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Abstract

Unusually, this thesis is divided into two different parts, the objective of the first part is to
control the non-linear ODEs, the newly here is the combining the classic method of optimal control
with the new concept of average control which is introduced by Zuazua, the modern notion is the
average optimal control, thus, we up-date our cost function to an average cost function. So, thanks
to one of the important optimality principles which is the Ponteryaguine Maximum Principle, we
prove the uniqueness and the existence of the average optimal control, therefore, we arrive at the
average optimal control characterization. To precise our results, we must use the shooting method
for finding a simulation of that average optimal control.

The second part aims to control linear PDEs, where we combine the same notion of average
control with the optimal control, we find a new average cost function. Because our distributed
system has missing data, the way to characterize the optimality system changes, and it is divided
into steps, first we describe the average no-regret control problem, then, using a quadratic pertur-
bation to obtain average low-regret control, which helps us to find an average low-regret control
characterization, finally, we can come back to the average no-regret control characterization.

The processed example in the first part is controlling the outbreak of an epidemic, To be precise,
we study the control of an outbreak of COVID-19 in the city of Wuhan, China in December 2019.
In the second part, we control an abstract hyperbolic-parabolic coupled system depending on an
unknown parameter.

Keywords : Linear systems, Non-linear systems, Missing data, Distributed systems, Optimal
control, Pontryaguine maximum principle, Shooting methods, Average control, Optimal average
control, No-regret control, No-regret average control, Low-regret control, Low-regret average
control, Mathematics modelling of COVID-19, Optimal control of COVID-19, The epidemic
outbreak, Numerical analysis for COVID-19, Abstract systems, Abstract hyperbolic-parabolic
systems, Coupled parameter, Optimality condition.



Frensh Abstract

Exceptionnellement, cette thèse est divisée en deux parties différentes, l’objectif de la première
partie est de contrôler les ODE non linéaires, la nouvelle ici est la combinaison de la méthode
classique de contrôle optimal avec le nouveau concept de contrôle moyen qui est introduit par
Zuazua, la notion moderne est le contrôle optimal moyen, ainsi, nous mettons à jour notre fonction
de coût en fonction de coût moyenne. Ainsi, grâce à l’un des principes d’optimalité importants qui
est le principe du maximum de Ponteryaguine, nous prouvons l’unicité et l’existence du contrôle
optimal moyen, donc, nous arrivons à la caractérisation du contrôle optimal moyen. Pour préciser
nos résultats, nous devons utiliser la méthode de tir pour trouver une simulation de ce contrôle
optimal moyen.

La deuxième partie vise à contrôler les EDP linéaires, où l’on combine la même notion de con-
trôle moyen avec le contrôle optimal, on trouve une nouvelle fonction de coût moyenne. Parce que
notre système distribué a des données manquantes, la façon de caractériser le système d’optimalité
change, et il est divisé en étapes, d’abord nous décrivons le problème de contrôle moyen sans regret,
puis, en utilisant une perturbation quadratique pour obtenir un contrôle moyen moindre regret, qui
nous aide à trouver une caractérisation moyenne du contrôle moindre regret, enfin, nous pouvons
revenir à la caractérisation moyenne du contrôle sans regret.

L’exemple traité dans la première partie est le contrôle de l’apparition d’une épidémie, plus
précisément, nous étudions le contrôle d’une épidémie de COVID-19 dans la ville de Wuhan,
en Chine en Décembre 2019. Dans la deuxième partie, nous contrôlons un système abstrait
hyperbolique-parabolique couplé dépendant d’un paramètre inconnu.

Mots clés : Systèmes linéaires, Systèmes non linéaires, Données manquantes, Systèmes dis-
tribués, Contrôle optimal, Principe du maximum de Pontryaguine, Méthodes de tir, Contrôle moyen,
Contrôle moyen optimal, Contrôle sans regret, Contrôle moyen sans regret, Contrôle moindre
regret, Contrôle moyen moindre regret, Modélisation mathématique du COVID-19, Contrôle op-



viii

timal du COVID-19, Analyse numérique du COVID-19, Systèmes abstraits, Systèmes abstraits
hyperboliques paraboliques, Paramètre couplé, Condition d’optimalité.



∫;€zz“ui’\;Ê·;ÿÂ¯\;Ôá°\;flŸ;ÃÅ6\Â;G;Ø ÷i¶;Øáp;∞b;ÏtÂÖö¯\;‰É·;€ËâŒh;€iÁ;G;ÍÄ]¡;3≈;◊“çd
€zz“ui÷’;ÏË“Ëà˜“’\;ÏŒÁÖ�’\;Ød;√⁄°\;Ê·;]fi·;nÁÅ¢\Â;G;ÏË�|;3∆’\;;ÏÁÄ]¬’\;ÏË÷î] i’\;kˆÄ]¬∏\;

;G;◊zmŸ¯\;€z“ui’\;ªàÊiŸ;Ê·;nÁÅ¢\;‹Ê‚ ∏\;G;Zuazua;„ŸÅÕ;ÍÉ’\;ªàÊi∏\;€“ui÷’;ÅÁÅ°\;‹Ê‚ ∏\;√Ÿ;◊mŸ¯\;
ÛÄ]zzzzzzzŸ;Åt^;◊zzï d;G;”’É’;IÏ ÷“i’\;ªàÊiŸ;Ï’\Ä;∞b;]fid;Ïê]£\;Ï ÷“i’\;Ï’\Ä;nÁÅuid;‹ÊŒ›;G;È’]i’]dÂ

;G;È’]zzi’]dÂ;G;◊mŸ¯\;€“ui’\;ªàÊiŸ;ÏË›\ÅtÂÂ;ÄÊpÂ;jem›;G;ÌëÕ¯\;Ponteryaguine;^ÅeŸ;Ê·Â;ÏŸ]6\;ÏË÷mŸ¯\;
Ä]zzzzzzzzz™¸;ÖÁÊëi’\;ÏŒÁÖö;]zzzzfiŸÅ}ià\G;ÏŒËÕÄ;]fiq]i›;;◊¬°;I◊mŸ¯\;€“ui’\;ªàÊiŸ;ÀËêÊh;∞b;◊ë›

I◊mŸ¯\;€“ui’\;ªàÊi∏;Î]—]•;

;
;;

€“zzui’\;ÎÖ“…;ä ›;Ød;√⁄ß;nËt;G;ÏË�£\;ÏËá°\;ÏË÷î] i’\;kˆÄ]¬∏\;∫;€“ui’\;∞b;È›]m’\;Ôá°\;ÃÅ‚Á
;;k]›]zzzzzzzzzzzzËd;k\Ç;ÏË¬ÁÜÊi’\;Ï⁄æ›¯\;‡¯;\ �Öæ›;IÎÅÁÅ°\;Ï ÷“i’\;ªàÊiŸ;Ï’\Ä;Åß;G;◊mŸ¯\;€“ui’\Â;ªàÊi∏\;
;€zzzzzzz“ui’\;Ï÷zzz“çŸ;Àë›; �̂ Â^;G;k\Ê�|;∞b;Ï⁄âŒŸ;È·Â;G;3∆ih;◊mŸ¯\;‹]æ›;ÀËêÊh;ÏŒÁÖö;‡c…G;ÎÄÊŒ Ÿ;
ÍÉ’\Â;G;‹Åfi’\;ózzz }fiŸ;€zzzzz“ü;ªàÊiŸ;Ì÷¡;ÿÊzzëu÷’;È¬Ëd2’\;g\Ö�îˆ\;‹\Å}ià]d;€l;G;Ï�àÊi∏\;;‹Å›;‡ÂÄ;
ªàÊiŸ;ÀËêÊh;∞b;ÎÄÊzzz¬’\;]fifi“¥;G;\ �3|^;G;‹Åfi’\;ó }fiŸ;ªàÊiŸ;€“ü;ÀËêÊh;Ì÷¡;ÑÊm¬’\;∫;]›Å¡]zzzâÁ;

I;‹Åfi’\;‹Å¡;∫;€“ui’\;;

òÉ‹fl

;ÅÁÅzzzzzui’\;„pÂ;Ì÷¡;G;Ô]zzzzzzzzzzdÊ’\;Èç h;∫;€zz“ui’\;Ê·;ÿÂ¯\;Ôá°\;∫;„i°]¬Ÿ;j≤;ÍÉ’\;ÿ]m∏\
;;G;È›]zzzm’\;Ôá°\;∫;;2019;1⁄âÁÄ;∫;Øzzzzzzë’\;G;‡]·ÂÂ;ÏfiÁÅŸ;∫;COVID19;Èç h;Ì÷¡;ÎÖ�Ëâ’\;ãÑÅ›;

I;Ï…ÂÖ¬Ÿ;3≈;k]›]Ëd;Ì÷¡;Å⁄i¬Á;‡2ŒŸ;;ÄÖ§;‹]æ›;∫;€“ui›;

G;ÏË¬ÁÜÊi’\;Ï⁄æ›¯\;G;ÎÄÊŒ ∏\;k]›]Ëe’\;G;ÏË�£\;3≈;Ï⁄æ›¯\;G;ÏË�£\;Ï⁄æ›¯\;U;ÏËâËÖ’\;k]⁄÷“’\;
;€“ui’\;ªàÊiŸG;€“ui’\;ªàÊiŸ;G;ÖÁÊëi’\;ÏŒÁÖö;G;ÌëÕ¯\;Ponteryaguine;^ÅeŸ;G;◊mŸ¯\;€“ui’\;
;;€zzz“ui’\;ªàÊiŸG;‹Åfi’\;ó }fiŸ;€“ui’\;G;‹Å›;‡ÂÄ;€“ui’\;ªàÊiŸ;G;‹Å›;‡ÂÅd;€“ui’\G;◊mŸ¯\;
◊zzzzzzzË÷ui’\;G;Ô]dÊ’\;Èç h;G;COVID19;z’;◊mŸ¯\;€“ui’\;G;COVID19;z’;k]Ëî]ÁÖ’\;ÏpÉ≥;G;‹Åfi’\;ó }fiŸ;;
IÌ÷zzm∏\;Ï’]¢\;G;ÏpÂÄá∏\;Ï⁄÷¬∏\;G;ÎÄÖ-\;È¬�Œ’\;√�Œ’\;Ï⁄æ›^;G;ÎÄÖ-\;Ï⁄æ›¯\;G;COVID19;z’;ÍÄÅ¬’\;



Acronymes
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Notations

We introduce the necessary notations and definitions which are used in this thesis.

Notations Meaning
N∗ The adjoint operator of the operator N.

∂Ω = Γ Boundary of Ω.
χω The characteristic function of the set ω .

∂y
∂υ

= ∇y.υ The co-normal derivative.
∇ = ( ∂

∂x1
, ..., ∂

∂xk
)T The gradient operator.

∆ = ∑
m
j=1

∂ 2

∂x2
j

The Laplace operator.

‖.‖X The norm of Banach space X .
(.)X A scalar product in Hilbert space X .
〈.〉X ′,X Duality product between X and X ′.
|.|X The semi-norm in X .
C2 The functions class with continuous first and second derivative.

D(Ω) The space of functions in C∞ with a compact support in Ω.
D′(Ω) The dual space of D(Ω).

L (X ,Y ) The space of linear bounded operators from X to Y .
Lp(Ω) Measurable functions f on Ω and

∫
Ω
| f (y)|p dy < ∞, 1≤ p < ∞.

L∞(Ω) Measurable functions f on Ω and ∃c > 0 : | f (y)|< c a.e. on Ω.
L2([0,T ],H) Space of L2-integrable functions from [0,T ] to H.

H1(Ω)
{

u ∈ L2(Ω), uxi ∈ L2(Ω), ∀i = 1.n
}

.
H1

0 (Ω) H1(Ω), u = 0 on ∂Ω.
Hm(Ω)

{
u ∈ L2(Ω) : Dαu ∈ L2(Ω), ∀n ∈ Nn, |α| ≤ m

}
.

Hm(Ω)
{

u ∈ L2(Ω) : Dαu ∈ L2(Ω), ∀n ∈ Nn, |α| ≤ m
}

.

HS(Ω) HS(Ω) =
{

u ∈ L2(Ω),
∫

Ω

(
1+ |ξ |2

)s
|ûξ |2 dξ < ∞

}
.

H ′ The dual of H.
⇀ The weak convergence symbol.
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General Introduction

The theory of control makes it possible to bring a system from a given initial state to a certain
final state by respecting certain criteria, this is the stage of carrying out the command. For example.
Everyone balances a pendulum on their finger. On the other hand, it is much more difficult to
balance on your finger an inverted double pendulum, Control theory allows everything to be done.
But to effectively achieve this balance, it is better to have a good mathematical model and know
how to solve the equations. A wing on which we act with the accelerator and brake pedals, and that
we guide with the steering wheel is an example of a control system, a dynamic system on which we
can act by means of a command represented by the brake.

A control system is a dynamic system on which one can act by means of command. To precisely,
define the concept of the control system, it is necessary to use mathematical language. Each system
has a specific structure, properties, and purposes. Note that this concept can describe both discrete
and continuous transformations. This, therefore, makes it possible to model the operation of robots,
adaptive systems with variable structures, ... By considering all these objects as control systems, we
are interested in their behaviour and their functional characteristics, without necessarily attaching
importance to their internal or intrinsic properties. Therefore, two control systems having, in
some sense, the same behaviour and similar characteristics, are considered identical. Nowadays,
automated systems are completely part of our daily life, the goal is to improve our quality of life
and to facilitate certain tasks.

Historically, control theory is linked on the one hand with the calculus of variations as in [51]
and on the other hand with the resolution of ordinary differential equations. For the first time,
Johann Bernoulli submitted the brachistochrone1 problem corresponding to the problem of the
fastest trajectory between two points, in 1696, Leibniz, and his brother Jacques Bernoulli found
the solution. The classic method for solving the problem is the calculus of variations. This is
considered a pioneering result in the field of optimal control. This theory, which is an extension of
the calculus of variations, deals with how to find a control law for a system, modelled by a set of
differential equations describing the state and control trajectories, such that a certain optimality

1 A curve between two points along which a body can move under gravity in a shorter time than for any other curve.
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criterion is met. Optimal control problem solving started with the famous Pontryaguine Maximum
Principle (PMP) [35], which provides a necessary condition for optimality.

Partial differential equations control theory has evolved a lot in recent years and is a growing
area of research. Each year new profound results are demonstrated and new directions of research
are taken. The control of conservation laws, linear or non-linear PDEs, the interactions between
finite and infinite dimension both at the theoretical level and on the occasion of the passage of the
continuum discrete during the numerical discretization of control problems, are recent sectors in
full development, not to mention the growing interest in PDEs systems. The field of systems of
coupled parabolic equations reveals many unexpected phenomena and opens up very varied fields
of research in which many teams have embarked. These directions indicate challenges in research
both at the theoretical and methodological level and at the level of applications and their digital
processing. The question of effective control, from the theoretical problem to its implementation
and its robustness is an equally important aspect from the application’s viewpoint..

The area of control of infinite-dimensional systems PDEs has been under development since at
least the 1960s. Some of the initial efforts that laid the foundations of the field in the late 1960
and early 1970 were in optimal control of linear PDEs systems. Part of this thesis deals with
the optimal control of distributed systems with missing data, which drives us to think about the
no-regret and the low-regret controls, where Jacques Louis Lions [25], [28], and [29] was the first
luckiest mathematician who described and introduced those notions, especially for the problems
with missing or incomplete data, collected with the new concept of the average control which was
developed by the Great scientist Enrique Zuazua [55].

The lofty goal of this thesis is to control the average system state with respect to the unknown
parameter, whatever the conditions of the missing data.

Actually, I started my scientific research in control theory on linear PDEs, but, because of the
outbreak of COVID-19 in the whole world, during that time a lot of people died. As a researcher,
my inquisitive sense woke me up, and push me into the fashion world of scientific research, and
the result was a scientific article in a Scopus journal on controlling the outbreak of COVID-19 in
China, which was control of nonlinear ODEs systems. What makes reading the thesis entertaining
and interesting is that it is rich in two different axes which are divided into two parts organized as
follows:
> The first part will contain two chapters, the first chapter will present and discusses some

concepts of optimal control in non-linear finite which is based on the PMP and consists in reducing
the problem of control to a boundary value problem, then, we resolve it numerically by a shooting
method, with some examples for different systems. The second chapter deals with the mathematical
modelization of the propagation of the COVID-19 in the city of Wuhan, China. Afterword, this
chapter introduces and proves the uniqueness and existence of the average optimal control using the
maximum principle and obtaining the optimality systems of the epidemic COVID-19 and solves
that system numerically the Shooting function G(y0) in MATLAB.
> The second part presents and defines the different notions of optimal control of linear PDEs, it

contains also two chapters, the first one discusses and introduces some concepts of optimal control
and average control in infinite dimensions, with some examples in different systems (parabolic,
hyperbolic, elliptic, and abstract coupled systems), it introduces the no-regret, low-regret control
and the new notion of the average control, it shows also the existence and uniqueness of the optimal
control. The other chapter will discuss the optimal control of an abstract system. also we will
introduce new results about the average optimal control of an abstract hyperbolic-parabolic system
depending on an unknown parameter with missing initial conditions.
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Introduction

The optimal control is among the best methods of solving and improving the performance
of control systems, at the same time, it always seeks the best and most favourable states pos-
sible. The problem of the optimal control consists in finding the control minimizing certain
chosen criteria. Today the field of the application of optimal control extends from tracking
to shape optimization. It is a very important part of engineering techniques. The object of
this part is to formulate in a more general way the problem of the optimal control of systems
and to present the theory and the practice of this form of control.

On the other hand, consist in applying the Ponteriaguine maximum principle (PMP)[see
[35] ], which gives necessary conditions of first-order optimality and results in a two bound-
ary value problem. We then seek the trajectories verifying these conditions, which in practice
amounts to seeking the zero of a certain shooting function associated with the original prob-
lem. These methods are both precise and fast, but on the other hand, they are very sensitive
to initialization [36]. Also, this part shows a great and new application of the PMP is on
the COVID-19 which is in charge of the current outbreak of pneumonia that began at the
beginning of December 2019 near Wuhan City, Hubei Province, China.



1. Optimal control of ODEs

This chapter is dedicated to introducing the study of a resolution method of optimal control
problems, which is precise and fast at the same time. It is based on the PMP and consists in
reducing the problem of control to a boundary value problem, then, we resolve it numerically
by a shooting method. This last consists of the search for zero of the associated shooting
function. Also, it is rich with four sections which contain the optimization criterion, PMP,
shooting method, and some applications of optimal control to different non-linear ODEs.

1.1 Average control

In some distributed systems, often parameters are not fully known, in this situation to control such
kind of systems we look for controls independent of the unknown parameters. To control this
systems Zuazua in [55] introduced the notion of "averaged control". The main the idea is to control
the average of the state with respect to the unknown parameter instead of controlling the state itself.

1.2 Principals of optimal control

1.2.1 Diagram of the optimal control

The goal is to be able to control the system, therefore to bring the output to a certain value thanks to
the action on the input while respecting certain constraints (Criteria to be minimized or maximized).
The question is: what is the best control, given these constraints, leading to the desired output? The
answer is Optimal control. The optimal control is a state feedback control, it is given by the next
diagram
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Figure 1.1 : Control diagram by state feedback.

The control law is given by the next relation

u(t) = xd−Gopt .x(t) = ω(t)−Gopt .x(t),

where :
• ω(t) = xd represents the reference or desired state ( can be vector or element ).
• x(t) represents the vector of system state variables.
• Gopt represents the optimal feedback or control gain ( can be matrix vector ).
The optimal control by state feedback is the control of the systems modelled in the state space. Its
optimal design is obtained based on a cost function and an optimality criterion chosen in such a
way that they make it possible to find the values of the optimal return gain Gopt among the different
possible gains, that is to say, find the optimal control law among the different admissible controls
u(t) possible, the one that allows both :
• Check the given initial and final conditions.
• Satisfy various imposed constraints.
• Optimize a chosen criterion.

1.2.2 Optimization criterion
In many optimal control problems, where the objective is to determine and generate optimal
solutions for a criterion of our choice, this criterion is represented as a sum of two terms :

J(x,u, t) =
∫ t f

t0
f 0(x(t),u(t), t)dt +g(x(t f ), t f ), (1.1)

such that : f 0 and g are scalar functions which are given at the times t0.
In equation (1.1), the first element of the left side the integral of the function

∫ t f
t0 f 0(x(t),u(t), t)dt

is evaluated along the trajectory y obtained in the output space for t ∈ [t0, t f ]. Otherwise, it is the
final element favoured in the criterion J(x,u, t), it takes into account the initial, intermediate and
final states.
The rest term g(x(t f ), t f ) is given in the criterion. J(x,u, t) is a function of the final state of the
system, which represents the cost of the final deviation on the output and on the time compared to
their desired values, therefore, this term does not intervene in the calculations. Consequently, the
optimization of the criterion given by the function (1.1) amounts to that of the criterion

J =
∫ t f

t0
f 0(x(t),u(t), t)dt.

There are some different criteria as :
• Lagrange criterion

J =
∫ t f

t0
f 0(x(t),u(t), t)dt.
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•Mayer criterion

J = g(x(t f ), t f ).

The functions f 0 and g are given scalar functions as indicated previously.
The choice of the criterion is very important and a command which minimizes a given criterion is
not necessarily interesting if the criterion is badly chosen or does not take into account the physical
constraints imposed or the desired performance of the system.
The general formulation of the optimization criterion can be presented in various aspects.
Depending on the properties of the considered system and the objective of the optimization problem,
the classical forms correspond to the minimization problem :
• The energy provided by the implementation of the control.
• The horizon time [t0, t f ].
• The energy consumption.

Main optimization criteria
There are three families of fundamental problems in optimal control :

? The control in minimum time
Minimum time control is a typical application of the maximum principle. This type is encountered,
for example, in safety or manufacturing problems. The criterion used is then written as follows

J =
∫ t f

t0
dt.

? The minimum consumption control
The criterion corresponds to the integral of a flow

J =
∫ t f

t0
|u|dt.

? Minimum energy control
Which is the integral of a power

J =
∫ t f

t0
u2dt.

1.3 Optimality principles

To be able to determine an optimal control, we must choose, then, apply a principle of optimality.
There are different principles, among which we declare the following criteria :
• The Pontryaguine Maximum Principle.
• The Bellman Optimality Principle.
• Euler Lagrange equations.
In the following, we will mention only The PMP, which is formulated by Pontriaguine and his
collaborators in 1956, they gave the necessary optimality conditions, the same time, they make it
possible to calculate the optimal trajectories.

1.3.1 The Pontryaguine maximum principle
From a global point of view, an optimal control problem is formulated on a set M. The general
problem of optimal control is the next
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Consider a general control system{
ẋ(t) = f (t,x(t)u(t)),
x(t0) = x0,

(1.2)

where :
• f is a class C1 subset of I×V ×U ⊂ Rn, I ⊂ R.
• V ⊂ Rn is an open subset.
•U ⊂ Rm an open subset of admissible controls, which is bounded and continuous piecewise on
(x0, t0) ∈V × I .
Furthermore, we assume that the controls u(.) belong to a subset of L1

loc(I,Rm).
These assumptions ensure, for any control u, the existence and uniqueness on a maximal solution
xu(t) on a set J ⊂ I, of the Cauchy problem (1.2). For ease of writing, we assume in the next that
t0 = 0.
For any control u ∈ L∞

loc(I,Rm), the associated trajectory xu(.) is defined on a maximal set [0, tε(u)[,
where tε(u) ∈ R+∪{+∞}. For example if tε(u)<+∞ then the trajectory explodes in tε . For all
T ∈ I,T ≥ 0, we represent by Uad the set of admissible controls on [0,T ], i.e. the set of controls
such that the associated trajectory is well defined on [0,T ]. In other words T < tε(u).
Let f 0 be a function of class C1 on I×V ×U , and g a continuous function on V . For any control
u ∈Uad we define the cost function of the associated trajectory xu(.) over the interval [0,T ]

J(T,u) =
∫ T

0
f 0(t,xu(t),u(t))dt +g(T,xu(T )). (1.3)

Let M0 and M1 be two subsets of V . The optimal control problem is to determine the trajectories
xu(.) solutions of

ẋu(t) = f (t,xu(t),u(t)).

such that : xu(0) ∈ M0, xu(T ) ∈ M1, and minimizing the cost function J(T,u). We say that the
optimal control problem has an unfixed final time if the final time T is free, otherwise, we speak of
a fixed final time problem.
The Pontryaguine maximum principle is difficult to demonstrate in all its generality.

