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Abstract

Neurodegenerative diseases (ND) are a serious issue which encompasses a myriad of
complex and incurable disorders. in this thesis, we focus on Parkinson’s disease (PD), specifically;
the detection of PD though the automatic analysis of offline handwriting. To accomplish this task;
we propose Park-Net, our own convolutional neural network (CNN) architecture. We proceed to test
this CNN on three PD handwriting datasets before comparing the results to state-of-the-art works,
and with a 98% accuracy, and to the best of our knowledge; Park-Net outperforms studies as recent

as (2022).

Keywords: Neurodegenerative diseases, Parkinson’s disease, Artificial intelligence, Image
processing, Pattern recognition, Handwriting analysis, Deep learning, Convolutional neural

networks, HandPD, NewHandPD, Parkinson’s drawings.



Résumé

Les maladies neurodégénératives (ND) sont un probleme grave qui englobe une myriade de
troubles complexes et incurables. Dans cette thése, nous nous concentrons sur la maladie de
Parkinson (MP), plus précisément ; la détection de la MP par I'analyse automatique de 1'écriture
manuscrite hors ligne. Afin d’accomplir cette tiche, nous proposons Park-Net; notre propre
architecture de réseau neuronal convolutionnel (RNC). Nous procédons au test de ce RNC sur trois
ensembles de données d'écriture manuscrite parkinsonienne avant de comparer les résultats a I'état de
l'art, et avec une précision de 98 %, et au meilleur de nos connaissances ; Park-Net surpasse des

études aussi récentes que (2022).

Mots clés : Maladies neurodégénératives, Maladie de Parkinson, Intelligence artificielle, Traitement
d'images, Reconnaissance de formes, Analyse de I'écriture manuscrite, Apprentissage en profondeur,

Réseaux de neurones convolutifs, HandPD, NewHandPD, Parkinson’s drawings.
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General Introduction

Neurodegenerative Disorders encompass a wide range of conditions that result from
progressive damage to cells and nervous system connections that are essential for mobility,
coordination, strength, sensation, and cognition. And although millions are affected, we are yet to
fully grasp the complexity of most of these neurological diseases. Some of these illnesses include:
Alzheimer's disease, Amyotrophic lateral sclerosis, and Parkinson's disease [1]. Only the latter of

which, Parkinson’s disease, will be the main focus of this master’s thesis.

With modern-day rough estimates ranging between 10 and 800 per 100000 [2], Parkinson’s
disease (PD) is the second most common neurodegenerative disease after Alzheimer’s disease.
Nonetheless, the precise pathogenetic mechanisms underlying the selective cell loss in PD are yet to
be fully understood. Thus, dependable and easily applicable diagnostic checks or markers for PD
aren’t yet available [3]. With that said, research shows that PD particularly, and in fact greatly,
affects motor skills, more precisely, handwriting [4]. This gave researchers the inspiration to
establish noninvasive systems of quantifying motor functions derived from the analysis of the

handwriting of PD patients, such as the Spiral analysis [5].

This is where Machine Learning (ML) comes in. Modern health care has, over the years,
greatly benefited from the progress in theory and practice of health information systems. These
health informatics (alias Health IT, or HIT) have been shown to have the potential for positive

impact on the quality and efficiency of patient care [6].

The aim of this work is to propose a Convolutional Neural Network (CNN) capable of taking
in a PD patients’ handwritings and/or drawings and form a correct prediction (positive or negative)

with high accuracy and minimal loss. The main contributions of this work are as follows:

e Using a proposed CNN architecture (Park-Net) trained from scratch on PD
handwriting datasets.

e Using the linear function in combination with the hinge loss function in order to
emulate Support Vector Machine (SVM) classifier to better classify PD handwriting
features.

e A study on the state-of-the-art of the detection of PD through handwriting analysis.



General Introduction

With that said, chapters in this thesis will be organized as such:

In ChapterOl: in this first chapter, we present the theoretical concepts and abstract ideas

relevant to this work as well as provide general definitions.

In Chapter02: in this second chapter, we detail previous works done on specifically the
detection of PD through the analysis of handwriting, what datasets they used, what methods they’ve

employed, and what results they’ve achieved.

In Chapter03: in this third chapter, we will provide details about the different datasets used in
this work, and the pre-treatments that were applied on said data. We will also present the trained
CNNss architectures; VGG16 with ImageNet weights, our proposed CNN (Park-net), and Park-net
with SVM.

In Chapter04: in this final chapter, we showcase the obtained results from the employed
training methods and classification techniques along with insightful observation and justification. We

end this chapter with a comparison to state-of-the-art.

We conclude with a reminder of the importance of this study and many others like it in
detecting PD and why this subject is not receiving the attention that it deserves. We will also present
a short recapitulation of what we carried out in this work, as well as ideas that could improve on it

which, due to time constraints, we were not able to test.

11
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Chapter 01: Theoretical Concepts

1.1. Introduction

In this chapter, we provide a brief introduction to the ideas and methods relevant to this work.
In order to build a neural network capable of providing correct predictions and achieving a high
accuracy, it is natural that we first get a proper grasp on Parkinson’s disease, its symptoms, and what
is to be expected from someone afflicted with this illness. Then we move on to define handwriting
analysis and its relevance to the diagnosis of PD and the already existing datasets related to this
subject, as well as the different techniques employed in processing said data. Next step is to
understand convolutional networks, certain concepts relating to them, in addition to the pre-exiting
models and how they can be put to use through the idea of transfer learning. Either for making
predictions or to extract features that are then fed to a classifier. Finally, we move on to introducing

the issue of over-fitting and the methods that can be employed to mitigate the effects of this problem.

1.2. Neurodegenerative diseases

Neurodegenerative disease is an umbrella term that encompasses a wide array of incurable
and debilitating conditions which primarily affect the human brain, causing an irreversible
progressive deterioration of the neurons. These illnesses are classified into two categories; Ataxias
which affect movement, and Dementias which affect cognitive functioning [7]. Examples of

neurodegenerative disorders include:

1.2.1. Alzheimer’s disease

Alzheimer’s disease (AD) is the number one most common neurodegenerative disease
and the leading cause of dementia worldwide, it makes up 60% —80% of all dementia cases,
affecting an estimated 24 million people globally with varying ages although it is statistically
more prevalent with older women. This pattern of memory loss reflects a dysfunction of
mesial temporal structures and manifests in numerous ways: misplacing objects, repeating
conversations or questions, or difficulty keeping track of dates and appointments, etc. In the
most advanced cases, AD can lead to the loss of bodily functions and ultimately the death of
the individual and while the speed of this progression can vary; life expectancy following a

proper diagnosis is typically three to nine years [8]. During handwriting, AD patients were

13
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observed to often repeat separate syllables many times and completely omits others. Different
studies highlighted a pattern of lexical agraphia marked by an increased error rate on irregular

words or orthographically ambiguous [9].

1.2.2. Parkinson’s disease

Parkinson’s disease is a progressive neurological disorder that causes unintended or
uncontrollable movements, such as shaking, stiffness, and difficulty with balance and
coordination. Symptoms usually begin gradually and worsen over time. As the disease
progresses, people may have difficulty walking and talking. They may also have mental and
behavioral changes, sleep problems, depression, memory difficulties, and fatigue. Therefore,
it would be expected that this degree of motor discoordination would have devastating effects
on handwriting, which is a skill that requires highly refined movements, both sequential
(strokes) and simultaneous (fingers, wrist and arm) components. This impairment is known as
Micrographia. This motor loss is characterized by a progressive decrease in letter size,

fluctuating changes in writing baseline, and slowness [4].

The progression of PD is customarily divided into three stages, referred to as SL for
Severity Level; SL-1, SL-2, and SL-3. These are assessed using two rating scales: The
Unified Parkinson’s Disease Rating Scale (UPDRS) and the Hoehn and Yahr (H-Y) scale
[10]. In the initial stage, PD symptoms typically affect only one side of the body, and as it
progresses to both sides of the body, in the second stage, individuals afflicted with this
condition start losing their ability to perform basic tasks without assistance. In the third stage
of PD, movement is affected. In the last two stages, PD patients are unable to perform daily

activities without assistance [4].
1.2.3. Amyotrophic lateral sclerosis

This neurodegenerative disease is characterized by progressive muscular paralysis
reflecting a deterioration of motor neurons in the primary motor cortex, corticospinal tracts,
brainstem and spinal cord. The term "Amyotrophy" refers to the atrophy of the denervated
muscle fibers as their corresponding motor neurons degenerate, thus rendering them weak
and often unfit for daily tasks. "Lateral sclerosis" on the other hand, refers to hardening of

the anterior and lateral corticospinal tracts, this happens when the deteriorated motor neurons
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found in those are replaced by gliosis. ALS has a reported average Incidence of 1.89 per
100,000/year and an average prevalence of 5.2 per 100,000 in western countries in 1990's

[11].

Out of the three mentioned neural disorders, Parkinson’s disease will be the main focus of
this research. This is due to two reasons; the first reason is the time constraint as we couldn’t cover
all of them, the second reason is that PD is known to have a substantial effect on the handwriting
skill and, over the years, multiple drawing tasks and handwriting tests were conceptualized and

tested and, for us, this translates to dataset availability.

1.3. Handwriting recognition

Handwriting recognition is the task of transforming a language represented in its spatial form
of graphical marks into its symbolic representation. For languages that use the Latin alphabet, this
symbolic representation is typically the 8-bit ASCII code. This field is generally divided into two
sub-fields in relation to the input method used; off-line or on-line, and while in recent years, with the
ever-growing popularity of hand-held devices, real-time on-line handwriting recognition has become

significantly more popular, both methods still have their respective use-cases [12].

1.3.1. Dataset types

Several research studies have made use of the quick emergence of digital technologies to
analyze the writing disorder in PD patients. Two fundamental technological approaches are

commonly used in literature [12], these two being:

1.3.2. Online

Online datasets involve a special type of electronic pen (stylus) and/or tablets during
their acquisition, these tools will record not just the candidate’s handwriting but also

kinematic and spatiotemporal parameters related to the interaction between the stylus and the

15
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surface of said tablet. The advantage of online datasets is that a lot more information is
recorded on a patient therefore the recognition rates reported are much higher for the online
case in comparison with the offline case. The disadvantage is that special equipment is

required [12]. Examples of PD online datasets are: PaHaW, and NewHandPD.

