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 بسم الله الرحمن الرحيم
العلماء، فرفعنا من بساط الأرض لحمد لله المعطاء، الذي سقانا من كأس العلم وا  
العلم للبقاء، في عصر لا يرحم الجهليضاهي عنان السماء، وأهدانا هوية  منبر إلى   

وبعد: والجهلاء   
 على ضفة الامتنان ومن على منبر مصنوع من لوح الإقرار بالمعروف، أقف وزميلتي 

 رموز الفخر وأصحاب سمو الفكر، من ي ذكرون لنلقي كلمة شكر  
 فيطيب الذكر ولا يزرعون إلا ويثمر البذر، رفيعي المقام ومنابع العلم والإلهام، 

 نقول  لن نوفيهم حقهم مهما خطت الأقلام، بكل أمانة نعترف وبكل إنصاف
 الاعتراف رائعون. لم، وأنكم فوق الرأي مميزون وفوقبأنكم الأصالة وأنكم الع

 إشرافه وحق إرشاده الحميد، سقاه اللهتي أقمنا بهن على ذمة لابحق التوجيهات ال 
 قر  بجميل المشرف النبيل الذي لا يضل الطالب د، ن  يثره من بحر علمه المز إ على 

 تحت إشرافه ولا يغوى، على كل حرف نافع فضيل، وبما أن المجالس مدارس فقد 
 كان لنا في مدرسته الخير الوفير وبقدر إخلاصه في توجيهنا وأكثر، نتقدم إليه بالشكر 

 الجزيل إلى الأستاذ:

 



      

   ءإهدا 
 بسم الله الرحمن الرحيم                                                      

 ،لمستحق فداؤهرافع السماء ا ،خالق القضاء المضمون بقاؤه ،المرجو  سخاؤهلحمد لله المعطاء ا
 الذي شمل العالمين إنعامه وعم  جميع المخلوقات إكرامه وبعد:مشرف العلم والعلماء 

 فأهدي ثمرة سنيني وجهدها
 بطلة الاحلام المستحيل ،مفتاح الدروب البهي ظلها ،دة القلوب المشهود فضلهاقصيلى إ

 ي ربيع البيته، هدية الحياة المرجو نيلها ،عدلهاالمكتوب  وعروس الأيام ،مثلها
  ليله وبهجة نهاره. ةضحك ،وأغنية أركانه

 بةــــــــأمي الحبي
 وواصل المسيرة معنا من عز ،وجعل معدننا قح الذهب ،ع فينا معنى الأدبإلى من رص  

 ،لأجلنا في معنى التعبو غاص  ،وضحى بسنينه فأعطى ووهب ،صيهدالشتاء إلى حر ال
 وألف عجب. من أب تقي له افعجب ،بمحا مهما حييت لن أجد لمثله قلب
    ـــبالحبيــــــأبي   

 إلى أنصاف السعادة وبديلات الأمومة، مجروحات الشهادة وشريكات الغنيمة، بنات الحياء
 وشقيقات الوفاء بقلوب رحيمة، أميرات الأخلاق بقيم سليمة ورفيعات  بعقول حكيمة

 ورفيقات الشدائد. بهمم زعيمة، كريمات الموائد الأذواق
     يــواتأخـــــــــ

 ة،لأخوة وملوك النخو لى أصحاب المعروف ومعنى السند، نعم الموصوف ونعم العضد، أبطال اإ
 .ومعاني الصلاحرموز النجاح 

                                                                   تيو إخـــــــــــــ





                                                          

 إهداء
  

 بسم الله الرحمن الرحيم
 من تشققت يداه في سبيل أعز الناس .. الذي لا يجزيه مني كلام .. إلى لى إ

 .تخرجي بأيام فله أهدي ما حصدتالذي فارقنا قبل  رعايتي ..
 رحمه الله  أبي  

  بابتسامةنيإلى التي تستقبلإلى أحن إنسانة .. التي لم تدخر نفسا في تربيتي .. 
 غردا يملأ حياتي بأعذب أدامك .. عصفورا محماك الله و  بدعوة ..وتودعني 

 .الألحان
 الغالية  أمي 

 ا معنى الأخوة .. أراكم إلى الذين ظفرت بهم هدية من الأقدار .. إخوة فعرفو 
 .أرى جمال الأيام أنتمو  بسمتي

 إخواني مقداد, علاء, عنتر
 بإنجازي في هذه اللحظة.إلى من أفتقد حرارة تصفيقه فرحا  

 مأخي المرحوم كري 
 .طفولتي يحملن في عيونهن ذكرياتحياتي .. اللاتي  إلى زهرات

 فتيحة, ابتسام زكية, نجوى,مبروكة, أخواتي  
 



 
 تي رسمت في حروف .. تقاسمت معها ظلمة الرحم .. إلى روحي .. المن  إلى 

 أنفاس عطري الباقي .. يا ميلادي الثاني .. و  في روح .. تمثلت و حروفي التي
 .ندر فيه الإخوان يا هدية الرحمان في زمن

 توأمي أسماء 
 الرحمان, أنس, ساجد, .. آدم عبد المعز, عبد  الماس الصغيرةقطع إلى 

 .إلياس, طه أمين, مودة, سند, بهاءألاء, محمد  براءة, عبد الصمد,, عبد الباسط
   أحف اد العائلة

 إلى أزواج أخواتي..  خطيبة أخي زينةزوجات إخواني سميحة, شادلية .. و إلى 
 عبد الحفيظ, حسين. 

 أعمامي و عماتي. وأخص بالذكر جدتي سعدية .. إلى  جدايإلى جدتاي و 
 الطيب .. وزوجاتهم وأبنائهم.عمر, عبد اللطيف,  أخوالي إلى 

 .وأزواجهم وأبنائهم.. , فجرة , نوةرشيدة, العالية, عانسخالاتي إلى 
 أق ارب العائلة

 .دربي حورية, مفيدة, زينب, نسيمة إلى رفيقات
 صديق اتي

 .كلماتي  ىربيع حروفي و شذعا أهدي إليكم جمي



 

Abstract 

 

 

        The aim of this memory is to study the dynamical behaviors of some 

Zeraoulia-Sprott piecewise smooth mappings in one and two dimensional. 

These maps are characterized by a highly dispersed behavioral nature that 

reaches the extreme of robust chaos as a result of the border collision 

bifurcations that occurs especially in this type of maps. 

Key words: Border collision  bifurcations, piecewise smooth map, chaotic 

behavior. 

 

 

 



 

 

 

Resumé 
 

      L'objectif de cette  mémoire est d'étudier le comportement dynamique de 

certaines applications lisses par morceaux issues d’applications de Zeraoulia-

Sprott prises à une et deux dimensions, qui se caractérisent par une nature 

comportementale très dispersé et atteint l’extreme du chaos robuste en raison de 

les bifurcations collision de frontière qui se produit surtout dans ce type 

d’applications.  

Mots clés: Bifurcations collision de la frontière, applications lisse par 

morceaux, comportement chaotique. 



                                                

 

 ملخص
 

المعرفة  الناعمة التطبيقاتهو دراسة السلوك الديناميكي لبعض  ذكرةالهدف من هذه الم     

بيعة سبروت، المأخوذة في البعدين واحد وإثنان والتي تتميز بط-زراولية تطبيقاتبالأجزاء من 

 تيتصادم الحدود، ال اتالفوضى القوية نتيجة تشعب سلوكية شديدة التشتت تصل حد

 . التطبيقاتدث بشكل خاص في هذا النوع من تح

سلوك ، المعرفة بالأجزاء الناعمة بيقاتطلتتصادم الحدود، ا اتتشعبالكلمات المفتاحية: 

                                         .فوضوي
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Introduction

The bifurcation theory is an essential part in the study of dynamical systems, it appeared as a

term for the first time with the mathematician Henri poincaré at the beginning of the 20th century

during his work on differential systems, and since then it has been in continuous development to

this day. It is defined as a quantitative or qualitative change in the solution of a dynamical system

with a modification of the parameters on which it depends and there are two types of them:

local bifurcation which can be analyzed entirely by changes in the stability of local equilibrium

properties, periodic orbit or other invariant sets as the parameters cross critical thresholds, and

global bifurcation which often occur when the larger invariant sets of the system collide with each

other, or with the equilibriums of the system. They cannot be detected only with an analysis of

the stability of the equilibria (fixed points).

In this work, we focus on a new type of bifurcations called the border collision bifurcations

belongs to the global bifurcations and especially occurs in piecewise smooth maps when a fixed

point (or periodic point) meets the switching manifold and is divided into two types namely border

collision pair bifurcation and border crossing bifurcation.

In particular, we study the bifurcation theory for continuous piecewise smooth discrete-time sys-

tems in one and two dimensions. For more details we divide this thesis into 3 chapters as follows:

• Chapter 1, is devoted to presenting the essential results on the chaotic dynamics and bifur-

cations in one and two-dimensional piecewise smooth maps.

• Chapter 2, is limited to the study of the theory of border collision bifurcation in 1-D piece-

wise smooth Zeraoulia mapping.

• Chapter 3, is also concerned with the study the bifurcations mentioned previously in 2-D

piecewise smooth Zeraoulia-Sprott mappings.
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Chapter 1

Border Collision Bifurcations

In this chapter, we will talk about a new type of bifurcations, completely different from everything

we studied upon previously such as saddle node, pitchfork, hopf..., called the border collision

bifurcations. It appeared as a term for the first time in [5], although it was previously presented

in the Russian literature under the name C-bifurcation attributed to the scientist Feigen in [4],

that especially occurs in piecewise smooth maps and the reason for this is due to the fact that

the latter is very effective in modeling the non-smoothness in the systems accurately and an

example of this from physics (switching circuits), as this type of bifurcation is clearly manifested

from a mathematical point of view at the border which namely switching surface, means that this

bifurcation occurs when the nature of the fixed point is changed as it crosses the switching surface

and it belongs to the category of global bifurcation that lead to the so-called robust chaos. But

we are only concerned with studying some parts of these bifurcations.

