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Abstract

The aim of this memory is to study the dynamical behaviors of some

Zeraoulia-Sprott piecewise smooth mappings in one and two dimensional.

These maps are characterized by a highly dispersed behavioral nature that

reaches the extreme of robust chaos as a result of the border collision

bifurcations that occurs especially in this type of maps.

Key words: Border collision bifurcations, piecewise smooth map, chaotic

behavior.




L'objectif de cette mémoire est d'étudier le comportement dynamique de

certaines applications lisses par morceaux issues d’applications de Zeraoulia-

Sprott prises a une et deux dimensions, qui se caractérisent par une nature

comportementale tres disperseé et atteint 1’extreme du chaos robuste en raison de

les bifurcations collision de frontiere qui se produit surtout dans ce type

d’applications.

Mots clés: Bifurcations collision de la frontiére, applications lisse par

morceaux, comportement chaotique.
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’ Introduction \

The bifurcation theory is an essential part in the study of dynamical systems, it appeared as a
term for the first time with the mathematician Henri poincaré at the beginning of the 20™ century
during his work on differential systems, and since then it has been in continuous development to
this day. It is defined as a quantitative or qualitative change in the solution of a dynamical system
with a modification of the parameters on which it depends and there are two types of them:
local bifurcation which can be analyzed entirely by changes in the stability of local equilibrium
properties, periodic orbit or other invariant sets as the parameters cross critical thresholds, and
global bifurcation which often occur when the larger invariant sets of the system collide with each
other, or with the equilibriums of the system. They cannot be detected only with an analysis of
the stability of the equilibria (fixed points).

In this work, we focus on a new type of bifurcations called the border collision bifurcations
belongs to the global bifurcations and especially occurs in piecewise smooth maps when a fixed
point (or periodic point) meets the switching manifold and is divided into two types namely border
collision pair bifurcation and border crossing bifurcation.

In particular, we study the bifurcation theory for continuous piecewise smooth discrete-time sys-

tems in one and two dimensions. For more details we divide this thesis into 3 chapters as follows:

e Chapter 1, is devoted to presenting the essential results on the chaotic dynamics and bifur-

cations in one and two-dimensional piecewise smooth maps.

e Chapter 2, is limited to the study of the theory of border collision bifurcation in 1-D piece-

wise smooth Zeraoulia mapping.

e Chapter 3, is also concerned with the study the bifurcations mentioned previously in 2-D

piecewise smooth Zeraoulia-Sprott mappings.




Chapter 1
Border Collision Bifurcations

In this chapter, we will talk about a new type of bifurcations, completely different from everything
we studied upon previously such as saddle node, pitchfork, hopf..., called the border collision
bifurcations. It appeared as a term for the first time in [5], although it was previously presented
in the Russian literature under the name C-bifurcation attributed to the scientist Feigen in [4],
that especially occurs in piecewise smooth maps and the reason for this is due to the fact that
the latter is very effective in modeling the non-smoothness in the systems accurately and an
example of this from physics (switching circuits), as this type of bifurcation is clearly manifested
from a mathematical point of view at the border which namely switching surface, means that this
bifurcation occurs when the nature of the fixed point is changed as it crosses the switching surface
and it belongs to the category of global bifurcation that lead to the so-called robust chaos. But

we are only concerned with studying some parts of these bifurcations.

1.1 Piecewise smooth maps

This section is based on the study of the piecewise smooth map in one and two dimensional
through three main points represented in defining the map and presenting some of its properties,
in addition to the normal form and its fixed point for both dimensions and finally addressing the

border collision bifurcations. Consider a map F' : R™ — R™ as follow:
Tor1 = F(x,), x0€R (1.1

Some properties

e The map (1.1) is a piecewise smooth, if the phase space R™ can be partitioned into a finite

number J of disjoint non-empty open regions R;, i = 1,...,.J, and a boundary ¥, so that
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J
R™ = (U Ri> uy.
=1

The boundary > made up of a union of continuously differentiable surfaces which separate

the regions R;.

F' is smooth in each regions R;.

Non-smoothness of F' occurs on ¥, which is called switching surface or switching manifold.

The map (1.1) is also known as hybrid system. For more details see [7].

The most important results about these maps are about the existence of relation between the
chaotic behaviors and the border collision bifurcations. Note that the analysis of this relation is
based on some ingredients. The first of which is the affinity of the corresponding normal forms
for fixed points on the borders, and second is the behavior of fixed points (or periodic points)
depending on the bifurcation parameter associated with the various cases, and this study is carried

out in one and two-dimensions as follows which taken from [2] and [1] as follows:

1.1.1 One-dimensional piecewise smooth maps
Consider the following 1-D piecewise smooth system:

g(x,,u), T < Tp

(1.2)
h(x,pw), x>

Tpy1 = f (mmﬂ) = {

where p is the bifurcation parameter, the smooth curve = = 13, divided the state space into two

regions R; and Ry given by:
Rp={zeR:z <}
Rr={z eR:x > x}
and the boundary between them as is given by:

Y={rxeR:z=umx}

Some properties

e The map f is continuous, but its derivative is discontinuous at the borderline x = x;,.

e The functions g and h are both continuous and they have continuous derivatives in x every-

where except at z;,.
e 1, (1) is a possible path of fixed points of f, this path depends continuously on .

e The fixed point possible hits the boundary at a critical parameter value i, : ¢ (11,) = -

1.1. Piecewise smooth maps |
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The normal form

In order to facilitate and simplify the study of the border collision bifurcations in 1-D piecewise

smooth map we need the following theorem:

Theorem 1.1 The normal form of the piecewise smooth one-dimensional map (1.2) is given by [2]

as:
ar 4+, <0

1.3
br +p, >0 (13)

M (ﬂwi):{

where p is a parameter, and a,b are the slopes of the graph at the two sides (R; and Rp) of the

border x = 0.

Proof. The normal form (1.3) at a fixed point on the border is a piecewise affine approximation
of the map in the neighborhood of the border point z;,.

e The method of derivation of such a form is as follows:

1. LetZ =« — zp and g = p — p,, then the equation (1.2) becomes:

A g(j+xbaﬂ+lj’b)a <0
) =37 _ _ 1.4
FER= {250 (1.4
Hence, for map (1.4), we have the following properties:
- The border is at z = 0.
- The state space is divided into two halves, R_ = (—o0,0] and R, = [0, c0).
- The fixed point of (1.4) is at the border for the parameter value ;i = 0.
2. Expanding f to first order about (0, 0) gives:
(-, . [ar+m+0(@,p), <0
J@n) = { b7+ v+ 0 (7)), T>0
a = lim,_,o- a%f z,0) (1.5)

(z,0
b=1lim, o+ 2f (z,0)
F (5.0)

such that:

- Due to the smoothness of f in u, the last limit in (1.5) doesn’t depend on the direction

of approach of 0 by x.

- Under the hypotheses v # 0, |a| # 1 and |b| # 1, the non-linear terms are negligible
close to the border.

1.1. Piecewise smooth maps



Chapter 1. Border Collision Bifurcations

3. Finally, we define a new parameter 1’ = iv and dropping the higher order terms as in [2],

then the 1-D normal form is given by:

which has the same form of (1.3).

The fixed points

e Let z}, and x7 be the possible fixed points of the system near the border to the right (z > x;)

and left (z < z;) of the border, respectively. Then in the normal form (1.3) we have

Th=15>0, if b<IAp>0

and

%
Ty,

£ <0, f a<1Ap<0

Border collision bifurcation scenarios

In the following section, we discuss some border collision bifurcation scenarios from x, for i, near

Hp-

e Border collision bifurcation scenarios can be obtained by various combinations of the para-
meters a > b as p is varied. It is the same for a < b which are summarized in Figure 1.1,
because the normal form (1.3) is invariant under the transformation + — —x, u — —pu, a
= b. See also [2]:

Scenario 1: (Persistence of stable fixed point) or Period-1 — Period-1.

