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شكر و 

 عرفان
نحمد الله عز وجل الذي وفقنا في اتمام هذا البحث العلمي 

الصحه والعافيه والعزيمه، فالحمد لله حمدا ألهمنا  والذي 

 كثيرا،

بجزيل الشكر والتقدير الى الاستاذ الدكتور نتقدم 
المشرف حناشي فارح على كل ما قدمه لنا من توجيهات 

ومعلومات قيمه ساهمت في اطراء موضوع دراستنا في 

جوانبها المختلفه كما نتقدم بجزيل الشكر الى اعضاء 
لجنه مناقشه الموقره دون نسيان مديري ومعلمي 

 يه التربيه والتعليم لولايهومتعلمي التعليم الثانوي ومدير

 تبسة ،
اتذه المحترمين ولا ننسى تقديم الشكر الجزيل لكل الاس

 . الشيخ العربي التبسي تبسة والاستاذات بجامعة
  



  

 

 

 اهداء

الى كل من وقف معنا و ساندنا من قريب او من بعيد نقول شكرا دمتم 

 في حياتنا ........

زادتنا محاولاتكم الفاشلة تحفيزا و الى كل من خاول تثبيطنا .... 

 اصرار على الوصول ........

الى اصحاب الدعوات البريئة لنا بالنجاح ....... وفقكم الله و زادكم 

 علما و أدبا ...... 

 الى كل من ساعدنا في اتمام هده المدكرة : نور الدين , عماد , دعاء 

لعلمياسأل الله لكم كل التوفيق و النجاح في مشواركم ا  

  حديفة و حمزة 

  



 

 

Abstract 

 
         In this work, we consider the problem of 
the synchronization between the fractional-
order chaotic system and the chaotic system of 
integer order. Based on suitable controllers and 
the stability theory of linear integer order 
systems, the synchronization between the 
fractional-order chaotic system and the chaotic 
system of integer order is achieved. Finally, The 
corresponding simulation results are provided 
to demonstrate the effectiveness of the 
proposed method in Matlab. 
Keywords:  Dynamical system, chaos, strange 
attractor, chaotic system Integer-order system, 
Fractional-order system, Controllers, 
Synchronization 

 



 

 

Resumé 

      Dans ce travail, nous considérons le 
problème de la synchronisation entre le 
système chaotique d'ordre fractionnaire et le 
système chaotique d'ordre entier.  
Sur la base de contrôleurs appropriés et de la 
théorie de la stabilité des systèmes linéaires 
d'ordre entier, la synchronisation entre le 
système chaotique d'ordre fractionnaire et le 
système chaotique d'ordre entier est réalisée.  
Enfin, les résultats de simulation 
correspondants sont fournis pour démontrer 
l'efficacité de la méthode proposée dans 
Matlab. 
Mots clés : Système dynamique, chaos, 
attracteur étrange, système chaotique, Système 
d'ordre entier, Système d'ordre fractionnaire, 
Contrôleurs, Synchronisation. 

 
 

 

 

 



 

 

 الملخص 

 

 

تطرقنا إلى مشكلة مزامنة  العمل، في هذا       

الكسرية و  الرتب ذات الفوضوية   الأنظمة الحركية 

خلال إيجاد قانون تحكم معين وتطبيق الصحيحة، من 

نظرية استقرار خاصة بالأنظمة الحركية الخطية ذات 

 الرتب الصحيحة.

 المحاكاة باستخدام النتائج من في الأخير، تم التحقق

 خلال إستعمال برنامج ماتلاب. العددية من

جاذب غريب، نظام ديناميكي، فوضى،   الكلمات المفتاحية:

 نظام حركي برتب صحيحة، نظام حركي برتب كسرية

 
. 
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General Introduction

In 1963, Lorenz identified the first three-dimensional chaotic system [43], and since then, many

more have been discovered, including the Rossler system, Chen system, Liu system, Zhu system,

Sprott system, and Vaidyanathan system, and others. Chaos has been researched in science,

mathematics, engineering, and a variety of other fields as a significant nonlinear phenomena.

Because of its potential uses in a variety of industries.

Chaos synchronization is an interesting phenomenon of nonlinear dynamical systems and it

may occur when two or more chaotic systems are coupled or one chaotic system drives the other.

The synchronization of chaotic systems was rst given by Pecora and Carroll [28] in 1960, and after

which it has been intensively studied due to its potential applications in various elds viz., ecolo-

gical system, physical system, chemical system, secure communications etc [24 − 35]. In recent

years various types of synchronization have been investigated such as complete synchronization,

anti-synchronization, lag synchronization, adaptive synchronization, projective synchronization,

function projective synchronization etc [19 − 32] and also di erent schemes have been success-

fully applied to chaos synchronization viz., linear and nonlinear feedback control method, active

control method, adaptive control method, sliding mode control method, backstepping method,...

etc.

In recent years, fractional order systems have become a hot research field demonstrated by

many researchers such as[24 − 27]. Synchronization of chaos in fractional order differential sys-

tems has attracted increasing attention due to its powerful potential applications in different fields

such as in secure communication, telecommunications, cryptography[14 − 33]. Several types of

synchronization methods have been proposed and developed for fractional order systems. These

include, adaptive control [29], sliding mode control[25 − 32], active control technique [15 − 19],

function projective synchronization [38] and modified projective synchronization[10], hyprid pro-

jective synchronization [41], and others. However, the results in synchronization between the

fractional-order systems and the integer-order systems are limited because they have not been
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extensively studied. Up to now, only a few works have been given to investigate this kind of

synchronization, such as in[18− 36].

In this work, we consider the problem of the synchronization between the fractional-order

chaotic system and the chaotic system of integer order. Based on suitable controllers and the

stability theory of linear integer order systems, the synchronization between the fractional-order

chaotic system and the chaotic system of integer order is achieved. Finally, The corresponding

simulation results are provided to demonstrate the effectiveness of the proposed method in Mat-

lab.

The following three chapters make up this thesis:

In Chapter 1, we give some definitions and prelimanaries about: dynamical systems , Chaos,

Choatic systems, synchronization and types of synchronization. Also,Basic definitions and prop-

erties of fractional derivative are given with numerical method for solving fractional differential

equations.

In chapter 02, we have discussed some examples of integer orders and fractional orders cho-

atic systems.

In chapter 3, we present the study of the synchronization between two 3D and 4D fractional-

integer orders chaotic systems .

2



Chapter 1

Preliminaries

1.1 Introduction

In Chapter, we introduce some prelimanaries about dynamical systems and Chaos theory, Choatic

systems, synchronization and types of synchronization. Also,Basic definitions and properties of

fractional derivative are given with numerical method for solving fractional differential equations.

1.2 Dynamic systems

Dynamical systems represent phenomena that evolve in space and/or time. They are developed

and specialized during the nineteenth century.These systems come from Biology, Physics,Chemistry,or

the social sciencesthe. dynamic system is the subject that provides mathematical tools for its ana-

lysis. its classified into two categories: Discrete time dynamic system

and Continuous time dynamic system.

