2h

��2�1(q�1)
1 C

�2(q�1)
1 C

(�2�1)(q�1)
2

�
Cq�1
2 '

�2(q�1)
q � ��k0

�
C2'

�2
q

�q�1
� �k (x) q�12 :

(2.13)

Formulas (2.11)� (2.13) imply that8<: ��p 1 � �l (x) p�11 � f1 ( 1;  2)� a ��11  
�1
2 ;

��q 2 � �k (x) q�12 � f2 ( 1;  2)� b �21  
��2
2 :

Now, in 
n
" we have 'j � � > 0; j = p; q;
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and

��p 1 = Cp�1
1 �p�11 �p'

�1(p�1)
p � Cp�1

1 �p�11 (�1 � 1)(p� 1)'�1(p�1)�pp

��r'p��p
� Cp�1

1 �p�11 �p'
�1(p�1)
p

�
�
Cp�1
1 �p�11 �p + A1h

�1�2(p�1)
2 C

�1(p�1)
1 C

�1(p�1)
2 +

ah
�2�1
2

�pC
�1
1 C

��1
2

�
'
�1(p�1)
p

�A1h�1�2(p�1)2 C
�1(p�1)
1 C

�1(p�1)
2 '

�1(p�1)
p � ah

�2�1
2 'p

�pC
�1
1 C

��1
2

'
�1(p�1)�p
p

�
�
Cp�1
1 �p�11 �p + A1h

�1�2(p�1)
2 C

�1(p�1)
1 C

�1(p�1)
2 +

ah
�2�1
2

�pC
�1
1 C

��1
2

�
'
�1(p�1)
p

�A1h�1�2(p�1)2 C
�1(p�1)
1 C

�1(p�1)
2 '

(p�1)(�1�1+�1�2)
p � a

C
�1
1 C

��1
2 '

(�1�1��1�2)
p

:

So we have

��p 1 �
�
�� + �p�11 (�1 � 1)(p� 1)

�
mp

�pl0

��
l0C

p�1
1 '

�1(p�1)
p

�A1 �1(p�1)1  
�1(p�1)
2 � a ��11  

�1
2 :

By using (2.8) and (2.9), we obtain

��p 1 � �l (x) p�11 � f1 ( 1;  2)� a ��11  
�1
2 :

By the same manner, we get

��q 2 �
�
�� + �q�12 (�2 � 1)(q � 1)

�
mq

�qk0

��
k0C

q�1
2 '

�2(q�1)
q

�A2 �2(q�1)1  
�2(q�1)
2 � b �21  

��2
2

� �k (x) q�12 � f2 ( 1;  2)� b �21  
��2
2 :
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Hence

Z



jr 1j
p�2r 1:rw1dx � �

Z



l (x) p�11 w1dx�
Z



f1 ( 1;  2)w1dx� a

Z



 ��11  
�1
2 w1dx;Z




jr 2j
q�2r 1:rw2dx � �

Z



k (x) q�11 w2dx�
Z



f2 ( 1;  2)w2dx� b

Z



 �21  
��2
2 w2dx;

then ( 1;  2) is a subsolution of (2.1) :

Now as a second step of the proof, we will construct a supersolution of (2.1), for this, we let8>>><>>>:
��pe1 = 1 in 
;

e1 = 0 on @
;

and

8>>><>>>:
��qe2 = 1 in 
;

e2 = 0 on @
:

Let
z1 = (M

0)
1

p�1 e1 and z2 = (M 00)
1

q�1 e2;

where M 0 = max
�
M1;

 1
e1

�
and M 00 = max

�
M2;

 2
e2

�
:

(2.14)

Then 8>>><>>>:
��pz1 =M 0�pe1 =M 0 � �l (x) zp�11 � f1 (z1; z2)� az��11 z

�1
2 ;

��qz2 =M
00
�qe2 =M 00 � �k (x) zq�12 � f2 (z1; z2)� bz�21 z

��2
2 :

HenceZ



jrz1jp�2rz1:rw1dx � �

Z



l (x) zp�11 w1dx�
Z



f1 (z1; z2)w1dx� a

Z



z��11 z�12 w1dx;

Z



jrz2jq�2rz2:rw2dx � �

Z



k (x) zq�12 w2dx�
Z



f2 (z1; z2)w2dx� b

Z



z�21 z
��2
2 w2dx:

Therefore (z1; z2) is a supersolution of (2.1) : The formula (2.14) implies that  1 � z1 and

 2 � z2:

To preside the proof of the theorem, as a third step, and in order to obtain a weak solution
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of the problem (2.1) we de�ne the sequence

f(un; vn)g � E = W 1;p
0 (
)�W 1;q

0 (
) ;

as follows: (u0; v0) = (z1; z2) 2 E and (un; vn) is the unique solution of the system8>>>>>>>>><>>>>>>>>>:

��pun = �l (x)up�1n�1 � f1 (un�1; vn�1)� au��1n�1v
�1
n�1; in 
;

��qvn = �k (x) vq�1n�1 � f2 (un�1; vn�1)� bu�1n�1v
��2
n�1; in 
;

un = vn = 0; on @
:

(2.15)

From the 2.1 the system (2.15) for n = 1 has a unique positive solution (u1; v1) 2 E:

Observing that 8>>>>>>>>><>>>>>>>>>:

��pu1 = �l (x)up�10 � f1 (u0; v0)� au��10 v
�1
0 ; in 
;