If —1 < b < a < 1, then there is no bifurcation and a stable fixed point for < 0 persists
and remains stable for p > 0.

Scenario 2: (Persistence of unstable fixed point) or No Attractor — No Attractor.

If 1 <b<a orb<a< —1, then there is no bifurcation and an unstable fixed point for

1 < 0 persists and remains unstable for ;. > 0.

Scenario 3: (Merging and annihilation of stable and unstable fixed points) or No Fixed Point —
Period-1.

1.1. Piecewise smooth maps |J
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If -1 < b <1< a, then there is a bifurcation from no fixed point for ; < 0 to two fixed
points z;, (unstable) and x (stable) for 1 > 0.

Scenario 4: (Merging and annihilation of two unstable fixed points, plus chaos). No fixed point —

chaos.

Ifa > 1and —% < b < —1, then there is a bifurcation from no fixed point to two unstable

fixed points plus a growing chaotic attractor as y is increased through zero.

Scenario 5: (Merging and annihilation of two unstable fixed points) or No fixed point — No attrac-

tor.

If a > 1and b < =%, then there is a bifurcation from no fixed point to two unstable fixed

points as x is increased through zero and there is an unstable chaotic orbit for p > 0.
Scenario 6: (Supercritical border collision period doubling) or Period-1 — Period-2.

Ifb<—1<a<0and —1 < ab < 1, then there is a bifurcation from a stable fixed point z,

to an unstable fixed point xy plus a stable period-2 orbit as x is increased through zero.
Scenario 7: (Subcritical border collision period doubling) or Period-1 — No Attractor.

Ifb < -1 < a<0andab > 1, then there is a bifurcation from a stable fixed point z plus

an unstable period-2 orbit to an unstable fixed point x ¢ as x is increased though zero.

Scenario 8: (Emergence of periodic or chaotic attractor from stable fixed point) or Period-1 —

Periodic or Chaotic Attractor.

If0 <a<1,b< —1and ab < —1, then there is a bifurcation from a stable fixed point x,
to an unstable fixed point xy plus a period-n attractor, n > 2 or a chaotic attractor which
is depends on the pair of parameters (a, b) as shown in Figure 1.2 as y is increased through

zero.
e Now we give the following definitions. For more details see [11]:

Definition 1.1 The border collision pair bifurcation is a kind of border collision bifurcations and its
similar to saddle node bifurcation (or tangent bifurcation) in smooth systems. In this bifurcation, the
smooth map has two fixed points (one side of the border and the other fixed point is on the opposite
side) for positive (respectively, negative) values of y, and no fixed points for negative (respectively,

positive) values of . Hence, the border collision pair bifurcation occurs if:

b<l<a

1.1. Piecewise smooth maps |
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Figure 1.1: Partitioning of the parameter space into regions with the same qualitative phenomena.
The labeling of regions refers to various bifurcation scenarios. 1) Persistence of stable fixed points,
2) Persistence of unstable fixed points, 3) No fixed point to stable and unstable fixed points, 4) No fixed
point to two unstable fixed points and chaotic attractor, 5) No fixed point to two unstable fixed points,
6) Supercritical border collision period doubling, 7) Subcritical border collision period doubling, 8) A
stable fixed point to periodic or chaotic attractor. The regions shown in primed numbers have the

same bifurcation behavior as the unprimed ones when . is varied in the opposite direction.

1.1. Piecewise smooth maps
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-100

P, P

Figure 1.2: The parameter region 0 < a < 1 and b < —1, showing the type of attractor for p > 0.
Regions P, correspond the existence of stable period n orbit, inside the shaded region there exists
chaotic attractors.

Definition 1.2 The border crossing bifurcation is a kind of border collision bifurcations, it has some
similarities with period doubling bifurcation in smooth maps (supercritical period doubling bifurca-
tion in smooth maps with one distinction). In this bifurcation, the fixed point persists and crosses the
border as 1 is varied through zero and other attractors or repellers appear or disappear as a result of

the bifurcation. Indeed, border crossing bifurcation occurs if:
a>—1and b< —1
Remark 1.1 From the previous definitions, we can summarize the above scenarios as follows:

e The two scenarios 1 and 2 belongs to the Scenario A “Persistence of stable fixed point”, at

w=0.
e The three scenarios 3, 4 and 5 belongs to the Scenario B “Border collision pair bifurcation”.

e The last three scenarios 6, 7 and 8 belongs to the Scenario C “Border crossing bifurcation”.

1.1. Piecewise smooth maps
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1.1.2 Two-dimensional piecewise smooth maps

Let us consider the following 2-D piecewise smooth system given by:

= (P00, i < SG)
9(&.9.p) = D) f (1.6)
= 7 . if > S (9,
92 f4($7y7p) (y p)

where p is the bifurcation parameter, the smooth curve & = S (7, p) divided the phase plane into
two regions R, and Ry given by:

and the boundary between them as:

S ={(&9) eR’ &=35(p)}

Some properties

The map ¢ is continuous, but its derivative is discontinuous at the borderline z = S (7, p).

The functions ¢g; and ¢, are both continuous and have continuous derivatives.

The one-sided partial derivatives at the border are finite and in each subregion R; and Rg.

The map (1.6) has one fixed point in R; and one fixed point in Ry for a value p, of the
parameter p.

The normal form

The results outlined above in 1-D normal form give a complete description of the bifurcations
as . is varied it has been shown in [2], for 2-D piecewise smooth maps, a normal form for border
collision bifurcation can again be written as shown in [1] as follows:

Theorem 1.2 The normal form of the piecewise smooth two-dimensional map (1.6) is given by:
TL 1 T 1
No(z,y) = L y (1.7)
TR 1 T 1
+ W, x>0
—(SR 0 Yy 0

where p is a parameter and 71, , 01,5 are the traces and determinants of the corresponding matrices

of the linearized map in the two subregions R, and Rp.

1.1. Piecewise smooth maps
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Proof. The normal form (1.7) at a fixed point on the border is a piecewise affine approximation

of the map in the neighborhood of the borderline & = S (7, p) .
e The method of derivation of such a form is as follows:

1. Let 7 =2 — S(y,p) and § = gy, this p-dependent change of variables moves the border to

the g-axis, then the equation (1.6) becomes:

g(@+S(9,p),9,.p) = f (Z,7,p) (1.8)

Hence, for the map (1.8), we have the following properties:

- The borderis & = 0.

- The phase space is divided into two halves L and R (for left and right), by the next

transformation of coordinates.

- The map (1.8) has a fixed point P, = (0, 7.(p,)) on the border when p = p,.
2. The transformation of coordinates is summarized in these steps:

- Let e; be a tangent vector in the § direction and suppose that the vector e; maps to a

vector e,.
- Assume e, is not parallel to e;.
- Define new coordinates again as shown in Figure 1.3.
- Choose the point P, as the new origin for e; in the y direction and e, in the Z direction.
- In 7 — y coordinates, the fixed point P, is now (0,0) and the border is given by z = 0.
- Define the new parameter 1 = p — p,, so ji, = 0.

- Rescale 7 and g again such that at z = 0 a unit vector along the y-axis maps to a unit

vector along the z-axis. Then, the map f(Z, 7, p) can be written as F(z, ¥, [t).

