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Abstract

Abstract

This dissertation is devoted to study the well-posedness and the blow-up of solutions of some
nonlinear hyperbolic problems involving non-classical nonlinearities. We proved under suitable
assumptions on the exponents of nonlinearity the local, global existence and establish the results
of blow-up of some wave equations.

It seems that the source term inhibits the global existence (in time) of the solution of the
problem is to say that the energy of the problem (or solution) tends to infinity for the norm of
space when t tends to a finite time T. Obviously, the damping term stabilizes the solution of the
problem, and it is clear that in the absence of source terms, if the solution exists locally, we can
always expand it into a global solution. This interaction between source and damping terms has
been a target in many studies and is stills -It is important also to know which term is dominant
to the other-.

We can say that our research is an expansion of some results done by previous researchers.
Mainly, by making appropriate modifications, we extended some known results of some nonlinear
wave equations with constant and variable-exponent nonlinearities studied by Messaoudi, and
exploit ideas by Georgiev and Todorova.

Keywords and Phrases: Blow-up, global existence, source term, wave equation, viscosity,

negative initial energy, variable exponents, positive initial energy, existence and uniqueness,

Faedo-Galerkin.
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Résumé

Résumé

Cette thése consacrée a ’étude d’existence et I’explosion des solutions de quelques problémes
hyperboliques non linéaires impliquant des non-linéarités non classiques. Nous avons prouvé
sous des hypothéses appropriées sur les exposants de la non-linéarité 1’existence locale, globale
et établissons les résultats d’explosion de certaines équations des ondes.

11 semble que le terme source inhibe 'existence globale (en temps) de la solution du probléme
c’est-a~dire que 1'énergie du probléme (ou de la solution) tend vers l'infini pour la norme de
lespace lorsque t tend vers un temps finis T. Evidemment, le terme d’amortissement stabilise
la solution du probléme, et il est clair qu’en ’absence de termes sources, si la solution existe
localement, on peut toujours I’étendre en une solution globale. Cette interaction entre les termes
source et amortissement a été un but dans de nombreuses études et elle 'est toujours -II est
également important de savoir quel terme est dominant par rapport a 'autre- .

Nous pouvons dire que notre recherche est une expansion de certains résultats réalisés par
des auteurs antérieurs. En particulier, en imposant des modifications appropriées, nous avons
développé certains résultats connus de certaines équations d’onde non linéaires avec des non-
linéarités a exposant constant et variable étudiés par Messaoudi, et exploité les idées de Georgiev
et Todorova.

Mots-Clés et Phrases: Explosion, existence globale, terme source, équation d’onde, vis-
cosité, énergie initiale négative, exposants variables, énergie initiale positive, existence et unicité,

Faedo-Galerkin.




Notations

Notations

Throughout this dissertation, we will use the following conventions:

Q : denotes a bounded domain in R¥.

We denote by RV the n—dimensional Euclidean space, and n € N always stands for the
dimension of the space.

Q : The adhesion of €.

0f) : Smooth boundary.

x = (11,2, - ,2y): Generic point of RV,

Vu : Gradient of w.

Awu : Laplacian of u.

w:u(z,t).

v vj(x).

3_77 : The normal derivative of u over 0.

ou . . o .

N : 7 The partial derivative of u with respect to t.

—: Strong convergence.

—: Weak convergence.

— x : Weak star convergence.

a.e : Almost everywhere.

p’: Conjugate of p, i.e E - l/ = 1.

D(Q) : Space of differeﬁtiaé)le functions with compact support in €2.

D'(€2) : The dual of D(Q2) : The space of distributions on €.

For k > 1 integer, C*(Q) is the space of functions u which are k times differentiable and
whose derivative of order k is continuous on ().

C*(€2) : Space of functions of C*(£2) whose support is compact and contained in €.

Co(£2) : Space of continuous functions null board in .

LP(Q2) : Space of functions p-th power integrated on () with a measure of dx.

111, = ( [ir@r)

WP (Q) = {ue LP(Q),Vu e LP(Q)}.




Notations

Wy? () : The closure of D(Q) in WP (Q).

Wy (Q) : The closure of C3°(Q2) in W0 () |

W5 (Q) : The dual space of W, ().

W*»([0,T], X) : Sobolev space.

H : Hilbert space.

HY = W*(Q).

Hi () = W™ (Q) : The adhesion of D (Q) in H™ (Q).

C*([0,T], X) : Space of functions k—times continuously differentiable for [0,7] — X.

LP0) (Q) : Lebesgue space with variable exponent p(.).

E(t) : Energie.

T : Explosion time.

by () = [ (@) do.

|.]lx : The norm of X.

D% : The derivative of order « in the sense of distributions.

D([0,T],X) : The space of functions continuously differentiable of [0, 7] — X with compact
support in [0, T7.

D'([0,T], X) : The distribution space.

C(Q) = {u : u continuous in Q} .

supp u = {x € Q:u(x) # 0} = The support of u.

Co(R2) ={u e C(Q): supp u is a compact subset of 2} .

C*(Q) = {u € C(Q) : u is k times continuously differentiable} .
CE(Q)=Ck(Q)NCy().

C>®(Q) = lElC'k (©) = smooth functions.

S~—

(
C (2) = C* (Q) N Cy (2) = compactly supported smooth functions = test functions




General Introduction

Variable Exponent Spaces: Brief History

The topic of variable exponent spaces has undergone extensive evolution in the past few years.
However, the main reference is still the paper [40] by O. Kovaéik and J. Rédkosnik (1991).
This work covers only basic characteristics, like reflexivity, separability, duality, and first results
in connection with embeddings and density of smooth functions. Particularly, L. Diening in
2002 demonstrated the boundedness of the maximal operator, and its consequences are absent.
Of course, progress on more advanced properties is dispersed in a great number of papers.

To familiarize students and colleagues more to the main results led around 2005 to the
publication of some short survey articles. Furthermore, L. Diening gave in 2005 lectures at the
University of Freiburg and M. Riuazicka gave in 2006 a course at the Spring School NAFSA 8
in Prague.

In the summer of 2006, L. Diening et al decided to write a book consisting of basic and
advanced properties, with amended assumptions. Two additional lecture sessions were given by
P. Histo (2008 in Oulu and 2009 at the Spring School in Paseky); another synopsis, is the
habilitation thesis of L. Diening’s in 2007.

In the last few years, the domain of variable exponent function spaces has seen tremendous
growth. For example, a search for “variable exponent” in Mathematical Reviews yields 15 articles
before 2000, 31 articles between 2000 and 2004, and 267 articles between 2005 & 2010. This
measure is crude with some errors in rating, but nonetheless quite expressive.

Lebesgue spaces for variable exponents was presented for the first time in 1931 by W. Orlicz
in his article [68]. The question posed in this article is to search for necessary and sufficient

conditions on (y;) in which Z z;y; to converge ? for (z;) and (p;) (with p; > 1) be sequences



Variable Exponent Spaces: Brief History

of real numbers such that fo converges. Then it became clear that the answer is that
3

Di

. Also he considered the variable

Zi (Ay;)" should converge for some A > 0 and p| =

exponent function space LP() on the real line, and proved the Holder inequality in this setting.

Thereafter, function spaces theory received great interest from Orlicz, which bears his name
now (see [65]). In the theory of Orlicz spaces, the space L? is contained of measurable functions
u : €2 — R such that

000 = [ (@) do < .
for some A > 0 [ ¢ is a function of real-value that may depend on x and satisfies certain
conditions].

H. Nakano [66, 67] was the first who studied a more general class of so-called modular
function spaces, called modular spaces by putting certain properties of o. After Nakano’s
work, several people investigated the modular spaces, most importantly by groups at Sapporo
(Japan), Voronezh (U.S.S.R.), and Leiden (the Netherlands). Later, Polish mathemati-
cians investigated a more explicit version of modular function spaces, for example, H. Hudzik,
A. Kaminska, and J. Musielak.

The variable-exponent Lebesgue space LP() () is defined as the Orlicz space L0 (§2) where
(t) =t (t) "
Py () =t or ¢,y (t) = ——,
p(.) p(.) ()

ie.,
L0 (Q) = {u : 2 — R measurable such that o (\u) = / Ppzy M u(2)]) do < —1—00} :
Q
for some A > 0 equipped with the Luxemburg norm

[[ull,) = inf {/\ > 0 such that /Qgpp(x) ( ) dr < 1} :

The Russian researchers have been independently developing the variable exponent Lebesgue

spaces on the real line. These investigations originated in a paper written by Tsenov [75] (1961).
I. Sharapudinov presented in [70] the Luxemburg norm for the Lebesgue space and showed
that this space is Banach if the exponent satisfies 1 < essinf p < esssup p < oco. In the mid-80s,
V. Zhikov [78] started a new line of investigation of variable-exponent spaces, by considering

variational integrals with non-standard growth conditions.

9



Blow up in the Case of Constant and Variable Exponents Nonlinearities

The early '90s was the next main step in the fulfillment of variable-exponent spaces by
Kovacik and Rdkosnik’s article [40], in their work they established many essential properties
of Lebesgue and Sobolev spaces in R".

At the beginning of the new millennium, great progress has been made for a more precise study
of variable-exponent spaces. Particularly, the connection was made between variable exponent
spaces and variational integrals with non-standard growth and coercivity conditions.

The motivation for the recent systematic study of PDEs with variable exponents has been
the description of several relevant models in electrorheological fluids or fluids with temperature-
dependent viscosity, thermorheological fluids, nonlinear viscoelasticity, filtration processes through
a porous media and image processing, or robotics. These models include hyperbolic, parabolic
or elliptic equations that are nonlinear in a gradient of the unknown solution and with variable
exponents of nonlinearity. In this regard, Chen, Levine, Rao [20], gave an example that concerns
application to image restoration.

Generally, partial differential equations are of great importance in the modeling and descrip-
tion of a wide range of phenomena such as fluid dynamics, quantum physics, sound, heat, static
electricity, diffusion, gravity, chemistry, biology, plane simulation, calculator diagrams, and time
prediction.

Literature Review

During the past years, the linear and nonlinear wave equations with constant and variable-
exponent nonlinearities have undergone considerable and great studies. Here, our goal is to
introduce an overview of the current results and provide others.

Blow up in the Case of Constant and Variable Exponents Nonlinearities

The work of Levine [43] and Ball [5] in the following equation was the first study of finite

time blow up of solutions of hyperbolic partial differential equations
uy — Au = f(u).

Later, Levine [43, 44] was treated the interaction between the damping and the source terms

for the following equation

Uy — Au+ auy = f(u),

10



Blow up in the Case of Constant and Variable Exponents Nonlinearities

and used the concavity method for proving blow-up of solutions at a finite time with negative
initial energy.
To extend Levine’s results, Georgiev and Todorova [31] considered a different method ( when

m > 2 ( the nonlinear damping case)) to the nonlinear damped equation
g — Au+ a|ug|™ up = bluluin (2 x (0,00)),

and showed that solutions continue to exist globally “in time” with any initial data if m > p,
and blow up in a finite time when the initial energy is sufficiently negative if p > m.

Recently, Levine and Serrin [47], Levine, Park, and Serrin [46], Levine and Park [45], and
Messaoudi [52, 53| generalized this result to an abstract setting and unbounded domains. They
proved that if p > m, no solution with negative energy can be continued to the whole [0, 00);
they also demonstrated some non-continuation theorems. This generalization permitted them to
use their result in quasilinear situations, a special case is apparent in the problem in reference
[52].

In [52], Messaoudi extended the blow-up result of [31] to solutions with only negative initial
energy, without imposing the condition that deems the initial energy sufficiently negative.

Vitillaro [76] expanded the results which were obtained in [47, 31] where the solution has a
positive initial energy and the damping is non-linear. Messaoudi [51] expanded the result of [52]

to the viscoelastic wave equation:
t

uy — Au + /g(t — D) Au(T)dT 4 aug |ue] " = buul’ 7, z€Q, t>0,
0
and showed by imposing appropriate conditions on g, that solutions blow up in finite time if

p > m with negative initial energy and continue to exist globally if m > p for arbitrary initial

data. In [34] Kafini and Messaoudi proved the blowup result for the following problem
t

gy — Au + /9(75 — 7)Au(7)dT 4 up = bu|ul’?, in R™ x (0, 00)
0

In [19], Cavalcanti et al. have treated the following related problem in a bounded domain:

t
[ug|” gy — Au — Ay + /g(t — 7)Au(T)dT — yAu; = 0,2 € Q, t >0,

0

11



Blow up in the Case of Constant and Variable Exponents Nonlinearities

where p > 0. They achieved an exponential decay result for v > 0, and global existence for

v > 0. Kafini and Messaoudi in [33] pushed the same result [34] to a system of the form

gy — Au+ /g(t —71)Au(t)dr = fi(u,v), in R" x (0,00)

0
t

vy — Av + /h(t —71)Av(r)dr = fo(u,v), in R" x (0,00).
0

In [55], Messaoudi and Said-Houari proved the result of the global existence of certain solu-

tions with positive initial energy for the following problem

t
uy — Au+ [ gt — 7)Au(r)dr + ™ u = f1 (u,0), in Q x (0,00),
0

t
vy — Av A+ [t — T)Au(r)dT + v ™ vy = fo (w,v), in Q x (0,00),
0

u(z,t) =v(x,t) =0, on 02 x [0, 00),
u(x,0) = ug (z),us (z,0) = uy (), in €,
v (x,0) = v (x),v: (2,0) = vy (2), in €,

\

where () is a bounded domain of R with a smooth boundary 0. In the paper of Chen et al

[21], they looked into the nonlinear p—Laplacian wave equation:
uy — div (\Vu|p_2 Vu) — Auy + g(x,u) = f(z),

when 2 < p <n and f,q are given functions. Under suitable conditions on the initial data and
the functions f,q, they realized global existence, uniqueness and also discussed the long-time

behavior of the solution. Benaissa and Mokeddem in [10] considered:
uy — div (|VulP 2 V) — o (t) div (|Vau,|™* V) = 0.

They achieved an energy-decay estimate for the solutions where p,m > 2,0 is a positive
function, and expanded Yang [77] and Messaoudi [54] results. Recently, Mokeddem and Mansour
[64] added some modification in the problem of Benaissa and Mokeddem [10] and established the
same decay result.

Messaoudi and Houari [56] studied the nonlinear wave equation:

gy — Auy — div (|Vu\o‘_2 Vu) — div (\Vut|ﬁ_2 Vut> +a|u|™ P uy = blulP % u,

12



Blow up in the Case of Constant and Variable Exponents Nonlinearities

where 2 is a bounded domain in R" (n > 1), a,b,¢ > 0 and «, 3,m,p > 2. They investigated
with appropriate conditions imposed on «, 3, m,p > 2, a global nonexistence result for solutions
assocciated with negative initial energy.

In the paper of Mohammad Kafini and Salim Messaoudi [36] the authors are concerned with a
problem of a logarithmic nonlinear wave equation with delay and established the local existence
result by using the semigroup theory. Also, they proved the result of a blow-up at a finite time
for negative initial energy. In [35] the same previous authors treated a nonlinear wave equation
with delay term and proved, under appropriate hypotheses on the initial data, that the energy
of solutions explodes in a finite time. For more results, see the previous studies [9, 26, 30, 69].

There are several and great studies concerned with the study of nonlinear models of parabolic,
elliptic, and hyperbolic equations in the case of variable exponents of nonlinearity. For exam-
ple, some models from physical phenomena such as flows of electro-rheological fluids or fluids
with temperature-dependent viscosity, nonlinear viscoelasticity, image processing, and filtration
processes through porous media, give rise to such problems.

Now, let us mention some problems in this direction. Antontsev [2] looked into the problem:
Opu — div (a (2, 1) [V Vu) — aluy = b (@, t)uul”0 72

when « is a nonnegative constant a,b,p, o are given functions. He discussed the case when «
= 0 and a > 0, and demonstrated a blow-up result under a particular hypothesis on a, b, p,o.
Thereafter, Antontsev in [1] considered the same equation and established a local, global existence
of weak solutions for specific conditions on a, b, p, o, and realized blow-up results for solutions
with non-positive initial energy.