��qv1 = �k (x) vq�10 � f2 (u0; v0)� bu�10 v
��2
0 ; in 
;

u1 = v1 = 0; on @
;

and recall that (u0; v0) is a weak supersolution to (2.1), the following hold8>>><>>>:
��pu0 � �l (x)up�10 � f1 (u0; v0)� au��10 v

�1
0 = ��pu1;

��qv0 � �k (x) vq�10 � f2 (u0; v0)� bu�10 v
��2
0 = ��qv1:

Moreover, the fact that u0 �  1, v0 �  2 and F and G are monotonous functions, we can
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get that8>>><>>>:
��pu1 = �l (x)up�10 � f1 (u0; v0)� au��10 v

�1
0 � �l (x) p�11 � f1 ( 1;  2)� a ��11  

�1
2 ;

��qv1 = �k (x) vq�10 � f2 (u0; v0)� bu�10 v
��2
0 � �k (x) q�12 � f1 ( 1;  2)� b �21  

��2
2 :

Combining the above inequalities with 2.2, one obtain that

u1 �  1 and v1 �  2:

Similarly, for u1, v1 we get that

u1 � u2; v1 � v2 and u2 �  1; v2 �  2:

Repeating this argument we get a bounded strictly decreasing sequence f(un; vn)g � E such

that

z1 = u0 � u1 � u2::: �  1 � 0;

z2 = v0 � v1 � v2::: �  2 � 0;

consequently, we deduce that the sequence f(un; vn)g converge punctually, for all x in 
.

By going to the limit in the �rst equation of (2.15), we will obtain

Z



jrunjp dx!
Z



jrujp dx;

which implies the strong convergence in W 1;p (
) ; (see [14], for a closely idea).

Indeed, by extraction of subsequence we have

run ! ru a:e.
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with using the dominated convergence theorem we deduceZ



F (x; un�1; vn�1)undx!
Z



�l (x)updx�
Z



f1 (u; v)udx� a

Z



u1��1v�1dx;

so Z



jrunjp dx!
Z



�l (x)updx�
Z



f1 (u; v)udx� a

Z



u1��1v�1dx;

and Z



jrujp dx =
Z



�l (x)updx�
Z



f1 (u; v)udx� a

Z



u1��1v�1dx:

Now, one can easily deduce that, by using Hölder inequalityZ



jrujp dx = lim

Z



jrunjp dx

� lim krunkp�1p krunkp :

We divide by lim
Z



jrunjp dx; we have immediately

lim

0@Z



jrunjp dx

1A 1
p

� krukp ;

which leads to the result, since by semi lower continuity for the weak topology of Lp (
) we

already have

krukp � lim krunkp :

To achieve the proof of this theorem we applied the same approaches to the second equation

of (2.15), then we get the convergence of the sequence f(un; vn)g to the solution (u; v) of the

problem (2.1) :
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Chapter 3. In�nite semipositone elliptic systems with m-equations

3.1 Introduction

In this chapter, we study the existence of positive solution to in�nite semipositone systems of

the form 8>>>><>>>>:
��piui = �iu

pi�1
i � ai

mQ
j=1

u
�ij
j ; i = 1;m; in 


ui = 0;8i = 1;m on @
;

(3.1)

where 
 is a bounded domain in RN with smooth boundary @
;�pi is the pi-Laplace operator,

and pi > 1; ai; �i > 0; i = 1;m;

�1 < �ii < 0, 0 < �ij < 1;8i; j = 1;m; i 6= j are a positive constants.

Recently, there has appeared many important results on the study of semipositone problems

(see [5,11,18,19,23]), and there are several result concerning an in�nite semi positone problems

have been reported, in [31] the authors have study the existence of positive solution of the

equation

��u = �
�
f (u)� u��

�
;

with Dirichlet boundary conditions where

� 2 (0; 1) ; f (0) � 0; f 0 > 0; lim
s!1

f(s)
s
= 0, g (u) = f (u)� u�� and lim

u!0
g (u) = �1:

The case g (u) = au � f (u) has been treated in [26] with a conditions on f; in [33] S.H.

Rasouli,Z. Firouzjahi have discussed the problem

8<: ��pu = �g (x) [f (u)� u��] ; x 2 
;

u = 0; x 2 @
:

This equation have a positive solution where f; g verify certain conditions, we refer to [4] for

corresponding result of a system intervening the p-Laplace operator, for F (u) = �l (x)up�1 �

f (u; v)� a
u�:v

, G (u) = �k (x) vp�1� g (u; v)� b
u� :v� ;

; where 0 < �; ; �; � < 1 and a; b; �; � are a

positive constants. With a suitables conditions on f and g he proves the existence of a positive
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solution, we refer [35] for a result concerns the p; q-Laplace system.

Our approach is based on the method of sub and supersolution were the �rst eingenfunction

is used to construct the sub solution of the problem 3:1:

3.2 Preliminaries

Let �i; i = 1;m be the �rst eigenvalue of ��pi; i = 1;m with Dirichlet boundary conditions and

'i its corresponding positive eigenfunction.