1.1 Piecewise smooth maps

This section is based on the study of the piecewise smooth map in one and two dimensional

through three main points represented in defining the map and presenting some of its properties,

in addition to the normal form and its fixed point for both dimensions and finally addressing the

border collision bifurcations. Consider a map F : Rm → Rm as follow:

xn+1 = F (xn), x0 ∈ R (1.1)

Some properties

• The map (1.1) is a piecewise smooth, if the phase space Rm can be partitioned into a finite

number J of disjoint non-empty open regions Ri, i = 1, ..., J, and a boundary Σ, so that

5



Chapter 1. Border Collision Bifurcations

Rm =

(
J⋃
i=1

Ri

)
∪ Σ.

• The boundary Σ made up of a union of continuously differentiable surfaces which separate

the regions Ri.

• F is smooth in each regions Ri.

• Non-smoothness of F occurs on Σ, which is called switching surface or switching manifold.

• The map (1.1) is also known as hybrid system. For more details see [7].

The most important results about these maps are about the existence of relation between the

chaotic behaviors and the border collision bifurcations. Note that the analysis of this relation is

based on some ingredients. The first of which is the affinity of the corresponding normal forms

for fixed points on the borders, and second is the behavior of fixed points (or periodic points)

depending on the bifurcation parameter associated with the various cases, and this study is carried

out in one and two-dimensions as follows which taken from [2] and [1] as follows:

1.1.1 One-dimensional piecewise smooth maps

Consider the following 1-D piecewise smooth system:

xn+1 = f (xn, µ) =

{
g (x, µ) , x < xb

h (x, µ) , x > xb
(1.2)

where µ is the bifurcation parameter, the smooth curve x = xb, divided the state space into two

regions RL and RR given by: {
RL = {x ∈ R : x < xb}
RR = {x ∈ R : x > xb}

and the boundary between them as is given by:

Σ = {x ∈ R : x = xb}

Some properties

• The map f is continuous, but its derivative is discontinuous at the borderline x = xb.

• The functions g and h are both continuous and they have continuous derivatives in x every-

where except at xb.

• x0 (µ) is a possible path of fixed points of f , this path depends continuously on µ.

• The fixed point possible hits the boundary at a critical parameter value µb : x0 (µb) = xb.

1.1. Piecewise smooth maps 6



Chapter 1. Border Collision Bifurcations

The normal form

In order to facilitate and simplify the study of the border collision bifurcations in 1-D piecewise

smooth map we need the following theorem:

Theorem 1.1 The normal form of the piecewise smooth one-dimensional map (1.2) is given by [2]

as:

N1 (x, µ) =

{
ax+ µ, x < 0

bx+ µ, x > 0
(1.3)

where µ is a parameter, and a, b are the slopes of the graph at the two sides (RL and RR) of the

border x = 0.

Proof. The normal form (1.3) at a fixed point on the border is a piecewise affine approximation

of the map in the neighborhood of the border point xb.

• The method of derivation of such a form is as follows:

1. Let x̄ = x− xb and µ̄ = µ− µb, then the equation (1.2) becomes:

f̄ (x̄, µ̄) =

{
g (x̄+ xb, µ̄+ µb) , x̄ < 0

h (x̄+ xb, µ̄+ µb) , x̄ > 0
(1.4)

Hence, for map (1.4), we have the following properties:

- The border is at x̄ = 0.

- The state space is divided into two halves, R− = (−∞, 0] and R+ = [0,∞).

- The fixed point of (1.4) is at the border for the parameter value µ̄ = 0.

2. Expanding f̄ to first order about (0, 0) gives:

f̄ (x̄, µ̄) =

{
ax̄+ µ̄υ +O (x̄, µ̄) , x̄ < 0

bx̄+ µ̄υ +O (x̄, µ̄) , x̄ > 0

a = limx→0−
∂
∂x
f̄ (x̄, 0)

b = limx→0+
∂
∂x
f̄ (x̄, 0)

υ = limx→0
∂
∂µ
f̄ (x̄, 0)

(1.5)

such that:

- Due to the smoothness of f in µ, the last limit in (1.5) doesn’t depend on the direction

of approach of 0 by x.

- Under the hypotheses υ 6= 0, |a| 6= 1 and |b| 6= 1, the non-linear terms are negligible

close to the border.

1.1. Piecewise smooth maps 7



Chapter 1. Border Collision Bifurcations

3. Finally, we define a new parameter µ′′ = µ̄υ and dropping the higher order terms as in [2],

then the 1-D normal form is given by:

G1 (x, µ̄) =

{
ax̄+ µ′′, x̄ < 0

bx̄+ µ′′, x̄ > 0

which has the same form of (1.3).

The fixed points

• Let x∗R and x∗L be the possible fixed points of the system near the border to the right (x > xb)

and left (x < xb) of the border, respectively. Then in the normal form (1.3) we have
x∗R = µ

1−b > 0, if b < 1 ∧ µ > 0

and

x∗L = µ
1−a < 0, if a < 1 ∧ µ < 0

Border collision bifurcation scenarios

In the following section, we discuss some border collision bifurcation scenarios from xb for µ near

µb.

• Border collision bifurcation scenarios can be obtained by various combinations of the para-

meters a ≥ b as µ is varied. It is the same for a < b which are summarized in Figure 1.1,

because the normal form (1.3) is invariant under the transformation x → −x, µ → −µ, a
� b. See also [2]:

Scenario 1: (Persistence of stable fixed point) or Period-1 → Period-1 .

If −1 < b ≤ a < 1, then there is no bifurcation and a stable fixed point for µ < 0 persists

and remains stable for µ > 0.

Scenario 2: (Persistence of unstable fixed point) or No Attractor→ No Attractor.

If 1 < b ≤ a or b ≤ a < −1, then there is no bifurcation and an unstable fixed point for

µ < 0 persists and remains unstable for µ > 0.

Scenario 3: (Merging and annihilation of stable and unstable fixed points) or No Fixed Point →
Period-1 .

1.1. Piecewise smooth maps 8



Chapter 1. Border Collision Bifurcations

If −1 < b < 1 < a, then there is a bifurcation from no fixed point for µ < 0 to two fixed

points xL (unstable) and xR (stable) for µ > 0.

Scenario 4: (Merging and annihilation of two unstable fixed points, plus chaos). No fixed point→
chaos.

If a > 1 and −a
a−1

< b < −1, then there is a bifurcation from no fixed point to two unstable

fixed points plus a growing chaotic attractor as µ is increased through zero.

Scenario 5: (Merging and annihilation of two unstable fixed points) or No fixed point→ No attrac-

tor.

If a > 1 and b < −a
a−1

, then there is a bifurcation from no fixed point to two unstable fixed

points as µ is increased through zero and there is an unstable chaotic orbit for µ > 0.

Scenario 6: (Supercritical border collision period doubling) or Period-1 → Period-2 .

If b < −1 < a < 0 and −1 < ab < 1, then there is a bifurcation from a stable fixed point xL
to an unstable fixed point xR plus a stable period-2 orbit as µ is increased through zero.

Scenario 7: (Subcritical border collision period doubling) or Period-1 → No Attractor.

If b < −1 < a < 0 and ab > 1, then there is a bifurcation from a stable fixed point xL plus

an unstable period-2 orbit to an unstable fixed point xR as µ is increased though zero.

Scenario 8: (Emergence of periodic or chaotic attractor from stable fixed point) or Period-1 →
Periodic or Chaotic Attractor.

If 0 < a < 1, b < −1 and ab < −1, then there is a bifurcation from a stable fixed point xL
to an unstable fixed point xR plus a period-n attractor, n ≥ 2 or a chaotic attractor which

is depends on the pair of parameters (a, b) as shown in Figure 1.2 as µ is increased through

zero.

• Now we give the following definitions. For more details see [11]:

Definition 1.1 The border collision pair bifurcation is a kind of border collision bifurcations and its

similar to saddle node bifurcation (or tangent bifurcation) in smooth systems. In this bifurcation, the

smooth map has two fixed points (one side of the border and the other fixed point is on the opposite

side) for positive (respectively, negative) values of µ, and no fixed points for negative (respectively,

positive) values of µ. Hence, the border collision pair bifurcation occurs if:

b < 1 < a

1.1. Piecewise smooth maps 9



Chapter 1. Border Collision Bifurcations

Figure 1.1: Partitioning of the parameter space into regions with the same qualitative phenomena.

The labeling of regions refers to various bifurcation scenarios. 1) Persistence of stable fixed points,

2) Persistence of unstable fixed points, 3) No fixed point to stable and unstable fixed points, 4) No fixed

point to two unstable fixed points and chaotic attractor, 5) No fixed point to two unstable fixed points,

6) Supercritical border collision period doubling, 7) Subcritical border collision period doubling, 8) A

stable fixed point to periodic or chaotic attractor. The regions shown in primed numbers have the

same bifurcation behavior as the unprimed ones when µ is varied in the opposite direction.
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Figure 1.2: The parameter region 0 < a < 1 and b < −1, showing the type of attractor for µ > 0.

Regions Pn correspond the existence of stable period n orbit, inside the shaded region there exists

chaotic attractors.

Definition 1.2 The border crossing bifurcation is a kind of border collision bifurcations, it has some

similarities with period doubling bifurcation in smooth maps (supercritical period doubling bifurca-

tion in smooth maps with one distinction). In this bifurcation, the fixed point persists and crosses the

border as µ is varied through zero and other attractors or repellers appear or disappear as a result of

the bifurcation. Indeed, border crossing bifurcation occurs if:

a > −1 and b < −1

Remark 1.1 From the previous definitions, we can summarize the above scenarios as follows:

• The two scenarios 1 and 2 belongs to the Scenario A “Persistence of stable fixed point”, at

µ = 0.