1.3.3. Off-line

Offline handwriting recognition, often referred to as optical character recognition
(OCR), is performed after the writing is completed, the handwritten document is then
captured and processed as an image. The advantage of OCR and offline datasets is that it can
be performed on any written document while not requiring any form of special equipment
during the capture process, the disadvantage of Offline handwriting recognition systems is
that they are often less accurate than online systems; this is due to the fact that OCR are
restricted to image data and nothing else [13]. Examples of PD offline datasets would be:

HandPD, NewHandPD, Parkinson’s drawings.

Note that certain online datasets can be utilized as offline datasets by using the

handwritings available in image format and disregarding any additional metadata.

1.4. Convolutional neural networks

Convolutional neural networks (CNNs) are comparable to traditional ANNs (Artificial Neural

Networks) in that they are comprised of neurons that self-optimize through learning. From the input

raw image vectors to the final output of the class score, the entire network will express a single

perceptive score function; the weight. The last layer will contain a loss function relative to the

number of classes, and all of the regular tips and tricks developed for traditional ANNs still apply.

The over-all architecture of a CNN is comprised of convolutional layers, pooling layers, a flatten

layer, and fully-connected layers [14]. as shown in the following Figure:

16
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convolution
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Figure 1: Basic 5 player CNN architecture outline [50]

1.4.1. CNN Layers

There are multiple types of CNN layers. However, for the sake of brevity we will

only consider the ones that are relevant to this thesis:

1.4.1.1. Convolutional

Determines the output of neurons of which are connected to local
regions of the input through the calculation of the scalar product between their
weights and the region connected to the input volume. ReLu (rectified linear
unit) is commonly used as an activation function. The layers parameters focus
around the use of learnable kernels. These kernels are usually small in spatial
dimensionality, but spreads along the entirety of the depth of the input. The
layer convolves each filter across the spatial dimensionality of the input to

produce a 2D activation map [14].

1.4.1.2. Pooling Layer
This layer serves to down sample the results of the previous layer
along the spatial dimensionality of the given input, further reducing the
number of parameters within that activation. This step can be set as “max
pooling” or “average pooling” [14] , the difference between these is illustrated

in the following figures:
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Figure 2: “max pooling” example
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S e 3.5 |3.75
09|27

Figure 3: “average pooling” example
1.4.1.3. Flatten layer

converting the data into a 1-dimensional array for inputting it to the
next layer. We flatten the output of the convolutional layers to create a single
long feature vector. And it is connected to the final classification model, which

is called a fully-connected layer.

1.4.1.4. Fully-connected layers
The fully-connected layer, also knows as a dense layer, contains
neurons which are directly connected to the neurons in the two adjacent layers
but not to neurons within the same layer. The objective of this layer is to

produce class scores from the activations, to be used for the classification.

Further concepts relating to the CNN training process [15].
1.4.2. Epoch

One Epoch is accounted for when the entirety of the training dataset is passed
forward and backward through the neural network only once and an opportunity to

update the internal model parameters. An epoch is comprised of one or more batches.
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1.4.3. Batch size

Batch size is the total number of training examples present in a single batch.
This parameter can be manually set before training. and according to the batch size,

the denomination of the name of the learning algorithm may vary:

e Batch Gradient Descent: Batch Size = Size of Training Set
e Stochastic Gradient Descent: Batch Size = 1

e Mini-Batch Gradient Descent: 1 < Batch Size < Size of Training Set

With the most common batch size for the Mini-batch Gradient Descent being:

32, 64, and 128.
1.4.4. Iteration

Iterations, simply put, is the number of batches needed to complete one epoch.

1.4.5. Examples of existing architectures

For the sake of this brevity, we will only be looking at the three instances that we

considered for the context of this work:

1.4.5.1. Vgg

VGG Net is the name of a pre-trained convolutional neural network
(CNN) invented by Simonyan and Zisserman from Visual Geometry Group
(VGG) at University of Oxford in 2014. VGG 16 and VGG 19 have 16 and 19
weight layers respectively. VGG Net takes input of 224x224 RGB images and
passes them through a stack of convolutional layers with the fixed filter size of
3x3 and the stride of 1. There are five max pooling filters embedded between
convolutional layers in order to down-sample the input representation (image,
hidden-layer output matrix, etc.). followed by 3 fully connected layers, having

4096, 4096 and 1000 channels, respectively [16].
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Figure 4: VGGI16 architecture [17]
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Figure 5: VGG19 architecture [18]

1.4.5.2. ResNet
ResNets or Residual Networks, learn residual functions with reference
to the layer inputs, instead of learning unreferenced functions. Instead of
hoping each few stacked layers directly fit a desired underlying mapping,
residual nets let these layers fit a residual mapping. They stack residual blocks
on top of each other to form network: e.g. a ResNet-50 has fifty layers using

these blocks [19], its architecture is illustrated in the following figure:
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Krizhevsky in collaboration with Ilya
Sutskever and Geoffrey Hinton [20].
This network managed to achieve
achieved a top-5 error of 15.3% in the
2012 Large Scale Visual Recognition
Challenge The network achieved a top-5
error of 15.3% beating the competition
10.8% [21]. AlexNet

characterized by its 650,000 neurons and

by over is

60 million parameters, spread over three
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Figure 6: ResNet50 architecture [51]
1.4.5.3. AlexNet
This CNN was designed by Alex AlexNet

\Image: 224 (height) x 224 (width) x 3 (channels)\
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v Relu
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~ Convolution with 3x3 kernel+1 pad:12x12x384 |
/' RelLu

~ Convolution with 3x3 kernel+1 pad:12x12x384 |
v Relu

~ Convolution with 3x3 kernel+1 pad:12x12x256
[ RelLu

~ Pool with 3x3 max.kernel+2stride:5x5x256 |
v flatten

\ Dense: 4096 fully connected neurons \

v Relu, dropout p=0.5
Dense: 4096 fully connected neurons |

' RelLu, dropout p=0.5

Dense: 1000 fully connected neurons |

Qutput: 1 of 1000 classes

Figure 7: AlexNet architecture [55]
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1.4.6. CNN training methods

Within this research, we considered two training approaches; transfer learning, and

learning from scratch. Both methods have their advantages and disadvantages.

1.4.6.1. Training from scratch
Training from scratch is akin to conventional machine learning training, where
the model has only access to the relevant datasets. Weights are initialized with random

values then gradually adjusted in correlation with the training data provided.

1.4.6.2. Transfer learning

Transfer learning is the act of reusing knowledge from past related tasks in an
attempt to leverage the previously gained learning and experience to more efficiently
learn the new task. The benefit of this approach, more often than not, is the reduction
of the number of training samples needed to achieve a desired performance on a series
of related learning tasks. This concept essentially mirrors the way humans learn,
seeing that usually just a few training examples of a new idea are sufficient for a
someone with prior knowledge on the related concepts to very quickly grasp the new
concept. it is common practice to freeze most layers and selectively retrain only

certain layers in a process called fine-tunning [22].

Fine-tunning consists of manually selecting individual layers of a pre-trained
CNN and further tunning (training) them to better fit a given task and while it is
common practice to focus the finetuning on the last layers of the model (dense layers
and activation layer), any layers of the network can be finetuned. However, there is no
general rule on which layers should be selected in order to reach optimal performance

so fine tuning is a process of trial and error [23].
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Figure 8: difference between training from scratch and transfer learning [54]

While training a network from scratch is time-consuming and labor-intensive, transfer-
learning is not always advantageous, especially when the data set used for the pre-training is
drastically different from the new task. Furthermore, training from scratch allows for a better

understanding of the network [24].

1.5. Over-fitting

Overfitting 1s a central problem in supervised machine learning (learning from labeled
training data). It is observed when a model ends up over-learning, and memorizing undesired aspects
of the data thus preventing itself from generalizing the models to well fit not just the training data but
also unseen data contained in the validation/testing set. Not to be confused with Under-fitting, a
similar problem that occurs when a model is under-trained. Overfitting usually occurs due to; poorly
pre-processed data containing too much noise, a small training set, and/or the use of an overly

complex model architecture [25].
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Under-fitting Appropriate-fitting Over-fitting

Figure 9: illustrative graphs displaying the different between Under-fitting, Optimal-fitting, and Over-fitting [52]

1.5.1. Over-fitting prevention

Over the years, researchers have discovered various strategies to reduce the effects of

overfitting:

24

1.5.1.1. Network-reduction
Network-reduction entails scaling down the classification complexity of the model.
And while general machine learning proposes multiple ways of implementing this concept, in
the case of CNNs it can be achieved through; varying the complexity of the model by changing
the number of adaptive parameters in a process called structural stabilization, or choosing a
smaller model architecture weather it’s a pre-existing architecture of manually removing layers

to reduce the number of neurons [26].

1.5.1.2. Data-augmentation
Data augmentation is a set of techniques used to artificially increase the amount of data
by generating new data points from existing data. This includes applying small changes to data
or using deep learning models to generate new data points. These methods are often employed
as a solution to over-fitting [27]. Further details on the data augmentation methods used in this

work are available in “3.4.2 Data augmentations”.
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1.5.1.3. Callbacks

Callbacks are methods that can perform certain actions at various stages of training,

e.g; at the start or end of an epoch. Is this dissertation, we consider two types of Callbacks:

1.5.1.3.1. Checkpoints

Model Checkpoints in karas are callbacks used to save a model or weights (in a

checkpoint file) at some interval, usual so that the model or weights can be loaded later to

continue the training from the state saved. For details about callbacks used in this work,

see “3.2 Training method”.

1.5.1.3.2. Early-stopping

In short, this method will
automatically stop the training as
soon as the training metrics stop
improving. Thus, preventing noise-
learning. This technique 1s also very
effective at avoiding under-fitting
since it halts the training at the most
opportune time, when metrics have
reached their apparent peak (best
value) [28].