Lemma 3.1 There exists positive constants hij i; j = 1;m such that

h�1ji 'j � 'i � hij'j, i; j = 1;m for all x 2 
; (3.2)

with k'ik = 1; i = 1;m; and Mi; "; �i > 0; such that

jr'ij �Mi; i = 1;m in
�

 = fx 2 
 : d (x; @
) � "g ;

'i � �i > 0; i = 1;m in 
n
":

(3.3)

We denote by

8>>>>>>>>>>>><>>>>>>>>>>>>:

A =
�
^
�ij

�
i;j=1;m

;
^
�ij = ��ij + �ij (pi � 1) ; �ij =

8<: 1; i = j:

0; i 6= j:
:

� = (�i)ij=1;m :

P = (pi)i=1;m :

Knowing that � is the solution of the algebraic system

A� = P; with det (A) 6= 0:

Let
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C = max
1�i�m

 
Mi

ai

 
mY

i6=j=1

h
��ij�j
ji

!
�pi�1i (�i � 1) (pi � 1)

!� mP
j=1

^
�ij

!�1
; (3.4)

and

��i = �pi�1i

�
�i +

Mi (�i � 1) (pi � 1)
�i

�
; i = 1;m: (3.5)

De�nition 3.1 We called a weak positive solution (ui)i=1;m in E =
m

(
Q
i=1

W 1;pi (
)) of (3.1) satisfy

8>>>>><>>>>>:

Z



jruijpi�2rui:rvidx = �i

Z



upi�1i vidx� ai

Z



mQ
j=1

u
�ij
j vidx; in 


ui = 0; on @
;

for all functions vi 2 W 1;pi
0 (
) ; and vi � 0; in 
:

De�nition 3.2 We called a weak positive subsolution ( i)i=1;m and supersolution (zi)i=1;m

in
�

mQ
i=1

W 1;pi (
)

�
of (3.1) such that they satisfy  i � zi i = 1;m and

8>>>>><>>>>>:

Z



jr ij
pi�2r i:rwidx � �i

Z



 pi�1i widx� ai

Z



mQ
j=1

 
�ij
j widx; in 


 i = 0; i = 1;m on @
;

and 8>>>>><>>>>>:

Z



jrzijpi�2rzi:rwidx � �i

Z



zpi�1i widx� ai

Z



mQ
j=1

z
�ij
j widx; in 


zi = 0; i = 1;m; on @
:

for all functions wi 2 W 1;pi
0 (
) ; and wi � 0; in 
:
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3.3 Main results

We consider the system (3.1) under the following assumptions

mP
j=1

�ij < 0;8i = 1;m: (3.6)

det (A) 6= 0: (3.7)

�i > 1;8i = 1;m: (3.8)

Remark 3.1 The assumption (3.6) guarantees that

1 + �ii
p�i

+
mP

i6=j=1

�ij
p�j

< 1;8i = 1;m;

in order that the system (3.1) to be well de�ned.

Let

F (x; U) = �iu
pi�1
i � ai

mQ
j=1

u
�ij
j ; i = 1;m;where U = (u1; u2; :::; um) ;

so

lim
U!0

F (x; U) = �1;

which referred the system as a in�nite semiposition problem.

Theorem 3.1 Let (3.3)� (3.8) hold. Then for a positive constant K such that

��i � �i � aiK
�

mP
j=1

^
�ij
; i = 1;m; (3.9)

the system (3.1) has a positive solution.

Proof First we construct a positive subsolution of (3.1)

Let

 i = C'�ii ; i = 1;m:
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A calculation shows that

��pi i = Cpi�1�pi�1i �i'
�i(pi�1)
i � Cpi�1�pi�1i (�i � 1)(pi � 1)'�i(pi�1)�pii jr'ij

pi ; i = 1;m;

in 
": By using (3.3) ; we have

��pi i � Cpi�1�pi�1i �i'
�i(pi�1)
i �MiC

pi�1�pi�1i (�i � 1)(pi � 1)'�i(pi�1)�pii :i = 1;m; (3.10)

and a calculation show that

�i(pi � 1)� pi =
mX
j=1

�ij�j; i = 1;m:

It follow that

�MiC
pi�1�pi�1i (�i � 1)(pi � 1)'�i(pi�1)�pii

� �aiC
mP
j=1

�ij

 
mQ

i6=j=1
h
�ij�j
ji

!
'

mP
j=1

�ij

i

� �aiC
mP
j=1

�ij

 
mQ

i6=j=1
h
�ij�j
ji

!
mQ
j=1

'
�ij�j
i

� �aiC�ii'�ii�ii

 
mQ

i6=j=1
C�ij

! 
mQ

i6=j=1
h
�ij�j
ij

!
mQ

i6=j=1
'
�ij�j
i

� �aiC�ii'�ii�ii

mQ
i6=j=1

C�ij (hji'i)
�ij�j

� �aiC�ii'�ii�ii

mQ
i6=j=1

C�ij'
�ij�j
j :
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Then, we have

�MiC
pi�1
i �pi�1i (�i � 1)(pi � 1)'�i(pi�1)�pii � �ai

mQ
j=1

C�ij'
�ij�j
j ; i = 1;m; (3.11)

and (3.10) ; (3.11) imply that

��pi i � �i 
pi�1
i � ai

mQ
j=1

 
�ij
j ; i = 1;m:

Next, in 
n
" we have 'i � �i > 0, i = 1;m;

and

��pi i = Cpi�1�pi�1i �i'
�i(pi�1)
i

�Cpi�1�pi�1i (�i � 1)(pi � 1)'�i(pi�1)�pii jr'ij
pi ; i = 1;m

� Cpi�1�pi�1i �i'
�i(pi�1)
i

�
 
Cpi�1�pi�1i �i +

ai
�
pi
i

 
mQ
j=1

C�ij

! 
mQ

i6=j=1
h
�ij�j
ji

!!
'
�i(pi�1)
i

�ai'
pi
i

�
pi
i

 
mQ
j=1

C�ij

!
mQ

i6=j=1
h
�ij�j
ji '