In [32] Guo and Gao considered the same problem of Antontsev [1], they picked the constant
o(x,t) = r > 2 and realized a blowup result in finite time, also they alleged without any proof the
same blow-up result for o(x,t) = r(z). Sun et al in [71] studied the blow-up result for solutions

with positive initial energy for the following equation:
uy — div (a (2, 1) Vu) + ¢ (2, ) uy u, [0 = b (2, ) uuf 07

They also gave lower and upper bounds for the blow-up time and provided numerical illus-

13



Plan Work

trations for their result. Lately, Messaoudi and Talahmeh [57] looked into
uy — div <|Vu|m(ﬁt)_2 VU) + py = |uff P2,

where p > 0. They proved a blow-up result for certain solutions with arbitrary positive initial

energy. This result was generalized by the same authors in [58] to an equation of the form

g — div(|Vau|"O72Vu) 4 alu, ™20, = blu|PO 2,

where the exponents of nonlinearity m, p and r are given functions and a,b > 0 are constants.
They demonstrated a finite-time blowup result for the solutions with negative initial energy and
for certain solutions with positive energy.

At the end of 2017, Messaoudi et al. [60] studied the following class of nonlinear wave
equation:

U — Au 4 aug|uy| ™72 = bufulPO 2,

where the existence of a unique weak solution is established under suitable assumptions on the
variable exponents m and p by using the Faedo—Galerkin method. Also, they proved the finite-
time blow-up of solutions and gave a two-dimension numerical example to clarify the result of
the blow-up. In [29] Yunzhu Gao and Wenjie Gao treated a nonlinear viscoelastic equation with
variable exponents and achieved the existence of weak solutions under suitable assumptions by
using the Faedo—Galerkin method.

For more information in the study of the phenomenon of explosion in hyperbolic equations,
we guide the reader to Antontsev and Ferreira [3], Galaktionov [28] and the book by Antontsev
and Shmarev [4].

Plan Work

Our purpose in this dissertation is to prove the well-posedness and the blow-up of solutions
of several nonlinear hyperbolic problems involving nonclassical nonlinearities. Otherwise, we
treated some problems and found under some appropriate assumptions the results of blowup.

This study generalizes and expands some results. In detail, we expanded the result of blow-up
of several nonlinear wave equations with variable and constant exponent nonlinearities, studied

by Messaoudi [51, 58, 60], by using different techniques.

14



Plan Work

This dissertation is consists of four principal chapters in addition to the general introduction,
conclusion, and suggestions. The general introduction contains, in particular, a brief history
of variable exponent spaces and a literature review on blow up in the case of constant and
variable exponents nonlinearly, and it is ended by a third section devoted to the plan work of
this dissertation.

The first chapter is devoted to some background and basic concepts needed. Especially, we
reminded some basic results, notations, prerequisites, preliminaries, elementary properties, and
proof of some principal inequalities used in the proof of lemmas and theorems in this dissertation,
also we recalled the definition of Variable-exponent Lebesgue and Sobolev spaces, which will be
useful to us later. We ended this chapter with the concept of blow-up, where we have specifically
introduced what the authors mean by this notion.

We start our contributions from the second chapter ( this chapter essentially corresponds to
the paper [72]. Z. Tebba, S. Boulaaras, H. Degaichia and A. Allahem, Existence and blow-up of
a new class of nonlinear damped wave equation, Journal of Intelligent and Fuzzy Systems, 38 (3)
(2020), 2649-2660.), where we demonstrate the existence, uniqueness, and blow-up of solutions

of the following nonlinear wave equation with variable exponents
Uy — Au — Ay + auy \ut]m(')*2 =bu |u\7”(')72 , in Q% (0,7),
u(z,t) =0, on 99 x (0,T), (1)
u(z,0) = ug(x), us(x,0) = uy(z), in €,

where, ) is a bounded domain in R™ (n > 1), with a smooth boundary 02, a,b > 0 are constants

and the exponents m(.) and p(.) are given log-Holder! continuous functions on  verified:

2
2 <my <m(z) <my < n2,n23, 2)
n_
and
n—1
2<pi<plr)<pp<2—F n>3. (3)
/,’L_

1Otto Ludwig Holder ( 22/12/1859 - 29/08/1937 ) is a German mathematician born in Stuttgart, capital of
the kingdom of Wiirttemberg.

In 1877, he entered the University of Berlin, and he obtained his doctorate in 1882 at the University of Tiibingen.
The title of his doctoral dissertation is Beitréige zur Potentialtheorie ( Contributions to the theory of potential ).

He taught at the University of Leipzig from 1899 until his emeritus in 1929.
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Here, we use the famous Faedo-Galerkin method and fixed point theorem to show the existence
and uniqueness of solutions under some suitable data. Also, we investigate the blow-up phe-
nomena of solutions of problem (1), particularly we try to answer the question: under which
conditions on the parameters p and m, the solution does not exist globally in time ?. And the
obtained results are proved by using a different method.

The following chapter is number three ( this chapter essentially corresponds to the paper
[74]. Z. Tebba, H. Degaichia and H. Messaoudene, Global existence and finite time blow-up in
a new class of non-linear viscoelastic wave equation, Journal of Discontinuity, Nonlinearity, and
Complexity, 11 (2) (2022), 275-284.), and it is devoted to studying the global existence and finite
time blow-up of the following new class of non-linear viscoelastic wave equation

( ¢
Uy — Au — Ay + /h(t — T)AU(T)dT + cuy [ug|™ 7 = du|ulP 7z € Q,t >0,

‘ (4)
u(zx,t) =0, x €I t>0,

\ u(x,0) = ug(x), ur(z,0) = uy (), x €,

where {2 be an open bounded Lipschitz domain in R™ (n > 1), with a Lipschitz-countinuous
boundary 992, p > 2,m > 1, and c,d are strictly positive constants. We show that solutions
with arbitrary data continue to exist globally if m > p and blow-up in finite with negative initial
energy if m < p.

The next chapter is number four ( this chapter present a very recent published work [73]. Z.
Tebba, H. Degaichia, M. Abdalla, B. B. Cherif and I. Mekawy, Blow-Up of Solutions for a Class
Quasilinear Wave Equation with Nonlinearity Variable Exponents, Journal of Function Spaces,
2021 (2021).), it contains four sections, and it is consecrated to study the finite-time blow-up of
solutions of the following new category of a quasilinear wave equation with variable exponents

nonlinearities

Uy — div (|Vu|s(')_2 Vu) — Ay + nuy |ut\Q(')_2 = uu ]u|p(')_2 , in Q2 x(0,7),
u(z,t) =0, on 90 x (0,T), (5)
u(,0) = ug(a), uy(,0) =y (2) in 0,

here 2 C R™ (n > 1), be a bounded domain with a smooth boundary 952, n, x > 0 are constants,
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and the exponents p(.), ¢(.) and s(.) are given log-Hslder continuous functions on €2 such that:

2 S max {QQa 32} <P S p(w) S P2 S 3*(1')7 (6)
where
ns(zx) .
‘ s (ns(@) L 2 <7
s* (z) = 2c0 ’
400 lf S9 Z n
and

essinf (s* (z) —p(x)) > 0.

zeQ
The first and second sections consist of basic assumptions, statements, and well-posedness of
problem, in the third and fourth one, we achieve a finite time blow-up result for solutions with
negative initial energy and certain solutions with positive energy.
We have finished this dissertation with a conclusion that contains some perspectives and
proposals for open subjects. At the end of this work, there is an alphabetic list of the references

used to prepare this dissertation under the title References.
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Chapter 1

Background and Basic Concepts

1- Reminders and Prerequisites (Some Basic Results)
2- Variable Exponents Lebesgue and Sobolev Spaces
3- Notions of Blow-Up

Key Words and Phrases: Contraction mapping theorem, variable-exponent spaces, blowup,
modular spaces.

This chapter contains some preliminaries and basic results used throughout this dissertation.
After presenting some essential concepts, notations, and definitions which will be useful to us
later. We will introduce some functional spaces, then we mention fundamental concepts used in

this dissertation.
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1.1 Reminders and Prerequisites (Some Basic Results)

In this section, we present some material and standard notations that we shall use in order to

present our results.

Let z = (21,79, ,x,) denote the generic point of an open  of R"!. Let u be a defined

Ou(x)
0

function of Q with values in R, on indicated by D'u(zx) = the partial derivative of

1
the function u with respect to x;.

Also define the gradient and the Laplacian of u, respectively as follows
ou Ou ou \" 9 " | ou |?
— (== == ... d IVul? =
Vu <83:1’ Oxy’ ’8$n> and |Vul ; Ox; |’
" 0%u () 0?u  O*u 0?u
A - = o« _ .
u(=) 2 (ax% * 3 L ax%) (@)

i=1
We denote by C' () the space of all continuously differentiable functions on {2 with values
in R.

Co(Q)={ue C(Q): supp uis a compact subset of 2} .
(C(£2))™ is the space of continuous functions of 2 with values in R™.

Cy (ﬁ) the space of continuous and bounded functions on €, we provide it with the standard

[uf| o = sup |u ()]
e

For k > 1 integer, C* (Q) is the space of functions u which are k times differentiable and

whose derivative of order & is continuous on 2.

C* (Q) is the function space of C* (), whose support is compact and contained in €.

!By R™ we denote the n—dimensional Euclidean space, and n € N always stands for the dimension of the

space.
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o C5° (2) or D (Q), is the space of indefinitely differentiable functions (which is called space
of test functions), with a compact supports contained in 2, having continuous derivatives

of all orders

D(Q)=C(Q)={ueC™(Q);3K C Q, K compact (closed, bounded); v =0 on K} .

e The support of a continuous function f defined on 2 is the closure of the set of a point

where f(x) is nonzero. That is

supp(f) = {x € Q/f(x) # 0}.

e D' () is the Distribution space.

e We use throughout this dissertation the standard L*(Q2) and H'({2) spaces.
e The space H'(Q2)? is equipped with the norm

el gy = Hlully + IVl
where [|ull; = [|ull72).
e Also, we take advantage of space
Hqu&(Q) ={ue H(Q) : I{un}p_, C C; (), such that u,, — uin H(Q)},

equipped with the norm:

2 2
el ) = IVullz

if O is a bounded domain, where H{ () is a Hilbert® space.
ou  Pu
o " T o

2We set H1(Q) = W12(Q).
3David Hilbert is a German mathematician born January 23, 1862, in KAonigsberg in Prussia oriental and

.Ut:

died on February 14, 1943, in GAottingen in Germany. He is often considered one of the greatest mathematicians
of the 20th century, just like Henri Poincaré. He created or developed a wide range of fundamental ideas, be it
the theory of invariants, the axiomatization of geometry, or the foundations of functional analysis (with Hilbert

spaces).
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LP(Q) = {f : 2 — R is a measurable function and / |f|P dx < oo} , where 1 < p < 0.
0

f Q2 — R is a measurable function and there is a constant C' > 0

such that |f (z)] < C a.e. on Q

o [®(Q)) =

o 7

loc

Q) ={f:Q2—R, f is measurable function and f € L?(K),VK C Q, K compact}.
e [?(9) is a Banach space for all 1 < p < 0.
e In particular, when p = 2, L?(Q) equipped with the inner product
(U, V) 20y = /Qu(x)v (x) dx,
is a Hilbert* space.
o LP(Q) is a reflexive space for all 1 < p < occ.

e Let 7' > 0 be a real number and X be a real Banach space endowed with norm |||, . We

consider the following definitions:

The space LP(0,T; X)° denotes the space of functions u which are L? over (0, T) with values

in X, which are measurable and

T
|ullx € LP(0,T),LP(0,T; X) = {u :(0,T7) — X is measurable; / lu (t)[% dt < oo} .
0
This space is a Banach space endowed with the norm

1
T »
oo = [ Te@IFdr) <40,
0
for 1 < p < .

) uw:]0, T[— X _
e For p =00, L>(0,7T; X) denotes the space of functions which are mea-
t— u(t)

surable and ||u|| € L>(0, T'),

0<t<T

L™(0,T;X) = {u : (0,T) — X is measurable; ess sup |u (t)[% < +oo} .

* A Hilbert space H is a vectorial space supplied with inner product (u, v) such that ||u| = \/(u,u) is the norm

which let H complete.
’The space LP(0,T; X) is complete.
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This space is a Banach space endowed with the norm:

||U||Loo(0,T;X) i=ess sup |lu(t)|x < 4o’
0<t<T

e Werecall that if X and Y are two Banach spaces such that X — Y (continuous embedding),
then
LP(0,T;X) — LP(0,T;Y),1 < p < 0.

e The space Lj (0,7;X) consists of all measurable functions u : (0,7) — X with u €
LP([a,b]; X) for every closed interval [a,b] C (0,T).

e The space C'(0,T; X) consists of all continuous functions « : [0; 7] — X with

lull o) = JIRX Jull < +oc.

e The space C1(0,T; X) consists of all continuously differentiable functions u : [0,7] — X
with

du
lollewom = gl + g | 5| < +oc.

0<t<T 0<t<T

e C*(0,T; X) is the space of functions k—times continuously differentiable for [0, 7] — X.

1.2 Variable Exponents Lebesgue and Sobolev Spaces

In this section, we list briefly some definitions and well-known facts about generalized Lebesgue’
spaces LP(*) (Q), and generalized Sobolev® spaces W™?(®) (Q) . These results provide the needful

framework for studying variance problems.

5We use the symbol:= to define the left-hand side by the right-hand side.
"Henri-Léon Lebesgue (1875-1941), better known under the name of Henri Lebesgue, is one of the great French

mathematicians of the first half of the 20th century. He is recognized for his theory of integration published initially

in his dissertation Integral, length, area at the University of Nancy in 1902.
8Specialist in differential equations applied to the physical sciences, Sobolev introduces, from 1934, the notion

of generalized function and derivative to better understand the phenomena physical where the concept of function
was insufficient in the search for solutions of equations to partial derivatives. He is thus at the origin of the theory

of distributions developed by his compatriot IsraAel Guelfand and Frenchman Laurent Schwartz.
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Most of the results are similar to those for Lebesgue spaces LP (2) and Sobolev spaces
Wm™P (§2), but the Sobolev-like embedding theorem and result on density are new; they show
the essential difference between W™?@) () and W™ (Q).

1.2.1 On the Spaces L**) (Q) (Variable Exponents Lebesgue Spaces)

Throughout this dissertation, €2 will be a non-empty, open, bounded subset in R",n € N, and
p will be a measurable function on Q with values in [1,00). By saying that Q has a Lipschitz
Boundary we mean that the boundary 0f2 is locally described by Lipschitz-continuous functions.

We summarize in this subsection the most important basic properties of variable exponent
Lebesgue spaces LP() (see[38,23 —25]). They differ from classical LP spaces in that the exponent
p is not constant but a function from 2 to [1,00), and we will give a brief description of their

main properties.

Definition 1.1. A function o : X — [0,00) is said to be left-continuous if the mapping \ —
o(Ax) s left-continuous on [0,00), for every x € X (in which X be a k-vector space); that is,

lim o(\z) = o(z),Vz € X.9

A—1—

Definition 1.2. A function o : X — [0,00) in which X be a k-vector space ( where k is either
R or C ), is called a semi-modular on X if the following properties hold

(a) 0(0) = 0.

(b) o(A\x) = o(x), for all x € X and X € k, with |A\| = 1.
(c) o is conver.

(d) o is left-continuous.

(e) o(Ax) = 0, for all X > 0 implies x = 0.

A semi-modular is called modular if

(f) o(x) = 0 implies x = 0.

A semi-modular is named continuous if

(g) the mapping A — o(Ax) is continuous on [0,00) for all x € X.

9Here a — b~ means that a tends to b from below, i.e. a < b and a — b; a — b* is defined analogously.
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Example 1.1. 1) Let L°(Q) be the set of all Lebesque-measurable functions defined on €. If

1 <p<+o0, then

0,(f) = / (@) Pdz,

defines a continuous modular on L°(f2).