1.5.1.4. Regularization

Error

Over-
fitting Validation
set

Under-
fitting

Training

“sweet spot”
P set

Number of
iterations

Figure 10: example graph of an Early-stopping in the case of
Training-loss vs Validation-loss [53 ]

The model output is affected by multiple features. When the number of features

increases, so does the model complexity. An overfitting model tends to take all the features

into consideration, even though some of them have very limited effect on the final output.

Some may also be considered noise which are not only meaningless to the output but can even

harm the performance. So, in order to limit these cases, there are two solutions; the first one is

to select only the useful features and remove the useless features from our model through

manual or automatic data pre-processing, the second one is to minimize the weights of the

features which have little influence on the final classification [25].



Chapter 01: Theoretical Concepts

1.6. Conclusion

In this chapter we provided a short introduction to Parkinson’s disease and the different ideas
and methods essential for the comprehension of this work. This included handwriting analysis and its
relevance to the diagnosis of PD and the already existing datasets containing PD patients’
handwritings, as well as the different techniques employed in processing said data. following that we
had a brief look at convolutional networks concepts in addition to a few examples of pre-exiting
models and how they can be put to use through the idea of transfer learning. Finally, we talked about
the issue of Over-fitting and provided four ways of mitigating this problem; Network-reduction,
Data-augmentation, Callbacks, and Regularization. In the next chapter we will discuss the state of

the art.
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2.1. Introduction

In recent times, use of machine learning and deep neural networks in various clinical
applications has gained increasing popularity. There has been significant research interest in the
creation of automated systems for early-stage detection of PD based on voice, gait, and handwriting
data. In this chapter we detail previous works done specifically on the detection of PD through the
analysis of handwriting, what datasets they used, what methods they’ve employed, and what results
they’ve achieved. This section will also serve as an evolutionary history of such as works will be

sorted from oldest to most recent.

2.2. Related works

2.2.1. A new modality for quantitative evaluation of Parkinson's

disease: In-air movement (2013)

In this 2013 study [29], In-air

In—air movement

. . .. 2000 -
trajectory during handwriting was
1900

proposed as an efficient PD diagnose. sool |
They showed in their experimental — _ | d 0’& 4 &/ ( [ Qﬁ[, ]
. SSI{)D GOAOD

results that analysis of in-air e
4500 5000

5500 7000 7500 8000
trajectories is capable of determining On—curtace moverent
2000

subtle motor abnormalities connected

, y )
to PD. Furthermore, by analyzing '*[ \7/_14’7[/[&1,7" dy d"WJ /‘y /’%j‘db '

both in-air trajectories and on-surface  1600f

handwriting they built build a

l 4Q4%00 SObO 5500 GO;DD 5500 7ULOD 75‘00 8000
predicive ~ model  with  PD  Figure 11: handwriting sample from in-air movements dataset [29]
classification accuracy of 80%. The

methodology consisted of computing 600 handwriting features then selecting a smaller subset
of these features using two feature selection algorithms: Mann-Whitney U-test filter and relief
algorithm, and map these feature subsets to binary classification response using support

vector machines (SVM).

Their data set consisted of 37 Parkinsonian patients (19 men/18 women) and 38 (20

men/18 women) healthy control with matching ages. All participants were right-handed.
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All subjects were asked to write the same sentence in their native language (Czech);
“Tramvaj dnes unepojede” (The tram won’t go today). Handwritten signals were acquired
using the Intuos 4M digital tablet, from Wacom technology, in the x-y plane and in the

pressure axis.

2.2.2. Prediction potential of different handwriting tasks for diagnosis of

Parkinson’s (2013)

In this conference proceeding | & L LB BB
[30], a template for acquiring PD /:;f: T ol b B B R
patients’ handwriting during different f/r/f/;/?;_:\; \\3\‘| "}\".‘ © b b Bo o Bs
tasks was proposed. This template ‘\‘\\‘\\:‘H//i/f/,l ® Lbhlorka  Bhlorke
consists 8 tasks. first one being an :‘:j—;/// f © _poroonal, poroenal
Archimedean spiral. In the next 3 tasks R Wo{d
(2, 3, 4), participants wrote cursive O Dameai dacs 4 wpohds
letters or bi/tri-grams of letters. The |

Next 3 tasks are words, that can be Figure 12: template proposed by "Prediction potential of different

. i . handwriting tasks for diagnosis of Parkinson's (2013)" [30]
written as one long stroke, in this

EE 1) "G

specific study, they were: “lektorka”, “porovnat”, “nepopadnout”. Three Czech words (native

language of participants), which respectively translate to: “lector(female)”, “to compare”, and
“do not catch”. Finally, the last task is long sentence, which in this specific study was:

“Tramvaj dnes uz nepojede” (The tram won't go today).

Their dataset consisted of 8 different handwriting samples from 75 subjects. The
archived results show 80% overall classification accuracy using the SVM classifier on

manually extracted features.

2.2.3. Analysis of in-air movement in handwriting: A novel marker for

Parkinson’s disease (2014)

This paper [31] 1s an improved version of the 2013 study from the same authors [29],

they made use of the same dataset with 37 PD patients and 38 age- and gender-matched
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healthy controls, where they were asked to write the same sentence in Czech. Here also, both

on-surface and in-air trajectories data were exploited.

It this particular research, the authors showcased that through the use of; sequential
forward feature selection (SFFS), minimum-redundancy-maximum-relevance (mRMR) as
feature selection algorithms, and SVM as a classifier, they managed to achieve a
classification accuracy of 84% while only considering in-air movements and a 78% accuracy
while only considering on-surface data. Furthermore, combining the two led to a prediction

accuracy of 85.61%.

2.2.4. Decision Support Framework for Parkinson’s Disease Based on

Novel Handwriting Markers (2014)

This is yet another study [32] from the authors of the three previously mentioned
works [29], [30], and [31]. In this research, they had two goals in mind. The first one, was to
find a subset of handwriting features suitable for identifying subjects with PD and the second
one was to build a predictive model for the diagnose of PD. The dataset used here is the same
one used in [29] and [31]. Containing handwriting samples from 37 medicated PD patients
and 38 age- and sex- matched controls. They extracted handwriting measures, conventional
kinematic, and spatio-temporal handwriting measures from each sample in the dataset. they
also computed novel handwriting measures based on entropy, signal energy, and empirical
mode decomposition of the handwriting signals. These features were then fed to an SVM

with radial Gaussian kernel for automated diagnosis.

Their best results showed an accuracy of 88.13%, using SVM with the highest values

of sensitivity and specificity equal to 89.47% and 91.89%, respectively.

2.2.5. Contribution of different handwriting modalities to differential

diagnosis of Parkinson's disease (2015)

Still with the authors of the last four studies mentioned in this chapter, Peter et al. and

in this particular research [33], they have yet again utilized the same dataset formulated from
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the template in Figure 12, first introduced in [30]. To quickly reiterate, this dataset contains

37 PD patients (19 men/18 women) and 38 healthy controls (20 men/18 women).

The goal was to evaluate the contribution of different handwriting modalities for PD
diagnosis. In their previous studies, they showed the relevancy of pressure and in-air
movement in PD detection. And in this one, they experimented with, at the time, novel

characteristics based on entropy and empirical mode decomposition of the handwriting signal.

Their best results showed a performance of 89% below the Receiver operating
characteristic curve (AUC) for on-surface data, 74% for in-air data, and 84% for pressure

data.

2.2.6. Evaluation of handwriting kinematics and pressure for differential

diagnosis of Parkinson's disease (2016)

Within this 2016 article from Artificial Intelligence in Medicine [3], Peter Drotar et al,
presented their PaHaW (Parkinson’s disease handwriting) dataset. which consists of
handwriting samples from 37 PD patients and 38 healthy controls each asked to fill out the
template [30] in Figure 12. The tasks included drawing an Archimedean spiral, repetitively
writing orthographically simple syllables and words, and writing of a sentence. Both
kinematic features and pressure features were extracted. three different classifiers were
compared: K-nearest neighbors (K-NN), ensemble AdaBoost classifier, and support vector
machines (SVM). SVM was the the best performing model with a classification accuracy of
81.3% (sensitivity = 87.4%, specificity = 80.9%). When evaluated separately, pressure
features proved to be relevant for PD diagnosis, yielding an accuracy of 82.5% compared to

75.4% using kinematic features.

2.2.7. A new computer vision-based approach to aid the diagnosis of

Parkinson's disease (2016)

This 2016 Computer Methods and Programs in Biomedicine article [34] is associated
with the HandPD dataset. the goal was to propose a method of automatically identifying and

separating both the template and the drawings using image processing techniques without
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user intervention. The focus of this study was manly image processing. Nonetheless,
according to experimental results from the recognition tests done, the best one was achieved

by the SVM classifier with a 66.72% on the Meander task.

2.2.8. Deep Learning-Aided Parkinson's Disease Diagnosis from

Handwritten Dynamics (2016)

This IEEE 2016 29th SIBGRAPI conference proceeding [35] is associated with the
NewHandPD dataset. their methodology for PD detection consisted of using drawings and
signals converted into images, these signals were acquired by means of a smart pen composed
of a series of sensors using during the creation of the NewHandPD dataset. they’ve achieved
an accuracy of 84% using the graph-based pattern recognition technique; OPF (Optimum-

Path Forest).

2.2.9. Feature selection for an improved Parkinson's disease identification

based on handwriting (2017)

This Study [36] was performed for the purpose of finding a subset of handwriting
features suitable for consistently identifying PD subjects. The made use of the PDMultiMC
database collected in Lebanon. This dataset is composed of 16 PD patients (12 male/ 4
female) and 16 age matched healthy controls (5 male/ 11 female), so a total of 32 subjects (17
male/ 15 female). Each individual was tasked with copying specific handwritten patterns,
copying words in Arabic, and writing full names. the Wacom Intuos 5 tablet was used to
collect Spatial displacement (X, y positions), pen pressure, time stamp, pen status, and pen-tip
angle (altitude, azimuth) measurements. These tasks where them studied and analyzed, and
the following data was extracted: kinematic, spatio-temporal, pressure, energy, entropy, and

intrinsic features.