�i(pi�1)�pi
i

�
�
Cpi�1�pi�1i �i +

Mi

�i
Cpi�1�pi�1i (�i � 1)(pi � 1)

�
'
�1(p�1)
i

�ai

 
mQ
j=1

C�ij

!
mQ

i6=j=1
h
�ij�j
ij '

mP
j=1

�ij�j

i

�
�
�i +

Mi(�i�1)(pi�1)
�i

�
�pi�1i Cpi�1'

�i(p�1)
i �

m

ai
Q
j=1

C�ij'
�ij�j
j ; i = 1;m

� ��iC
pi�1'

�i(p�1)
i � ai

mQ
j=1

C�ij'
�ij�j
j ; i = 1;m:

So we have

��pi i � �i 
pi�1
i � ai

mQ
j=1

 
�ij
j ; i = 1;m;
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Hence

Z



jr ij
pi�2r i:rvidx � �i

Z



 p�1i vidx� ai

Z



mY
j=1

 
�ij
j vidx; for all vi 2 W 1;p

0 (
) ; i = 1;m;

then ( i)i=1;m is a subsolution of (3.1) :

Now we will construct a supersolution of (3.1). Let

zi = K; i = 1;m:

with K � max
1�i�m

n
C;

��i
ai

o
:i = 1;m:

(3.12)

We have

��pizi = 0 �
 
�i � aiK

m

�
P

j=1
�̂ij

!
Kpi�1

� �iK
pi�1 � aiK

mP
j=1

�ij

= �iK
pi�1 � ai

mQ
j=1

K�ij

= �iz
pi�1
i � ai

mQ
j=1

z
�ij
j ;

and we have

Z



jrzijpi�2rzi:rwidx � �i

Z



zp�1i widx� ai

Z



mY
j=1

z
�ij
j widx; for all wi 2 W 1;p

0 (
) ; i = 1;m:

Therefore (zi)i=1;m is a supersolution of (3.1) ; while the condition 3.12 guarantees that  i �

zi;8i = 1;m:

As done in the third step of the section 3 on the previous chapter. We adapt the same

procedure to complete the proof by using the convergence criteria of subsequences.
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This �nalizes the proof of the theorem.

3.4 Application

We consider the following system8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

��u1 = �1u1 � a1u
� 1
2

1 u
1
4
2 u

1
8
3 ; in 


��u2 = �2u2 � a2u
1
4
1 u

� 1
2

2 u
1
8
3 ; in 


��u3 = �3u3 � a3u
1
8
1 u

1
8
2 u

� 1
2

3 ; in 


ui = 0; i = 1; 3; on @
:

(3.13)

According to the previous notations we have

F (x; U) =

0BBBBBBBBB@

�1u1 � a1u
� 1
2

1 u
1
4
2 u

1
8
3

�2u2 � a2u
1
4
1 u

� 1
2

2 u
1
8
3

�3u3 � a3u
1
8
1 u

1
8
2 u

� 1
2

3

1CCCCCCCCCA
;

A =

0BBB@
3=2 �1=4 �1=8

�1=4 3=2 �1=8

�1=8 �1=8 3=2

1CCCA ;

detA = 413
128
:
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A calculation show that 8>>>>>>>>><>>>>>>>>>:

�1 =
104
59

�2 =
104
59

�3 =
96
59
:

C =

 
1

M

�
3481

3552

� 1
10

max
1�i�3

n
a
1
9
1 ; a

1
9
2 ; a

1
10
3

o!8
;

and
��1 =

104
59

�
�1 +

45
59
M
�

�
:

��2 =
104
59

�
�1 +

45
59
M
�

�
:

��3 =
96
59

�
�1 +

37
59
M
�

�
:

Theorem 3.2 For a positive constant K such that

��i � �i � aiK
�

3P
j=1

^
�ij
; i = 1; 3;

the system (3.13) has a positive solution.

Proof Indeed, the assumptions (3.6) ; (3.7) ; (3.8) and (3.9) are all satis�ed

3P
j=1

�ij < 0:i = 1; 3;

lim
x!0

F (x; U) = �1;

detA =
413

128
6= 0;

and

�1; �2 and �3 > 1:
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Then, for a some constant K such that

K > max

�
C;
��i
ai

�
; i = 1; 3;

and according to the 3.1, (3.13) has a positive solution.
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Chapter 4. Nonlocal p(x)-Kirchho¤ parabolic systems

The results of this chapter have been published, " Zediri, S., Guefai�a, R., and Bou-

laaras, S. Existence of positive solutions of a new class of nonlocal p(x)-kirchho¤ parabolic

systems via sub-super-solutions concept. Journal of Applied Analysis 26, 1 (2020), 49�58." [36]

4.1 Introduction

The study of di¤erential equations and variational problems with nonstandard p(x)-growth con-

ditions is a new and interesting topic. It arises from nonlinear elasticity theory, electrorheological

�uids and other applications (see [1,7,8,39]). Many existence results have been obtained on this

kind of problems, see for example, ( [6, 15, 37, 38]. In [13, 16, 17]), the regularity of solutions for

di¤erential equations with nonstandard p(x)-growth conditions were studied.