• The three scenarios 3, 4 and 5 belongs to the Scenario B “Border collision pair bifurcation”.

• The last three scenarios 6, 7 and 8 belongs to the Scenario C “Border crossing bifurcation”.

1.1. Piecewise smooth maps 11
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1.1.2 Two-dimensional piecewise smooth maps

Let us consider the following 2-D piecewise smooth system given by:

g(x̂, ŷ, ρ) =

 g1 =

(
f1(x̂, ŷ, ρ)

f2(x̂, ŷ, ρ)

)
, if x̂ < S (ŷ, ρ)

g2 =

(
f3(x̂, ŷ, ρ)

f4(x̂, ŷ, ρ)

)
, if x̂ > S (ŷ, ρ)

 (1.6)

where ρ is the bifurcation parameter, the smooth curve x̂ = S (ŷ, ρ) divided the phase plane into

two regions RL and RR given by:{
RL = {(x̂, ŷ) ∈ R2, x̂ < S (ŷ, ρ)}
RR = {(x̂, ŷ) ∈ R2, x̂ > S (ŷ, ρ)}

and the boundary between them as:

Σ =
{

(x̂, ŷ) ∈ R2, x̂ = S (ŷ, ρ)
}

Some properties

• The map g is continuous, but its derivative is discontinuous at the borderline x̂ = S (ŷ, ρ).

• The functions g1 and g2 are both continuous and have continuous derivatives.

• The one-sided partial derivatives at the border are finite and in each subregion RL and RR.

• The map (1.6) has one fixed point in RL and one fixed point in RR for a value ρ∗ of the

parameter ρ.

The normal form

The results outlined above in 1-D normal form give a complete description of the bifurcations

as µ is varied it has been shown in [2], for 2-D piecewise smooth maps, a normal form for border

collision bifurcation can again be written as shown in [1] as follows:

Theorem 1.2 The normal form of the piecewise smooth two-dimensional map (1.6) is given by:

N2(x, y) =



(
τL 1

−δL 0

)(
x

y

)
+

(
1

0

)
µ, x < 0(

τR 1

−δR 0

)(
x

y

)
+

(
1

0

)
µ, x > 0

(1.7)

where µ is a parameter and τL,R , δL,R are the traces and determinants of the corresponding matrices

of the linearized map in the two subregions RL and RR.

1.1. Piecewise smooth maps 12
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Proof. The normal form (1.7) at a fixed point on the border is a piecewise affine approximation

of the map in the neighborhood of the borderline x̂ = S (ŷ, ρ) .

• The method of derivation of such a form is as follows:

1. Let x̃ = x̂ − S (ŷ, ρ) and ỹ = ŷ , this ρ-dependent change of variables moves the border to

the ỹ-axis, then the equation (1.6) becomes:

g (x̃+ S (ŷ, ρ) , ŷ, ρ) = f (x̃, ỹ, ρ) (1.8)

Hence, for the map (1.8), we have the following properties:

- The border is x̃ = 0.

- The phase space is divided into two halves L and R (for left and right), by the next

transformation of coordinates.

- The map (1.8) has a fixed point P∗ = (0, ỹ∗(ρ∗)) on the border when ρ = ρ∗.

2. The transformation of coordinates is summarized in these steps:

- Let e1 be a tangent vector in the ỹ direction and suppose that the vector e1 maps to a

vector e2.

- Assume e2 is not parallel to e1.

- Define new coordinates again as shown in Figure 1.3.

- Choose the point P∗ as the new origin for e1 in the ȳ direction and e2 in the x̄ direction.

- In x̄− ȳ coordinates, the fixed point P∗ is now (0, 0) and the border is given by x̄ = 0.

- Define the new parameter µ̄ = ρ− ρ∗, so µ̄∗ = 0.

- Rescale x̄ and ȳ again such that at µ̄ = 0 a unit vector along the ȳ-axis maps to a unit

vector along the x̄-axis. Then, the map f(x̃, ỹ, ρ) can be written as F (x̄, ȳ, µ̄).

3. Now, write the map F (x̄, ȳ, µ̄) in the side L in the matrix form as:

FL(x̄, ȳ, µ̄) =

(
f1(x̄, ȳ, µ̄)

f2(x̄, ȳ, µ̄)

)
, and FL(0, 0, 0) =

(
0

0

)
and linearizing F (x̄, ȳ, µ̄) in the neighbourhood of (0, 0, 0), we have

FL(x̄, ȳ, µ̄) =

(
J11 J12

J21 J22

)(
x̄

ȳ

)
+ µ̄

(
vLx

vLy

)
+O (x̄, ȳ, µ̄) for x̄ < 0 (1.9)
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where 

J11 = lim
x̄→0−,ȳ→0

∂
∂x̄
f1(x̄, ȳ, 0)

J12 = lim
x̄→0−,ȳ→0

∂
∂ȳ
f1(x̄, ȳ, 0)

J21 = lim
x̄→0−,ȳ→0

∂
∂x̄
f2(x̄, ȳ, 0)

J22 = lim
x̄→0−,ȳ→0

∂
∂ȳ
f2(x̄, ȳ, 0)

vLx = lim
x̄→0−,ȳ→0

∂
∂µ̄
f1(x̄, ȳ, 0)

vLy = lim
x̄→0−,ȳ→0

∂
∂µ̄
f2(x̄, ȳ, 0)

Then, the equation (1.9) becomes:

FL(x̄, ȳ, µ̄) =

(
τL 1

−δL 0

)(
x̄

ȳ

)
+ µ̄

(
vLx

vLy

)
+O (x̄, ȳ, µ̄) for x̄ < 0

such that

J11 = τL (trace) and J21 = −δL (determinant)

and since a unit vector along the ȳ axis maps to a unit vector along the x̄ axis at µ̄ = 0, we

have

J12 = 1 and J22 = 0

Similarly, for side R we obtain:

FR(x̄, ȳ, µ̄) =

(
τR 1

−δR 0

)(
x̄

ȳ

)
+ µ̄

(
vRx

vRy

)
+O (x̄, ȳ, µ̄) for x̄ > 0

Continuity of the map implies:(
vLx

vLy

)
=

(
vRx

vRy

)
=

(
vx

vy

)

4. Make another change of variables as follow: Let x = x̄, y = ȳ − µ̄vy, and µ = µ̄(vx + vy)

with (vx + vy) 6= 0. The choice of axis is independent of the parameter. Then, we have the

normal form:

N(x, y) =



(
τL 1

−δL 0

)(
x

y

)
+

(
1

0

)
µ, x < 0(

τR 1

−δR 0

)(
x

y

)
+

(
1

0

)
µ, x > 0

(1.10)

where µ is the parameter and τL,R , δL,R are the traces and determinants of the correspond-

ing matrices of the linearized map in the two subregions RL and RR given by:{
RL = {(x, y) ∈ R2} , x > 0

RR = {(x, y) ∈ R2} , x > 0
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Figure 1.3: The transformation of coordinates from the two-dimensional piecewise smooth map

to the normal form.

in the regions RL and RR , the map (1.10) is smooth and the boundary between them is

given by:

Σ =
{

(x, y) ∈ R2, x = 0, y ∈ R
}

Remark 1.2 There is a relation between the normal form of the piecewise smooth one-dimensional

map and the normal form of the piecewise smooth two-dimensional map, where we can move from

(1.7) to (1.3) when δi are zero for i = L,R.

The fixed points

• Let PL and PR be the possible fixed points of the system near the border to the right:

x < S (ŷ, ρ) and left: x > S (ŷ, ρ) of the border respectively. Then in the normal form (1.7)

we have  PL =
(

µ
1−τL+δL

, −δLµ
1−τL+δL

)
∈ RL

PR =
(

µ
1−τR+δR

, −δRµ
1−τR+δR

)
∈ RR

with eigenvalues λL 1.2 and λR 1.2 respectively.

• The stability of the fixed points is determined by the eigenvalues of the corresponding Jaco-

bian matrix, i.e.,

λ =
1

2

(
τ ±
√
τ 2 − 4δ

)
Border collision bifurcations

The border collision bifurcations can be obtained by various combinations of the values τL, τR, δL
and δR as µ is varied through zero and because our study of this bifurcations in this dimension is

1.1. Piecewise smooth maps 15
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Figure 1.4: The types of fixed points of the normal form map.

limited only to a part that is the classification of fixed points under the both conditions |δL| < 1

and |δR| < 1. So the possible types of fixed points of the normal form map (1.7) shown in Figure

1.4 are given by:

(1) For positive determinant

(1.a) For 2
√
δ < τ < (1 + δ) , then the Jacobian matrix has two real eigenvalues 0 < λ1L, λ2L < 1

and the fixed point is a regular attractor.

(1.b) For τ > 1 + δ, then the Jacobian matrix has two real eigenvalues 0 < λ1L < 1, λ2L > 1 and

the fixed point is a regular saddle.

(1.c) For − (1 + δ) < τ < −2
√
δ, then the Jacobian matrix has two real eigenvalues −1 <

λ1L, λ2L < 0 and the fixed point is a flip attractor.

(1.d) For τ < − (1 + δ) , then the Jacobian matrix has two real eigenvalues −1 < λ1L < 0,

λ2L < −1 and the fixed point is a flip saddle.

(1.e) For 0 < τ < 2
√
δ, then the Jacobian matrix has two complex eigenvalues | λ1L |, |λ2L| < 1

and the fixed point is a clockwise spiral.

(1.g) For −2
√
δ < τ < 0, then the Jacobian matrix has two complex eigenvalues |λ1L | , |λ2L| < 1

and the fixed point is a counter-clockwise spiral.