1.2.1 Continuous dynamic systems

A dynamic system in a continuous time is represented by a system of different equations of the

form:

x·t = k(x, t) ; x ∈ Rn, t ∈ R+

with K : Rn ×R+ → Rn denotes the dynamics of the system.

3



Chapter 1. Preliminaries

1.2.2 Discrete dynamic systems

If a system only takes its values at regularly distributed points, it is said to be discrete or merely

discrete [46] Its mathematical representation is given as follows.:{
x(k + 1) = f(x(k)),

x(k0) = x(0),

with k is a discrete momen, k0 is the first discrete time and x(0) is the vector of initial states

1.3 Phase portrait

Our first approach to chaos has made us realize the difficulty of finding exact solutions or even

approaching nonlinear equations and this brings us the search for a representation that would

allow us more simply access quality solutions. This is what presents the space of the phases [22]:

It consists of an abstract space containing concrete information in geometric form. The variables

that are the basis of the construction of this space are real quantities and each point corresponds

to a well-determined physical situation . The space must contain any information on the dynamics

of the studied system.

1.4 The Poincaré section

It is a tool frequently used to study dynamic systems and in particular periodic trajectories. Mak-

ing a section of Poincaré cuts the trajectory in the space of the phases, in order to study the

intersections of this trajectory (in dimension three, for example), with a plane. We then spend a

continuous time dynamic system a discrete time dynamic system. Mathematicians have of course

demonstrated that the properties of the system are preserved after the realization of a section

of Poincaré judiciously chosen. Using this method, the dimension d of the initial problem in the

form of a differential system is reduced by one unit with the application in dimension d− 1

1.5 Chaos

The logistic map exhibits in stunning fashion a phenomenon which, for most functions, is only

partially understood: the chaotic behavior of orbits of a dynamical system. There are many

possible definitions of chaos, ranging from measure-theoretic notions of randomness in ergodic

1.3. Phase portrait 4



Chapter 1. Preliminaries

theory to the topological approach we will adopt here. Before we define chaos, we have to have

some preliminary definitions (see[30]).

Definition 1.1 A dynamic system is called a chaotic system if there is at least one chaotic attractor.

Definition 1.2 A dynamic system is called a chaotic system if is has at least one positif Lyapunouv

exponents.

1.6 Properties of chaotic systems

There is a set of properties that summarize the characteristics observed in chaotic systems. They

are considered as mathematical criteria which dene chaos. The most popular are:

Definition 1.3 Let V be a set. f : V → V is said to be chaotic on V if f has the following three

properties:

1· f has sensitive dependence on initial conditions

2· The periodic points of f are dense in V

3· f is topologically transitive

Definition 1.4 f : J → J is expansive if there exists v > 0 such that, for any x, y ∈ J , x 6= y ,

there exists n ≥ 0 such that |fn (x)− fn (y)| > v.

Expansiveness differs from sensitive dependence in that all nearby points eventually separate by

at least v

Definition 1.5 aU of V subset is dense inV if U = V

1.6.1 No periodicity

A system of chaotic behaviour develops into an orbit that never repeats itself.That is, orbits are

never periodic

1.6.2 determinism

Determinism means that the system is nonrandom and does not have stochastic or input para-

meters. This property is proper to all systems whose evolution is defined by a set of differential

equations or equations to differences. In the phenomenal randoms, it is absolutely impossible to

predict the trajectory of any particle. On the contrary, and though they appear,

1.6. Properties of chaotic systems 5



Chapter 1. Preliminaries

At first sight, chaotic dynamical systems are governed by some equations representing the

phenomenal, but whose solutions are sensitive to the initial conditions . The irregular behaviour

observed in chaotic systems is due to the intrinsic non-linearity of the system rather than noise .

1.6.3 broadband spectrum

The Fourier spectrum for a chaotic signal is a broadband spectrum, similar to white noise . Figure

(1.2) presents the spectrum of logistical function evolving in a chaotic regime

1.6.4 The strange attractor

Trajectories of a chaotic dynamic system are attracted to a so-called strange attractor. The latter

is characterized by:

a)-a zero volume

b)-exponentially rapid separation of the original near trajectories;

c)- fractale dimension (non integer) The creation of a strange attraction is related to the

existence of two processes:

-Stretching, responsible for instability and sensitivity to initial conditions

-The folding, responsible for the strange and fractal side of the attractor.

1.7 Synchronization

1.7.1 Synchronisation Methodes

This section is devoted to the presentation of various methods of synchronization most efficient

and the most encountered

Definition 1.6 synchronization between tow system if the trajectory of the response system trakes

the trajectory of the drive system in time

Definition 1.7 Let ẋ = F (x; t) be the drive (chaotic, hyperchaotic) system, and ẏ = G (y; t) + U

be the response system, where x = (x1 (t) , x2 (t) , ..., xn (t))T , y = (y1 (t) , y2 (t) , ..., ym (t))T , U =

(u1, u2, ..., un)T is a controller to be determined later.

• Synchronization is achieved if lim
t→+∞

‖e‖ = 0, e ∈ Rn with e = y − x,

• Anti-synchronization is occur if lim
t→+∞

‖e‖ = 0, e ∈ Rn with e = y + x,

1.7. Synchronization 6
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• Function projective synchronization is achieved if lim
t→+∞

‖e‖ = 0, e ∈ Rn with e = y−h (x)x,

h (x) = (h1 (x1) , h2 (x2) , ..., hn (xn)) ,

• Inverse function projective synchronization is achieved if lim
t→+∞

‖e‖ = 0, e ∈ Rn with e =

y − h (y) y, h (x) = (h1 (y1) , h2 (y2) , ..., hn (yn)) ,h is a scaling function matrix.

1.7.2 Active control Method

The application of active control for the synchronization of chaotic systems, was proposed by

Bai and Lonngren [15], it is an effective technique which has shown its power not only for the

synchronization of identical systems, but also for the synchronization of non-identical systems.

Moreover, this method offers a remarkable simplicity for the implementation of the algorithm

[24, 25]. Consider two chaotic systems to be synchronized, master and slave, defined by:

dx(t)

dt
= F (x(t)), (1.1)

and
dy(t)

dt
= G(y(t)) + U, (1.2)

where x, y ∈ C1(R,Rn), are the states of the master and slave systems, respectively F : Rn → Rn,
G : Rn → Rn, and U = (ui)1≤i≤n, is a controller to be determined. For the two systems to

synchronize, the error between the trajectories of the two systems must converge towards zero

when time tends towards infinity. This error is obtained as follows:

e(t) = y(t)− x(t), (1.3)

so the error system is given by

de(t)
dt

= dy(t)
dt
− dx(t)

dt

= G(y(t))− F (x(t)) + U.
(1.4)

If we can write the quantity G(y(t))− F (x(t)) as follows:

G(y(t))− F (x(t)) = Ae(t) +N(x(t), y(t)), (1.5)

the error system can be expressed as follows:

de(t)

dt
= Ae(t) +N(x(t), y(t)) + U, (1.6)

1.7. Synchronization 7
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where A ∈ Rn×n is a constant matrix and N a nonlinear function. The controller U is offered as

follows:

U = V −N(x(t), y(t)), (1.7)

where V is the active controller, defined by:

V = −Le(t), (1.8)

where L is an unknown control matrix. We therefore obtain the final formula for the error:

de(t)

dt
= (A− L)e(t). (1.9)

So the problem of synchronization between the master system (1, 1) and the slave system (1, 2)

is transformed into a problem of zero-stability of the system (1, 9). Now, the following Theorem

is an immediate result of the theory of the stability of discrete linear dynamical systems.