The selection of features was done in two steps; the first stage selected a subset using
statistical analysis, while the second step selected the most relevant features of said subset by

a suboptimal approach. The determined characteristics were then fed to an SVM classifier
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with RBF kernel, as an attempt to identify the PD subjects. The reported accuracy was
96.875% (sensitivity = 93.75 %, specificity = 100%).

2.2.10. Reliable Parkinson’s Disease Detection by Analyzing
Handwritten Drawings: Construction of an Unbiased Cascaded
Learning System based on Feature Selection and Adaptive Boosting

Model (2019)

In order to improve the PD detection accuracy, this 2019 study [37] proposes a
cascaded learning system that cascades a Chi2 model with adaptive boosting (Adaboost)
model. This model ranks and selects a subset of relevant features from the feature space, an
Adaboost model is then used to classify the given sample in accordance with the subset of

selected characteristics.

Their results showed a classification accuracy of ACCpa=76.44%, sensitivity of
70.94% and specificity of 81.94%, using an under-sampling of the meander task on the
HandPD dataset as a proposed way to solve the biasedness caused by imbalances in both the
training and validation data. These results were achieved with the proposed cascaded system

(Chi2, Adaboost).

2.2.11. Dynamically enhanced static handwriting representation for

Parkinson’s disease detection (2019)

In this paper [38], the authors study the effectiveness of “dynamically enhanced”
static images of handwriting in the detection and diagnosis of PD. They proposed a static
representation that embeds dynamic information based on drawing the points of the samples,
instead of linking them, so as to retain temporal/velocity information; in addition to adding

pen-ups for the same purpose.

In order to evaluate the effectiveness of this approach, they conducted tests on the

PaHaW dataset. The classification workflow involved transfer learning to extract meaningful
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features from multiple representations of the sample data. Chained to an ensemble of different

classifiers to achieve the final predictions.

Their best results included 86.67% accuracy with a sensitivity of 89.17% and a
specificity of 80.83% using SVM with the ensemble of the best five with both static and

dynamic characteristics.

2.2.12. Detection of Parkinson’s disease from handwriting using deep

learning: a comparative study (2020)

This study [39] served to introduce the HandPDMultiMC dataset, a sub-set of the
PDMultiMC used in [36], which includes handwriting samples from 42 subjects (21 PD and
21 controls). Among the experiments carried within the context of this research are various
Deep learning architectures, namely the CNN and the CNN-BLSTM, for the detection of PD
through time series classification. Spectrograms was applied to encode pen-based signals into
images that were then fed into the CNN model, while the raw time series are directly used in
the CNN-BLSTM. In conjunction to this, multiple data augmentation approaches for pen-

based signals were proposed.

Their best results (97.62% accuracy) were achieved through a combination of CNN-
BLSTM models trained with Jittering and Synthetic data augmentation approaches.

Figure 13: HandPDMultiMC dataset sample, the seven tasks were segmented from a sheet filled by a PD subject [39]
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2.2.13. Refining Parkinson’s Neurological Disorder Identification

Through Deep Transfer Learning (2020)

In this paper [40], a deep convolutional neural network classifier with transfer
learning and data augmentation techniques was proposed to improve the identification of PD
through the use of handwriting images. both freeze and fine-tuning of transfer learning were
investigated during the performed trainings, using ImageNet and MNIST dataset as sources
for the pretrained weights, and the PD dataset used for feature extraction is the PaHaW
dataset [3].

Their results showed an impressive 98.28% accuracy using fine-tuned AlexNet based
approach with ImageNet weight. However, it is worth noting that the researchers behind this
work, used augmented versions of the same images for training and also for testing. This is
considered bad practice; as it creates a high positive bias and therefor these results should not

be generalized.

2.2.14. Parkinson’s disease diagnosis using convolutional neural

networks and figure-copying tasks (2022)

The aim of this work [41] was to demonstrate the effectiveness of each of the wire
cube and spiral pentagon hand drawing tasks’ when it comes to PD discrimination. This was

approached through both pre-existing CNNs and their proposed CNN model.

This proposed model was composed of three blocks, each with two convolutional
layers with equal filter size (32, 64, 128) and a max pooling layer. These blocks are then
followed by 2 convolutional layers with a size of 1024 and 512 respectively, and finally a

prediction layer with a size of 1.

Image Input o ol Conv  Conv Max Conv COW  Max Flatten Dense Dense Dense
32 32  Pooling 64 64 Pooling 128 128 ppoling 1024 512 i

o o

&

® ©

- - .
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o

35 Figure 14: Parkinson’s disease diagnosis using convolutional neural networks and figure-copying tasks (2022) proposed CNN
architecture [41]
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In terms of image size, they experimented with three different resolutions; 32x32,

64x64, and 128x128.

The dataset was collected using a digital Wacom tablet at the Leeds Teaching
Hospitals NHS and it contains 87 subjects (58 patients and 29 aged-matched healthy
controls). All individuals were tasked with copying the wire cube from a sample image and

drawing the Archimedean spiral pentagon on top of a template image.
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Figure 15: Mohamad et al, pentagon/cube data set samples [41]

Their performance result being 93.53% using the proposed CNN architecture on the

pentagon task with augmented data at a resolution of 32x32.

2.2.15. Multiple-Fine-Tuned Convolutional Neural Networks for

Parkinson’s Disease Diagnosis from Offline Handwriting (2022)

In this study [42], M. Gazda, M. Hires, and P. Drotar present an approach in which
end-to-end processing by a convolutional neural network (CNN) is utilized to diagnose PD
exclusively from offline handwriting images which eliminates any need for specialized
devices or feature engineering. Their proposed CNN architecture (E-CNN), which is based on
a multiple-fine-tuned CNNs approach, achieved 94.7% on NewHandPD meander task with

an 80% train to 20% validation split.
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2.3. State of the art Summary

For illustration purposes, the following figure briefly

mentioned in this chapter:

summarizes all the works

Study Year Approach Dataset Data type Accuracy %

1 | Peter et al. [29] 2013 SVM PaHaW Online 80%

2 | Peter et al. [30] 2013 SVM PaHaW Online 80%

3 | Peteretal. [31] 2014 SVM PaHaW Online 85.61%
4 | Peter et al. [32] 2014 SVM PaHaW Online 88.13%
5 | Peteret al. [33] 2015 AUC PaHaW Online 89%

6 | Peteretal. [3] 2016 SVM PaHaW Online 81.30%
7 | Pereira et al. [34] 2016 SVM HandPD Offline 66.72%
8 | Pereiraet al. [35] 2016 OPF NewHandPD Online + Offline 84.00%
9 | Taleb et al. [36] 2017 SVM PDMultiMC Online + Offline 96.87%
10 | Alietal. [37] 2019 Chi2+Adaboost | HandPD Oftline 76.44%
11 | Diaz et al. [38] 2019 SVM PaHaW Online 86.67%
12 | Taleb et al. [39] 2020 CNN-BLSTM | HandPDMultiMC Online + Offline 97.62

13 | Naseer et al. [40] 2020 AlexNet PaHaW Online 98.28%
14 1[\;1(1);1amad ctal 2020 proposed CNN | NHS dataset Offline 93.53%
15 | Matej et al. [42] 2022 E-CNN NewHandPD Offline 94.70%
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Figure 16: State of the art summary table
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2.4. Conclusion

In this chapter, we looked at different state of the art studies ranging from 2013 up to the year
of writing this dissertation (2022), what datasets they used, what methods they’ve employed, and
what results they’ve achieved. This section also served to show the evolutionary history of PD
detection systems through the automatic analysis of handwriting, we concluded by compiling every
paper cited in this chapter into a single summary table for illustration purposes. In the next chapter,
we will be explaining our own approach, from the training method, to the datasets used, and the way

we preprocessed and augmented said data, finally we will present the models used.
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3.1. Introduction

In this chapter, we will detail the different approaches used in this work, from data processing
to the training steps and our proposed CNN architectures; a mildly finetuned VGG16 model with
pre-loaded ImageNet weights, Park-net, and Park-net + SVM. Furthermore, we will provide
information’s about the datasets used as well as the data augmentation techniques that we’ve
attempted. Finally, we will explain what a confusion matrix is, and how we will use it in our results

acquisition.

3.2. Training method

An 80% to 20% split for training set to validation set respectively was used for all trainings
performed, furthermore all models were given a maximum of 100 epochs with a fixed batch size of
32 as well as 4 callbacks were applied (3 checkpoints and 1 earlystop). For an explanation of theses

concepts, see ChapterO1.

All three checkpoint had the save_best_only attribute set to true, and save_weights_only set to

false, and these checkpoints were:

e Accuracy: Accuracy refers to the accuracy score achieved by the model at a given epoch
on the training dataset. Our goal is to get the Maximum accuracy.

e Validation accuracy: Validation accuracy refers to the accuracy score achieved by the
model at a given epoch on the validation data set. Just like with the Accuracy checkpoint,
we also want the Maximum possible Validation accuracy.

e Validation loss: Validation loss refers to the error rate attained by the model at a given
epoch on the validation data set. Unlike the two previous checkpoints, in this case we are

looking for the Minimum Validation loss.

The one early-stop that we used was for monitoring Accuracy with a patience of 5; meaning that
if the accuracy of the model during the training doesn’t improve for 5 epochs, the training is

automatically stopped.
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3.3. Data sets used

In this work we made use of 3 wildly available PD handwriting datasets: HandPD [34],
NewHandPD [43], and Parkinson’s drawing [10]. While we did not use them in out trainings,

NewHandPD does include signal recordings making it valid as both an online and an offline data set.