(2) For negative determinant

1.1. Piecewise smooth maps 16
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(2.a) For − (1 + δ) < τ < (1 + δ) , then the Jacobian matrix has two real eigenvalues −1 < λ1L

< 0, 0 < λ2L < 1 and the fixed point is a flip attractor.

(2.b) For τ > (1 + δ) , then the Jacobian matrix has two real eigenvalues λ1L > 1,−1 < λ2L < 0

and the fixed point is a flip saddle.

(2.c) For τ < − (1 + δ) , then the Jacobian matrix has two real eigenvalues 0 < λ1L < 1, λ2L < −1

and the fixed point is a flip saddle. See also [11].
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Chapter 2

Bifurcations of the 1-D Zeraoulia map

This chapter is concerned with the application of what was addressed in the first chapter to the

one-dimensional Zeraoulia map and it is the piecewise linear logistic map. The study will be based

on its definition and the normal form with its fixed points and finally the study of bifurcations in

the neighborhood of the fixed point.

2.1 One-dimensional piecewise smooth map

Consider the piecewise logistic map given by [8] as:

xk+1 = f(xk , α) = α |x| (1− |x|) (2.1)

where α is the bifurcation parameter, the smooth curve x = 0 divided the state space into two

regions RL and RR given by: {
RL = {x ∈ R : x < 0}
RR = {x ∈ R : x > 0}

and the boundary between them as:

Σ = {x ∈ R : x = 0}

So, the piecewise logistic map (2.1) can be written again as follow:

xk+1 = f(xk , α) =

{
−αx (1 + x) if x < 0

αx (1− x) if x > 0

2.1.1 The normal form

In order to determine the associated normal form for the piecewise logistic map (2.1), we should

do three main steps which are as follows:

18
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1. We calculate the fixed points of the f mapping.

2. We derive the piecewise logistic map (2.1) on both side.

3. We choose an appropriate coordinate transformation because in our case the choice of axis

is independent of the parameter.

Fixed points

The fixed points of the map (2.1) are the real solutions of the system:

fα (x) = x⇐⇒ α |x| (1− |x|) = x

therefore, we get the following equations:{
−αx (1 + x) = x, x < 0

αx (1− x) = x, x > 0
(2.2)

⇔
{
αx2 + αx+ x = 0, x < 0

αx2 − αx+ x = 0, x > 0

⇔
{
x (α (x+ 1) + 1) = 0, x < 0

x (α (x− 1) + 1) = 0, x > 0

• In the side L: The possible fixed points are:{
x1,L = 0, (unacceptable)

x2,L = −α+1
α

such that

x2,L = −α + 1

α
< 0⇔



if:

{
α > 0 ∧ − (α + 1) < 0

α < 0 ∧ − (α + 1) > 0
⇔
{
α > 0 ∧ α > −1

α < 0 ∧ α < −1

⇔
{
α ∈ ]0,+∞[ ∩ ]−1,+∞[ = ]0,+∞[

α ∈ ]−∞, 0[ ∩ ]−∞,−1[ = ]−∞,−1[

then, α ∈ ]−∞,−1[ ∪ ]0,+∞[

hence, the only negative solution of the first equation from (2.2) is:

xL = −α + 1

α
, for α ∈ ]−∞,−1[ ∪ ]0,+∞[
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• In the side R: The possible fixed points are:{
x1,R = 0, (unacceptable)

x2,R = α−1
α

such that

x2,R =
α− 1

α
> 0⇔



if:

{
α > 0 ∧ α− 1 > 0

α < 0 ∧ α− 1 < 0
⇔
{
α > 0 ∧ α > 1

α < 0 ∧ α < 1

⇔
{
α ∈ ]0,+∞[ ∩ ]1,+∞[ = ]1,+∞[

α ∈ ]−∞, 0[ ∩ ]−∞, 1[ = ]−∞, 0[

then, α ∈ ]−∞, 0[ ∪ ]1,+∞[

hence, the only positive solution of the second equation from (2.2) is:

xR =
α− 1

α
, for α ∈ ]−∞, 0[ ∪ ]1,+∞[

Then, the piecewise logistic map (2.1) has two fixed points given by:{
xL = −α+1

α
∈ RL

xR = α−1
α
∈ RR

, for α ∈ ]−∞,−1[ ∪ ]1,+∞[

Derivation

• The derivative of the map (2.1) evaluated at a point x in the both regions RL and RR is

given by: {
DfL (x) = α (−2x− 1)

DfR (x) = α (−2x+ 1)

• The derivative of the map (2.1) evaluated at a fixed points in the both regions RL and RR

is given by: {
DfL (xL) = 2 + α

DfR (xR) = 2− α

The coordinate transformation

The normal form of the map (2.1) is given by :

N1(x, µ) =

{
(2 + α)x+ µ, x < 0

(2− α)x+ µ, x > 0
(2.3)
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Figure 2.1: Bifurcation diagrams for the map N1 (x, µ) =

{
ax+ µ, for x ≤ 0

bx+ µ, for x ≥ 0
. (a) a = 0.5,

b = −3.5: At µ = 0, N1 exhibits a border-collision bifurcation from a period-1 attractor to a

period-3 attractor at x = 0. (b) a = 0.5, b = −4.15: At µ = 0, N1 exhibits a border-collision

bifurcation from a fixed point attractor to a six-piece chaotic attractor at x = 0. (c) a = 0.5,

b = −4.4: At µ = 0, N1 exhibits a border-collision bifurcation from a fixed point attractor to a

three-piece chaotic attractor at x = 0. (d) a = 0.5, b = −5.5: At µ = 0, N1 exhibits a border-

collision bifurcation from a fixed point attractor to a one-piece chaotic attractor at x = 0 [6].
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2.1.2 The fixed points

• In the normal form (1.3) we have two fixed points xL∗ and xR∗ near the border to the right

(x < 0) and the left (x > 0) of the border. So from (2.3) we have:{
xL∗ = − µ

1+α
< 0, if α < −1 ∧ µ < 0

xR∗ = µ
α−1

> 0, if α > 1 ∧ µ > 0

2.2 The border collision bifurcations

Since the border collision bifurcations of the original map f is the same as that of the normal

form (2.3) as shown in Figure 2.1, the reason for this is due to the appearance of the bifurcation

parameter α in the fixed points and because the study of this bifurcation is limited to one of the

two cases (a ≥ b or a < b) plus α ∈ I = ]−∞,−1[ ∪ ]1,+∞[ so:

1. For α ∈ I1 = ]−∞,−1[⇔ α < −1⇔
{
α + 2 < 1

2− α > 3
⇔
{
a < 1

b > 3
⇒ a < b

2. For α ∈ I2 = ]1,+∞[⇔ α > 1⇔
{
α + 2 > 3

2− α < 1
⇔
{
a > 3

b < 1
⇒ a > b

therefore, we study only on the field I2 = ]1,+∞[.

Scenario 1: (Persistence of stable fixed point) or Period-1 → Period-1 .

• If −1 < b ≤ a < 1⇔ −1 < 2− α ≤ 2 + α < 1, such that α ∈ I2 = ]1,+∞[:

⇔


−1 < 2− α
2− α ≤ 2 + α

2 + α < 1

⇔


α < 3

α > 0

α < −1

⇔


α ∈ ]−∞, 3[ ∩ ]1,+∞[ = ]1, 3[ ⊂ I2

α ∈ ]0,+∞[ ∩ ]1,+∞[ = ]1,+∞[ = I2

α ∈ ]−∞,−1[ ∩ ]1,+∞[ = ∅

then, the Scenario 1 is not hold.

Scenario 2: (Persistence of unstable fixed point) or No Attractor→ No Attractor.
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• If 1 < b ≤ a⇔ 1 < 2− α ≤ 2 + α, such that α ∈ I2 = ]1,+∞[:

⇔
{

1 < 2− α
2− α ≤ 2 + α

⇔
{
α < 1

α > 0

⇔
{

α ∈ ]−∞, 1[ ∩ ]1,+∞[ = ∅
α ∈ ]0,+∞[ ∩ ]1,+∞[ = ]1,+∞[ = I2

• If b ≤ a < −1⇔ 2− α ≤ 2 + α < −1, such that α ∈ I2 = ]1,+∞[:

⇔
{

2− α ≤ 2 + α

2 + α < −1
⇔
{
α > 0

α < −3

⇔
{
α ∈ ]0,+∞[ ∩ ]1,+∞[ = ]1,+∞[ = I2

α ∈ ]−∞,−3[ ∩ ]1,+∞[ = ∅

then, the Scenario 2 is not hold.

Scenario 3: (Merging and annihilation of stable and unstable fixed points) or No Fixed Point →
Period-1 .

• If −1 < b < 1 < a⇔ −1 < 2− α < 1 < 2 + α, such that α ∈ I2 = ]1,+∞[:

⇔


−1 < 2− α
2− α < 1

1 < 2 + α

⇔


α < 3

α > 1

α > −1

⇔


α ∈ ]−∞, 3[ ∩ ]1,+∞[ = ]1, 3[ ⊂ I2

α ∈ ]1,+∞[ = I2

α ∈ ]−1,+∞[ ∩ ]1,+∞[ = ]1,+∞[ = I2

then, the Scenario 3 is hold for α ∈ ]1, 3[ which implies that there is a bifurcation from no

fixed point for µ < 0 to two fixed points xL (unstable) and xR (stable) for µ > 0.