Theorem 1.1 The master system (1, 1) and the slave system (1, 2) are globally synchronized under

the control law (1, 7), if and only if the control matrix L is chosen such that the real part of the

eigenvalues of A− L is negative

1.8 Fractional calculus

Basic definitions and properties of fractional derivative/integrals are given below [2, 14, 31].

Definition 1.8 A real function f (x), t > 0 is said to be in space Cα, α ∈ R if there exists a real

number p (> α) , such that f (t) = tpf1 (t) where f1 (t) ∈ [0,∞).

Definition 1.9 A real function f (x), t > 0 is said to be in space Cm
α , m ∈ N

⋃
{0}if f (m) ∈ Cα.

Definition 1.10 Let f ∈ Cα and α ≥ −1, then the (left-sided) Riemann–Liouville integral of order

µ, µ > 0 is given by

Iµf (t) =
1

Γ (µ)

t∫
0

(t− τ)µ−1 f (τ) dτ , t > 0 (1.10)

Definition 1.11 The Caputo fractional derivative of f (t) is given as:-The Caputo fractional derivative

of f(t) is given as:

Dq
t f (t) =

1

Γ (n− q)

t∫
0

f (n) (τ)

(τ − n)q−n+1
dτ ,

1.8. Fractional calculus 8
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for n− 1 < q ≤ n, n ∈ N, t > 0.Γ(·) is the gamma function.

Definition 1.12 The Laplace transform formula for the Caputo fractional derivative is as follows:

L (Dq
t f (t)) = sqF (s)−

n−1∑
k=0

sq−k−1f (n) (0) , (q > 0, n− 1 < q ≤ n )

Particularly, when 0 < q ≤ 1, we have:

L (Dq
t f (t)) = sqF (s)− sq−1f (0)

Also, The Laplace transform of the fractional integral of order Qsatisfies:

L(D−qt f(t)) = s−qF (s) , (q > 0)

with F (s) = L(f(t))

1.9 Stability of fractional order systems

In the stability theory of linear systems with invariant time and derivatives of integer order, we

well know that a system is stable if the roots of the polynomial cacharacteristic are strictly negative

real parts, therefore they located on the left half of the complex plan. Moreover, in the case of

linear fractional systems in time invariant, the definition of stability is different from integer-

order systems. Indeed, fractional or non-integer order systems can have roots in half right of the

complex plane and be stable. The most well-known stability criterion for non-integer systems

is that of Matignon.In particular, it relates, in to commensurable non-integer systems of order

α including between 0 and 2. This criterion is based on the study of poles. Let the following

dierential system be :
cDαx(t) = f(t;x(t)); (1.11)

where 0 < α < 1;x = (x1, ..., xn) T ∈ Rn; f : R × Rn → Rn a continuous function and
cDαdenotes the derivative of Caputo.

1.9.1 Equilibrium point

Let’s take the system (1.2), with initial condition x(t0) = x0.To evaluate the equilibrium points of

the system (1.2), it suffices to solve the equation :cDαx(t) = 0

If xε is a solution of the equation, then :

1.9. Stability of fractional order systems 9



Chapter 1. Preliminaries

f(xε) = 0

1.9.2 Stability of autonomous linear systems.

In this section, the stability of an autonomous linear fractional differential system is studied.

D.Matignon gave in his article in 1996 the following theorem, we start by giving a stability result

in the very simple case of a commensurable autonomous linear fractional differential system.

Theorem 1.2 The following fractional-order autonomous linear system :{
Dαx(t) = Ax(t)

x(t0) = 0
(1.12)

such as : x ∈ Rn, 0 < α < 1and A ∈ Rn ×Rn

is locally asymptotically stable if and only if : |arg (λi)|>απ2 for everything i = 1, 2, ..., n.

This system is stable if and only if : |arg (λi)|>απ2 for everything i = 1, 2, ..., n. and the critical

eigenvalues that satisfy |arg (λi)| = απ
2

have geometric multiplicity1,where λi , i = 1, 2, ..., n.are

the eigenvalues of the matrix A.

An extension of this theorem to the case 1 < α < 2 was given as follows :

Theorem 1.3 The system (1.12)is locally asymptotically stable if and only if

|arg (λi)|>απ2 for everythingi = 1, 2, ..., n.and 1 < α < 2.

Corollary 1.1 Suppose that α1 6= α2 6= α3 6= ... 6= αn and all α i’s are numbers rational between

0and 1.Let m be the least common multiple of the denominators ui of αi (i = 1, 2, ..., n)where

αi= vi
ui

; vi and ui ∈ Z+with i = 1, 2, ..., n and by posing ρ = 1
m

so the system (1.12) is asymptot-

ically stable if |arg (λi)|>ρπ2 ,

for all the roots λ of the following characteristic equation :

det(diag([λmα1 , ..., λmαn ])− A) = 0.

This corollary says that in the case of rational orders the characteristic equation can be trans-

formed into an integer-order polynomial equation.

1.9. Stability of fractional order systems 10
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1.10 Numerical method for solving fractional differential equa-

tions

Numerical methods used for solving ODEs have to be modified for solving fractional differential

equations (FDE). A modification of Adams–Bashforth–Moulton algorithm is proposed by Dieth-

elm. To solve FDEs. Consider for α ∈ (m− 1,m] the initial value problem (IVP)

Dαy (t) = f (t, y (t)) , 0 ≤ t ≤ T, (1.13)

y(k) (0) = y
(k)
0 , k = 0, 1, ...,m− 1. (1.14)

The IVP (1.13) and (1.14) is equivalent to the Volterra integral equation

y (t) =
m−1∑
k=0

y
(k)
0

tk

k!
+

1

Γ (α)

t∫
0

(t− τ)α−1 f (τ , y (τ)) dτ . (1.15)

Consider the uniform grid {tn = nh/n = 0, 1, ..., N} for some integer N and h := T/N. Let yh (tn)

be approximation to y (tn). Assume that we have already calculated approximations yh (tj) , j =

1, 2, ..., n and we want to obtain yh (tn+1) by means of the equation

yh (tn+1) =
m−1∑
k=0

tkn+1
k!

y
(k)
0 +

hα

Γ (α + 2)
f (tn+1, y

p
h (tn+1)) (1.16)

+
hα

Γ (α + 2)

n∑
j=0

aj,n+1f (tj, yn (tj)) , (1.17)

Where

aj,n+1 =


nα+1 − (n− α) (n+ 1)α , if j = 0

(n− j + 2)α+1 + (n− j)α+1 − 2 (n− j + 1)α+1 , if 1 ≤ j ≤ n,

1, if j = n+ 1.