2) Let w € L},.() with w > 0 almost everywhere and 1 < p < oo. Then
o) = [1f(a)lw ) da,
Q

defines a continuous modular on L°(2).
8) Let oo(t) :=00 - X (1,00)(t) fort >0, d.e. poo(t) =0 fort € [0,1] and poo(t) = 00 fort €
[0,00). Then
0 ()= [ llf (2)) do,

defines a semi-modular on L°(2) which is not continuous.

Theorem 1.1. [41] Let o be a semi-modular on X. Then, the mapping A — o(\x) is non-
decreasing on [0,00) for every x € X, by convexity and non-negativeness of o and o(0) = 0.
Furthermore,

o(Az) = o(|A|z) < |Ao(z)  forall [N <1, (1.1)
o(Az) = o(JA|z) > |Ae(z)  for all |A\| > 1.

A
Proof. - Assume that 0 < \ < i, then 0 < — < 1. So for x € X we have
1

o) = o ) + (1 - 3) 0) < 20 ur) + (1 - 3) 0(0) = 20 ur) < o (o).

Hence for any = € X, we have
o(Ax) < o(px) for 0< A< pu.

- For A # 0, we have

A

o(A\z) = Q(w

Al z) = o(|A] x) (since
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- For |\| < 1, we have
o([Alz) = e(|Alz + (1 = [A) 0) < Ao (x) + (1 = [A]) 2 (0) = [N o (2) .

thus,
o(Ax) = o(|A\| z) < [MNo(z) VreX and A <1

- For |A] > 1, we have

1 1 1 1 1
ole) = ol o + (1 - W) 0) < oela) + (1 - W) 000) = el ).
Therefore,

o(Az) = o(|]A| ) > |A| o(x) Vre X and |\ > 1.

Definition 1.3. Let (92, 3, u) be a o—finite, complete measure space.

Definition 1.4. Let P(§2, ) be the set of all p—measurable functions p : Q — [1,00]. The
functions p € P(2, ) are named variable exponents on 2. We introduce
p1:=essinfp(y) and po:= esssupp(y).
yeQ yeQ
If p» < 400, then we call p a bounded variable exponent. If p € P(Q, ), then p' € P(Q, )

defined as follows
1 1

1
+ =1, where — :=0.
p(y) P Y) 00

The dual variable exponent of p is the function p'. Particularly when u is the n—dimensional

Lebesgue measure and §) is an open subset of R", we abbreviate P(§2) := P(Q, u).

Definition 1.5. Let p : Q — [1,00] be a measurable function, where Q is a domain of R™. We

introduce the Lebesgue space with a variable exponent p(-) by
PO (Q) == {u:Q — R; measurable in Q : 0p() (Au) < 00, for some A >0 },

where

0,0, (u) = / ()" .
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18 a modular, endowed with the following Luxembourg-type norm

Jull () :=inf ¢ A >0 /
Q

LP0) (Q) is a Banach space.

u(x) o de <1310

A

Y

Remark 1.1. The variable exponent-Lebesque space is a special case of more general Orlics-
Musielak spaces. For the constant function p(x) = p, the variable exponent-Lebesgue space coin-

cides with classical Lebesgue space.

Example 1.2. Let p(z) = x on Q = (1,2). Then, |1, , = 1. Indeed,

2
1
or() )\2 A
1

Since o,y (1) = 1, then, by definition of |[1]|,,,, we have ||[1]|, ) <1 . Otherwise, it is easy to
1

verify that o, (X) > 1, for 0 < A < 1. This gives ||1||p(.) > 1. Subsequently, we deduce that

H1||p(,) =

Lemma 1.1. If p(x) = p, where p is constant. Then

el = do = / o (1.2)

Q

Proof. Since g, (%) =1, then
0
Next, by employing property of inf, then there exists a sequence {J; }j’;l = 1 such that \; >

[l .y» with

u
2u() ()\—]) < Land Aj — [lull, -

10

Proof. see Theorem?2.1.7. page 24 in reference [41]. O
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Since,
u 1 /
o0\ v ) =7 [ lulf <1
o) <>\j> (A)")
so we get
Yo < lull (1.4
Combining (1.3) and (1.4) gives (1.2). O

Definition 1.6. A function v :  — R is log-Holder continuous on 2, if there exist A > 0 and
0 <d <1 such that

x) — <_—, or all x,y € Q, with |x —y| < 0. 1.5
6(e) — 0] € o for allay v ] (15)

Lemma 1.2. Let Q2 be a domain of R™. Ifp:Q — R is a Lipchitz function, then it is log-Hélder

continuous on ).

Proof. Let x,y € Q , with |x —y| < § and 0 < § < 1. Then, since p is Lipchitz, there exists
L > 0 such that

Ip(z) —p(y)| < Lz —yl
L
< ———— (= |z —yl|log|z —yl|). (1.6
T (e —slozle ) )
Let g(s) = —slogs. Then, g is continuous on [0, 1] and subsequently is bounded. So we get,
0 < —slogs < M. Thus, (1.6) becomes
—A
p) —pW <
(o) =20 <
where A = LM > 0. Therefore, p is log-Holder continuous. O]

Example 1.3. Let q(z) = x® + 2 be defined on Q = B(0,1). Then q : Q — R is log-Hélder
continuous on 2 . Indeed, let (x,y),(xo,y0) € Q , with |(z,y) — (2o, y0)| < 0 and 0 < § < 1.
Then,

lg(z,y) — qlzo. po)| = |2* — 3|

= |z — zol|x + x0|
4log 6
log &

B A
log |(z,y) — ($07y0)|7
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where A = 4log(1/5). Subsequently, q is log-Holder continuous.

Lemma 1.3. (Unit Ball Property ) [41] Let p € P(Q,n) and f € LP(Q, 1) be a measurable
function on 2. Then

(i) 1fll,0y < 1 if and only i 0,0, () < 1.

(i) IF 1y < L. then g,y (F) < Il

(i) If | fllyy = 15 then [[fll,y < oy () -

() |1,y < 1+ 040 (f)-

Lemma 1.4. [41] If p is a measurable function on Q satisfying 1 < p1 < p(x) < ps < 400, then

for a.e. x € Q , we have

min {7, Jull?) b < 0,0, (u) < max {ullt) )}
for any u € LPO ().
Theorem 1.2. [41] If p € P(Q, i), then LPY)(Q, 1) is a Banach'! space.

Lemma 1.5. [41] If p: Q — [1,00) is a measurable function with py < 0o, then C§° () is dense
in LP0) (Q).

Some Useful Inequalities

We want here to recall some algebraic inequalities that we need later in this dissertation

Lemma 1.6. (Cauchy Inequality) Let 2 be an open subset of R™. For all (a,b) € R?

1

Lo 2
jabl < 5 lal” + 5 18]

Lemma 1.7. (Cauchy Inequality with € (e—Inequality)) For all ¢ > 0 and (a,b) € R?, we
have:

€ 1
bl < —a® + —b>
bl < 507+ 5

HStefan Banach: (30 March 1892 — 31 August 1945) was a Polish mathematician who is generally considered
one of the world’s most important and influential 20th-century mathematicians. He was the founder of modern
functional analysis and an original member of the Lwéw School of Mathematics. His major work was the 1932
book, Théorie des opérations linéaires (Theory of Linear Operations), the first monograph on the general theory

of functional analysis.
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Lemma 1.8. (Holder's Inequality) [41] Let p,q,s € P(Q, p) such that

1 1 1
= + for a.e. y € Q.

sw) pl) a)
If f € LPO(Q, ) and g € LIY(Q, ), then fg € L*V(Q, 1) and

19 )< 21 f .y Ngllgey -

By taking p = q = 2, we have the Cauchy'*—Schwarz" inequality: For all u,v € L*(Q)

1/2 1/2
/uvdw §/|uv|dm§ /|u|2dx /|v|2dx :
Q Q Q Q

that is to say
[wv]| 2y < llull o) 0]l L2y -

Lemma 1.9. (Young's Inequality) [41]
Let p,q,s € P(Q, ) such that

for a.e. y € QL.

Then for all a,b > 0, 0 0 )
(ab)s . (a)P : (b)q .
s(.) = p() ! q(:)

By taking s = 1, and 1 < p,q < 40 (p,q, and s are constants), then we have for any e > 0 the

(1.7)

following Young’s"* inequality with ¢
ab < ea®? + C.0%,Va,b > 0,

1 1 1
where —+ - =1 and C, = ——.
poq q(ep) ™

12 Augustin Louis, Baron Cauchy (August 21, 1789, in Paris - May 23, 1857, in Sceaux (Hauts-de-Seine))
is a French mathematician. He was one of the most prolific mathematicians, behind Euler, with almost 800

publications.
BHermann Amandus Schwarz was born on January 25, 1843, in Poland and died on November 30, 1921,

in Berlin. He is a famous mathematician whose work is marked by a strong interaction between analysis and

geometry.
HMWilliam Henry Young ( London, October 20, 1863 - Lausanne, July 7, 1942) is an English mathematician

from Cambridge University who worked at the University of Liverpool and that of Lausanne.
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For p=q =2, we get other writing of Young’s inequality with ¢

1
ab < ea?® + —b*,
4e

or
P
p—

1
,Vp > 1,

1 —11b
]ab|§—5]a\p+p—'
p

where ¢ s any positive constant.

Lemma 1.10. (Gronwell's Inequality) Let T > 0, ¢ be a function such that ¢ € L*(0,T), o > 0,
almost everywhere and ¢ € L'(0,T),¢ > 0, almost everywhere and pp € L*(0,T),Cy,Cy > 0.

Suppose that
t

o (1) §01+Cg/gp(s)¢(s)ds, a.etel0,T].

So we have
t
(Cgfcp(s)ds)
¢ (t) < Cre\ ° , a.etel0,T].
Lemma 1.11. (Minkowski Inequality) For 1 < p < oo, we have :

lu+ ol = llull  + 0l -

15

Proof. Taking the well-known result
(2ea —b)?> >0 for all a,b € R™,
for all ¢ > 0, we have
4262 + b% — deab > 0.

This implies

deab < 4e%a® + b2,

consequently,
2

b
ab < ea® + —.
4e

This ends the proof. O
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Definition 1.7. (Integration by Part) Let (u,v) € H' (), for 1 <i <n so we have

ou ov
axivdx = —/axiud:v + /uvnida,
Q o9

Q

where n;(x) = cos(n, z;) is the directing cosine of the angle between the normal outside 0S) at the

point and the x; axis.

Lemma 1.12. (Green's Formula)'® For allu € H*(Q) and v € H () we have:

ou
where — s the normal derivative of u over 0f).

on

Existence Method

Here, we state the fixed point theorem which is called the contraction mapping theorem. We use

this theorem to prove the existence and the uniqueness of the solution of our nonlinear problem.

Definition 1.8. Let f be a map of a metric space E to it self; i.e. f: E — E. A pointx € X
18 called a fixed point of f if

f(u) =u.

Definition 1.9. Let (E,dg) and (F,dg) be two metric spaces. The map ¢ : E — F is called a

contraction if there exists a positive constant C' < 1 such that
dr (30 (U’) y P (U>> < CdE (u7 U) )
forall z,y € X.

Theorem 1.3. (Contraction Mapping Theorem) Let (E,d) be a complete metric space. If ¢ :

E — FE is a contraction, then ¢ admits a unique fized point.

16 George Green (July 1793 - 31 May 1841), physicien britannique.
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1.2.2 On the Spaces W™ (Q)) (Variable Exponents Sobolev Spaces)

In this subsection, we recall some preliminaries and definitions about Sobolev spaces with variable

exponents and we study some functional analysis-type properties of these spaces.

Definition 1.10. (Weak Derivative) Let Q C R"™ be an open set. Suppose that v € L}, (). Let
a:=(ay, - ,a,) € N" be a multi-index and let |o] = ay + -+ + .

If there exists g € L}, (Q) such that

dlely

— (—1)lel
/uaalxl — aanxndx (—1) /@bgd:v,
Q Q

for all ¢ € C* (), then g is called a weak partial derivative of u of order ce. The function g is
olely
aalajl e aanxn ’

denoted by 0®u or

Definition 1.11. Let m € N. The space W™P() (Q) is defined as follows
WP (Q) := {u € LV (Q) such that 9w € LPY (Q), ¥|a| <m }.
A semi-modular on WP (Q) defined by

Owm.r()(Q) (w) = > Orr()(Q) (Oau) -

0<|al<m

This induces a norm [41] given by

lllyma gy =i {2 > 05 sy (5) S1hi= 3 9aullyy

0<|a|<m

For m € N, the space W™P0) (Q) is named Sobolev space and its elements are named Sobolev

functions. Obviously WO (Q) = LPO)(Q) and
W) (Q) = {ue LPY(Q) such that Vu exists and |Vu| € PV (Q)} .

This space is a Banach space with respect to the norm |[ull s ) = llull, ) + [Vull,,
We abbreviate ||ullym.ncy gy to l|ull,, 5y and owmror ) 0 0pp(y- The Banach space W p() (Q)
with p(x) € [p1,p2] C [1,00) is defined by

Wo P () == {u e W' (), (Ju|,|Vu]) € LFD ()} .

32



Background and Basic Concepts

An equivalent norm of Wol’p(') (Q) is given by

ull 100y = [Vl -
If p = 2, then HL(Q) = W,*(Q).
Theorem 1.4. Let p € P(Q). The space W™PL) (Q) is a Banach space, which is reflevive if

1 < p; < py < 400, and separable if p is bounded 7.

Definition 1.12. Let p € P(§2) and m € N. The Sobolev space Wén’p(') (Q) “with zero boundary
trace” is the closure in W™PL) (Q) of the set of W™P() (Q)-functions with compact support, i. e.,

Wgﬂm() () = {u € WmPO(Q) : u = uyk for a compact K C Q}.

Remark 1.2. [41] Let p € P(Q2) and m € N. Then

(i) The space Hy’p(')(ﬂ) is defined as the closure of C5°(Q) in W™P() (Q). Furthermore, we
set Wol’p(') (Q) to be the closure of CF (Q) in WHPL) (Q) . Here we note that the space W0 ()
18 usually defined in a different way for the variable exponent case.

(ii) H"PO(Q) ¢ WY ().

(1i1) If p is log-Holder continuous on ), then Wgn’p(') (Q) = Hsn’p(')(Q).

(iv) The dual of Wol’p(') (Q) is defined as Wo_l’p/(') (), in the same way as the usual (classical)

1 1
Sobolev spaces, where —+ =1

() ()

Theorem 1.5. Let p € P(2). The space W(;n’p(') (Q) is a Banach space, which is separable if p

18 bounded, and reflexive if 1 < p; < py < +00.

Lemma 1.13. (Poincaré's Inequality)'® [41] Let Q be a bounded domain of R"™ and p(.)

satisfies the Log-Hdlder continuous property on €2, then

lull,y < CIVull,y,  for all we W™ (Q),

17

Proof. See reference [41] page 249. O

8Henri Poincaré (April 29, 1854, in Nancy - July 17, 1912, in Paris) is a mathematician, physicist and, a French
philosopher. Theoretical engineer, his contributions to many fields of mathematics and physics have radically

changed these two sciences.
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where the positive constant C' depends on €2, p1, py only.

Remark 1.3. Note that the following inequality

/ |uP® dz < C/ IVl da,
Q Q

does not in general hold.

Remark 1.4. The log-Holder continuity condition on p(.) can be substituted by p(.) € C (), if
Q2 is bounded.

Remark 1.5. Inversion of the constant-exponent case, the Poincaré inequality version for modu-
lar does not exist. The following example clarifies that the Poincaré inequality does not generally

hold in a modular form.

Example 1.4. [41] Let p: (—2,2) — [2,3] be a Lipschitz continuous exponent defined by

;

3, if ©€(=2,-1)U(1,2)

11

2 ' —= =
EEeY
p\r) = 1
—2x + 1, if x€ [—1,—5}

, 1
2z + 1, if xe[?l}.