Scenario 4: (Merging and annihilation of two unstable fixed points, plus chaos). No fixed point→
chaos.
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• If 
a > 1

and
−a
a−1

< b < −1

⇔


2 + α > 1

and
−2−α
1+α

< 2− α < −1

⇔


α > −1

and

−2− α < (2− α) (1 + α) < − (1 + α)

such that α ∈ I2 = ]1,+∞[:

⇔


α > −1

and{
− (2 + α) < (2− α) (1 + α)

(2− α) (1 + α) < − (1 + α)

⇔


α > −1

and{
α2 − 2α− 4 < 0

α2 − 2α− 3 > 0

⇔


α ∈ ]−1,+∞[ ∩ ]1,+∞[ = ]1,+∞[ = I2

and{
α ∈

]
−
√

5 + 1,
√

5 + 1
[
∩ ]1,+∞[ =

]
1,
√

5 + 1
[
⊂ I2

α ∈ ]−∞,−1[ ∪ ]3,+∞[ ∩ ]1,+∞[ = ]3,+∞[ ⊂ I2

then, the Scenario 4 is hold for α ∈
]
3,
√

5 + 1
[

which implies that there is a bifurcation

from no fixed point to two unstable fixed points plus a chaotic attractor as µ is increased

through zero.

Scenario 5: (Merging and annihilation of two unstable fixed points) or No fixed point→ No attrac-

tor.

• If: 
a > 1

and

b < −a
a−1

⇔


2 + α > 1

and

2− α < −2+α
1+α

⇔


α > −1

and

α2 − 2α− 4 > 0
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such that α ∈ I2 = ]1,+∞[:

⇔


α ∈ ]−1,+∞[ ∩ ]1,+∞[ = ]1,+∞[ = I2

and

α ∈
]
−∞,−

√
5 + 1

[
∪
]√

5 + 1,+∞
[
∩ ]1,+∞[ =

]√
5 + 1,+∞

[
⊂ I2

then, the Scenario 5 is hold for α ∈
]√

5 + 1,+∞
[

which implies that there is a bifurcation

from no fixed point to two unstable fixed points as is increased through zero, and there is

an unstable chaotic orbit for µ > 0.

Scenario 6: (Supercritical border collision period doubling) or Period-1 → Period-2 .

• If: 
b < −1 < a < 0

and

−1 < ab < 1

⇔


2− α < −1 < 2 + α < 0

and

−1 < (2 + α) (2− α) < 1

such that α ∈ I2 = ]1,+∞[:

⇔


2− α < −1

−1 < 2 + α

2 + α < 0

⇔


α > 3

α > −3

α < −2

⇔


α ∈ ]3,+∞[ ∩ ]1,+∞[ = ]3,+∞[ ⊂ I2

α ∈ ]−3,+∞[ ∩ ]1,+∞[ = ]1,+∞[ = I2

α ∈ ]−∞,−2[ ∩ ]1,+∞[ = ∅

⇔



{
−1 < (2 + α) (2− α)

(2 + α) (2− α) < 1
⇔
{
−1 < 4− α2

4− α2 < 1
⇔
{
α2 < 5

α2 > 3{
α ∈

]
−
√

5,
√

5
[
∩ ]1,+∞[ =

]
1,
√

5
[
⊂ I2

α ∈
]
−∞,−

√
3
]
∪
[√

3,∞
[
∩ ]1,+∞[ =

]√
3,+∞

[
⊂ I2

then, the Scenario 6 is not hold.

Scenario 7: (Subcritical border collision period doubling) or Period-1 → No Attractor.

• If: 
b < −1 < a < 0

and

ab > 1

⇔


2− α < −1 < 2 + α < 0

and

(2− α) (2 + α) > 1

such that α ∈ I2 = ]1,+∞[:
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⇔




2− α < −1

−1 < 2 + α

2 + α < 0

⇔


α > 3

α > −3

α < −2

⇔


α ∈ ]3,+∞[ ∩ ]1,+∞[ = ]3,+∞[ ⊂ I2

α ∈ ]−3,+∞[ ∩ ]1,+∞[ = ]1,+∞[ = I2

α ∈ ]−∞,−2[ ∩ ]1,+∞[ = ∅
and

4− α2 > 1⇔ α2 < 3⇔ α ∈
]
−
√

3,
√

3
[
∩ ]1,+∞[ =

]
1,
√

3
[
⊂ I2

then, the Scenario 7 is not hold.

Scenario 8: (Emergence of periodic or chaotic attractor from stable fixed point) or Period-1 →
Periodic or Chaotic Attractor.

• If : 
0 < a < 1 ∧ b < −1

and

ab < −1

⇔


0 < 2 + α < 1 ∧ 2− α < −1

and

(2 + α) (2− α) < −1

⇔



{
0 < 2 + α ∧ α > 3

2 + α < 1 ∧ α > 3

and

α2 > 5

such that α ∈ I2 = ]1,+∞[:

⇔



{
α > −2 ∧ α > 3

α < −1 ∧ α > 3
⇔
{

α ∈ ]−2,+∞[ ∩ ]3,+∞[ ∩ I2 = ]3,+∞[ ⊂ I2

α ∈ ]−∞,−1[ ∩ ]3,+∞[ = ∅
and

α ∈
]
−∞,−

√
5
[
∪
]√

5,+∞
[
∩ I2 =

]√
5,+∞

[
⊂ I2

then, the Scenario 8 is not hold.
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Chapter 3

Bifurcations of some 2-D Zeraoulia-Sprott

mappings

This chapter is also devoted for the application to the theoretical part, but to two 2-D Zeraoulia-

Sprott mappings. As one of them represents a chaotic model resulting from the unification of two

maps that have a chaotic behavior, and the other is a modified version of the Lozi map and has

the same non-linearity used in the Chua circuit. However, the latter applies to the border collision

bifurcation which relates to three regions while the study in the first chapter is only related to two

regions, and for this we only studying stability which is at the heart of the study of bifurcations

and an integral part of it.

3.1 A unified piecewise smooth chaotic mapping that contains

the Hénon and the Lozi systems

In this section, we will study the unified chaotic model, starting from its definition to its normal

form and fixed points and finally is the bifurcations in the neighborhood of the fixed points.

3.1.1 Two-dimensional piecewise smooth map

Let us consider the unified chaotic map given by [10] as:

U (x, y) =

(
1− 1.4fα (x) + y

0.3x

)
(3.1)
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Figure 3.1: (a) The original Hénon chaotic attractor obtained from the H mapping with its basin

of attraction (white) for a = 1.4 and b = 0.3. (b) The original Lozi chaotic attractor obtained from

the L mapping with its basin of attraction (white) for a = 1.4 and b = 0.3.

which defined by two discrete mathematical models, the Hénon and the Lozi maps shown in

Figure 3.1 (a) and (b) given as follows:

H (x, y) =

(
1− ax2 + y

bx

)
and L (x, y) =

(
1− a |x|+ y

bx

)
such that 0 ≤ α ≤ 1 is the bifurcation parameter and the function fα shown in Figure 3.2 is given

by:

fα (x) = α |x|+ (1− α)x2

So, the unified chaotic map (3.1) can be written as follow:

U (x, y) =


{

1.4 (α− 1)x2 + 1.4αx+ y + 1, if (x, y) ∈ RL

1.4 (α− 1)x2 − 1.4αx+ y + 1, if (x, y) ∈ RR

0.3x


where the smooth curve x = 0, divided the phase plan into two regions RL and RR, given by:{

RL = {(x, y) ∈ R2, x < 0}
RR = {(x, y) ∈ R2, x > 0}

and the boundary between them as:

Σ =
{

(x, y) ∈ R2, x = 0
}
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Figure 3.2: (a) The transition Hénon-like chaotic attractor obtained for the unified chaotic map

(3.1) with its basin of attraction (white) for α = 0.2. (b) The graph of the function f0.2. (c) The

transition Lozi-like chaotic attractor obtained for the unified chaotic map (3.1) with its basin of

attraction (white) for α = 0.8. (d) The graph of the function f0.8.
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The normal form

In order to determine the normal form of the unified chaotic map (3.1). Its sufficient to just

follow the steps mentioned previously when we study the first map.

Fixed points The fixed points of the unified chaotic map (3.1) are the real solutions of the

system

U (x, y) = (x, y)⇔
(

1− 1.4fα (x) + y

0.3x

)
=

(
x

y

)
So, we get two equations:{

1.4 (α− 1)x2 + 1.4αx+ y + 1 = x, for x < 0 and 0.3x = y

1.4 (α− 1)x2 − 1.4αx+ y + 1 = x, for x > 0 and 0.3x = y

⇐⇒
{

1.4 (α− 1)x2 + (1.4α− 0.7)x+ 1 = 0, for x < 0 and 0.3x = y

1.4 (α− 1)x2 − (1.4α + 0.7)x+ 1 = 0, for x > 0 and 0.3x = y
(3.2)

• In the side L: The discriminant of the first equation from (3.2) is:

∆ = 1.96α2 − 7.56α + 6.09

to find the sign of discriminant, we set 1.96α2 − 7.56α + 6.09 = 0, and solve a quadratic

equation:

∆∗ = b2 − 4ac = 9.408 > 0

so, we get two solutions are: {
α1 = −b−

√
∆

2a
= 1.1461

α2 = −b+
√

∆
2a

= 2.711

therefore, the discriminant ∆ is only positive on ]−∞, 1. 1461 [ ∪ ]2.711,+∞[ which means

that is also positive for α ∈ [0, 1[. Thus, we conclude two different solutions of this equation

are: 
x1.L =

−0.7α+0.35+

√
1.96α2−7.56α+6.09

2

1.4(α−1)
< 0

and

x2.L =
−0.7α+0.35−

√
1.96α2−7.56α+6.09

2

1.4(α−1)
> 0
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Because the denominator of x1.L and x2.L is always negative for α ∈ [0, 1[ which means that:
−0.7α + 0.35 +

√
1.96α2−7.56α+6.09

2
> 0

∧
−0.7α + 0.35−

√
1.96α2−7.56α+6.09

2
< 0

to ensure this we do the following:

1. For the first solution x1.L we have:

– If: −0.7α + 0.35 +
√

1.96α2−7.56α+6.09
2

< 0, for α ∈ J = [0, 1[:

⇔
{ √

1.96α2 − 7.56α + 6.09 < 1.4α− 0.7, if α ∈
[
0, 1

2

[
√

1.96α2 − 7.56α + 6.09 < 1.4α− 0.7, if α ∈
[

1
2
, 1
[

⇔
{ √

1.96α2 − 7.56α + 6.09− 1.4α + 0.7 < 0, if α ∈
[
0, 1

2

[
1.96α2 − 7.56α + 6.09 < (1.4α− 0.7)2 , if α ∈

[
1
2
, 1
[

⇔
{ √

1.96α2 − 7.56α + 6.09− 1.4α + 0.7 < 0, if α ∈
[
0, 1

2

[
−5.6α < −5.6, if α ∈

[
1
2
, 1
[

⇔
{

no solution found

solution is: α ∈ [1,+∞[ ∩
[

1
2
, 1
[

= ∅

then, the numerator of x1.L is not negative for α ∈ [0, 1[.