The preliminary approximation yph (tn+1) is called predictor and is given by

yph (tn+1) =
m−1∑
k=0

tkn+1
k!

y
(k)
0 +

1

Γ (α)

n∑
j=0

bj,n+1f (tj, yn (tj)) (1.18)

1.10. Numerical method for solving fractional differential equations 11
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where

bj,n+1 =
hα

α
((n+ 1− j)α − (n− j)α) . (1.19)

Error in this method is

max
j=0,1,...N

|y (tj)− yh (tj)| = O (hp) , (1.20)

where p = min (2, 1 + α) .

1.11 Chaos synchronization between fractional order Lorenz

and Liu system

In this section, we study the synchronization between the fractional order Lorenz and Liu systems.

1.11.1 Systems description for chaos synchronization

The fractional order Lorenz system is described by
Dαx = σ (y − x) ,

Dαy = rx− y − xz,
Dαz = xy − µz,

(1.21)

where σ = 10 is the Prandtl number, r = 28 is the Rayleigh number over the critical Rayleigh

number and µ = 8/3 gives the size of the region approximated by the system. The minimum

effective dimension for this system is 2.97. A fractional version of the chaotic system by Liu et al

is studied in [20] described by: 
Dαx = −ax− ey2,
Dαy = by − kxz
Dαz = −cz +mxz,

(1.22)

where a = 1, e = 1, b = 2.5, k = 4, c = 5, m = 4.The lowest value of α for which the system

exhibits chaos is given by 0.92 [20].

1.11. Chaos synchronization between fractional order Lorenz and Liu system 12
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1.11.2 Fractional order Lorenz and Liu system synchronization via active

control

Assuming that the Lorenz system drives the Liu system, we define the drive (master) and response

(slave) systems as follows: 
Dαx1 = σ (y1 − x1) ,

Dαy1 = rx1 − y1 − x1z1,
Dαz1 = x1y1 − µz1,

(1.23)

and 
Dαx2 = −ax2 − ey22 + u1 (t) ,

Dαy2 = by2 − kx2z2 + u2 (t) ,

Dαz2 = −cz2 +mx2z2 + u3 (t) .

(1.24)

The unknown terms u1, u2, u3 in (1.23) are active control functions to be determined. Define

the error functions as:

e1 = x2 − x1, e2 = y2 − y1, e3 = z2 − z1. (1.25)

Eq. (1.23) together with (1.23) and (1.24) yields the error system:
Dαe1 = −ae1 − ax1 − ee22 − 2ee2y1 − ey21 − α (y1 − x1) + u1 (t) ,

Dαe2 = be2 + by1 − ke1 (e3 − z1)− kx1 (z1 + e3) + y1 + x1 (z1 − r) + u2 (t) ,

Dαe3 = −ce3 − cz1 +me1 (e2 + y1) +mx1 (y1 + e2) + µz1 − x1y1 + u3 (t) .

(1.26)

We define active control functions ui (t) as:
u1 (t) = V1 (t) + ax1 + ee22 + 2ee2y1 + ey21 + α (y1 − x1) ,

u2 (t) = V2 (t)− by1 + ke1 (e3 − z1) + kx1 (z1 + e3)− y1 − x1 (z1 − r) ,
u3 (t) = V3 (t) + cz1 −me1 (e2 + y1)−mx1 (y1 + e2)− µz1 + x1y1.

(1.27)

The terms Vi (t) are linear functions of the error terms ei (t). With the choice of ui (t) given by

(1.26) the error system (1.27) becomes:
Dαe1 = −ae1 + V1 (t)

Dαe2 = be2 + V2 (t)

Dαe3 = −ce3 + V3 (t)

(1.28)

The control terms Vi (t) vare chosen so that the system (1.28) becomes stable. There is not a

unique choice for such functions.

1.11. Chaos synchronization between fractional order Lorenz and Liu system 13
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We choose: 
V1

V2

V3

 = A


e1

e2

e3

 , (1.29)

where A is a 3 × 3 real matrix, chosen so that for all eigenvalues λi of the system (1.28) the

condition

|arg (λi)| > απ/2 (1.30)

is satisfied.

If we choose

A =


a− 1 0 0

0 −1− b 0

0 0 c− 1

 (1.31)

then the eigenvalues of the linear system (1.28) are −1,−1 and −1. Hence the condition (1.30) is

satisfied for α < 2. Since we consider only the values α ≤ 1, we get the required synchronization.

1.11.3 Simulation and results

Parameters of the Lorenz system are taken as σ = 10, r = 28, µ = 8/3 and Liu system as a = 1,

e = 1, b = 2.5, k = 4, c = 5, m = 4. The fractional order α is taken to be 0.99 for which both

the systems are chaotic. The initial conditions for drive and response system are x1 (0) = 10,

y1 (0) = 5, z1 (0) = 10, and x2 (0) = 0.2, y2 (0) = 0, z2 (0) = 0.5, respectively. Initial conditions for

the error system are thus e1 (0) = −9.8, e2 (0) = −5, e3 (0) = −9.5. The errors ei (t) for the drive

1.11. Chaos synchronization between fractional order Lorenz and Liu system 14
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and response system are shown in Fig. (1.1).

Figure1.1Time-History of the synchronization

errors ei(t)

1.12 Conclusion

This Chapter, contain some prelimanaries about dynamical systems and Chaos theory, Choatic

systems, synchronization and types of synchronization. Also,Basic definitions and properties of

fractional derivative are given with numerical method for solving fractional differential equations.

1.12. Conclusion 15



Chapter 2

Examples of chaotic system of integer

orders and fractional orders

2.1 Introduction

In this Chapter, we give some integer orders and fractional orders chaotic systems in 3d.

Example 2.1 Condider the following integer-order Bhalekar system describs the drive system:[4]


ẋ1 = −x22 − αx1
ẋ2 = b(x3 − x1)
ẋ3 = cx2 − x3 + x1x2

(2.1)

were x = (x1, x2, x3) is the system state vertor α, b, c are real parameters . It exhibits chaotic

attractor for : α = 2.667, b = 10, c = 27.3 The projection of the chaotic attractor which is shown

16
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in fig 1

Figure2.1 :2D view of the chaotic attractor of

system (2,1) in (x1, x2) plane.

Figure 2.2 : Projection on (x2, x3) plane of the

chaotic attractor of system (2,1).

2.1. Introduction 17
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Figure 2.3 :Projection on (x1, x3) plane of the

chaotic attractor of system (2,1).