In this chapter, we are interested in the p(x)-Kirchho¤ parabolic systems of the form

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

@u
@t
�M (I0 (u))�p(x)u = �p(x) [�1f (v) + �1h (u)] ; in QT = 
� [0; T ];

@u
@t
�M (I0 (v))�p(x)v = �p(x) [�2g (u) + �2� (v)] ; in QT = 
� [0; T ];

u = v = 0; on @QT ;

u (x; 0) = ' (x) :

(4.1)

Here 
 � RN is a bounded smooth domain with C2 boundary @
, 1 < p (x) 2 C1
�


�
is a

function with

1 < p� = inf


p (x) � p� = p� = sup



p (x) <1;

the operator

�p(x)u = div
�
jOujp(x)�2Ou

�
;

is called p(x)-Laplacian, �; �1; �2; �1 and �2 are positive parameters,
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I0 (u) =

Z



1

p (x)
jOujp(x) dx;

and M(t) is a continuous function.

Problem (4.1) is a generalization of a model introduced by Kirchho¤ [11]. More precisely,

Kirchho¤ proposed a model given by the equation

�
@2u

@t2
�

0@p0
h
+
E

2L

LZ
0

����@u@x
���� dx
1A @2u

@x2
; (4.2)

where �, P0, h, E and L are constants,which extends the classical D�Alembert�s wave equation

by considering the e¤ects of the changes in the length of the strings during the vibrations. In

recent years, problems involving Kirchho¤-type operators have been studied in many papers

(see [2,9,12,20]) in which the authors have used variational and topological methods to get the

existence of solutions.

In this chapter, motivated by the ideas introduced in [27] and the properties of Kirchho¤-type

operators in [27], we study the existence of positive solutions for system (4.1) by using the sub

and super-solutions technique.

This is a new research topic for nonlocal problems. The following is organized as follows.

In Section 4.2, we present some preliminary results on the variable exponent Sobolev space

W
1p(x)
0 (
), properties of the p(x)�Kirchho¤-Laplacian operator and the method of sub and

super-solutions. Section 4. 3 is devoted to state and prove the main result.

4.2 Preliminary results

In order to discuss problem (4.1), we need some theories onW 1p(x)
0 (
), which we will call variable

exponent Sobolev spaces. Firstly we state some basic properties of the spaces W 1p(x)
0 (
) which

will be used later (for details, see [28]).

Let us de�ne
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Lp(x) (
) =

8<:u; u is a measurable real-valued function such that
Z



jujp(x) dx <1

9=; :

We introduce the norm on Lp(x) (
) by

ju (x)jp(x) = inf

8<:� > 0;
Z



����u (x)�
���� dx � 1

9=; ;

and we introduce

W
1p(x)
0 (
) =

�
u 2 Lp(x) (
) ; jOuj 2 Lp(x) (
)

	
;

with the norm

kuk = jujp(x) + jOujp(x) for all u 2 W
1p(x)
0 (
) :

We denote by W 1p(x)
0 (
) the closure of C10 (
) in W

1p(x) (
).

Proposition 4.1 The spaces Lp(x) (
), W 1p(x) (
) and W 1p(x)
0 (
) are separable and re�exive

Banach spaces.

Now we mention some properties of the p(x)�Kirchho¤�Laplace operator. For each u 2 X =

W 1p(x)(
), de�ne

�(u) = cM �Z



1

p(x)
jrujp(x)dx

�
;

where cM (t) =
R t
0
M (s) ds andM is a continuous and increasing function on R+ and its values are

completely positive.denote by un * u and un ! u the weak convergence and strong convergence

of sequence fung in X, respectively. the Gâteaux derivative at the point u 2 X of � is the

functional �0(u) 2 X�, given by

h�0(u); vi =M

�Z



1

p(x)
jrujp(x)dx

�
:

Z



jrujp(x)�2rurv(x)dx;
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h.,.i is the duality pairing between X and X�:

Lemma 4.1 (i) �
0
: X ! X� is a continuous, bounded and strictly monotone operator.

(ii) �
0
is a mapping of type (S+), i.e. if un * u in X and

lim
n!+1

h�0(un)� �
0
(u); un � ui � 0, then un ! u in X:

(iii) �
0
(u) : X ! X� is a homeomorphism.

We using the Euler time scheme of problem (4.1), we obtain the following problems:

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

uk � � 0M (I0 (uk))�p(x)uk = � 0�p(x) [�1f (v) + �1h (uk)] + uk�1; in 
;

uk � � 0M (I0 (v))�p(x)v = � 0�p(x) [�2g (uk) + �2� (v)] + uk�1; in 
;

uk = v = 0; on @
;

u0 = '0 (x) in 
;

(4.3)

for 1 � k � N and where N� 0 = T , 0 < � 0 < 1.

Throughout the paper, we will assume the following conditions:

(H1) M : [0;+1)! [m0;m1] is a continuous and increasing function with m0 > 0.