3.3.1. HandPD
The HandPD dataset [34] is comprised of . “a/waoe (
handwritten exams from both healthy individuals =~ egimeee
f ol Uniulﬁrlbmﬂnhud_ml?n'\:;in
(18) and PD patients (74). the task that was given — Dshes « bpeenes Jabee il | sl
iade: b WM3o dominants: (x)direita | )esgquerda
to these 92 individuals was to fill out a form Desenhar i, 12 veze nomesmo g | Dosonar el 1o r 12 e

. . ~ s
composed by four spirals and four meanders, which . @+ _ . E& O
|

were then carefully cropped out from the form and

Desenhar espiral apés sinal soncro, de dentro para fora.

stored in "jpg" format. i .

e Healthy Group: 6 male and 12 female

Desenhar meander apés sinal sonoro, de dentro para fora.

individuals with ages ranging from 19 . .
fﬂs{Ej‘] rﬂ,—tE—l :U}FJ-J nJE—l

to 79 years old (average age of

! Mo direita 20 seg:

44.22+16.53 years). Among those " @

| Diadococinesia: Mao esquerda 20 segundos.

individuals, 2 are left-handed and 16 are ‘g,
right-handed.

Figure 17: HandPD test template [34]

e Patient Group: 59 male and 15 female individuals with ages ranging from 38 to
78 years old (average age of 58.75+7.51 years). Among those individuals, 5 are
left-handed and 69 are right-handed.

All tests were performed at the Botucatu Medical School, Sdo Paulo State University - Brazil.
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3.3.2. NewHandPD

The NewHandPD dataset [43] is an improved version of the HandPD dataset. This
time composed of 66 individuals, 31 of which are PD patients while the rest (36) are healthy.
Each one was asked to complete 12 exams, 4 of them being related to spirals, 4 related to
meanders, and 2 circular movements (one circle in the air and another on the paper), and left
and right-handed diadochokinesis. During the exam, handwritten dynamics were recorder by
means of a smart pen (BiSP), making NewHandPD a valuable option even for Online datasets

studies. It is fair to note that NewHandPD is more balanced than the original HandPD dataset:

e Healthy Group: 18 male and 17 female individuals with ages ranging from 14 to
79 years old (average age of 44.05+£14.88 years). Among those individuals, 5 are
left-handed and 30 are right-handed.

e Patient Group: 21 male and 10 female individuals with ages ranging from 38 to
78 years old (average age of 57.83+7.85 years). Among those individuals, 2 are
left-handed and 29 are right-handed.

3.3.3. Parkinson’s Drawings

The Parkinson’s drawings dataset [10] is the result of a survey that was approved and
conducted RMIT University Human Research Ethics Committee and in accordance with
Declaration of Helsinki (revised 2004). A total of Fifty-five (55) age-matched, 28 control
group (CG) and 27 PD patients. All PD patients were recruited from PD outpatient clinic at
Dandenong Neurology, Melbourne, Australia, while the Control Group (CG) subjects were
from multiple aged-care facilities. All subjects were right hand dominant. The CG subjects

were recruited to approximately match the age distribution and gender of the PD patients.
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the following figure briefly details the contents of the three data sets used with image

previews included:

43

Data Set Data Types | Healthy (Negative) | Parkinson (Positive) | Total Sample Size
Spirals @ 368
HandPD [34] 72 296
o )
Meanders B 368
72
Spirals @ 263
139 124
NewHandPD [43] | Meanders 263
139 124
Circles O 73
35
)
Spirals 102
Parkinson’s
Drawings [10] 51 51
g o 7l e
VRl | A A
Waves o G A sV 102
51 51

Table 1: Summary table of Data sets used
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3.4. Data treatment

3.4.1. Image pre-processing

Image pre-processing refers to the steps taken to clean raw image data from any false,
missing, or incomplete values or from noise, prior to its use in models and feature extractors.
While smart application of these techniques may greatly benefit recognition systems, it is

worth pointing out that this phase is optional depending on the input data at hand [44].

Due to the way kernels operate, CNNs use relatively little to no pre-processing
compared to other image classification algorithms [45]. Nonetheless, one way of implementing
image pre-processing in CNNs is by having an initial layer of predefined filters that are kept
fixed during training. This way, additional information besides the raw input image can be

provided to the network, e.g., edges and gradients [46].

With that said, the data samples contained in the datasets used in our experiments did
not require any form of data segmentation as they are were already separated into samples,
however we did rescale all samples to a standardized size of 244x244 pixels as is it the
recommended input shape for the VGG16 architecture. All rescaling was done using the resize

method from the OpenCV python library (version 4.1.2).

100

100 < V

f I‘ }
{iadal |
- 150 \ | dgsnt

200 J |

W e

250 200 (™ '-’/ o
300

150 200

0 100 200 300 400 500 0 50 100

150 4

Original sample Sample after rescaling

Figure 18: image resizing example (sample taken from Parkinson's drawings dataset)

In addition to that, we opted to Serialize all our data in advance by using the pickle library.
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3.4.2. Data augmentations

Data augmentation was implemented through the ImageDataGenerator class and the
Flow method from the Keras deep learning library. This method allows for a dynamic

augmentation of the data sample during the fitting of the model.

The Flow iterator will return one batch of augmented images for each iteration. The
size of this augmented batch is equal to the number of samples in the original data set divided
by the batch size. Thus, the total size of the augmented dataset is equal to the number of

epochs times the number of steps per epoch.
Steps_per_epoch = (dataset_size) / (batch_size)
Augmented_set = (Steps_per_epoch) * (Epochs)

The images in the dataset are not used directly. Instead, only augmented images are
provided to the model. Because the augmentations are performed randomly, this allows both
modified images and close facsimiles of the original images to be generated and used during

training.

Furthermore, data augmentation techniques were only applied on the training data set
and not on the validation, as it is common practice. We chose to use the five following

transformation techniques:

e Image Zoom: Range for random zoom. This argument was set to
zoom_range=0.5.

e Image Rotation: Range for random rotation. This parameter was set
rotation_range=180.

e Image Shift: both height and width shifts were applied during the data
generation with both of these arguments being set to 0.5, this means that the max
range of an image shift is equal to 50% of the total height/width.

e Image Flip: both vertical and horizonal flips were set to “true”.

e Image Shear: defines the shear Intensity and was set to shear_range=0.5.

Fill mode was set to “nearest”. Any parameter we did not mentioned was left in its default state as of

Keras 2.8.0 and Tensorflow 2.8.0.
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The following figures showcases the different image transformation techniques used:

Original Zoom Rotation

Horizontal Flip Vertical Flip

Figure 19: example figures for image transformation techniques (sample taken from HandPD dataset)
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3.5. VGGI16

When it came to existing architectures, we opted to use VGGI16. The architecture of this
ILSVR(Imagenet) 2014 competition runner-up is available in Keras api along with the possibility of

loading pretrained Imagenet weights. The fine tuning was done exclusively on the last layer that is

the prediction layer with a sigmoid activation function [16].

Layer name Layer type Size Kernel size Stride Parameters
Input_1 Input layer 244x244x3 - - -

Blockl _convl | Convolution 2D 244x244x64 3x3 1 1792
Blockl conv2 | Convolution 2D 244x244x64 3x3 1 36928
Blockl_pool | Max pooling 2D 112x112x64 2x2 2 -

Block2 _convl | Convolution 2D 112x112x128 3x3 1 73856
Block2_conv2 | Convolution 2D 112x112x128 3x3 1 147584
Block2_pool Max pooling 2D 56x56x128 2x2 2 -
Block3_convl | Convolution 2D 56x56x256 3x3 1 295168
Block3_conv2 | Convolution 2D 56x56x256 3x3 1 590080
Block3_conv2 | Convolution 2D 56x56x256 3x3 1 590080
Block3_pool | Max pooling 2D 28x28x256 2x2 2 -

Block4 convl | Convolution 2D 28x28x512 3x3 1 1180160
Block4 conv2 | Convolution 2D 28x28x512 3x3 1 2359808
Block4 conv3 | Convolution 2D 28x28x512 3x3 1 2359808
Block4_pool | Max pooling 2D 14x14x512 2x2 2 -

Block5 convl | Convolution 2D 14x14x512 3x3 1 2359808
Block5_conv2 | Convolution 2D 14x14x512 3x3 1 2359808
Block5_conv3 | Convolution 2D 14x14x512 3x3 1 2359808
Block5_pool Max pooling 2D TxTx512 2x2 2 -

flatten Flatten layer 25088 - - -

Densel Dense layer 4096 - - 102764544
Dense2 Dense layer 4096 - - 16781312
Prediction Output layer 1x1 - - 4097
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Table 3: VGGI16 architecture used in this work
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VGG is a very popular CNN model, that proved to be efficient in many computers vision tasks.

This architecture was notably used in [38], [41], and [42].

3.6. Proposed CNN Architecture (Park-Net)

In view of the small size of available data on this subject that is the detection of Parkinson’s

disease through the analysis of handwriting, we propose a relatively small CNN with an architecture

comprised of 3 blocks each having one convolution (k = 3x3, activation = ReLu) with a fixed stride

of 1 and a kernel size of 64, 128, and 256 respectively. Each one of convolution is followed by a max

pooling layer (k = 2x2, stride = 2x2), we’ve also set the input dimensions to be 224 by 244,

This model was trained from scratch using only the three datasets that were taken into

consideration for this thesis (HandPD, NewHandPD, Parkinson’s drawings)

Layer name | Layer type Size Kernel size Stride Parameters
Input Input layer 244x244x3 - - -

Convl Convolution 2D 244x244x64 3x3 I 1792

Pooll Max pooling 2D 244x244x64 2x2 2 -

Conv2 Convolution 2D 112x112x128 3x3 I 73856
Pool2 Max pooling 2D 112x112x128 2x2 2 -

Conv3 Convolution 2D 56x56x256 3x3 1 295168
Pool3 Max pooling 2D 28x28x256 2x2 2 -

Flatten Flatten layer 200704 - - -

Densel Dense layer 512 - - 102760960
Dense2 Dense layer 256 - - 131328
Dense3 Dense layer 128 - - 32896
Prediction | Output layer Ix1 - - 129
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Table 4: proposed Park-net architecture
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- Convolution + ReLu

ﬁ Max pooling

. Flatten layer

. Fully connected + ReLu

@ Sigmoid ctivation

Input image
@
224x224x3 1
128
256

224x224x64 112x112x128 56x56x256 512

Figure 20: proposed Park-net architecture

3.7. Park-Net with SVM

Our next attempt was to implement an SVM classifier as the last layer of the CNN, this was
done in Keras by setting the activation layer as linear and adding a 0.01 L2 kernel regularizer.
During the compiling of the model, we’ve set the loss function to be “hinge” instead of binary cross-

entropy [47]. And asides from these changes, the rest of the architecture was kept the same.