2. For the second solution x2.L we have:

– If: −0.7α + 0.35−
√

1.96α2−7.56α+6.09
2

> 0, for α ∈ J = [0, 1[:

⇔
{ √

1.96α2 − 7.56α + 6.09 < −1.4α + 0.7, if α ∈
[
0, 1

2

[
√

1.96α2 − 7.56α + 6.09 < −1.4α + 0.7, if α ∈
[

1
2
, 1
[

⇔
{

1.96α2 − 7.56α + 6.09 < (−1.4α + 0.7)2 , if α ∈
[
0, 1

2

[
√

1.96α2 − 7.56α + 6.09 + 1.4α− 0.7 < 0, if α ∈
[

1
2
, 1
[

⇔
{
−5.6α < −5.6, if α ∈

[
0, 1

2

[
√

1.96α2 − 7.56α + 6.09 + 1.4α− 0.7 < 0, if α ∈
[

1
2
, 1
[

⇔
{

solution is: α ∈ [1,+∞[ ∩
[
0, 1

2

[
= ∅

no solution found

then, the numerator of x2.L is not positive for α ∈ [0, 1[. Hence, the only negative

solution of the first equation from (3.2) is:

xL =
−0.7α + 0.35 +

√
1.96α2−7.56α+6.09

2

1.4 (α− 1)
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• In the side R: The discriminant of the second equation from (3.2) is:

∆ = 1.96α2 − 3.64α + 6.09

to find the sign of discriminant, we set 1.96α2 − 3.64α + 6.09 = 0, and solve a quadratic

equation:

∆∗∗ = b2 − 4ac = −34.496 < 0

since, ∆∗∗ < 0, the sign of the polynomial is the sign of 1.96 > 0 and α ∈ [0, 1[, that means

1.96α2 − 3.64α + 6.09 > 0. Thus, we conclude two different solutions of this equation

are: 
x1.R =

0.7α+0.35−
√
1.96α2−3.64α+6.09

2

1.4(α−1)
> 0

and

x2.R =
0.7α+0.35+

√
1.96α2−3.64α+6.09

2

1.4(α−1)
< 0

Because the denominator of x1.R and x2.R is always negative for α ∈ [0, 1[ which means that:
0.7α + 0.35−

√
1.96α2−3.64α+6.09

2
< 0

∧
0.7α + 0.35 +

√
1.96α2−3.64α+6.09

2
> 0

to ensure this we do the following:

1. For the first solution x1.R:

– If: 0.7α + 0.35−
√

1.96α2−3.64α+6.09
2

> 0, for α ∈ J = [0, 1[:

⇔
√

1.96α2 − 3.64α + 6.09 < 1.4α + 0.7, for α ∈ [0, 1[

⇔ 1.96α2 − 3.64α + 6.09 < (1.4α + 0.7)2 , for α ∈ [0, 1[

⇔ −5.6α < −5.6, for α ∈ [0, 1[

⇔ solution is: α ∈ ]1,+∞[ ∩ [0, 1[ = ∅

then, the numerator of x1.R is not positive for α ∈ [0, 1[ .

2. For the second solution x2.R:

– It is obvious that the numerator of x1.R is already positive for α ∈ J = [0, 1[ so:

α ∈ R ∩ [0, 1[= [0, 1[⊂ J

Therefore, the only positive solution of the second equation of (3.2) is:

xR =
0.7α + 0.35−

√
1.96α2−3.64α+6.09

2

1.4 (α− 1)
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Then, the unified chaotic map (3.1) has two fixed points given by:

PL = (xL, 0.3xL) ∈ RL and PR = (xR, 0.3xR) ∈ RR

such that:  xL =
−0.7α+0.35+

√
1.96α2−7.56α+6.09

2

1.4(α−1)

xR =
0.7α+0.35−

√
1.96α2−3.64α+6.09

2

1.4(α−1)

Remark 3.1 We note that in our study we have excluded the case α = 1, because it is a forbidden

value in the denominator of both solutions xL and xR. For this reason we study only for α ∈ J =

[0, 1 [.

The Jacobian matrix Obviously, we get the Jacobian matrix of any map, when we derive this

map so:

1. The Jacobian matrix of the unified chaotic map (3.1) evaluated at a point (x, y) in the both

regions RL and RR is given by:
JL(x, y) =

(
1.4α− 2.8x+ 2.8xα 1

0.3 0

)

JR(x, y) =

(
2.8xα− 1.4α− 2.8x 1

0.3 0

)

2. The Jacobian matrix of the unified chaotic map (3.1) evaluated at a fixed points in the both

regions RL and RR is given by:
JL(PL) =

(
0.7 +

√
1.96α2 − 7.56α + 6.09 1

0.3 0

)

JR(PR) =

(
0.7−

√
1.96α2 − 3.64α + 6.09 1

0.3 0

)

3. The eigenvalues of JL(PL) and JR(PR) are the solutions of the characteristic polynomials:{
λ2 − τLλ+ δL = 0

λ2 − τRλ+ δR = 0

• In the side L: The characteristic polynomial of JL(PL) can be written as:

λ2 −
(

0.7 +
√

1.96α2 − 7.56α + 6.09
)
λ− 0.3 = 0
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and the discriminant of this equation is:(
0.7 +

√
1.96α2 − 7.56α + 6.09

)2

+ 1.2 > 0, for all α ∈ R ∩ [0.1[ = [0.1[ = J

So, we get two different solutions are:
λ1,L =

√
1.96α2−7.56α+6.09+

√
1.96α2−7.56α+1.4

√
1.96α2−7.56α+6.09+7.78

2
+ 0.35

λ2,L =
√

1.96α2−7.56α+6.09−
√

1.96α2−7.56α+1.4
√

1.96α2−7.56α+6.09+7.78

2
+ 0.35

• In the side R: The characteristic polynomial of JR(PR) can be written also as:

λ2 −
(

0.7−
√

1.96α2 − 3.64α + 6.09
)
λ− 0.3 = 0

and the discriminant of this equation is:(
0.7−

√
1.96α2 − 3.64α + 6.09

)2

+ 1.2 > 0, for all α ∈ R ∩ [0.1[ = [0.1[ = J

So, we get two solutions are:
λ1,R =

−
√

1.96α2−3.64α+6.09+
√

1.96α2−3.64α+1.4
√

1.96α2−3.64α+6.09+7.78

2
+ 0.35

λ2,R =
−
√

1.96α2−3.64α+6.09−
√

1.96α2−3.64α+1.4
√

1.96α2−3.64α+6.09+7.78

2
+ 0.35

Hence, The eigenvalues of JL(PL) and JR(PR) are:
λ1,L =

√
1.96α2−7.56α+6.09+

√
1.96α2−7.56α+1.4

√
1.96α2−7.56α+6.09+7.78

2
+ 0.35

λ2,L =
√

1.96α2−7.56α+6.09−
√

1.96α2−7.56α+1.4
√

1.96α2−7.56α+6.09+7.78

2
+ 0.35

λ1,R =
−
√

1.96α2−3.64α+6.09+
√

1.96α2−3.64α+1.4
√

1.96α2−3.64α+6.09+7.78

2
+ 0.35

λ2,R =
−
√

1.96α2−3.64α+6.09−
√

1.96α2−3.64α+1.4
√

1.96α2−3.64α+6.09+7.78

2
+ 0.35

The coordinate transformations The normal form of the map (3.1) is given by :

N2 (x, y) =



(
0.7 +

√
1.96α2 − 7.56α + 6.09 1

0.3 0

)(
x

y

)
+

(
0

1

)
µ, if x < 0(

0.7−
√

1.96α2 − 3.64α + 6.09 1

0.3 0

)(
x

y

)
+

(
0

1

)
µ, if x > 0
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The fixed points

In the normal form (1.8) we have two fixed points PL and PR near the border to the right (x < 0)

and left (x > 0) of the border. So from (3.3) we have: PL =
(

µ

−
√

1.96α2−7.56α+6.09
, 0.3µ

−
√

1.96α2−7.56α+6.09

)
∈ RL

PR =
(

µ√
1.96α2−3.64α+6.09

, 0.3µ√
1.96α2−3.64α+6.09

)
∈ RR

3.1.2 The border collision bifurcations

The dynamics of the system (3.1) is governed by five parameters τL, τR, δL, δR and µ, so according

to the text of this bifurcation in the theoretical part we conclude the possible types of fixed points

of the normal form map (3.3):

1. For positive determinant: Because the determinant of the corresponding matrices of the

linearized map in the both side is not positive we study only the case for negative determi-

nant.