General statement
Theorem 1.3.1 We consider the next control system

ẋ(t) = f (t,x(t),u(t)) in Rn,

where :
• f : R×Rn×Rm −→ Rn is of class C1.
• The controls are measurable and bounded sets defined on a [0, tε(u)[∪R+ with values in
Ω⊂ Rm.
Let M0 and M1 be two subsets of Rn. We denote by Uad the set of admissible controls u whose
associated trajectories connect an initial point of M0 to an end point of M1 in time t(u)< tε(u).
Moreover, we define the cost of a control u on [0, t]

J(T,u) =
∫ t

0
f 0(s,xs(t),us(t)ds+g(t,x(t)),

where :
• f 0 : R×Rn×Rm −→ Rn and g : R×Rn −→ R are C1.
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• x(.) is the solution trajectory of our differential equation associated with the control u.

We consider the next optimal control system
Determine a trajectory linking M0 to M1 and minimizing the cost function. The final time may or
may not be fixed.
If the control u ∈Uad associated with the trajectory x(.) is optimal on [0,T ], then there exists an
absolutely continuous application p(.) : [0,T ]−→ Rn called the adjoint vector, and a real p0 ≤ 0,
such that the pair (p(.), p0) is non-trivial, for almost any t ∈ [0,T ] we have

ẋ(t) =
dH
d p

(t,x(t), p(t), p0,u(t)),

ṗ(t) = −dH
dx

(t,x(t), p(t), p0,u(t)),

where, H(t,x, p, p0,u) = 〈p, f (t,x,u)〉+ p0 f 0(t,x,u) is the Hamiltonian of the system, and we have
the next maximization condition almost everywhere on [0,T ]

H(t,x(t), p(t), p0,u(t)) = max
v∈Ω

H(t,x(t), p(t), p0,v).

If the final time to reach the target M1 is not fixed, we have at the final time T the next condition

max
v∈Ω

H(T,x(T ), p(T ), p0,v) =−p0 ∂g
∂ t

(T,x(T )).

R If control u is continuous at time T , previous condition can be described as follows

H(T,x(T ), p(T ), p0,u(T )) =−p0 ∂g
∂ t

(T,x(T )).

If moreover M0 and M1 (or just one of the two sets) are manifolds1 of Rn having tangent spaces at
x(0) ∈M0 and x(T ) ∈M1, then the adjoint vector can be constructed in such a way as to satisfy the
transversality conditions at both ends (or just one of the two)

p(0)⊥ Tx(0)M0, (1.4)

and

p(T )− p0 ∂g
∂x

(T,x(T ))⊥ Tx(T )M1. (1.5)

R Under the conditions of the theorem, moreover, we have

d
dt

H(t,x(t), p(t), p0,u(t)) =
∂H
∂ t

(t,x(t), p(t), p0,u(t)), ∀t ∈ [0,T ].

In particular, if the augmented system is autonomous, i.e., if f 0 and f do not depend on t,
then H does not depend on t, and we have

max
v∈Ω

H(t,x(t), p(t), p0,v) = constant.

Then, note that this equality is valid on [0,T ] (indeed this function of t is Lipschitz).

1It is a topological space that locally resembles Euclidean space near each point.
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Transversality conditions
Transverse conditions on the adjoint vector
In this paragraph, the final time to reach the target can be fixed or not. Let us rewrite conditions
(1.4) and (1.5) in the following two important cases.
? Lagrange problem. In this case (g = 0), we can write the cost function as follows

J(t,u) =
∫ t

0
f 0(s,xs(t),us(t))ds.

The transversality conditions (1.4) and (1.5) on the adjoint vector are then written

p(0)⊥ Tx(0)M0 , p(T )⊥ Tx(T )M1.

? Mayer problem. In this case ( f 0 = 0) the cost function is written as bellow

J(t,u) = g(t,x(t)).

The transversality conditions (1.4) and (1.5) are not simplified a priori, but in the particular case
where M1 = Rn. In other words the final point x(T ) is free, the condition (1.5) becomes

p(T ) = p0 ∂g
∂x

(T,x(T )).

If moreover g does not depend on time, we usually write p(T ) = p0∇(x(T )). In other words, the
deputy vector at the final time is equal to within the constant p0, to the gradient of g taken at the
final point.

Transversality condition on the Hamiltonian
The next condition

max
v∈Ω

H(T,x(T ), p(T ), p0,v) =−p0 ∂g
∂ t

(T,x(T ))

is valid only if the final time to reach the target is not fixed. In this paragraph, therefore, we place
ourselves in this case.
The only notable simplification of this condition is the case where a function g does not depend on
time t, and the previous transversality condition on the Hamiltonian then becomes as bellow

max
v∈Ω

H(T,x(T ), p(T ), p0,v) = 0,

or, if u is continuous at time T ,

H(T,x(T ), p(T ), p0,u(T ) = 0,

In other words, the Hamiltonian cancels out at the final time.

1.4 Some applications of Optimal Control

1.4.1 Optimal control of a non-linear spring
Let us consider the next control system{

ẋ(t) = y(t),
ẏ(t) = −x(t)−2x3(t)+u(t),
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where, we allow as controls all the piecewise continuous functions u(t), such that, |u(t)| ≤ 1.
The objective is to bring the spring from any initial position (x0,y0 = ẋ0) to its equilibrium position
(0,0) in minimal time t∗.
According to the application of the PMP, the Hamiltonian of the previous system is written as
follows

H(x, p,u) = pxy+ py(−x−2x3 +u)+ p0.

If (x, p,u) is an extremal then we must have :

ṗx = −∂H
∂x

= py(1+6x2),

ṗy = −∂H
∂y

=−px.

note that, since the adjoint vector (px, py) must be non-trivial, py cannot vanish on a set (we would
also have (px =−ṗy = 0). Moreover, the maximization condition gives us

u(t) = sign(py(t)) where py is a solution of


py(t)+ py(t)(1+6x2(t)) = 0,
py(t∗) = cosα,
ṗy(t∗) = sinα,

the parameter α ∈ [0,2π[ being undetermined.
by reversing the time (t →−t) , it is clear that, our problem is equivalent to the minimal time
problem for the following system

ẋ(t) = −y(t),
ṗy(t) = px(t),
ẏ(t) = x(t)+2x3(t)− sign(py(t)),

ṗx(t) = −py(t)(1+6x2(t)),

with :
∣∣∣∣ x(0) = 0 , x(t∗) = x0 , py(0) = cosα,

y(0) = 0 , y(t∗) = y0 , px(0) = sinα,

where, α ∈ [0,2π[ is to be determined.

1.4.2 Optimal transfer of computer files
A file of x0 Mb must be transferred by the network. At each time t we can choose the transmission
rate u(t) ∈ [0,1]Mb/s, but it costs u(t) f (t), where, f (.) is a known function. Furthermore, at the
final time we have an additional cost γt2

f , where γ > 0. The system is therefore :

ẋ =−u, x(0) = x0, x(t f ) = 0.

We have to minimize the next cost function

J(t f ,u) =
∫ t f

t0
u(t) f (t)dt + γt2

f .

In this case we have

f 0 = u f and g = γt2.

The Hamiltonian is H =−pu+ p0 f u. Since ṗ = 0, we have p(t) =Cste = p. Furthermore

u(t) =
{

0 i f −p+ p0 f (t)< 0,
1 i f −p+ p0 f (t)> 0,
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u(t) is undetermined if −p+ p0 f (t) = 0 on a subinterval. At the final time, we have

H(t f ) =−p0 ∂g
∂ t

=−2p0
γt f ,

hence,

−u(t f )(p+ f (t f )) =−2p0
γt f .

If p0 = 0, then necessarily p 6= 0, and u(t) is constant, therefore necessarily u(t) = 1, but then
the above relation implies p = 0, which is absurd. So, p0 = −1. It is clear that at the final time
t f we have u(t f ) = 1 (otherwise u would not be optimal, because of the term γt2

f ), and therefore,
p =−2γt f − f (t f ). Ultimately

u(t) =
{

0 i f f (t)> 2γt f + f (t f ),
1 i f f (t)< 2γt f + f (t f ).

1.4.3 Optimal control of consumption and production
Assume that, we have a factory for which we can control production. As we construct the
mathematical model by setting

x(t) = quantity produced at time t.

Suppose, we consume a fraction of our production at each instant t, as well, we reinvest the
remaining fraction. Note the fraction of remaining production at time t by u(t).
u(t) will be our control which we will also subject to the next constraint

0≤ u(t)≤ 1 at each instant t.

The production of our factory is governed by the dynamic next system{
ẋ(t) = ku(t)x(t),
x(t0) = x0 = 0,

where k is a constant that represents the growth rate of our reinvestment. Let us take as the next
cost function

J(u(t)) =
∫ T

0
(1−u(t))x(t)dt

which means that, we seek to maximize the total consumption of the quantity produced. Our
consumption at a given instant t is (1−u(t))x(t).
We will now, seek to characterize an optimal control of our problem. For this we apply the PMP.
We have n = m = 1 :

f (x(t),u(t)) = x(t)u(t), g = 0, r(x,u) = (1−u)x.

Now, let us calculate the Hamiltonian of the previous system which reads as follows

H(x(t), p(t),u(t)) = f (x(t),u(t))p(t)+ r(x(t),u(t))
= x(t)u(t)p(t)+(1−u(t))x(t)
= x(t)−u(t)x(t)(p(t)−1).

The dynamic equation of the system is

ẋ(t) = Hp =
∂H
∂ p

= u∗(t)x(t), (1.6)

and the next adjoint equation (vector)

ṗ(t) =−Hx =−
∂H
∂x

=−1+u∗(t)(p(t)−1). (1.7)
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Transversality conditions The final condition can be expressed as follows

p(T ) = gx(x(t)) = 0. (1.8)

Finally, the maximum of the Hamiltonian

H(x(t), p(t),u∗(t)) = max
0≤u≤1

{x(t)+u(t)x(t)(p(t)−1)} . (1.9)

Use of the maximum principle We deduce the useful information from the equations of the
system as well as the next equations : (1.6), (1.7), (1.8) and (1.9).
From (1.9), at any instant t, the value u∗(t) must be chosen so as to maximize u(p(t)− 1) for
0≤ u≤ 1. As x(t)> 0, then the extremal solution is equal

u∗(t) =
{

0 i f p(t)≤ 1,
1 i f p(t)> 1.

Thus, it remains to know p(.) to determine the optimal control u∗(.). We are going to solve the next
system{

ṗ(t) = −1−u∗(t)(p(t)−1), t ∈ [0,T ]
p(T ) = 0.

Since p(T ) = 0, we conclude by continuity that, p(t) ≤ 1 for all t close enough to T, t < T .
Consequently u(t) = 0 for these values of t ∈V (T ).
So, ṗ(t) = −1, and thus p(t) = T − t for the times t which are in this interval. We thus have
p(t) = T − t for the instants satisfying p(t)≤ 1, and this occurs for T −1≤ t ≤ T .
But, for times t ≤ T −1, with t close to T −1, we have u(t) = 1, and according to (1.7) we will
have

ṗ(t) =−1− (p(t)−1) =−p(t).

As long as p(T −1) = 1, we have p(t) = eT−1−t > 1 for all times (0≤ t ≤ T −1). In particular,
there are no commutation points above this set.
Therefore, we deduce that the optimal control is

u∗(t) =
{

1 i f 0≤ t ≤ t∗,
0 i f t∗ ≤ t ≤ T.

For an optimal commutation time t∗ = T −1.

1.5 Numerical method in optimal control (shooting method)

There are two types :

∗ The direct methods consist of the discretization the control, the state, and reducing the
problem to a non-linear optimization (programming) problem.

∗ The indirect methods consist in solving numerically, by shooting method, we apply the
maximum principle to obtain a boundary value problem.

In this section, we focus just on the indirect method which is the shooting method.
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1.5.1 Simple shooting method
Consider the optimal control problem (1.2)-(1.3), and first, suppose that, the final time t f is
fixed. The maximum principle award a necessary optimality condition, it asserts that, any optimal
trajectory is the projection of an extremal. If we are able from the maximum condition, to express
the extremal control as a function of (x(t), p(t)), then the extremal system is a differential system
of the form ż(t) = F(t,z(t)), where : z(t) = (x(t), p(t)), the initial, the final and the transversality
conditions, take the form R(z(0),z(t f )) = 0.{

ż(t) = F(t,z(t)),
R(z(0),z(t f )) = 0.

(1.10)

Let z(t,z0) be the solution of the next Cauchy problem{
ż(t) = F(t,z(t)),
z(0) = 0.

Let G(z0) = R(z(0),z(t f ,z0)) . The problem (1.10) is equivalent to

G(z0) = 0.

It is the issue of determining a zero of the function G.
However, it may be preferable, when the final time is free, to use the transversality condition on the
Hamiltonian.

1.5.2 Multiple shooting method
Compared to the simple shooting method, the multiple shooting method divides the set [0, t f ] into
N sets [ti, ti+1], and is given as unknowns the values z(ti) at the start of each subset. Continuity
conditions must be taken into account at each time ti.
Consider a general optimal control problem. Applying the maximum principle reduces the problem
to a limit value problem of the type

ż(t) = F(t,z(t)) =


F0(t,z(t)) if t0 ≤ t < t1,
F1(t,z(t)) if t1 ≤ t < t2,
...
Fs(t,z(t)) if ts ≤ t < t f ,

where z = (x, p) ∈ R2n (p is the adjoint vector), and t1, t2, ... , ts ∈ [t0, t f ] can be switching times. In
the case of constraints on the state, we have boundary conditions on the state, adjoint vector and on
the Hamiltonian if the final time is free.

R A priori the final time t f is unknown. Moreover, in the multiple shooting method, the number
s of switching must be fixed, it is determined when possible by a geometric analysis of the
problem.

The multiple shooting method consists in subdividing the set [t0, t f ] into N subsets, the value of z(t)
at the beginning of each subset being unknown. More specifically, let t0 < σ1 < σk < t f be a fixed
subdivision of the interval [t0, t f ]. At any point σ j the function z is continuous. We can consider σ j

as a fixed switching point, in which we have{
z(σ+

j ) = z(σ−j ),
σ j = σ∗j = f ixed.
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Now, we define the nodes

{τ1, ...,τm}=
{

t0, t f
}
∪{σ1, ...,σk}∪{t1, ..., ts} .

Finally, we are led to the next limit value problem
•

ż(t) = F(t,z(t)) =


F0(t,z(t)) if τ1 ≤ t < τ2,
F1(t,z(t)) if τ2 ≤ t < τ3,
...
Fm−1(t,z(t)) if τm−1 ≤ t < τm.

• ∀ j ∈ {2, ...,m−1} , r j(τ j,z(τ−j ),z(τ
+
j )) = 0.

• rm(τm,z(τm),z(τm)) = 0.
Where τ1 = t0 is fixed, τm = t f , and the r j represent the previous interior or boundary conditions.

1.5.3 Resolution of TPBVP
General case Consider the next general optimal control problem at fixed times

ming(t0,x(t0), t f ,x(t f ))+
∫ t f

t0 f 0(t,x(t),u(t)), "Objective."
ẋ(t) = f (t,x(t),u(t)), "Dynamic."
u(t) ∈U ⊂ Rm, "Admissible controls."
ψ0(t0,x(t0)) = 0 ∈ Rn0 , "Initial conditions."
ψ f (t f ,x(t f )) = 0 ∈ Rn1 . "Final conditions."

TPBV problem
The necessary optimality condition (PMP) leads us to a differential system with 2n equations,
n0 +n1 parameters (µ0 and µ1) and with 2n+n0 +n1 final and initial conditions as follows :

(P)



ẋ(t) = f (t,x(t),u(t)),
ṗ(t) = − f t

x(t,x(t),u(t))p(t)− lx(t,x(t),u(t)),
u(t) = h(p(t)),

(h0,h1)(x(t0)) = (0,0),

p(t0) = − ∂φ

∂x0
(x(t0),x(t f ),µ0,µ1),

p(t f ) =
∂φ

∂x f
(x(t f ),x(t f ),µ0,µ1),

where, u(t) = h(p(t)) is given by the minimization of the Hamiltonian, and the function φ is given
y :

φ : (t0,x0, t f ,x f ,µ0,µ1)→ g(t0,x0, t f ,x f )+(ψ0(t0,x0)|µ0)+(ψ0(t f ,x f )|µ1),

by setting y(t) the pair state, adjoint state (y(t) = (x, p(t))) and φ the dynamics of the pair state,
adjoint state given by the Hamiltonian system and by eliminating the parameters, µ0 and µ1. We
give the next TPBV problem

(T PBV P)


y(t) = φ(y) = ϕ(t,y(t)), ”Almost everywhere on [t0, t f ].”
c0(t0,y(t0)) = 0, ”Boundary conditions in t0.”
c f (t f ,y(t f )) = 0. ”Boundary conditions in t f .”

R These boundary conditions c0 and c f cores correspond to the transversality conditions
mentioned above, which contain the initial and final conditions of (P), in addition to the
conditions on the adjoint state p.
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Initial value problem & shooting method
We will define the shooting method to solve this problem of two points boundary values Let y(.,z)
be the solution of the system with the following IVP initial value

(IV P)
{

y(t) = ϕ(t,y(t)), ”Almost everywhere on [t0, t f ].”
y(t0) = z. ”Initial value .”

we now introduce an application G called shooting function , which has the initial value z associates
the value of the boundary conditions in t f for the corresponding solution of (IV P), defined by

G : R2n → R2n

z 7→ G(z) =
(

R0(z)
R f (y(t f ,z))

)
Finding a zero of the shooting function G is then equivalent to the problem solving (T PBV P), and
thus gives a solution of (P).

R The numerical problem-solving algorithm TPBVP will be completely defined :
• The resolution algorithm of G(z) = 0.
• The algorithm for integrating an initial-valued differential system to calculate the shooting
function G.

1.5.4 Application of the shooting method
In our case, we solve the optimal problem by considering the initial state x0 the origin t by taking a
final state x1 = (0,−1) of the space X .
There exists a function z(t) = (x(t), p(t)) defined in X with value in U , the final, the initial, and the
transversality conditions are set in the next form

h(z(t), p(t f )).

Defines all the optimal trajectories, and according to the principle of maximum we have

u(t) = sign(py(t)).

The knowing of the shooting function makes it possible to consider that this optimal problem is
entirely solved mathematically.
We have the next two points boundary value problem

(T PBV P)


(ẋ, ẏ, ṗx, ṗy)(t) = (y(t),u(t),0,−px)(t),
(x(t0),y(t0)) = (0,0),
(x(t f ),y(t f )) = (0,−1),

Assume that

z(t) = (x(t),y(t), px(t), py(t)) = (z1(t),z2(t),z3(t),z4(t)).

Solving the problem (T PBV P) is then equivalent to finding a zero of the equation G(z) = 0 where
the function G is the shooting function associated with our problem and is defined by

G : R4 → R4

z 7→ G(z) = z(t,0,h),
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such that, z(t,0,h) is the solution of the next system
(ż1, ż2, ż3, ż4)(t) = (z2(t),u(t),0,−z3(t)),

(z1,z2)(0) = (0,0),
(z3,z4)(0) = (h1,h2) ∈ R×R.

Let z(t,0,0,h1,h2) be a solution of our system at time t with the initial and final conditions
(0,0,h1,h2).
In this example we have that, the final time t f is free, so, we must have

z(t f ,0,0,h1,h2) =


z1(t f ,0,0,h1,h2)
z2(t f ,0,0,h1,h2)
z3(t f ,0,0,h1,h2)
z4(t f ,0,0,h1,h2)

=


0
−1

.

.

 .

We define the next shooting function

G(z) =

 z1(t f )
z2(t f )+1
H(t f ) = 0

=

 z1(t f )−0
z2(t f )− (−1)

z4(t f )z3(t f )+
∣∣z4(t f )

∣∣−1

 .

Since (x f ,y f ) = (0,−1) and maxH(t) = z4(t)z3(t)+ |z4(t)|−1, in this case we have p0 =−1, and
the fact that, the final time t f is free, therefore,

H(t f ) = z4(t f )z3(t f )+
∣∣z4(t f )

∣∣−1 = 0.



2. Control of COVID-19

A novel pathogenic virus corona-virus (CoV) called ‘COVID-19’, ‘2019-nCoV’ or ‘2019
novel corona-virus’ by WHO1 is in charge of the current outbreak of pneumonia that started
at the month of December 2019 in Wuhan, China.

The first part of this chapter presents the outbreak of COVID-19 with the help of a
mathematical model using just the non-linear ODEs. The spread of the disease has been on
the increase across the globe for some time with no end in sight. The second section treats
the optimal average control into COVID-19 systems, which is based on the precedent given
modelling. As a result, we arrive at the required characterization of the optimal control. It
can be simulated by Matlab software by using the shooting method.

2.1 COVID-19 Mathematics modelling

This section aimed to present a mathematical model of propagation of the virus, in other words
we present a Bats-Hosts-Reservoir-People (BHRP) transmission network model. Since the Bats-
Hosts-Reservoir network was hard to explore obviously and public concerns were focusing on the
transmission from Seafood Wholesale Market (reservoir) to people, the model was simplified as
Reservoir-People (RP) transmission network model.

2.2 The BHRP transmission network model
The BHRP transmission network model was posted to bioRxiv on 19 January 2020 (see [8]). We
assumed that the virus transmitted among the bats, and then transmitted to unknown hosts (probably
some wild animals). The hosts were hunted and sent to the seafood market which was defined as
the reservoir of the virus. People exposed to the market got the risks of the infection Figure 2.2.
The BHRP transmission network model was based on the next assumptions :

1World Health Organization.
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Figure 2.1: Flowchart of the BHRP transmission network model.

• The bats were divided into four compartments :
. IB are infected bats.
. SB are susceptible bats, where it will be infected through sufficient contact with IB.
. EB are exposed bats.
. RB are removed bats.
Where :
? nB and mB are the birth and the death rate of bats.
? ΛB = nB×NB is the number of the newborn bats, such that, NB is the total number of bats.
? 1/ωB is the incubation period of bat infection.
? 1/γB is the infectious period of bat infection.
? βB is the transmission rate.

• The hosts were also divided into four compartments :
. IH are infected hosts .
. SH are susceptible hosts, it will be infected through sufficient contact with IB and IH .
. EH are exposed hosts .
. RH are removed hosts .
Where :
? nH and mH are the birth and the death rate of hosts.
? ΛH = nH ×NH ,such that, NH is the total number of hosts.
? 1/ωH is the incubation period of host infection.
? 1/γH is the infectious period of host infection.
? βBH and βH are the transmission rates.

• The SARS-CoV-2 in reservoir (the seafood market) was denoted as W .
Let us suppose that :
. a is the retail purchases rate of the hosts in the market.
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. IH/NH is the prevalence of SARS-CoV-2 in the purchases.