(H2) p 2 C1
�


�
, 1 < p� � p+:

(H3) f; g; h and � are monotone C1 functions such that

lim
u!1

f (uk) = +1;

lim
u!1

g (uk) = +1;

lim
u!1

h (uk) = +1;

lim
u!1

� (uk) = +1;

(H4) One has
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lim
u!+1

f
�
Lg (uk)

1=(p��1)
�

up
��1
k

= 0 for all L > 0:

(H5) One has

lim
u!+1

h (uk)

up
��1
k

= 0:

(H6) One has

lim
u!+1

� (uk)

up
��1
k

= 0:

De�nition 4.1 If uk; v 2 W 1p(x)
0 (
), we say that

�M (I0 (uk))�p(x)uk � �M (I0 (v))�p(x)v:

If for all ' 2 W 1p(x)
0 (
) with ' � 0 one has

M (I0 (uk))

Z



jOukjp(x)�2Ouk:O'dx �M (I0 (v))

Z



jOvjp(x)�2Ov:O'dx;

where

I0 (uk) =

Z



1

p (x)
jOukjp(x) dx:

De�nition 4.2 (i) If uk; v 2 W
1p(x)
0 (
) ; then (uk; v) is called a weak solution of (4.1) if it

satis�es

M (I0 (uk))
R



jOukjp(x)�2Ouk:O'dx =
R



h
�p(x) [�1f (v) + �1h (uk)]�

uk�uk�1
� 0

i
'dx;

M (I0 (v))
R



jOvjp(x)�2Ov:O'dx =
R



h
�p(x) [�2g (uk) + �2� (v)]�

uk�uk�1
� 0

i
'dx;

for all ' 2 W 1p(x)
0 (
) with ' � 0:
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(ii) We say that (uk; v) is called a sub-solution ( resp. a super-solution) of (4.1) if

M (I0 (uk))
R



jOukjp(x)�2Ouk:O'dx �
R



h
�p(x) [�1f (v) + �1h (uk)]�

uk�uk�1
� 0

i
'dx; (resp. � ),

M (I0 (v))
R



jOvjp(x)�2Ov:O'dx �
R



h
�p(x) [�2g (uk) + �2� (v)]�

uk�uk�1
� 0

i
'dx; (resp. � ).

Lemma 4.2 (Comparison principle [28]). Let uk , v 2 W 1p(x)
0 (
) and let (H1) hold. If

�M (I0 (uk))�p(x)uk � �M (I0(v))�p(x)v;

and (uk � v)+ 2 W 1p(x)
0 (
) ; then uk � v in 
:

Lemma 4.3 (see [28]) Let ( H1) hold let � > 0 and let uk be the unique solution of the problem8<: �M (I0 (uk)) div jOukjp(x)�2Ouk = � in 
;

uk = 0; on @
:

Set

h =
m0p

�

2 j
j
1
N C0

:

When � � h;we have

jukj1 � C��
1

p��1 ;

and when � < h; we have

jukj1 � C��
1

p+�1 ;

where C� and C� are positive constants depending on p�; p+; N; j
j ; C0 and m0:

Here and hereafter, we use the notation d(x; @
) to denote the distance of x 2 
. Set

d(x) = d(x; @
) and

@
" = fx 2 
 : d(x; @
) < "g:

Since @
 is C2 regularly, there exists a constant � 2 (0; 1) such that d(x) 2 C2(@
3�) and
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jrd(x)j = 1.

Set

v1 =

8>>>>>>>>>>>><>>>>>>>>>>>>:

d (x) ; d (x) < �;

� +
d(x)R
�


�
2��t
�

� 2
p��1 (�1 + �1)

2
p��1

dt; � � d (x) < 2�;

� +
2�R
�


�
2��t
�

� 2
p��1 (�1 + �1)

2
p��1

dt; 2� � d (x) ;

v2 =

8>>>>>>>>>>>><>>>>>>>>>>>>:

d (x) ; d (x) < �;

� +
d(x)R
�


�
2��t
�

� 2
p��1 (�2 + �2)

2
p��1

dt; � � d (x) < 2�;

� +
2�R
�


�
2��t
�

� 2
p��1 (�2 + �2)

2
p��1

dt; 2� � d (x) :

0bviously, 0 � v1 (x) ; v2 (x) 2 C1
�


�
: Considering

�M(
R



1
p(x)

jO!jp(x) dx)�p(x)! (x) = �; in 
;

! = 0; on @
;

(4.4)

we have the following result

Lemma 4.4 (see [27]) If the positive parameter � is large enough and ! is the unique solution

of (4.4); then we have the following assertions

(i) For any � 2 (0; 1) there exists a positive constant C1 such that

C1�
1

p+�1+� � max
x2


! (x) :

(ii) There exists a positive constant C2 such that

max
x2


! (x) � C2�
1

p��1 :
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4.3 Main result

In the following, when there is no misunderstanding, we always use Ci to denote positive con-

stants.

Theorem 4.1 Assume that conditions (H1)-(H6) are satis�ed. Then problem (4.3) has a positive

solution when � is large enough.

Proof We shall establish Theorem 4:1 by constructing a positive sub-solution (�k; �1) and a

super-solution (zk; z1) of (4.1) such that �k � zk and �1 � z1; that is (�k; �1) and (zk; z1) satisfy

8>>>><>>>>:
M (I0 (�k))

R



jO�kjp(x)�2O�k:Oqdx �
R



h
�p(x) [�1f (�1) + �1h (�k)]�

�k��k�1
� 0

i
qdx;

M (I0 (�1))
R



jO�1jp(x)�2O�1:Oqdx �
R



h
�p(x) [�2g (�k) + �2� (�1)]�

�k��k�1
� 0

i
qdx;

and

8>>>><>>>>:
M (I0 (zk))

R



jOzkjp(x)�2Ozk:Oqdx �
R



h
�p(x) [�1f (z1) + �1h (zk)]�

zk�zk�1
� 0

i
qdx;

M (I0 (z1))
R



jOz1jp(x)�2Oz1:Oqdx �
R



h
�p(x) [�2g (zk) + �2� (z1)]�

zk�zk�1
� 0

i
qdx;

for all q 2 W 1;p(x) (
) with q � 0: According to the sub-super-solution method for p(x)�

Kirchho¤-type equations (see [28]), we obtain that (4.1) has a positive solution.