The idea of chaining a classifier to CNN feature extractor to increase performance, isn’t
unheard of. Infect we see it in [35], in fact, we see SVM getting used as a complement to a feature

extracting CNN in Dynamically enhanced static handwriting representation for Parkinson’s disease
detection (2019) [38].
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3.8. Confusion matrix

The confusion matrix, or error matrix is table layout that allows for a convenient visualization

of the performance of a model, this consent is more commonly utilized with supervised learning.

Each row of the matrix represents the instances in an actual class while each column represents the

instances in a predicted class, or vice versa [48].

o Positives (P): total number of Positives, Parkinson afflicted individuals. Alternatively:

P=TP+FN

e Negatives (N): total number of Negatives, in the context on this work; Healthy

individuals. Alternatively: N =TN + FP

e True Positives (TP): the number of positive
examples that the model correctly classified as
positive.

e True Negatives (TN): the number of negative
examples that the model correctly classified as

negative.

Confusion Matrix

Actually Actually
Positive (1) | Negative (0)
True False
Predicted m,t ase
Positive (1) Positives Positives
(TPs) (FPs)
False True
Predicted aee » 7 ue i
Negative (0) Negatives Negatives
gatlv (FNs) (TNs)

e False Positives (FP): the number of negative examples that the model incorrectly

classified as positive.

e False Negatives (FN): the number of positive examples that the model incorrectly

classified as negative.

While there are multiple data points that can be extracted from a confusion matrix, in this

work, we chose to focus on the following five:

e Accuracy: Known as conventional accuracy, often abbreviated as ACC, it is determined by

dividing the number of correct predictions by the total number of the samples in the dataset.

It can also be acquired by subtracting the error rate from 1:

acc - TPHTN
- P+N
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Error rate: Also referred to with ERR, is the division of the number of all incorrect
predictions by the total number of samples in the dataset used. In correlation with ACC, the

best error rate 1s 0.0, whereas the worst 1s 1.0.

crp— FPEFN )
= 5y (@

Sensitivity: Also known as Recall or TPR (short for True Positive Rate), denotes all Real

Positive cases. The best TPR is 1.0, whereas the worst is 0.0. It is defined as:

TP

TPR= —& oo (3)

Specificity: Also known as Selectivity or TNR (short for True Negative Rate), its aim is to
identify the proportion of Predicted Positive cases that are correctly Real Positives. Again,

the best-case scenario is TNR = 1.0, It is defined as:

TN

TNR= .. (4)

Balanced Accuracy [37]: Often abbreviated as ACCha, it aims to identify the performance
of a model regardless of data imbalance between the number of negatives and positives.

And it is defined as:

TNR +TPR

ACChal = ————— ... . (5)
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3.9. Conclusion

In this chapter we discussed the different data-preprocessing and training methods used in this
work, we also provided vital information about the data sets used during said training and the
augmentation that were applied. We’ve also introduced Park-net, out CNN model that we are
proposing in the context of this thesis as well as the concept of combining a CNN for feature
extraction and SVM as a classifier, we then moved on to aboard the concept of finetuning a pre-
existing and pre-trained VGG16 model. Finally, we explained the concept of a confusion matrix and
how it will be used in our results acquisition. All of this in preparation for the next chapter which
will contain the experimental results acquired through our training methods as well as details on the

execution environment in which the model trainings were performed.
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1.1 Introduction

In this chapter, we will provide information about the execution environment that we used,
both the hardware and the software, as well as the exact data splits samples numbers, secondly, we
will showcase the different acquired training results which we will judge on 4 metrics; Accuracy,

Sensitivity, Specificity, and Balanced accuracy. We conclude with a state-of-the-art comparison.

4.1. Execution environment

In this section we detail the hardware and software used for all training done in the context of

this thesis:
4.1.1. Hardware

All trainings were done in google colab’s
execution environment, and as of the time of this thesis,
the free version of Google’s colab provides a Tesla T4
gpu or equivalent with 16gb of vram. 2 threads of an
Intel Xeon cpu with 12 to 13gb of system ram. And
approximately 41gb of cloud disk storage available for Figure 21: google colab logo
12 hours a day. The gpu however is only available for 6

hours.

4.1.2. Software

The IDE that we mostly used is google colab’s notebook manager. With
Python 3.7.13 and the 2.8.0 version of the Tensorflow and Keras libraries. However,
for the brief instances where we had to use a local execution environment, we opted to
use Anaconda Navigator (anaconda3) version 3.9.7 with Jupiter notebook version

6.4.8. the Tensorflow and Keras version in this case were 2.6.0.
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4.2. Data splits

In this work, we made use of three datasets; HandPD, NewHandPD, and Parkinson’s

drawing. In addition to different combinations between these combine the three. And as

previously mentioned in the Training method section, all experiments were conducted with a

dataset split of 80% to 20% for the training and validation sets respectively. The following

table servers to illustrate the exact sample numbers for each case of each scenario:

training set validation set contents
datasets Cases datatypes
P | T P | T P T
Casel Spirals 58 [236] 294 | 14 | 60 | 74 | 72 | 296 | 368
Case2 Meanders 44 (250 294 | 28 | 46 | 74 | 72 | 206 | 368
(a) HandPD :
Case3 | Spirals + Meanders | 102 | 487 | 589 | 42 | 105 | 147 | 144 592 | 736
Casel Spirals 1199 | 210 28 [ 25| 53 | 139 | 124 | 263
Case2 Meanders 11199 | 210 L 28 | 25| 53 | 139 | 124 | 263
Case3 Circles 2830 ] s8] 7| 8] 15] 35 38 | 73
(b) | NewHandPD | cages | Spirals + Meanders | 223 [ 198 | 421 | 55 | 50 | 105 | 278 | 248 | 526
Cases | SPirals + Meanders | ,50 1599 | 479 | 63 | 57 | 120 | 313 | 286 | 599
+ Circles
Casel Spirals 40 |42 | &2 11| 9 | 20 ] s1 51 | 102
© Parkinson's Case2 Waves 41 | 41 82 10 10 20 51 51 102
drawings Case3 | Spirals+Waves | 81 | 82 | 163 | 21 | 20 | 41 | 102 | 102 | 204
Casel Spirals 169 336 | 505 | 42 | 84 | 126 | 211 | 420 | 631
Case2 Meanders 156 | 349 | 505 | 55 | 71 | 126 | 211 | 420 | 631
(d)| HendPD+ [ Case3 | Spirals + Meanders | 327 [ 683 | 1010 | 95 [ 157 | 252 | 422 | 840 | 1262
NewHandPD -
ewHan Cased | SPirals + Meanders | 3501 515 | 1068 | 101 | 166 | 267 | 457 | 878 | 1335
+ Circles
HandPD + | Casel Spirals 209377 | 586 | 53 | 94 | 147 | 262 | 471 | 733
() NewHandPD + Spirals + Meand
Parkinson's | Case2 | SPM&S +Meanders | y35 1 794 | 1231 122 | 186 | 308 | 559 | 980 | 1539
drawings + Circles + Waves
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» N = Negatives, Healthy Control samples.

Table 5: data splits for all data used for training and validating

= P =Positive, PD afflicted patients’ samples.

* T =N+ P, Total samples in a given section.
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4.3. Experimental results

In this section we will go, step by step, through all the different results that we have reached through
our methodology, providing clarifications, and justifications. For results acquisition formulas, see
*3.8 Confusion matrix”.

Qur 1nitial tests were run on the HandPD and NewHandPD dataset and the combination of the

two. Note that we chose to exclude the NewHandPD’s Cirles task at first. However, we did end up

including it along with the Parkinson’s drawings as both separate and unique scenarios. See Table 15

and Table 16.
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4.3.1. VGGI16

Our first experiments involved the use of the pre-exiting VGG16 architecture with

pre-trained (ImageNet) weights. And using only the HandPD and NewHandPD dataset, in

addition to a few combinations between the two. We managed to get the following results:

If we first take a look at the
results acquired from the HandPD
dataset alone, we notice that both the
accuracy and sensitivity are quite
high, even reaching ACC=90.54%
on the spiral task, and a TNR=100%

HandPD
spirals meanders r;l?el;lalldse:s
accuracy | 90.54% 75.68% 75.51%
sensitivity | 98.33% 100.00% 100.00%
specificity | 57.14% 35.71% 14.29%

Table 6: training results for VGGI16 on the HandPD dataset

on both of the latter cases; meanders, and spirals + meanders. However, these results are

dismissible due to the low specificity. this is in part due to the HandPD dataset being very

poorly balanced in terms of the number of positive vs negative samples it contains.

Moving to the second

scenario, this time we used the
NewHandPD dataset. this set has a
better balanced compared to its
HandPD counterpart. We notice

VGG16 performed best on the

NewHandPD
spirals meanders ;[:ariﬁse;
accuracy 96.23% 88.68% 73.33%
sensitivity | 100.00% 100.00% 100.00%
specificity | 92.86% 78.57% 49.09%

Table 7: training results for VGG16 on the NewHandPD dataset
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spirals task, achieving ACC=96.23% this time with an acceptable sensitivity to specificity
ratio of TNR=100% and TPR=92.86%. the meanders task didn’t fare as well, especially when
combined with the spiral task. VGG16’s affinity towards the spiral task may indicate the
efficiency of the spiral drawings as a reliable test for PD diagnosis, it may also indicate the

presence of spiral shapes in ImageNet (the dataset this model was pre-trained on).