3. Now, write the map F(Z, 9, 1) in the side L in the matrix form as:

= (18). o oo )

and linearizing F'(z,y, i) in the neighbourhood of (0, 0,0), we have

Ju T T "
FL(aﬁ,y,ﬁ)=< ! 12><3f>+ﬁ<vL >+O<a‘:,y,ﬂ> for 7 <0 (1.9)
Jor Ja Yy ULy

1.1. Piecewise smooth maps
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where )
Jll = hIIl_ %fl('f?gvo)
z—0~,5—0
Jio= lim Zf£(z,7,0
12 f_}oi’g_}()ayfl( y,0)
Jo1 = _ IIHE %fZ('T?yaO)
z—0~,y—0
. . 8 _
‘]22 - iH%I_I%HOanQ(xv Y, O)
Tz = li ﬁ_ T, Y, 0
UL 53%01_1?,%%08”]01 <x y )
. . 9 _
\ Ly = :E—>l1]l_1£117—>08‘af2($’ Y 0)

Then, the equation (1.9) becomes:

1 z z
F@gm="" “lan( ™) +o@um for z<0
_5L 0 Yy ULy
such that
Ji1 = 71, (trace) and Jy = —¢; (determinant)

and since a unit vector along the y axis maps to a unit vector along the z axis at 1 = 0, we

have
J12 =
Similarly, for side R we obtain:
o TR 1 x
F x? ) =
= 1)(2

Continuity of the map implies:

ULg

()

ULy

1 and J22:O
) for z >0

VR (%

()=

URy Uy

. Make another change of variables as follow: Let v = z, y = §y — jivy, and pu = fi(v, + vy)

with (v, + v,) # 0. The choice of axis is

A

normal form:
TL

-0
TR

— g

N(z,y)

independent of the parameter. Then, we have the

(1) (1)
) (1)

1
0
1
0

T

Y
x

Yy

(1.10)

where p is the parameter and 7,5 , 01,5 are the traces and determinants of the correspond-

ing matrices of the linearized map in the

{

two subregions R; and Ry given by:

Ry ={(x,y) e R?*}, >0
Rr={(v,y) €eR?}, >0

1.1. Piecewise smooth maps
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5.7 v

<—Border

g X
= ,,/ S

% L R

el

< Border

Figure 1.3: The transformation of coordinates from the two-dimensional piecewise smooth map

to the normal form.

in the regions R; and Rp, the map (1.10) is smooth and the boundary between them is
given by:
Y ={(z,y) eR?* =0, yeR}

Remark 1.2 There is a relation between the normal form of the piecewise smooth one-dimensional
map and the normal form of the piecewise smooth two-dimensional map, where we can move from
(1.7) to (1.3) when §; are zero for i = L, R.

The fixed points

e Let P, and Py be the possible fixed points of the system near the border to the right:
x < S(y,p) and left: x > S (g, p) of the border respectively. Then in the normal form (1.7)

we have

— H =Ly
PL - (1*TL+5L7 1fTL+5L) € RL

PR:( L —OrLL )GRR

1-7r+0r’> 1—TRr+dR

with eigenvalues \; 1, and \j ;2 respectively.

e The stability of the fixed points is determined by the eigenvalues of the corresponding Jaco-

bian matrix, i.e.,
1
A= 3 (T:I:\/TQ—ZL(S)
Border collision bifurcations

The border collision bifurcations can be obtained by various combinations of the values 7., 75, dr,

and 0y as p is varied through zero and because our study of this bifurcations in this dimension is

1.1. Piecewise smooth maps
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The fixed pointis a flip saddle if
T<(1+4)

The fixed pointis a flip attractor if
(1+d)<1<2vV38

The fixed point is a spiral attractor if
2vVe<t<2V/§

The fixed point is a regular attractor if
2V <1<(1+4)

The fixed point is a regular saddie if
T>1+4

b b b @b g
POPOD

Figure 1.4: The types of fixed points of the normal form map.

limited only to a part that is the classification of fixed points under the both conditions || < 1
and |dr| < 1. So the possible types of fixed points of the normal form map (1.7) shown in Figure
1.4 are given by:

(1) For positive determinant

(1.a) For2v6 <7 < (1+9), then the Jacobian matrix has two real eigenvalues 0 < A\jz, Aoy < 1
and the fixed point is a regular attractor.

(1.b) For 7 > 1+, then the Jacobian matrix has two real eigenvalues 0 < A\;;, < 1, A\y;, > 1 and
the fixed point is a regular saddle.

(1.¢) For —(1+6) < 7 < —2V/6,then the Jacobian matrix has two real eigenvalues —1 <
Mz, A2r, < 0 and the fixed point is a flip attractor.

(1.d) For 7 < —(1+), then the Jacobian matrix has two real eigenvalues —1 < X\, < 0,
Xor, < —1 and the fixed point is a flip saddle.

(1.e) For 0 < 7 < 2V/4, then the Jacobian matrix has two complex eigenvalues | Mz |5 dan] <1
and the fixed point is a clockwise spiral.

(1.g) For —2/§ < 7 < 0, then the Jacobian matrix has two complex eigenvalues Az |, Aan] < 1
and the fixed point is a counter-clockwise spiral.

(2) For negative determinant

1.1. Piecewise smooth maps
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(2.a) For —(1+6§) < 7 < (1+9), then the Jacobian matrix has two real eigenvalues —1 < A,
< 0,0 < Aoz < 1 and the fixed point is a flip attractor.

(2.b) For 7> (1+ ), then the Jacobian matrix has two real eigenvalues \;;, > 1,—1 < Ay, <0
and the fixed point is a flip saddle.

(2.¢) For 7 < —(1+ ), then the Jacobian matrix has two real eigenvalues 0 < A\, < 1, Ay < —1
and the fixed point is a flip saddle. See also [11].

1.1. Piecewise smooth maps



Chapter 2
Bifurcations of the 1-D Zeraoulia map

This chapter is concerned with the application of what was addressed in the first chapter to the
one-dimensional Zeraoulia map and it is the piecewise linear logistic map. The study will be based
on its definition and the normal form with its fixed points and finally the study of bifurcations in
the neighborhood of the fixed point.

2.1 One-dimensional piecewise smooth map

Consider the piecewise logistic map given by [8] as:
T = flog,a) = alz[ (1 — |z]) 2.1)

where « is the bifurcation parameter, the smooth curve » = 0 divided the state space into two
regions R, and Rg given by:

Ry={reR:z <0}

Rr={reR:2>0}
and the boundary between them as:

Y={zeR:z=0}

So, the piecewise logistic map (2.1) can be written again as follow:
—ax(l+z) if 2 <0

xk-&-l:f(xk’a):{

ar(l—x) if >0

2.1.1 The normal form

In order to determine the associated normal form for the piecewise logistic map (2.1), we should

do three main steps which are as follows:

18
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1. We calculate the fixed points of the f mapping.
2. We derive the piecewise logistic map (2.1) on both side.
3. We choose an appropriate coordinate transformation because in our case the choice of axis
is independent of the parameter.
Fixed points

The fixed points of the map (2.1) are the real solutions of the system:
falz) == alz|(1—|z|) =2

therefore, we get the following equations:

{ —ar(1+z)=2, <0 2.2)

ax(l—z)=z, >0

ar’+ar+2=0, <0

{osz—owc—Fx—O, x>0
- {x(a(a:+1)+1):0, z<0
rz(la(x—1)+1)=0, >0

e In the side L: The possible fixed points are:

{ x1,, = 0, (unacceptable)

s = e
such that
(. a>0A—(a+1)<0 a>0Aa>—1
if: &
. a<0A—(a+1)>0 a<0Na< -1
o+
ToL =~ <0& - a €10, +oo[N]—1, +oo] = |0, +o0]
a € ]—00,0[N]—00, —1[ = ]—00, —1]
| then, a € |—o0, —1[ U0, +o0]

hence, the only negative solution of the first equation from (2.2) is:

a+1

xp = , for a €|—o00,—1[U]0,+00]

2.1. One-dimensional piecewise smooth map
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e In the side R: The possible fixed points are:

{ z1,r = 0, (unacceptable)

g = 252
such that
[ a>0Aa—1>0 a>0 Aa>1
if: &
a<0ANa—1<0 a<0 ANa<l
a—1
T2 R =

>0& {a6]0,+oo[ﬂ]1,—|—oo[:]1,+oo[
=
a € ]—00,0[N]—o00, 1] =]—00,0]
then, a € |—o0,0[U]1, +00]

hence, the only positive solution of the second equation from (2.2) is:

a—1

TR = , for a € |—o00,0[U]L, 00|

«

Then, the piecewise logistic map (2.1) has two fixed points given by:
, for a € |—oo0,—1[U]|1,4o0|

Derivation

e The derivative of the map (2.1) evaluated at a point = in the both regions R; and Ry is
given by:

Df(z) =a(—2x—1)
{ Dfr(x) =a(—2z+1)
e The derivative of the map (2.1) evaluated at a fixed points in the both regions R; and Ry
is given by:
{ Dfr(zr) =2+«
Dfr(xzg)=2—«

The coordinate transformation
The normal form of the map (2.1) is given by :

24a)x+pu, x<0

2.3
2-—a)z+p, >0 (23

2.1. One-dimensional piecewise smooth map
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() (d)

. . . . +p, for <0
Figure 2.1: Bifurcation diagrams for the map N; (z,pu) = el v . (@) a = 0.5,

br + u, for x>0
b = —3.5: At u = 0, N; exhibits a border-collision bifurcation from a period-1 attractor to a

period-3 attractor at x = 0. (b) a = 0.5, b = —4.15: At u = 0, N; exhibits a border-collision
bifurcation from a fixed point attractor to a six-piece chaotic attractor at x = 0. (c) a = 0.5,
b = —4.4: At u = 0, N; exhibits a border-collision bifurcation from a fixed point attractor to a
three-piece chaotic attractor at z = 0. (d) a = 0.5, b = —5.5: At u = 0, N; exhibits a border-

collision bifurcation from a fixed point attractor to a one-piece chaotic attractor at = = 0 [6].

2.1. One-dimensional piecewise smooth map
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2.1.2 The fixed points

e In the normal form (1.3) we have two fixed points z;- and x - near the border to the right
(x < 0) and the left (x > 0) of the border. So from (2.3) we have:

= -7 <0, if a<-1Ap<0
rpe=+5>0, ifa>1 Ap>0

2.2 The border collision bifurcations

Since the border collision bifurcations of the original map f is the same as that of the normal
form (2.3) as shown in Figure 2.1, the reason for this is due to the appearance of the bifurcation

parameter « in the fixed points and because the study of this bifurcation is limited to one of the

two cases (a > bora < b)plusa € I =]—o0,—1[ U1, +o0[ so:
+2<1 <1
l. Foracel, =]-00,—-l[ea<-1& “ = =a<b
2—a>3 b>3
a+2>3 a>3
2. Forae L=l 40/ a>1< =3 =a>b

2—a<l1

therefore, we study only on the field I, = |1, +o0|.
Scenario 1: (Persistence of stable fixed point) or Period-1 — Period-1.

elf-1<b<a<le-1<2—-—a<2+a<l suchthatael, =]1,400]:

4

—1<2—-« a<3
& 2—a<24+a &4 a>0
\2+Oz<1 a<—1

(0 €]-00,3[N]1, +00[ =]1,3[ C I
& a € 0,400 N1, 4o00[ = |1, +oo[ = I,
| @ €]-00,-1[N]L, +oo[ =2

then, the Scenario 1 is not hold.

Scenario 2: (Persistence of unstable fixed point) or No Attractor — No Attractor.

2.2. The border collision bifurcations
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elfl<b<ae1<2—-—a<2+aq,suchthata € I, =]1,4o00[:

1<2—« a<l1
=
2—a<2+4+a« a>0
- a € ]—o00,1[N]1, 400 = &
a €10,400[ N1, 400 = |1, +o0o[ = I3
elft<a<-1&2—a<2+a<—1,suchthata e I, =]1,400]:
2—a<2+« a>0
= =
24+ a< -1 a< —3
a €10,400[ N1, +o0] = |1, +o0[ = I
a € ]—o00,—3[N]l, 40| =@

then, the Scenario 2 is not hold.

Scenario 3: (Merging and annihilation of stable and unstable fixed points) or No Fixed Point —
Period-1.

elf-1<b<l<ae-1<2-—a<l<2+4+aq,suchthata €, =]1,+o0[:

;

—-1<2—-« a <3
& 2—a<l & a>1
\1<2+0¢ a>—1

a € ]—00,3[N]1,4+o00[=]1,3[ C I,
=3 a€ll,+oo[ =1

. Q€ ]—]_,—f—OO[ﬂ]l,—f—OO[ = ]17+OO[ =1y

then, the Scenario 3 is hold for o € |1, 3] which implies that there is a bifurcation from no
fixed point for ;1 < 0 to two fixed points x; (unstable) and xy (stable) for x > 0.

Scenario 4: (Merging and annihilation of two unstable fixed points, plus chaos). No fixed point —
chaos.

2.2. The border collision bifurcations
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o If

a>1
and
\ 4 <b< -1

24+a>1
& and
—2—«
| Tra <2—-—a< -1
(
a>—1
& and

| 2-a<(-a)(l+a)<-(1+0)

such that o € I, = |1, +00[:

a>—1 a>—1
and and
=
—2+a)<(2—a)(1+a) a?—2a—4<0
{(2—04)(1+a)<—(1+a) {a2—2a—3>0
a€]—-1,+00[N]1,+oo[ = |1,400[ = I,
- and

{ae}—¢5+Lv€+1ﬁﬂL+uﬂ:]LV3+1U:Q

a € ]—00, —1[U]3, +oo[N]1, +oo[ = ]3, +o0[ C I,

then, the Scenario 4 is hold for a € |3,v/5 + 1| which implies that there is a bifurcation

from no fixed point to two unstable fixed points plus a chaotic attractor as y is increased

through zero.

Scenario 5: (Merging and annihilation of two unstable fixed points) or No fixed point — No attrac-

tor.

o If:

a>1 ([ 2+a>1
and & and
b< =% \2—a<—ﬁ—g
( a>—1
& and
a? =20 —4>0

2.2. The border collision bifurcations
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such that o € I, = |1, +o0[:

€]—1,4+00[N]1,+oo[ =1, 400 = I,
and

a€]—00,—Vb+1[U]VE+1,+00[N]1,+oo] = |5+ 1,400 C I

then, the Scenario 5 is hold for a € ]\/5 +1,+00 [ which implies that there is a bifurcation

from no fixed point to two unstable fixed points as is increased through zero, and there is
an unstable chaotic orbit for p > 0.

Scenario 6: (Supercritical border collision period doubling) or Period-1 — Period-2.

o If:
b<—-1<a<0 2—a<—-1<24+a<0
and & and
—l<ab<1 —-1<2+a)2—-a)<1
such that o € I, = |1, +00[:
(
2—a< -1 a>3 € ]3,+o0[N]1,+oo] = |3, +00[ C I,
& -1<24+a & a>-3 & 046] 3,+oo[ N1, +o00] = |1, +o0] = L5
| 2+a<0 a< =2 a € ]—o0,—2[N]l,+o0| =@
—1<(2+a)2—a) —1<4—a? a? <5
& &
- 2+a)2—a)<1 4—a?<1 a® >3
a€]—v5,V5[ N1, +oo[=]1,V5[ C I
\ ae]—oo,— 3]U[\/g,oo[ﬂ]l,+oo[=]\/§,+oo[cfg

then, the Scenario 6 is not hold.