Example 2.2 Condider the following integer-order Zhang system describs the drive system:[44]


ẋ1 = −2x1 + 10x2x3

ẋ2 = −6x32 + 3x1x3

ẋ3 = 3x3 − x1x2

(2.2)

were x = (x1, x2, x3) is the system state vertor α, b, c are real parameters . It exhibits chaotic

attractor for α = −2, b = −6, c = 27.3.

2.1. Introduction 18
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Figure 2.4 :Projection on (x2, x3) plane of the

chaotic attractor of system (2,2).

Figure 2.5 :3D view of the chaotic attractor of

system (2,2) in (x1, x2, x2) plane.

Example 2.3 the fractional order Lotka-Voltra system is given as :

2.1. Introduction 19
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Dq1
t x1 = c1x1 − c2x1x2 + c5x

2
1 − c6x3x21

Dq2
t x2 = −c3x2 + c4x1x2

Dq3
t x3 = −c3x3 + c6x3x

2
1

(2.3)

this system shows chaotic behavior and the choatic attractor of the system is obtained for the

values of the parameters c1 = c2 = c3 = c4 = 1, c5 = 2, c6 = 2.7, ct = 3 and initial condition

(1, 1.4, 1) and q = 0.95.

F igure 2.6 :Projection on (x1, x2) plane of the

chaotic attractor of system (2,3).

2.1. Introduction 20
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Figure 2.7 :Projection on (x1, x3) plane of the

chaotic attractor of system (2,3).

Figure 2.8 :Projection on (x2, x3) plane of the

chaotic attractor of system (2,3).

2.1. Introduction 21
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Figure 2.9 :3d view of the chaotic attractor of

system (2,3).

Example 2.4 the fractional order Newton leipnik system [21] was first studied in the year 2008

which is given by: 
Dq1
t x = −α1x+ y + 10yz

Dq2
t y = −x− 0.4y + 5xz

Dq3
t z = α2w − 5xy.0 < q < 1.

(2.4)

where α1 and α2 are the variable parameters and α2 ∈ (0, 0.8). the chaotic attractor projections of

this system are shown in figs. 10-14 for (α1, α2) = (0.40.175), q1 = q2 = q3 = 0.96, and initial

conditions (x0, y0, z0) = (0.19, 0,−0.18) .

2.1. Introduction 22
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Figure 2.1: Figure 2.11 :Projection on (x, z) plane of the chaotic attractor of system (2,4).

Figure 2.10 :Projection on (x, y) plane of the

chaotic attractor of system (2,4).

2.1. Introduction 23
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Figure 2.12 :3D view of the chaotic attractor of

system (2,4).

2.2 Conclusion

This Chapter, contains some integer orders and fractional orders chaotic systems in 3d.

2.2. Conclusion 24



Chapter 3

Synchronization of two chaotic systems of

integer order and fractional order

3.1 Introduction

In this chapter, we study the synchronization between the fractional-order chaotic system and the

chaotic system of integer order in detail. We design suitable sub-controllers to achieve synchron-

ization by using stability criteria of the integer-order linear system. Finally, the simulation results

demonstrate the effectiveness of the proposed scheme.

3.1.1 Problem formulation

We consider the drive system given by:

ẋi (t) = fi (X (t)) , i = 1, ..., n. (3.1)

Where: X(t) = (x1, x2, ..., xn)T is the state vector of the system (3, 1), fi : Rn → Rn, for i = 1, ..., n

are nonlinear functions, and as response system the system given by:

Dqi
t yi (t) =

n∑
j=1

bijyj (t) + gi (Y (t)) + Vi, i = 1, ..., n. (3.2)

Where: Y (t) = (y1, y2, ..., yn)T is the state vector of the system (3, 2), gi : Rn → Rn, for i =

1, ..., n are nonlinear functions,0 < qi < 1,Dqi
t is the Caputo fractionnal derivative of order qi for

i = 1, ..., n, Vi are controllers to be designed such as the system (3, 1)and the system (3, 2) to be

synchronized.

25
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3.2 Synchronization of fractionel-integer order systems (3,1)

and (3,2)

We decompose the controller Vi ,i = 1, ..., n, into two sub-controllers Ui and Uii i.e., Vi = Ui + Uii

for i = 1, ..., n, and propose the following form for the sub-controller Ui given by:

Ui =
(
Dqi−1
t − 1

)
(
n∑

j=1

bijyj (t) + gi (Y (t)) , i = 1, ..., n. (3.3)

By using (3, 3), we can rewrite the slave system (3, 2) as follows:

Dqi
t yi (t) = Dqi−1

t

(
n∑
j=1

bijyj (t) + gi (Y (t))

)
+ Uii, i = 1, ..., n. (3.4)

Applying a Laplace transform to the system (3, 4), we find:

sqiYi (s)− sqi−1yi (0) = sqi−1L

(
n∑
j=1

bijyj (t) + gi (Y (t))

)
+ L (Uii) , i = 1, ..., n. (3.5)

with Yi(s) = L(yi(t)). Multipling both sides of (9) by s−(qi−1) and appling the inverse Laplace

transform to the result:

L−1 (sYi (s)− yi (0)) =

(
n∑
j=1

bijyj (t) + gi (Y (t))

)
+ L−1

(
s−(qi−1) L (Uii)

)
, i = 1, ..., n. (3.6)

then

L−1 (L (Dt (yi (t)))) =

(
n∑
j=1

bijyj (t) + gi (Y (t))

)
+ L−1

(
s−(qi−1) L (Uii)

)
, i = 1, ..., n. (3.7)

By using the last propierty in lemma 2 we obtain:

Dt (yi (t)) =

(
n∑
j=1

bijyj (t) + gi (Y (t))

)
+D1−qi

t (Uii) , i = 1, ..., n. (3.8)

then the problem synchronization (any type of synchronization) between the fractionnel-integer

order systems (3, 1) and (3, 2) is reduce to another one between two integer-order systems (3, 1)

3.2. Synchronization of fractionel-integer order systems (3,1) and (3,2) 26
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and (3, 8). The state errors for (3,1) and (3,8) is:

ei = yi − xi, i = 1, ..., n. (3.9)

Consequently, the error dynamic system is given by:{
ėi =

(
n∑
j=1

bijyj (t) + gi (Y (t))

)
+D1−qi

t (Uii)− fi (X (t)) , i = 1, ..., n. (3.10)

In view of (3, 10), we propose the sub-controller Uii in the form:

Uii = Dqi−1
t

(
fi (X (t))−

n∑
j=1

bijxj (t)− gi (Y (t))−
n∑
j=1

cijej (t)

)
, i = 1, ..., n. (3.11)

Theorem 3.1 If we select the control matrix C such that B − C is negative, then the two systems

(3, 1) and (3, 2) are globally synchronized under the controllers (3, 3) and (3, 11).