We then attempted training on

both datasets combined; HandPD and HandPD + NewHandPD
NewHandPD. And the only result spirals meanders spirals +
meanders
worth looking at is the spirals task | accuracy | 89.68% 59.52% 68.65%
with an accuracy of ACC=89.68%, a sensitivity | 100.00% 100.00% 100.00%
specificity | 69.05% 5.45% 16.84%

sensitivity of TNR=100%, and a
decent specificity of TPR=69.05%.

Table 8: training results for VGG16 on both the HandPD and
NewHandPD datasets combined

the two other cases, in our opinion

are not worth looking at due to the specificity being too low.

From here, there were two ways to improve these results; further finetuning of
VGG16 or reducing the complexity of the model architecture thus creating a new model, we

chose the latter.

4.3.2. Park-Net

This next section will showcase the results obtained using our proposed CNN Park-
Net which architecture can be found in Figure 20: proposed Park-net architecture in the

Proposed CNN Architecture (Park-Net) section of “Chapter 03: Our approach *

In this first scenario, we

) HandPD
notice that Park-Net performed better . spirals
. . spirals meanders
than out VGG16 instance in two out meanders
£ th th ‘h its best accuracy 89.18% 86.48% 89.80%
ob these three cases, Wit 115 DSt 17 o nsitivity | 88.33% |  95.65% 92.38%
performance  being  spirals  + | gpecificity | 92.85% 71.43% 83.33%

meanders; netting us an accuracy of Table 9: training results for Park-Net on the HandPD dataset
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ACC=89.80% with a very well-balanced TNR and TPR of 92.38% and 83.33% respectively.

And while it seems, at first glance, that VGG16 performed better in the spiral task with its

90.54% accuracy, Park-Net did achieve a superior sensitivity to specificity balance; with

TNR=88.33% and TPR=92.85%.

When using the NewHandPD
dataset, we noticed a significant
performance boost for both that
meander task and the combined

meander + spiral case with a well-

balanced TNR and TPR. However, in
the case of the spiral task; VGG16

does out-perform Park-Net.

When using a combination of
the two databases, we see a
significant performance increase in
two out of the three scenarios. The
exception being; the spiral task,
although we must note that Park-Net

does achieve a better sensitivity to

NewHandPD
spirals meanders r;l;l;raiise:s
accuracy | 88.68% 86.79% 91.43%
sensitivity | 80.00% 72.00% 84.00%
specificity | 96.43% 100.00% 98.18%

Table 10: training results for Park-Net on the NewHandPD dataset

HandPD + NewHandPD

spirals meanders ;lllialldsejs
accuracy | 84.92% 93.65% 95.24%
sensitivity | 82.14% 91.55% 94.90%
specificity | 90.48% 96.36% 95.79%

Table 11: training results for Park-Net on both the HandPD and

NewHandPD datasets combined

specificity balance, it being TNR=82.14% and TPR=90.48% relative to VGG16 which

achieved TNR=100% and TPR=69.05%.

While Park-Net did not surpass VGG16 in all cases, such as; HandPD:Spiral, and

NewHandPD:Spiral. we did notice a significant performance increase in both the meander

task and meander+spiral case, and this time with a much more balanced sensitivity and

specificity.
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4.3.3. Park-Net + SVM

Training results from the initial Park-Net model seemed promising. So, in an attempt to
improve on them, we implemented a semi-SVM on the last layer of this CNN (see “3.7 Park-
Net with SVM™). We did in fact observe improvements and, in this section, we will showcase

the results:

59

Immediately, we notice an

. . HandPD
increase in performance on all three . spirals +
spirals meanders
cases compared to both VGG16 and meanders
] L 93.24% 89.19% 93.20%
normal Park-Net. With the best J/
encitivi 96.67% 95.65% 95.24%
performance in this case being the | Sensiivity ’ v v
combination of the spiral and | specificity 78.57% 78.57% 88.10%

meander tasks, yielding an accuracy

of ACC=93.20%, the best sensitivity

Table 12: training results for Park-Net + SVM on the HandPD

was observed on the spiral task, and the best sensitivity to specificity balance in the meanders

task.

When using the NewHandPD

. . . NewHandPD

dataset, we again notice an increase -
spirals meanders spirals +
in performance on all three P meanders
. . 98.11% 96.23% 94.29%
experiments. With the best results | accuracy . . g
being the spirals task with an | sensitivity 96.00% 100.00% 92.00%
accuracy of ACC=98.11% and well- | gpecificity 100.00% 92.86% 96.36%

balanced sensitivity to specificity

ratio of 96.00% and 100% respectively.

Table 13: training results for Park-Net + SVM on the HandPD
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Finally, when attempting the

same model with both the HandPD HandPD + NewHandPD

iral ders spirals +
and the NewHandPD datasets Spirals meanders meanders
combined we achieved decently high | accuracy SO 95.24% 95.63%
and stable results; both spiral and | sensitivity | 20-24% 97.18% 94.90%
meander tasks achieving an accuracy specificity 95.24% 92.73% 96.84%

of 95.24%, with the combination of Table 14: training results for Park-Net + SVM on the HandPD
the two taking the lead at 95.63%

with a sensitivity of 94.90% and a specificity of 96.84%.

4.3.4. Additional tests

For testing and analysis purposes, we proceeded to performed other trainings which
included the use of the previously described “Parkinson’s drawings” Dataset, as well as several

combinations of all three datasets; HandPD, NewHand, and Parkinson’s drawings.

The scenario where we fused all three datasets (HandPD, NewHandPD, and
Parkinson’s drawing) included two cases; Casel takes into account all the spiral tasks from all
the three datasets, while Case2 accounts for all samples from all the different tasks in the three

datasets.

Another experiment that we’ve attempted involved using an SVM classification layer
as the last layer of the VGG16 model like we did with Park-Net. Unfortunately, this particular
method of implementing the SVM classifier did not return any results worth showcasing.

Further research is needed.

We also teste decided to test the predecessor of VGG16; the VGG19 model, and just
like its counterpart; we used the ImageNet database pre-trained weights, and finetuned it on the

last layer level.

And finally, we took the scenario containing the combination of all three datasets and

applied the data augmentation techniques described in “3.4.2 Data augmentations”.
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For a better visualization, we present Table 15 which illustrates all the trainings

mentioned up to this point: ACC%
_ TPR%
e Results cells are organized as follow: TNR%
VGG16 VGG19
Park-Net | Park-Net + SVM (ImageNet) | (ImageNet)
89.19% 93.24% 90.54% 97.30%
Casel Spirals 88.33% 98.33% 98.33% 100%
92.56% 64.28% 57.14% 85.71%
86.48% 89.19% 75.68% 71.62%
(& ey Case2 Meanders 95.65% 95.65% 100% 100%
71.43% 78.57% 35.71% 25.00%
89.80% 93.20% 75.51% 75.51%
Case3 | Spirals + Meanders 92.38% 95.24% 100% 100%
83.33% 88.10% 14.29% 14.29%
88.68% 98.11% 96.23% 88.69%
Casel Spirals 80.00% 96.00% 100% 80.00%
96.43% 100% 92.86% 96.43%
Case? 86.79% 96.23% 88.68% 50.94%
Meanders 72.00% 100% 100% 100%
100% 92.86% 78.57% 7.14
(b) NewHandPD 86.67% 86.67% 100.00 % 93.33%
Case3 Circles 100% 100% 100% 100%
71.43% 71.43% 100% 85.71%
91.43% 94.29% 73.33% 76.19%
Cased | Spirals + Meanders 84.00% 92.00% 100% 98.00%
98.18% 96.36% 45.45% 52.73%
80.00% 93.33% 93.33% 79.17%
Spirals + Meanders
Case5 Circl 61.40% 89.47% 96.49% 100%
+Lareles 96.83% 96.83% 90.48% 60.31%
55.00% 90.00% 100.00 % 85.00%
Casel Spirals 0.00% 100% 100% 66.67%
100% 81.82% 100% 100%
_ € 50.00% 65.00% 95.00% 100.00 %
(c) | Parkinson's .
e aves 0.00% 50.00% 100% 100%
b 100% 80.00% 90.00% 100%
G 51.23% 58.54% 92.68% 95.12%
Spirals + Waves 0.00% 50.00% 100% 95.00%
100% 66.67% 66.67% 95.23%
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84.92% 95.24% 89.68% 88.10%
Casel Spirals 82.14% 95.24% 100% 96.43%
90.48% 95.24% 69.05% 71.43%
Case? 93.65% 95.24 % 59.52% 56.35%
Meanders 91.55% 97.18% 100% 100%
96.36% 92.73% 7.27% 0.00%
@ (@) + (b) 95.24% 95.63 % 68.65% 63.49%
Case3 | Spirals + Meanders 94.90% 94.90% 100% 100%
95.79% 96.84% 16.84% 3.16%
91.76% 93.63% 77.15% 068.54%
Spirals + Meanders
Cased Cirel 90.96% 93.37% 100% 100%
+ Lircles 93.07% 94.06% 32.67% 16.83%
93.20% 94.56 % 91.16% 81.63%
Casel Spirals 94.68% 97.87% 100% 100%
90.57% 88.68% 75.47% 49.06%
] Bl o) 87.01% 90.90% 84.41% 74.68%
Spirals + Meanders
Case2 + Circles + W 90.32% 91.94% 96.77% 100%
e s 81.97% 89.34% 65.57% 14.75%

Table 15: gobal results table (ACC%, TNR%, TPR% )

Immediately we see VGG19 taking the lead in scenario(a) casel, on the HandPD spiral task,

with an accuracy of ACC=97.30% with TPR=100% and TNR=85.71%. Unfortunately, that is one of
only two cases where VGGI19 performed better than other models. With the second case being

scenario(c) case2 on the parkinson’s drawings wave task.

From the other results, we notice a significant improvement achieved by adding an SVM
classier to the base Park-Net model, it was also the most stable and performed better than or equal to
our other models in twelve out of the seventeen presented cases, with its best performance reaching

98.11% on the first case of scenario(b), the NewHandPD’s spiral task.