. aWIH/NH is the rate of the COVID-19 in W imported form the hosts, such that, NH is the total
number of hosts. . µP and µ ′P are the rate of the symptomatic and the asymptomatic infected people
could export the virus into W .
The virus in W will subsequently leave the W compartment at a rate of εW , where 1/ε is the
lifetime of the virus.

• The people were divided into five compartments :
. IP are the symptomatic infected people.
. SP are the susceptible people, it will be infected through sufficient contact with W and IP

. EP are the exposed people .

. AP are the asymptomatic infected people.

. RP are the removed people, which including recovered and death people.
Where :
? nP and mP are the birth and the death rate of people.
? ΛP = nP×NP, such that, NP is the total number of people.
? 1/ωP and 1/ω ′P are the incubation and the latent period of human infection.
? 1/γP and 1/γ ′P are the infectious period of IP and AP.
? δP is the proportion of asymptomatic infection.
? βW and βP are the transmission rates.
? The transmissibility of AP was κ times that of IP, where, 0≤ κ ≤ 1.

(BHRP)



dSB
dt = ΛB−mBSB−βBSBIB,

dEB
dt = βBSBIB−ωBEB−mBEB,

dIB
dt = ωBEB−mBEB− (γB +mB)IB,

dRB
dt = γBIB−mBRB,

dSH
dt = ΛH −mHSH −βBHSHIB,

dEH
dt = βBHSHIB +βHSHIH −ωHEH −mHEH ,

dIH
dt = ωHEH −mHEH − (γH +mH)IH ,

dRH
dt = γHIH −mHRH ,

dSP
dt = ΛP−mPSP−βPSP(IP +κAP)−βW SPW,

dEP
dt = βPSP(IP +κAP)+βW SPW − (1−δP)ωPEP−δPω ′PEP−mPEP,

dIP
dt = (1−δP)ωPEP− (γP +mP)IP,

dAP
dt = δPω ′PEP− (γ ′P +mP)AP,

dRP
dt = γPIP + γ ′PAP−mPRP,

dW
dt = aW IH

NH
+µPIP +µ ′PAP− εW.

The next table presents the parameters of BHRP model

Parameter Description
nP The birth rate parameter of people.
nB The birth rate parameter of bats.
nH The birth rate parameter of hosts.
mP The people death rate.
mB The bats death rate.
mH The hosts death rate.

1/wP The incubation period of people.
1/wH The bats incubation period.
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1/wB The bats incubation period.
1/w′P The people latent period.
1/γP The infectious period of people symptomatic infection.
1/γB The bats infectious period.
1/γH The hosts infectious period.
1/γ ′P The infectious period of people asymptomatic infection.
βP The transmission rate from IP to Sp.
βB The transmission rate from IB to SB.
βH The transmission rate from IH to SH .
βW The transmission rate from W to Sp.
βBH The transmission rate from IB to SH .

a The retail purchases rate of the hosts in the market.
κ The multiple of the transmissibility of AP to that of IP.
µP The shedding coefficients from IP to W .
µ ′P The shedding coefficients from AP to W .
1/ε The virus lifetime in W .
δP The proportion of people asymptomatic infection rate.

Table 2.1 : The parameters definition of the BHRP model.

2.2.1 The transmission network model of simplified reservoir-people
We suppose that, the COVID-19 could be imported to the seafood market in a short time. Then, we
have the next assumptions :
• The Bats-Host transmission network was neglected.
• Let us put the initial value of W as an impulse function, based on the previous studies on
simulating importation ( [10], [52]), it gives as follows

Importation = impulse(n, t0, ti).

Then, the next PR model was clarified from the BHRP model

dSP

dt
= ΛP−mPSP−βPSP(IP +κAP)−βwSPW,

dEP

dt
= βpSP(IP +κAP)+βwSPW − (1−δP)wPEP−δPw′PEP−mPEP,

dIP

dt
= (1−δP)wPEP− (γP +mP)IP,

dAP

dt
= δPw′PEP− (γ ′P +mP),

dRP

dt
= γPIP + γ ′PAP−mPRP,

dW
dt

= µPIP +µ ′PAP− εW.

The natural population death and birth rates were at a relatively low level, during the outbreak
period. According to the previous study (see [9]). mP and nP refer to the rate of people travelling
out from Wuhan City and travelling into Wuhan City, respectively. In our model, people and viruses
have different dimensions, therefore, we used the next sets to perform the normalization :

sP =
SP

NP
, iP =

IP

NP
, aP =

AP

NP
, rP =

RP

NP
,

wP =
εW

µPNP
, µ ′P = cµP , bP = β ′PNP , bW =

µPβW NP

ε
.
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In the normalization, we have, c is a parameter refers to the relative shedding coefficient of AP

compared to IP. The normalized model of RP is converted as follows

dsP
dt = nP−mPsP−bpsP(iP + kaP)−bwsP,

deP
dt = bpsP(iP + kaP)+bwsPw− (1−δP)ωPeP−δPω ′PeP−mPeP,

diP
dt = (1−δP)ωPeP− (γP +mP)iP,
daP
dt = δPω ′PeP− (γ ′P +mP)aP,

drP
dt = γPiP + γ ′PaP−mPrP,

dw
dt = ε(iP + caP−w),

Where : np, mp, wp, w′p, γp, γ ′p, δp, ε, k and c are known parameters while, bp and bw are
unknown parameters in the set [0,1].

2.3 Optimal control of COVID-19

This section presents the controlled the propagation of the COVID-19 in the society by using the
average optimal control on the propagation equations of the virus, so our control was represented
by the optimal control in free time and we reached very good results attached with fees to stabilize
the propagation of the disease in time.

2.3.1 Problem statement

Mathematical models are a powerful tools for investigating the infectious diseases dynamics and
their control.Optimal control theory is used to propose the most effective strategy to minimize the
number of individuals infected during the infection while effectively balancing the vaccination used
to models with various cost scenarios.

During the outbreak period epidemic corona-virus , the natural birth rate and death rate in the
population was at a relatively low level. However, people were commonly travelling into and out
from Wuhan city mainly due to the Chinese New Year holiday.

In this model, viruses and people have different dimensions (see [8]), thus, we use the next sets
to perform the normalizations :∣∣∣∣∣∣∣∣∣∣

s =
S
N
,

e =
E
N
,

i =
I
N
,

∣∣∣∣∣∣∣∣∣∣
a =

A
N
,

r =
R
N
,

w =
εW
µN′

,

∣∣∣∣∣∣∣
µ ′ = cµ,
bp = βpN,

bw =
µβwN

ε
.

such that :
• S is the susceptible people.
• E is the exposed people.
• I is the symptomatic infected people.
• A is the asymptomatic infected people.
• R is the removed people (death and recovered).
• εW is the rate of the virus in compartment W , such that, 1

ε
is the virus lifetime.

• µ is the shedding coefficients from I to W .
• µ ′ is the shedding coefficients from A to W .
• βp is the average transmission rate from S to I.
• βw is the average transmission rate from S to W .
• N is the people total number.
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Let us consider the next mathematical model of the COVID-19 outbreak, which is a clarified model
from BHRP to the next RP model

ds
dt = n−ms−bps(i+ ka)−bwsw,
de
dt = bps(i+ ka)+bwsw− (1−δ )we−δw′e−me,
di
dt = (1−δ )we− (γ +m)i,
da
dt = δw′e− (γ ′+m)a,
dr
dt = γi+ γ ′a−mr,
dw
dt = ε(i+ ca−w).

(2.1)

Where :
• n is the people birth rate.
• m is the people death rate.
• c is the relative shedding coefficient of Ap compared to IP.
• k is the multiple of the transmissibility of Ap to that of IP.
• δ is the people proportion of asymptomatic infection rate.

• 1
w′

is people the latent period.

• 1
γ

is the infectious period of people symptomatic infection of .

• 1
γ ′

is the infectious period of people asymptomatic infection.

• 1
w

is the people incubation period.

2.3.2 Average optimal control existence
This section deals with the intervention strategy through vaccination. Here we consider a campaign
of vaccination over a time fixed period [0,T ]. The vaccine leads susceptible individuals to the
recovered class. So, we introduce the control u(t) of the system as follows{

ẋ(t) = f (t,x(t) ,u(t)) ,
x(0) = x0,

(2.2)

where, u(t) is a measurable function and x(t) is the system state.
The average optimal control problem aims to look for the associated state variable x(.) and the
control u(t) which maximizes or minimizes the cost function J, such that,

J(T,u) =
∫ t

0

∫ t

0
g(T,x(t,α1,α2))dα1dα2 +

∫ T

0
f 0 (t,x(t) ,u(t))dt, α1,α2 ∈ [0,1] , (2.3)

where, f 0 ∈ C1 (I×U×V ) and f is continuous in V . We suppose that, I1, I2 two subsets of
I ∈ [0,T ]. The problem of average optimal control aims to determine the trajectories xu (.) solutions
of the next system

ẋ(t) = f (t,xu(t),u(t)),
xu(0) ∈ I1,
xu(T ) ∈ I2,
minJ(t,x(t),u(t)).

R We say that the optimal average control problem is at non-fixed final time if T is free.
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Definition 2.3.1 [49] Let T > 0, the input-output application in time T of the controlled system
initialized at x0 is the application

ET : U −→ Rn

u 7−→ xu (t) ,

where, U is the admissible controls set of u, where, its associated trajectory is defined on [0,T ].

Definition 2.3.2 [49] Let u(.) be a defined control on I = [0,T ], where, the associated trajectory
xu(.) issue x(0) = x0 is defined on I. We say that the control u(.) is singular on I if the differential
in the sense of Frechet a ET is not subjective otherwise we say it is regular.

a Let V and W be normed vector spaces, and U ⊆ V be an open subset of V . A function f : U →W is called
Frechet differentiable at x ∈U if there exists a bounded linear operator A : V →W such that

lim
‖h‖→0

‖ f (x+h)− f (x)−Ah‖W
‖h‖V

= 0.

Proposition 2.3.1 Let u(.) be a singular control on I for the system (2.2) and x(.) be the associated
singular trajectory, then there is an absolutely continuous application λ : [0,T ]→ Rn/{0} called
the adjoint vector, such that the following equations are checked that

−∂H (t,x(t) ,u(t) ,λ (t))
∂xi

= λ ′i (t) , i = 1,n,

∂H (t,x(t) ,u(t) ,λ (t))
∂u

= 0 , ∀t ∈ [0,T ].

where, H is the Hamiltonian of the system (2.2) given by

H (t,x(t) ,u(t) ,λ (t)) = λ0 f 0 (t,x(t) ,u(t))+λ (t) f (t,xu (t) ,u(t)) .

Theorem 2.3.2 — Principle Maximum of Pontryguine (PMP). Suppose that f ,g ∈ C1 are
convex on u, we assume that : u∗(t) is the optimal control of (2.3), λ (t) is continuous differential
function with λ (t)≥ 0 for all t, and, x∗(t) be the associated state, suppose that,

∀t ∈ [0,T ] , H (t,x∗ (t) ,u∗ (t) ,λ (t)) = 0,

So,

H (t,x∗ (t) ,u∗ (t) ,λ (t))≤ H (t,x(t) ,u(t) ,λ (t)) .

Proof. The goal here is to minimize the total number of infected people and the cost associated
with vaccination during the vaccination campaign.
The system (2.1) becomes as follows

ds
dt

= n−ms(t)−bps(t)(i(t)+ ka(t))−bws(t)w(t)−u(t)s(t),
de
dt

= bps(t)(i(t)+ ka(t))+bws(t)w(t)− (1−δ )we(t)−δw′e(t)−me(t),
di
dt

= (1−δ )we(t)− (γ +m)i(t),
da
dt

= δw′e(t)− (γ ′+m)a(t),
dr
dt

= γi(t)+ γ ′a(t)−mr(t)+u(t)s(t),
dw
dt

= ε(i(t)+ ca(t)−w(t)).

(2.4)
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Where : np,mp,wp,w′p,γp,γ
′
p,δp,ε,k and c are known parameters while, bp and bw are unknown

parameters in the set [0,1].
The optimal control problem is to minimize, in a fixed time T , the cost

J(T,u) = α

∫ 1

0

∫ 1

0
ep (T,bp,bw)dbpdbw +

∫ T

0
u2 (t)dt, α > 0.

By considering the system (2.4) with the non-negative initial data

sp(0) = s0 , ep(0) = e0 , ip(0) = i0,
ap(0) = a0 , rp(0) = r0 , w(0) = w0.

We define the optimal control problem as bellow

J(u) = α
∫ 1

0
∫ 1

0 e(t,bp,bw)dbpdbw +
∫ T

0 u2(t)dt −→ minu ,α > 0,
ds(t)

dt = n−ms(t)−bp(t)(i(t)+ ka(t))−bws(t)w(t)−u(t)s(t)
de(t)

dt = bps(t)(i(t)+ ka(t))+bws(t)w(t)− (1−δ )we(t)−δw′e(t)−me(t),
di(t)

dt = (1−δ )we(t)− (γ +m)i(t),
da(t)

dt = δw′e(t)− (γ ′+m)a(t),
dr(t)

dt = γi(t)+ γ ′a(t)−mr(t)+u(t)s(t),
dw(t)

dt = ε(i(t)+ ca(t)−w(t)),
s(0) = s0,e(0) = e0, i(0) = i0,a(0) = a0,r(0) = r0,w(0) = w0.
t ∈ [0,T ], 0≤ u(t)≤ λ , bp,bw ∈ [0,1].

(2.5)

We have considered a quadratic cost function on control, which is the simplest and widest non-linear
representation of the cost of vaccination.
The parameter λ is a weight parameter describing the comparative importance of the two terms in
the functional. For example, a high value of λ means that it is more important to reduce the burden
of the disease than to reduce the costs of vaccination. �

2.3.3 Principal maximum application
Theoretical resolution The optimal control problem (2.5)) is our initial problem. hence,

before characterizing the optimal control, let us define the Hamiltonian as below

H (s,e, i,a,r,w,Ps,Pe,Pi,Pa,Pr,Pw,u, t) = p0u2

+Ps (n−ms−bps(i+ ka)−bwsw−us)
+Pe (bps(i+ ka)+bwsw− (1−δ )we−δw′e−me)
+Pi ((1−δ )we− (γ +m) i)
+Pa (δw′e− (γ ′+m)a)

+Pr

(
γi+ γ

′
a−mr+us

)
+Pw (ε (i+ ca−w)) ,

so,

H (s,e, i,a,r,w,Ps,Pe,Pi,Pa,Pr,Pw,u, t) = p0u2

+nPs−msPs−bpsiPs− kbpsaPs−bwswPs−usPs

+bpsiPe + kbpsaPe +bwswPe− (1−δ )wePe−δw′ePe−mePe

+(1−δ )wePi− (γ +m) iPi

+δw′Pa− (γ ′+m)aPa

+ γiPr + γ ′aPr−mrPr +usPr

+ εiPw + εcaPw− εwPw
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where : Psp , Pep , Pip , Pap , Prp and Pw are the adjoints vectors.
Then by applying the PMP we obtain the next adjoints equations :



Ṗs = −∂H
∂ s

= mPs +bpiPs + kbpaPs +bwwPs +uPs−bpiPe− kbpaPe−bwwPe−uPr,

Ṗe = −∂H
∂e

= (1−δ )wPe +δw′Pe +mPe− (1−δ )wPi−δw′Pa,

Ṗi = −∂H
∂ i

= bpsiPs−bpsPe +(γp +mp)Pi− γPr− εPw,

Ṗa = − ∂H
∂ap

= kbpsPs− kbpsPe− εcPw,

Ṗr = −∂H
∂ r

= mPr,

Ṗw = −∂H
∂w

= bwsPs−bwsPe + εPw,

(2.6)

with the next transversality conditions :

Ṗs = p0 ∂

∂ s
α
∫ 1

0
∫ 1

0 e(t,bp,bw)dbpdbw = 0,

Ṗe = p0 ∂

∂e
α
∫ 1

0
∫ 1

0 e(t,bp,bw)dbpdbw = p0∂α,

Ṗi = p0 ∂

∂ i
α
∫ 1

0
∫ 1

0 e(t,bp,bw)dbpdbw = 0,

Ṗa = p0 ∂

∂a
α
∫ 1

0
∫ 1

0 e(t,bp,bw)dbpdbw = 0,

Ṗr = p0 ∂

∂ r
α
∫ 1

0
∫ 1

0 e(t,bp,bw)dbpdbw = 0,

Ṗw = p0 ∂

∂w
α
∫ 1

0
∫ 1

0 e(t,bp,bw)dbpdbw = 0.

(2.7)

Now, we maximize the Hamiltonian H

max
0≤u≤λ

H,

which is equivalent to maximizing the functional φ such that,

φ(u) = p0u2−u(Ps−Pr)s.

Necessary condition.
Looking for the roots of its derivative

φ ′(u) = 0 ⇐⇒ 2p0u− (Ps−Pr)s = 0 ⇐⇒ u∗ =
(Ps−Pr)s
−2p0 .

assume that p0 =−1/2, we find

u∗ = (Ps−Pr)s.

Sufficient condition
It is clear that,

φ
′′(u) = 2p0 =−1 < 0 =⇒ u∗ = (Ps−Pr)s
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is a maximum.
By taking into account the limits on u, the characterization of the optimal average control is

u∗(t) =


0,
(Ps +Pr)s,
λ ,

(Ps (t)−Pr (t))(t)< 0,
0≤ (Ps (t)−Pr (t))s(t)≤ λ ,
(Ps (t)−Pr (t))s(t)> λ ,

(2.8)

we can rewrite it in the next abbreviated formula

u∗ (t) = max{min{(Ps (t)+Pr (t))s(t) ,λ} ,0} . (2.9)

The average optimal control and state are found by solving the average optimality system which
includes the state system (2.4), the initial conditions, the assistant system (2.6), the conditions of
transversalities (2.7) and the characterization of optimal control (2.8).

Two Points Boundary value problem The PMP gives us a necessary condition of optimality
and leads us to a two points boundary value problem

(T PBV P)



ṡ(t) = n−ms(t)−bps(t)(i(t)+ ka(t))
− bws(t)w(t)−u(t)s(t), s(0) = s0,

ė(t) = bps(t)(i(t)+ ka(t))+bws(t)w(t)
− (1−δ )wpe(t)−δw

′
pe(t)−me(t), e(0) = e0,

i̇(t) = (1−δ )wpe(t)− (γ +m)i(t), i(0) = i0,
ȧ(t) = δw

′
pe(t)− (γ

′
+m)a(t), a(0) = a0,

ṙ(t) = γi(t)+ γ
′
a(t)−mr(t)+u(t)s(t), r(0) = r0,

ẇ(t) = ε(i(t)+ ca(t)−w(t)), w(0) = w0,
Ṗs = mPs +bpiPs + kbpaPs +bwwPs +uPs

− bpiPe− kbpaPe−bwwPe−uPr, Ps(T ) = 0,
Ṗe = (1−δ )wpPe +δw

′
pPe +mPe

− (1−δ )wpPi−δw
′
pPa, Pe(T ) =−

1
2

α,

Ṗi = bpsiPs−bpsPe +(γ +m)Pi− γPr− εPw, Pi(T ) = 0,
Ṗa = kbpsPs− kbpsPe− εcPw, Pa(T ) = 0,
Ṗr = mPr, Pr(T ) = 0,
Ṗw = bwsPs−bwsPe + εPw, Pw(T ) = 0,

with

u∗ (t) =


0,
(Ps−Pr)s,
λ ,

(Ps(t)−Pr(t))s(t)< 0,
0≤ (Ps (t)−Pr (t))s(t)≤ λ ,
(Ps (t)−Pr (t))s(t)> λ .
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We assume that,

y =



s
e
i
a
r

w
Ps

Pe

Pi

Pa

Pr

Pw



=



y1
y2
y3
y4
y5
y6
y7
y8
y9

y10
y11
y12



,

then, we have



ẏ1 = n−my1−bpy1 (y3 + ky4)−bwy1y6−u(t)y1, y1 (0) = y0
1,

ẏ2 = bpy1 (y3 + ky4)+bwy1y6− (1−δ )wpy2−δw
′
py2−my2, y2 (0) = y0

2,

ẏ3 = (1−δ )wpy2− (γ +m)y3, y3 (0) = y0
3,

ẏ4 = δw
′
py2−

(
γ
′
+m

)
ap, y4 (0) = y0

4,

ẏ5 = γy3 + γ
′
y4−my5 +u(t)y1, y5 (0) = y0

5,
ẏ6 = ε (y3 + cy4− y6) , y6 (0) = y0

6,
ẏ7 = my7 +bpy3y7 + kbpy4y7 +bwy6y7 +uy7
− bpy3y8− kbpy4y8−bwy6y8−uy11, y7 (T ) = 0,

ẏ8 = (1−δ )wpy8 +δw
′
py8 +my8− (1−δp)wpy9−δw

′
py10, y8 (T ) =−

1
2

α,

ẏ9 = bpy1y3y7−bpy1y8 +(γ +m)y9− γy11− εy12, y9 (T ) = 0,
ẏ10 = kbpy1y7− kbpy1y8− εcy12, y10 (T ) = 0,
ẏ11 = my11, y11 (T ) = 0,
ẏ12 = bwy1y7−bwy1y8 + εy12, y12 (T ) = 0,

(2.10)

with

u∗ (t) =


0,
(y7− y11)y1,
λ ,

(y7− y11)y1 < 0,
0≤ (y7− y11)y1 ≤ λ ,
(y7− y11)y1 > λ ,

the two points boundary value problem are equivalent to ẏ = F (t,y) with the next conditions

Y (0) =



s0
e0
i0
a0
r0
w0

 , y(T ) =



Ps (T )
Pe (T )
Pi (T )
Pa (T )
Pr (T )
Pw (T )

 ,
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The Cauchy problem associated with our problem is

ẏ = F (t,y) ,y(0) = y0 =



s0
e0
i0
a0
r0
w0

Ps (0)
Pe (0)
Pi (0)
Pa (0)
Pr (0)
Pw (0)



.

The solution of our system is written as follows

y(T,y0) = y(T ) =



s(T )
e(T )
i(T )
a(T )
r (T )
w(T )
Ps (T )
Pe (T )
Pi (T )
Pa (T )
Pr (T )
Pw (T )



=



s(T )
e(T )
i(T )
a(T )
r (T )
w(T )

0

−1
2

α

0
0
0
0



.

Solving the problem (TPBVP) is equivalent to find a zero of the shooting function G(y0) defined by

G(y0) = y(T,y0)− y(T ) .