Let u, be a Lipschitz function defined by

e+ 2u, i we (=21

Uy (.I') = M, Zf T c (_17 1)
—px + 244, if ©e[l,2).
Then
2 @) /2 24
P q noax
Q(U ) /;2 ’u,u’ T 1 1
7 -2 = 1 9, @
e (u“) / uﬂp(x) dx 2/ u3dx .
—2 —2
as u — 0.

Now, we recall some basic embedding results which are necessary for the proofs in this dis-

sertation.
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Lemma 1.14. [41] Let Q be a bounded domain in R™ with a smooth boundary 0. Suppose that

p:Q — [1,00) is a measurable function such that

1 <p <pz)<py < +oo, for a.ex €.

- - @) e
If p(z),q(z) € C(Q) and q(z) < p*(z) in Q with p*(z) = { " —p(x)
00, Zf P2 > n.

Then the embedding Wol’p(')(Q) — LIO(Q) is continuous and compact.
As a special case, we have

Corollary 1.1. [41] Let Q be a bounded domain in R™ with a smooth boundary 0S). Suppose that

p(.) € C() is a continuous function such that
2n
2<p <p(x)<pp<——, n>3. (1.8)
n J—

Then the embedding HE () — LPY) (Q) is continuous and compact.

1.2.3 Elementary Properties

We list here the most important properties of variable exponent Lebesgue and Sobolev spaces
which hold without advanced conditions on the exponent. In another way, we collect properties
that do not require any regularity of the exponent

For Any Measurable Exponent p

e 170) and WP() are Banach spaces.

e The modular g, and the norm |-, are lower semicontinuous' with respect to (sequen-

tial) weak convergence and almost everywhere convergence.

e Holder’s inequality holds.

"Theorem: Let ¢ be a semimodular on X. Then p is lower semicontinuous on X,, i.e.
o(z) <liminfp (zy),
k—oo

for all zp,x € X, with z;, — = (in norm) for k — 0.
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e 170) is a Banach function space.

o (LPV)) = LP() and the norm conjugate formula holds.

For Any Measurable Bounded Exponent p

e 170) and W'P() are separable spaces.

e The Aj,—condition holds, i.e. modular convergence and norm convergence are the same.
e Bounded functions are dense in LP() and W1P0).

e Cf° is dense in LP0).

For Any Measurable Exponent p with1 < p; < p, < ™

o 1P0) and W'P0) are reflexive.

o 1P0) and W'P() are uniformly convex.

1.2.4 Warnings!

In this subsection, we list some results, properties, and techniques from constant exponent spaces
which essentially never hold in the variable exponent setting even when the exponent is very
regular, e.g, p € P9 or p € C* (Q) with 1 < p; < ps < c0.

- The space LP®) is not rearrangement invariant.

- The translation operator
Ty, : LPY) — LPO Ty f(x) == f(z + h),

is not bounded.

- Young’s convolution inequality

1S gl < cllfillllglly)

does not hold.
20plog () := {p € P(Q) : 1/p is globally log-Holder continuous.}, such that P () : Set of variable exponents.
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- The formula
/\f(wﬂpdw:p/ P e e Q: |f ()] > 1) d,
Q 0

has no variable exponent analogue.
- Maximal, Poincaré, Sobolev, etc., inequalities do not hold in a modular form. For instance,

A. Lerner showed that
/ M P dy < C/ P da
R” R

if and only if p € [1, 00) is constant.

1.2.5 Similarity

In general, variable-exponent and classical Lebesgue spaces are similar in many aspects. For the
following assertions, see [40]:

- The Holder inequality holds.

- They are reflexive if and only if 1 < p; < ps < 0.

- Continuous functions are dense if py < oo.

- If Q has a finite measure and p,q are variable exponents so that p(z) < ¢(x) almost
everywhere in (2, then the embedding L)(Q) — LP0)(Q) holds.

- The spaces Wo*(Q) and W=1#70)(Q) are defined by the same way as the usual Sobolev

spaces where p'(.) is the function such that ﬁ + ]ﬁ =1.

1.3 Notions of Blow-Up

We are interested sometimes by the behavior of solutions of a specific problem for an evolution
PDE, particularly, if this PDFE describe a concrete phenomenon, for example, propagation of
pollutant in the air, if we indicate the concentration of this pollutant in the point x at the time
t by u(t,z), so it is reasonable that one has tliToTé u(t,z) = 0 since there will be no pollutant in

the great distance.

From this point of view we begin, and have the following definition
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Definition 1.13. Let Q C RY and u = u(t,z) be a solution of a given evolution PDE on the
set Q:=10,T] x A. We say that u blows up in finite time T if such that

lim |u (t,2)| = +oo.
M Ju(t,2)] = +oo

In this case one has

sup [u (¢, z)| = +o0,
e

and T is called the time of Blow-up.

1.3.1 Referential Examples

Case of ODE
The simplest example to show the blow-up?’ phenomena in the case of ordinary differential

equations (ODE) is the following (non-linear) Cauchy problem
o' (t) = 2%(t), t >0, z(0) = .

One can show immediately that if xq > 0 for some 7" > 0 then, the previous Cauchy problem

admits the unique solution x(t) = T3 in the interval |0, 7'[. This solution is a smooth function

on |0, T and satisfies in particular at tl_z}rjpﬁ x(t) = 4o00. This means that, according to the
previous definition, the solution blows up in finite time. One can think to generalize this remark
as the main phenomenon of ODEs and PDEs.

Case of PDE

The Blow-up’s phenomena appear especially when the unknown function in the considered
problem depends not only on time but also on the spacial variable, especially in the reaction-

diffusion problems, propagation evolution problems, the famous example is the following Cauchy

problem of Fujita’s equation
uy = Au + uP

u(0,7) = up(z), v € RY,

2Uf Tae < 00, we say that the solution of our problems blows up and that T),q. is the blow-up time.

If Thhae = 00, we say that the solution is global.
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Where the unknown function u = u(t, z) is real-valued, ¢ > 0, p > 1, and A is the classical

Laplace?? operator.
This equation is studied by Fujita in 1966, particularly, he showed that if 1 < p <1+ 2/N

then all solutions in a given class blow up in finite time.

22Pierre-Simon Laplace, born March 23, 1749, in Beaumont-en-Auge (Calvados), died March 5
1827 in Paris, was a French mathematician, astronomer, and physicist particularly famous for his work in five

volumes Céleste Mechanics.
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Chapter 2

Existence and Blow-Up of a New Class

of Nonlinear Damped Wave Equation

1- Basic Assumptions
2- The Well-Posedness of the Problem
3- The Main Blow-Up Result

Key Words and Phrases: Wave equation, existence and uniqueness, Faedo-Galerkin, blow-
up.
Our purpose in this chapter is to demonstrate the well-posedness and the finite-time blow-up

of solutions of the following nonlinear wave equation with variable exponents:

Uy — Au — Augy + aug|uy ™72 = buluPO72, in Q x (0,7")
u(z,t) =0, on 90 x (0,T) (2.1)
u(z,0) =wug(z), u(x,0)=1u(x), in €,
where 2 is a bounded domain in R™ (n > 1) with a smooth boundary 92, a,b > 0 are constants
and the exponents m(-) and p(-) are given measurable functions defined on Q.
This chapter is divided into three sections: Some necessary assumptions needed in this chapter

are presented in Section 2.1. In Section 2.2, we demonstrate the well-posedness of the problem
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by using the famous Faedo Galerkin method. Then, by using the well-known contraction mapping

theorem, we can show the local existence of (2.1). In Section2.3, we list some technical lemmas

and we state with the proof our main result of blow up.
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2.1 Basic Assumptions

We present in this section the most important basic materials that we need in the proof of our
results and achieve the well-posedness of the problem. We utilize the Sobolev space Hg () and
the standard Lebesgue space L*(§2) with their usual scalar products and norms. First, we assume
the following hypotheses:

(H1) The exponents m and p are measurable functions such that either m, p € C(Q) or they
satisfy the following log-Holder continuity condition:

lg () —q(y)| < — Jfor ae z,y € Q,with |z —y| < 0. (2.2)

A>00<d<1h

log |z — y|

(H2) We suppose for the nonlinearity in the damping that
2n
n—2’
2<my <m(z) <my < +oo, n< 3.

2<m; <m(z) <my < n > 3. (2.3)

(H3) We suppose for the nonlinearity in the source term that

1

2 < py < pla) < ps < 2— 50 =3 (2.4)
n_

2 < py < p(x) < pp < 400, n<3.

(H4) We furthermore suppose that

2<m s m(x) Smy <pr S pla) Spp S (2.5)
n p—
this condition is necessary for the result of blow-up.
The energy associated to the problem (2.1) is presented as follows
1 2 2 2 JulP)
E(t) = 3 [uf + |Vul> + |V, | do — b —)dx, t>0, (2.6)
Q .',U

direct derivative of (2.6) and using problem (2.1), gives us

= —a/ |ug (z,1)] (2.7)

Lalmost everywhere, that is to say everywhere except possibly on a set of zero measure.
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2.2 The Well-Posedness of the Problem

Our aim in this chapter is to study the local existence and uniqueness (or better local well-
posedness) of the weak solution of the problem (2.1). We consider for this goal the following

initial-boundary value problem:

uy — Au — Ay + aug|uy |72 = f(2,t), in Qx (0,T)

u(x,t) =0, on 902 x (0,7T) (2.8)

u(z,0) =wug (), u(x,0)=u (), in Q,
where a > 0 is a constant, f € L?(Q x (0,7)), (ug,u1) € H} () x L*(Q2), the exponent m(-) is a
given measurable function satisfying (H1)-(H2) and €2 is a bounded domain in R” with smooth
boundary 02, we will prove the local existence of problem (2.8) by using the Faedo-Galerkin
method. Then, by using the well-known contraction mapping theorem, we can appear the local
existence of (2.1). In our proof, we followed closely the techniques due to Georgiev and Todorova

[31], with appropriate modifications imposed by the nature of our problem.

Theorem 2.1. Let m € C(S). Under condition (H2), problem (2, 8) has a unique local solution

u € L2((0,7), Hy (),
w € L=((0,T), Hy(2) N L™ (Q % (0, 7)),
Uy € L2((07T)7H_1(Q))

2.2.1 Proof of Theorem 2. 1

Existence

Proof. Here, we prove the local existence by using Faedo-Galerkin’s method, which consists to
construct approximations of the solutions, then we get prior estimates necessary to guarantee
the convergence of approximations. This method has proven to be an effective tool in the study
of nonclassical problems, such problems have been studied by several authors for different types

of parabolic, hyperbolic, and mixed type equations. We divide our proof into three steps:
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- In the first step, we introduce an approach problem in a bounded dimension space V,, which
has a unique solution v,,.

- In the second step, we derive the various a priori estimates.

- In the third step, we will pass to the limit of the approximations by using the compactness

of some embedding in the Sobolev spaces.

Let {v;}2, be an orthonormal basis of Hy 1 (Q), with

—AUj = /\jUj, in Q,
v; = 0 ondQ,

and represent for every n > 1, the finite-dimensional subspace V; = span{vi,...,vx}. By nor-
malization, we get ||v;]|, = 1, denote by \; the related eigenvalues, where v; are solutions of the
previous initial boundary value problem?.

We look for functions .
)= a;(t);,
j=1
which satisfy the following approximate problems
/ db (2, 0) v; () de + / Vit (1) Vo, () da (2.9)
Q Q
+ | vk A k m(r)=2 ,
uy, (x,6) Vo (z)dz +a | |uf (z,1))| uy (x,t) v, (z) de
Q Q

[ 10 @ de, o @0) = b u@0) = ub, V=120 0k,
Q

(u1,v;)v; are two sequences in Hy (Q) and L%(Q), respectively,

Mw

k
where u E ug, V; )V, uk =
1=1 =1

such that

uf — uy in H} (Q) and uf — u; in L*(Q).

2Dirichlet’s spectral problem

—Ae; = ANej, inQ, j=1,---,m,

e; = 0 onodQ,

admits a sequence of non-zero solutions e;, corresponding to a sequence of eigenvalues A; > 0. The functions e;

will be used as special bases in the Faedo-Galerkin method.
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This generates the system of k ordinary differential equations

al(0) + Xjay (1) + al(t) = g5(8) + Gy 1), .0, (1) 210,

a;(0) = (ug,v;), aj(0) = (u1,v;), Vj=1,2,...,k,
where

~ [ Fat s
Q
and
k m(z)—2
Gj(ay(t), ..., ai(t)) = —a /Q ZGQ (t) vi () a; () vi (z) v; (z) do

Because

/Qufg; (m,t)—/QAuk (x,t)—/QAuft (x,t)+a/Qyuf (a, )" (x,t):/ﬂf(x,t),

then

[ dtetyos @)= [ avt @0 @)~ [ s @0 @
+a/ﬂ\u,’:(x,t>\ Ok (g t)vj(x):/f(a:,t)vj(a:),

Q
hence
k
/Zaj )dm—/ Vi (z,t) v; (z) do
Q 20
—l—/ Vi (z,t) Vo; (v) de — | Vb, (v,t) v (z) dz
Q 1)

+/ Vb (z,t) Vo; () do + a/ |uy (z, zf)}m(x)_2 uf (z,t)v; () dv
Q Q

/Qf (x,t) v (z)dz

The term [ Vu" (x,t)v; (z) and / Vu}, (x,t) vj (z) equal zero because v; (z) = 0 on 95, so
90 9
we get

/Z /Vu (2,1) Vo, (x)

/Vutt z,t) Vu; (z +a/|ut (2,t)] Quf(x t)vj (z)

wawwm
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then
[ wu @@ - [ dv@ ey
[ Tutet w0 - [ Avle)d
m(z) k
—l—/va] () uy, (z t)—l—a/9|ut x t)| (x,t)v; ()
= Qf(%t)vj(ffi),
thus
/Q;%W@M + [ @) z%
+ BQVvJ() (x,1) /)\vj Za
+ ij( Yul, (z,t) +a/ |Ut x,t |m(z) 2uf(:c t)v; (x)
= /f z,t)v; (z
a;(t)—i-)\aj()—l—)\a()—l— VUJ()k(xt)
+/ Vo, (z)uf, (z,t) /|ut z,t)| ) u (x,t)vj ()
= /f z,t)vj (x
Hence
(t) + Aja; (1) + Aja; (1) = g; (1) + Gj(ai(t) (1))
where
9j (t): Qf(l’,t)?}j (:L‘),
and
k m(z)=2
Glai(t), -+ ai(t) = —a [ |Sai (@ (1) vs (@) ; () do
AL UHCEY IR ATE) SEACHE
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Now, if we have v; = 0 on 9 so Vv; = 0 also on Jf2, and we obtain that

Z a; (t)v; (z) v; (x) de.

This system can be solved by standard ODE theory. Thence, we get functions

k m(z)—2

S (1) vi ()

=1

Gy (t), -+ aj(t) = _a/Q

aj:[O,tk)—>]R, 0<ty<T.

Next, we have to appear that ¢, = T,Vk > 1.
Multiplying (2.9) by a(t) and sum over j to obtain

1d/ Jug (2, 1) Pdz + [Vu* (z, t)|?
2di | Ja HVuf (2, 1)

+a/ |k (2, )| da

Q

JRCTERT
Q

Integrating over (0,t) to get

1 t
5 [ (k0P de (Va0 + (Fub )Py doa [ [ Jubo o) dods
Q 0 JQ

1 t

- 5/(]u’f]2+\Vu§]2+|Vu’f|2) dx—l—/ /f(x,s)uf(a:,s)d:rds (2.11)
0 0 Ja

1 t t
< —/(uf+|Vuo|2+|Vu1|2)dx+€/ /|u,’f|2da:ds+05/ /fzdasds

2 Ja 0 Jo 0 Ja
< C’E+€Sup/|uf (2.1) [Pz, Wt € [0.4;).

0

(0,tx)
Where
1 t
C. = —/ (ui + [Vuo|* + [Vui[*) do + cs/ / fPdxds.
2 Jq 0 Jo

Then, we obtain

1 1
—sup/|uftC (a:,t)\Qd:U—i-—sup/ |Vu*(x,t)*dx (2.12)
2 0,t3) 2 0,t0)
+= sup/\Vut :Ut)]d:ls+a/ /]ut$s|mxd;1:ds
2(0tk

IN

C: +8sup/|ut (z,t) Pdz, Vte[0,t).