Proof. By inserting (3, 11) into (3, 10), we get:

ėi =

(
n∑
j=1

bij− cij

)
ej, i = 1, ..., n. (3.12)

The system (3, 12) can expresed in matricial form as follows:

ė = (B − C) e (3.13)

where: B = (bij), C = (cij) two n × n matrices and e = (e1, e2, ..., en)T is the errors vector of the

system. If we chose matrix C such that B − C is negative hence all the eigenvalues λi, i = 1, 2, 3.

of (B −C) stay in the left-half plane i.e., Re(λi) < 0, which ensures according with the Lyapunov

stability theory [12], that errors system (3, 13) is asymptotically stable i.e., lim
t→+∞

‖e‖ = 0, e ∈ R3

with e = y − x. Hence the synchronization between the system (3, 1) and the system (3, 2) is

achieved. This completes the proof.

3.3 Exemple in 3D

Consider the following integer-order hyper chaotic Tuna dynamical system as a drive system :

3.3. Exemple in 3D 27
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x·1 = x2(x3 − 1.3)

x·2 = −x1(x3 + 1.3)

x·3 = −x2(1.3x1 − x2)− 4(x3 − 1.3)

(3.14)

where : x = (x1,x2, x3) is the system state vector, a, b, c, d are real parameters. It exhibits chaotic

attractor for ; a = b = c = 1.3; d = 4; r = 5.2 As response system ;we consider the controlled

fractional order choatic system[5] given by :
Dq1
t y1 = ay1 − y2y3 + v1

Dq2
t y2 = −by2 + y1y3 + v2

Dq3
t y3 = c− y3 + y1y2 + dy3y2 + v3

(3.15)

where : y = (y1, y2, y3) is the system state vector, a, b, c, d are real parameters. when : a = 0.7, b =

0.1, c = 0.001, d = 0.1 , this system exhibits chaotic attractor.
U1 = (Dq1−1 − 1)(0.7y1 − y2y3)
U2 = (Dq2−1 − 1)(−0.1y2 + y1y3)

U3 = (Dq3−1 − 1)(0.001− y3 + y1y2 + 0.1y3y2)

(3.16)

so the response system can be rwitten as followes :
Dq1
t y1 = 0.7y1 − y2y3 + U1 + U11

Dq2
t y2 = −0.1y2 + y1y3 + U2 + U22

Dq3
t y3 = 0.001− y3 + y1y2 + 0.1y3y2 + U3 + U33

(3.17)


Dq1
t y1 = 0, 7y1 − y2y3 − 0.7 + y2y3 +Dq1−1

t (0.7y1 − y2y3) + U11

Dq2
t y2 = −0.1y2 + y1y3 + 0.1y2 − y1y3 +Dq2−1(−0.1y2 + y1y3) + U22

Dq3
t y3 = 0.001− y3 + y1y2 + 0.1y3y2 − 0.001 + y3 − y1y2 − 0.1y3y2

+Dq3−1
t (0.001− y3 + y1y2 + 0.1y3y2) + U33

(3.18)


Dq1
t y1 = Dq1−1

t (0.7y1 − y2y3) + U11

Dq2
t y2 = Dq2−1(−0.1y2 + y1y3) + U22

Dq3
t y3 = Dq3−1

t (0.001− y3 + y1y2 + 0.1y3y2) + U33

(3.19)


L [Dq1

t y1] = L
[
Dq1−1
t (0.7y1 − y2y3)

]
+ L [U11]

L [Dq2
t y2] = L [Dq2−1(−0.1y2 + y1y3)] + L [U22]

L [Dq3
t y3] = L

[
Dq3−1
t (0.001− y3 + y1y2 + 0.1y3y2)

]
+ L [U33]

(3.20)
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Sq1y1(s)− Sq1−1y1(0) = Sq1−1L(0.7y1 − y2y3) + L(U11)

Sq2y2(s)− Sq2−1y2(0) = Sq2−1L(−0.1y2 + y1y3) + L(U22)

Sq3y3(s)− Sq3−1y3(0) = Sq3−1L(0.001− y3 + y1y2 + 0.1y3y2) + L(U33)

(3.21)

Multiply both sides by : S−qi+1, i = 1, 3 :


L−1 {sy1(s)− y1(0)} = L−1L(0.7y1 − y2y3) + L−1(S−q1+1L(U11))

L−1 {Sy2(s)− y2(0)} = L−1L(−0.1y2 + y1y3) + L−1(S−q2+1L(U22))

L−1 {Sy2(s)− y2(0)} = L−1L(0.001− y3 + y1y2 + 0.1y3y2) + L−1(S−q3+1L(U33))

(3.22)


Dt(y1 (t)) = 0.7y1 − y2y3 +D1−q1(U11)

Dt(y2 (t)) = −0.1y2 + y1y3 +D1−q2(U22)

Dt(y3 (t)) = 0.001− y3 + y1y2 + 0.1y3y2 +D1−q3(U33)

(3.23)

So the state errors are:


e·1 = 0.7y1 − y2y3 +D1−q1(U11)− x2(x3 − 1.3)

e·2 = −0.1y2 + y1y3 +D1−q2(U22)− x1(x3 + 1.3)

e·3 = 0.001− y3 + y1y2 + 0.1y3y2 +D1−q3(U33)− (−x2(1.3x1 − x2)− 4(x3 − 1.3))

(3.24)

we set:

U11 = Dq1−1(x2x3 − 1.3x2 − 0.7x1 + y2y3 −
3∑
i=1

Cijej(t)),

U22 = Dq2−1

[
(−x1x3 − 1.3x1) + 0.1x2 − y1y3)−

3∑
i=1

Cijej(t)

]

U33 = Dq3−1

[
(−1.3x1x2 + x22 − 4x3 + 5.2) + x3 − y1y2 − 0.1y3y2 − 0.001−

3∑
i=1

Cijej(t))

]
(3.25)

The state errors is:

ei = yi − xi, i = 1.3 (3.26)
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we obtain:

e·1 = 0.7y1 − y2y3 + (x2x3 − 1.3x2 − 0.7x1 + y2y3

−
3∑
i=1

C1jej(t))− x2(x3 − 1.3)

e·2 = −0.1y2 + y1y3 − x1x3 − 1.3x1 + 0.1x2

−
3∑
i=1

C2jej(t)− y1y3 + x1x3 + 1.3x1

e·3 = 0.001− y3 + y1y2 + 0.1y3y2 + (−1.3x1x2 + x22 − 4x3 + 5.2) + x3 − y1y2 − 0.1y3y2 − 0.001

−
3∑
i=1

Cijej(t))− (−x2(1.3x1 − x2)− 4(x3 − 1.3))

(3.27)

gives: 

e·1 = 0.7e1 −
3∑
i=1

Cijej(t)

e·2 = −0.1e2 −
3∑
i=1

Cijej(t)

e·3 = −e3 −
3∑
i=1

Cijej(t)

(3.28)


e·1

e·2

e·3

 =


0.7− C11 −C12 −C13
−C21 −0.1− C22 −C23
−C31 −C32 −1− C33




e1

e2

e3

 (3.29)

If the gain matrice is chosen as:

C =


1.7 0 0

0 1.9 0

0 0 2


we get: 

e·1

e·2

e·3

 =


0.7− C11 −C12 −C13
−C21 −0.1− C22 −C23
−C31 −C32 −1− C33




e1

e2

e3

 (3.30)

thus, B − C is negative and all the eigenvalues λi, i = 1, 2, 3. of (B − C) stay in the left-half

plane i.e., Re(λi) < 0, which ensures according with the Lyapunov stability theory [12], that

errors system (3, 30) is asymptotically stable i.e., lim
t→+∞

‖e‖ = 0, e ∈ R3 with e = y − x. Hence the

synchronization between the system (3, 10) and the system (3, 15) is achieved. In Figs. 3.1-3.4,
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the synchronization of the states of the master system (3, 19) and slave system (3, 20) is depicted,

when the sub-control laws(3, 25) are implemented.