Step1: We will construct a sub-solution of (4.1). Let � 2 (0; �) be small enough.
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Set

�k(x) =

8>>>>>>>>>>>><>>>>>>>>>>>>:

ek
0d(x) � 1; d (x) < �;

ek
0� � 1 +

d(x)R
�

k0ek
0�
�
2��t
2���

� 2
p��1 (�1 + �1)

2
p��1 dt; � � d (x) < 2�;

ek
0� � 1 +

2�R
�

k0ek
0�
�
2��t
2���

� 2
p��1 (�1 + �2)

2
p��1 dt; 2� � d (x) ;

and

�1 =

8>>>>>>>>>>>><>>>>>>>>>>>>:

ek
0d(x) � 1; d (x) < �;

ek
0� � 1 +

d(x)R
�

k0ek
0�
�
2��t
2���

� 2
p��1 (�2 + �2)

2
p��1 dt; � � d (x) < 2�;

ek
0� � 1 +

2�R
�

k0ek
0�
�
2��t
2���

� 2
p��1 (�2 + �2)

2
p��1 dt; 2� � d (x) :

It is easy to see that �k; �1 2 C1
�


�
: Set

� = min

�
inf p (x)� 1

4(sup jrp (x)j+ 1) ; 1
�
;

� = min f�1f (0) + �1h (0) ; �2g (0) + �2� (0) ;�1g :

By some a computations, we can obtain
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��p(x)�k =

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

�k0
�
k0ek

0d(x)
�p(x)�1 �

(p (x)� 1) + (d (x) + ln k0

k0 )rprd+
�d
k0

�
; d (x) < �;

1
2���

2(p(x)�1)
p��1 �

�
2��d
2���

� h
(ln k0ek

0�)
�
2��d
2���

� 2
p��1 rprd+�d

i

� (kek�)p(x)�1
�
2��d
2���

� 2(p(x)�1)
p��1 �1

(�1 + �1) ; � � d(x) < 2�;

0; 2� � d(x);

and

��p(x)�1 =

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

�k0
�
k0ek

0d(x)
�p(x)�1 �

(p (x)� 1) + (d (x) + ln k0

k0 )rprd+
�d
k0

�
; d (x) < �;

1
2���

2(p(x)�1)
p��1 �

�
2��d
2���

� h
(ln k0ek

0�)
�
2��d
2���

� 2
p��1 rprd+�d

i

� (kek�)p(x)�1
�
2��d
2���

� 2(p(x)�1)
p��1 �1

(�2 + �2) ; � � d(x) < 2�;

0; 2� � d(x):

By (H4) ; there exists a positive constant L > 1 such that

f (L� 1) � 1;

g (L� 1) � 1;

h (L� 1) � 1;

� (L� 1) � 1:

Let � = 1
k0 lnL. Then
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�k0 = lnL: (4.5)

If k0 is su¢ ciently large, form (4.5) we have

��p(x)�1 � �k0�; d (x) < �: (4.6)

Let ��
m1

= k0�:Then

k0p(x)� � ��p(x) �

m1
:

From (4.6) we have

�M(I0(�k))�p(x)�k �M(I0(�1))�
p(x) �

m1

� �p(x)�

� �p(x)(�1f(0) + �1h(0))

�p(x)(�1f(�1) + �1h(�k))�
�k��k�1

� 0 ; d(x) < �:

Since d (x) 2 C2
�
@
3�

�
; there exists a positive constant C3 such that

�M(I0(�k))�p(x)�k � m1(ke
k�)p(x)�1

�
2��d
2���

� 2(p(x)�1)
p��1 �1

(�1 + �1)

�
��� 1
2��1

2(p(x)�1)
p��1 �

�
2��d
2���

� h
(ln k0ek

0�)
�
2��d
2���

� 2
p��1 rprd+�d

i���
� C3m1(ke

k�)p(x)�1(�1a1 + �1c1) ln k
0; � � d (x) < 2�:

If k0 is su¢ ciently large, letting ��
m1

= k0�; then we have
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C3m1(ke
k�)p(x)�1(�1a1 + �1c1) ln k

0 = C3m1(kL)
p(x)�1

(�1 + �1) ln k
0

� �p(x) (�1 + �1)�
�k��k�1

� 0 :

Then

�M(I0(�k))�p(x)�k � �p(x) (�1 + �1)�
�k��k�1

� 0 ; � � d (x) < 2�: (4.7)

Since �k (x) ; �1 (x) ; f and h are monotone, when � is large enough, we have

�M
�R



1
p(x)

jO�kjp(x) dx
�
�p(x)�k (x) � �p(x) (�1f (�1) + �1h (�k))�

�k��k�1
� 0 ; � � d (x) < 2�;

and

�M(I0(�k))�p(x)�k = 0 � �p(x) (�1f (�1) + �1h (�k))�
�k��k�1

� 0 ; 2� � d (x) : (4.8)

Combining (4.7) and (4.8),we can conclude that

�M(I0(�k))�p(x)�k � �p(x) (�1f (�1) + �1h (�k))�
�k��k�1

� 0 a.e in 
: (4.9)

Similarly,

�M(I0(�1))�p(x)�1 � �p(x)
�
�p(x) [�2g (�k) + �2� (�1)]

�
� �k��k�1

� 0 a.e in 
: (4.10)

From (4.9) and (4.10) we can see that (�k; �1) is a sub-solution of problem (4.3).