2.3.4 Numerical analysis

In this section, our optimality system will be numerically solved by the Shooting function. To
resolve the system of differential equations we must find the zero of the shooting function G(y0),
to make t possible, we use the "fsolve" command in Matlab. The algorithm of integration of a
differential system with initial value is carried out using the command ode of Matlab.The following
program allows us to display the solutions to the problem.
As in [12], we assume that, the parameter α = 100.
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The main program of the function simple shoot.

clc ; format long ;
global X0;
X0=[800,50,20,30,0,0.0002];
P0=[1,1,1,1,1,1];
n=0.0018; m=0.0018; k=0.5; delta=0.5; c=0.5;
epsilon=0.1; gamma=0.1724; g = 0.1724;
w=0.1923; v=0.1923;
alpha=100;
tf=3;
options=optimset(’Display’,’iter’,’LargeScale’,’on’);
[P0t f ,FVAL,EXIT FLAG] = f solve(@G, [P0, t f ],options);
EXITFLAG;
options=odeset(’AbsTol’,1e-9,’RelTol’,1e-9);
[t,y] =
ode45(@sys, [X0,P0t f (1),P0t f (2),P0t f (3),P0t f (4),P0t f (5),P0t f (6)],options);

if (y(:,7)-y(:,11))’*y(:,1)<0
y(:,13)=0;
elseif (y(:,7)-y(:,11))’*y(:,1)>1
y(:,13)=1;
else
y(:,13)=(y(:,7)-y(:,11))’*y(:,1);
end
plot(t,y(:,13),’r’);
title(’u(t) Trajectory’);
grid;
figure
hold on
plot(t,y(:,1)); plot(t,y(:,2));plot(t,y(:,3));
plot(t,y(:,4));plot(t,y(:,5));plot(t,y(:,6));
title(’S(t),E(t),I(t),A(t),R(t),W(t) Trajectories’);
legend(’S(t)’,’E(t)’,’I(t)’,’A(t)’,’R(t)’,’W(t)’);
grid;
hold off

Figure 2.2 : Solutions and Control trajectories.
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First of all, denote that the vaccination rate stabilizes at the highest possible value, either from
the start or after a very short time, regardless of the value of α . therefore we find that vaccinating at
the highest possible rate as soon as possible is essential to control an epidemic.
By increasing the parameter (α = 100) the vaccination rate takes the maximum value (u = 1) from
the first months, we see that, the number of exposed and susceptible people is decreasing over time
till it cancelled, while the number of infected people (symptomatic or asymptomatic) takes stable
state from the fourth month before it starts increasing in the seventh going to no-case state.



Conclusion

This part showed us that the Pontryaguine maximum principle gives necessary condi-
tions of optimality which allow calculating the optimal trajectories, and also its application
can be quite complex in practice. on the other hand, it introduced a numerical method in
optimal control. It is an indirect method based on the Maximum Principle, which allows
the command to be expressed as a function of the state and the adjoint vector. We, therefore,
obtain a limit value problem, because we have initial and final conditions, which we can solve
numerically by a shooting method.

This part ended with the presentation and discussion of new results which have tried
to consider an optimal control problem of the new pandemic which is sweeping the world.
We have modelled the problem, the goal of which is to determine the rate of vaccination
needed to stop the spread of the epidemic while minimizing some cost. For the resolution
of our problem, we first started by applying theoretically the principle of the maximum
of Pontryaguine which gives the necessary conditions of optimality of the first order, then
numerically with implementation under Matlab software using the simple shooting method.
This allowed us to determine an optimal vaccination strategy.
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Control of linear PDEs





Introduction

To control a system is to try to make it behave according to our wishes, at the least possi-
ble cost, in a way that is compatible with safety, regulations, and ethics. We have a problem
of optimal control of a rigorous and pragmatic state approach, here our objective (cost func-
tion) is to create recognized educational works at a given time t. Another example is the
optimal control problem to make performance high effective digital tools the goal here is to
precise in analysis and synthesis and speed implementation.

Those two optimal control problems have to follow a certain algorithm that contains
some constraints and conditions named by the optimality conditions, which drive us to find
a characterization of our optimal control.

In contrast to the preceding part where the main attention was paid to control problems
governed by ODEs, this part aims to presents and define the different notions of optimal con-
trol of linear PDEs, the chapter one aw specialized to introduce the no-regret and low-regret
control those twins notions applied just on a problems with missing data and the new notion
of the average control such that it applied on an optimal control elliptic problem, also we
can not forget some examples of optimal control ot different kind of PDEs (parabolic,elliptic,
hyperbolic and hyperbolic-parabolic coupled system which is a new study example), all of
those examples are just an introduction the the next chapter wherever we present a base
article talk about the optimal control of an abstract systems with missing initial conditions,
here is the start to the new results of an optimal control of an abstract hyperbolic-parabolic
coupled systems with missing initial conditions.
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This chapter is dedicated to introducing in the second section some properties of the
cost functional, after that the third section contains some examples of the method of optimal
control applied on an hyperbolic, parabolic and elliptic systems, this chapter rich also by
a applied this method on an abstract hyperbolic-parabolic coupled system, which is a new
work may be published later.

Without forgetting this chapter introduces and explains also the notions of no-regret and
low-regret control which act only on the problem with missing or incomplete data. The last
important concept presented here is that concept of Zuazua [55] called the average control,
here it introduces just the average optimal control applied on an elliptic system. All of that
helps with some important basics which are obtained in the first section.

3.1 Basics

The pieces of information under this section are taken from the reference [5].

While diving into this part of thesis and somewhere, you will find some transforms or passages
made only with the help of the next basics :

Definition 3.1.1 A Banach space is a Complete normed space for distance d(u,v) = ‖u− v‖.

Definition 3.1.2 — Quotient space E/M, [x] or x̃. E normed space, M closed subspace of E,
E/M vector [x] if and only if
• [x] = {x+ y,y ∈M}.
• [x+λx′] = [x]+λ [x′].
• ‖[x]‖= inf‖x+ y‖ , y ∈M.

Proposition 3.1.1 If F is a Banach space, L (E,F) endowed with ‖|.|‖ is a Banach space.

Definition 3.1.3 The set L (E,R) is the dual space of E, denoted by E ′.
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Theorem 3.1.2 Let K ⊂ H be non-empty closed convex subset. Then for all u ∈ H, there exists
v ∈ K unique, such that,

‖u− v‖= inf
w∈K
‖u−w‖= min

w∈K
‖u−w‖ .

Moreover, v characterized by

v ∈ K,〈u− v,w− v〉 ≤ 0,∀w ∈ K.

Definition 3.1.4 v is called the projection of u onto K and denoted PKu.

Proposition 3.1.3 For all (u1,u2) ∈ H2, ‖PKu1−PKu2‖ ≤ ‖u1−u2‖.

Corollary 3.1.4 Let M ⊂ H vector subspace closed and u ∈ H. Then v = PMu characterized by

v ∈M,〈u− v,w〉= 0,∀w ∈M.

Theorem 3.1.5 — Riesz . Let φ ∈ H ′ . There exists a unique u ∈ H, such that,

v ∈ H, φ(v) = 〈u,v〉 .

Moreover,

‖u‖= ‖φ‖H ′ .

Theorem 3.1.6 From any bounded sequence of H, we can extract a weakly convergent subse-
quence.

Stampacchia theorem.

Definition 3.1.5 A bilinear form A : H×H→ R is :
• Continue if there is C > 0, such that, for all (u,v), |A(u,v)| ≤C‖u‖‖v‖.
• Coercive if there is α > 0, such that, for all u, A(u,u)≥ α ‖u‖2.

Theorem 3.1.7 Let A be bilinear continuous and coercive. Let K be non-empty closed convex.
For φ ∈ H ′, there exists a unique u ∈ K, such that,

∀v ∈ K, A(u,v−u)≥ φ(v−u).

If A is symmetric, then u characterized by

u ∈ K,
1
2

A(u,u)−φ(u) = min
v∈K

(
1
2

A(v,v)−φ(v)
)
.

Definition 3.1.6 — Convex functions. Assume that Ω⊂ Rn an open convex subset, the func-
tion f : Ω→ Rn is a convex, for all x, y ∈Ω and λ ∈ [0,1], we have

f (λx+(1−λ )y)≤ λ f (x)+(1−λ ) f (y).
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Definition 3.1.7 — Strictly convex functions. Assume that Ω ⊂ Rn an open convex subset,
the function f : Ω→ Rn is a strictly convex, for all x, y ∈Ω, x 6= y and λ ∈ [0,1], we have

f (λx+(1−λ )y)< λ f (x)+(1−λ ) f (y).

Theorem 3.1.8 — Convex functions characterization. Assume that f :Rn→R, f ∈C1(Rn)
and 〈., .〉 the inner scalar product of Rn. The next assumptions are equivalent :
• f is a convex function.
• ∀x, y ∈ Rn the next inequality is checked

f (x)≥ f (y)+ 〈∇ f (y),x− y〉 .

• ∀x, y ∈ Rn the next inequality is verified

〈∇ f (x)−∇ f (y),x− y〉 ≥ 0.

• If f ∈C2(Rn), we have, ∀x, v ∈ Rn the next inequality is verified〈
∇

2 f (x)v, v
〉
≥ 0.

Proposition 3.1.9 The space W 1,p(Ω) is :
• A Banach space for 1≤ p≤ ∞.
• A separable space for 1≤ p < ∞.
• A reflective space for 1 < p < ∞.

Definition 3.1.8 Let 1≤ p≤∞.W 1,p
0 (Ω) means the closing of C1

0 (Ω) in W 1,p (Ω), it is endowed
with the norm induced by W 1,p (Ω) is a separable Banach space, it is moreover reflexive for
1 < p < ∞. We denote

H1
0 (Ω) =W 1,2

0 (Ω) .

The space H1
0 is a Hilbert space endowed with the scalar product of H1

Lemma 3.1.10 When Ω = RN we know that, C1
0
(
RN
)

is dense in W 1,p
(
RN
)
. Consequently,

W 1,p
0

(
RN)=W 1,p (RN) .

Corollary 3.1.11 Another characterization of W 1,p
0 (Ω), if is in class C1 and u ∈W 1,p (Ω)∩

C
(
Ω
)

with 1≤ p < ∞, then, the following properties are equivalent :
• u = 0 on ∂Ω.
• u ∈W 1,p

0 (Ω) .

Definition 3.1.9 — Dual space of W 1,p
0 (Ω). We denote by, W−1,p′ (Ω) the dual space of

W 1,p
0 (Ω), (1≤ p < ∞) avec 1

p +
1
p′ = 1. We note that, H−1 (Ω) the dual of H1

0 (Ω) .

We can identify L2 and its dual, therefore we have the inclusions

H1
0 (Ω) ↪→ L2 (Ω) ↪→ H−1 (Ω) ,

with continuous injections.
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Theorem 3.1.12 — Rellich-Kondrachov. If we assume that Ω is a bounded open-set of class
C1, we have :

W 1,p (Ω) ↪→


C
(
Ω
)

p > N,
Lq (Ω) , ∀q ∈ [1, p∗[ i f p < N,
Lq (Ω) , ∀q ∈ [1,∞[ i f p = N.

with a compact injections.

The weak convergence in the spaces Lp

Definition 3.1.10 Let Ω an open subset of Rn.
• If 1≤ p < ∞. we say that a sequence uv converges weakly to u in Lp(Ω) if u, uv ∈ Lp(Ω) and
if,

lim
v→∞

∫
Ω

[uv(x)−u(x)]ϕ(x) = 0,∀ϕ ∈ Lp′(Ω).

We denote in this case uv ⇀ u in Lp.
• If p = ∞, we say that the sequence uv converges (∗)-weakly towards u in L∞(Ω) if u, uv ∈
L∞(Ω) and if,

lim
v→∞

∫
Ω

[uv(x)−u(x)]ϕ(x) = 0, ∀ϕ ∈ L1(Ω).

We denote that, uv ⇀
∗ u in L∞.

Theorem 3.1.13 Let Ω⊂ Rn be a bounded open set. The next properties are checked :
• If uv→ u , then, uv ⇀ u in Lp , for all 1≤ p < ∞.
• If 1≤ p≤ ∞ and if uv ⇀ u in Lp , then, there exists a constant C > 0, such that,

‖uv‖Lp ≤C and ‖u‖Lp ≤ liminf
v−→∞

‖uv‖Lp .

• If 1 < p < ∞ and if there exists a constant C > 0, such that, ‖uv‖Lp ≤ C , then, there is a
subsequence {uvi} and u in Lp, such that,

uvi ⇀ u in Lp.

• If p=∞ and if there exists a constant K > 0, such that, ‖uv‖L∞ ≤K , then there is a subsequence
{uvi} and u in Lp, such that,

uvi ⇀
∗ u in L∞.

Theorem 3.1.14 — Lebesgue Dominated Convergence. Let ( fn(x))∞
n=1 be a sequence of

Lebesgue integrable functions that converge to a limit function f almost everywhere on I.
Suppose that, there exists a Lebesgue integrable function g such that | fn| ≤ g almost everywhere
on I and for all n ∈ N. Then, f is Lebesgue integrable on I and

lim
n→∞

∫
I

fn(x)dx =
∫

I
f (x)dx.
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Theorem 3.1.15 — The Green formula. Let Ω⊂ Rn be a bounded smooth domain, and υ be
the outward unit normal vector on Γ = ∂Ω. Then, we have,
For (u,v) ∈ H1(Ω)×H2(Ω), we have the half Green formula∫

Ω

u∆vdx =−
∫

Ω

∇u∇vdx+
∫

Γ

u
∂v
∂ν

Γ.

Theorem 3.1.16 — Fubini theorem. If f (x,y) is continuous on the rectangular region

R = {a≤ x≤ b, c≤ y≤ d} ,

then, the equality∫∫
R

f (x,y)d(x,y) =
∫ b

a

∫ d

c
f (x,y)dxdy.

Gateaux derivative functions
Definition 3.1.11 Let J : U ⊂ X −→Y be an operator with Banach spaces X , Y and U 6= 0 open.
J is called directionally differentiable at x ∈U if the limit

dJ(x,h) = lim
t→0+

J(x+ th)− J(x)
t

∈ Y

exists for all h ∈ X . J is called Gateaux differentiable at x ∈U if J is directionally differentiable
at x and the directional derivative

J′(x) : h ∈ X → dJ(x,h) ∈ Y

is bounded and linear, i.e., J(x) ∈L (X ,Y ).

Theorem 3.1.17 Let X be a Banach space and U ⊂ X be non-empty and convex. Furthermore,
let J : V → R be defined on an open neighbourhood of U . Let u be a local solution of

inf
v∈U

J(v),

at which J is Gateaux-differentiable. Then the following optimality condition holds,〈
J′(u),v−u

〉
X ′,X ≥ 0, ∀v ∈U.

If J is convex on U , the last condition is necessary and sufficient for global optimality.

3.2 Minimization of convex functional

We remind here a number of well-known results in convex analysis. Let us consider a functional

J : Uad ⊂U −→ R
v 7−→ J(v).

We assume that :
• J is convex and continuous on Uad .
•Uad is a closed convex set in U .
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•U is a reflexive Banach space on R.
We have the next problem

inf
v∈Uad

J(v).

Theorem 3.2.1 — Existence. [27] If we assume that,

J(v)−→+∞ if ‖v‖ −→ ∞,

then, there exists u ∈Uad , such that,

J(u)≤ J(v), ∀v ∈Uad , (3.1)

Theorem 3.2.2 — Uniqueness. [27] If we assume that, the functional v −→ J(v) is strictly
convex, i.e., if

J((1−λ )u+λv)< (1−λ )J(u)+λJ(v) if 0 < λ < 1 and u 6= v,

then, there is at most one u satisfying (3.1).

Let us give now more "analytic" conditions for (3.1) to hold true. If we assume that the function
v−→ J(v) is differentiable, then (3.1) is equivalent to

∀v, u ∈Uad , (J′(u),v−u)≥ 0

where,

(J′(u),φ) =
d
dγ

J(u+ γφ)|γ = 0.

We assume that, J takes the next form

J(v) = J1(v)+ J2(v).

where J1(v) is differentiable and J2(v) is continuous (not necessarily differentiable), and where
both functions are convex, then, the previous equality is equivalent to

∀v, u ∈Uad , (J′1(u),v−u)+ J2(v)− J1(u)≥ 0.

� Example 3.1 Let us suppose that, U is a Hilbert space, we consider the next system

A(v) = Av− f ,

where, A ∈ L(U,U ′) and where f is given in U ′. Then, if

(Av,v)≥ α ‖v‖2
Uad

, α ≥ 0,

there exists a unique u ∈Uad , such that,

∀v ∈Uad , (Au− f ,v−u)≥ 0. (3.2)

�
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I For the proof see [1]

R If A is symmetric, then Au− f is the derivative of

J(v) =
1
2
(Av,v)− ( f ,v),

if A is not symmetric, then (3.2) does not correspond to a minimization problem, but it is a
useful tool.

3.3 Optimal control of linear distributed systems

Let Y , U and V be Hilbert spaces, let us consider the infinite dimensional optimal control problem
written in the following abstract form

infJ (v,y) , (3.3)

under the constraints

Ay = f +Bv, (3.4)

where :
• v ∈Uad ⊂U, Uad is the set of admissible controls, which is a closed convex non-empty set of the
space of controls U .
• The spaces Y and U are respectively the state spaces.
• A is a linear partial differential operator, isomorphism of L (Y ).
• B is the control linear operator L (U,Y ).
• J is a convex function from Y ×U to R∪{∞}.
Let Z be an observation Hilbert space and C ∈L (Y,Z) an observation operator.
Consider the next quadratic cost function

J (v,y) = ‖Cy(v)− yd‖2
Z +β (v,v)U (3.5)

where :
• yd is an observation given in Z it is the goal.
• β ∈L (U) symmetric and positive.
Then, our optimal control problem consists in determining or characterizing the control u which
minimizes J on Uad i.e.,

Find u ∈Uad ,
J(u,y(u)) = infv∈Uad J(v,y),
Ay = f +Bv.

(3.6)

The pair (u,y(u)) verifies (3.6) is called the optimal pair.

Theorem 3.3.1 If the cost function J defined by (3.5) is Gateaux derivative, then the optimal
control u ∈Uad is unique and characterized by{

J′(u)(v−u) = (Cy(u)− yd ,C(y(v)− y(u)))Z +(βu,v−u)U ≥ 0, ∀v ∈Uad ,
Ay(u) = f +Bu.

(3.7)
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Proof. J is strictly convex which implies the uniqueness of an optimum coercive since

J(v)−→ ∞ when ‖v‖U , v ∈Uad ,

which implies the existence of an optimum, lower semi-continuous1 because it is continuous. The
optimum is characterised by the next variational inequality

∀v ∈Uad , J′(u)(v−u)≥ 0,

where,

J′(u)(v−u) =
d
dh

J(u+h(v−u))
∣∣∣∣
h=0

,

= (Cy(u)− yd ,C(y(v)− y(u)))Z +(βu,v−u)U , ∀v ∈Uad .

�

R In the case where Uad =U the vector v−u describes the entire space U , then (3.7) is written
as follows

J′(u)(w)≥ 0, ∀w ∈Uad ,

this is the case without constraint on v.

Optimality system :
Let us introduce an adjoint state p = p(u) of (3.4) given by

A∗p =C∗(Cy(u)− yd),

where A∗ and C∗ are the adjoint operators of A and C respectively. and we have

(A∗p,y(v)− (u))Y = (C∗(Cy(u)− yd),y(v)− y(u))Y ,

On the other hand

(A∗p,y(v)− y(u))Y = (p,Ay(v)−Ay(u))Y = (p,B(v−u))Y = (B∗p,v−u)U ,

Then, inequality (3.7) is equivalent to
Ay(u) = f +Bu,
A∗p =C∗(Cy(u)− yd),
(B∗p+βu,v−u)U ≥ 0, ∀v, u ∈Uad .

In the unconstrained case i.e. Uad =U the optimality system is written as follows
Ay(u) = f +Bu,

A∗p = C∗(Cy(u)− yd),

u =
−1
β

B∗p, ∀u ∈Uad .

1Let f : D→ R and let x̄ ∈ D. We say that f is lower semi-continuous (l.s.c.) at x̄ if for every ε > 0, there exists
δ > 0, such that, f (x̄)− ε < f (x) for all x ∈ B(x̄,δ )∩D.
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3.3.1 Optimal control of hyperbolic distributed system
Let Ω be a bounded domain of Rn, and let Γ its boundary be of class C2, T > 0, Q = Ω× (0,T )
and Σ = Γ× (0,T ). Consider the next wave equation with Dirichlet condition

ytt −∆y = f +χωv in Q,
(y,yt)(x,0) = (y0(x),y1(x)) in Ω,

y = 0 on Σ.
(3.8)

where :
• f is a source function in L2(Q).
• v is the control function supposed to be in L2(0,T ;L2(Ω)).
• χω is the characteristic function of ω which is a given open subset of Ω.
• (y0,y1) ∈ H1

0 (Ω)×L2(Ω).
Give an existence and uniqueness theorem for (3.8).

Theorem 3.3.2 For all ( f ,y0,y1) ∈ (L2(Q),H1
0 (Ω),L2(Ω)) the equation (3.8) has a weak solu-

tion y, moreover, the application

L2(Q),H1
0 (Ω),L2(Ω) −→ C(0,T ;H1

0 (Ω))∪C1(0,T ;L2(Ω))
( f ,y0,y1) 7−→ y( f ,y0,y1),

is linear and continuous.

Our optimal control problem consists in finding a control function u ∈ L2(0,T ;L2(Ω)) which
minimizes the following quadratic cost function

J(v,y) = ‖y(v)− yd‖2
L2(Q)+‖y(v)(T )− yd(T )‖2

L2(Ω)

+ β ‖v‖2
L2(0,T ;L2(ω)) , v ∈Uad ⊂ L2(0,T ;L2(ω)),

(3.9)

where :
• β > 0.
• y(v) is the solution of (3.6).
• yd ∈ L2(Q) and yd(T ) ∈ L2(Ω) is a desired states.
Here, we will say that, the control is internal or distributed. So, we will write an optimality system
that characterizes the solution of

inf
{

J(v,y) : (v,y) ∈Uad×L2(0,T ;H1
0 (Ω)) verify (3.8)

}
. (3.10)

In this case:
• Y = L2(0,T ;H1

0 (Ω)) is the state space.
• Z = L2(Q) is the observation space.
•U = L2(0,T ;L2(Ω)) is the control space.
•C : L2(0,T ;H1

0 (Ω))→ L2(Q) is the canonical injection.
A first-order optimality condition gives us

(y(u)− yd ,y(v)− y(u))L2(Q) + (y(u)(T )− yd(T ),y(v)− y(u))L2(Ω)

+ (βu,v−u)L2(0,T ;L2(ω)) ≥ 0, ∀v ∈Uad .

Now, let us look for a state p = p(u), such that,

(y(u)− yd ,y(v)− y(u))L2(Q) + (y(u)(T )− yd(T ),y(v)− y(u))L2(Ω)

= (p,v−u)L2(0,T ;L2(ω)) ≥ 0, ∀v ∈Uad .
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Let us introduce the adjoint state p = p(u) through
ptt −∆p = y(u)− yd in Q,

(p, pt)(x,T ) = (0,y(u)(T )− yd(T )) in Ω,
p = 0 on Σ.

Theorem 3.3.3 The optimal pair (u,y(u)) solution of (3.8) is characterized by the next optimality
system

ytt −∆y = f +χω in Q,
ptt −∆p = y(u)− yd in Q,
(y(u),yt(u))(x,0) = (y0(x),y1(x)) in Ω,
(p, pt)(x,T ) = (0,y(u)(T )− yd(T )) in Ω,
(y, p) = (0,0) on Σ.

with the next optimality condition

(p+βu,v−u)L2(0,T ;L2(ω)) ≥ 0, ∀v ∈Uad .

R If Uad = L2(0,T ;L2(ω)), the optimal pair (u,y(u)) is characterized by the next optimality
system

ytt −∆y = f +χω u in Q,
ptt −∆p = y(u)− yd in Q,
(y(u),yt(u))(x,0) = (y0(x),y1(x)) in Ω,
(p, pt)(x,T ) = (0,y(u)(T )− yd(T )) in Ω,
(y, p) = (0,0) on Σ.

with the next optimality condition

u =− 1
β

p(u) ∈ L2(0,T ;L2(ω)).