Figure3.1 : Synchronization of the states x1
and y1

Figure3.2 : Synchronization of the states x2
and y2.
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Figure3.3 : Synchronization of the states x3
and y3

Figure3.4 : Time-History of the

synchronization errors e1(t); e2(t); e3(t).
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3.4 Exemple in 4D

Consider the following integer-order hyper choatic chen dynamical system dexrises the drive

system : 
x·1 = a(x2 − x1) + x4,

x·2 = dx1 − x1x3 + cx2,

x·3 = x1x2 − bx3,
x·4 = x2x3 + 0.5x4,

(3.31)

where : x = (x1, x2, x3, x4) is the system state vector ; a,b,c,d,r are real parameters .it exhibits

hyper chaotic attractor for : a = 35; b = 3; c = 12, d = 7, r = 0.5.

As reponse system : we consider the controlled fractional order hyper choatic lorenz dynam-

ical system given by : 
Dq1y1 = α(y2 − y1) + y4 + u1,

Dq2y2 = γy1 − y2 − y1y3 + u2,

Dq3y3 = y1y2 − βy3 + u3,

Dq4y4 = −y2y3 − ρy4 + u4,

(3.32)

where: y = (y1, y2, y3, y4) is the system state vector α, β, γ, ρ are real parameters, when: α =

10; β = 8
3
; γ = 28; ρ = 1, (u1, u2, u3, u4) = (0, 0, 0, 0), and with fraction orders of the system:

q1 = q2 = q3 = q4 = 0.98, it exhibit hyper -choatic attractor.

The response system can be rewritten as follows :
Dq1y1 = 10(y2 − y1) + y4 + v1 + v11,

Dq2y2 = 28y1 − y2 − y1y3 + v2 + v22,

Dq3y3 = y1y2 − 8
3
y3 + v3 + v33,

Dq4y4 = −y2y3 − y4 + v4 + v44.

(3.33)

According to the above method, the sub-controller v is given as follows:
v1 = (Dq1−1 − 1)(10(y2 − y1) + y4),

v2 = (Dq2−1 − 1)(28y1 − y2 − y1y3),
v3 = (Dq3−1 − 1)(y1y2 − 8

3
y3),

v4 = (Dq4−1 − 1)(−y2y3 − y4),

(3.34)
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so we get
Dq1y1 = 10(y2 − y1) + y4 − 10(y2 − y1)− y4 +Dq1−1(10(y2 − y1) + y4) + v11,

Dq2y2 = 28y1 − y2 − y1y3 − 28y1 + y2 + y1y3 +Dq2−1(28y1 − y2 − y1y3) + v22,

Dq3y3 = y1y2 − 8
3
y3 − y1y2 + 8

3
y3 +Dq3−1(y1y2 − 8

3
y3) + v33,

Dq4y4 = −y2y3 − y4 + y2y3 + y4 +Dq4−1(−y2y3 − y4) + v44,

(3.35)


Dq1y1 = Dq1−1(10(y2−y1) + y4) + v11,

Dq2y2 = Dq2−1(28y1 − y2 − y1y3) + v22,

Dq3y3 = Dq3−1(y1y2 − 8
3
y3) + v33,

Dq4y4 = Dq4−1(−y2y3 − y4) + v44.

(3.36)

By applying the laplace transform , we get :
L{Dq1y1} = L{Dq1−1(10(y2 − y1) + y4)}+ L{v11} ,
L{Dq2y2} = L{Dq2−1(28y1 − y2 − y1y3)}+ L{v22} ,
L{Dq3y3} = L

{
Dq3−1(y1y2 − 8

3
y3)
}

+ L{v33} ,
L{Dq4y4} = L{Dq4−1(−y2y3 − y4)}+ L{v44} ,

(3.37)


Sq1y1(s)− Sq1−1y1(0) = Sq1−1L(10(y2 − y1) + y4) + L{v11} ,
Sq2y2(s)− Sq2−1y2(0) = Sq2−1L(28y1 − y2 − y1y3) + L{v22} ,
Sq3y3(s)− Sq3−1y3(0) = Sq3−1L(y1y2 − 8

3
y3) + L{v33} ,

Sq4y4(s)− Sq4−1y4(0) = Sq4−1L(−y2y3 − y4) + L{v44} .

(3.38)

Multiply both sides by : S−qi+1, i = 1, 4 :
S−q1+1 · Sq1y1(s)− S−q1+1 · Sq1−1y1(0) = S−q1+1 · Sq1−1 · L(10(y2−y1) + y4) + S−q1+1 · L(v11)

S−q2+1 · Sq2y2(s)− S−q2+1 · Sq2−1 · y2(0) = S−q2+1 · Sq2−1 · L(28y1 − y2 − y1y3) + S−q2+1 · L(v22)

S−q3+1 · Sq3 · y3(s)− S−q3+1 · Sq3−1 · y3(0) = S−q3+1 · Sq3−1 · L(y1y2 − 8
3
y3) + S−q3+1 · L(v33)

S−q4+1 · Sq4 · y4(s)− S−q4+1 · Sq4−1y4(0) = S−q4+1 · Sq4−1 · L(−y2y3 − y4) + L(v44)

(3.39)

By applying the inverse laplace transform , we get :
L−1 {S · y1(s)− y1(0)} = L−1L(10(y2 − y1) + y4) + L−1(S−q1+1 · L(v11)),

L−1 {S · y2(s)− y2(0)} = L−1L(28y1 − y2 − y1y3) + L{S−q2+1 · L(v22)} ,
L−1 {S · y3(s)− y3(0)} = L−1L(y1y2 − 8

3
y3) + L−1 {S−q3+1L(v33)} ,

L−1 {S · y4(s)− y4(0)} = L−1L(−y2y3 − y4) + L−1 {S−q4+1 · L(v44)} ,

(3.40)
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so: 
Dt(y1(t)) = 10(y2 − y1) + y4 +D1−q1(v11),

Dt(y2(t)) = 28y1 − y2 − y1y3 +D1−q2(v22),

Dt(y3(t)) = y1y2 − 8
3
y3 +D1−q3(v33),

Dt(y4(t)) = −y2y3 − y4 +D1−q4(v44).