(0,t1)
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Picking ¢ = }1, we arrive at

sup/|ut (z,t) |dx+sup/|Vu (z,t)|*dw

(0,tx) (0,tx)

T sup / Vb (2,1) Pdz + a / / (2 )" dads
(9] 0 Q

(07tk)
< C.

Therefore, the solution can be expanded to [0,7) and, in addition, we get

(u") is a bounded sequence in L*((0,T), H3(Q2))

(uF) is a bounded sequence in L=((0,T), H}(Q)) N L™ (Q x (0,T)).
Thus, we can extract a subsequence (ué) such that

u' — u weakly * in L>((0,T), H}(Q))

ul —  wu, weakly xin L=((0,T), H(Q)) and weakly in L™ (Q x (0,T)).

We can conclude by Lion’s Lemma [48] that u € C'([0,T], H3(£2)) so that u(z,0) has a meaning?.
Since (uf) is bounded in L™ (Q x (0,T)) then |uf|™®) 2! is bounded in JAoRs (Qx (0,7));

thence, up to a subsequence,
m()
|ul|™@ =2y — o weakly in L»0O-1 (Q x (0,7)).

We have to show that ¢ = |uy|™@ 2y, . We utilize u’ instead of u* in (2.9) and integrate

over (0,t) to obtain

/utv] /ulvj / /Vu Vo, + //Vutt ij—l-a/ /|ut 2uv;
//fvjdz, Vi < /L.
0o Jo

As ¢ goes to 400, we facilely check that

¢
/utvj—/ulvj—I—/ /Vu.ij—i—/ /Vutt VU]+G/ /|ut| 2w,
Q Q 0o Ja
t
//fvjda:, Vi > 1.
0o Ja

3In the case p = oo the symbol * is posed to show that the definition of weak convergence in L> () is not

entirely the same as in the spaces LP(Q),1 < p < co. Indeed, the dual of L>°() is strictly larger than L(2).
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Therefore,

t t t
/utv_/ulv+/ /VUVU+/ /Vutt.VU+a/ /|ut|m(x)_2utv
Q Q 0 JQ 0 JQ 0 JQ
t
//fvdx, Vv € Hy (Q).
0 JQ

All terms define absolute continuous functions; so we obtain, for a.e t € [0, T7,
pr utv + / (Vu.Vu + Vu. Vo + apv) = / fv,Yv € Hy (Q). (2.13)

This implies that
Uy — Au— Auy +1p = f, in D' (2 x (0,T)). (2.14)

For simplicity, let A(v) = |v|™®~2y and define
T
= [ A - A - vyie > 0, v € 70(0,7), 1Y)
o Ja
Employing (2.11) and exchaging u* by u’ to obtain
= [ [ty [+ vl + 1osf)
/|ut fET| — /‘Vu (a:,T)| (2.15)
T
_§/|Vuf($,T)‘ —/ /A(uf)v
Q o Jo
T
—/ /A v)(ul —
0o Jo

Taking ¢ — oo, we get
. YA r 1 2 2 2
0 < limsupX® < fug + 3 (ui + |Vuo|” + |Vus|%)
o Jo Q

e )P 5 [ Vu e (2.16)
2/9 2 Jg
_1/|vut(x,T)y2—/T/Qwv

[ e
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Remplacing v by u; in (2.13) and integrating over (0,7") to obtain

1
/ /fut = §/|Ut($aT)|2
Q
—2/Qu1—|—2/Q\Vu(ac,T)]
1 9 1 9
—-/yvuo\ +—/|Vut(a:,T)\
2 Jq 2 /o

1 T
=5 [vul s [ [ v
2 Ja 0o Jo
Addition of (2.16) and (2.17) yields

Oglimsngfg/oT/Qz/;ut—/ /wv—// ) — v).

/OT/Q (0 — A(v)) (g — v)dt > 0, Yo € L™ ((0,T), HL () .

That is,

Thence,
/ /w A()) (uy — v)dt >0, Yo € L™ (Q x (0,T)),
by density of H}(Q) in L™ (Q) (Lemmal.5) .
Now, let v = Aw 4 u,, w € L™ (Q x (0,T)). Thus, we obtain

—)\/ /(w — AQw +u))w >0, YA #0,Yw € L™ (Q x (0,T)).
0 Q

For A > 0, we get

/T/(zp — AQw +u))w <0, Yw € L™ (Q x (0,7)).

As A — 0 and using the continuity of A with respect to A\, we have

/T/(gb — A(u))w <0, Yw € L™ (Q x (0,7)).

Likewise, for A < 0, we get

/T/(w — A(u))w >0, Yw € L™ (@ x (0,7)).

This means that ¢ = A(u;). So (2.13) becomes

(2.17)

/ (ugv + Vu.Vu + V. Vo + a|ut|m(x)_2utv) = / fo, Yo € L™O(0,T) x H}(Q)),
Q Q
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which gives

Ut — Au — Autt + a]ut|m(x)_2ut = f, in D/(Q X (O, T))
To deal with the initial conditions, we note that

W' — u  weaklyxin L™ ((0,T),Hy ()

u; — wu; weaklyxin L™ ((0,7), Hy ().
And so, employing Lions’ Lemma [48] gives us
ut — win C([0,T], Hy(Q)).

Therefore, u'(z,0) makes sense and u'(z,0) — u(z,0) in H} (Q).
Also we have that
ul(z,0) = ub(2) — uo(z) in H} (Q).
So
u(x,0) = ug(x).

(2.18)

(2.19)

(2.20)

As in [49], let ¢ € C°([0,T]) and substituting (u*) by (u'), we get from (2.9) and for any j <

that

_/OT/Qui(x,t)vj(x t)dzxdt = / /Vu z, t)Vu;(x)p(t)dxdt

—Alév%@ﬁVW@WWMﬁ

T
B Lo m@-2 |
o [ [ I oty o

+Aiéf@ﬂw@W@Mﬁ
—Aiém@ﬁW@WﬁMMt

_ /OT /Q Vu(z, t) Vo, (2)o(t)dadt

As | — 00, so, we have

(2.21)
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_/OT/QVutt(x,t)VUj(xw(t)dxdt

a /0 /Q g, )2 (z, )0, () bt dardt

4 /O ' /Q £ (@, 8) vy () b()dardt, (2.22)
for all j > 1. This implies
, . Au + Auyy
- /0 /Q u(x, v ()¢ (t)dadt = /O /Q —alug(w, )2 (2, 1) | v(z)p(t)dxdt,  (2.23)
+f (2,1)

()

for all v € H} (©2). This means uy, € L™O-1([0,T), H1(Q2)) and u solves the equation

Ut — Au — AUtt + a|ut|m(')_2ut = f (224)

m(-)
Consequently, u; € L>([0,T), H} (Q)), ug € L™O-1([0,T), H*(£2)). Thus,

u, € C([0,T), H(Q)). (2.25)
So, ul(x,0) makes sense (see[49,p.116]). And from it we conclude that
ul(x,0) — w(x,0) in H Q).

But
ulb(z,0) = vl (z) — u'(x) in HF(Q).

Thence
ur(z,0) = up (). (2.26)

52



Chapter 2: Existence and Blow-Up of a New Class of Nonlinear Damped Wave
Equation

Uniqueness

Proof. Assume that (2.8) has two solutions u and v. Then, w = u — v satisfies

Wy — Aw — Awy + aug|uy ™2 — avg|v, |72 = 0, in Q x (0,7)
w(z,t) =0, on 02 x (0,7
w (z,0) = w; (2,0) =0, in .

Multiply by w; and integrate over €2, to get

%% {/Q w? + /Q IVuwl|® + /Q |th|2] —I—a/Q (ut|ut|m($)_2 — vt|vt|m(x)_2) (ug — vy) dz = 0.
Integrate over (0,t), to obtain
/Q (w] + IVuw|* + \th|2) +2a /Ot/Q (w72 = w0y "2 (uy — ) d = 0.
Using the inequality
(Ja|™®=2q — |p|™®)=2p).(a — b) > 0, for all a,b € R" and a.e.x € Q,
we find
/Q (w? + |[Vw)? + [V, |*) =0,
which conduces that w = C' =0, as w = 0 on 0€2. Therefor, the uniqueness.

This ends the proof of Theorem?2.1. n

We need now the following lemma to present the result of well-posedness of our problem
Lemma 2.1. For almost everywhere x € Q and p(-) satisfying
2 <p <p(z) < p2 < +00,
the function g(s) = b|s|P®2s is differentiable and |¢'(s)| = |b| |p(z) — 1| |s|P™ 2.
Theorem 2.2. Suppose that m,p € C (Q) and
(ug,uy) € Hy(Q) x L*(Q).
Under the assumptions (H2),(H3), then problem (2.1) admits a unique local solution
u € L¥((0,T), Hy(Q)),
w, € L*®((0,T), Hy(Q)) N L™O(Q x (0,T)), (2.27)
uy € L*((0,7), H Q).
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2.2.2 Proof of Theorem 2. 2

Existence

Proof. Let v € L>((0,T), H(2)). Then

o)z = B [ [P0 Vs

Q
Q Q

< |bf?
< +o0,
since
2n
2= =2, -1 < —

Therefore, in this case,
g(v) € L=((0,T), L*(Q)) C L*(2 x (0,7)).
So, for each v € L>((0,T), Hi(Q2)) there exists a unique
w e I%((0,7), Hi(9),
u € L=((0,7), HY(Q)) nL™(Q x (0,7)),
satisfying the nonlinear problem

Ut — Ay — Autt —+ aut]ut|m(')_2 =g (U) s in Q x (O7T )
u(x,t) =0, on 002 x (0,7)
U(l‘,O) = Uo (ZL’), Ut (Iv()):ul ('I>> in Q.

We define a map G : Xr — X by G(v) = u, where

Xr = {w e L¥((0.T), H)(Q)) / w, € L*((0.T), HY(Q))}

X7 is Banach space with respect to the norm

wllx, = HwHLoo((o,T),Hg(Q)) + ||wt||Loo((o,T),Hg(Q)) :

(2.28)
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Multiplying the first equation in (2.28) by u; and integrating over 2 x (0,t), to obtain

t
+b / / [P =2y, (2.29)
0 JQ

Young’s inequality gives us

/]v[p(“)zfuut < Z/ 2dx + - /]v[Qp(w “2dx
0
< Z/ 2dr + - {/ [v|?>~2 4 /\vlgpl 2]
£ _ _
< & [ o+ SOV Vol
0

Thence (2.29) becomes

1 bleT ble,
2/ut /|Vu| + = /|Vut| <A0+‘ |4 p/uf+£ V V][22 + | Vo] |22
(OT) Q €

hence we have

1 1 1 bleT
gow [ ut+gsup [ (Vulsgsup [ 190 < 2o Moy [dere ol + o).
201) /o 201) Ja 20m) Ja 2 onJa

with
1 9 1 2 1 2
Ao = 92 Jullz + B Vol + B) IVl

and ¢, is the embedding constant.

bleT 1
Choosing ¢ such that | ‘25 = ve get

lullyy, < A+TB [0l + ol ] -
Assume that [|v][ < M, for some M large. Then
lull%, <A+ TAM?>2 < M2,
if

M? — )\

2
M 2)\ and T§T0</W
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We deduce that G : B — B, where
B = {w € L*((0,T), Hy (), w; € L=((0,T), H}(2)) such that ||wHXT0 < M}

Then, we clarify that, for Ty (even smaller), G is a contraction. For this goal, let u; = G(v;) and

us = G(vy) and set u = u; — uy then u satisfies

(
uy — Au+a [U1t|ult|m(')_2 — U2t|u2t|m(')_2] — Auy

=b [|vl|p(‘”)*201 — vg|p(’”)*2vg] , in Q x(0,7)
u(x,t) =0, on 02 x (0,7)
“(33;0):“0 (‘T)7 ut(x70):u1 (JI), in Q.

(2.30)

\
We multiply by u,; and integrate over Q2 x (0,t) to get

1
—/ut /|w +1 /|Vut| (2.31)
/ / |U1 |m @) Uu - |U2t| Uzt] (Ult - U2t)

/ / (v1) vg)) uydzds.
And then, we have

1 1 1 t
— / u? + —/ |Vu|2 + —/ |Vut|2 < b/ / (g(v1) — g(ve)) uydxds. (2.32)
2 Jq 2 Jq 2 Jg 0o Jo

We calculate now the term
1= [ lotwn) = gl el = | 19/ 1ol ]

E=av;+ (1 —a)vy,0 <a< 1.

where v = v; — v9 and

Young’s inequality implies

reg el [lgorne

0 -1
< —/uf+p;)/\owl+(1—a)v| ®P(@)=2) |2
2 Q Q
5 ) n—2 2
< —/uf—i—c(g </ |U|ﬁ> (/ |ow1+(1—oz)v2|"(p2_2))
2 Q Q Q
2

+ (/ lavy + (1 — «) U2|n(pl_2)>
Q
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Exploit (2.4) to obtain

2

J
< —/ut2+4050€M2(p2_2) Vo3 .
Q

5 a - - J—
I < —/Qut2+c<sce ||Vv||§ [||V?J1||§(P2 2)-|—||VU1||§(101 2)_|_||VU2||3(102 2)_|_||VU2||§(101 2)]

2
Thus, (2.32) takes the form

1 2 5 2 — 2
5l < STob full%, + CoM*0*Typ ol

Choosing ¢ small enough, we arrive at
2 - 2 2
lully, <4CsM*P="DTobllv]y, =1Tolv]y, -
By taking T small enough, we get
2 2
Jullx, <dlvl,, for 0<d<1.

Therefore G is a contraction. The Banach? fixed theorem implies the existence of a unique v € B

satisfying G(u) = u. So, u is a local solution of (2.1). O

Uniqueness

Proof. Assume that we have two solutions v and v. So w = u — v satisfies

(

Wy — Aw — Awyy + auy|u,|"072 — av,|v, "2

= bu|u[P)72 — bu|v[PO72 in Q x (0,7)
w(x,t) =0, on 092 x (0,7)
w(x,0) = w; (x,0) =0, in Q.

\

We multiply the previous equation by w; and integrate over 2 x (0, ) to obtain
1 [, 1 , 1 )
— — [ |V - [ |V
2/th+2/9| w|—|—2/ﬂ| ]
t
+a/ (/ ut‘ut|m(x)72 - Ut"l}t’m(x)2) (Ut — Ut) (233)
o \Ja
t
= b/ </ ulu[P@=2 — v\v]p(x)2> wydz,
0o \Ja

4Stefan Banach (1892 - 1945) was a Polish mathematician.
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this implies

1 1 1 t
—/wt2+—/ |Vw|2+—/ IV, |* < b/ /(u|u|p(’g)_2 — 0P 72) wyda.
2 Ja 2 Ja 2 Ja 0 JQ

As in above, we repeat the same estimates to arrive at
t
/ w? + |[Vw|? + |V < C’/ / (w? (z,8) + |V (z,8)]" + |Vw (z,5)[%) dods.
Q 0o Ja

Gronwell’s inequality yields

/ (w? + |[Vw)? + [V, |*) = 0.
Q

Consequently, w = 0. So the uniqueness is evident.

The proof of Theorem 2.2 is finished. n

2.3 The Main Blow-Up Result

The focus of this chapter is to study the blow-up phenomenon of our problem. We first list

several lemmas that we need to prove our result.

2.3.1 Technical Lemmas

Lemma 2.2. Suppose the conditions of Corollaryl.1 hold. Then there exists a positive C' > 1,
depending on €2 only, such that

o7 (u) < C(||Vull; + o(w)), (2.34)
for any v € Hy () and 2 < s < p;.