In scenario(b): case3 and all three cases of scenario(c), we observe that VGG16 and VGG19
achieved much higher accuracy than Park-Net. All four of these cases have very low sample counts,
with scenario(b): case3 (the circles task) only having 73 samples in total and Parkinson’s drawings
dataset only reaching 204 sample even with both spiral and wave tasks are combined (see Data splits
section). Therefore, the size of these scenarios makes them unfit for training a CNN from scratch

such is the case for both Park-Net and Park-Net+SVM.
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This also explains the decrease that we see in scenario(b): case5, adding the circles task to the

spiral and meander tasks introduces a variety that without the proper number of samples, does

nothing but harm the model’s learning curve and lowers the overall accuracy.

The fact that the performance recorded on the spiral tasks was, in average, better than the

accuracy achieved on the other takes may indicate the Archimedean spiral shape’s superiority when

it comes to the detection of PD through the analysis of hand-drawings.

Another way of extracting accuracy is through balanced accuracy (ACChpa; see 0°3.8 Confusion
matrix”’ formula nb5). The following figure showcases results from the same tests, but this time
using ACChra instead of the conventional accuracy:

Waves

Park-net Park-net + | VGGI16 VGG19
SVM (ImageNet) |(ImageNet)
Casel Spirals 90.45% 81.31% 77.74% 92.86 %
(a)] HandPD Case2 Meanders 83.54% 87.11% 67.86% 62.50%
Case3 Spirals + Meanders 87.86% 91.67 % 57.15% 57.15%
Casel Spirals 88.22% 98.00 % 96.43% 88.22%
Case2 Meanders 86.00% 96.43 % 89.29% 53.57%
(b)] NewHandPD |Case3 Circles 85.72% 85.72% 100.00% 92.86%
Cased Spirals + Meanders 91.09% 94.18% 72.73% 75.37%
Case5| Spirals + Meanders + Circles | 79.12% 93.15% 93.49% 80.16%
Casel Spirals 50.00% 90.91% 100.00% 83.34%
Parkinson's
(c) Case?2 Waves 50.00% 65.00% 95.00% 100.00 %
drawings
Case3 Spirals + Waves 50.00% 58.34% 83.34% 95.12%
Casel Spirals 86.31% 95.24% 84.53% 83.93%
Case2 Meanders 93.96% 94.96 % 53.64% 50.00%
(d) (@) +(b)
Case3 Spirals + Meanders 95.35% 95.87 % 58.42% 51.58%
Case4 | Spirals + Meanders + Circles | 92.02% 93.72% 66.34% 58.42%
Casel Spirals 92.63% 93.28% 87.74% 74.53%
()| (a) + (b) + (c) . -
@ane | whims e eEEnCER R R ol 006 | 2illin | S7seg

Table 16: gobal results table with Balanced Accuracy (ACCea%)
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Switching to ACCra, we see that there is not much of a difference; in Scenario(b) Case4
VGG16 give 93.49%, surpassing Park-Net+SVM which gave 93.15% however, we do note that even

when using the conventional accuracy metric, they were both equals, scoring 93.33 each.

In this following section, we took into consideration Scenario(e) to serve as a base for data
augmentation. The data generation techniques used consisted of: vertical flip, horizontal flip, image
shear, 50% zoom range, 180° rotation range, 50% shear range (see “3.4.2 Data augmentations™). The

following figure illustrate the acquired results:

Park-Net Park-Net + VGG1e6 VGG19
SVM (ImageNet) | (ImageNet)
76.87% 82.99% 87.76 % 82.31%
HandPD + Casel Spirals 86.17% 85.11% 98.94% 78.72%
© NewHandPD + 60.38% 79.25% 67.92% 78.72%
c g
Parkinson’s
drawings . 79.55% 83.77% 90.58 % 75.00%
Spirals + Meanders
Case2 Circles + W 76.34% 80.65% 95.70% 97.85%
UL es R A 84.43% 88.52% 81.97% 40.16%

Table 17: Results Table of training done on augmented datasets (ACC, TNR, TPR)

Form the results attained in “Table 17: Results Table of training done on augmented datasets”,
we notice that the best results were achieved by VGG16, 87.76% (TPR=98.94%, TNR=67.92%) on
Casel and 90.58% (TPR=95.70%, TNR=81.97%) on Case2, showing that Park-Net is not fit to be

used on large data-sets.

And if we were to consider balanced accuracy instead, we still get the same results with

VGG16 staying in the lead. Refer to the following figure:

Park-net Park-net + VGGleé VGG19
SVM (ImageNet) | (ImageNet)
HandPD + Casel Spirals 73.27% 82.18% 83.43% 78.72%
(©) NewHandPD + e
Barkmconts | @0 | R ETRE 0l S0 e Seg) 88.83% 69.01%
drawings Circles + Waves

Table 18: Results Table of training done on augmented datasets (ACC, TNR, TPR)
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4.4. Comparisons

In this section, we provide a state-of-the-art comparison from works that have utilized the same
data set as we did i.e., HandPD, and NewHandPD as they rank amongst the most used datasets in PD

offline handwriting recognition domain.

First, HandPD. Presented in 7abie 19 are the balanced accuracy results from our work as well as
a few other papers that used the HandPD dataset in their tests. All mentioned tests used the original

dataset with no augmentation.

Approach Spirals | Meanders | Spirals+Meanders

0 | Our work Park-Net 90.45% | 83.54% 87.86%
Park-Net+SVM 81.31% | 87.11% 91.67 %
VGG16 77.74% | 67.86% 57.15%
VGG19 92.86% | 62.50% 57.15%

1 | Pereira et al. (2016) [34] Naive Bayes(spirals) | 66.37% | 66.72% 58.61%
SVM(meanders)

2 | Alietal. (2019) [37] Chi2+Adaboost 72.46% | 78.04% /

Table 19: HandPD state-of-the-art comparison, using the balanced accuracy metric (ACCha)

Secondly, NewHandPD. Compared to HandPD, NewHand is much more balanced in terms of
PD to healthy samples ratio, thus eliminating the need to use balanced accuracy instead of the

conventional accuracy. However, for the sake of consistency, we nonetheless chose to use ACCpal.

Data type Approach Spirals Meanders
0 Our work Offline Park-Net 88.22% 86.00%
Park-Net+SVM 98.00 % 96.43%
VGG16 96.43% 89.29%
VGG19 88.22% 53.57%
Papa et al. . . o o
1 (2016) [43] Offline + Online | OPF 83.77% 84.42%
Gazda et al. .
2 (2022) [42] Offline E-CNN 92.70% 94.70%

Table 20: NewHandPD state-of-the-art comparison, using the balanced accuracy metric (ACChpat)
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We see that our approach gave better results without the need for data augmentation.
Furthermore, entry (2) is as recent as 2022 and in this paper, Gazda et al. stated; “To the best of our
knowledge, this is the highest accuracy achieved with the NewHandPD dataset.” which as far as we
know, was still factual at the time of putting together this thesis. Meaning that our approach achieved

the highest accuracy rate on the NewHandPD dataset with both the meander and spiral tasks.
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4.5. Conclusion

In this chapter, we started by describing the execution environment used for trainings, we then
proceeded to detail the datasets splits before showcasing the training results. We looked at four
different evaluation metrics; ACC, TPR, TNR, and ACCypa. with the latter being especially useful for
evaluating models trained on imbalanced datasets (number of PD samples greater than Healthy
samples of vice versa). Our best performing model was Park-Net, with balanced accuracy of
ACCp=98% on the NewHandPD spiral task, and ACC4=96.43% on the meander task from the
same dataset. we then compared these results, along with other, to state-of-the-art works and

observed that Park-Net outperformed works as recent as 2022 which is the year of writing this thesis.
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General Conclusion

Progressive neurological disorders in general but more specifically Parkinson’s disease is a
serious problem which affects millions, and yet we are still to fully understand it’s complexity and
intricacies. The main goal of this thesis was working towards a way to automatically detect this

illness through the analysis of non-intrusive static handwriting tests.

we presented a general domain study of Parkinson’s disease identification through handwriting,
as well as, various state of the art works on this particular subject. Some used static offline drawings
while others utilized meta online data, such as; pen pressure, and in air movement amongst many. In
our case, we focused on the treatment of static offline drawings data only, and for that we used three

relatively popular datasets; HandPD, NewHandPD, and Parkinson’s drawings.

Our method consisted of testing fine-tuned VGG16 and VGG19 models with pretrained
ImageNet weights, along with our proposed Park-Net model that we then paired with a semi-SVM
classifier as the last layer. We went in-depth over our methods; from data pre-treatment and
augmentation, to training, and eventually results acquisition. Details of the execution environment

used were also provided.

We managed to achieve satisfactory results using our training method on the non-augmented
data, with our proposed Park-Net CNN paired to a semi-SVM classifier reaching; a balanced
accuracy of ACCpa=91.67% on the Spiral-Meander combination of the HandPD dataset, and
ACCpai=98.00% on the Spiral task of the NewHandPD dataset. In addition to considering each
individual dataset separately, we have also carried out trainings on different combinations of the
available tasks, which from what we have seen is not in many, all while examining four different

evaluation metrics; ACC, ACCypa, TPR, and TNR.

Due to time limitation, there are a few ideas which we were unable to test that we think may

improve upon this work of ours:

e Further finetuning the VGG16 model by activating layers other than the dense and
activation ones.

e Using VGG16 in combination with SVM; while we did reach satisfactory results with
Park-Net + SVM, it would be interesting to see how far can the VGG16 be pushed.
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Using Park-Net in combination with other classifiers is something that we initially
planned on doing but the time constraints and the unavailability of keras compatible
approaches made it this idea un-reachable.

Testing Park-Net on different disorders depending on dataset availability.

Applying detailed data-augmentation approach, where every type of augmentation is
tested separately for experimental purposes.

Attempting data optimization though selectively removing bad samples from the train
dataset before re-doing the training, any issues caused by the shrunken dataset can be
solved with data augmentation, the subtracted samples can then be re-added at a later

stage.
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