(3.41)

The synchronization problem between (3, 31) and (3, 32) turns into another problem between

(3, 31) and (3, 41) :

The state errors for (3, 31) and (3, 41) is:

ei = yi − xi, i = 1.4 (3.42)

gives 
e·1 = 10y2 − 10y1 + y4 +D1−q1(v11)− 35(x2 − x1)− x4,
e·2 = 28y1 − y2 − y1y3 +D1−q2(v22)− 7x1 + x1x3 − 12x2,

e·3 = y1y2 − 8
3
y3 +D1−q3(v33)− x1x2 + 3x3,

e·4 = −y2y3 − y4 +D1−q4(v44)− x2x3 − 0.5x4.

(3.43)

we choose vii, i = 1.4 as follows:

v11 = Dq1−1((−35x1 + 35x2 + x4)− g1 − (−10x1 + 10x2 + x4)−
4∑
j=1

c1jej(t))

= Dq1−1(−25x1 + 25x2 −
4∑
j=1

c1jej(t)),

v22 = Dq2−1((7x1 − x1x3 + 12x2)− (28x1 − x2 − (x1x3) + (y1y3)−
4∑
j=1

c2jej(t)

= Dq2−1(−21x1 + 13x2 + (y1y2 − x1x3)−
4∑
j=1

c2jej(t)),

v33 = Dq3−1((x1x2 − 3x3)− ((x1x2)− 8
3
x3)−

4∑
j=1

c3jej(t)− y1y2)

= Dq3−1(−1
3
x3 + (x1x2)−

4∑
j=1

c3jej(t)− y1y2),

v44 = Dq4−1((x2x3 + 0.5x4)− ((−x2x3 − x4)−
4∑
j=1

c4jej(t) + (y2y3))

= Dq4−1(x2x3 + 1.5x4 −
4∑
j=1

c4jej(t) + y2y3),

(3.44)

so the response system(3, 41) is equivalent to the integer-order described by replace (vii) in

3.4. Exemple in 4D 35



Chapter 3. Synchronization of two chaotic systems of integer order and fractional order

(3, 43):

Dt(y1(t)) = 10(y2 − y1) + y4 + (−25x1 + 25x2 −
4∑
j=1

c1jej(t)),

Dt(y2(t)) = 28y1 − y2 − y1y3 + (−21x1 + 13x2 + (y1y3 − x1x3)−
4∑
j=1

c2jej(t)),

Dt(y3(t)) = y1y2 − y4 + (−x3
3
− (y1y2 − x1x2)−

4∑
j=1

c3jej(t)),

Dt(y4(t)) = −y2y3 − y4 + (x2x3 + 1.5x4 + (y2y3)−
4∑
j=1

c4jej(t)).

(3.45)

The error system is given by :



e·1 = −10(y1 − x1) + 10(y2 − x2) + (y4 − x4)−
4∑
j=1

c1jej(t)

e·2 = 28(y1 − x1)− (y2 − x2)−
4∑
j=1

c2jej(t)

e·3 = −8
3
(y3 − x3)−

4∑
j=1

c3jej(t)

e·4 = −(y4 − x4)−
4∑
j=1

c4jej(t)

(3.46)

i.e., 

e·1 = −10e1 + 10e2 + e4 −
4∑
j=1

c1jej(t)

e·2 = 28e1 − e2 −
4∑
j=1

c2jej(t)

e·3 = −8
3
e3 −

4∑
j=1

c3jej(t)

e·4 = −e4 −
4∑
j=1

c4jej(t)

(3.47)

i.e., 
e·1

e·2

e·3

e·4

 =


−10− c11 10− c12 −c13 1− c14
28− c21 −1− c22 −c23 −c24
−c31 −c32 −8

3
− c33 −c34

−c41 −c42 −c43 −1− c44




e1

e2

e3

e4

 (3.48)
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If the gain matrise is chosen as :

c =


−6 10 0 1

28 4 0 0

0 0 37
3

0

0 0 0 4

 (3.49)

Then (3.45); become in the form:
Dt(y1(t)) = 10(y2 − y1) + y4 + (−25x1 + 25x2 + 6e1 − 10e2 − e4).
Dt(y2(t)) = 28y1 − y2 − y1y3 + (−21x1 + 13x2 − 28e1 + y1y3 − x1x3 − 4e2).

Dt(y3(t)) = y1y2 − y4 + (−x3
3
− 37

3
e3 − y1y2 + x1x2).

Dt(y4(t)) = −y2y3 − y4 + (x2x3 + y2y3 + 1.5x4 − 4e4).

(3.50)

then the given eignvalues of the matrice (B − C) are given by : λ1 = −4;λ2 = −5;λ3 =

−15;λ4 = −5.

thus, B − C is negative and all the eigenvalues λi, i = 1, 2, 3, 4. which ensures according with

the Lyapunov stability theory, that zero solotion of errors system (3, 48) is asymptotically stable

i.e., lim
t→+∞

‖e‖ = 0, e ∈ R4 with e = y − x. Hence the synchronization between the system (3, 31)

and the system (3, 32) is achieved.

Figure3.5 :Synchronization of the states x1
and y1
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Figure3.6 :Synchronization of the states x2
and y2

Figure3.7 : Synchronization of the states x3
and y3
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Figure3.8 : Synchronization of the states x4
and y4

Figure3.9 :Time-History of the synchronization

errors e1(t); e2(t); e3(t); e4(t).

3.5 Conclusion

In this chapter, we obtained suitable sub-controllers to achieve synchronization between the

fractional-order chaotic system and the chaotic system of integer order by using stability cri-
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teria of the integer-order linear system with simulation results to demonstrate the effectiveness

of the proposed scheme.
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General conclusion

Chaos has been researched in science, mathematics, engineering, and a variety of other fields

as a significant nonlinear phenomena. Because of its potential uses in a variety of industries,

synchronization of chaotic systems has been a hot topic of research. Many synchronization solu-

tions for chaotic systems have been developed in recent years.OYG method , backstepping design

method, sliding mode control, passive control, nonlinear active control, projective synchroniz-

ation, projective function synchronization, global synchronization,.. etc, were introduced and

applied to chaotic and hyper-chaotic systems.

This work investigates the synchronization between fractional-order (chaotic, hyperchaotic)

systems and integer-order (chaotic, hyperchaotic) systems. Based on the idea of the decompos-

ition of the controller in the response system in two sub-controllers and the stability theory of

the linear integer-order system, we design the effective controller to realize the synchronization

between fractional-order and integer-order systems with two given examples in 3d and 4d.

This work is devided into 3 chapers, the first Chapter, contains some definitions and preli-

manaries about: dynamical systems, Chaos, Choatic systems, synchronization and types of syn-

chronization and some definitions and properties of fractional derivative with numerical method

for solving fractional differential equations.

The second chapter, introduced some examples of integer orders and fractional orders choatic

systems. The third chapter, present the study of the synchronization between two 3D and 4D

fractional-integer orders chaotic systems. Finally, numerical simulations are given to demonstrate

the effectiveness of the proposed method with numerical simulation.
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