3.3.2 Optimal control of parabolic system
Let Ω a bounded domain of Rn, Γ its boundary be of class C2, T > 0, Q = Ω× (0,T ) and
Σ = Γ× (0,T ).
Consider the next heat equation with Dirichlet condition

yt −∆y = f +χωv in Q,
y(x,0) = y0(x) in Ω,

y = 0 on Σ.
(3.11)

where :
• f is a source function in L2(Q).
• v is the control function assumed in L2(0,T ;L2(Ω)).
• χω is the characteristic function of ω an open subset of Ω.
• y0 ∈ L2(Ω).
Before introducing the optimal control problem, we recall some results of the existence and
uniqueness for the solution for (3.11).
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Theorem 3.3.4 Consider the next system
wt −∆w = ξ in Q,

w(x,0) = w0(x) in Ω,
w = 0 on Σ.

For all ξ ∈ L2(Q) and w0 ∈ L2(Ω), the previous system admits a weak unique solution in
L2(0,T ;L2(Ω)), moreover, the operator

L2(Q)×L2(Ω) → W (0,T ;H1
0 (Ω),H−1(Ω)a)

(ξ ,w0) 7→ w(ξ ,w0),

with,

W (0,T ;H1
0 (Ω),H−1(Ω)) =

{
w ∈ L2(0,T ;H1

0 (Ω)), wt ∈ L2(0,T ;H−1(Ω))
}

is continuous.
aThe dual space of H1

0 (Ω).

Our optimal control problem deals with finding a control function u ∈ L2(0,T ;L2(ω)) which
minimizes the next quadratic cost function

J(v,y) = ‖y(v)− yd‖2
L2(Q)+β ‖v‖2

L2(0,T ;L2(ω)) , v ∈Uad ⊂ L2(0,T ;L2(ω)).

Where :
• β > 0.
• y(v) is the solution of (3.11).
• yd ∈ L2(Q) is a desired state.
Here, we will say that, the control is internal or distributed. Then, we want to write an optimality
system that characterizes the solution of

inf
{

J(v,y) : (v,y) ∈Uad×L2(0,T ;H1
0 (Ω)) verify (3.11)

}
(3.12)

In this case:
• Y = L2(0,T ;H1

0 (Ω)) is the state space.
• Z = L2(Q) is the observation space.
•U = L2(0,T ;L2(Ω)) is the control space.
•C : L2(0,T ;H1

0 (Ω))→ L2(Q) is the canonical injection.
A first-order optimality condition gives us

(y(u)− yd ,y(v)− y(u))L2(Q)+(βu,v−u)L2(0,T ;L2(ω)) ≥ 0, ∀v ∈Uad .

Now let us look for a state p = p(u), such that,

(y(u)− yd ,y(v)− y(u))L2(Q) = (p,v−u)L2(0,T ;L2(ω)) ≥ 0, ∀v ∈Uad .

Let us introduce the adjoint state p = p(u) through
−pt −∆p = y(u)− yd in Q,

p(x,T ) = 0 in Ω,
p = 0 on Σ.
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then, by using the Green formula∫ T
0
∫

Ω
(y(u)− yd)(y(v)− y(u))dxdt =

∫ T
0
∫

Ω
(−pt −∆p)(y(v)− y(u))dxdt

=
∫ T

0
∫

Ω
p
(
− ∂

∂ t −∆

)
(y(v)− y(u))dxdt

=
∫ T

0
∫

ω
p(v−u)dxdt.

So, we can write the first-order optimality as follows

(p+βu,v−u)L2(0,T ;L2(ω)) ≥ 0, ∀v ∈Uad .

Theorem 3.3.5 The optimal pair (u,y(u)) solution of (3.12) is characterized by the following
optimality system

yt −∆y = f +χωv in Q,
−pt −∆p = y(u)− yd in Q,

y(x,0) = y0(x) in Ω,
p(x,T ) = 0 in Ω,
(y, p) = (0,0) on Σ,

with the next optimality condition

(p+βu,v−u)L2(0,T ;L2(ω)) ≥ 0, ∀v ∈Uad .

R If Uad = L2(0,T ;L2(ω)), the optimal pair (u,y(u)) is characterised by the next optimality
system

yt −∆y = f +χω v in Q,
−pt −∆p = y(u)− yd in Q,

y(x,0) = y0(x) in Ω,
p(x,T ) = 0 in Ω,
(y, p) = (0,0) on Σ,

u = 1
β

p in L2(0,T ;L2(ω)).

3.3.3 Optimal control of elliptic system
Let Ω a bounded domain of Rn, assume that Γ its boundary which is class C2. Consider the next
Laplace equation with Newmann condition{

−∆y+ y = f in Ω,
∂y
∂ν

= v on Γ.
(3.13)

Where :
• f is a source function in L2 (Ω).
• v is the control function in L2 (Γ).
Before presenting the optimal control problem, we recall some results for the existence and
uniqueness of a solution for (3.13).

Theorem 3.3.6 For all f ∈ L2 (Ω) and v ∈ L2 (Γ), the equation (3.13) admits a unique weak
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solution in H1 (Ω), moreover, the application

L2 (Ω)×L2 (Γ) → H
3
2 (Ω)

( f ,v) 7→ y( f ,v)

is linear continuous.

Our optimal control problem deals with finding a control function u ∈ L2 (Γ) which minimizes the
next quadratic cost function

J (v,y) = ‖y(v)− yd‖2
L2(Ω)+β ‖v‖2

L2(Γ) , v ∈Uad ⊂ L2 (Γ) . (3.14)

Where :
• β > 0.
• y(v) is the solution of (3.19).
• yd ∈ L2 (Ω) is a desired state.
Here, we will say that the control acts at the border. So, we must write an optimality system that
characterizes the solution of

inf
{

J (v,y) : (v,y) ∈Uad×H1 (Ω) verify (3.11)
}
.

In this case :
• Y = H1 (Ω) is the state space.
• Z = L2 (Ω) is the observation space.
•U = L2 (Γ) is the control space.
•Uad is the set of admissible controls, is a set closed convex non-empty of the control space L2 (Γ).
•C : H1 (Ω)→ L2 (Ω) is the canonical injection.
A first-order optimality condition gives us

(y(u)− yd ,y(v)− y(u))L2(Ω)+(βu,v−u)L2(Γ) ≥ 0, ∀v ∈Uad .

Now, let us look for a state p = p(u), such that,

(y(u)− yd ,y(v)− y(u))L2(Ω) = (p,v−u)L2(Γ) , ∀v ∈Uad .

It is clear that, this equality will be linked to the Green formula. Let us define a state p = p(u) ∈
H1 (Ω) solution of −∆p+ p = y(u)− yd in Ω,

∂ p
∂ν

= 0 on Γ.

In this case according to the Green formula∫
Ω
(y(u)− yd)(y(v)− y(u))dx =

∫
Ω
(−∆p+ p)(y(v)− y(u))dx

=
∫

Ω
p(−∆(y(v)− y(u))+ y(v)− y(u))dx

+
∫

Γ

(
p ∂ (y(v)−y(u))

∂ν
− (y(v)− y(u)) ∂ p

∂ν

)
dΓ

and the first-order optimality condition is written as follows

(p+βu,v−u)L2(Γ) ≥ 0, ∀v ∈Uad ,
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Theorem 3.3.7 The optimal pair (u,y(u)) solution of (3.14) is characterized by the next opti-
mality system

−∆y(u)+ y(u) = f in Ω,
−∆p+ p = y(u)− yd in Ω,

∂y(u)
∂ν

= u on Γ,

∂ p
∂ν

= 0 on Γ,

with the next optimality condition

(p+βu,v−u)L2(Γ) ≥ 0, ∀v ∈Uad , where, (p,y(u)) ∈ H
3
2 (Ω)×H1 (Ω) .

R If Uad = L2 (Γ), the optimal pair (u,y(u)) is characterized by the next optimality system

−∆y(u)+ y(u) = f in Ω,
−∆p+ p = y(u)− yd in Ω,

∂y(u)
∂ν

= u on Γ,

∂ p
∂ν

= 0 on Γ,

u = − 1
β

p in Γ,

where,

(p,y(u)) ∈ H
3
2 (Ω)×H1 (Ω) .

3.3.4 Optimal control of an abstract coupled system
Consider the next abstract hyperbolic-parabolic coupled system

ytt +L1y+αMθ = f +Bv,
θt +L2θ +αNyt = 0,
(y,yt ,θ)(0) = (y0,y1,θ0).

(3.15)

Here :
• t ∈ (0,T ), T > 0.
•U, H1, H2 and H3 be a real separable Hilbert spaces.
• y and θ are functions with values in H1 and H2 respectively.
• f ∈ L2 (0,T ;H1) , L1, L2 are unbounded self adjoint positive definite operators acting in H1 and
H2, with the domains DL1 and DL2

2.
Let us define on DL1 and DL2 , respectively, the next norms :

‖.‖DL1
= ‖L1.‖H1

and ‖.‖DL2
= ‖L2.‖H2

,

then, DL1 and DL2 become Banach spaces.
Denote by D

L1/2
1

and D
L1/2

2

3 the domain of the operators L1/2
1 and L1/2

2 equipped with the next scalar
product

〈., ..〉1 =
(

L1/2
1 .,L1/2

1 ..
)

1
and 〈., ..〉2 =

(
L1/2

2 .,L1/2
2 ..

)
2
,

2DL1 and DL2 are dense in H1 and H2.
3Separable Hilbert spaces.
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with the corresponding norms equipped with the next scalar product

‖.‖D
L1/2

1

=
∥∥∥L1/2

1 .
∥∥∥

H1
and ‖.‖D

L1/2
2

=
∥∥∥L1/2

2 .
∥∥∥

H2
.

where :

D
L1/2

1
⊂ DN and D

L1/2
2
⊂ DM.

We assume that :
• M and N are linear operators acting, respectively, from DM into H1 and from DN into H2, where,
DM and DN are linear sets, such that,

DL2 ⊂ DM, M ∈L (DL2 ,H1), and N ∈L (D
L1/2

1
,H2)

• B ∈L (U,H1) is the control operator.
• g = (y0,y1,θ0) are known initial conditions belonging at least to the spaces H = D

L1/2
1
×H1×H2,

• α is a coupled parameter in (0,1).
• v is a distributed control vector in Uad ⊂U is a convex, non-empty and closed sub-set.
Give an existence and uniqueness theorem for (3.15)

Theorem 3.3.8 For all f ∈ L1(0,T ;H1), g ∈ H the equation (3.15) has a unique weak solution,

(y,θ) ∈W 1,∞ (0,T ;H1)∩L∞

(
0,T ;D

L1/2
1

)
×L∞ (0,T ;H2)∩L2

(
0,T ;D

L1/2
2

)
.

This theorem is basically proved by well-known methods [22]. The exact weak solution to problem
(3.15) is constructed as a weak limit of the sequence of its Galerkin approximate solutions in the
corresponding function space.

Our optimal control problem consists in finding a control function u ∈Uad which minimizes
the next quadratic cost function

J(v) = ‖y(v)− yd‖2
L2(0,T ;H1)

+‖θ(v)−θd‖2
L2(0,T ;H2)

+β‖v‖2
U , v ∈Uad (3.16)

Such that, yd , θd are given observations and β > 0.
Here, we will write an optimality system that characterizes the solution of

inf
{

J(v) : (v,y,θ) ∈Uad×L2(0,T ;H1)×L2(0,T ;H2) verify (3.15)
}
. (3.17)

A first-order optimality condition gives us

(y(u)− yd ,y(v)− y(u))L2(0,T ;H1)
+ (θ (u)−θd ,θ (v)−θ (u))L2(0,T ;H2)

+ (βu,v−u)U ≥ 0 , ∀v ∈Uad .

Now, let us look for a state

(p,q) = (p(u),q(u)) ∈W 1,1 (0,T ;H1)∩L1
(

0,T ;D
L1/2

1

)
×W 1,1 (0,T ;H2)∩L2

(
0,T ;D

L1/2
2

)
.

Such that,
ptt +L1 p−αN∗qt = y(u,0)− y(0,0) ,
−qt +L2q+αM∗p = θ (u,0)−θ (0,0) ,

(p, pt ,q)(T ) = (0,0,0).
(3.18)
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Furthermore (p,q) is a solution of (3.18), which gives

∫ T
0 (y(u)− yd ,y(v)− y(u))H1

dt +
∫ T

0 (θ (u)−θd ,θ (v)−θ (u))H2
dt

=
∫ T

0 (ptt +L1 p−αN∗qt ,y(v)− y(u))H1
dt +

∫ T
0 (−qt +L2q+αM∗p,θ (v)−θ (u))H2

dt
=

∫ T
0 (p,B(v−u))H1

dt = (B∗p,v−u)U .

So, the first-order optimality condition is written

(B∗p+βu,v−u)U ≥ 0, ∀v ∈Uad .

Accordingly, which is lead us to the next theorem.

Theorem 3.3.9 The optimal triple (y(u),θ(u),u) solution of (3.17) is characterised by the next
optimality system

∣∣∣∣∣∣
ytt +L1y+αMθ = f +Bv,
θt +L2θ +αNyt = 0,
(y,yt ,θ)(0) = (y0,y1,θ0).∣∣∣∣∣∣
ptt +L1 p−αN∗qt = y(u,0)− y(0,0) ,
−qt +L2q+αM∗p = θ (u,0)−θ (0,0) ,
(p, pt ,q)(T ) = (0,0,0).

(3.19)

with the next optimality condition

(B∗p+βu,v−u)U ≥ 0, ∀v ∈Uad .

R If Uad =U , the optimal triple (u,y(u),θ(u)) is characterized by the next optimality system

∣∣∣∣∣∣
ytt +L1y+αMθ = f +Bv,
θt +L2θ +αNyt = 0,
(y,yt ,θ)(0) = (y0,y1,θ0).∣∣∣∣∣∣
ptt +L1 p−αN∗qt = y(u,0)− y(0,0) ,
−qt +L2q+αM∗p = θ (u,0)−θ (0,0) ,
(p, pt ,q)(T ) = (0,0,0).

(3.20)

with the next optimality condition

u =− 1
β

B∗p(u) ∈Uad .

3.4 No-regret and low-regret control

This section presents the concept of no-regret control for distributed systems with missing data,
which was introduced by J.Lions in [31], then, was developed by O. Nakolima, A. Omrane et J.
Valin in [40], [41], and [42].
A no-regret control is associated with a sequence of controls with the low-regrets defined by a
quadratic perturbation. We show here that, the perturbed system which corresponds to a sequence
of standard control problems converges towards the no-regret control for which we obtain an
optimality system.
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3.4.1 Statement of the problem
Let us consider the next controlled abstract equation with missing data

Ay(v,g) = f +Bv+Ng, (3.21)

Where :
• V is a real Hilbert space with dual V ′.
• A is an operator in L (V,V ′).
•U4 is the controls space.
• B ∈L (U,V ′).
• G is a non-empty closed subspace of the Hilbert space of uncertainties F .
• N an operator in L (F,V ′).
For every uncertainty g ∈ G, the equation (3.21) is well-posed in V ′, it has a unique solution
y = y(v,g).
We consider the next cost function which associated to (3.21)

J(v,g) = ‖Cy− yd‖2
Z +β ‖v‖2

U , ∀v ∈Uad , (3.22)

where, yd ∈ Z and β > 0. In this case, the most important for us is the optimal control problem

inf
v∈Uad

J(v,g), ∀g ∈ G, (3.23)

with respect to (3.21), when G is an infinite dimensional space, this problem has no sense, hence,
the celebrated mathematician J. L. Lions thought to take

inf
v∈Uad

(
sup
g∈G

J(v,g)

)
, (3.24)

Because supg∈G J(v,g) = +∞, J(v,g) has not an upper bound.

R When G = {0}, then, J(v,g) = J(v,0). Therefore, the problem (3.23) becomes a standard
optimal control problem, it means, find infv∈Uad J(v,0).

3.4.2 No-regret control
To avoid difficulty arises in (3.24) Lions thought 5 to look only for controls v, such that,

J(v,g)≤ J(0,g), ∀g ∈ G. (3.25)

Note that, the optimal control verifies the last equality, otherwise the optimum is u= 0.

Definition 3.4.1 [31] We say that u ∈Uad is a no-regret control for (3.21)-(3.22) if u solves

inf
v∈Uad

sup
g∈G

(J(v,g)− J(0,g)). (3.26)

R The problem (3.26) is defined only for controls, such that,

sup
g∈G

(J(v,g)− J(0,g))< ∞. (3.27)

4Hilbert space.
5This idea was originated in statistics in [Savage, L.J., 1972. The foundations of statistics, 2nd edition. Dover.].
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Lemma 3.4.1 [42] we have for every (v,g) ∈Uad×G

J(v,g)− J(0,g) = J(v,0)− J(0,0)+2〈S(v),g〉G′,G . (3.28)

Where, S(v) = N∗ξ (v) and ξ solves

A∗ξ (v) =C∗C(y(v,0)− y(0,0)).

Proof. A is an isomorphism6 so y(v,g) = y(v,0)+ y(0,g)− y(0,0), then,

J(v,g)− J(0,g) = J(v,0)− J(0,0)+2(C(y(v,0)− y(0,0)),C(y(0,g)− y(0,0)))Z

= J(v,0)− J(0,0)+2(C∗C(y(v,0)− y(0,0)),y(0,g)− y(0,0))V ′ .
(3.29)

Introduce ξ (v) given by
A∗ξ (v) =C∗C(y(v,0)− y(0,0)),

we can write (3.28) as follows

J(v,0)− J(0,0) = J(v,0)− J(0,0)+2(A∗ξ (v),y(0,g)− y(0,0))V ′
= J(v,0)− J(0,0)+2(ξ (v),A(y(0,g)− y(0,0)))V ′
= J(v,0)− J(0,0)+2(ξ (v),Ng)V ′
= J(v,0)− J(0,0)+2〈N∗ξ (v),g〉G′,G ,

the last equation leads to (3.28). �

R • By (3.28) we can see that, the condition (3.27) holds if and only if v ∈ K, where,

K =
{

v ∈Uad : 〈S(v),g〉G′,G = 0 ∀g ∈ G
}

is a closed subspace of U . Then, u is a no-regret control if and only if u ∈ K.
• The notion of no-regret control could be generalized to no-regret control related to any a
fixed control u0 ∈Uad , i.e., we want controls v, such that,

J(v,g)≤ J(u0,g) for every g ∈ G.

Definition 3.4.2 We say that u ∈Uad is a no-regret control related to u0 ∈Uad for (3.21)-(3.22)
if u solves

inf
v∈Uad

sup
g∈G

(J(v,g)− J(u0,g)). (3.30)

When we want to characterize the set K, the main difficulty with no-regret control arises, for this
reason, we will relax the no-regret control by a sequence of controls called low-regret controls.

3.4.3 Low-regret control
We aim to relax (3.25) by making some quadratic perturbation on J(0,g) (see [31] ). In other words,
we search controls v, such that,

∀g ∈ G, β > 0 J(v,g)≤ J(0,g)+ γ ‖g‖2
G .

6An isomorphism between two structured sets is a one-to-one application that preserves the structure, and whose
converse also preserves the structure.
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Definition 3.4.3 [31] We say that uγ ∈Uad is a low-regret control for (3.21)-(3.22) if u solves

inf
v∈Uad

sup
g∈G

(
J(v,g)− J(0,g)− γ ‖g‖2

G

)
,γ > 0. (3.31)

Take (3.28) into account to get the equivalence between (3.31) and

inf
v∈Uad

(
J(v,0)− J(0,0)+ sup

g∈G

(
2〈S(v),g〉G′,G− γ ‖g‖2

G

))
,

thanks to the Legendre transform 7 for

sup
g∈G

(
2〈S(v),g〉G′,G− γ ‖g‖2

G

)
=

1
γ
‖S(v)‖2

G ,

then,

inf
v∈Uad

J γ(v), (3.32)

where,

J γ(v) = J(v,g)− J(0,0)+
1
γ
‖S(v)‖2

G . (3.33)

The low-regret control existence and uniqueness
Proposition 3.4.2 The problem (3.21)-(3.32)-(3.33) has a unique solution uγ .

Proof. It’s clear that,

J γ(v)≥−J(0,0),∀v ∈Uad ,

then dγ = infv∈Uad J γ(v) exists.
Let (vγ

n) be a minimizing sequence, such that, dγ = limn−→∞ J γ(vγ
n), we have

−J(0,0)≤J γ(vγ
n) = J(vγ

n,0)− J(0,0)+
1
γ
‖S(vγ

n)‖
2
G ≤ dγ +1, (3.34)

which gives the bounds∥∥vγ
n
∥∥

U ≤ Cγ ,
1
√

γ

∥∥S(vγ
n)
∥∥

G ≤ Cγ ,∥∥Cy(vγ
n)
∥∥

Z ≤ Cγ ,

(3.35)

where, Cγ is a constant independent of n. From (3.35) we deduce that, there exists u ∈Uad , such
that,

vγ
n −→ u weakly in Uad .

�

7It is a mathematical operation which, schematically, transforms a function defined by its value at a point into a
function defined by its tangent.
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Theorem 3.4.3 The sequence of low-regret controls converges weakly in Uad when γ −→ 0 to
the unique no-regret control u solution to (3.21)-(3.22).

Proof. Let uγ be the unique low-regret control solution to (3.21)-(3.32)-(3.33). Then,

J(uγ ,0)− J(0,0)+
1
γ

∥∥S(uγ)
∥∥2

G ≤ J(v,0)− J(0,0)+
1
γ
‖S(v)‖2

G , ∀v ∈Uad ,

take v = 0 to get

J(uγ ,0)− J(0,0)+
1
γ

∥∥S(uγ)
∥∥2

G ≤ J(0,0) = constant.

Remember the definition of J(v,g) in (3.22) to find∥∥Cy(uγ ,0)− yd
∥∥2

Z +β
∥∥uγ

∥∥
U +

1
γ

∥∥S(uγ)
∥∥2

G ≤C, (3.36)

where C is a constant independent of γ . From (3.36) we deduce that (uγ) is bounded in Uad , then,
there exists a subsequence still be denoted (uγ) converges weakly to u ∈Uad . Let us prove that u is
the unique no-regret control solution to (3.21)-(3.22) as follows

J(u,g)− J(u,0)− γ ‖g‖2
G ≤ J(v,g)− J(0,g), ∀(v,g) ∈Uad×G,

then,

J(u,g)− J(u,0)− γ ‖g‖2
G ≤ sup

g∈G
(J(v,g)− J(0,g)) ,

pass to limit n−→ 0 to get

J(u,g)− J(u,0)≤ sup
g∈G

(J(v,g)− J(0,g)) ,

which means that, u is a no-regret control. �

Optimality system of low-regret control
In the next proposition, we give an optimality system characterizing low-regret control uγ .

Proposition 3.4.4 The low-regret control uγ , solution to (3.21)-(3.32)-(3.33) is characterized by
the next optimality system

Ayγ = f +Buγ ,
A∗ξγ = C∗C(yγ − y(0,0)),

Aργ =
1
γ

NN∗ξγ ,

A∗pγ = C∗(Cy− yd)+C∗Cργ ,

(3.37)

with the next optimality condition

(B∗pγ +βuγ ,v−uγ))≥ 0, ∀v ∈Uad .

Proof. Let uγ be solution to (3.21)-(3.32) and (3.33). A first order necessary condition gives for
every v ∈Uad(

J γ ′(uγ),v−uγ

)
U = (C∗(Cy(uγ ,0)− yd),y(v−uγ ,0)− y(0,0))Z

+ β (uγ ,v−uγ)U +
1
γ

S(uγ ,S(v−uγ))G ≥ 0. (3.38)
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Denote yγ = y(uγ ,0), ξγ(v) = NS(v), by definition we have

A∗ξγ =C∗C(yγ − y(0,0)).