2. For negative determinant:

• In the side L:

2.a For

− (1 + δL) < τL < 1 + δL ⇔ −0.7 < 0.7 +
√

1.96α2 − 7.56α + 6.09 < 0.7

such that α ∈ J = [0, 1[ and J1, J2 ⊂ J:

⇔
{
−0.7 < 0.7 +

√
1.96α2 − 7.56α + 6.09, for α ∈ J1

0.7 +
√

1.96α2 − 7.56α + 6.09 < 0.7, for α ∈ J2

⇔
{

1.4 +
√

1.96α2 − 7.56α + 6.09 > 0, for α ∈ J1√
1.96α2 − 7.56α + 6.09 < 0, for α ∈ J2

⇔
{

solution is: α ∈ R ∩ J1 = J1

no solution found ∀α ∈ R

Then (2.a) is not hold, which implies that the fixed point is not a flip attractor.

2.b For

τL > 1 + δL ⇔ 0.7 +
√

1.96α2 − 7.56α + 6.09 > 0.7
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such that α ∈ J = [0, 1[ and J3 ⊂ J:

⇔
√

1.96α2 − 7.56α + 6.09 > 0, for α ∈ J3

⇔ 1.96α2 − 7.56α + 6.09 > 0, for α ∈ J3

we previously checked that it is greater than zero if α ∈ ]−∞, 1. 1461 [ ∪ ]2.711,+∞[ ,

solution is:

J3 = ]−∞, 1. 146 [ ∪ ]2.711,+∞[ ∩ J = J

Then (2.b) is hold, which implies that the fixed point is a flip saddle.

2.c For

τL < − (1 + δL)⇔ 0.7 +
√

1.96α2 − 7.56α + 6.09 < −0.7

such that α ∈ J = [0, 1[

⇔ 1.4 +
√

1.96α2 − 7.56α + 6.09 < 0, no solution found ∀α ∈ R

Then (2.c) is not hold, which implies that the fixed point is not a flip saddle.

• In the side R:

2.a For

− (1 + δR) < τR < 1 + δR ⇔ −0.7 < 0.7−
√

1.96α2 − 3.64α + 6.09 < 0.7

such that α ∈ J = [0, 1[ and J4, J5 ⊂ J:

⇔
{
−0.7 < 0.7−

√
1.96α2 − 3.64α + 6.09, for α ∈ J4

0.7−
√

1.96α2 − 3.64α + 6.09 < 0.7, for α ∈ J5

(3.3)

We have the first inequality from (3.4):

− 0.7 < 0.7−
√

1.96α2 − 3.64α + 6.09, for α ∈ J4

⇔
√

1.96α2 − 3.64α + 6.09 < 1.4, for α ∈ J4

⇔ 1.96α2 − 3.64α + 6.09 < 1.96, for α ∈ J4

⇔ 1.96α2 − 3.64α + 4. 13 < 0, for α ∈ J4 (3.4)

we set 1.96α2 − 3.64α + 4. 13 = 0, and solve a quadratic equation:

∆ = b2 − 4ac = −19. 1296 < 0

since ∆ < 0, the sign of the polynomial is from the sign of 1.96 > 0, then 1.96α2 −
3.64α + 4. 13 > 0, and this contradicts the previous result in (3.5), since the first in-

equality of (3.4) is not hold. Then (2.a) is not hold, which implies that the fixed point

is not a flip attractor.

3.1. A unified piecewise smooth chaotic mapping that contains the Hénon and the Lozi systems 36



Chapter 3. Bifurcations of some 2-D Zeraoulia-Sprott mappings

2.b For

τR > 1 + δR ⇔ 0.7−
√

1.96α2 − 3.64α + 6.09 > 0.7

such that α ∈ J = [0, 1[:

⇔
√

1.96α2 − 3.64α + 6.09 < 0, no solution found ∀α ∈ R

Then (2.b) is not hold, which implies that the fixed point is not a flip saddle.

2.c For

τR < − (1 + δR)⇔ 0.7−
√

1.96α2 − 3.64α + 6.09 < −0.7

such that α ∈ J = [0, 1[ and J6 ⊂ J:

⇔ 1.4 <
√

1.96α2 − 3.64α + 6.09, for α ∈ J6

⇔ 1.96 < 1.96α2 − 3.64α + 6.09, for α ∈ J6

⇔ 1.96α2 − 3.64α + 4.13 > 0, for α ∈ J6

we set 1.96α2 − 3.64α + 4. 13 = 0 and solve a quadratic equation:

∆ = −19. 1296 < 0

since ∆ < 0, the sign of the polynomial is from the sign of 1.96 > 0, then 1.96α2 −
3.64α + 4. 13 > 0, and the solution is J6 = R ∩ ]0, 1[ = [0, 1[= J. Then (2.c) is hold,

which implies that the fixed point is a flip saddle.

3.2 The discrete hyper-chaotic double scroll

In this section, our study of the discrete hyper-chaotic double scroll map, will be based on

some of its basic properties which are the map definition, its fixed points and finally the Jacobian

matrix which has a great role in the study of stability near fixed points.

3.2.1 Two-dimensional piecewise smooth map

Consider the discrete hyper-chaotic double scroll map given in [9] as follows:

f(x, y) =

(
x− ah(y)

bx

)
(3.5)

where a and b are the bifurcation parameters, and the characteristic function h called double scroll

attractor shown in Figure 3.3 is given by:

h(x) =
2m1x+ (m0 −m1)(|x+ 1| − |x− 1|)

2
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Figure 3.3: The classical double scroll attractor obtained for α = 9.35, β = 14.79, m0 = −1
7

,

m1 = 2
7
.

such that m0 < 0 and m1 > 0, are respectively the slopes of the inner and outer sets of the original

Chua circuit which proposed as follows:
x′ = α (y − h (x))

y
′
= x− y + z

z
′
= −βy

So, the discrete hyper-chaotic double scroll map shown in Figure 3.4 and can be given by:

f (x, y) =




x− a (m1y + (m0 −m1)) , if (x, y) ∈ R1

x− am0y, if (x, y) ∈ R2

x− a (m1y − (m0 −m1)) , if (x, y) ∈ R3

bx


Due to the shape of the vector field f of the map, the plane can be divided into three linear

regions denoted by: 
R1 = {(x, y) ∈ R2, y ≥ 1}
R2 = {(x, y) ∈ R2, |y| ≤ 1}
R3 = {(x, y) ∈ R2, y ≤ −1}

where in each of these regions the map (3.6) is linear.
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Figure 3.4: The discrete hyperchaotic double scroll attractor obtained from the map (3.6) for

a = 3.36, b = 1.4, m0 = −0.43, and m1 = 0.41 with initial conditions x = y = 0.1.

Fixed points

The fixed points of the discrete hyper-chaotic double scroll map (3.6) are the real solutions of the

system:

f (x, y) = (x, y)⇐⇒
(
x− ah(y)

bx

)
=

(
x

y

)
therefore, we get the following equations:

x− a (m1y + (m0 −m1)) = x, and bx = y, for y ≥ 1

x− am0y = x, and bx = y, for |y| ≤ 1

x− a (m1y − (m0 −m1)) = x, and bx = y, for y ≤ −1

⇐⇒


a (m1bx+ (m0 −m1)) = 0, and bx = y, for y ≥ 1

am0bx = 0, and bx = y, for |y| ≤ 1

a (m1bx− (m0 −m1)) = 0, and bx = y, for y ≤ −1

Now, we discuss the cases from the existence of the fixed points:

Case 1: For y ≥ 1 we have:

x1 =
m1 −m0

bm1

⇒ y1 =
m1 −m0

m1

, abm1 6= 0

such that:

y1 =
m1 −m0

m1

≥ 1⇔ m1 −m0 ≥ m1 ⇔ m0 < 0, and m1 > 0

So, the fixed point (x1, y1) exist in R1 if m1m0 < 0.
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Case 2: For | y| ≤ 1 we have:

x2 = 0⇒ y2 = 0, and abm0 6= 0

Hence, the fixed point (x2, y2) exist in R2 if m0 6= 0.

Case 3: For y ≤ −1 we have:

x3 =
m0 −m1

bm1

⇒ y3 =
m0 −m1

m1

, and abm1 6= 0

such that:

y3 =
m0 −m1

m1

≤ −1⇔ m0 −m1 ≤ −m1 ⇔ m0 < 0, and m1 > 0

Hence, the fixed point (x3, y3) exist in R3 if m1m0 < 0. Then, the double scroll map (3.6)

has the fixed points given by:

P2 = (0, 0) , if m0m1 > 0
P1 =

(
m1−m0

bm1
, m1−m0

m1

)
P2 = (0, 0)

P3 =
(
m0−m1

bm1
, m0−m1

m1

) , if m0m1 < 0

Jacobian matrix

By deriving the map (3.6) at each area defined by it, we get the following:

• The Jacobian matrix of the double scroll map (3.6) evaluated at the fixed points P1, P2 and

P3 are given by: 

J1 (x, y) = J1 (P1) =

(
1 −abm1

1 0

)

J2 (x, y) = J2 (P2) =

(
1 −abm0

1 0

)

J3 (x, y) = J3 (P3) =

(
1 −abm1

1 0

)
we note here that J1 (P1) = J3 (P3), so we can again write the Jacobian matrix as follows:

J1,3 (x, y) = J1,3 (P1,3) =

(
1 −abm1

1 0

)

J2 (x, y) = J2 (P2) =

(
1 −abm0

1 0

) (3.6)
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• The eigenvalues of the corresponding Jacobian matrices (3.7) is given by the solutions of

their characteristic polynomials. Which are given also respectively by:{
λ2 − λ+ abm1 = 0

λ2 − λ+ abm0 = 0
(3.7)

3.2.2 Stability of fixed points

The stability is a part of the border bifurcations, we resort to studying it in this case near the

fixed point, because it is not possible to study the border collision bifurcation through the normal

form, and on it we rely on the following theory:

Theorem 3.1 Let (x∗, y∗) be a fixed point of f and assume that f ∈ C1.