Proof. If o(u) > 1, then or1 (u) < o(u) < C(||Vulls + o(u)), where C > 1. If o(u) < 1 so, by
Lemmal.3 (i), |lull,, < 1. Then, Corollaryl.l and Lemmal.4 imply

2
ma { [[ull%, -l }| ™

2 2
= Nlullyy < ClIVully.

ort(u) < opr(u) <

e
[ V)
[ —

The proof of Lemma2.2 is finished. O
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As a special case, we have
Corollary 2.1. Assume that the assumptions of Lemma2.2 hold. Then we have
lully, < CUIVully + [lullh), (2.35)
for any v € Hy () and 2 < s < py.

We set

throughout these steps, we use C' to denote a generic positive constant depending on €2 only.

As a result of (2.6) and (2.34), we get:
Corollary 2.2. Assume that the assumptions of Lemma2.2 hold. Then we have
o (u) < C(H ()] + 2 + [ Vur]l2 + o(uw). (2.36)
for any u € H3 (Q) and 2 < s < p;.
As a special case, we obtain:

Corollary 2.3. Assume that the assumptions of Lemma2.2 hold. Then we have
lully,, < CUH ()] + lluells + [IVuell3 + [full}?), (2.37)
for any v € H} () and 2 < s < py.

Lemma 2.3. Assume that the assumptions of LemmaZ2.2 hold and let u be the solution of (2.1).
Then,
ofu) = C [lulf? (2.38)

Proof. We have
o(u) = / |u|p(x) dr = / ]u|p(x) dx+/ |u|p(x) dz,
Q Q _

Q. ={zeQ/ |u(z,t)| > 1} and Q_={x € Q/ |u(z,t)| <1},

where
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thence, we get

This implies that

and, so,

Since

then (2.39) leads to

Thus, (2.38) follows.

o(u) = / IUI’“+/ Jul™
Qy Q_
P2
P1
/IU\“+01 (/ \UI“) :
Qy Q_

cxmmwéz/“hM1mﬂgw>z/’wwa
_ Qp

v

ez (o(u)) + o(u) > [[ull"*. (2.39)

0<H@Sst§wm

o) |1+ (B0) | =

Lemma 2.4. Let u be the solution of (2.1) and suppose that (2.5) holds. Then,

[ as < € (o) B + @) ). (2.40)

Proof.
/ ™™ dz < / lu|™ dx+/ |ul"™* dx
0 - o
m ma
< ]u|p1 dx " (/ |ul! dx) "
Q4
< Ow +wn)
m2
< ( p1 + (o(u)) P ) ,
by Lemma?2.3. O
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2.3.2 The Main Result

In this subsection, we are in the process to state and proving our blow-up result, for this goal,

we give the following theorem

Theorem 2.3. Let the conditions of Theorem2.2 be fulfilled. Assume further that (H4) holds

and

E(0) < 0. (2.41)

Then the solution of problem (2.1) belonging to the class (2.27) blows up in finite time.

2.3.3 Proof of the Main Result

Proof. Multiplying (2.1) by u; and integrating over {2 to obtain

Ewﬂ::—a[JquJMm@%m, (2.42)

for almost every t in [0,7T) since E(t) is absolutely continuous (see [31]); thence H'(t) > 0 and

0<fmngﬂuyg§mm, (2.43)

for every t in [0,7T), by virtue of (2.41). We then define
L@y—HP%ﬂ+£/um@JM% (2.44)
Q
for € small to be selected later and

_9 _
O<a§min{pl R } (2.45)
2p1 p1(mg —1)

We derive (2.44) and use Eq. (2.1) to get

ul(z,t)dx + E/ g (z, t)dr,
0

L'(t)=(1—-a)H *(t)H'(t) + 5/

Q
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L'(t) = (1—a)H “(t)H'(t) —i—e/Quf(x,t)dx

+e /Q u (Au + Ay — aug |ug ™7 + bu ]u|p(r)72> :
L'ty = (1—a)H “(t)H'(t) —i—a/guf(m,t)da:

+8/Q (uAu + ulug — auug [ug|™ 7 + b |u|p(x)> :

L'(t) = (1—a)H°‘(t)H’(t)—|—5/ [uf — |Vul* + |V |*]
Q
—5/ di{VutVu} —ae/uut\utlm(x)2+€b/ Ju|P®
q at Q Q

L'(t) —i—% (5/9{VutVu}> = (1 ;)H “()H'(t) + //[ — |Vul® + |V |*]
—ae | wuy Jug "+ eb [ |u

L'(t) —l—% (6/9 {VutVu}) = (1—-a)H “(t)H'(t) (2.46)
—1—6/9 [uf — IVu|* + |Vut|2}

—|—€b/ |uP™ —ae/uut | ™2
Q Q
Then exploit Young’s inequality

5" 5 11
XY €X'+ Y XY 20, forall 6>0, 4 =1,
q r q

with 7 =m and ¢ = m/(m — 1) to estimate the last term in (2.46) as follows

bl e < [ [ e,

which yields, by substitution in (2.46)

L'(t) + % <s /Q {VutVu}) > {(1 —a)Ho(t) —¢ (m2 — 1) 5—’”@)/’”@)—1] H' (t)

mao

piH (t) + % fQ ut2
"’J% fQ |VU|2 + % fQ ‘VUtF

—as— / 5@ | (2.47)

+5/ [u2 — |Vul* + |Vu*] + e
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Of course (2.47) remains valid even if § is time dependant since the integral is taken over the x

variable.
Thus by taking § so that §~™@/m@)-1 — o (t), for large k to be given later, and substi-

tuting in (2.47) we arrive at

L'(t) +% (5 /Q {VutVu}> > [(1 )27 15/@} H()H' (t)

mo

—|—€/uf—s/ |Vu|2+€/ \Vuy|* 4 epr H (1)
+_ 5p1/|v |
€p1/yvut’ _ag_/é*mx)‘ ’m(x

then

mo

—l—e(%—l—l)/ut—i—e ——1 /]Vu]

(% +1) /|Vut| (2.48)

L'(t) +% (a /Q {VutVu}> > {(1 P 154 H(t)H' (1)

+e {le( ) — " pema- D / ™ da:} :
my
By exploiting (2.43) and the inequality (2.40 (lemma 2.4)), we obtain

b a(ma—1)
Hoz(mg—l)(t)/ |u|m(x) dr < (p_) [||u| mi+api(ma—1) + ||u| ma—+api(ma— 1)},
Q 1

hence (2.48) yiclds
L’(t)+% <5 /Q {VutVu}) > [(1—@- my _151@} () H' (1) (2.49)
(2 +1)/ t+€(——1>/9|Vu|2

() [

1-m1 a(m271)
mH (t) — ak (ﬁ) X

my b1

(HuHmlJram(mz 1) +Hu,|m2+o¢p1(m2 1))}.

+

+e
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We use Lemma?2.2 and (2.45), for s = ma + ap1(me — 1) < p;and s = my +api(ma — 1) <py,
to deduce from (2.49)

L’(t)—l—%(e /Q {VutVu}) > {(1—04) ek]H () H' (t)

( )/ t*‘g(——l)/ﬂlwlz (2.50)
( )/!Vut! +epH (t)
(7

m2—1

Ky (H (8 + Jally + 1Vl + )]
b a(ma—1)
where C] = 2a (—) C'/m,. By noting that
P1
2 1 2
H(t) = — || I — 5 Hut||2 HVUHz = 5 IVullz,

and writing p; = (p1 +2) /2 + (p1 — 2) /2, (2.50) yields

m2—1

M (t) > {(1 —a) — e sk} H™t)H'(t)+¢ (% + 1) [l

= (5 = 1) Ivul+= (5 +1) 1Vl

tep H (t) — ek "™ C H (t) — CLE ™ ||uy |2
—eC k™ || V|3 — ek ™ a2

p1’

m2—1

W) 2 |a- - e o @)+ (G 1) - o) fuls

e (B 1) Ivully + (5 +1- k™) [V}
+ (ep1 — ek ™™ Cy) H (t) — eC1E" ™ |Ju|?!

M) > [(1 —a)-

mso

p1’

metek] e 0+ (B +1) G ol

mo

e (B - 1) vul +e (B + 1 - Ctom ) Va

92 2
pl —|— 2 —ma —-m 1 pl — 2
# (2R ) a0 - ot ol + <22 ),

2

m2—1

M) > {(1 —a)— ek] H(t)H' (t) + ¢ ((% +1) = Gk )

ms
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= (5 - 1) Ivul+= (B +1- =) | vul;

2
+ (51% — €k1m101) H(t) — eCik' ™™ HUHQ

v 2 (Tl = 5 el - 519l - 5 19wl

mo — 1 —« / b1 1-m 2
> _ _ L _ 1
> {(1 0) — "2 gk] H(t)H (t)+5<(2 +1) = Gk ful
b1 2 D1 - 1—my 2
e (—2 1) IVl + & (—2 Y1 Cik ) V|2

2
(22 = ek ) H (1) - <Ol

p1— 2
4

-2
= IV,

p1—2
2

b » 9
+e o ull,, —€ [Juelly

b1 D1

-2
|Vl -

—&

mo 4

-2 2
+e <p14 )||vu||§+ (5“2* —akl_m101> H(#)

—2b —m 1 +6 —-m
+<sp12 p—l—e(Jlkl > ||u|§1—|—5<p14 — Ok ) V)2, (2.51)

M) > [(1 —a)-T27 154 H(t)H' (t) + ¢ (<p1 i 6) - 01k1m1> g2

where
d
L'(t)+ — <5/ {VutVu}) =M'(t).
at \° J,
At this point, we choose k large enough so that the coefficients of H (t), ||lu3, || V|3 and Jull?!

in (2.51) are strictly positive, hence we get

m2—1

L'<t>+% (e /Q {VutVu}) > [(1—00 — sk] H) | (#) (2.52)

ey [H (@) + e} + 11Vl + 2]

p1

where v > 0 is the minimum of these coefficients. Once k is fixed (hence 7), we pick ¢ small
enough so that (1 — «) — ek(mg — 1)/my > 0 and
L(0) = H'"™*(0) + 6/ upuy () dx > 0.
Q
Therefore (2.52) takes the form

d
L)+ <£/Q{VutVu}) > ey [H (&) + Nuelly + 1Vl + fJul2] - (2.53)
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Thus we get
L(t) > L(0) > 0, for all ¢ > 0.

Next we would like to show that
L'(t) +% (5 / {VutVu}) > TLY=9(¢), for all t >0, (2.54)
Q

where I' is a positive constant depending on ey and C' (the constant of Corollary2.1).
Once (2.54) is determined, we obtain in a standard way the finite time blow up of L(t), hence
of u.

To prove (2.54), we first estime

/ uuy (x,t) dx
Q

< lully fluelly

C (lull, leell)

IN

which implies
1/(1-a)
1/(1—« 1/(1—«
< C ully = /7

/ uuy (z,t) dx
Q

Again Young’s inequality gives

/ uuy (z,t) dr
v

for 1/pu+1/0 =1. Let § = 2/(1 — «), to obtain u/(1 —a) =2/(1 — 2a) < p; by (2.45).
Therefore (2.55) becomes

/ wuy (x,t) dx
0

where s = 2/(1 — 2a) < p;. By using Corollary2.3, we get

/ uuy (x,t) de
Q

Finally by noting that

LYty = (Hl"‘(t)+5 /

Q

1/(1—a)

—« 0/(1—«
< C [Ilullg/ + ] (2.55)

1/(1-a) )
< C [Jlully, + llually]

1/(1—a)

p1

<C [H () + el + | Ve + HuHm] , for all ¢ > 0. (2.56)

1/(1-a)
uuy (x,t) d:z:)

1/(1-a)
/ uuy (x,t) dx :
Q

< ¥/0-o) (H (t) +
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and combining it with (2.53) and (2.56), the inequality (2.54) is established. A simple integration
of (2.54) over (0.t) then yields

/Ot%t(t) > /OtFLl/(la)(t)—/Ot% (e/Q{VutVu}) (2.57)
/;J%% > /OthHLl/%cw()/A“f“dx

¢ ¢
/ L~YA=9@)dL (t) > / Pdt + ————— Ll/(l /Autudx
0 0

La/(l—a)(t>

V

= [=e/i=a(0) - rm/ (1-a) + g It / Auudy
> 1 .
= L/0-9(0) — Tta/ (1 — )

Lo/ (1=e) (t)

Thence (2.57) shows that L(t) blows up in finite time

. -«
T < TalL(0y]o/1=a)" (2.58)

where I and « are positive constant with o < 1 and L is given by (2.44) above. This ends the

proof. O]

Remark 2.1. The estimate (2.58) shows that the larger L(0) is the quicker the blow-up takes

place.
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Chapter 3

Global Existence and Finite Time
Blow-Up in a Class of Non-Linear

Viscoelastic Wave Equation

1- Basic Assumptions
2- Global Existence Result
3- Finite-Time Blow-Up

Key Words and Phrases: Global existence, blow-up, source term, wave equation, viscosity.
In this chapter, we are in the process of studying the following non-linear viscoelastic wave

equation:

( ¢
Uy — Au — Auyy + /h(t — 5)Au(s)ds + cuy |ug|" > = duul’ 7,z € Qt >0

0 (3.1)
u(z,t) =0, eI, t>0

\ u(z,0) = ug(x), us(x,0) = uy (), x € ),
here Q2 be an open bounded Lipschitz domain in R™ (n > 1), with a Lipschitz-countinuous

boundary 02, p > 2,m > 1, and ¢, d are strictly positive constants. Our chapter is divided as
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follows:

- In the first section, we present some assumptions needed in our chapter.

- In the second section, we show that solutions with arbitrary data continue to exist globally
if m > p.

- In the third section, we prove a finite time blow-up for solutions with negative initial energy
if m < p.

We study in this work the interaction between the damping and source terms in the presence
of the viscoelastic and dispersion terms when ¢ = d = 1. Our first intent is to itemize an
appropriate domain for the parameters m, p, where the damping term dominates over the source
and the global solution exists for any initial data. Secondly, we define another domain, where

the blowup of the solution occurs for a finite time because the influence of the source is stronger.
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3.1 Basic Assumptions

We provide in this section some information needed to demonstrate our results. During this
work, C'is used to indicate generic positive constant depending only on 2. First, we mention
the theory of local existence, for this purpose, we need to:

(G1) Suppose m > 1,p > 2, and

2= (n - 1),n > 3, (3.2)

<
max {m,p} < == n >

this condition is necessary to determine the result of local existence (see[19],[31]). The nonlin-
earity is Lipschitz from H'(Q) to L*(Q2) under this condition.

(G2) Assume that h is a C! function satisfying

1- /h(s)ds =1>0, (3.3)
0
we need this condition to assure the well-posedness and hyperbolicity of (3.1).
We define the energy functional associated to the problem (3.1) as follows
t

, 1 d.
1—/h(s)ds ||Vu\|2+§(hovu)(t)—]3Huu (3.4)

p?

1

_ | 1
2

1
E(t) [l + 3 HVutH3+5

0

where
t

(how)(t) = /h(t =) [lv(t) = v (s)ll5ds,
0
and h satisfying the following assumptions

(p/2) —1
p/2) — 1+ (1/2p)

h(s) >0, h'(s) <0, /h(s)ds < ( (3.5)

Remark 3.1. By closely following the Theorem3.3 proof steps, with a small modification in the

proof, we can see easily that the result of blow-up remains valid even for m =1 (damping caused

only by viscosity)

Remark 3.2. Without condition (3.5), we can determine a similar result provided that /h(s)ds <
0

1 and Ey is sufficiently negative.
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Remark 3.3. There is a strong relation between the damping (caused by the viscosity) and the

nonlinearity in the source (condition (3.5) shows that). More clarification the closer the value of

/h(s)ds to 1, the larger p should be to ensure the blow-up.