Also, let ργ be the solution of

Aργ =
1
γ

NN∗ξγ .

Now, introduce the adjoint state pγ = p(uγ ,0) defined by

A∗pγ =C∗(Cyγ − yd)+C∗Cργ ,

then,

1
γ
(S(uγ),S(v−uγ)G =

1
γ
(N∗ξγ(uγ),N∗ξ (v−uγ))G

=
1
γ
(NN∗ξγ(uγ),ξ (v−uγ))V ′

= (Aργ ,ξ (v−uγ))V ′

= (ργ ,A∗ξ (v−uγ))V ′

= (ργ ,C∗C(y(v−uγ ,0)− y(0,0)))V ′
= (C∗Cργ ,y(v−uγ ,0)− y(0,0))V ′
= (A∗pγ −C∗(Cyγ − yd),y(v−uγ ,0)− y(0,0))V ′
= (pγ ,A(y(v−uγ ,0)− y(0,0)))V ′
− (C∗(Cyγ − yd),y(v−uγ ,0)− y(0,0))V ′ .

Finally,

1
γ
(S(uγ),S(v−uγ)G = (pγ ,B(v−uγ)− y(0,0)))V ′

− (C∗(Cyγ − yd),y(v−uγ ,0)− y(0,0))V ′ ,

Hence, we conclude that, the optimality condition (3.38) is equivalent to

∀v ∈Uad , (B∗pγ +βuγ ,v−uγ)U ≥ 0.

�

Optimality system of no-regret control
Let us introduce

P : orthogonal projection operator of F on G,

then, v ∈ K if and only if

PN∗ξ (v) = 0, (3.39)

Finding a no-regret control u is equivalent to

infJ(0,g), v subject to (PN∗ξ (v)) = 0).

Approach by a penalty argument and define

Jε(v) = J(v,0)+
1
ε
‖PN∗ξ (v)‖2

F , ε > 0, (3.40)
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and consider the next problem

inf
v∈Uad

Jε(v), (3.41)

this problem has a unique solution uε , such that,

uε −→ u in Uad .

Set

y(uε) = yε , ξ (uε) = ξε , λε =
1
ε

PN∗ξε .

The control uε is characterized by

(Cyε − yd)Z +β (uε ,v−uε)U = (λε ,PN∗ξ (v−uε))F ≥ 0, ∀v ∈Uad . (3.42)

Likewise,

Ayε = Buε , A∗ξε =C∗Cyε ,

Introduce

A∗pε =C∗(Cyε − yd)+C∗Cρε , Aρε = Nλε .

Then,

(A∗pε ,y(v−uε ,0))V ′+(Apε ,ξ (v−uε))V ′

= (Cyε − yd ,Cy(v−uε ,0))Z +(Cρε ,Cy(v−uε ,0))Z +(Nλε ,ξ (v−uε))F

= (pε ,B(v−uε))V ′+(ρε ,A∗ξ (v−uε))V ′

= (pε ,B(v−uε))V ′+(Cρε ,Cy(v−uε ,0))Z.

Optimality condition (3.42) is reduced to

∀v ∈Uad , (B∗pε +βuε ,v−uε)U ≥ 0. (3.43)

A difficulty lies in obtaining a priori estimate on λε . Introduce p̂ε , σε , such that,

A∗ p̂ε = C∗(Cyε − yd), pε ∈ V ′,
A∗σε = C∗Cρε , σε ∈ V ′.

Then, pε = p̂ε +σε . Make pε −→ ∞, since uε −→ u in Uad .
We also know that, yε −→ y,ξε −→ ξ and p̂ε −→ p̂ all in V ′, with

Ay = Bu, A∗ξ =C∗Cy, A∗ p̂ =C∗(Cy− yd).

Now, the optimality condition (3.43) is equivalent to

∀v ∈Uad , (B∗ p̂ε +B∗σε +βuε ,v−uε)U ≥ 0.

When ε −→ 0 we get

∀v ∈Uad , (B∗ p̂+B∗σ +βu,v−u)U ≥ 0. (3.44)

Consider

Aρ = Ng, A∗σ =C∗Cρ,
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then, introduce

‖|g|‖= ‖B∗σ‖U . (3.45)

The previous equality defines a semi-norm on G̊8, also we construct the quotient space still denoted
by G̊ associated to g1 ∼ g2 if and only if ‖|g1|‖= ‖|g2|‖ and we define Ĝ9 with respect to the norm
‖|.|‖ topology.
Then,

λε remains in a bounded set of Ĝ. (3.46)

Now, we can announce the next theorem characterizing no-regret control for (3.21)-(3.22)

Theorem 3.4.5 Suppose that (3.46) holds, then the no-regret control u solution to (3.21)-(3.22)
is characterized by the next optimality system

Ay = f +Bu,
A∗ξ = C∗C(y− y(0,0)),
Aρ = Nλ , λ ∈ Ĝ.
A∗ = C∗(Cy− yd)+C∗Cρ,

(3.47)

with the next optimality condition

(B∗p+βu,v−u)U ≥ 0, ∀v ∈Uad .

3.5 Average control

The average control is only one of the possibilities to deal with a more general problem of robust
control for parameter-dependent systems. Zuazua in [55] analysed the problem of controlling
systems submitted to parametrized perturbations, either infinite or finite dimensional ones, (PDEs
or ODEs), depending on unknown parameters in a deterministic manner. he looked for a control,
independent of the values of these parameters, that needs to be designed to perform well, in an
average sense to be made precise, wherein he focused on the steady-state version and consider
the averaged optimal in the context of a quadratic minimization problem for an elliptic equation
depending on a parameter. Zuazua addresses new problems of average control. As we will see in
the next example, the key is the identification of the corresponding adjoint state as the average of
the parameter-dependent adjoint states.

Average optimal control of elliptic equation

Assume that, Ω ⊂ Rd , d ≥ 1 is a bounded domain, with smooth boundary, and ω is an open
non-empty subset of Ω. Consider the next elliptic equation{

−div(a(x,α)∇y) = u(x)1ω in Ω,
y = 0 on ∂Ω.

(3.48)

The diffusivity coefficients a(x,α) are taken to be scalar, are assumed to be measurable in x,
bounded above and below by a positive constant, and to depend on the uncertainty parameter
α ∈ (0,1) in a measurable manner. Under these conditions, given u ∈ L2(Ω), for each value of α

8The interior of the set G.
9Ĝ the completion of G on the quotient space.
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there is a unique solution y = y(x,α) ∈ H1
0 (Ω).

We are interested in the control of the average state

z(x) =
∫ 1

0
y(x,α)dα ∈ H1

0 (Ω).

Given a target zd ∈ L2(Ω), consider the quadratic optimal control problem consisting on minimizing
the next functional

J(u) =
1
2

[
‖z− zd‖2

L2(Ω)+‖u‖
2
L2(ω)

]
. (3.49)

By the Direct Method of the Calculus of Variations (DMCV) [5], it is easy to see that the minimizer
of J in L2(ω) exists and it is unique. This is due to the fact that J is continuous, convex and coercive
in a Hilbert space. Uniqueness is due to strict convexity.
Let us denote by u∗ ∈ L2(ω) the minimizer of J. We now focus on the identification of u∗ through
an optimality system given by the next theorem

Theorem 3.5.1 [ Zuazua] The unique optimal control u∗ for the average optimal control problem
consisting in the minimization of the functional J in (3.49) is given by

u∗ =−ξ
∗ in ω, (3.50)

where,

ξ
∗(x) =

∫ 1

0
ϕ
∗(x,α)dα,

and the adjoint system{
−div(a(x,α)∇ϕ∗) = z∗− zd in Ω,

ϕ∗ = 0 on ∂Ω.
(3.51)

(y∗,ϕ∗) being the unique solution of the optimality system
−div(a(x,α)∇y∗) =−

∫ 1
0 ϕ∗(x,α)dα1ω ,

−div(a(x,α)∇ϕ∗) =
∫ 1

0 y∗(x,α)dα− zd ,
y∗|∂Ω = ϕ∗|∂Ω = 0.

(3.52)

Proof. The Euler-Lagrange equations characterizing the property that u∗ minimizes J, using the
Gateaux derivative of J at u∗ in the direction v, leads to

〈DJ(u∗),δu〉=
∫

Ω

(z∗− zd)δ zdx+
∫

ω

u∗δudx = 0, (3.53)

where, δ z is the derivative of z with respect to u, in the direction of δu. It is characterized by the
average

δ z(x) =
∫ 1

0
δy(x,α)dα (3.54)

and δy(x,α) is the derivative of the state y(x,α) with respect to u, which is the solution of the
system{

−div(a(x,α)∇(δy)) = δu(x)1ω in Ω,
δy = 0 on ∂Ω.

(3.55)
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Let us now introduce the α-dependent adjoint state ϕ∗(x,α) solution of{
−div(a(x,α)∇ϕ∗) = z∗− zd in Ω,

ϕ∗ = 0 on ∂Ω.
(3.56)

and the corresponding average

ξ
∗(x) =

∫ 1

0
ϕ
∗(x,α)dα. (3.57)

The key computation is the next∫
Ω
(z∗− zd)δ zdx =

∫
Ω
(z∗− zd)

∫ 1
0 δydαdx =

∫ 1
0
∫

Ω
(z∗− zd)δydxdα

=
∫ 1

0
∫

Ω
−div(a(x,α)∇ϕ∗)δydxdα

=
∫ 1

0
∫

Ω
−div(a(x,α)∇(δy))ϕ∗dxdα

=
∫ 1

0
∫

ω
δuϕ∗dxdα +

∫
ω

δuξ ∗dx.

(3.58)

equation (3.53) then take to mean∫
ω

δuξ
∗dx+

∫
ω

δuξ
∗dx = 0, (3.59)

which shows that the optimal control u∗ is as in (3.50).
The optimal control is thus given by (3.50), where ξ ∗ is given by (3.57), and (y∗, ϕ∗) are the
optimal state and adjoint solutions of the optimality system (3.52). This ends the proof. �



4. Control of an abstract systems

This chapter presents a base article talk about the optimal control of an abstract system
with missing initial conditions, also the second section deals with new results of an optimal
control of an abstract hyperbolic-parabolic coupled systems with missing initial conditions.

4.1 Optimal control of an abstract system
4.1.1 Problem statement

Consider the next abstract operator-differential equation

A(α)y = B(α)v+Ng, (4.1)

where :
• α ∈ (0,1) is the unknown parameter.
• A(α) ∈ L(H) is a partial differential operator isomorphic on a real Hilbert space of functions H.
• B(α) ∈ L(U,H) is a control operator.
•U is a Hilbert space of controls.
• N ∈ L(G,H) where G is a Hilbert space of missing data.
• v ∈U is the control function.
• g is a missing data in the Hilbert space G.
Moreover, we suppose that the scalar product defined on H realizes the next property∫ 1

0
(ξ (α) ,ψ)H dα =

(∫ 1

0
ξ (α)dα,ψ

)
H
, ∀ξ , ψ ∈ H, α ∈ (0,1) .

Note that, many Hilbert spaces like L2 (Ω), H1 (Ω) and L2
(
0,T ;H1

0 (Ω)
)

verify the above property.
Suppose that (4.1) holds in H and denote by y(v,g,α) her unique solution depending on the control
v, the missing data g and depends continuously on α and the operators A(α) and B(α) depend on
α continuously.
Associate to (4.1) the cost quadratic function of the form [13]

J (v,g) =
∥∥∥∥∫ 1

0
y(v,g,α)dα− yd

∥∥∥∥2

H
+β ‖v‖2

U , ∀v ∈U, β > 0, (4.2)
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where, yd is an observation in H.
Note that, for all (v,g) in U ×G,

∫ 1
0 y(v,g,α)dα has a sense, this comes from the continuity of

y(v,g,α) with respect to the unknown datum α , also
∫ 1

0 y(v,g,α)dα ∈ H.
Now, let us redefine of average no-regret control.

Definition 4.1.1 We say that, u ∈ U is an average no-regret control for (4.1)-(4.2) if u is a
minimizer of the next problem

inf
v∈U

(
sup
g∈G

(J (v,g)− J (0,g))

)
. (4.3)

Corollary 4.1.1 For all v ∈U and g ∈ G, we have

J (v,g)− J (0,g) = J (v,0)− J (0,0)+2
(

N∗
∫ 1

0
ϕ (v,α)dα,g

)
G
, (4.4)

where ϕ (v,α) is a solution for

A∗ (α)ϕ (v,α) =
∫ 1

0
y(v,0,α)dα in H ′, ∀α ∈ (0,1) . (4.5)

Where, A∗ (α) and N∗ are the adjoint operators of A(α) and N respectively.

Proof. By linearity in (4.1) and a simple calculus, we get

J (v,g)− J (0,g) = J (v,0)− J (0,0)+2
(∫ 1

0
y(v,0,α)dα,

∫ 1

0
y(0,g,α)dα

)
H
.

Then, from (4.5) we get

J (v,g)− J (0,g) = J (v,0)− J (0,0)+2
∫ 1

0

(∫ 1
0 y(v,0,α)dα,y(0,g,α)

)
H

dα

= J (v,0)− J (0,0)+2
(

N∗
∫ 1

0 ϕ (v,α)dα,g
)

G
.

�

Now, we define the sequence of average low-regret control by making some quadratic perturbation
on the definition of average no-regret control, this sequence is expected to be convergent to the
unique average no-regret control.

Definition 4.1.2 Let γ > 0, we say that, uγ ∈U is an average low-regret control for (4.1)-(4.2)
if uγ is a minimizer of

inf
v∈U

(
sup
g∈G

(
J (v,g)− J (0,g)− γ ‖g‖2

G

))
. (4.6)

By using the relations (4.4)-(4.5), and the Legendre-Fenchel transform ( see [3]), we can transform
the problem (4.6) in an optimal control problem independent of an unknown parameter α and the
missing data g, gives as follows

inf
v∈U

Jγ (v) : Jγ (v) = J (v,0)− J (0,0)+
1
γ

∥∥∥∥N∗
∫ 1

0
ϕ (v,α)dα

∥∥∥∥2

G
. (4.7)
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4.1.2 Average no-regret and average low-regret control
Existence, uniqueness, and characterization
Let us start this section by giving an existence and uniqueness results for the average low-regret
control.

Proposition 4.1.2 The problem of optimal control (4.7) has a unique solution uγ .

Proof. For all v ∈U , Jγ (v) ≥ −J (0,0) then, Jγ is lower bounded. Assume that (vn) ⊂U is a
minimizing sequence, where,

Jγ (vn)−→
n→∞

inf
v∈U

Jγ (v) = J∗γ ,

then, taking n large enough to obtain

J (vn,0)− J (0,0)+
1
γ

∥∥∥∥N∗
∫ 1

0
ϕ (v,α)dα

∥∥∥∥2

G
≤ J∗γ +1,

the last inequality implies the next bounds

‖vn‖U ≤ Cγ , (4.8)∥∥∥∥∫ 1

0
y(vn,0,α)dα

∥∥∥∥
H
≤ Cγ , (4.9)∥∥∥∥N∗

∫ 1

0
ϕ (vn,α)dα

∥∥∥∥
G
≤
√

γCγ , (4.10)

where, for every n

A(α)y(vn,0,α) = B(α)vn, (4.11)

and Cγ is a positive constant independent of n.
From (4.8), we conclude that, there exists a subsequence still denoted (vn), where,

vn ⇀ uγ in U,

the continuity of data gives that, y(vn,0,α) is also bounded in H, then,

y(vn,0,α)⇀ yγ in H, (4.12)

by passing to limit in (4.11) and uniqueness of limit we prove that, yγ = y
(
uγ ,0,α

)
. In view of

(4.9)-(4.12) and by the theorem of Lebesgue dominated convergence, we obtain∫ 1

0
y(vn,0,α)dα ⇀

∫ 1

0
y
(
uγ ,0,α

)
dα in H.

Moreover, we have

A∗ (α)ϕ (vn,α) =
∫ 1

0
y(vn,0,α)dα ⇀

∫ 1

0
y
(
uγ ,0,α

)
dα = A∗ (α)ϕ

(
uγ ,α

)
in H,

as A∗ (α) is an isomorphism, we have also

ϕ (vn,α)⇀ ϕ
(
uγ ,α

)
in H.

In a manner similar to the convergence of y(vn,0,α) we claim that∫ 1

0
ϕ (vn,α)dα ⇀

∫ 1

0
ϕ
(
uγ ,α

)
dα in H,
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and according to the continuity of N∗, we deduce the next convergence

N∗
∫ 1

0
ϕ (vn,α)dα ⇀ N∗

∫ 1

0
ϕ (v,α)dα in G.

Because the functional Jγ (v) is weak lower semi-continuous and strictly convex, the uniqueness of
uγ comes easily. �

Theorem 4.1.3 The unique average low-regret control uγ minimizer of (4.7) is characterized by
the next optimality system

A(α)yγ = B(α)uγ ,

A∗ (α)ϕγ =
∫ 1

0 yγdα,

A(α)ργ = 1
γ
N∗
∫ 1

0 ϕγdα,

A∗ (α) pγ =
∫ 1

0
(
ργ + yγ

)
dα− yd ,

(4.13)

with the next optimality condition∫ 1

0
B∗ (α) pγdα +αuγ = 0 in U,

where, yγ = y
(
uγ ,0,α

)
, ϕγ = ϕ

(
uγ ,α

)
, ργ = ρ (α), pγ = p(α) and α ∈ (0,1).

Proof. We start by giving a sufficient first order optimality condition [24] for (4.7)(∫ 1
0 y
(
uγ ,0,α

)
dα− yd ,

∫ 1
0 y(v,0,α)dα

)
H

+ 1
γ

(
N∗
∫ 1

0 ϕ
(
uγ ,α

)
dα,N∗

∫ 1
0 ϕ (v,α)dα

)
G

+ β
(
uγ ,v

)
U ≥ 0, ∀v ∈U.

(4.14)

Introduce a new state ργ solution to

A(α)ργ =
1
γ

NN∗
∫ 1

0
ϕ
(
uγ ,α

)
dα,

then,

1
γ

(
N∗
∫ 1

0 ϕ
(
uγ ,α

)
dα,N∗

∫ 1
0 ϕ (v,α)dα

)
G

=
∫ 1

0
(
A(α)ργ ,ϕ (v,α)

)
H dα

=
∫ 1

0

(
ργ ,
∫ 1

0 y(v,0,α)dα

)
H

dα

=
(∫ 1

0 ργdα,
∫ 1

0 y(v,0,α)dα

)
H
.

Hence, the optimality condition (4.14) is equivalent to(∫ 1

0

(
ργ + y

(
uγ ,0,α

))
dα− yd ,

∫ 1

0
y(v,0,α)dα

)
H
+α

(
uγ ,v

)
U ≥ 0, ∀v ∈U.

Again, we construct an adjoint state pγ = p
(
uγ ,α

)
solution to

A∗ (α) p
(
uγ

)
=
∫ 1

0

(
ργ + y

(
uγ ,0,α

))
dα− yd ,
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and (4.14) is equivalent to(∫ 1

0
B∗ (α) p

(
uγ

)
dα +βuγ ,v

)
U
≥ 0, ∀v ∈U,

since U is a linear space we also have(∫ 1

0
B∗ (α) p

(
uγ

)
dα +βuγ ,v

)
U
≤ 0, ∀v ∈U.

The optimality system (4.13) follows. �

The next theorem proves that, the average low-regret control sequence converges to the average
no-regret control.

Theorem 4.1.4 The sequence of average low-regret controls uγ converges weakly when γ → 0
to the unique averaged no-regret control u minimizer of (4.3).

Proof. As uγ is an average low-regret control, so, we have ∀v ∈U ,

J
(
uγ ,0

)
−J (0,0)+

1
γ

∥∥∥∥N∗
∫ 1

0
ϕ
(
uγ ,α

)
dα

∥∥∥∥2

G
≤ J (v,0)−J (0,0)+

1
γ

∥∥∥∥N∗
∫ 1

0
ϕ (v,α)dα

∥∥∥∥2

G
,

take v = 0 to find∥∥∥∥∫ 1

0
y
(
uγ ,0,α

)
dα− yd

∥∥∥∥2

H
+β

∥∥uγ

∥∥2
U +

1
γ

∥∥∥∥N∗
∫ 1

0
ϕ
(
uγ ,α

)
dα

∥∥∥∥2

G
≤ J (0,0) ,

from which we deduce the next bounds∥∥uγ

∥∥
U ≤C, (4.15)

∥∥∥∥∫ 1

0
y
(
uγ ,0,α

)
dα

∥∥∥∥
H
≤C, (4.16)

∥∥∥∥N∗
∫ 1

0
ϕ
(
uγ ,α

)
dα

∥∥∥∥2

G
≤C, (4.17)

where, C is a positive constant independent of γ , then, by (4.15) we find that there exists a
subsequence still denoted uγ , where,

uγ ⇀ u in U.

It is still to prove that, u is an average no-regret control other words prove that, u is a solution for
(4.3). It is easy to show that,

J (v,g)− J (0,g)− γ ‖g‖2
G ≤ J (v,g)− J (0,g) , ∀(g,v) ∈ G×U,

then,

J
(
uγ ,g

)
− J (0,g)− γ ‖g‖2

G ≤ sup
g∈G

(J (v,g)− J (0,g)) , ∀v ∈U,

make γ → 0 to get

J (u,g)− J (0,g)≤ sup
g∈G

(J (v,g)− J (0,g)) , ∀v ∈U,

in other words u is an average no-regret control. �

Finally, we can provide a full characterization for the average no-regret control via an optimality
system.
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Theorem 4.1.5 The average no-regret control u = lim
γ→0

uγ minimizer of (4.3) is characterized by

the next optimality system
A(α)y = B(α)u,
A∗ (α)ϕ =

∫ 1
0 y(u,0,α)dα,

A(α)ρ = λ ,

A∗ (α) p =
∫ 1

0 (ρ + y(u,0,α))dα− yd ,

(4.18)

with the next optimality condition∫ 1

0
B∗ (α) pdα +βu = 0 in U,

where,

uγ γ → 0
−−−→

u in U,

1
γ
NN∗

∫ 1
0 ϕ
(
uγ ,α

)
dα γ → 0

−−−→
λ in H.

Proof. First of all, we recall H ′ the dual of H. The Theorem 4.1.4, let us know that uγ ⇀ u in U ,
then, as B(α) is bounded, we find,

B(α)uγ ⇀ B(α)u in H.

Also, by continuity of yγ = y
(
uγ ,0,α

)
converges weakly to y = y(u,0,α) in H, and from the

continuity of A(α) we deduce that

A(α)yγ ⇀ A(α)y in H,

from the limit uniqueness, we deduce

A(σ)y = B(α)u in H.

By a similar way, also, the isomorphic property of A∗ (α), drive us to prove that

A∗ (α)ϕ =
∫ 1

0
y(u,0,α)dα in H,

By contradiction reasoning and from (4.17), for every γ < 1, we have

1
γ

∥∥∥∥N∗
∫ 1

0
ϕ
(
uγ ,α

)
dα

∥∥∥∥2

G
≤C⇒ 1

γ

∥∥∥∥N∗
∫ 1

0
ϕ
(
uγ ,α

)
dα

∥∥∥∥
G
≤C.

In other words we have N∗
∫ 1

0 ϕ
(
uγ ,α

)
dα is bounded in H, then, as N is bounded, 1

γ
NN∗

∫ 1
0 ϕ
(
uγ ,α

)
dα

is also bounded and

1
γ

NN∗
∫ 1

0
ϕ
(
uγ ,α

)
dα ⇀ λ in H.