Step 2: We will construct a super-solution of problem (4.3). We consider
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8>>>>>>>>><>>>>>>>>>:

�M (I0 (zk))�p(x)zk = �p
+

m0
(�1 + �1)��

zk�zk�1
� 0 ; in 


M (I0 (z1))�p(x)z1 = �p
+

m0
(�2 + �2)g

�
�
�
�p

+

(�1 + �1)�
��
� zk�zk�1

� 0 ; in 
;

zk = z1 = 0; on @
;

where

� = �
�
�p

+

(�1 + �1)�
�
= max

x2

zk (x) :

We shall prove that (zk; z1) is a super-solution of problem (4.3).

For q 2 W 1;p(x)
0 (
)with q � 0; it easy to see that

M (I0 (z1))
R



jOz1jp(x)�2Oz1:Oqdx = 1
m0
M (I0 (z1))

R



�p
+

(�2 + �2)g
�
�
�
�p

+

(�1 + �1)�
��

qdx

�
R



�p
+

(�2b (x) g (zk) qdx+
R



�p
+

�2d (x) g
�
�
�
�p

+

(�1 + �1)�
��

qdx

By (H6), for � large enough and using Lemma 4.4, we have

g
�
�
�
�p

+

(�1 + �1)�
��

� �(C2

h
�p

+

(�2 + �2)g(�
�
�p

+

(�1 + �1)�)
�i 1

p��1
) � � (z1) :

Hence,

M (I0 (z1))
R



jOz1jp(x)�2Oz1:Oqdx

�
R



�p
+

(�2g (zk) qdx+
R



�p
+

�2� (z1) qdx�
R



zk�zk�1
� 0 qdx:

(4.11)
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Also,

M (I0 (zk))
R



jOzkjp(x)�2Ozk:Oqdx = 1
m0
M (I0 (zk))

R



�p
+

(�1 + �1)�qdx

�
R



�p
+

(�1 + �1)�qdx:

By (H4), (H5) and Lemma 4.4, when � is su¢ ciently large, we have

(�1 + �1)� � 1

�p
+

h
1
C2
�(�p

+

(�1 + �1)�)
ip��1

� �1h(�(�
p+(�1 + �1)�)) + �1f(C2

h
�p

+

(�2 + �2)g(�
�
�p

+

(�1 + �1)�)
�i 1

p��1
):

Then

M (I0 (zk))
R



jOzkjp(x)�2Ozk:Oqdx �
R



�p
+

�1f(z1)qdx+
R



�p
+

�1h(zk)qdx�
R



zk�zk�1
� 0 qdx:

(4.12)

According to (4.11) and (4.12), we can conclude that (zk; z1) is a super-solution of problem

(4.3). It only remains to prove that

�k � zk and �1 � z1:

In the de�nition of v1 (x), let

 =
2

�
(max



�k (x) + max



jr�kj (x)):

We claim that

�k(x) � v1 (x) for all x 2 
: (4.13)

From the de�nition of v1 it is easy to see that for d(x) = �; we have

�k(x) � 2max


�k (x) � v1 (x) ;
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for d(x) � � we have

�k(x) � 2max


�k (x) � v1 (x) ;

and for d(x) < � we have

�k(x) � v1 (x) :

Since v1 � �k 2 C1
�
@
�

�
; there exists a point x0 2 @
� such that

v1 (x0)� �k (x0) = min
x2@
�

(v1 (x)� �k (x)):

If v1 (x0)� �k (x0) < 0; it easy to see that 0 < d(x0) < �; and then

rv1 (x0)�r�k (x0) = 0:

From the de�nition of v1 we have

jrv1 (x0)j =  =
2

�
(max



�k (x) + max



jr�kj (x)) > jr�kj (x0) :

This is contradiction to

rv1 (x0)�r�k (x0) = 0:

Thus (4.13) is valid.

Obviously, there exists a positive constant C3 such that

 � C3�:

Since d(x) 2 C1
�
@
�

�
: According to the proof of Lemma 4.4, there exists a positive constant

C4 such that

M (I0 (v1))�p(x)v1 (x) � C�
p(x)�1 � C4�

p(x)�1+� a.e in 
;

where � 2 (0; 1) : When � � �p
+

is large enough, we have

��p(x)v1 (x) � �:
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According to the comparison principle, we have

v1 (x) � ! (x) for all x 2 
: (4.14)

From (4.13) and (4.14), when � � �p
+

and � � 1 is su¢ ciently large, we have

�k(x) � v1 (x) � ! (x) ; for all x 2 
: (4.15)

According to the comparison principle, when � is large enough, we have

v1 (x) � ! (x) � zk (x) ; for all x 2 
:

Combining the de�nition of v1 (x) and (4.15) it easy to see that

�k(x) � v1 (x) � ! (x) � zk (x) for all x 2 
:

When � � 1 and � is large enough, from Lemma 4.4 we can see that �
�
�p

+

(�1 + �1)�)
�
is

large enough. Then
�p

+

m0

(�2 + �2)g
�
�
�
�p

+

(�1 + �1)�
��

;

is large enough. Similarly, we have �1 � z1: This completes the proof.
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Conclusion
The method of sub and supersolution deals with the question of existence of positive solutions

of nonvariational problems with di¤erent types of nonlinearity.

The results obtained in this work can be generalized in fractional elliptic problems, and we

have aspirations to apply the �bering map approch for some elliptic problems invilving the p and

p(x)�Laplace operators.
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