0
Theorem 3.1. Assume that (ug,u1) € HE(Q) x L*(Q)) and suppose that the assumptions (G1)
and (G2) hold. Then for some T,, > 0 the problem (3.1) admits a unique local solution

w e C([0,T), HAQ)), ur € C([0, Ton), HE(Q)) 0 L™ x [0, Ti)). (3.6)

Proof. Can be established by combination of the argument in [19] and [31]. O

3.2 Global Existence Result

We clarify in this section that the solution (3.6) is global if the exponent m > p

Theorem 3.2. Let Fy < 0,2 < p < m and let the condition

< 2(n—1)

> .
R EL (37)

hold. Then problem (3.1) admits a unique global solution

ue C([0,00),Hy(), w eC([0,00),Hy(Q))NL™((Q) x (0,00)), (3.8)

for any

Uy € H&(Q),Ul S Lz(Q)

Proof. As in [31], we defined the following functional *

2d
K() = ~HO+ 2 ul}
1 1 1 /
= Sl 19wl 5 (1 [nis)as ) |vul?
0
1 d
—i—§ (hoVu)(t)+ ) [ull; -

LK (t) denote the modified energy.
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After differentiating K (t) and exploiting (3.17), we obtain

1 1
K'(t) = —c/ |ug|" da + 3 (h' o Vu) (t) — §h () |V (8)|* + 2d/ ||~ wuyd.
Q Q

We apply now the Young inequality in the form

XY < 6X“+ Cs5YP,

1 1
where XY, a, 3,0, Cs are positive constants such that — + B = 1. So we get
«
/|uyp—2 wudz| < 6 w|l? + Cs Jull”

Q

thus

1, 1
5 (Mo Vu) () = Sh(t)|[Vu (O + 6 uel 2+ Cs [Jull?

< —cllully + 6 el + Cs [lully,

K'(t) < —cllully, +

where Cj is a constant depends on § (0 > 0).

Having in mind that m > p, so we find
K'(t) < =c|lutlly, + OO luelly, + Cs [[ull;

for C' = C(92,p,m) is the embedding constant. Currently, we identify the following cases:
1) If ||ue > > 1, then we pick 0 so small that

—clluglly, + CO fJully, < 0.

Subsequently
K'(t) < Cs ||ull} -
2) Otherwise [[ug|l;, < 1, we get K'(t) < Co+ Cs|[ul .

So we have in either case

K'(t)

IA

&+ Cs Jull (39)

N

c1 + CgK(t).
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We integrate (3.9) over (0,¢) to get

K(t) < <K(O) + (01_15) eCt,

From the last estimate and the continuation principle, we terminate our proof. O

3.3 Finite-Time Blow-Up

In order to carry the proof of our result, we need the following:

Lemma 3.1. Assume the condition (G1) hold. Then there exists a positive constant C' > 1

which depends only on €1, such that
lully < CUIVull; + flul}), (3.10)
for any v € Hy () and 2 < s < p.

We let

Corollary 3.1. Suppose that the conditions (3.4) and (3.10) are satisfying, then
lully, < C(=H (1) = lludlly = IVuelly = (ho Vu)(t) + |[ullp), forall te[0,T),  (3.11)
for any v € Hy (Q) and 2 < s < p.

Theorem 3.3. Let m > 1,p > max{2,m} satisfying (G1). Let (3.5) be fulfilled and assume

that
1

2
Then there exist a finite time T™ such that

1 1 d
Eo = 5 ol + 5 190l + 5 Im = = ol < 0. (3.12)

. 11—«
T < TalLO)aa” (3.13)

where I', o (o < 1) are positive constant and L is given by (3.19) below.

73



Chapter 3: Global Existence and Finite Time Blow-Up in a Class of Non-Linear
Viscoelastic Wave Equation

Remark 3.4. Our proof uses the same basic steps in [52], with some modifications that relate

to the nature of the problem that is being studied.

Proof. To prove the Theorem3.3, we multiply (3.1) by —u; and integrate over {2 to get

d 1 1 1
%{ 2/|ut| d:v——/|Vu| d:x——/|Vut| dx (3.14)
d
+—/ |u|pdaﬁ} —|—/h(t—7)/Vut (t) .Vu(r)dedr
D Ja Q
0
C/ ’ut|mdx7
Q

for any regular solution. We can extended this result to weak solutions through density argument.

But

t

/h(t—T)/QVut(t) Vu(r)dedr = / (t—1) /Vut (7) — Vu ()] dadr

+ / Wt — 7) /Q Y, () .V (£) dedr,

- 14 -/th(t—T)/Q\Vu(T)—Vu(t)|2da:dT
%% _/th(T)/Q|Vu(t)|2dxdT
/ (t—1) /\Vu Vu ()| dedr

—%w) /Q IV (6) ddr. (3.15)

[\DI)—\

74



Chapter 3: Global Existence and Finite Time Blow-Up in a Class of Non-Linear
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Substitution of (3.15) in (3.14) gives us

1 1 1
S{o3 [t =3 [vutae =3 [1vufdes? [ upas
dt 2 Q 2 Q 2 Q pJa

5 | [e=7) (9@ = vutrdsar| + 35 | [ne) IVato)ar| 316)

t

_ c/ﬂ\ut|mdx—%/h’(t—7)/Q]Vu(T)—Vu(t)|2dmd7+%h(t) IVu @)

0

After exploiting the definition of H(t), the estimate (3.16) takes the form
/ m 1 ! 1 2
H (t)=c [ |w|™dx— 3 (h' o Vu) (t) + §h (t) |Vu (t)]|” > 0. (3.17)
Q

Hence

0< H(O) < 1) < ull, (318)

for every t in [0,7"), by virtue of (3.4), (3.17). We next define

L(t) == H'(t) + ¢ / wn(z, )de, (3.19)

where € (small) to be selected later and

(3.20)

—9 _
0<a§min{p p—m }

2p "p(m—1)

By differentiating (3.19) and using Eq. (3.1), we arrive at

L) = (- {elully - 5 00 T0 @)+ 300 17ul3)

—i—a/ [u? — |Vul* + |Vu*] (z,1) do
Q
t

te / h(t — 1) /Q Y (t) .V (r) dedr

0

—i—&?d/ lu (z,t)|” dm—&?c/ w(z,t) ug || da
Q Q

d
—e/ﬂE{VutVu},
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> (1 —a)H (1) |lu| + 5/ [uf — Vul® + |Vut|2] (x,t)dx (3.21)
Q

—i—ed/ lu (z,t)" dx —50/ w () g jug| ™ da
Q Q

+5/h(t—7)/QVu (t).[Vu(r) — Vu(t)| dedr
+€/h(t—r) HVu(t)H;dT—g/Q%{VutVu}.

After using Schwarz inequality, (3.21) becomes

L'(#t) > ol —a)H (1) |yut\|z+a/ [u — |Vul® + |Vu*] (2, 1) do
Q

+5d/ lu(x,t)|” dx — EC/ w(z,t) ug Jug|™ 2 da (3.22)
Q0 Q
t

te / Wt~ 7) / 10 (8)]l, [V (7) — V()] dr

0
t

+€/h(t—r) HVu(t)Hng—e/Q%{VutVu}.

0

We next exploit (3.4) to replace the third term and apply Young’s inequality for the fifth
term in the right-hand side of (3.22). Therefore, we get

L'(t) > c(1 — a)H (L) |lue| + e/ﬂuf (x,t)dz

+8/]Vut (z,0)>de — [ 1= [ h(s)ds | |Vu ()|
Q

N |3 O\H_

+2 (pH() + 5 (ho V) (1) +

t

2 P 2
luaellz + 5 [V el

+2 |1 /h(s)ds IV (1))2
—ce /Q w(z,t) uy [ug|" > dx — en (h o V) (t) (3.23)
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t
€ 2 d
4n/h(s)dsHVu ()15 €/th {Vu,Vu},
0

v

o1 ) H=(0) s+ < (5 +1) /Quf (2,1) do
te (gﬂ)/ﬂwut (2, ) d + epH(1)

+e (g — 77) (hoVu)(t) — cs/ﬂu () uyg |ug| ™2 d

+e (g - 1) - (g 1+ %) ]h(S)ds V7w (813
. /Q %{VWVU},

for some 0 < n < p/2.
We recall (3.5), then (3.23) becomes

L’(t)+5/ﬂ%{VutVu} > c(l—a)H—a(t)||ut||$+e(g+1)/Quf (z,t)dz  (3.24)
te (g—irl)/Q\Vut (2, ) d + epH(t)
+eby (o Vu) (t) + eby || Vu (t)]3

—cs/u(x,t) g |ug)" 7 d,
Q

where

t
p p p 1
b =L ,b:(——1>— P14+ 2 | nis)ds > o.
1= 3 n > 0,0, 5 (2 +477>/<S)8>0
0

1 1
Again, we apply Young’s inequality on the last term in (3.24), for all 6 > 0,— + - =1
ros

T —S

YZ < 5—YT + 5—25, Y, Z >0,
r s

and r =m,s =m/(m — 1), to get

- 1 m -1 — — m
/|ut|m 1|u|dm§—/5m|u| +m—/5 m/m=1 |y ™
Q m Jq m Q
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0 (3.24) becomes

L’(t)+% (5 /Q {wtw}> > ¢ [(1-@}1—%) — (mT_l) 5—"‘/’”‘1] e

+e (g + 1) / u? (x,t) dw (3.25)

/\Vutxt]dx

+8b1 (h o Vu) (t) 4+ ebs [|[Vu (¢ )”2

)
H(t) — ce— m
+epH(t) — =2 ully,

for all 6 > 0.
The estimate (3.25) still valid, even if ¢ is time dependant since the integral is taken over the
x variable. Thus by picking & so that 6~™/™ ! = kH (t), for large k to be given later, and

replacing in (3.25) we reach to

0 +% <€/Q{WNU}) > ¢ {(1 Ca) - <m7_1) k} H(8) [Jud]™
+e (g + 1) /Quf (z,t) do (3.26)
te (g—irl)/QWut (2,1 dz
teby (ho V) (t) + b ||V ()2

+e [pH(t) -

1-m

k
Hm= (¢ e
— () [l

By using (3.18) and the inequality [[ull;; < C'[|ull}’, we have

d a(m—1)
e [ (5) clue
Q p
then (3.26) becomes

L'(t) +% (5/9 {wtw}) > ¢ [(1 —a)—¢ (mT_l) k} H™(t) [l

e (g +1) / &2 (2, 1) do (3.27)

/|Vutxt|dm

—l—sbl (ho Vu) (t) 4+ ebs [|[Vu (t )”2

klfm d a(m—1)
+¢ |pH(t) — c (—> C|u|[rrertm=b1] |
D

m
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We exploit Corollary3.1 and condition (3.20) with s = m + ap(m — 1) < p, to conclude

v+ 5 (¢ [ vuva) = cfa-a-e ()i e o

+e (g + 1) /Quf (x,t) dx
ve(B41) /Q Vg (2, 1)]? da

+eby (h o V) (t) + ebs | Vu (1)]13

e [pH(t) = Cok' ™™ {=H (t) = |3
IVl ~ (ho Tu) (1) + ull2}]

v

+e (g T4 clk;l—m) |12

e (5 4+ 14+ Gk ) [ Vul

+e (b1 + C1k' ™) (ho Vu) (t)

+eby [|[Vau (1) + e (p+ CLk* ™) H(t)

—eCLk " Jully

d (m—-1)
where C; = ¢ <—) C/m.
p
Noting that

d 1

2 1 2 1 2 1
H(8) = S lull = 5l = 5 [l = 5 1Vl - 5 (g0 V) ).

and puting p = 2bs + (p — 2b3), where by = min{by, b2}, (3.28) yields

m—1

e [ B e L L
P -
e (514 Gk =)
P -
e (5414 Gk — ) [V}
+e (bl + Clkl_m — b3) (h o VU) (t)
e (be = b3) [V ()15 + & (p — 209

2db
LOWY H(E) + = (—p s _ Ckm) Jul?,

c {(1 —a)—¢ <mT_1) k} H7() luell,

(3.28)

(3.29)
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where

M'(t) = L'(t) —I—% (5/9 {VutVu}) :
For this goal, we pick k large enough so that the coefficients of H(t), ||u||3, || V|3, [[ull and
(hoVu) (t) in (3.29) are strictly positive, therefore we obtain

m—1

I [ e L e G I (330
ey [H (&) + lul; + [ Fuell3 + Jul, + (o Va) (1)]
where v > 0 is the minimum of these coefficients. Once k is fixed (thus v), we choose ¢ small

enough so that
(1—-a)—ck(m—1)/m >0,
and

L(0) = H'"™(0) + 6/ upuy () dx > 0.

Subsequently (3.30) becomes

L/(t)—l—% (E/Q{VutVu}) > ey [H () + Nuelly + IVuell3 + ull2+ (ho Vu) ()| . (3.31)

Therefore

L(t) > L(0) > 0, for all ¢>0.

To achieve our result, we first estimate

/ wuy (x,t) dx
0

< ol full
< (Il leully)

thence R
1/(1— 1/(1—
< C ¥/ I3

/ uuy (x,t) dx
Q

Again Young’s inequality leads to

/ uuy (x,t) dx
Q

1/(1-a)
11—« 0/(1—«
< C [Ilulls” + ] (3.32)

where 1/p+1/6 = 1.
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We put 0 = 2(1 — «), then /(1 —a) =2/(1 — 2a) < p by (3.20). Thus (3.32) turn into

/ uuy (x,t) dx
Q

1/(1-) )
< C [lully + lluel3]

for s =2/(1 —2a) < p.
We utilize C'orollary3.1 to get

/ uuy (z,t) dx
Q

1/(1—«)
<C [H (t) + Hutﬂg + HVutHg + [Jull? + (h o Vu) (t)] Jfor all t > 0.

(3.33)
By noting that
1/(1—a)
LY=oy = <H1a(t) —|—5/ wuy (z,t) d:c) (3.34)
Q
1/(1-a)
< VU= [ (t) 4 /uut (x,t)dx
Q
< C[H @+l + 1Vl + Jul? + (ho vu) ()]
for all ¢ > 0, and collecting with (3.31) and (3.34), we find
L'(t) > TLY0=)(t) for all t > 0, (3.35)
where C' (the constant of Lemma3.1) and I is a positive constant depending on 7 only.
Finally we integrate (3.35) over (0,%) to arrive at
Lo/0=9) () > ! : (3.36)
— L~/(0-9(0) — Tta/ (1 — )
Thence (3.36) shows that L(t) blows up in finite time given by (3.13) above.
The proof is completed. O
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Blow-Up Results for a Quasilinear
Wave Equation with Variable

Exponents Non-Linearities

1- Basic Assumptions

2- Statement and Well-Posedness of Problem
3- Blowing-Up for Negative Initial Energy

4- Blowing-Up for Positive Initial Energy

Key Words and Phrases: Blowing up, negative initial energy, variable exponents, positive

initial energy.

The following new category of a quasilinear wave equation with variable exponents nonlin-
earities is studied in this chapter
uy — div (|VurO=2| Vu) — Auy + nuy e 772 = g [uPY72 ) in Q x (0, 7)
u(z,t) =0, on 92 x (0,7) (4.1)
u(z,0) = up(x), ur(z,0) = uy (), in .
We care to find sufficient conditions on s(.),q(.),p(.) and the initial data for which the
blowup happens, here 2 C R™ (n > 1), be a bounded domain with a smooth boundary 0.7, 1 >
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0 are constants and the exponents ¢(-), p(), and s(-) are given measurable functions on €.

Our chapter is divided into four sections: In the first section, we present some advanced
assumptions needed in this chapter. The second section deals with some technical lemmas and
the statement without demonstration of the well-posedness of our problem, the third one deals
with the result of blow-up for solutions with negative initial energy, and in the fourth one, we

present and demonstrate the theorem of blow-up for certain solutions with positive initial energy.
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4.1 Basic Assumptions

Some hypotheses required in the proof of our result will be given in this section!. Firstly, we

suppose the following assumptions:

(B1)
2 <max{gy, s2} <p1 <p(x) <pp < 5" (), (4.2)
with
p1 = essinfp (z), po := esssupp (x) ,
Sy zeQ
sy @ =essinfs(z), So = esssups (),
€ zeQ
@1 : =essinfq(z), qa := esspsupq (),
zef e
and
ns(x) .
" esssup (n—s(z)) if S2 <M
S (LU) — e ,
+00 if so>n
and

(35‘3;161?2 (s*(x) —p(z)) > 0.