Scenario 7: (Subcritical border collision period doubling) or Period-1 — No Attractor.

o If:
b<—-1<a<0
and

ab>1

such that a € I, = |1, +o0[:

2—a<—-1<24+a<0
and
2—a)2+a)>1

2.2. The border collision bifurcations
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then, the Scenario 7 is not hold.

aE]—

2—a< -1 a >3
—1<24+a <= a>—3
24+ a<0 a < —2

a €13,400[ N1, +o0] = |3, +o0[ C I,
<< ae]-3,4+00[N]1, 400 =|1,400] =I5
00, —2[N]1,4o0[ =@

and

([ 4-a’>1ea2<3e ac]-V3,V3][N]L+oo[=]1,V3[C L

Scenario 8: (Emergence of periodic or chaotic attractor from stable fixed point) or Period-1 —

Periodic or Chaotic Attractor.

o If:

O<a<lAb< -1
and
ab < —1

such that o € I, = |1, +00[:

a>—2Na>3
=
a<—-1ANa>3
=

(0<24ta<1A2—a<-1
& and
24+a)2—a)< -1

~\ I

O0<24+aANa>3
24+a<lAa>3

and

a?>5

a € ]—2,400[N]3,+o0[N [y = |3, +o0[ C I

a € ]—o00,—1[N]3,+o0[ =@

and

ae]—oo,—\/g[u]\/g,+oo[ﬁlg:]\/5,+00[C12

then, the Scenario 8 is not hold.
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Bifurcations of some 2-D Zeraoulia-Sprott

mappings

This chapter is also devoted for the application to the theoretical part, but to two 2-D Zeraoulia-
Sprott mappings. As one of them represents a chaotic model resulting from the unification of two
maps that have a chaotic behavior, and the other is a modified version of the Lozi map and has
the same non-linearity used in the Chua circuit. However, the latter applies to the border collision
bifurcation which relates to three regions while the study in the first chapter is only related to two
regions, and for this we only studying stability which is at the heart of the study of bifurcations

and an integral part of it.

3.1 A unified piecewise smooth chaotic mapping that contains

the Hénon and the Lozi systems

In this section, we will study the unified chaotic model, starting from its definition to its normal

form and fixed points and finally is the bifurcations in the neighborhood of the fixed points.

3.1.1 Two-dimensional piecewise smooth map

Let us consider the unified chaotic map given by [10] as:

U (@g) = ( 1— 1.tf§x(x)+y ) a1
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Figure 3.1: (a) The original Hénon chaotic attractor obtained from the H mapping with its basin
of attraction (white) for a = 1.4 and b = 0.3. (b) The original Lozi chaotic attractor obtained from

the L. mapping with its basin of attraction (white) for « = 1.4 and b = 0.3.

which defined by two discrete mathematical models, the Hénon and the Lozi maps shown in

Figure 3.1 (a) and (b) given as follows:
1 — aa? 1-
B =7 and L= 1T
bx bx

such that 0 < o < 1 is the bifurcation parameter and the function f, shown in Figure 3.2 is given
by:
fo(2)=a |z| + (1 —a)z?

So, the unified chaotic map (3.1) can be written as follow:

l4d(a—1)2*+l4az+y+1, if (z,y) € Ry
Ul(z,y) = 14(a—1)2?> —1daxr+y+1, if (z,y) € Rg
0.3z

where the smooth curve = = 0, divided the phase plan into two regions R, and Rg, given by:

Ry ={(z,y) e R?, z <0}
R = {(z,y) € R? x>0}

and the boundary between them as:

S={(z,y) eR?® z=0}

3.1. A unified piecewise smooth chaotic mapping that contains the Hénon and the Lozi systems
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j ]
",
o=
=1
(oo
¥ O
o
R :
— (a) &)

3 @

Figure 3.2: (a) The transition Hénon-like chaotic attractor obtained for the unified chaotic map
(3.1) with its basin of attraction (white) for & = 0.2. (b) The graph of the function fy5. (c) The
transition Lozi-like chaotic attractor obtained for the unified chaotic map (3.1) with its basin of

attraction (white) for o = 0.8. (d) The graph of the function fjs.

3.1. A unified piecewise smooth chaotic mapping that contains the Hénon and the Lozi systems
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The normal form

In order to determine the normal form of the unified chaotic map (3.1). Its sufficient to just

follow the steps mentioned previously when we study the first map.

Fixed points The fixed points of the unified chaotic map (3.1) are the real solutions of the

. 1-14f,(x)+y \ [ =
U(x,y)—(’y)‘:)< 0.3x >_<y)

So, we get two equations:

system

ld(a—1)2*+1l4az+y+ 1=z, forz <0 and 03z =y
l4d(a—1)2* —ldar +y+1=u, forz >0 and 03z =y

— ld(a—1)2?+ (14a—07)z+1=0, forz <0 and 03z =y 3.2)
l4(a—1)2* = (14a+07)z+1=0, forz >0 and 03z =y

e In the side L: The discriminant of the first equation from (3.2) is:

A = 1.9602 — 7.56c + 6.09

to find the sign of discriminant, we set 1.96a% — 7.56a + 6.09 = 0, and solve a quadratic
equation:
A, =b* —4ac =9.408 > 0

so, we get two solutions are:

{ ap = YA — 11461
—bVA
“biVA — 9 711

Qo =

therefore, the discriminant A is only positive on |—oo, 1. 1461 [ U |2.711, +oco[ which means
that is also positive for a € [0, 1[. Thus, we conclude two different solutions of this equation

are:

B _0.70‘_,’_0‘35_,’_\/1.9602—27560(-%6409 <0
T1L = T4(a—1)

and
—0.704+0.35— \/1.96a2727.56oc+6409
T2.L = T4(a—1)

>0
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Because the denominator of z; ;, and x5 ;, is always negative for « € [0, 1] which means that:

—0.7a0 +0.35 + \/1.96a272.56a+6.09 =~ 0
A
—0.7a0 +0.35 — \/1.96a2—;.56a+6.09 <0

to ensure this we do the following:

1. For the first solution z; ; we have:

— If: —0.7a + 0.35 V162215604609 - ) for o € J = [0, 1[:

V1.96a% — 7560 + 6.09 < L4 — 0.7,  if o € [0,

{ V1.9602 — 7.560 + 6.09 < 1.4 — 0.7, if a € 3,

- { V1.96a2 — 7.56a + 6.09 — L4a + 0.7 <0, ifa € [0,
1.9602 — 7.56a + 6.09 < (L4 — 0.7)°, ifae

- { V1.960% — 7.56a + 6.09 — 1.4a + 0.7 < 0, ifa €
—5.600 < —5.6, if o € [3,

{ no solution found

solutionis: & € [1,400[N [}, 1[ =2

then, the numerator of x; ;, is not negative for « € [0, 1.