Likewise, A(α)ργ is bounded and by isomorphic property of A(α) show that ργ is bounded also
converges to ρ , then,

A(α)ργ ⇀ A(α)ρ in H,



4.2 Optimal control of an abstract coupled system 73

then,

A(α)ρ = λ .

Moreover, the boundness of yγ and ργ shows the boundness of A∗ (α) pγ , therefore, pγ is bounded
in H, and

A∗ (α) p =
∫ 1

0
(ρ + y(u,0,α))dα− zd in H.

After all, we pass to limit in the variational inequality of (4.13), we use weak convergences of uγ ,
pγ to u, p respectively. As final result, we obtain the next characterization∫ 1

0
B∗ (α) pdα +αu = 0 in U.

�

4.2 Optimal control of an abstract coupled system
This section treats the average optimal control of an abstract hyperbolic-parabolic system depending
on a coupled parameter with missing initial conditions. We introduce the concept of average no-
regret control and its approach to get a general description from our average optimal control to the
optimality system.

4.2.1 Statement of the problem
Consider the next hyperbolic-parabolic system with missing initial conditions, such that,

ytt +L1y+αMθ = f +Bv,
θt +L2θ +αNyt = 0,
(y,yt ,θ)(0) = (y0,y1,θ0).

(4.19)

Here t ∈ (0,T ), T > 0,
•U , H1, H2 and H3 are a real separable Hilbert spaces.
• y and θ are functions with values in H1 and H2 respectively.
• L1, L2 are unbounded self adjoint positive definite operators acting in H1 and H2, with the domains
DL1 and DL2 respectively.
• DL1 and DL2 are dense in H1 and H2 respectively.
Let us define on DL1 and DL2 , respectively, the next norms

‖.‖DL1
= ‖L1.‖H1

and ‖.‖DL2
= ‖L2.‖H2

,

then, DL1 and DL2 become Banach spaces.
• Denote by D

L1/2
1

and D
L1/2

2

1 the domain of the operators L1/2
1 and L1/2

2 equipped with the next
scalar product

〈., ..〉1 =
(

L1/2
1 .,L1/2

1 ..
)

1
and 〈., ..〉2 =

(
L1/2

2 .,L1/2
2 ..

)
2
,

with the corresponding norms equipped with the next scalar product

‖.‖D
L1/2

1

=
∥∥∥L1/2

1 .
∥∥∥

H1
and ‖.‖D

L1/2
2

=
∥∥∥L1/2

2 .
∥∥∥

H2
.

1Separable Hilbert spaces.
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where :

D
L1/2

1
⊂ DN and D

L1/2
2
⊂ DM.

• M and N are linear operators acting, respectively, from DM into H1 and from DN into H2, where,
DM and DN are linear sets, such that,

DL2 ⊂ DM, M ∈L (DL2 ,H1), and N ∈L (D
L1/2

1
,H2)

• B ∈L (U,H1) is the control operator.
• g = (y0,y1,θ0) are unknown initial conditions belonging at least to the spaces H = D

L1/2
1
×H1×

H2.
• v is a distributed control vector in Uad ⊂U is a convex, non-empty and closed sub-set.
• f ∈ L2 (0,T ;H1).
• α is a coupled parameter in (0,1).
For all missing initial conditions g the problem (4.19) has a unique solution ( previous chapter
Section 3.3 ), for more details see [22], [53] and [54], given by the next couple,

(y,θ)= (y(v,g,α),θ(v,g,α))∈W 1,∞ (0,T ;H1)∩L∞

(
0,T ;D

L1/2
1

)
×L∞ (0,T ;H2)∩L2

(
0,T ;D

L1/2
2

)
.

Moreover, we assume that, the scalar product defined on H1 and H2 realizes the next properties,

∀λ ,φ ∈ Hi, i = {1,2} ,α ∈ (0,1) ,
∫ 1

0
(λ (α) ,φ)Hi

dα =

(∫ 1

0
λ (α)dα,φ

)
Hi

.

4.2.2 Average no-regret and average low-regret control
The control v acts only on the hyperbolic equation but, we do not introduce any control on the
parabolic equation. To make it possible, we define the next quadratic cost function associated to the
coupled system (4.19) (see [14]), for all (v,g) ∈ H×Uad ,

J (v,g) =
∥∥∥∥∫ 1

0
y(v,g,α)dα− yd

∥∥∥∥2

L2(0,T ;H1)

+

∥∥∥∥∫ 1

0
θ (v,g,α)dα−θd

∥∥∥∥2

L2(0,T ;H2)

+β ‖v‖2
U . (4.20)

Such that :
•
∫ 1

0 y(v,g,α)dα ∈ L2 (0,T ;H1) and
∫ 1

0 θ (v,g,α)dα ∈ L2 (0,T ;H2) present the average of obser-
vations.
• yd ,θd are given observations.
• β is a positive real number.

Average no-regret control
We focus on controlling the average of the state, for that reason, we are interested in the next
optimal control problem with missing initial conditions [30]

inf
v∈Uad

J (v,g) , ∀g ∈ H. (4.21)

We should resolve this min−max problem

inf
v∈Uad

sup
g∈H

J (v,g) .

Lions presented the notion of no-regret control ( Chapter 1, Section 4 ), where we only look for
control, such that,

J (v,g)≤ J (0,g) ,∀g ∈ H. (4.22)

We are going to study this problem by combining the notions of low-regret and no-regret control
with the average control concept introduced by Zuazua (Chapter 1, Section 5 ).
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Definition 4.2.1 We say that u ∈Uad is the average no-regret control for the system (4.19) if u
is the solution of

inf
v∈Uad

sup
g∈H

(J (v,g)− J (0,g)) . (4.23)

We rewrite the fundamental quantity in no-regret control definition as

Lemma 4.2.1 We have ∀(v,g) ∈U×H,∣∣∣∣∣ J (v,g)− J (0,g) = J (v,0)− J (0,0)+2(S(v),g)H ,

S(v) =
(∫ 1

0 αN∗ψ (0)dα−
∫ 1

0 ϕt (0)dα,
∫ 1

0 ϕ (0)dα,
∫ 1

0 ψ (0)dα

)
,

(4.24)

and the next adjoint-coupled system
ϕtt +L1ϕ−αN∗ψt =

∫ 1
0 [y(v,0,α)− y(0,0,α)]dα,

−ψt +L2ψ +αM∗ϕ =
∫ 1

0 [θ (v,0,α)−θ (0,0,α)]dα,
(ϕ,ϕt ,ψ)(T ) = (0,0,0).

(4.25)

Its solution gives by the next couple

(ϕ,ψ)= (ϕ (v,α) ,ψ (v,α))∈W 1,1 (0,T ;H1)∩L1
(

0,T ;D
L1/2

1

)
×W 1,1 (0,T ;H2)∩L2

(
0,T ;D

L1/2
2

)
.

Proof. We compensate the next values of y(v,g,α) and θ(v,g,α)∣∣∣∣ y(v,g,α) = y(v,0,α)+ y(0,g,α)− y(0,0,α),
θ(v,g,α) = θ(v,0,α)+θ(0,g,α)−θ(0,0,α)

in the equality (4.20), so, we get

J (v,g) =
∥∥∥∫ 1

0 y(v,0,α)dα− yd

∥∥∥2

L2(0,T ;H1)
+
∥∥∥∫ 1

0 θ(v,0,α)dα−θd

∥∥∥2

L2(0,T ;H2)
+β ‖v‖2

U

+ 2
(∫ 1

0 y(v,0,α)dα− yd ,
∫ 1

0 [y(0,g,α)− y(0,0,α)]dα

)
L2(0,T ;H1)

+ 2
(∫ 1

0 θ (v,0,α)dα−θd ,
∫ 1

0 [θ (0,g,α)−θ (0,0,α)]dα

)
L2(0,T ;H2)

.

Then, we add the next terms yd , θd ,−yd , and −θd to the previous quantity, that drive us to obtain

J (v,g) = J (v,0)+ J (0,g)

+
(∫ 1

0 y(0,0,α)dα− yd ,
∫ 1

0 y(0,0,α)dα− yd

)
L2(0,T ;H1)

+
(∫ 1

0 θ (0,0,α)dα−θd ,
∫ 1

0 θ (0,0,α)dα−θd

)
L2(0,T ;H2)

− 2
(∫ 1

0 y(0,g,α)dα− yd ,
∫ 1

0 y(0,0,α)dα− yd

)
L2(0,T ;H1)

− 2
(∫ 1

0 θ (0,g,α)dα−θd ,
∫ 1

0 θ (0,0,α)dα−θd

)
L2(0,T ;H2)

+ 2
(∫ 1

0 y(v,0,α)dα− yd ,
∫ 1

0 [y(0,g,α)− y(0,0,α)]dα

)
L2(0,T ;H1)

+ 2
(∫ 1

0 θ (v,0,α)dα−θd ,
∫ 1

0 [θ (0,g,α)−θ (0,0,α)]dα

)
L2(0,T ;H2)

we add and subtract the next quantities :

2
(∫ 1

0
y(0,0,α)dα− yd ,

∫ 1

0
[y(0,g,α)− y(0,0,α)]dα

)
L2(0,T ;H1)

,
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and

2
(∫ 1

0
θ (0,0,α)dα−θd ,

∫ 1

0
[θ (0,g,α)−θ (0,0,α)]dα

)
L2(0,T ;H2)

.

Now, we simplify the calculation, hence, we get

J (v,g) − J (0,0) = J (v,0)+ J (0,g)

+ 2
(∫ 1

0 [y(v,0,α)− y(0,0,α)]dα,
∫ 1

0 [y(0,g,α)− y(0,0,α)]dα

)
L2(0,T ;H1)

+ 2
(∫ 1

0 [θ (v,0,α)−θ (0,0,α)]dα,
∫ 1

0 [θ (0,g,α)−θ (0,0,α)]dα

)
L2(0,T ;H2)

.

Now, we assume that,

π (α,g) = y(0,g,α)− y(0,0,α) and η (α,g) = θ (0,g,α)−θ (0,0,α) .

So, it is obvious that (π,η) is a solution for the next coupled system
πtt +L1π +αMη = 0,
ηt +L2η +αNπt = 0,

(π,πt ,η)(0) = (y0,y1,θ0).

After broaching the adjoint coupled system given by (4.25) and helps of the integration by part, we
arrive to this formula(∫ 1

0 [y(v,0,α)− y(0,0,α)]dα,
∫ 1

0 π (α,g)dα

)
L2(0,T ;H1)

=
∫ 1

0 (ϕtt +L1ϕ−αN∗ψt ,π)L2(0,T ;H1)
dα

=
∫ 1

0 (ϕ,πtt)L2(0,T ;H1)
dα−

∫ 1
0 (y0,ϕt (0))H1

dα

+
∫ 1

0 (y1,ϕ (0))H1
dα +

∫ 1
0 (ϕ,L1π)L2(0,T ;H1)

dα

+
∫ 1

0 (ψ,αNπt)L2(0,T ;H2)
dα +

∫ 1
0 (y0,αN∗ψ (0))H2

dα.

Similar way shows that(∫ 1
0 [θ (0,g,α)−θ (0,0,α)]dα,

∫ 1
0 η (α,g)dα

)
L2(0,T ;H2)

=
∫ 1

0 (−ψt +L2ψ +αM∗ϕ,η)L2(0,T ;H2)
dα

=
∫ T

0
∫ 1

0 (ψ,ηt)H2
dαdt +

∫ 1
0 (θ0,ψ (0))H2

dα

+
∫ 1

0 (ψ,L2η)L2(0,T ;H2)
dα +

∫ 1
0 (ϕ,αMη)L2(0,T ;H1)

dα.

The identity (4.24) follows easily by collecting two last equalities. �

The previous lemma, drive us to write (4.23) as follows

inf
v∈Uad

(
J (v,0)− J (0,0)+2 sup

g∈H
(S(v),g)H

)
.

Due to the linearity structure of the space H, we are in front of one of these next two cases

sup
g∈H

(S(v),g)H =+∞,

or

sup
g∈H

(S(v),g)H = 0. (4.26)

Consequently, if (4.26) holds, the average no-regret control exists. In other hands if

v ∈ {v ∈Uad : (S(v),g)H = 0, ∀g ∈ H} ,
this set is not easy to characterize, so, we ought to try to relax the no-regret control by a quadratic
approximate, which drives us to define the low-regret control as a sequence, that is expected to
converge to the no-regret control.
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Average low-regret control
We make some quadratic perturbations on our missing initial condition g, afterword, we take only
the control v to relax the problem (4.23), for any γ > 0 we have

J (v,g)− J (0,g)≤ γ ‖g‖2
H ,∀g ∈ H.

Definition 4.2.2 We say that u ∈ Uad is an average low-regret control for (4.19) if u is the
solution of

inf
v∈Uad

sup
g∈H

(
J (v,g)− J (0,g)− γ ‖g‖2

H

)
. (4.27)

R We can rewrite (4.27) by (4.24) as follows

inf
v∈Uad

(
J (v,0)− J (0,0)+ sup

g∈H

(
2(S(v),g)H − γ ‖g‖2

H

))
,

by the Legendre transformation, we get,

sup
g∈H

(
2(S(v),g)H − γ ‖g‖2

H

)
=

1
γ
‖S(v)‖2

H .

Then, our problem is equivalent to the following standard optimal control problem

Jγ (uγ) = inf
v∈Uad

J γ (v) , J γ (v) = J (v,0)− J (0,0)+
1
γ
‖S(v)‖2

H . (4.28)

Proposition 4.2.2 There exists a unique average low-regret control solution to (4.28) denoted by
uγ ∈U .

Proof. First of all, we have,

∀v ∈Uad , J
γ (v)≥−J (0,0) ,

this means that (4.28) has a solution.
We assume that,

(
vn

γ

)
⊂Uad is a minimizing sequence, so, it means that,

liminf
n→+∞

J γ
(
vn

γ

)
= J γ

(
uγ

)
= dγ , (4.29)

then,

J γ
(
vn

γ

)
= J

(
vn

γ ,0
)
− J (0,0)+

1
γ

∥∥S(vn
γ)
∥∥2

H
≤ dγ +1,

where the couple
(
yn

γ ,θ
n
γ

)
=
(
y
(
t,vn

γ ,0,α
)
,θ
(
t,vn

γ ,0,α
))

solves the next system∣∣∣∣∣∣∣
(
yn

γ

)
tt
+L1yn

γ +αMθ n
γ = f +Bvn

γ ,(
θ n

γ

)
t
+L2θ n

γ +αN
(
yn

γ

)
t

= 0,(
yn

γ ,
(
yn

γ

)
t
,θ n

γ

)
(0) = (0,0,0).

(4.30)

There exists Cγ > 0, such that :

J
(
vn

γ ,0
)
≤Cγ and

∥∥S(vn
γ)
∥∥

H
≤√γCγ .
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Hence, using the definition of J
(
vn

γ ,0
)

to get the next bounds :∥∥vn
γ

∥∥
U

≤ Cγ , (4.30.a)∥∥S(vn
γ)
∥∥

H
≤ √

γCγ , (4.30.b)∥∥∥∫ 1
0 yn

γ (α)dα

∥∥∥
L2(0,T ;H1)

≤ Cγ , (4.30.c)∥∥∥∫ 1
0 θ n

γ (α)dα

∥∥∥
L2(0,T ;H2)

≤ Cγ . (4.30.d)

In view of (4.30) and (4.30.a), there exists Cγ > 0 independent of n, such that :∥∥yn
γ

∥∥
L2(0,T ;H1)

≤Cγ , (4.31)

∥∥θ
n
γ

∥∥
L2(0,T ;H2)

≤Cγ . (4.32)

Hence, there exists

(yγ ,θ γ ,uγ) ∈ L2 (0,T ;H1)×L2 (0,T ;H2)×U

sub-sequences extracted from (vn), (yn) and (θ n) 2, such that :

vn
γ ⇀ uγ in U, (4.33)

yn
γ ⇀ yγ in L2 (0,T ;H1) , (4.34)

θ
n
γ ⇀ θ

γ in L2 (0,T ;H2) . (4.35)

For all n≥ 0, we assume that :

zn
γ(t) =

∫ 1

0
yn

γ(t,α)dα,

and

kn
γ (t) =

∫ 1

0
θ

n
γ (t,α)dα.

In view of (4.30.c) and (4.30.d) there exists sub-sequences denoted by zγ ∈ L2 (0,T ;H1), kγ ∈
L2 (0,T ;H2), such that, zn

γ ⇀ zγ in L2 (0,T ;H1) and kn
γ ⇀ kγ in L2 (0,T ;H2) thanks to the Riesz

representation and dominated convergence theorems, there exists a unique ϕ and ψ in L2 (0,T ;H1)
and L2 (0,T ;H2) respectively.

For all α ∈ (0,1), we have(
zn

γ ,ϕ
)

L2(0,T ;H1)
=

(∫ 1
0 yn

γ (α)dα,ϕ
)

L2(0,T ;H1)
=
∫ 1

0
(
yn

γ (α) ,ϕ
)

L2(0,T ;H1)
dα

→
∫ 1

0
(
yγ (α) ,ϕ

)
L2(0,T ;H1)

dα =
(∫ 1

0 yγ (α)dα,ϕ
)

L2(0,T ;H1)
,

(4.36)

2Still recalled by (vn
γ ), (y

n
γ ) and (θ n

γ ).
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and (
kn

γ ,ψ
)

L2(0,T ;H2)
=

(∫ 1
0 θ n

γ (α)dα,ψ
)

L2(0,T ;H2)
=
∫ 1

0
(
θ n

γ (α) ,ψ
)

L2(0,T ;H2)
dα

→
∫ 1

0
(
θγ (α) ,ψ

)
L2(0,T ;H2)

dα =
(∫ 1

0 θγ (α)dα,ψ
)

L2(0,T ;H2)
.

(4.37)

In view of the fact that yn
γ and θ n

γ are bounded independently of α , for all ϕ and ψ respectively in
L2 (0,T ;H1) and L2 (0,T ;H2) we have(

yn
γ ,ϕ
)

L2(0,T ;H1)
→ (yγ ,ϕ)L2(0,T ;H1)

and
(
θ n

γ ,ψ
)

L2(0,T ;H2)
→ (θ γ ,ψ)L2(0,T ;H2)

. (4.38)

Hence, through (4.36), (4.37) and the limit uniqueness ensure that∫ 1
0 yγ (t,α)dα = zγ (t) and

∫ 1
0 θ γ (t,α)dα = kγ (t) . (4.39)

The rest of the proof will be divided into three steps.

Step 1. We prove that (uγ ,yγ ,θ γ) satisfies (4.30). Let D1 and D2 be the sets of functions with
a compact support in C∞ on H1 and H2 respectively, with duals D′1,D

′
2.

We multiply the system (4.30) by (ϕ,ψ) ∈ D1×D2. Using the integration by part, we obtain∫ T
0
(
yn

γ ,ϕtt +L1ϕ−αN∗ψt
)

H1
dt +

∫ T
0
(
θ n

γ ,−ψt +L2ψ +αM∗ϕ
)

H2
dt

=
∫ T

0
(

f +Bvn
γ ,ϕ
)

H1
dt.

Letting n→ ∞ and using (4.33) , (4.34) and (4.35) we obtain∫ T
0 (yγ ,ϕtt +L1ϕ−αN∗ψt)H1

dt +
∫ T

0 (θ γ ,−ψt +L2ψ +αM∗ϕ)H2
dt

=
∫ T

0 ( f +Buγ ,ϕ)H1
dt.

Hence, after the integration by part we deduce that,(
yn

γ

)
tt
+L1yn

γ +αMθ n
γ → yγ

tt +L1yγ +αMθ γ in D′1,
f +Bvn

γ → f +Buγ in D′1,(
θ n

γ

)
t
+L2θ n

γ +αN
(
yn

γ

)
t
→ θ

γ

t +L2θ γ +αNyγ

t in D′2,

The limit uniqueness gives us(
yn

γ

)
tt
+L1yn

γ +αMθ n
γ ⇀ f1 = yγ

tt +L1yγ +αMθ γ ∈ L2 (0,T ;H1) , (a)(
θ n

γ

)
t
+L2θ n

γ +αN
(
yn

γ

)
t

⇀ f2 = θ
γ

t +L2θ γ +αNyγ

t , ∈ L2 (0,T ;H2) , (b)
f +Bvn

γ ⇀ f3 = f +Buγ ∈ L2 (0,T ;H1) . (c)

Therefore,(
yn

γ

)
tt
+L1yn

γ +αMθ n
γ ⇀ yγ

tt +L1yγ +αMθ γ in L2 (0,T ;H1) ,(
θ n

γ

)
t
+L2θ n

γ +αN
(
yn

γ

)
t

⇀ θ
γ

t +L2θ γ +αNyγ

t in L2 (0,T ;H2) ,

f +Bvn
γ ⇀ f +Buγ in L2 (0,T ;H1) .

We deduce that∣∣∣∣ yγ

tt +L1yγ +αMθ γ = f +Buγ ,
θ

γ

t +L2θ γ +αNyγ

t = 0
(d)

From (4.33) and (4.34), using (d) we have that yγ

t ∈ L2 (0,T ;H1) implies that
yγ ∈ L2 (0,T ;H1), also L1yγ ∈ L2 (0,T ;H1) and Mθ γ ∈ L2 (0,T ;H2), this gives us that

(y(0),yt(0),θ(0)) ∈ H.
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We multiply the system (4.30) by (ϕ,ψ) ∈D1×D2, where ϕ (T ) = ϕt (T ) = ψ (T ) = 0. Using the
integration by part, we obtain(

f +Bvn
γ ,ϕ
)

L2(0,T ;H1)
= − (y(0),αN∗ψ(0)−ϕt(0))H1

− (yt(0),ϕ(0))H1
− (θ(0),ψ(0))H2

+
(
yn

γ ,ϕtt +L1ϕ−αN∗ψt
)

L2(0,T ;H1)

+
(
θ n

γ ,−ψt +L2ψ +αM∗ϕ
)

L2(0,T ;H2)
,

by passing to the limit when n−→ ∞, while using (4.33), (4.34) and (4.35) gives(
f +Buγ ,ϕ

)
L2(0,T ;H1)

= − (y(0),αN∗ψ(0)−ϕt(0))H1

− (yt(0),ϕ(0))H1
− (θ(0),ψ(0))H2

+
(
yγ ,ϕtt +L1ϕ−αN∗ψt

)
L2(0,T ;H1)

+
(
θγ ,−ψt +L2ψ +αM∗ϕ

)
L2(0,T ;H2)

,

∀(ϕ,ψ) ∈ D1×D2 , ϕ (T ) = ϕt (T ) = ψ (T ) = 0.

Now, let us integrate by part the previous identity, we obtain(
f +Buγ ,ϕ

)
L2(0,T ;H1)

= (yγ(0),αN∗ψ(0)−ϕt(0))H1

+
(
yγ

t (0),ϕ(0)
)

H1
+(θ γ(0),ψ(0))H2

+
(
yγ

tt +L1yγ +αMθ
γ

t ,ϕ
)

L2(0,T ;H1)

+
(
θ

γ

t +L2θ γ +αNyγ

t ,ψ
)

L2(0,T ;H2)
,

∀(ϕ,ψ) ∈ D1×D2 , ϕ (T ) = ϕt (T ) = ψ (T ) = 0.

Now, we have

(yγ(0)− y(0),αN∗ψ(0)−ϕt(0))H1
= 0,(

yγ

t (0)− yt(0),ϕ(0)
)

H1
= 0,

(θ γ(0)−θ(0),ψ(0))H2
= 0,

which implies that,

yγ(0) = y(0), yγ

t (0) = yt(0), θ γ(0) = θ(0).