(B2) Also, we suppose that the exponents ¢(-), p(-), and s(-) are measurable functions such that
either satisfy the log-Holder continuity condition:

A
loglz —y|
A>0,0<6<1, o0rq(-),p(-), and s(-) € C ().

|m (z) —m(y)] < for a.e. z,y € Q, with |z —y| <9, (4.3)

In (4.3), if = y the inequality is undefined because log 0 is undefined. The inequality is
defined for x not equal to y. But the condition that ¢ is completely greater than zero always
makes z not equal to y because |z — y| < 0. The term A, yu = div (|Vu*®~2| Vu) is called
s (.) —Laplacian.

The energy function associated to the problem (4.1) is the following

1 1 1 1
PR @) gy L / 2 gy — / D dr, t>0. (44
(t) 2/utd$+/s(m) |Vul™ dx + 5 |Vu|” de — p e [P dx, t >0 (4.4)
Q Q Q Q

'We use the Lebesgue space L2 () and the variable-exponent Sobolev space WO1 () (Q) with their norms.
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We derive the energy relation and use (4.1) to get

E'(t) = —7]/Q lug (z,1)]7") da, for a.e. t €[0,T). (4.5)

4.2 Statement and Well-Posedness of Problem

This section contains some essential lemma which will be useful to us later in the proof of our
blow-up result, before that we introduce the statement without proof of the well-posedness of

the problem (4.1)

Proposition 4.1. Let (ug,u;) € (W&’S(')(Q) X LQ(Q)> and suppose that the exponents p,q, s

satisfy (B1) and (B2). Then problem (4.1) admits a unique weak solution such that

u € L=((0,7), W),
Uy € LOO((()?T)?H(}(Q))’
ue € L((0,T), Wy (),

where 1 + L =1
s(-)  s'()

Remark 4.1. As in the second chapter, we can achieve the proof of the previous proposition by

using the Galerkin method. You can see also [2].

Lemma 4.1. Suppose the conditions of Lemmal.14 hold. Then, we have

T

2,0y (W) < C([Vull5 ) + 0p0)(u), s1 <7 <p1, (4.6)

for any u € WOI’S(')(Q), where C > 1 is a positive constant that depends on S only.

Proof. T o,,(u) > 1, then o/} (u) < g, (1) < C ([Vull}! + g,0)(w)) -
If 0,y(u) <1, then, by Lemmal.3, Hqu(‘) < 1. Then, Lemmal.14 and Lemmal.4 imply

r s1 51

oty (W) < ofty(w) < max | {|lull% Jull }]”

= ully) < ClIVuly,,

where C' > 1. Therefore (4.6) follows. O
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Now, we will take the following special case

Corollary 4.1. Let the assumptions of the previous Lemma hold. Then for any u € WOI’S(') we
get
lully, < CUIVully + lull;), (4.7)

where s1 < r < p; and C is a positive constant.

Now, we set

and use, throughout this chapter, C' to denote a generic positive constant depending on €2 only.

As a result of (4.4) and (4.6), we have

Corollary 4.2. Let the assumptions of Lemmad4.1 hold. Then we have

r

071 (u) < CUH ()] + lull2 + [Vull2 + gy, (), (48)
for any u € Wol’s(') and s; <1 < p;.
As a particular case, we have the following
Corollary 4.3. Let the assumptions of Lemma4.1 hold. Then we have
Jull, < COB )]+ uell3 + Vel + ), (19)
for any u € Wol’s(') and s;1 < r < py.

Lemma 4.2. Assume that (4.2) and (4.3) hold and E(0) < 0. Then the solution of (4.1) satisfies,
for some ¢ > 0,

0p()(w) = cllully; - (4.10)
Proof. Similar in the proof of Lemma2.3. ]

Lemma 4.3. Let u be the solution of problem (4.1) and assume that (4.2) holds. Then,

/Q|U|q(x) dr < C ((Qp(-)(“))z_1 + (Qp(-)(u))z_?> : (4.11)
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Proof.
/|u|q<m) dr < / lu|™ das+/ |u|® dx
Q _ o4
@ @
e[ el (L o]
_ Q
< C(Jlulls + lul)
a @
= ¢ ((Qp(»(“))pl + (@p(.>(“>)pl> ’
by Lemmad4.2. O

Lemma 4.4. Let u be the solution of (4.1) with E(0) < 0. Then, there exists a constant ¢; > 0
such that
[Vu (o ti)llyy 2 a, VE>0. (4.12)

Proof. Assume, by contradiction, there exists a sequence t; such that
IVu (., t)lly —0 as j— oo
Then, Lemmasl.4 and 1.14 gives us
2p()(u(,t5)) =0 as j— oo,

this yields

lim F (t;) > 0, (4.13)
j—o0
that contrasts with the fact that E(t) < E(0) < 0,Vt > 0. O

4.3 Blowing-Up for Negative Initial Energy

The main purpose of this section is to introduce and demonstrate the first results of the blow-up.
Theorem 4.1. Assume that the assumptions of Proposition4.1 hold and suppose that
E(0) <0. (4.14)

Then the solution of problem (4.1) blows up in finite time.

87



Chapter 4: Blow-Up Results for a Quasilinear Wave Equation with Variable
Exponents Non-Linearities

Proof. As usual, multiplying by u; and integrating over €2 in (4.1), to get

E(t) = —n /Q g (,4)] @) dz < 0, (4.15)

for almost every t in [0, 7T) since E(t) is absolutely continuous function (see Georgiev and Todor-

ova [31]); hence H'(t) > 0 and
0< H(0) < H() < 0,0, (), (4.16)
for every t in [0,7"), by remembring the condition that £(0) < 0. We then introduce
L(t) == H™*(t) + e/gluut(x,t)dx, (4.17)

for € small to be chosen later and

=2 pi—@
0 < a <min , . 4.18
- { 2py pl(cm—l)} (415
By taking the derivative of (4.17) and using Eq. (4.1), we obtain
L'(t) = 1—a)H “(t)H'(t) + 8/ ul(z, t)dw + 6/ uuy(z, t)de, (4.19)
Q Q

) = (1—a)H—a(t)H'(t)+s/Q[uf—wuf@ﬂvutﬂ

_ d
—i—eu/ ufP®) — ns/ wuy [ug |12 — = (5/ {VutVu}> :
Q Q dt Q

Adding and subtracting the term e(1 — &)p; H(t), for 0 < & < 1, in the right side of (4.19), to get
d
L'(t)+ pr <€/ {VutVu}) > (1—a)H *(t)H'(t) + (1 — &p H(t)
Q

+5,u£/ﬂ /™ 4 ¢ (% + 1) w5 (4.20)

\Vu|5(x)
0

So, for £ small enough, we obtain

L/(t)+% (e /Q {VutVu}) > B [H(t) + luells + | Vuelly + 0,0y (V) + 0, (w)] (4.21)

+(1— Q)H “(t)H'(t) — ne / wy |ug| " d,
Q
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where

8y, 020,
2 S9

B = min {(1 - 5)}91,/15,

By using Young’s inequality, the last term in (4.21) yields
_ 1 —1
[ e < 2 [ 0 e 4 B[ st o9 a0 0. (0.22)
Q 1.Jq 2 Ja

Thus, by picking 0 such that
§5a(@)/a(z)=1 _ kH=(t),

for a large constant k to be given later, and replacing in (4.22) we reach to

_ 1 —1
/ | |7 Ju| do < = / flma@) |90 fete@=D ) ¢ BT g e\ /(1,96 > 0. (4.23)
Q q1 Ja Q20

Combining (4.21) and (4.23) yields

2O+ 5 (¢ [ (TuT0) 2 B HO + full + 190l + 2,0V + g0,0)]

+ {(1 —a)— e 11{} H=(t)H'(t) (4.24)

q2
kl-a

C’lHO‘(Q21)(t)/ |u|11(95) dzr.
q1 Q

—ne
Exploiting Lemma4.3 and (4.16) to get
() [l de < 0 (o) + (o) ). (4.25)
Now, we employ Lemma4.1l and (4.18) for
r=g+api(z—1) <prandr =g +api(e —1) < pi,

it is easy to see from (4.25) that

FeteD) () / 7@ 4z < C (HVqub + gp(.)(m) , (4.26)
Q
then, using Lemmas4.4 to obtain
IV (u/e)ll ) > L. (4.27)
Lemmal.4 and (4.27) leads to
0y (V (u/er) > min [V (ufe)|% IV (u/er)2, ) (1.25)

= IV (u/e))l3, -
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Thus (4.28) becomes
0s)(Vu) = 2 [Vl - (4.29)

Collecting of (4.24), (4.26), and (4.29) reach to

L'(t) +% (g /Q {wtw}) > [(1 —a)— q2q; 154 H () H' (1) (4.30)
ve (5020 ) (1O + il

2 S1
FIVwlZ + [Vuls + 0,0 (w)]

In this step, we choose k so large that the coefficient

kl—a

C > 0.

y=p5-n
qi

Once k is fixed (thus 7), we put sufficiently small ¢ so that

-1
(1—-a)— qu ek >0 and L(0) = H'*(0) + 8/ uouy () dx > 0.
2 Q

Subsequently (4.30) becomes

! d S1
L(t)+%<s / {ww}) > oy [H (1) + ulld + IV ell3 + IVull) + o, (w)] (4.31)

A%

2
ey [H (8) + lull3 + Jull]

by virtue of (4.10). Therefore
L(t) > L(0) > 0, for all ¢>0.

Next, we are in the position to obtain an inequality of the form

G’ (t) > TLY=9(#), for all t >0, (4.32)
here I' is a positive constant depends on 7, C' (the constant of Corollary4.1) and

/ d !
L'(t)+ — <€/ {VutVu}> =G (t).
dt Q

When we prove (4.32), we get in a standard way the finite-time blow-up of the functional L(t).
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To achieve (4.32), we estime the term

/ uuy (z,t) dx
Q

< ully el

¢ (lfull,, Nl
1/(1—«)

1/(1—a) 1/(1—
< O flufl 7 fluelly

IN

thence

/ uuy (x,t) dx
Q

Young’s inequality gives us the following estimate

1/(1—a)
/ uuy (z,t) de
Q

where 1/w+ 1/x = 1. Putting x = 2(1 — «), we find w/(1 — o) = 2/(1 — 2a) < p; by (4.18).
Thus (4.33) becomes

< C [ ullg 0 + flually ] (4.33)

1/(1-a) )
[ Getyas| < [l + ).
Q
with 7 = 2/(1 — 2a) < p;. We obtain after using Corollary4.3
1/(1-e)
/Quut (x,t)dx <C [ () + lluellz + | Vue|2 + ||ul pl] , for all ¢t > 0. (4.34)

In the end, by noting that

1/(1-a)
LYY=y = [Hlo‘(t)+€ / uuy (2, 1) dw}
Q

1/(1-a)
/ uuy (x,t) dx ,
Q

and combining it with (4.31) and (4.34), the inequality (4.32) is achieved.

< /0o [H 0+

Integrate (4.32) over (0,t) to obtain

1
L0720 () > : 4.35
1) 2 F=aia=(0) — Tta/ (1 - a) (4:35)
So L(t) blows up in finite time
11—«

T < 4.36
— Fa[L(O)]a/(l_a)7 ( )

where I and « are positive constant with o < 1 and L is given by (4.17) above.
The proof is completed. O

Remark 4.2. The estimate (4.36) shows that the larger L(0) is, the quicker the blow-up takes

place.
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4.4 Blowing-Up for Positive Initial Energy

Now, we are in the position to present and prove one of the main results of this section which is
the blowup for certain solutions with positive energy. For this goal, let A be the best constant

of the Sobolev embedding Wol’s(')(Q) — LPO)(Q) and let

1 1/s2
Ay = max< 1, A, <—> )
1
1 s2/(p1-s2)
)

ap = [[Vuoll3,,
Ey = (i - l) ar,
S22 D1
H(t) = Ey — E(t), (4.37)
K(t) = H7 ) + s/ﬂuut (z,t)dz, (4.38)

for 0 < A < 1,e > 0 are to be specified later.

We state here the following theorem which will be our main result.
Theorem 4.2. Assume that the conditions of Proposition4.1 hold and suppose that
E0) < By, < ag < A7™. (4.39)
Then the solution of (4.1) blows up in a finite time.

To demonstrate our theorem, we refer to the following two lemmas.

Lemma 4.5. Let the assumptions in Theoremd.2 be fulfilled, then there exists a constant oo
> « such that
IVu (L DII5) = az, Vit > 0. (4.40)
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Proof. Exploiting (4.4), we get

1 p
() 59 ( ) n p()( )
> lmin Il Va2, b = £ max a2 (2
S s() s() " p()? p()
1 ) ,LL pP1 p2
> S—2m1n{HVuHZE.),||Vqu?.)}—p—lmax{<A1HVuHS(.)> ,(A1||VuHS(.)> }
1 51
— _min{as;7a}_ﬂmax{(1452 ) (Asz ) }
S92 b1

= h(a),Va € [0, 00),

where a = [|[Vul[, .
Let
1

B pse B
g(a)=—a——(APq)=
(@) = sa— 2 (4ra)

By noting that g(a) = h(a), for 0 < a < A2. We can easily verify that the function g(«) is
increasing for 0 < a < a3 and decreasing for a; < o < +o0. Because E(0) < E; = g(a1), there
exists a positive constant a, € (a1,00) such that g(as) = E(0). So we get g(ag) = h(ag) <
E(0) = g(ag). This means that oy > as.

To demonstrate (4.40), we suppose that [|Vu (to)[|5{) < az, for some t; > 0. Then there exists

t1 > 0 such that oy < ||[Vu (t1)[[3{, < a2. Exploiting the monotonicity of g(a) to find

B(t) = g (IVu ()] > glaz) = E(0),
which contradicts E(t) < E(0), for all t € (0, 7). Consequently, (4.40) is determined. O

Lemma 4.6. Let the assumptions in Theorem4.2 be fulfilled, so we have

0<H(0)<H() < pﬂgp()( u).

Proof. Exploiting (4.4), (4.15), and (4.37) to get

1
/ d:L‘—I—/—|Vu| @ dz + = /|Vut| dx
s (x)
Q

1
u / L@ a,
J p(x)

0 < H(0)<
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then from (4.40), we find

1 1 1 1
E; — —/ufd:c + /— V'™ dz + —/ \Vu|*de| < Ey— /— V'™ dz
2 s(x) 2 So
0 0 0

Therefore,

Q

IN

1 . s S
£y~ —min {[[Vully, | Vul )

< El——min{ag,&g}
S92
I o
< El——mm{alg,al}
52
1 1
= F——a=——<0,Vt>0
S2 1
0
—o,y(u).¥t >0
n p()( )

]

Proof of Theorem4.2. It is not hard to determine the proof precisely by repeating the
same steps (4.17) to (4.34) of the proof of Theorem4.1. With the use of Lemma4.6.
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Conclusion and Suggestions

Conclusion

We studied in this dissertation three classes of nonlinear hyperbolic problems with constant
and variable exponents nonlinearities, and we obtained different results of existence and blow-up
of these problems, of course under suitable assumptions on the exponents of nonlinearity and
the initial data. Specially, we expanded the results of blow-up of some nonlinear wave equations
studied by Messaoudi [51, 58, 60], and exploit ideas by Georgiev and Todorova [31] in both cases
of constant and variable exponents nonlinearities.

Perspectives and Some Open Problems

As a perspective, after the completion of this dissertation, our vision is devoted to illustrating
the results of blow-up numerically.

As future work, we collect here some questions and open problems of other nonlinear hyper-

bolic equations with variable exponents that can be studied:

e A researcher can expand the result for the previous problem in unbounded domains, where
the Poincaré’s inequality and some of the results embedding are no longer valid.

e We also imposed another question related to the asymptotic behavior of solution for a
system of a nonlinear damped wave equation with nonstandard nonlinearities.

e Expand the results of blow-up to some Fpde problems.

e Extend the blowup results to some Timoshenko equation with nonstandard nonlinearities.
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