2. For the second solution z, ; we have:

— If: —0.7a 4 0.35 — V1962215604609 ) for o € J = [0, 1[:

V1.9602 — 7.56c + 6.09 < 1.4+ 0.7, ifa € [0,3]
V1.9602 — 7.56c + 6.09 < —1.4a + 0.7, ifa € [ 1]
1.960% — 7.56a + 6.09 < (—1.4a +0.7)%, ifa e [0,1]
V1.960% — 7.56a +6.09 + 1.4a — 0.7 < 0, ifa € [,1]
—5.6a < —5.6, if a € [0,3]
V1.960% — 7560 +6.09 + 1.4a — 0.7 <0, if € [5,1]

2

solution is: & € [1,400[N[0,3] =@
no solution found

then, the numerator of z, ;, is not positive for o € [0, 1[. Hence, the only negative
solution of the first equation from (3.2) is:

—0.7ac + 0.35 + \/1.96a2—;.56a+6.09
14(a—1)

T =

3.1. A unified piecewise smooth chaotic mapping that contains the Hénon and the Lozi systems



Chapter 3. Bifurcations of some 2-D Zeraoulia-Sprott mappings

e In the side R: The discriminant of the second equation from (3.2) is:

A = 1.960% — 3.64a + 6.09

to find the sign of discriminant, we set 1.96a* — 3.64a + 6.09 = 0, and solve a quadratic
equation:
Aw =0 — dac = —34.496 < 0

since, A, < 0, the sign of the polynomial is the sign of 1.96 > 0 and « € [0, 1], that means
1.96a% — 3.64a + 6.09 > 0. Thus, we conclude two different solutions of this equation

( / _
0.7 0.35 1.96a2 3.64a+6.09

T1LR = T4(a—1) >0

and

0704035+ \/1A96a2—§.64a+609 <0
[ T2.R = 1.4(a—1)

Because the denominator of x; i and z, g is always negative for a € [0, 1| which means that:

(070 +0.35 — YAF0T360E600 _ )
A
\ 0.7c0 +0.35 + \/1.96a2—g.64a+6.09 >0

to ensure this we do the following:

1. For the first solution z; p:

— If: 0.7a + 0.35 — YL96?=364046.09 () for o € J = [0, 1]:

& V/1.9602 — 3.64a +6.09 < 1.4 + 0.7, fora € [0,1]
& 1.96a° — 3.64a + 6.09 < (1.4a +0.7)*, fora e [0,1]
& —5.6ar < —5.6, for a € [0, 1]
& solution is: a € |1,+00[N[0,1] =@

then, the numerator of z; y is not positive for o € [0, 1].

2. For the second solution z5 p:

- It is obvious that the numerator of z, p is already positive for « € J = [0, 1] so:
a€eRN[0,1[=[0,1[Cc J

Therefore, the only positive solution of the second equation of (3.2) is:

B 0.7c0 +0.35 — \/1.96a2—g.64a+6.09
e 14(a—1)
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Then, the unified chaotic map (3.1) has two fixed points given by:
P; = (ZL‘L70.3£EL) € Ry, and Pr = ({L‘R,O.?)LL'R) € Rpr

such that:
0.704-0.354 \/1A96@2—27456a+6.09

rTL = T4(a—1)
 0.7a+0.35— \/1.96a27§64a+6.09
TR = T4(a—1)

Remark 3.1 We note that in our study we have excluded the case o = 1, because it is a forbidden

value in the denominator of both solutions x; and xg. For this reason we study only for « € J =

0,1

The Jacobian matrix Obviously, we get the Jacobian matrix of any map, when we derive this

map so:

1. The Jacobian matrix of the unified chaotic map (3.1) evaluated at a point (z, y) in the both

regions R; and Ry is given by:

1l4a — 2.8¢ +2.8za 1
JL<x7y) = < )

0.3 0
28ra — 14— 2.8z 1
JR<x7y) = 0 3 0

2. The Jacobian matrix of the unified chaotic map (3.1) evaluated at a fixed points in the both

regions R and Rjy is given by:

0.7+ v1.96a2 — 7.56a + 6.09 1
Jp(Pp) =
0.3 0
0.7 —1.96a2 — 3.64a + 6.09 1
Jr(Pgr) = < 0.3 0 )

3. The eigenvalues of J,(P.) and Jr(Pg) are the solutions of the characteristic polynomials:

)\Q—TL)\—F(;L:O
)\2—TR)\+(SR:0

e In the side L: The characteristic polynomial of J(P) can be written as:

A2 (0.7 + V1.0602 — 7.560 + 6.09) A—03=0
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and the discriminant of this equation is:

2
(0.7 +V1.960% — 7.560 + 6.09) +12>0, foralla e RN[0.1[=[0.1][=J

So, we get two different solutions are:

1.96a2—7.56a+6.09+1/ 1.962 —7.56+1.41/1.962 —7.56 ¢ +6.09+7.78
My =Y v Dot 14V +0.35

1.96a2—7.56a+6.09—1/ 1.962 —7.56+1.41/1.962 —7.56 ¢ +6.09+7.78
Ao =Y v Dot 1AV +0.35

e In the side R: The characteristic polynomial of Ji(Pr) can be written also as:

A2 — (0.7 — V1.9602 — 3.640 + 6.09) A—03=0

and the discriminant of this equation is:

2
(0.7 ~ V1.960 — 3.64a 1 6.09> +12>0, foralla e RN[0.1[=[0.1[=J

So, we get two solutions are:

—v1.96a2—3.64a+6.09+14/ 1.96a2—3.64a+1.4v/1.962 —3.64+6.09+7.78
Mg = =Y V196025 6t 144 +0.35

f\/1.96a273.64a+6‘097\/1.96@273.64a+1.4\/1.96a273.64a+6.09+7.78 +0.35
3 .

Ao R =

Hence, The eigenvalues of J,(P.) and Jg(Pg) are:

( 1.96a2—7.56+6.09 1.96a2—7.56a+1.41/1.96a2 —7.56+6.09+7.78
)\l,L — vV a a-+ -‘r\/ « . a+1.4v/ « a+ + +0.35

1.9602—7.56+6.09—1/ 1.9602 —7.56a+1.4/1.9602 —7.560+6.09+7.78
[ Ny = YIS0 TRTE0- /1960 Dot LAVL960? 736046091778 () 35

( —1/1.9602—3.64a+6.09+1/ 1.9602 —3.64a+1.41/1.962 —3.64+6.09+7.78
)‘1,R: v o a+ \/ e} : a+41.4+/ le} a4 +035

—v/1.96a2—3.64a+6.09—1/ 1.9602 —3.640+1.41/1.9602 —3.6400+6.094+7.78
[ Ag,p = —YLH60? 36kt V1960 3000t 1AV 9607 3 Bl +0.35

The coordinate transformations The normal form of the map (3.1) is given by :

0.7+ v/1.96a2 — 7.56 + 6.09 1 x 0 i
+ w, if <0
0.3 0 Y 1
N2 (I, y) =

0.7 — v/1.96a2 — 3.64a + 6.09 1 x 0 )
+ w, if >0
0.3 0 Y 1
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The fixed points

In the normal form (1.8) we have two fixed points P; and Py near the border to the right (x < 0)
and left (z > 0) of the border. So from (3.3) we have:

_ H 0.3u

Py (—\/1.96@2—7.5604—1—6.09’ —\/1.96a2—7.56a+6.09> €y
_ 2 0.3u

Pr V1.96a2—3.640+6.09’ \/1.96&273.64a+6.09> € Rr

3.1.2 The border collision bifurcations

The dynamics of the system (3.1) is governed by five parameters 7, 75,1, d g and u, so according
to the text of this bifurcation in the theoretical part we conclude the possible types of fixed points

of the normal form map (3.3):

1. For positive determinant: Because the determinant of the corresponding matrices of the

linearized map in the both side is not positive we study only the case for negative determi-

nant.

2. For negative determinant:

e In the side L:

2.a For

—(1+46) <7 <146, < —0.7< 0.7+ V1.9602 — 7.56a + 6.09 < 0.7
(

such that v € J =[0,1[ and J;, J, C J:

- { —0.7 < 0.7+ v/1.960% — 7.56a + 6.09, for a € J;
0.7 ++1.96a2 — 7.56a + 6.09 < 0.7, fora € J,
1.4+ v/1.9602 — 7.56c + 6.09 > 0, fora € J;
{ Vv1.96a2 — 7.56a + 6.09 < 0, fora € J,
{ solutionis: « € RN J;, = J;

no solution found Va € R

Then (2.a) is not hold, which implies that the fixed point is not a flip attractor.