So, we deduce that, the solution of (d) is characterized by the next couple

(yγ ,θ γ) = (y(α,uγ ,0) ,θ (α,uγ ,0)),

with initial conditions

yγ (0) = 0, yγ

t (0) = 0 and θ
γ (0) = 0.

Step 2. It is clear that,

(ϕ (vn,α) ,ψ (vn,α)) ∈W 1,1 (0,T ;H1)∩L1
(

0,T ;D
L1/2

1

)
×W 1,1 (0,T ;H2)∩L2

(
0,T ;D

L1/2
2

)
is a solution of the next adjoint coupled system

ϕtt (vn,α)+L1ϕ (vn,α)−αN∗ψt (vn,α) =
∫ 1

0 [y(vn,0,α)− y(0,0,α)]dα,

−ψt (vn,α)+L2ψ (vn,α)+αM∗ϕ (vn,α) =
∫ 1

0 [θ (vn,0,α)−θ (0,0,α)]dα,
(ϕ,ϕt ,ψ)(T ) = (0,0,0).

(4.40)
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So, we will prove that, this couple
(
ϕγ ,ψγ

)
= (ϕ (uγ ,α) ,ψ (uγ ,α)) verifies the next system∣∣∣∣∣∣

ϕ
γ

tt (uγ ,α)+L1ϕγ (uγ ,α)−αN∗ψγ

t (uγ ,α) =
∫ 1

0 [y(uγ ,0,α)− y(0,0,α)]dα,

−ψ
γ

t (uγ ,α)+L2ψγ (uγ ,α)+αM∗ϕγ (uγ ,α) =
∫ 1

0 [θ (uγ ,0,α)−θ (0,0,α)]dα,
(ϕγ ,ϕ

γ

t ,ψ
γ)(T ) = (0,0,0).

(4.41)

Multiply (4.40) by (ϕt (vn,α) ,ψ (vn,α)) and we integrate by part, we obtain

1
2

d
dt

[
‖ϕt‖2

H1
+
∥∥∥(L1)

1
2 ϕ

∥∥∥2

H1
−‖ψ‖2

H2

]
+

∥∥∥(L2)
1
2 ψ

∥∥∥2

H2
−α (N∗ψt ,ϕt)H1

+α (M∗ϕ,ψ)H2

=
∫ 1

0 (πndα,ϕt)H1
+
∫ 1

0 (ηndα,ψ)H2
.

The Gronwall inequality and some estimations give us

∥∥∥(L1)
1
2 ϕ

∥∥∥
H1

≤ Cγ , ‖ϕt‖H1
≤ Cγ , ‖ψt‖L2(0,T ;H2)

≤ Cγ ,∥∥∥(L2)
1
2 ψ

∥∥∥
L2(0,T ;H2)

≤ Cγ , ‖ϕt‖L2(0,T ;H1)
≤ Cγ , ‖ψ‖H2

≤ Cγ .

Then, there exists (ϕ (vn,α) ,ψ (vn,α)) subsequences converge weakly to
(
ϕγ ,ψγ

)
respectively

in L2 (0,T ;H1) and L2 (0,T ;H2). In view of this we obtain the next convergences weakly in
(D′ (H1) ,D′ (H2)) respectively,

ϕtt (vn,α)+L1ϕ (vn,α)−αN∗ψt (vn,α) ⇀ ϕtt (uγ ,α)+L1ϕ (uγ ,α)−αN∗ψt (uγ ,α) ,
−ψt (vn,α)+L2ψ (vn,α)+αM∗ϕ (vn,α) ⇀ −ψt (uγ ,α)+L2ψ (uγ ,α)+αM∗ϕ (uγ ,α) .

From (a) and (b), we deduce that,

ϕtt (vn,α)+L1ϕ (vn,α)−αN∗ψt (vn,α) ⇀ f1 in L2 (0,T ;H1) ,
−ψt (vn,α)+L2ψ (vn,α)+αM∗ϕ (vn,α) ⇀ f2 in L2 (0,T ;H2) .

The limit uniqueness property gives us

ϕtt (uγ ,α)+L1ϕ (uγ ,α)−αN∗ψt (uγ ,α) = f1 in L2 (0,T ;H1) ,
−ψt (uγ ,α)+L2ψ (uγ ,α)+αM∗ϕ (uγ ,α) = f2 in L2 (0,T ;H2) .

Passing the limit in (4.40), using (4.30.c) and (4.30.d), we deduce that,{
ϕtt (uγ ,α)+L1ϕ (uγ ,α)−αN∗ψt (uγ ,α) =

∫ 1
0 [y(uγ ,0,α)− y(0,0,α)]dα,

−ψt (uγ ,α)+L2ψ (uγ ,α)+αM∗ϕ (uγ ,α) =
∫ 1

0 [θ (uγ ,0,α)−θ (0,0,α)]dα.

The initials conditions follow by reasoning similar to the first step.

Step 3. Since v→J γ (v) is a lower semi-continuous function, we have

J γ (uγ) = lim
n→+∞

infJ γ (vn) .

According to (4.29), we have the fact that

J γ (uγ) = inf
v∈U

J γ (v) .

To finalize the proof, the uniqueness of uγ follows because J γ is strictly convex. �
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Proposition 4.2.3 The average low-regret control uγ is characterized by the next coupled systems
yγ

tt +L1yγ +αMθ γ = f +Buγ ,
θ

γ

t +L2θ γ +αNyγ

t = 0,
(yγ ,yγ

t ,θ
γ)(0) = (0,0,0).

(4.42.a)
ϕ

γ

tt +L1ϕγ −αN∗ψγ

t =
∫ 1

0 [yγ (uγ ,0,α)− yγ (0,0,α)]dα,

−ψ
γ

t +L2ψγ +αM∗ϕγ =
∫ 1

0 [θ γ (uγ ,0,α)−θ γ (0,0,α)]dα,
(ϕγ ,ϕ

γ

t ,ψ
γ)(T ) = (0,0,0).

(4.42.b)

ρ
γ

tt +Lγ

1ργ +αMσ γ = 0,
σ

γ

t +Lγ

2σ γ +αNρ
γ

t = 0,
ργ (0) = 1

γ

∫ 1
0 αN∗ψγ (0)dα− 1

γ

∫ 1
0 ϕ

γ

t (0)dα,

ρ
γ

t (0) = 1
γ

∫ 1
0 ϕγ (0)dα,

σ γ (x,0) =
1
γ

∫ 1
0 ψγ (0)dα.

(4.42.c)


pγ

tt +L1 pγ −αN∗qγ

t =
∫ 1

0 [yγ (uγ ,0,α)− yγ (0,0,α)]dα− yd +
∫ 1

0 ργdα,

−qγ

t +L2qγ +αM∗pγ =
∫ 1

0 [θ γ (uγ ,0,α)−θ γ (0,0,α)]dα−θd +
∫ 1

0 σ γdα,
(pγ , pγ

t ,qγ)(T ) = (0,0,0).
(4.42.d)

With (∫ 1

0
B∗pγdα +βuγ ,v−uγ

)
U
≥ 0, ∀v ∈Uad .

Proof. A first-order Euler necessary condition for (4.36) gives us
For all v ∈Uad ,

J γ ′ (uγ)(v−uγ)

=
(∫ 1

0 yγ (uγ ,0,α)dα− yd ,
∫ 1

0 [y(v−uγ ,0,α)− y(0,0,α)]dα

)
L2(0,T ;H1)

+
(∫ 1

0 θ γ (uγ ,0,α)dα−θd ,
∫ 1

0 [θ (v−uγ ,0,α)−θ (0,0;α)]dα

)
L2(0,T ;H2)

+β (uγ ,v−uγ)U

+1
γ

(∫ 1
0 αN∗ψ (0)dα−

∫ 1
0 ϕt (0)dα,

∫ 1
0 αN∗ψ (v−uγ)(0)dα−

∫ 1
0 ϕt (v−uγ)(0)dα

)
H1

+1
γ

(∫ 1
0 ϕ (0)dα,

∫ 1
0 ϕ (v−uγ)(0)dα

)
H1

+ 1
γ

(∫ 1
0 ψ (0)dα,

∫ 1
0 ψ (v−uγ)(0)dα

)
H2
≥ 0.

We see that, (ργ ,σ γ) = (ρ (uγ ,0) ,σ (uγ ,0)) is a solution of (4.42.c).
An easy computation shows that :(∫ 1

0 ργdα,
∫ 1

0 [y(v−uγ ,0,α)− y(0,0,α)]dα

)
L2(0,T ;H1)

=
∫ 1

0
(
ρ

γ

tt ,ϕ (v−uγ)
)

L2(0,T ;H1)
dα +

∫ 1
0 (L1ργ ,ϕ (v−uγ))L2(0,T ;H1)

dα

+
∫ 1

0
(
ρ

γ

t ,αN∗ψ (v−uγ)
)

L2(0,T ;H1)
dα +

∫ 1
0 (ργ (0) ,αN∗ψ (v−uγ)(0))H1

dα

+
∫ 1

0
(
ρ

γ

t (0) ,ϕ (v−uγ)(0)
)

H1
dα−

∫ 1
0 (ργ (0) ,ϕt (v−uγ)(0))H1

dα,

and (∫ 1
0 σ γdα,

∫ 1
0 [θ (v−uγ ,0,α)−θ (0,0,α)]dα

)
L2(0,T ;H2)

=
∫ 1

0
(
σ

γ

t ,ψ (v−uγ)
)

L2(0,T ;H2)
dα +

∫ 1
0 (L2σ γ ,ψ (v−uγ))L2(0,T ;H2)

dα

+
∫ 1

0 (αMσ γ ,ϕ (v−uγ))H2
dα +

∫ 1
0 (σ γ (0) ,ψ (v−uγ)(0))H2

dα.
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After the summation of two previous equations, the results come easy.
We denote that (pγ ,qγ) is a solution of (4.42.d), which gives(∫ 1

0 πγdα− yd +
∫ 1

0 ργdα,
∫ 1

0 [y(v−uγ ,0,α)− y(0,0,α)]dα

)
L2(0,T ;H1)

+
(∫ 1

0 ηγdα−θd +
∫ 1

0 σ γdα,
∫ 1

0 [θ (v−uγ ,0,α)−θ (0,0,α)]dα

)
L2(0,T ;H2)

=
(

pγ

tt +L1 pγ −αN∗qγ

t ,
∫ 1

0 [y(v−uγ ,0,α)− y(0,0,α)]dα

)
L2(0,T ;H1)

+
(
−qγ

t +L2qγ +αM∗pγ ,
∫ 1

0 [θ (v−uγ ,0,α)−θ (0,0,α)]dα

)
L2(0,T ;H2)

=
(

pγ ,
∫ 1

0 B(v−uγ)dα

)
L2(0,T ;H1)

=
(∫ 1

0 B∗pγdα,v−uγ

)
U
.

Which ends the proof. �

Average no-regret control Characterization
For the no-regret control, we should get some weak convergence of

{yγ ,ϕγ ,ργ , pγ ;ψ
γ ,θ γ ,σ γ ,qγ ;uγ} ,

to some limits that characterize the no-regret control. Hence, we declare these results :

Proposition 4.2.4 There exists C > 0 independent of γ , such that :

‖uγ‖U ≤ C,∥∥∥∫ 1
0 yγ (uγ ,0,α)dα

∥∥∥
L2(0,T ;H1)

≤ C,∥∥∥∫ 1
0 θ γ (uγ ,0,α)dα

∥∥∥
L2(0,T ;H2)

≤ C,

(4.43.a)

∥∥∥∫ 1
0 αN∗ψγ (0)dα−

∫ 1
0 ϕ

γ

t (0)dα

∥∥∥
H1
≤√γC, (4.43.b)∥∥∥∫ 1

0 ϕγ (0)dα

∥∥∥
H1
≤ √

γC,∥∥∥∫ 1
0 ψγ (0)dα

∥∥∥
H2
≤ √

γC,
(4.43.c)

‖yγ‖L∞(0,T ;H1)
≤C,

∥∥yγ

t
∥∥

L∞(0,T ;H1)
≤C, (4.44.a)

‖θ γ‖L∞(0,T ;H2)
≤C,‖θ γ‖L2(0,T ;H2)

≤C, (4.44.b)

‖ϕγ‖L∞(0,T ;H1)
≤C,

∥∥ϕ
γ

t
∥∥

L∞(0,T ;H1)
≤C, (4.45.a)

‖ψγ‖L∞(0,T ;H2)
≤C,‖ψγ‖L2(0,T ;H2)

≤C, (4.45.b)

‖ργ‖L∞(0,T ;H1)
≤C,

∥∥ρ
γ

t
∥∥

L∞(0,T ;H1)
≤C, (4.46.a)

‖σ γ‖L∞(0,T ;H2)
≤C,‖σ γ‖L2(0,T ;H2)

≤C, (4.46.b)

‖pγ‖L∞(0,T ;H1)
≤C,

∥∥pγ

t
∥∥

L∞(0,T ;H1)
≤C, (4.47.a)

‖qγ‖L∞(0,T ;H2)
≤C,‖qγ‖L2(0,T ;H2)

≤C, (4.47.b)

Proof. The function uγ is a low-regret control, then,

J γ (uγ)≤J γ (0) ,
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it means that,

J (uγ ,0)− J (0,0)+
1
γ
‖S (uγ)‖2

H ≤
1
γ
‖S (0)‖2

H = 0,

we deduce (4.43.a), by contradiction, we get (4.43.b). Multiplying the system (4.42.a) by
(
yγ

t ,θ
γ
)
,

we obtain

1
2

d
dt

[∥∥yγ

t
∥∥2

H1
+

∥∥∥∥L
1
2
1 yγ

∥∥∥∥2

H1

+‖θ γ‖2
L2(H2)

]
+

∥∥∥∥L
1
2
2 θ γ

∥∥∥∥2

H2

+
(
αMθ ,yγ

t
)

L2(0,T ;H1)

+
(
αNyγ

t ,θ
)

L2(0,T ;H2)
=
(

f +Buγ ,yγ

t
)

L2(0,T ;H1)
.

Now, let us integrate over (0, t), use (4.41), and apply the Gronwall lemma, we obtain

supt∈(0,T )
∥∥yγ

t
∥∥

H1
≤ C , supt∈(0,T )

∥∥∥∥L
1
2
1 yγ

∥∥∥∥
H1

≤ C,

supt∈(0,T ) ‖θ γ‖H2
≤ C , supt∈(0,T )

∥∥∥∥L
1
2
2 θ γ

∥∥∥∥
H2

≤ C,

The estimations of ϕγ and ψγ follow the same manner.
The same reasoning gives the estimations in (4.45.a) and (4.45.b).
For estimating of ργ and σ γ , let us consider the energy for all t > 0,

E (t) =
1
2

[∥∥ρ
γ

t
∥∥2

H1
+

∥∥∥∥L
1
2
1 ρ

γ

∥∥∥∥2

H1

+‖σ γ‖2
H2

]
,

which satisfies

d
dt

E (t) =−
∥∥∥∥L

1
2
2 σ

γ

∥∥∥∥2

H2

≤ 0,

then,

E (t)≤ E (0) , ∀t ∈ (0,T ) .

Take into consideration (4.43.b) and (4.43.c) to conclude (4.46.a) and (4.46.b) in view of :∫ 1
0 πγdα− yd +

∫ 1
0 ργdα ∈ L2 (0,T ;H1) ,

and ∫ 1
0 ηγdα−θd +

∫ 1
0 σ γdα ∈ L2 (0,T ;H2) .

Finally, we conclude (4.47.a) and (4.47.b) by the same manner of (4.44.a) ,(4.44.b) ,(4.45.a) and
(4.45.b) . �

Proposition 4.2.5 The low-regret control uγ converges in U to the no-regret control u defined by
(4.23) .

Proof. From (4.28) we have

Jγ (uγ)≤ Jγ (0) = 0.

In view of the expression of Jγ giving by (4.29), implies that,∥∥∥∫ 1
0 yγdα− yd

∥∥∥2

L2(0,T ;H1)
+
∥∥∥∫ 1

0 θ γdα−θd

∥∥∥2

L2(0,T ;H2)
+β ‖uγ‖2

U +
1
γ
‖S(uγ)‖2

H ≤ J (0,0) .
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Hence, we deduce that,

‖uγ‖U ≤
√

J (0,0)√
β

, (4.48)

‖S(uγ)‖H ≤
√

γ
√

J (0,0), (4.49)

∥∥∥∫ 1
0 yγ (α)dα

∥∥∥
L2(0,T ;H1)

≤
√

J (0,0)+‖yd‖L2(0,T ;H1)
,∥∥∥∫ 1

0 θ γ (α)dα

∥∥∥
L2(0,T ;H2)

≤
√

J (0,0)+‖θd‖L2(0,T ;H1)
.

(4.50)

In light of (4.42.a) and (4.48), there exists a constant C > 0 independent of γ , such that,

‖yγ‖L2(0,T ;H1)
≤C, ‖θ γ‖L2(0,T ;H2)

≤C. (4.51)

Thus,

∃u ∈U, uγ ⇀ u in U, (4.52)

∃y ∈ L2 (0,T ;H1) , yγ ⇀ y in L2 (0,T ;H1) ,
and

∃θ ∈ L2 (0,T ;H2) , θ γ ⇀ θ in L2 (0,T ;H2) .
(4.53)

Combining (4.52),(4.53) and (4.42.a) to show that,

(y,θ) = (y(α,u,0) ,θ (α,u,0))

satisfies
ytt +L1y+αMθ = f +Bu,
θt +L2θ +αNyt = 0,
(y,yt ,θ)(0) = (y0,y1,θ0).

(4.54)

Moreover, using (4.50)),(4.53) and the Lobesgue dominated convergence theorem to obtain :∫ 1
0 y(α,uγ ,0)dα ⇀

∫ 1
0 y(α,u,0)dα in L2 (0,T ;H1) ,

and ∫ 1
0 θ (α,uγ ,0)dα ⇀

∫ 1
0 θ (α,u,0)dα in L2 (0,T ;H2) .

(4.55)

From (4.50) and (4.42.b) , we prove that there exists C > 0, such that,

‖S (uγ)‖H ≤C. (4.56)

From (4.43.b) and (4.43.c), we know that :∫ 1
0 αN∗ψγ (0)dα−

∫ 1
0 ϕ

γ

t (0)dα → 0 in H1,∫ 1
0 ϕγ (0)dα → 0 in H1,∫ 1
0 ψγ (0)dα → 0 in H2.

So,

S (uγ)−→ S (u) = 0 in H.

We deduce that,

∀g ∈ H, (S (u) ,g)H = 0,

It means that, u is the no-regret control of (4.19)-(4.20). �
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Theorem 4.2.6 The no-regret control u, solution of (4.23) is characterized by the next optimality
coupled systems :

ytt +L1y+αMθ = f +Bu,
θt +L2θ +αNyt = 0,
(y,yt ,θ)(0) = (0,0,0) .

(4.57.a)
ϕtt +L1ϕ−αN∗ψt =

∫ 1
0 [y(u,0,α)− y(0,0,α)]dα,

−ψt +L2ψ +αM∗ϕ =
∫ 1

0 [θ (u,0,α)−θ (0,0,α)]dα,
(ϕ,ϕt ,ψ)(T ) = (0,0,0) .

(4.57.b)
ρtt +L1ρ +αMσ = 0,
σt +L2σ +αNρt = 0,
(ρ,ρt ,σ)(0) = (ρ0,ρ1,σ0) .

(4.57.c)
ptt +L1 p−αN∗qt =

∫ 1
0 [y(u,0,α)− y(0,0,α)]dα− yd +

∫ 1
0 ρdα,

−qt +L2q+αM∗p =
∫ 1

0 [θ (u,0,α)−θ (0,0,α)]dα−θd +
∫ 1

0 σdα,
(p, pt ,q)(T ) = (0,0,0) .

(4.57.d)

With (∫ 1

0
B∗pdα +βu,v−u

)
U
≥ 0, ∀v ∈Uad ,

and the next weak limits :

y = limγ→0 yγ , θ = limγ→0 θ γ , ϕ = limγ→0 ϕγ , ψ = limγ→0 ψγ ,
ρ = limγ→0 ργ , σ = limγ→0 σ γ , p = limγ→0 pγ , q = limγ→0 qγ ,

ρ0 = limγ→0
1
γ

(∫ 1
0 αN∗ψγ (0)dα−

∫ 1
0 ϕ

γ

t (0)dα

)
∈ H1,

ρ1 = limγ→0
1
γ

∫ 1
0 ϕγ (0)dα ∈ H1,

σ0 = limγ→0
1
γ

∫ 1
0 ψγ (0)dα ∈ H2.

Proof. In the proof of Proposition 4.2.5, we have already proved that when γ → 0, the sequence
(uγ) converges weakly to the no-regret control u in U , and we have obtained the coupled system
(4.57.a) given by the states y and θ .
The coupled systems are supported in the same way by the cases {ϕ,ρ, p;ψ,σ ,q} and by using of
the estimates referred to in (4.44.a)− (4.46.b).
Additionally, we deduce from (4.43.b) and (4.43.c) that :

1
γ

(∫ 1
0 αN∗ψγ (0)dα−

∫ 1
0 ϕ

γ

t (0)dα

)
⇀ ρ0 in H1,

1
γ

∫ 1
0 ϕ

γ

t (0)dα ⇀ ρ1 in H1,

1
γ

∫ 1
0 ψγ (0)dα ⇀ σ0 in H2.

The weak convergence of pγ to p in H1 gives us the weak convergence of B∗pγ to B∗p in U , thanks
to (4.52) we get

∫ 1

0
B∗pγdα +βuγ ⇀

∫ 1

0
B∗pdα +βu in U.
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So, (∫ 1

0
B∗pdα +βu,v−u

)
U
≥ 0, ∀v ∈Uad .

�



Conclusion

Concluding this part by important information which is the optimal control is a method to
improve the solution of the different systems by giving an optimal solution implicitly in an
optimality condition. Also, this part has shown that the average no-regret control could be
worked to study optimal control problems for two problems first one is optimal control to
general systems depending on an uncertainty parameter, the second one is optimal control
of an abstract hyperbolic-parabolic system depending on a coupled parameter.







General Conclusion

This thesis aimed to identify in the first part of it dealt with the concept of PMP, which
can be helped to study the optimal control of the non-linear Odes, that principle gives us a
first-order optimally condition, resulting in two boundary value problems, afterword, we got
trajectories that checked these conditions. At this level, the shooting method helped us to find
the shooting functions zero ultimately, with Matlab software we described and discussed our
results. The fun continued with the second part, where we applied the optimal control with
a new dress which is the average notion on a linear distributed system with missing initial
conditions, we can not arrive at the result which is an optimality system with an optimality
condition without crossing with the no-regret control, because the characterization of it is so
difficult we relaxed our no regret control problem by a quadratic perturbation and it became
a low-regret control problem, as last moves, we had to play a little with the weak topology and
embedding of spaces to find the characterization of the no-regret control problem (optimality
systems with optimality condition).

Last but not least, in light of all the precedent results, my mind drove me to propose
some lookouts for the advancement of future research works, so, here are some rich perspec-
tives, in general, the precedent results lead us to think about double control or more at the
same time act on the non-linear Odes and the linear PDEs, maybe it will be interesting re-
sults on the different abstract coupled systems, make it strong results by using the concept
of the average control on both axes (ODEs/PDEs, linear/non-linear), further research must
be made, as well, the numerical simulations s of optimality systems of PDEs. The develop-
ment of the scientific need also prompts us to try to generalize the definition of the average
control of Zuazua to the whole control theory, to ease the control problem solution. Without
forgetting the optimal control of the reel life problems, robots, neural network, automate,
fluid mechanics,...
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