• If |λ| < 1, for every eigenvalues λ of Df (x∗, y∗) , then (x∗, y∗) is an asymptotically stable fixed

point of f .

• If |λ| > 1, for some eigenvalues λ of Df (x∗, y∗) , then (x∗, y∗) is not a Lyapunov stable fixed

point of f. See [11].

We conclude from the previous theorem, that to study the stability of the fixed point, we perform

three main steps:

1. We evaluate the Jacobian matrix at the fixed point.

2. We calculate the eigenvalues from the solution of the characteristic polynomial.

3. We compare the resulting eigenvalues with the unit disk.

Since, we did the first step previously its enough that we only start from the second step, specifi-

cally from the statement (3.7) therefore:

• We have from the first quadratic equation of (3.8):

∆ = b2 − 4ac = 1− 4abm1, and m1 > 0

So, we distinguish three cases of the delta discriminant:

Case 1: Null discriminant:

∆ = 1− 4abm1 = 0, if abm1 =
1

4
then, we have one double eigenvalue:

λ =
1

2
< 1

Hence, the fixed points P1 and P3 are asymptotically stable fixed points of f if abm1 = 1
4
.
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Case 2: Positive discriminant:

∆ = 1− 4abm1 > 0, if abm1 ∈ ]−∞, 0[ ∪
]
0,

1

4

]
= I1

then, we get two real eigenvalues:
λ1 = −b−

√
∆

2a
= 1−

√
1−4abm1

2

λ2 = −b+
√

∆
2a

= 1+
√

1−4abm1

2

Now, we apply the theorem (3.1) as follow:

1. For the first eigenvalues λ1: The case

|λ1| < 1⇔ −1 <
1−
√

1− 4abm1

2
< 1⇔ −2 < 1−

√
1− 4abm1 < 2

⇔



{
−2 < 1−

√
1− 4abm1

1−
√

1− 4abm1 < 2
⇔
{ √

1− 4abm1 < 3

1 +
√

1− 4abm1 > 0

solution is:

{
abm1 ∈

]
−2, 1

4

]
∩ I1 = ]−2, 0[ ∪

]
0, 1

4

]
⊂ I1

abm1 ∈ R ∩ I1 = I1

then: |λ1| < 1 is hold if abm1 ∈ ]−2, 0[ ∪
]
0, 1

4

]
.

2. For the second eigenvalues λ2: The case

|λ2| < 1⇔ −1 <
1 +
√

1− 4abm1

2
< 1⇔ −2 < 1 +

√
1− 4abm1 < 2

⇔



{
−2 < 1 +

√
1− 4abm1

1 +
√

1− 4abm1 < 2
⇔
{

3 +
√

1− 4abm1 > 0
√

1− 4abm1 < 1

solutions is:

{
abm1 ∈ R ∩ I1 = I1

abm1 ∈
]
0, 1

4

]
∩ I1 =

]
0, 1

4

]
⊂ I1

then |λ2| < 1 is hold if abm1 ∈
]
0, 1

4

]
. Hence, the fixed points P1 and P3 are asymptoti-

cally stable fixed points of f if abm1 ∈
]
0, 1

4

]
.

Case 3: Negative discriminant:

∆ = 1− 4abm1 < 0, if abm1 ∈
]

1

4
,+∞

[
= I2

then, we get two complex eigenvalues:
λ1 = −b−i

√
∆

2a
= 1−i

√
1−4abm1

2

λ2 = −b+i
√

∆
2a

= 1+i
√

1−4abm1

2

Now, we apply the theorem (3.1) as follow:
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1. For the first eigenvalues λ1: The case |λ1| < 1⇔
√

(Re.λ1)2 + (Im.λ1)2 < 1, λ1 ∈ C

⇔


∣∣∣1−i√1−4abm1

2

∣∣∣ < 1⇔
√

1
4

+ 1−4abm1

4
< 1⇔

√
2−4abm1

4
< 1

solutions is: abm1 ∈
]−1

2
, 1

2

]
∩ I2 =

]
1
4
, 1

2

]
⊂ I2

then: |λ1| < 1 is hold if abm1 ∈ I2.

2. For the second eigenvalues λ2: The case |λ2| < 1⇔
√

(Re.λ2)2 + (Im.λ2)2 < 1, λ2 ∈ C

⇔


∣∣∣1+i

√
1−4abm1

2

∣∣∣ < 1⇔
√

1
4

+ 1−4abm1

4
< 1⇔

√
2−4abm1

4
< 1

solutions is: abm1 ∈
]−1

2
, 1

2

]
∩ I2 =

]
1
4
, 1

2

]
⊂ I2

then: |λ2| < 1 is hold if abm1 ∈ I2. Hence, the fixed points P1and P3 are asymptotically

stable fixed points of f if abm1 ∈
]

1
4
, 1

2

]
.

• We have from the second quadratic equation of (3.8):

∆ = b2 − 4ac = 1− 4abm0, and m0 < 0

So, we distinguish three cases of the delta discriminant:

Case 1: Null discriminant:

∆ = 1− 4abm0 = 0, if abm0 =
1

4

then, we have one double eigenvalue:

λ =
1

2
< 1

Hence, P2 are an asymptotically stable fixed point of f if abm0 = 1
4
.

Case 2: Positive discriminant:

∆ = 1− 4abm0 > 0, if abm0 ∈ ]−∞, 0[ ∪
]
0,

1

4

[
= I1

then, we get two real eigenvalues:
λ1 = −b−

√
∆

2a
= 1−

√
1−4abm0

2

λ2 = −b+
√

∆
2a

= 1+
√

1−4abm0

2

Now, we apply the theorem (3.1) as follow:
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1. For the first eigenvalues λ1: The case

|λ1| < 1⇔ −1 <
1−
√

1− 4abm0

2
< 1⇔ −2 < 1−

√
1− 4abm0 < 2

⇔



{
−2 < 1−

√
1− 4abm0

1−
√

1− 4abm0 < 2
⇔
{ √

1− 4abm0 < 3

1 +
√

1− 4abm0 > 0

solution is:

{
abm0 ∈

]
−2, 1

4

]
∩ I1 = ]−2, 0[ ∪

]
0, 1

4

]
⊂ I1

abm0 ∈ R ∩ I1 = I1

then |λ1| < 1 is hold if abm0 ∈ ]−2, 0[ ∪
]
0, 1

4

]
.

2. For the second eigenvalues λ2: The case

|λ2| < 1⇔ −1 <
1 +
√

1− 4abm0

2
< 1⇔ −2 < 1 +

√
1− 4abm0 < 2

⇔



{
−2 < 1 +

√
1− 4abm0

1 +
√

1− 4abm0 < 2
⇔
{

3 +
√

1− 4abm0 > 0
√

1− 4abm0 < 1

solution is:

{
abm0 ∈ R ∩ I1 = I1

abm0 ∈
]
0, 1

4

]
∩ I1 =

]
0, 1

4

]
⊂ I1

then |λ2| < 1 is hold if abm0 ∈
]
0, 1

4

]
. Hence, the fixed points P2 are asymptotically

stable fixed point of f if abm0 ∈
]
0, 1

4

]
.

Case 3: Negative discriminant:

∆ = 1− 4abm0 < 0, if abm0 ∈
]

1

4
,+∞

[
then, we get two complex eigenvalues:

λ1 = −b−i
√

∆
2a

= 1−i
√

1−4abm0

2

λ2 = −b+i
√

∆
2a

= 1+i
√

1−4abm0

2

Now, we apply the theorem (3.1) as follow:

1. For the first eigenvalues λ1: The case |λ1| < 1⇔
√

(Re.λ1)2 + (Im.λ1)2 < 1, λ1 ∈ C

⇔


∣∣∣1−i√1−4abm0

2

∣∣∣ < 1⇔
√

1
4

+ 1−4abm0

4
< 1⇔

√
2−4abm0

4
< 1

solution is: abm0 ∈
]−1

2
, 1

2

]
∩ I2 =

]
1
4
, 1

2

]
⊂ I2

then |λ1| < 1 is hold if abm0 ∈ I2.
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2. For the second eigenvalues λ2: If |λ2| < 1⇔
√

(Re.λ2)2 + (Im.λ2)2 < 1, λ2 ∈ C

⇔


∣∣∣1+i

√
1−4abm0

2

∣∣∣ < 1⇔
√

1
4

+ 1−4abm0

4
< 1⇔

√
2−4abm0

4
< 1

solution is: abm0 ∈
]−1

2
, 1

2

]
∩ I2 =

]
1
4
, 1

2

]
⊂ I2

then |λ2| < 1 is hold if abm0 ∈ I2. Hence, the fixed points P1 and P3 are asymptotically

stable fixed points of f if abm0 ∈
]

1
4
, 1

2

]
.

3.3 Conclusion

The border collision bifurcation is one of the most studied bifurcations for dynamical systems in

recent years that occurs to piecewise smooth maps and the reason for this is due to the fact that the

latter is very effective in modeling the non-smoothness in the systems accurately, i.e., character-

ized by a complex dynamical behavior. In view of the importance of the subject from a scientific

and practical point of view, we choose it to be our topic and purpose in this thesis by presenting

the theoretical part of this bifurcation and its importance in some piecewise smooth maps in one

and two dimensional Zeraoulia-Sprott mappings. One of the benefits of this work is that the study

of the dynamics of multi-dimensional systems can be reduced to the study of systems of lower

dimension and even though there have been a lot of research on these systems and their bifurca-

tion phenomena. Many aspects of the dynamics of such maps still remain unexplored and to be

understood. Accordingly to remove the mystery of this type of maps, it has become necessary to

pay a great attention to it in terms of scientific research.
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