2.b For

7. >146; < 0.7+ V1.9602 — 7.56c + 6.09 > 0.7
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such that a € J = [0,1[ and J3 C J:

& v/1.96a2 — 7.56a + 6.09 > 0, fora € Jy
& 1.96a% — 7.56a + 6.09 > 0, fora € Js

we previously checked that it is greater than zero if a € |—o00,1.1461 [ U ]2.711, +o0],
solution is:
J3 =]—00,1.146 [U]2.711,400[N J = J
Then (2.b) is hold, which implies that the fixed point is a flip saddle.
2.c For

7, < —(1+01) < 0.7+ V1.9602 — 7.56 + 6.09 < —0.7
such that o € J =[0,1]

& 1.4+ v1.9602 — 7.56 + 6.09 < 0, no solution found Voo € R
Then (2.c¢) is not hold, which implies that the fixed point is not a flip saddle.

e In the side R:

2.a For

—~(1+6p) <Tr<14+6p e —0.7<0.7—v1.9602 — 3.64a + 6.09 < 0.7

such thata € J = [0,1] and J,, J5 C J:

{ —0.7 < 0.7 — /1.960% — 3.64a + 6.09, fora € J, (3.3)
0.7 — V1.96a2 — 3.64a + 6.09 < 0.7, fora € J;
We have the first inequality from (3.4):
—0.7 < 0.7—+1.9602 — 3.64a +6.09, fora € J,
& V1.9602 — 3.64a +6.09 < 1.4, fora € J,
& 1.960% — 3.64a +6.09 < 1.96, fora € J,
& 1.96a% — 3.64a +4.13 < 0, for a € J, (3.9

we set 1.96a2 — 3.64a + 4. 13 = 0, and solve a quadratic equation:
A =b*—4dac=—19.1296 < 0

since A < 0, the sign of the polynomial is from the sign of 1.96 > 0, then 1.96a° —
3.64a + 4.13 > 0, and this contradicts the previous result in (3.5), since the first in-
equality of (3.4) is not hold. Then (2.a) is not hold, which implies that the fixed point

is not a flip attractor.
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2.b For

TrR> 140 < 0.7—vV1.9602 — 3.64c + 6.09 > 0.7
such that o € J = [0, 1]:

& V1.9602 — 3.64a + 6.09 < 0, no solution found Yo € R

Then (2.b) is not hold, which implies that the fixed point is not a flip saddle.
2.c For

TR < — (14 8g) & 0.7 — V1.9602 — 3.64a + 6.09 < —0.7
such thata € J =[0,1][ and Js C J:

& 1.4 < V/1.96a2 — 3.64a +6.09, fora € Jg
& 1.96 < 1.960% — 3.64a + 6.09, for o € Jg
& 1.96a2 — 3.64a + 4.13 > 0, for a € Jg

we set 1.96a% — 3.64a + 4. 13 = 0 and solve a quadratic equation:
A=-19.1296 < 0

since A < 0, the sign of the polynomial is from the sign of 1.96 > 0, then 1.96a2 —
3.64a + 4.13 > 0, and the solution is J; = RN ]0,1[ = [0,1[= J. Then (2.c) is hold,
which implies that the fixed point is a flip saddle.

3.2 The discrete hyper-chaotic double scroll

In this section, our study of the discrete hyper-chaotic double scroll map, will be based on
some of its basic properties which are the map definition, its fixed points and finally the Jacobian

matrix which has a great role in the study of stability near fixed points.

3.2.1 Two-dimensional piecewise smooth map

Consider the discrete hyper-chaotic double scroll map given in [9] as follows:

flr,y) = ( ! _bc;h(y) ) (3.5)

where a and b are the bifurcation parameters, and the characteristic function & called double scroll
attractor shown in Figure 3.3 is given by:

~ 2mpx + (mo — my)(lo + 1| — |z — 1))

h(z) =

3.2. The discrete hyper-chaotic double scroll



Chapter 3. Bifurcations of some 2-D Zeraoulia-Sprott mappings

Figure 3.3: The classical double scroll attractor obtained for o« = 9.35, 8 = 14.79, my = *71,

_ 2
m1—7.

such that my < 0 and m; > 0, are respectively the slopes of the inner and outer sets of the original
Chua circuit which proposed as follows:

o' =a(y—h(z))
y=r-y+z

!

z =Py

So, the discrete hyper-chaotic double scroll map shown in Figure 3.4 and can be given by:

r—a (my+ (mog—mq)), if (z,y) € Ry
T — amgy, if (z,y) € Ry
f (@)= :

r—a(my — (mg —my)), if (z,y) € Rs

bx

Due to the shape of the vector field f of the map, the plane can be divided into three linear
regions denoted by:

Ry ={(z,y) eR? y=>1}

Ry ={(z,y) eR?, |yl <1}

Ry ={(z,y) eR? y< -1}

where in each of these regions the map (3.6) is linear.

3.2. The discrete hyper-chaotic double scroll
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Figure 3.4: The discrete hyperchaotic double scroll attractor obtained from the map (3.6) for
a=3.36,b= 1.4, my = —0.43, and m; = 0.41 with initial conditions x = y = 0.1.

Fixed points

The fixed points of the discrete hyper-chaotic double scroll map (3.6) are the real solutions of the

system:
F )= (@y) = ( r — ah(y) ) ) ( : >
bx y

therefore, we get the following equations:

)
r—a(my+ (mg—my)) =z, and bx =y, fory>1
T —amyy = T, and br =y, for|yl <1
kx—a(mly—(mo—ml)):m, and bxr =y, fory < -1
a (mybx + (mg —my)) =0, and bx =y, fory>1
= amobr = 0, and bz =y, for|yl <1
| @ (mibr — (mg—my)) = 0, and bxr =y, fory<—1
Now, we discuss the cases from the existence of the fixed points:
Case 1: For y > 1 we have:
bm1 mq
such that:
ylz%zléml—mozm1@m0<0, and m; >0
1

So, the fixed point (z;,y;) exist in Ry if mymy < 0.
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Case 2: For | y| < 1 we have:

29 =0= 1y, =0, and abmgy #0

Hence, the fixed point (xs, y2) exist in Ry if mqy # 0.

Case 3: For y < —1 we have:

mgo — My mo —my
x3=———=>y3=———, and abmy #0
bmy my
such that:
mgo —m
Y= ——— 1< 1emeg—mi < —my < mo <0, and my > 0
ma

Hence, the fixed point (z3,y3) exist in R3 if mymy < 0. Then, the double scroll map (3.6)
has the fixed points given by:

(

PQZ(O,O), if momq > 0

P = mllm—l;ﬂo’ m1n:1mo>

PQZ(O,()) , if momq < 0
| P = mg;zﬂl’ moT;1m1>

Jacobian matrix

By deriving the map (3.6) at each area defined by it, we get the following:

e The Jacobian matrix of the double scroll map (3.6) evaluated at the fixed points P;, P, and

P5 are given by:
)

I (o) = Jy (Py) = < 1 ;abm1 )

Jo(,y) = Jo (o) = ( 1 0‘“’””0 )

Ty () = Js (Py) = ( 1 (;abml )

we note here that J; (P;) = J3 (Ps), so we can again write the Jacobian matrix as follows:

1 —abm
Jig(x,y) = Ji3(Pi3) = ( 10 ' )

Ty (5.1) = Jo (Py) = ( 1 O—abmo >

(3.6)

3.2. The discrete hyper-chaotic double scroll
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e The eigenvalues of the corresponding Jacobian matrices (3.7) is given by the solutions of

their characteristic polynomials. Which are given also respectively by:

{ A A+ abmy =0

) 3.7)
A=)+ abmo =0

3.2.2 Stability of fixed points

The stability is a part of the border bifurcations, we resort to studying it in this case near the
fixed point, because it is not possible to study the border collision bifurcation through the normal

form, and on it we rely on the following theory:

Theorem 3.1 Let (z*,y*) be a fixed point of f and assume that f € C*.

o If |\| < 1, for every eigenvalues A of Df (z*,y*), then (z*,y*) is an asymptotically stable fixed
point of f.

o If |\| > 1, for some eigenvalues A\ of Df (z*,y*), then (z*,y*) is not a Lyapunov stable fixed
point of f. See [11].

We conclude from the previous theorem, that to study the stability of the fixed point, we perform

three main steps:
1. We evaluate the Jacobian matrix at the fixed point.
2. We calculate the eigenvalues from the solution of the characteristic polynomial.

3. We compare the resulting eigenvalues with the unit disk.

Since, we did the first step previously its enough that we only start from the second step, specifi-

cally from the statement (3.7) therefore:
e We have from the first quadratic equation of (3.8):
A =b*—4dac=1—4abmy, and my; >0
So, we distinguish three cases of the delta discriminant:

Case 1: Null discriminant:
1

A:1—46me1 :0, if abml :Z
then, we have one double eigenvalue:
1

A==-<1
2

Hence, the fixed points P; and P; are asymptotically stable fixed points of f if abm; = ;.

3.2. The discrete hyper-chaotic double scroll



Chapter 3. Bifurcations of some 2-D Zeraoulia-Sprott mappings

Case 2: Positive discriminant:

1
A =1-—4abm; > 0, if abm, 6]—OO7O[U:|O,Z:| =1

then, we get two real eigenvalues:

A\ = —b—vVA __ 1—+v/1—dabmy
- 2a 7 2

Ny = —b+VA _ 14+/1—4abmy
- 2a - 2

Now, we apply the theorem (3.1) as follow:

1. For the first eigenvalues \;: The case

1 — /1 4ab
M <1le —1< > WM 1 2<1—/1— dabm, <2

{ —2 < 1—/1—4dabm; @{ V1 —dabm; < 3
- 1 —+/1—4abmy <2 141 —4abm; >0
olution is: { abmy € 1-2,11n 1 =]-2,0u]0,1] c I,
abmi e RN =1
then: |\;| < 1 is hold if abm; € ]-2,0[U ]0, 1] .
2. For the second eigenvalues \,: The case

1+ +1—4ab
Ao <1 —1< + 5 am1<1<:>—2<1+\/1—4abm1<2

{ —2 < 1+ 1 —4abm, @{ 3+ T =4dabm; >0
1+ /1 —4abm; < 2 V1 —4abm, < 1
abmi e RNI; =1

abmi € 10,31 N1 =10,%] c I

solutions is:

then |\;| < 1 is hold if abm, € 0, 1]. Hence, the fixed points P; and P; are asymptoti-
cally stable fixed points of f if abm; € ]0,1].

Case 3: Negative discriminant:

1
A =1—4abm, <0, if abmle]é—l,—koo{—&

then, we get two complex eigenvalues:

A\ = —b—ivVA __ 1—i/I—4abmy
- 2a - 2

Ny = —bt+ivA _ 14iv/I—4abmg
- 2a _ 2

Now, we apply the theorem (3.1) as follow:
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1. For the first eigenvalues \;: The case |\| <1 & \/(Re)\l)2 + (ImA\)* <1, A\ eC

<l /iy Ham o] o f2tam o

solutions is: abm; € |3, 3] N L =]1,3] C L

‘ 1—iy/T—4abmy
2

=

then: |\;| < 1is hold if abm, € Is.

2. For the second eigenvalues )\: The case |\ < 1 & \/(Re.)\g)2 +(ImA)* <1, A €C

<l /im0 & /2dm

solutions is: abm; € |3, i NnL =111 C L,

1+iv/1—4abmq
2

=

then: |\2| < 11is hold if abm; € I,. Hence, the fixed points P;and P; are asymptotically

stable fixed points of f if abm, € |1, 1] .

e We have from the second quadratic equation of (3.8):
A =b*—4dac =1 —4abmy, and mgy < 0
So, we distinguish three cases of the delta discriminant:

Case 1: Null discriminant:
1
A =1—4abmg =0, if abmg = 1

then, we have one double eigenvalue:

1
A==<1
2

Hence, P, are an asymptotically stable fixed point of f if abmg = 1.
Case 2: Positive discriminant:
1
A=1 —46me0 > 0, if abmg S ]—O0,0[U:|O,Z|:— Il

then, we get two real eigenvalues:

M\ = —b—VA __ 1—+/1—4abmg
1= 72— 2

Ny = —b+vVA _ 14++/T—4dabmg
- 2a _ 2

Now, we apply the theorem (3.1) as follow:
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1. For the first eigenvalues A\;: The case

1 — /1 dab
M <1le —1< > W0 1 2 <1 /1— dabmg < 2

1—+/1—4abmgy < 2 1++1—4abmg >0
abmg € |2, N =]-2,00U]0,1] c 4
abmg e RN = I;

{ 2 <1 — /1= 4abmy @{ VI — dabmg < 3
=

solution is: {

then |A;| < 1 is hold if abm, € ]—2,0{U |0, 1].

4

2. For the second eigenvalues \s: The case

1++/1—4ab
Ao] <1 —1< i 5 CLmo<1(:>—2<1+\/1—4abmo<2

—2 <1+ +1—4abmyg o 3+ 1 —4abmy > 0
o 1++/1—4dabmgy < 2 V1 —4abmg < 1
abmg eRNL =1

solution is:
abmg € 10,3 N1 =]0,3] C I

then |\o| < 1 is hold if abmo € ]0, 1]. Hence, the fixed points P, are asymptotically
stable fixed point of f if abmg € ]0, 1] .

Case 3: Negative discriminant:
. 1
A =1—4abmgy < 0, if abmg G}Z,nLoo[

then, we get two complex eigenvalues:

A\ = —b—ivVA _ 1—iy/I—4dabmg
— 2a _ 2

Ny = —b+ivVA _ 14iv/I—4abmg
- 2a - 2

Now, we apply the theorem (3.1) as follow:

1. For the first eigenvalues \;: The case [|\;| <1 & \/(Re./\1)2 + (ImM\)* <1, A\ eC

<l /b4 Habmo o o j2odabmo

1
i
solution is: abmg € |, 1| N =11, 3] C L

1—iv/1—4abmg
2

=

then |\;| < 1 is hold if abmy € I5.

3.2. The discrete hyper-chaotic double scroll
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2. For the second eigenvalues A\y: If Ao < 1 < \/(Re./\2)2 + (ImX)* <1, A eC

<1 /i Hame o] & /220

solution is: abmg € |5, 3| N1 = |3, 3] C I

‘ 1+iv/T—dabmy
2

=

then |\2| < 1is hold if abm € I,. Hence, the fixed points P, and P; are asymptotically

stable fixed points of f if abmg € |1, 1].

3.3 Conclusion

The border collision bifurcation is one of the most studied bifurcations for dynamical systems in
recent years that occurs to piecewise smooth maps and the reason for this is due to the fact that the
latter is very effective in modeling the non-smoothness in the systems accurately, i.e., character-
ized by a complex dynamical behavior. In view of the importance of the subject from a scientific
and practical point of view, we choose it to be our topic and purpose in this thesis by presenting
the theoretical part of this bifurcation and its importance in some piecewise smooth maps in one
and two dimensional Zeraoulia-Sprott mappings. One of the benefits of this work is that the study
of the dynamics of multi-dimensional systems can be reduced to the study of systems of lower
dimension and even though there have been a lot of research on these systems and their bifurca-
tion phenomena. Many aspects of the dynamics of such maps still remain unexplored and to be
understood. Accordingly to remove the mystery of this type of maps, it has become necessary to

pay a great attention to it in terms of scientific research.

3.3.  Conclusion
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